
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:27
https://doi.org/10.1007/s10458-023-09609-6

1 3

Symbolic knowledge injection meets intelligent agents: QoS
metrics and experiments

Andrea Agiollo1 · Andrea Rafanelli2,3 · Matteo Magnini1 · Giovanni Ciatto1 ·
Andrea Omicini1

Accepted: 17 May 2023
© The Author(s) 2023

Abstract
Bridging intelligent symbolic agents and sub-symbolic predictors is a long-standing
research goal in AI. Among the recent integration efforts, symbolic knowledge injection
(SKI) proposes algorithms aimed at steering sub-symbolic predictors’ learning towards
compliance w.r.t. pre-existing symbolic knowledge bases. However, state-of-the-art contri-
butions about SKI mostly tackle injection from a foundational perspective, often focussing
solely on improving the predictive performance of the sub-symbolic predictors undergo-
ing injection. Technical contributions, in turn, are tailored on individual methods/experi-
ments and therefore poorly interoperable with agent technologies as well as among each
others. Intelligent agents may exploit SKI to serve many purposes other than predictive
performance alone—provided that, of course, adequate technological support exists: for
instance, SKI may allow agents to tune computational, energetic, or data requirements of
sub-symbolic predictors. Given that different algorithms may exist to serve all those many
purposes, some criteria for algorithm selection as well as a suitable technology should be
available to let agents dynamically select and exploit the most suitable algorithm for the
problem at hand. Along this line, in this work we design a set of quality-of-service (QoS)
metrics for SKI, and a general-purpose software API to enable their application to various
SKI algorithms—namely, platform for symbolic knowledge injection (PSyKI). We provide
an abstract formulation of four QoS metrics for SKI, and describe the design of PSyKI
according to a software engineering perspective. Then we discuss how our QoS metrics
are supported by PSyKI. Finally, we demonstrate the effectiveness of both our QoS metrics
and PSyKI via a number of experiments, where SKI is both applied and assessed via our
proposed API. Our empirical analysis demonstrates both the soundness of our proposed
metrics and the versatility of PSyKI as the first software tool supporting the application,
interchange, and numerical assessment of SKI techniques. To the best of our knowledge,
our proposals represent the first attempt to introduce QoS metrics for SKI, and the software
tools enabling their practical exploitation for both human and computational agents. In
particular, our contributions could be exploited to automate and/or compare the manifold
SKI algorithms from the state of the art. Hence moving a concrete step forward the engi-
neering of efficient, robust, and trustworthy software applications that integrate symbolic
agents and sub-symbolic predictors.

Andrea Agiollo, Andrea Rafanelli, Matteo Magnini: Co-first authors.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09609-6&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 2 of 30

Keywords Symbolic knowledge injection · Neuro-symbolic integration · Intelligent
agents · Quality of service · Efficiency · Robustness · Trustworthiness · PSyKI

1 Introduction

The recent success of Machine and Deep Learning (ML and DL) is endowing computa-
tional agents with more and more smart behaviours ranging from text [1] to speech [2] rec-
ognition, stepping through image recognition [3], and many more [4]. Typically, such smart
behaviours are learnt from data in a semi-automatic way via human-designed malleable
predictors—such as neural networks—which can be algorithmically trained to fit that data.
This represents a paradigm shift w.r.t. the well-established practice of software engineer-
ing where the source code governing computational agents’ smart behaviours is designed
and produced by human beings. Arguably, the increased interest in ML and DL solutions
may be attributed to the groundbreaking performance gain that data-driven approaches can
bring in comparison to otherwise hard-to-formalise, manually-defined approaches.

However, despite being both flexible and performant, current data-driven solutions
come with a number of issues. First, they are data eager—meaning that the learning agent
should have access to huge amounts of examples concerning the phenomena to learn. When
examples are too few, learning cannot happen. Second, learning takes time. Unlike humans,
learning and exploitation of learnt information are quite distinct stages for computational
agents. The trainable components of computational agents are commonly pre-trained by
human designers, up to a given performance score, and then provided to the agents for
exploitation. Hence, no further learning typically occurs after that. Finally, the benefits of
data-driven solutions come at the price of a reduced understandability of smart behaviours
in the eyes of human users. Modern ML solutions rely upon sub-symbolic predictors which
work as black boxes—so, humans cannot observe them and tell what a predictor has learnt
and how it computes its predictions. This may be troublesome when predictions are used
by agents to automate decision-making in critical domains, such as e-health [5] and smart
transportation systems [6].

The exploitation of sub-symbolic predictors comes with further issues in the multi-agent
systems (MAS) context. As shown by recent surveys [7], it is quite common for the MAS
community to represent knowledge and agents’ behaviours symbolically both at the con-
ceptual and technological level—often relying upon computational logic [8]. This makes
the integration of sub-symbolic predictors both a conceptual and a technical issue, to be
addressed since the earliest design phase down to implementation in any MAS engineer-
ing process. As a result, it becomes essential for agent-oriented programming frameworks
to be interoperable with available ML libraries, and for those libraries to provide a clear
and stable API supporting the automation of ML workflows—so that intelligent agents can
autonomously exploit them.

Recently, symbolic knowledge injection (SKI) [9–11] has emerged as a possible solution
to all the aforementioned issues. SKI is the task of letting sub-symbolic predictors