This is the final peer-reviewed accepted manuscript of:

Selke Krulichová, I, Selke, GW, Bennie, M, et al. Comparison of drug prescribing before and during the COVID-19 pandemic: A cross-national European study. *Pharmacoepidemiol Drug Saf*. 2022; 31(10): 1046-1055.

The final published version is available online at: <u>https://doi.org/10.1002/pds.5509</u>

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

Comparison of Drug Prescribing Before and During the COVID-19 Pandemic – A Cross-national European Study

Running title:

Impact of COVID-19 Pandemic on Drug Prescribing in Europe

Iva Selke Krulichová^a, Gisbert W. Selke^b, Marion Bennie^{c,d}, Mohammadhossein Hajiebrahimi^e, Fredrik Nyberg^f, Jurij Fürst^g, Kristina Garuolienė^h, Elisabetta Poluzziⁱ, Juraj Slabý^j, Corinne Zara Yahni^k, Mattia Altini^l, Maria Pia Fantiniⁱ, Václav Kočí^j, Stuart McTaggart^d, Caridad Pontes^{k, m}, Chiara Renoⁱ, Simona Rosaⁱ, Marta Turu Pedrola^k, Mitja Udovič^g, Björn Wettermark^{e,n}

^aDepartment of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic; ^bAOK Research Institute (WIdO), Berlin, Germany; ^cStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; ^dPublic Health Scotland, Edinburgh, UK; ^eDepartment of Pharmacy, Uppsala University, Uppsala, Sweden; ^fSchool of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden; ^gHealth Insurance Institute of Slovenia, Ljubljana, Slovenia; hDepartment of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy; ^jState Institute for Drug Control, Praha, Czech Republic; ^kDrug Department, Catalan Health Service, Barcelona, Spain; ¹Healthcare Administration, Azienda Unità Sanitaria Locale della Romagna, Ravenna, Italy; ^mDepartment of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; "Pharmacy Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania

Corresponding author: Iva Selke Krulichová (krulich@lfhk.cuni.cz)

ORCID:

M. Altini – 0000-0002-1809-184X M. Bennie – 0000-0002-4046-629X M. P. Fantini - 0000-0002-3257-6552 K. Garuolienė – 0000-0001-7910-0108 MH. Hajiebrahimi - 0000-0001-8118-4988 S. McTaggart - 0000-0001-6060-9019 F. Nyberg - 0000-0003-0892-5668 E. Poluzzi - 0000-0002-7209-0426 C. Pontes - 0000-0002-3274-6048 C. Reno - 0000-0002-7933-2141 G. W. Selke - 0000-0002-9614-9875 I. Selke Krulichová – 0000-0002-6815-0780 M. Turu Pedrola – 0000-0001-6957-3155 B. Wettermark - 0000-0003-0531-2516 C. Zara Yahni – 0000-0002-6831-2233

This is a peer-reviewed, accepted author manuscript of the following article: Selke Krulichová, I., Selke, G. W., Bennie, M., Hajiebrahimi, M., Nyberg, F., Fürst, J., Garuolienė, K., Poluzzi, E., Slabý, J., Zara Yahni, C., Altini, M., Fantini, M. P., Kočí, V., McTaggart, S., Pontes, C., Reno, C., Rosa, S., Pedrola, M. T., Udovič, M., & Wettermark, B. (2022). Comparison of drug prescribing before and during the COVID-19 pandemic: a cross-national European study. Pharmacoepidemiology and Drug Safety, 31(10), 1046-1055. https://doi.org/10.1002/pds.5509

Data and Code Availability

The data and code that support the findings of this study are openly available in "zenodo" at https://doi.org/10.5281/zenodo.5912080.

Conflicts of Interest

The authors have no relevant conflicts of interest to declare.

Ethics approval and patient consent were not needed because only aggregated administrative data were used.

Authors' Contributions

ISK and GWS conceptualized the study with support from BW and MB. GWS and ISK analysed the data. ISK drafted the manuscript with support from GWS, BW, MB, MHH, and FN. CZY, CP and MTP provided data on Catalonia. JS and VK provided data on Czechia. GWS provided data on Germany. KG provided data on Lithuania. EP, CR, SR and MA provided data on Romagna. MB and SM provided data on Scotland. JF and MU provided data on Slovenia. BW provided data on Sweden. All authors participated in critical revision of the manuscript, contributed comments, and approved the final version.

Supplementary Material

The Supplementary Material for this article can be found online at [to be determined].

Funding

This study was supported in part by COOPERATIO Program (Charles University), Research Area Medical Diagnostics and Basic Medical Sciences. Mohammadhossein Hajiebrahimi received funding from NordForsk.

Acknowledgement

The authors thank Maria Juhasz Haverinen from Stockholm County Council for her help with providing the Swedish data.

Abstract

Purpose

The COVID-19 pandemic had an impact on health care, with disruption to routine clinical care. Our aim was to describe changes in prescription drugs dispensing in the primary and outpatient sectors during the first year of the pandemic across Europe.

Methods

We used routine administrative data on dispensed medicines in eight European countries (five whole countries, three represented by one region each) from January 2017 to March 2021 to compare the first year of the COVID-19 pandemic with the preceding three years.

Results

In the 10 therapeutic subgroups with the highest dispensed volumes across all countries/regions the relative changes between the COVID-19 period and the year before were mostly of a magnitude similar to changes between previous periods. However, for drugs for obstructive airway diseases the changes in the COVID-19 period were stronger in several countries/regions.

In all countries/regions a decrease in dispensed DDDs of antibiotics for systemic use (from -39.4% in Romagna to -14.2% in Scotland) and nasal preparations (from -34.4% in Lithuania to -5.7% in Sweden) was observed.

We observed a stockpiling effect in the total market in March 2020 in six countries/regions. In Czechia the observed increase was not significant and in Slovenia volumes increased only after the end of the first lockdown.

We found an increase in average therapeutic quantity per pack dispensed, which, however, exceeded 5% only in Slovenia, Germany, and Czechia.

Conclusions

The findings from this first European cross-national comparison show a substantial decrease in dispensed volumes of antibiotics for systemic use in all countries/regions. The results also indicate that the provision of medicines for common chronic conditions was mostly resilient to challenges faced during the pandemic. However, there were notable differences between the countries/regions for some therapeutic areas.

Keywords

COVID-19, pandemic, drug utilization, pharmacoepidemiology, cross-national comparison, DDD volume, stockpiling

Key Points

- Dispensed volumes of systemic antibiotics and nasal preparations decreased in all countries/regions.
- Provision of medicines for common chronic conditions was mostly resilient to challenges faced during the COVID-19 pandemic.

• Stockpiling of pharmaceuticals was observed typically in March 2020, except for Slovenia, where increases of DDD volume were observed only two months later.

The Plain Language Summary (PLS)

The COVID-19 pandemic had an impact on many aspects of life including health care. We assumed that also drug prescribing would be affected. Our aim was to describe changes in prescription drug dispensing in the outpatient sector during the first year of the pandemic across Europe. We used large data sets on dispensed volumes of medicines and their pack sizes in eight European countries (five whole countries and three represented by one region each), comparing the first year of the COVID-19 pandemic and the preceding three years. In all countries/regions we observed a substantial decrease in dispensed volumes of antibiotics for systemic use (i.e. usually oral antibiotics) and nasal preparations. In March 2020 we observed an increase in dispensed volume of medicines in all countries/regions but Slovenia, where this effect occurred only after the end of the lockdown connected to the first wave of the pandemic. Increases in average pack size dispensed were rather mild and exceeded 5% only in three of the countries/regions. Although the first year of the pandemic brought substantial changes in dispensed volumes of medicines, it is reassuring that medicines for treating common chronic conditions were usually little affected.

Introduction

The first cases of COVID-19 were confirmed in Europe at the end of January 2020. In March 2020, the World Health Organization (WHO) declared a COVID-19 pandemic and countries began to take measures to mitigate the spread of the pandemic. Many European countries introduced strict measures during March 2020, including physical distancing, wearing face masks, and limiting possibilities of social contacts, however, the nature of these measures varied substantially between and within countries.¹

The COVID-19 pandemic has affected peoples' lives and behaviour in many aspects and has also had a significant impact on health care.^{2,3} Many planned health care examinations and procedures have been cancelled or postponed, as clinical staff were re-allocated to health care services related to COVID-19 and patients tried to limit their visits to physicians to avoid the risk of contracting the infection in healthcare facilities. In December 2020, the EU-funded European Network to Advance Best practices & technoLogy on medication adherencE (ENABLE) COST Action conducted a survey in 39 European countries to assess barriers and facilitators for patients accessing their chronic medication during the pandemic.^{4,5} The survey indicated significant disruption of chronic disease services, especially in countries with a greater number of COVID-19 cases per 100,000 inhabitants, and a large variation between countries in measures taken to ensure adequate drug management for these patients.

We hypothesized that, like other areas of health care, the pandemic would affect also the patterns of drug prescribing and dispensing. Given that there were substantial differences between countries in measures to maintain medicines management during the pandemic, cross-national comparisons of drug utilization patterns may add value as a tool to identify areas for improvement. The aim of this paper was to characterize and compare changes that took place in prescription drugs dispensing in primary care and the outpatient sector in several European countries or regions during the first year of the pandemic.

Methods Study design and data

We conducted a retrospective observational cross-national comparative study. Participating countries and regions were Czechia, Germany, Romagna (Italy), Lithuania, Slovenia, Catalonia (Spain), Sweden, and Scotland (United Kingdom). For each country/region, we used dispensing data⁶ from January 2017 to March 2021. Data covered all dispensed prescription medicines of the countries/regions and included the codes of the Anatomical-

Therapeutic-Chemical classification (ATC) and corresponding numbers of dispensed defined daily doses (DDDs) and packs, both aggregated by month. We used the ATC classification of 2021, as published by the World Health Organization (WHO),⁷ for the whole study period. The details on data sources and populations covered are in Table S1 in the Supplement.

Data analysis

To describe changes in dispensed volumes of pharmaceuticals we used percentages. For the analysis of changes in pack sizes we employed index decomposition methods from economics.^{8,9}

To compare the drug consumption before the COVID-19 pandemic and during the COVID-19 pandemic, we used only data for four successive twelve-months periods from March 2017 to February 2021. We compared the drug consumption in the first twelve-month period with COVID-19 with the three preceding twelve-month periods. To assess total market development on a monthly scale, we used monthly data for the whole period from January 2017 to March 2021. Data analysis was performed using R 4.1.0.¹⁰

Definitions used

DDD/TID – number of dispensed DDDs⁷ per Thousand Inhabitants per Day

Therapeutic quantity per pack – number of defined daily doses (DDDs) per pack; also referred to as *pack size*

Period 1 – March 2017 to February 2018 Period 2 – March 2018 to February 2019 Period 3 – March 2019 to February 2020 (pre-COVID period) Period 4 –March 2020 to February 2021 (COVID period)

Choice of therapeutic drug subgroups for analysis

The first step was an analysis of therapeutic subgroups (ATC level 2).⁷ We adopted two complementary approaches: firstly, we analysed the therapeutic subgroups with the highest DDD volume; secondly, we analysed the therapeutic subgroups with the most marked changes in DDD volume when comparing the COVID period with preceding periods.

For the purpose of comparing periods and countries/regions, we expressed the volume of the dispensed DDDs in each period as DDD/TID. We used the following equation:

$$v_p = \frac{\sum_{m=1}^{12} u_{m,p}}{d_p \, n_p} \cdot 1000$$

 $v_p \dots$ dispensed volume in period p [DDD/TID] $u_{m,p} \dots$ dispensed volume in month m of period p [DDD] $d_p \dots$ number of days in period p $n_p \dots$ size of population covered in period p (see Table S1 for details)

To calculate relative changes in dispensed DDD/TID between consecutive twelve-month periods we used the following equation:

$$\Delta_p = \frac{v_p}{v_{p-1}} - 1$$

 Δ_p ... relative change between periods p and p-1

Changes in dispensed DDDs – ATC groups with the highest dispensed volume

In order to identify changes in the COVID period compared to pre-COVID times, we first focused on the ten therapeutic subgroups with the highest dispensed DDD/TID volume. (For details of the selection procedure see Figure S1 in the Supplement.) For these ten groups and for each country separately, we then investigated changes in dispensed DDDs for the COVID period compared to the previous period. To guard against mistaking longer-term trends for COVID-related changes, we also checked changes in earlier periods.

Changes in dispensed DDDs – ATC groups with the most marked changes

Additionally, for each country, we determined the ten therapeutic subgroups with the most marked changes. We excluded all therapeutic subgroups where dispensed DDD/TID in the pre-COVID period were less than 0.1, because infrequently dispensed pharmaceuticals are more prone to high fluctuations which could be unrelated to COVID. (For further details of the selection procedure see Figure S2 in the Supplement.) For each country and its ten selected therapeutic subgroups, we identified the main volume contributors on ATC level 4 (chemical subgroups) and described their changes in volume.

Changes in dispensed DDDs – total market development on a monthly scale

To see the development of the total market during the COVID period in finer temporal resolution and to compare it to previous years, we used for each country the monthly volumes (in DDD/TID) of all pharmaceuticals. Because of seasonality and autocorrelation in the data we used ARIMA models to assess the impact of the pandemic. The first step was to estimate the noise in the time series using only data from January 2017 to February 2020. In step two we modelled the whole time series (January 2017 to March 2021), adding two events: one with immediate onset and permanent duration to model lasting influence of the pandemic, the other with immediate onset and short duration to capture the large fluctuations in the first three months of the pandemic. We used the Ljung-Box test on the residuals to test for the presence of remaining autocorrelation. Stationarity and seasonal stationarity were tested with the Kwiatkowski-Phillips-Schmidt-Shin test and the Hylleberg-Engle-Granger-Yoo test respectively. Statistical significance of coefficients in the models was tested using the z-test. Tests were performed at the 0.05 significance level.

Changes in dispensed therapeutic quantity per pack

The average therapeutic quantity per pack is calculated as the ratio of number of dispensed DDDs and number of dispensed packs. Changes in this average pack size are influenced both by changes in the number of units or the dosage strengths of the units dispensed and by changes in the market mix, because some therapeutic areas typically use bigger pack sizes than others. For instance, the pack size of pharmaceuticals typically prescribed for antidiabetic treatment is greater than in antibiotic therapy. Thus any reduction in antibiotic dispensing would lead to an increase of average pack size reported for the total market even if average pack size dispensed within antibiotic therapy and also average pack size within diabetic therapy remained unchanged. In order to account for this fact we employed a concept of index theory from economics.^{8,9} We explain the relative change in average pack size Δu as a combined effect of shifts in average dispensed pack sizes Δv within the therapeutic subgroups and of structural changes in the market Δs , i. e., shifts in the market shares of those subgroups, where $\Delta u = \Delta v \cdot \Delta s$. (See Supplement, section Changes in therapeutic quantity per pack, for more details.)

In order to concentrate on longer-lasting effects, we compared pack sizes dispensed during the second half of the COVID period (September 2020 to February 2021), with the values from the corresponding period one year before (September 2019 to February 2020), just before the start of the pandemic. To assess possible longer-term trends, we also obtained the corresponding values for the same months in 2017/18 and 2018/19. The analysis was

performed on ATC level 2. In order to check stability with respect to the choice of ATC level, we also performed the calculations on ATC level 4.

Results Changes in dispensed DDDs

Changes in dispensed DDDs between the pre-COVID period and the COVID period— ATC groups with the highest dispensed volume in the pre-COVID period

The ten therapeutic groups with the highest dispensed volumes in the pre-COVID period (measured by DDD/TID) across all countries/regions were drugs for acid related disorders (A02), antidiabetics (A10), antithrombotics (B01), antianemic preparations (B03), betablockers (C07), calcium channel blockers (C08), ACE inhibitors/ARBs (C09), lipid modifying agents (C10), psychoanaleptics (N06) and drugs for asthma/COPD (R03). The relative changes between the pre-COVID period and the COVID period in all these therapeutic subgroups (apart from antiasthmatics) were mostly of a magnitude similar to the changes between previous periods (Figure 1). For antiasthmatics/COPD-drugs, more fluctuating patterns were observed. In Catalonia, Romagna, and Slovenia the dispensed DDD volume decreased, whereas in Scotland and Sweden we observed a slight increase and in the rest of the countries/regions the volumes stayed approximately on the same level (Figure 1). For more detail see Supplement, Table S3. For a comparison of first and second half year of the pandemic see Supplement, Figures S3 and S4.

Changes in dispensed DDDs between the pre-COVID period and the COVID period – ATC groups with the most marked changes compared to the pre-COVID period

The ten therapeutic subgroups with the greatest relative changes (i.e. $|\Delta_p|$) between the pre-COVID period and the COVID period for each participating country are shown in Figure 2. The main contributors on chemical (ATC 4th level) subgroups which together cover at least 2/3 of the DDD volume for the therapeutic (ATC 2nd level) subgroups are shown in the Supplement in Tables S4–S11.

In all countries/regions, systemic antibiotics (J01) were among the top ten therapeutic subgroups, and in all countries/regions their volume decreased. All subgroups of systemic antibiotics decreased in the COVID period compared to the pre-COVID period, except for tetracyclines in Lithuania with 0.9% increase of DDD/TID and third generation cephalosporins (J01DD) in Czechia, where DDD/TID increased by 52%, however it accounted for only 0.7% of the J01 DDD volume in the pre-COVID period.

Also nasal preparations (R01) belonged to the top ten therapeutic subgroups with the greatest changes in volume in almost all countries/regions. The only exception was Romagna. In all countries/regions including Romagna the volumes decreased.

The third most frequently appearing group in the list of groups with most marked changes were the antimycotics for systemic use (J02). It reached the top ten in five countries/regions (Catalonia, Romagna, Lithuania, Scotland, and Slovenia). In all cases the volumes decreased during the COVID period. Volume also decreased in Sweden, Germany and Czechia, although in Germany and Czechia the decrease was only approximately 2% and did not exceed changes seen in previous periods. Overall, there was a high variability in the top ten therapeutic subgroups with most marked changes in volume among countries/regions.

For a comparison of first and second half year of the pandemic see Supplement, Figures S5 and S6.

Changes in dispensed DDDs - total market development on a monthly scale

In Germany, Lithuania, Scotland, and Sweden, we observed a marked increase in March 2020 followed by a decrease which in April and/or May 2020 went below the levels in previous years. In Romagna and Catalonia this pattern was weaker. In Czechia there were hints of a similar pattern too, however in this country a strong quarterly rhythm could be observed in previous years. In Slovenia, unlike in other countries/regions, there was a decrease in March and April 2020, followed by a peak in May 2020, followed by a return to the level of 2019 in July (Fig. 3). In all countries/regions but in Czechia taking into account the events with immediate effect and short duration (see Methods) significantly improved the fit of the model, whereas the durable impact of pandemic was significant only in Catalonia and Romagna. For more detail see Supplement, Table S12 and Figures S7 and S8.

Changes in average number of DDDs per pack

Analysis for therapeutic (ATC 2nd level) subgroups

In the six months immediately preceding the pandemic, the increases in the average therapeutic quantity per pack dispensed were between +0.5 and +3.1% in all the countries/regions, with the exception of Romagna at +4.3% (Table 1). During the pandemic, the increases were below +2.5% in four countries/regions. The lowest value of these, 0.0% (no increase), was recorded for Lithuania, where a shift towards smaller pack sizes (-1.6%) was offset by a positive structural shift of the same magnitude.

The other four countries/regions showed increases of between +4.7 and +7.7%. Most of these increases were due to shifts to higher numbers of DDDs per pack within the therapeutic subgroups (Czechia +4.3%, Romagna +3.1%, Slovenia +6.0%), whereas in Germany such shifts accounted for only +1.9%. Here the structural changes in the market contributed +4.1% to the total increase in average pack size.

Analysis for chemical (ATC 4th level) subgroups

Results were similar to those observed for therapeutic subgroups. In the majority of countries, shifts between the chemical subgroups were slightly stronger than between therapeutic subgroups, except for Slovenia, where the shifts towards bigger packs within subgroups were even stronger than at a higher ATC-level. (See Table S13 in the Supplement for details.)

Discussion

In this cross-national comparative study including eight European countries/regions we assessed utilization patterns of all prescription drugs before and during the first year of the COVID-19 pandemic. We found limited impact of the pandemic on the most commonly used prescription drugs in all countries/regions, but there were some differences between countries/regions in trends of certain pharmaceuticals.

The small changes observed in the ten groups with the highest dispensed volume suggest that drug usage for the most common chronic diseases was little affected by the pandemic. With few exceptions, the change in volume of these drugs followed trends seen in previous years. This holds particularly for the cardiovascular diseases and diabetes drugs, which is compatible with the findings of Carr et al.¹¹ It is positive that we found no substantial decrease in utilization of these drugs in any country. However, it is important to acknowledge that there may still be problems of underuse of these agents. Diabetes and hypertension have both been found to be strong independent risk factors for severe COVID-19,¹² and there is an increasing number of studies showing the beneficial effects of treatment for diabetes and cardiovascular diseases in the prognosis and outcome of COVID-19.^{13–16}

A partial exception to these trends are drugs used in the treatment of COPD and asthma. Several countries/regions experienced a decrease in the use of these medicines, which might be connected to less exposure to exacerbating factors due to lockdowns and similar measures. Notably, Sweden as the only country without any formal lockdown during the reporting period showed a small increase in the dispensed volume of these drugs. There have been discussions about the impact of the pandemic on mental health. Although there is some evidence for increased loneliness, anxiety, stress, and depression,^{17–20} we found no strong reflection of this on the dispensed volumes of either psycholeptic or psychoanaleptic drugs (see Figure S9 in the Supplement).

In all participating countries/regions, we noted a decrease in dispensed volume of antibiotics and nasal preparations. The observed decrease in dispensed volume of antibiotics was in line with other studies.^{21–24} We assume that lower need of these pharmaceuticals in the COVID period might be a consequence of lockdown and other forms of social distancing, resulting in fewer occasions for transmitting infections.

In general, the largest decreases were observed in therapeutic subgroups used predominantly for non-life-threatening conditions. This suggests a rational approach by patients and/or physicians to the minimisation of contacts during the pandemic: postponing treatment of less serious conditions while maintaining vital treatment regimes.

A number of countries/regions showed a marked increase of the overall dispensed volume right at the beginning of the pandemic, followed by a notable decrease. We surmise that this is a case of stockpiling,²⁵ as was also seen for a number of other (non-pharmaceutical) goods.^{26,27} In times of uncertainty over the imminent future, drugs for which the need was known or possible to plan were prescribed and redeemed in bigger quantities than usual, and were consequently used over subsequent periods. Again, this is compatible with rational behaviour in two respects: firstly, this safe-guarded the individual against shortages, and secondly, it obviated the need for visits to physicians' offices with the risk of catching a COVID infection.

Interestingly, Slovenia showed the opposite development. There was a substantial decrease during March and April 2020, followed by a peak in May. Slovenian patients apparently also avoided visits to physicians for receiving renewal prescriptions, but trusted the system to guarantee continued supply. After the lockdown terminated, depleted stocks were refilled.

For the beginning of the second wave of the COVID-19 pandemic at the break of summer and autumn 2020 we did not observe stockpiling patterns, which suggests a calmer approach by patients based on the experience gained during the first wave.

Strengths and limitations

To the best of our knowledge, this is the first cross-national study of the trends of dispensed prescriptions through the pandemic. It uses large administrative databases with complete data on all dispensed prescription medicines in the participating countries resp. regions. Thus, it allows identification of both common trends and differences between countries/regions.

The major limitation is that we investigated only medicines dispensed in ambulatory care. The data included both dispensed prescriptions from general practice and secondary care specialists, but there was no inpatient utilization data assessed, and this may have varied between countries/regions. Secondly, we had to restrict the cross-national comparison to rates of change. A comparison of absolute values of dispensed volumes was not possible due to different national rules for reimbursement in some therapeutic areas. Thirdly, we used aggregated data and could, consequently, not assess if any changes in prevalence, incidence or discontinuation had taken place for the specific drug groups. For this, further research and more detailed analysis on the patient level would be needed. Fourthly, we cannot make causal attribution of changes in the COVID period to the pandemic because we cannot exclude concomitant factors. Finally, it is important to acknowledge that it was not possible to assess the impact of lock-down and other measures given that these varied substantially in nature and across time, both between and within countries/regions.

Conclusions

In this study we assessed utilization patterns of all prescription medicines before and during the first year of the COVID-19 pandemic in eight European countries/regions. We have identified a number of patterns common to all the countries/regions. In particular, we observed a substantial decrease in dispensed volumes of antibiotics for systemic use. It is reassuring that medicines from therapeutic subgroups used for treating common chronic conditions were usually little affected, which suggests that there was no under-supply of these medicines. However, there were also notable differences between the countries/regions for some therapeutic areas, which may reflect different approaches by physicians and/or patients to the pandemic situation.

References:

1. Data on country response measures to COVID-19. *European Centre for Disease Prevention and Control* 2021. Available at: https://www.ecdc.europa.eu/en/publicationsdata/download-data-response-measures-covid-19. Accessed December 11, 2021. 2. Chang AY, Cullen MR, Harrington RA, Barry M. The impact of novel coronavirus COVID-19 on noncommunicable disease patients and health systems: a review. *J Intern Med* 2021; **289**: 450–462. doi:10.1111/joim.13184.

3. Wong SYS, Zhang D, Sit RWS, *et al.* Impact of COVID-19 on loneliness, mental health, and health service utilisation: a prospective cohort study of older adults with multimorbidity in primary care. *Br J Gen Pract* 2020; **70**: e817–e824. doi:10.3399/bjgp20X713021.

4. ENABLE collaborators, Kardas P, van Boven JFM, *et al.* Disparities in European healthcare system approaches to maintaining continuity of medication for non-communicable diseases during the COVID-19 outbreak. *The Lancet Regional Health - Europe* 2021; **4**. doi:10.1016/j.lanepe.2021.100099.

5. Ágh T, van Boven JF, Wettermark B, *et al.* A Cross-Sectional Survey on Medication Management Practices for Noncommunicable Diseases in Europe During the Second Wave of the COVID-19 Pandemic. *Frontiers in Pharmacology* 2021; **12**. doi:10.3389/fphar.2021.685696.

6. [dataset] Selke Krulichová I, Selke GW, Bennie M, *et al.* Comparison of Drug
Prescribing Before and During the COVID-19 Pandemic - A Cross-national European Study.
Pharmaceuticals Consumption data. 2022. Available at: https:/doi.org/10.5281/zenodo.5912080.

7. WHOCC - ATC/DDD Index. Available at: https://www.whocc.no/atc_ddd_index/. Accessed December 12, 2021.

8. Andersson O. Indexzahlen. In: Albers W (ed.) *Handwörterbuch der Wirtschaftswissenschaft*. 4. Stuttgart: Gustav Fischer, 1978; 98–108.

9. Reichelt H. *Eine Methode der statistischen Komponentenzerlegung*. Bonn: Wissenschaftliches Institut der Ortskrankenkassen, 1988.

10. R Core Team. *R: A language and envionment for statistical computing.* Vienna, Austria: R Foundation for Statistical Computing, 2021. Available at: https://www.R-project.org/.

11. Carr MJ, Wright AK, Leelarathna L, *et al.* Impact of COVID-19 restrictions on diabetes health checks and prescribing for people with type 2 diabetes: a UK-wide cohort study involving 618 161 people in primary care. *BMJ Qual Saf* 2021: bmjqs-2021-013613. doi:10.1136/bmjqs-2021-013613.

12. Fishkin T, Goldberg MD, Frishman WH. Review of the Metabolic Risk Factors for Increased Severity of Coronavirus Disease-2019. *Cardiol Rev* 2021; **29**: 292–295. doi:10.1097/crd.000000000000408.

13. Chow R, Im J, Chiu N, *et al.* The protective association between statins use and adverse outcomes among COVID-19 patients: A systematic review and meta-analysis. *PLOS ONE* 2021; **16**: e0253576. doi:10.1371/journal.pone.0253576.

14. Baral R, Tsampasian V, Debski M, *et al.* Association Between Renin-Angiotensin-Aldosterone System Inhibitors and Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-analysis. *JAMA Netw Open* 2021; **4**: e213594. doi:10.1001/jamanetworkopen.2021.3594.

15. Luk AOY, Yip TCF, Zhang X, *et al.* Glucose-lowering drugs and outcome from COVID-19 among patients with type 2 diabetes mellitus: a population-wide analysis in Hong Kong. *BMJ Open* 2021; **11**: e052310. doi:10.1136/bmjopen-2021-052310.

16. Berlie HD, Kale-Pradhan PB, Orzechowski T, Jaber LA. Mechanisms and Potential Roles of Glucose-Lowering Agents in COVID-19: A Review. *Ann Pharmacother* 2021; **55**: 1386–1396. doi:10.1177/1060028021999473.

 McQuaid RJ, Cox SML, Ogunlana A, Jaworska N. The burden of loneliness: Implications of the social determinants of health during COVID-19. *Psychiatry Research* 2021;
 296: 113648. doi:10.1016/j.psychres.2020.113648.

18. Palgi Y, Shrira A, Ring L, *et al.* The loneliness pandemic: Loneliness and other concomitants of depression, anxiety and their comorbidity during the COVID-19 outbreak. *J Affect Disord* 2020; **275**: 109–111. doi:10.1016/j.jad.2020.06.036.

19. Okruszek Ł, Aniszewska-Stańczuk A, Piejka A, Wiśniewska M, Żurek K. Safe but Lonely? Loneliness, Anxiety, and Depression Symptoms and COVID-19. *Frontiers in Psychology* 2020; **11**: 3222. doi:10.3389/fpsyg.2020.579181.

20. Xiong J, Lipsitz O, Nasri F, *et al.* Impact of COVID-19 pandemic on mental health in the general population: A systematic review. *J Affect Disord* 2020; **277**: 55–64. doi:10.1016/j.jad.2020.08.001.

21. van de Pol AC, Boeijen JA, Venekamp RP, *et al.* Impact of the COVID-19 Pandemic on Antibiotic Prescribing for Common Infections in The Netherlands: A Primary Care-Based Observational Cohort Study. *Antibiotics* 2021; **10**: 196. doi:10.3390/antibiotics10020196.

22. Hussain AZ, Paudyal V, Hadi MA. Impact of the COVID-19 Pandemic on the Prescribing Patterns of First-Line Antibiotics in English Primary Care: A Longitudinal Analysis of National Prescribing Dataset. *Antibiotics* 2021; **10**: 591. doi:10.3390/antibiotics10050591.

23. King LM, Lovegrove MC, Shehab N, *et al.* Trends in US Outpatient Antibiotic Prescriptions During the Coronavirus Disease 2019 Pandemic. *Clinical Infectious Diseases* 2021; **73**: e652–e660. doi:10.1093/cid/ciaa1896.

24. Högberg LD, Vlahović-Palčevski V, Pereira C, Weist K, Monnet DL, ESAC-Net study group. Decrease in community antibiotic consumption during the COVID-19 pandemic, EU/EEA, 2020. *Eurosurveillance* 2021; **26**. doi:10.2807/1560-7917.ES.2021.26.46.2101020.

25. Karlsson P, Nakitanda AO, Löfling L, Cesta CE. Patterns of prescription dispensation and over-the-counter medication sales in Sweden during the COVID-19 pandemic. *PLoS One* 2021; **16**: e0253944. doi:10.1371/journal.pone.0253944.

26. Lehberger M, Kleih A-K, Sparke K. Panic buying in times of coronavirus (COVID-19): Extending the theory of planned behavior to understand the stockpiling of nonperishable food in Germany. *Appetite* 2021; **161**: 105118. doi:10.1016/j.appet.2021.105118.

27. Micalizzi L, Zambrotta NS, Bernstein MH. Stockpiling in the time of COVID-19. *Br J Health Psychol* 2021; **26**: 535–543. doi:10.1111/bjhp.12480.

Table 1: Relative change (%) in average therapeutic quantity per pack (Δu) broken down to changes of average therapeutic quantity per pack within therapeutic subgroups (Δv) and change of market shares of the therapeutic subgroups (Δs) for eight European countries/regions, September to February in the years 2017 to 2021; therapeutic subgroups at ATC level 2

Base period: Period under	9/2017 to 2/2018		9/20:	9/2018 to 2/2019			9/2019 to 2/2020			
review:	9/20:	18 to 2/20	019	9/20:	9/2019 to 2/2020			9/2020 to 2/2021		
Country	Δv	Δs	Δu	Δv	Δs	Δu	Δv	Δs	Δu	
Catalonia	1.013	1.001	1.014	1.006	0.998	1.004	1.014	1.010	1.024	
Czechia	1.015	0.996	1.011	1.021	1.005	1.027	1.043	1.014	1.058	
Germany	1.004	1.012	1.016	1.006	1.008	1.014	1.019	1.041	1.060	
Lithuania	1.001	1.009	1.010	1.012	0.999	1.011	0.984	1.016	1.000	
Romagna	1.003	1.001	1.005	1.028	1.014	1.043	1.031	1.016	1.047	
Scotland	1.005	1.008	1.013	0.997	1.008	1.004	1.009	1.013	1.022	
Slovenia	1.019	0.999	1.018	1.025	1.006	1.031	1.060	1.016	1.077	
Sweden	0.998	1.008	1.006	1.010	1.003	1.012	1.008	1.009	1.017	

Note: Δv : relative change in average therapeutic quantity per pack within therapeutic subgroups; Δs : structural changes in the market; Δu : combined total effect.

Figure 1: Top ten therapeutic subgroups with highest dispensed volume (in pre-COVID period) across eight European countries/regions: relative change of DDD/TID between four 12-month periods March 2017 to February 2021

{See separate file Figure_1.png}

Legend for Figure 1:

Periods:

Period 1: March 2017 – February 2018 Period 2: March 2018 – February 2019 Pre-COVID period: March 2019 – February 2020 COVID period: March 2020 – February 2021

Country codes:

	-									
CAT	Catalonia	CZE	Czechia	DEU	Germany	LTU	Lithuania			
RMN	Romagna	SCO	Scotland	SVN	Slovenia	SWE	Sweden			
Therap	eutic subgrou	ups:								
• • • • • • • • • • • • • • • • • • •	D (· · · · · ·	. 1 1 1	<u> </u>	0 0 1 '	1	111 1			
A02	Drugs for ac	cid relat	ted disorder	rs CO	8 Calciu	Calcium channel blockers				
A10	Drugs used in diabetes				9 Agents	acting	on the renin-angiotensin system			
B01	Antithrombotic agents				0 Lipid r	Lipid modifying agents				
B03	Antianemic preparations			NO	6 Psycho	Psychoanaleptics				
C07	Beta blockin	ng agen	ts	R0	3 Drugs	for obst	ructive airway diseases			
					-		-			

Figure 2: Top ten therapeutic subgroups with most marked relative change in DDD per 1000 inhabitants per day (DDD/TID) volume (in the COVID period relative to the pre-COVID period) for eight European countries/regions between four 12-month periods within March 2017 to February 2021

(Only changes that were larger for the COVID period than for any period before the onset of COVID-19 are shown. Therapeutic subgroups with DDD/TID ≤ 0.1 were excluded.)

{See separate file Figure_2.png}

Legend for Figure 2:

Period	s:				
Perio	d 1: March 2017 – February 2018				
Perio	d 2: March 2018 – February 2019				
Pre-C	OVID period: March 2019 – February	2020			
COV	ID period: March 2020 – February 202	21			
	1 5				
Countr	ry codes:				
CAT	Catalonia CZE Czechia DEU	Gern	nany LTU Lithuania		
RMN	Romagna SCO Scotland SVN	Slove	enia SWE Sweden		
Therap	eutic subgroups				
A01	Stomatological preparations	H02	Corticosteroids for systemic use		
A02	Drugs for acid related disorders	J01	Antibacterials for systemic use		
A03	Drugs for functional	102	Antimycotics for systemic use		
1100	gastrointestinal disorders	002			
A08	Antiobesity preparations, excl. diet	J04	Antimycobacterials		
	products		· · · · · · · · · · · · · · · ·		
A11	Vitamins	J05	Antivirals for systemic use		
A12	Mineral supplements	J06	Immune sera and immunoglobulins		
B02	Antihemorrhagics	L02	Endocrine therapy		
B03	Antianemic preparations	M01	Antiinflammatory and antirheumatic		
			products		
C02	Antihypertensives	M02	Topical products for joint and muscular		
			pain		
C04	Peripheral vasodilators	M03	Muscle relaxants		
D01	Antifungals for dermatological use	N02	Analgesics		
D04	Antipruritics, incl. antihistamines,	P01	Antiprotozoals		
	anesthetics, etc.				
D05	Antipsoriatics	P02	Anthelmintics		
D07	Corticosteroids, dermatological	P03	Ectoparasiticides, incl. scabicides,		
DAA	preparations	DOI	insecticides and repellents		
D08	Antiseptics and disinfectants	R01	Nasal preparations		
DIO	Anti-acne preparations	R02	Throat preparations		
DII	Other dermatological preparations	R03	Drugs for obstructive airway diseases		
G01	Gynecological antiinfectives and antiseptics	R05	Cough and cold preparations		
G02	Other gynecologicals	R06	Antihistamines for systemic use		
G03	Sex hormones and modulators of	S02	Otologicals		
	the genital system				
H01	Pituitary and hypothalamic				
	hormones and analogues				

Supplementary material for

Comparison of Drug Prescribing Before and During the COVID-19 Pandemic – A Cross-national European Study

Pharmacoepidemiology and Drug Safety

Iva Selke Krulichová, Gisbert W. Selke, Marion Bennie, Mohammadhossein Hajiebrahimi, Fredrik Nyberg, Jurij Fürst, Kristina Garuolienė, Elisabetta Poluzzi, Juraj Slabý, Corinne Zara Yahni, Mattia Altini, Maria Pia Fantini, Václav Kočí, Stuart McTaggart, Caridad Pontes García, Chiara Reno, Simona Rosa, Marta Turo Pedrola, Mitja Udovič, Björn Wettermark

Corresponding author: Iva Selke Krulichová, Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic (krulich@lfhk.cuni.cz)

This supplement contains details on data sources, calculation of therapeutic quantities in packs, dispensed DDD per 1000 inhabitants per day (DDD/TID), and their relative changes in the periods before and during the COVID-19 pandemic. It also contains details of the ARIMA time series models.

Table S1: Data sor	urces
--------------------	-------

Region	Source for	Popu	Source for			
	dispensed volumes of medicines	2017	2018	2019	2020	population size
Catalonia	Receptes facturades al Servei Català de la Salut. Health Department. Generalitat de Catalunya.	7 488 302	7 518 913	7 570 452	7 653 845	Registre central de població acreditada del Servei Català de la Salut (RCA). Health Department. Generalitat de Catalunya
Czechia	State Institute for Drug Control – DIS-13 Reporting supplies of distributed human medicinal products	10 589 526	10 626 430	10 669 324	10 701 777	Czech Statistical Office (https://www.czso.c z/)
Germany	GAmSi database at AOK Research Institute (WIdO)	72 258 037	72 802 100	73 009 237	73 357 862	Bundesministerium für Gesundheit (https://www.bunde sgesundheitsminist erium.de/themen/kr ankenversicherung/ zahlen-und-fakten- zur- krankenversicherun g/mitglieder-und- versicherte.html)
Lithuania	State Medicines Control Agency	2 824 030	2 801 501	2 792 209	2 796 025	Statistics Lithuania (https://www.stat.g ov.lt/#)
Romagna	Prescribing Information System for Approved Drugs by the National Health Service"	1 117 581	1 118 683	1 120 905	1 120 074	ISTAT (http://dati.istat.it/)
Scotland	NHS Scotland Prescribing Information System (PIS)	5 424 800	5 438 100	5 463 300	5 465 000	National Records of Scotland (https://nrscotland.g ov.uk)
Slovenia	Database at Health Insurance Institute of Slovenia	2 066 161	2 070 050	2 089 310	2 100 126	Statistical Office of Republic of Slovenia (https://www.stat.si /StatWeb/en)
Sweden	Prescription dispensing data from the Swedish E-health Agency	9 995 153	10 120 242	10 230 185	10 327 589	Swedish population Statistics (https://www.scb.se)

Note: Population sizes were determined to 1^{st} July of the respective years with the following exceptions: Catalonia – 31^{st} December, Czechia – 30^{th} June, Romagna and Sweden – 1^{st} January. Population sizes used for calculations in each period are those for the year in which the period started.

Figure S1: Selection procedure for the ten therapeutic subgroups with the highest volume across countries/regions

Figure S2: Selection procedure for the ten therapeutic subgroups with the largest changes per country

For each country separately:

Changes in therapeutic quantity per pack

Changes in the average therapeutic quantity per pack (DDDs per pack) are influenced both by changes in the number of units or the dosage strength of the units in dispensed packs and by structural changes in the market.

Let us divide the whole market into the therapeutic subgroups indexed by *i*. Let d_i^0 be the DDD volume of therapeutic subgroup *i* in the base period and d_i^1 the DDD volume in the

period of interest and similarly for the number of packs p_i^0 and p_i^1 . Then $u_i^0 = \frac{d_i^0}{p_i^0}$ and $u_i^1 = \frac{d_i^1}{p_i^1}$

are the average number of DDDs per pack in the apeutic subgroup *i* in the two periods. The corresponding values for the whole market will be denoted without the subscript $(d^0, d^1$ and so forth).

We define the relative change in overall DDD volume in the whole market as Δd , the relative overall change in number of packs as Δp , and the relative overall change in average number of DDDs per pack as Δu .

$$\Delta d = \frac{\sum_i d_i^1}{\sum_i d_i^0} = \frac{d^1}{d^0}$$

$$\Delta p = \frac{\sum_i p_i^1}{\sum_i p_i^0} = \frac{p^1}{p^0}$$

$$\Delta u = \frac{\Delta a}{\Delta p}$$

By substituting for d_i^0 and d_i^1 and expanding the ratio by $\frac{\sum_i u_i^1 p_i^0}{\sum_i u_i^1 p_i^0}$ we get

$$\Delta d = \frac{\sum_i u_i^1 p_i^1}{\sum_i u_i^0 p_i^0} = \frac{\sum_i u_i^1 p_i^0}{\sum_i u_i^0 p_i^0} \cdot \frac{\sum_i u_i^1 p_i^0}{\sum_i u_i^1 p_i^0}$$

The first factor on the right side of the equation corresponds to the relative change of overall DDD volume under the assumption that therapeutic quantities per pack changed as they did in reality, but the number of packs had stayed fixed at the base period level. Thus this term expresses the effect of changes in the average number of DDDs per pack prescribed, cleaned of any changes in the numbers of packs, as introduced in the first paragraph of this section. We refer to this term as Δv .

Conversely, the second factor on the right side of the equation represents the relative change of overall DDD volume not attributable to changes in numbers of DDDs per pack (keeping DDDs per pack constant), but to changes in the numbers of packs. We will denote this factor with Δq .

Thus we get:

$$\Delta v = \frac{\sum_i u_i^1 p_i^0}{\sum_i u_i^0 p_i^0}$$
$$\Delta q = \frac{\sum_i u_i^1 p_i^1}{\sum_i u_i^1 p_i^0}$$

$$\Delta \boldsymbol{d} = \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{q}$$

We analyze Δq further by expanding it with p^1/p^0 and regrouping:

$$\Delta q = \frac{\sum_{i} u_{i}^{1} p_{i}^{1}}{\sum_{i} u_{i}^{1} p_{i}^{0}} = \frac{p^{1}}{p^{0}} \cdot \frac{\left(\sum_{i} u_{i}^{1} p_{i}^{1}\right) \cdot p^{0}}{\left(\sum_{i} u_{i}^{1} p_{i}^{1}\right) \cdot p^{1}} = \frac{p^{1}}{p^{0}} \cdot \frac{\frac{\sum_{i} u_{i}^{1} p_{i}^{1}}{p^{1}}}{\frac{\sum_{i} u_{i}^{1} p_{i}^{1}}{p^{0}}} = \Delta p \cdot \frac{\sum_{i} u_{i}^{1} \frac{p_{i}^{1}}{p^{1}}}{\sum_{i} u_{i}^{1} \frac{p_{i}^{0}}{p^{0}}}$$

The ratios p_i^0/p^0 and p_i^1/p^1 represent the market share of the rapeutic subgroup *i* in the total market measured by number of packs.

Hence, the factor $\frac{\sum_{i} u_{i}^{i} \frac{p_{i}^{1}}{p^{1}}}{\sum_{i} u_{i}^{i} \frac{p_{i}^{0}}{p^{0}}}$ is clean of changes in the overall number of packs. It corresponds to

the structural shifts within the market while keeping pack sizes fixed. Thus it expresses the effect that changing market shares for each therapeutic subgroup have on Δq . We will denote this factor as Δs .

From $\Delta q = \Delta p \cdot \Delta s$ we have

$$\Delta \boldsymbol{d} = \Delta \boldsymbol{p} \cdot \Delta \boldsymbol{v} \cdot \Delta \boldsymbol{s}$$

and finally

$$\Delta u = \frac{\Delta d}{\Delta p} = \Delta v \cdot \Delta s$$

We can thus explain the change in average therapeutic quantity per pack Δu as a combined effect of changes in the dispensed therapeutic quantities per pack within the individual therapeutic subgroups (Δv) and of structural shifts in the market shares of those subgroups (Δs).

Country	ountry CATALONIA		CZECH	IIA	GERMANY		
Age (years)	%	% female	%	% female	%	% female	
0-9	9.1	48.6	10.5	48.8	8.8	48.7	
10-19	11.0	48.2	10.1	48.7	8.9	48.5	
20-29	11.0	48.4	10.3	48.5	11.6	48.1	
30-39	12.6	50.2	13.8	48.4	13.5	49.1	
40-49	16.6	49.5	16.6	48.6	12.2	50.9	
50-59	14.5	50.1	12.7	49.4	15.9	51.8	
60-69	11.2	52.5	12.1	52.4	12.6	53.6	
70-79	8.3	55.2	9.7	57.2	8.8	56.6	
80-89	4.5	60.9	3.6	64.7	6.5	61.3	
90+	1.2	71.5	0.6	73.5	1.2	73.3	
Population covered	100.0	50.9	100.0	50.7	88.2	51.8	

Table S2: Age and sex distribution of populations cover	ed
---	----

Country	LITHUANIA		ROMA	GNA	SCOTLAND	
Age (years)	%	% female	%	% female	% % female	e
0-9	10.4	48.7	8.1	48.2	10.3 48	3.6
10-19	9.4	48.8	9.2	48.3	10.6 49	0.0
20-29	12.2	47.8	9.2	48.1	13.2 49).6
30-39	12.9	47.4	10.8	50.5	13.4 50).7
40-49	13.2	50.3	15.6	50.4	12.3 51	2
50-59	15.0	53.1	16.0	50.6	14.5 51	.7
60-69	12.6	57.9	12.3	52.5	11.9 51	.7
70-79	8.5	65.5	10.3	53.9	8.9 53	5.5
80-89	5.9†	73.1†	6.8	58.9	4.2 59).4
90+			1.6	70.8	0.8 68	3.8
Population covered	100.0	53.3	100.0	51.4	100.0 51	.2

Country	SLOV	ENIA	SWEDI	EN	
Age (years)	%	% female	%	% female	
0-9	9.8	48.4	11.7	48.5	
10-19	9.7	48.5	11.6	48.4	
20-29	10.2	45.9	12.5	47.8	
30-39	13.4	46.5	13.5	48.7	
40-49	14.9	47.1	12.5	49.1	
50-59	14.3	49.2	12.6	49.3	
60-69	13.4	50.7	10.7	50.2	
70-79	8.8	55.0	9.7	51.6	
80-89	4.7	64.0	4.3	57.1	
90+	0.9	76.6	1.0	69.6	
Population covered	99.0	49.7	100.0	49.7	

Note: Age (years) – age distribution of covered population; † percentage for age group 80+

Table S3: Changes between the COVID period and the immediately preceding period in the ten therapeutic subgroups (ATC level 2) of prescription drugs with the highest dispensed volumes (measured by DDD per 1000 inhabitants per day (DDD/TID)) across eight European countries/regions

Therap	Therapeutic subgroups shown:								
A02	Drugs for acid related disorders	C08	Calcium channel blockers						
A10	Drugs used in diabetes	C09	Agents acting on the renin-angiotensin system						
B01	Antithrombotic agents	C10	Lipid modifying agents						
B03	Antianemic preparations	N06	Psychoanaleptics						
C07	Beta blocking agents	R03	Drugs for obstructive airway diseases						

			Dispensed vol	ume (DDD/TID)		
				Period 3	Period 4	
				(pre-COVID	(COVID	Change in
		Period 1	Period 2	period,	period,	period 4
C I		(Mar 2017–	(Mar 2018–	Mar 2019–	Mar 2020–	relative to
Country	AIC	Feb 2018)	Feb 2019)	Feb 2020)	Feb 2021)	period 3 (%)
	A02	102.3	100.2	99.6	96.3	-3.3
	A10	69.3	69.1	70.1	69.7	-0.6
	B01	64.3	63.1	68.3	67.7	-0.8
	B03	75.2	77.4	79.5	76.9	-3.1
Catalonia	C07	23.9	23.2	23.1	22.6	-1.8
	C08	41.7	41.8	42.7	42.4	-0.6
	C09	204.4	203.4	204.5	201.1	-1.7
	C10	99.4	104.5	104.2	106.5	2.2
	N06	88.4	89.8	92.7	93.3	0.7
	R03	49.9	49.9	48.3	44.3	-8.2
	A02	72.4	74.2	76.9	76.3	-0.7
	A10	89.9	90.3	92.7	93.0	0.4
	B01	94.2	94.4	95.7	96.2	0.5
	B03	107.4	107.4	109.6	111.7	1.9
Czashia	C07	66.6	64.1	62.9	61.0	-3.2
Czecilla	C08	63.5	59.7	59.2	56.2	-5.0
	C09	253.9	250.9	253.5	250.1	-1.3
	C10	135.3	143.3	154.5	166.5	7.8
	N06	65.1	66.8	70.2	70.4	0.3
	R03	52.6	52.5	52.9	53.1	0.3
	A02	146.2	138.8	134.5	133.1	-1.0
	A10	87.2	85.3	86.1	87.8	2.0
	B01	68.6	68.2	69.4	70.3	1.3
	B03	12.8	12.7	12.5	12.1	-3.1
C	C07	85.7	80.8	78.6	76.9	-2.1
Germany	C08	87.2	85.7	89.2	91.6	2.8
	C09	356.0	352.4	363.2	368.5	1.5
	C10	91.6	94.1	100.8	109.0	8.2
	N06	66.4	65.4	66.1	67.1	1.5
	R03	52.9	50.8	50.4	49.9	-1.0

(continued)

Table S3: Changes between the COVID period and the immediately preceding period in the ten therapeutic subgroups (ATC level 2) of prescription drugs with the highest dispensed volumes (measured by DDD per 1000 inhabitants per day (DDD/TID)) across eight European countries/regions (continued)

			Dispensed volu	me (DDD/TID)		
				Period 3	Period 4	
				(pre-COVID	(COVID	Change in
		Period 1	Period 2	period,	period,	period 4
Country	ATC	$(Mar 2017 - E_{ab} 2018)$	$(Mar 2018 - E_{ab} 2010)$	Mar $2019 - $ Eab 2020	Mar $2020-$ Eab 2021)	relative to
Country	AIC	24.9	22.0	24.0	<u>red 2021)</u>	
	A02	54.0	55.9	59.0	50.2	9.5
	A10 D01	21.8	34.7	38.0 20.5	39.8 20.7	5.1
	D01 D02	22.8	20.3	29.3	30.7 2.2	3.9
	DU3	3.3 70.0	5.Z	3./ 92.1	5.5 94.7	-9.2
Lithuania	C07	79.0	80.9	83.1	84./ 26.7	1.9
	C08	28.3	28.3	28.0	20.7	-0./
	C09	217.8	222.5	64.0	227.4	-0.8
	C10 N06	59.9 57.9	47.8 57.1	04.0 58 1	73.9	10.7
	N00 D02	32.0	34.1	36.1 34.7	39.9	5.2
	<u>KU3</u>	59.0	50.2	57.5	55 7	-1.0
	A02	38.9 (2.5	59.5 (2.1	57.5	55.7	-3.2
	AIU DO1	02.3	03.1	04.1	01.3 105.6	-4.1
	B01	108.2	110.2	112.1	105.6	-3./
	B03	12.7	11.9	17.8	26.4	48.5
Romagna	C07	57.4	57.6	57.9	57.3	-1.0
	C08	56.6 227.0	56.5	57.2	57.2	-0.1
	C09	237.0	236.4	235.6	231.6	-1./
		98.8	101.4	104.8	106.0	1.1
	N06	49.7	51.0	51.3	50.8	-0.9
	R03	35.3	35.1	34.8	29.9	-14.1
	A02	144.3	145.8	149.1	148.5	-0.4
	Alu	63.7	65.2	66.6	67.6	1.5
	B01	81.5	81.1	80.8	81.2	0.6
	B03	207.6	215.2	228.0	221.7	-2.8
Scotland	C07	38.2	37.8	37.4	36.9	-1.3
	C08	83.2	84.7	86.8	87.6	0.9
	C09	208.1	208.3	209.1	207.2	-0.9
	C10	156.1	160.6	166.1	170.6	2.7
	N06	145.3	153.8	163.2	170.4	4.4
	R03	81.2	79.7	77.3	79.2	2.5

(continued)

Table S3: Changes between the COVID period and the immediately preceding period in the ten therapeutic subgroups (ATC level 2) of prescription drugs with the highest dispensed volumes (measured by DDD per 1000 inhabitants per day (DDD/TID)) across eight European countries/regions (continued)

			-	Period 3	Period 4	
				(pre-COVID	(COVID	Change in
		Period 1	Period 2	period,	period,	period 4
		(Mar 2017–	(Mar 2018–	Mar 2019–	Mar 2020–	relative to
Country	ATC	Feb 2018)	Feb 2019)	Feb 2020)	Feb 2021)	period 3 (%)
	A02	68.8	70.9	73.5	73.9	0.5
	A10	81.2	82.7	83.7	84.4	0.9
	B01	97.1	98.3	98.9	98.9	0.0
	B03	6.7	6.3	6.0	5.0	-16.6
Slovenia	C07	44.6	44.9	44.8	44.2	-1.3
Slovenia	C08	57.2	55.8	54.7	53.2	-2.8
	C09	250.7	247.3	243.4	236.1	-3.0
	C10	133.9	138.6	148.6	155.7	4.8
	N06	67.8	70.5	72.6	71.7	-1.2
	R03	42.0	43.1	43.9	42.2	-3.9
	A02	65.2	64.3	65.5	64.9	-0.8
	A10	62.5	64.9	67.8	69.3	2.2
	B01	85.2	85.2	85.7	85.0	-0.8
	B03	148.7	133.0	127.8	122.5	-4.1
Swadan	C07	48.1	47.1	46.6	45.5	-2.3
Sweden	C08	85.3	87.2	91.3	94.5	3.5
	C09	180.1	183.3	189.6	193.0	1.8
	C10	116.3	125.3	135.4	144.1	6.4
	N06	115.3	118.7	123.8	126.8	2.5
	R03	54.8	55.4	57.3	60.2	5.0

Tables S4 – S11 show for each of eight European countries/regions the ten therapeutic subgroups of prescription drugs with the greatest relative change in DDD per 1000 inhabitants per day (DDD/TID) in the COVID period (March 2020 – February 2021) compared to the same months one year before (period 3). The tables also show the main contributing chemical subgroups (ATC level 4) which together cover at least 2/3 of their respective therapeutic subgroup (ATC level 2) DDD volume.

I able 5 li	eataionna		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
G01	G01AF	-15.7	Imidazole derivatives
H02	H02AB	-23.4	Glucocorticoids
J01	J01CA	-53.4	Penicillins with extended spectrum
J01	J01CR	-28.8	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01MA	-29.1	Fluoroquinolones
J02	J02AC	-28.4	Triazole derivatives
J04	J04AC	-29.3	Hydrazides
J04	J04AM	-10.8	Combinations of drugs for treatment of tuberculosis
J06	J06BA	95.0	Immunoglobulins, normal human
M01	M01AE	-26.9	Propionic acid derivatives
M03	M03BX	-21.2	Other centrally acting agents
P03	P03AC	31.2	Pyrethrines, incl. synthetic compounds
R01	R01AD	-18.6	Corticosteroids

Table S4: Catalonia

Table S5	: Czechia		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
A11	A11CC	18.6	Vitamin D and analogues
B02	B02AA	-61.0	Amino acids
B02	B02BA	-1.0	Vitamin K
C04	C04AD	-17.8	Purine derivatives
C04	C04AX	-5.5	Other peripheral vasodilators
D01	D01BA	-24.4	Antifungals for systemic use
J01	J01AA	-21.0	Tetracyclines
J01	J01CE	-57.9	Beta-lactamase sensitive penicillins
J01	J01CR	-33.2	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01DC	-46.8	Second-generation cephalosporins
J01	J01FA	-42.3	Macrolides
J04	J04AB	-18.2	Antibiotics
J04	J04AC	-26.1	Hydrazides
J05	J05AB	-0.1	Nucleosides and nucleotides excl. reverse transcriptase inhibitors
J05	J05AF	2.0	Nucleoside and nucleotide reverse transcriptase inhibitors
J05	J05AR	-0.3	Antivirals for treatment of HIV infections, combinations
P01	P01BA	-9.9	Aminoquinolines
R01	R01AD	-17.7	Corticosteroids
R05	R05CB	-24.9	Mucolytics

1 able 56: G	ermany		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
C04	C04AD	6.9	Purine derivatives
C04	C04AX	-78.5	Other peripheral vasodilators
D04	D04AB	-40.3	Anesthetics for topical use
D04	D04AX	-30.1	Other antiprurities
D08	D08AE	32.1	Phenol and derivatives
J01	J01AA	-12.8	Tetracyclines
J01	J01CA	-36.4	Penicillins with extended spectrum
J01	J01CR	-15.9	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01DC	-42.1	Second-generation cephalosporins
J01	J01FA	-52.5	Macrolides
M02	M02AA	-17.7	Antiinflammatory preparations, non-steroids for topical use
M02	M02AX	-22.6	Other topical products for joint and muscular pain
P03	P03AC	-20.7	Pyrethrines, incl. synthetic compounds
P03	P03AX	-49.6	Other ectoparasiticides, incl. scabicides
R01	R01AA	-50.4	Sympathomimetics, plain
R01	R01AD	-6.0	Corticosteroids
R02*	R02AB	-46.9	Antibiotics
R05	R05CA	-50.8	Expectorants
R05	R05CB	-29.0	Mucolytics
S02	S02AA	-25.4	Antiinfectives
S02	S02CA	-11.1	Corticosteroids and antiinfectives in combination

Table S6: Germany

* R02AB covers only 29% of R02 DDD volume, other ATC level 4 subgroups are Germany-specific groups not listed in the WHO ATC classification.

Table S7:			
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
A02	A02BC	17.6	Proton pump inhibitors
D01	D01BA	-19.5	Antifungals for systemic use
G02	G02BB	-9.8	Intravaginal contraceptives
J01	J01AA	0.9	Tetracyclines
J01	J01CA	-40.6	Penicillins with extended spectrum
J01	J01CE	-77.0	Beta-lactamase sensitive penicillins
J01	J01CR	-33.3	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01EE	-52.3	Combinations of sulfonamides and trimethoprim, incl.
			derivatives
J01	J01FA	-41.2	Macrolides
J02	J02AC	-13.6	Triazole derivatives
N02	N02AB	2.7	Phenylpiperidine derivatives
N02	N02CC	20.6	Selective serotonin (5HT1) agonists
P01	P01BA	20.5	Aminoquinolines
P02	P02CA	-22.6	Benzimidazole derivatives
R01	R01AD	-34.4	Corticosteroids
R06	R06AX	-9.9	Other antihistamines for systemic use

Table S8:	Romagna		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
A12	A12AA	-49.9	Calcium
A12	A12AX	-26.1	Calcium, combinations with vitamin D and/or other drugs
D01	D01BA	-21.8	Antifungals for systemic use
D07	D07AC	6.7	Corticosteroids, potent (group III)
D07	D07AD	44.3	Corticosteroids, very potent (group IV)
D10	D10BA	16.0	Retinoids for treatment of acne
J01	J01CA	-50.5	Penicillins with extended spectrum
J01	J01CR	-41.4	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01FA	-47.0	Macrolides
J02	J02AC	-16.4	Triazole derivatives
J04	J04AB	-21.8	Antibiotics
J04	J04AC	-24.1	Hydrazides
L02	L02AE	-10.2	Gonadotropin releasing hormone analogues
L02	L02BG	-14.5	Aromatase inhibitors
P02	P02CA	-26.8	Benzimidazole derivatives
R03	R03AK	-0.1	Adrenergics in combination with corticosteroids or other drugs,
			excl. anticholinergics
R03	R03BA	-51.8	Glucocorticoids
R03	R03BB	-10.5	Anticholinergics

Table S9	: Scotland		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
A01	A01AB	-16.0	Antiinfectives and antiseptics for local oral treatment
A08	A08AB	-26.9	Peripherally acting antiobesity products
A12	A12AA	8.4	Calcium
D01	D01BA	-38.9	Antifungals for systemic use
G03	G03AC	-44.3	Progestogens
G03	G03CA	1.9	Natural and semisynthetic estrogens, plain
H01	H01BA	-11.3	Vasopressin and analogues
H02	H02AB	-14.5	Glucocorticoids
J01	J01AA	-12.0	Tetracyclines
J01	J01CA	-29.1	Penicillins with extended spectrum
J01	J01FA	-20.2	Macrolides
J02	J02AC	-12.9	Triazole derivatives
R01	R01AD	-8.0	Corticosteroids

Table S1	0: Slovenia		
		Change	
		between	
		COVID	
		period and	
ATC	ATC	pre-COVID	
level 2	level 4	period (%)	Chemical subgroup
A11	A11CC	45.7	Vitamin D and analogues
B02	B02AA	9.9	Amino acids
B02	B02BX	11.8	Other systemic hemostatics
B03	B03AA	-15.0	Iron bivalent, oral preparations
B03	B03AB	-25.3	Iron trivalent, oral preparations
D01	D01BA	-33.8	Antifungals for systemic use
D10	D10BA	-12.2	Retinoids for treatment of acne
G01	G01AF	-10.3	Imidazole derivatives
J01	J01CA	-51.9	Penicillins with extended spectrum
J01	J01CE	-59.8	Beta-lactamase sensitive penicillins
J01	J01CR	-21.1	Combinations of penicillins, incl. beta-lactamase inhibitors
J01	J01FA	-36.5	Macrolides
J02	J02AC	-15.5	Triazole derivatives
P02	P02CA	-18.6	Benzimidazole derivatives
R01	R01AD	-16.9	Corticosteroids

Table S11	Table S11: Sweden						
		Change					
		between					
		COVID					
		period and					
ATC	ATC	pre-COVID					
level 2	level 4	period (%)	Chemical subgroup				
A01	A01AA	-25.3	Caries prophylactic agents				
A03	A03AX	-3.5	Other drugs for functional gastrointestinal disorders				
A03	A03FA	-1.7	Propulsives				
A11	A11CC	14.3	Vitamin D and analogues				
C02	C02CA	13.1	Alpha-adrenoreceptor antagonists				
D01	D01BA	-15.1	Antifungals for systemic use				
D05	D05BB	-6.6	Retinoids for treatment of psoriasis				
D11	D11AX	17.1	Other dermatologicals				
J01	J01AA	-13.7	Tetracyclines				
J01	J01CA	-17.2	Penicillins with extended spectrum				
J01	J01CE	-34.8	Beta-lactamase sensitive penicillins				
J01	J01CF	-9.6	Beta-lactamase resistant penicillins				
R01	R01AD	-4.8	Corticosteroids				
R03	R03AC	1.7	Selective beta-2-adrenoreceptor agonists				
R03	R03AK	8.6	Adrenergics in combination with corticosteroids or other drugs, excl. anticholinergics				

5.5 Glucocorticoids

R03

R03BA

Figures S3 and S4 show relative changes in the top ten therapeutic subgroups with highest dispensed volume (in the pre-COVID period) across eight European countries/regions split in half-years.

Legend for Figures S3 and S4:

Countr	y codes:							
CAT	Catalonia	CZE	Czechia	DEU	Ge	ermany	LTU	Lithuania
RMN	Romagna	SCO	Scotland	SVN	Slo	ovenia	SWE	Sweden
Therap	Therapeutic subgroups:							
A02	Drugs for ac	id relation	ted disorder	rs C(08	Calciur	n chann	nel blockers
A10	Drugs used	in diab	etes	C	09	Agents	acting	on the renin-angiotensin system
B01	Antithrombo	otic age	ents	C	10	Lipid n	nodifyir	ng agents
B03	Antianemic	prepara	ations	N	06	Psycho	analept	ics
C07	Beta blockin	ng agen	ts	R	03	Drugs t	for obst	ructive airway diseases

Note: B03 - change of reimbursement rules in Romagna: since September 2019 the package of folic acid (B03BB01) 5mg with 120 tablets has been included in the list of reimbursed medicines whereas before only smaller packages were reimbursed.

Figure S3: Top ten therapeutic subgroups with highest dispensed volume (in the pre-COVID period) across eight European countries/regions: relative change of DDD/TID between four 6-month periods March to August in 2017 to 2020

Legend for Figure S3:

Periods: Period 1: March 2017 – August 2017 Period 2: March 2018 – August 2018 Pre-COVID period: March 2019 – August 2019 COVID period: March 2020 – August 2020

Legend for Figure S4:

Periods: Period 1: September 2017 – February 2018 Period 2: September 2018 – February 2019 Pre-COVID period: September 2019 – February 2020 COVID period: September 2020 – February 2021 Figures S5 and S6 show relative changes in the top ten therapeutic subgroups with most marked relative change in DDD/TID volume (in the COVID period relative to the pre-COVID period) across eight European countries/regions split in half-years.

Legend for Figures S5 and S6:

Therapeutic subgroups

- A01 Stomatological preparations
 A02 Drugs for acid related disorders
 A03 Drugs for functional gastrointestinal disorders
 A08 Antiobesity preparations, excl. diet products
 A11 Vitamins
 A12 Mineral supplements
 B02 Antihemorrhagics
 B03 Antianemic preparations
- C02 Antihypertensives
- C04 Peripheral vasodilators
- D01 Antifungals for dermatological use N
- D04 Antipruritics, incl. antihistamines, anesthetics, etc.
- D05 Antipsoriatics
- D07 Corticosteroids, dermatological preparations
- D08 Antiseptics and disinfectants
- D10 Anti-acne preparations
- D11 Other dermatological preparations
- G01 Gynecological antiinfectives and
- antiseptics
- G02 Other gynecologicals
- G03 Sex hormones and modulators of the genital system
- H01 Pituitary and hypothalamic hormones and analogues

- H02 Corticosteroids for systemic use
- J01 Antibacterials for systemic use
- J02 Antimycotics for systemic use
- J04 Antimycobacterials
- J05 Antivirals for systemic use
- J06 Immune sera and immunoglobulins
- L02 Endocrine therapy
- M01 Antiinflammatory and antirheumatic products
- M02 Topical products for joint and muscular pain
- M03 Muscle relaxants
- N02 Analgesics
- P01 Antiprotozoals
- P02 Anthelmintics
- P03 Ectoparasiticides, incl. scabicides, insecticides and repellents
- R01 Nasal preparations
- R02 Throat preparations
- R03 Drugs for obstructive airway diseases
- R05 Cough and cold preparations
- R06 Antihistamines for systemic use
- S02 Otologicals

Figure S5: Top ten therapeutic subgroups with most marked relative change in DDD/TID volume (in the COVID period relative to pre-COVID period) across eight European countries/regions: relative change of DDD/TID between four 6-month periods March to August in 2017 to 2020

Legend for Figure S5:

Periods: Period 1: March 2017 – August 2017 Period 2: March 2018 – August 2018 Pre-COVID period: March 2019 – August 2019 COVID period: March 2020 – August 2020 Figure S6: Top ten therapeutic subgroups with most marked relative change in DDD/TID volume (in the COVID period relative to pre-COVID period) across eight European countries/regions: relative change of DDD/TID between four 6-month periods September to February in 2017 to 2021

Legend for Figure S6:

Periods:

Period 1: September 2017 – February 2018 Period 2: September 2018 – February 2019 Pre-COVID period: September 2019 – February 2020 COVID period: September 2020 – February 2021

Time series analysis

Figures S7 and S8 show ARIMA models of total market development (in DDD/TID) in eight European countries/regions. Details of the models with the pandemic impact assessment are in Table S12.

Legend for Figures S7 and S8:

Black line - time series (actual values)

Red vertical line - onset of the pandemic

Grey line – ARIMA model (accounting for long-term effect of the COVID-19 pandemic and its short-term stockpiling effect in the first three months of pandemic)

Blue line – prediction on the base of the ARIMA model for data before the onset of the pandemic

Violet strips – confidence intervals (CI) of predictions (on the base of the ARIMA model for data before the onset of the pandemic). Darker violet: 80% CI, lighter violet: 95% CI.

Country/region	Model	Parameter	Estimated value	Standard error	P-value [†]
Catalonia	ARIMA(0,0,2)(0,1,0)12	mal	-0.538	0.159	< 0.001
		ma2	0.333	0.212	0.118
		long-term	-31.811	9.449	< 0.001
		short-term	43.383	14.874	< 0.001
Czechia	ARIMA(0,0,0)(0,1,0) ₁₂	long-term	16.109	32.430	0.619
		short-term	-70.985	50.240	0.158
Germany	ARIMA(0,0,3)(0,1,0) ₁₂	mal	-0.645	0.172	< 0.001
		ma2	0.384	0.215	0.074
		ma3	0.526	0.170	0.002
		long-term	-33.974	31.589	0.282
		short-term	117.292	24.906	< 0.001
Lithuania	ARIMA(2,1,0)(0,1,0) ₁₂	ar1	-0.803	0.144	< 0.001
		ar2	-0.560	0.136	< 0.001
		long-term	-38.237	62.662	0.542
		short-term	109.461	44.051	< 0.001
Romagna	ARIMA(2,0,0)(0,1,0) ₁₂	ar1	-0.620	0.140	< 0.001
		ar2	-0.466	0.137	< 0.001
		long-term	-29.078	6.190	< 0.001
		short-term	47.029	11.958	< 0.001
Scotland	ARIMA(0,0,2)(0,1,0)12	mal	-0.547	0.160	< 0.001
		ma2	0.471	0.148	0.001
		long-term	-13.899	16.794	0.408
		short-term	116.710	25.047	< 0.001
Slovenia	ARIMA(2,1,0)(0,1,0) ₁₂	ar1	-0.893	0.131	< 0.001
		ar2	-0.637	0.133	< 0.001
		long-term	-74.580	52.878	0.158
		short-term	-168.937	35.744	< 0.001
Sweden	ARIMA(3,0,0)(0,1,0) ₁₂	arl	-0.359	0.147	0.014
		ar2	-0.105	0.161	0.514
		ar3	0.383	0.153	0.012
		long-term	2.222	17.613	0.900
		short-term	113.902	25.272	< 0.001

Table S12: Details on the ARIMA models used for impact assessment of the pandemic on global dispensed volume of prescription drugs

Note: [†]z-test

Parameters: ma1 - first order moving average, ma2 - second order moving average, ma3 - third order moving average, ar1 - first order autoregression, ar2 - second order autoregression, long-term - lasting effect of the pandemic, short-term - short duration effect of the onset of the pandemic.

For Czechia, the used final model had a significant Ljung-Box test, which means that residuals were not completely free of autocorrelation, however, we did not manage to find a better parsimonious model.

Table S13: Change (%) in average therapeutic quantity per pack (Δu) broken down to changes of average therapeutic quantity per pack within chemical subgroups (Δv) and change of market shares of the chemical subgroups (Δs) for eight European countries/regions, September to February in the years 2017 to 2021; chemical subgroups at ATC level 4

Baseline:	9/2017 to 2/2018			9/20	18 to 2/20)19	9/2019 to 2/2020			
Outcome period:	9/20	18 to 2/20)19	9/20	19 to 2/20	020	9/2020 to 2/2021			
Country	Δv	Δs	Δu	Δv	Δs	Δu	Δv	Δs	Δu	
Catalonia	1.013	1.001	1.014	1.004	1.000	1.004	1.011	1.013	1.024	
Czechia	1.018	0.994	1.011	1.024	1.003	1.027	1.038	1.019	1.058	
Germany	1.002	1.014	1.016	1.001	1.012	1.014	1.011	1.048	1.059	
Lithuania	1.006	1.004	1.010	1.014	0.997	1.011	0.986	1.014	1.000	
Romagna	1.001	1.003	1.005	1.026	1.016	1.043	1.027	1.019	1.047	
Scotland	1.003	1.010	1.013	0.997	1.007	1.004	1.009	1.013	1.022	
Slovenia	1.025	0.993	1.018	1.029	1.002	1.031	1.068	1.009	1.077	
Sweden	0.995	1.011	1.006	1.008	1.005	1.012	1.004	1.013	1.017	

Note: For the sake of better legibility we show the values $\delta v = \Delta v - 1$, $\delta s = \Delta s - 1$, and $\delta u = \Delta u - 1$.

Figure S9: Psycholeptics and psychoanaleptics: relative change of DDD/TID between four periods across eight European countries/regions

Legend for Figure S9:

Periods:

Period 1: March 2017 – February 2018 Period 2: March 2018 – February 2019 Pre-COVID period: March 2019 – February 2020 COVID period: March 2020 – February 2021

Country codes:

CAT	Catalonia	CZE	Czechia	DEU	Germany	LTU	Lithuania
RMN	Romagna	SCO	Scotland	SVN	Slovenia	SWE	Sweden

Therapeutic subgroups:

N05 Psycholeptics N06 Psychoanaleptics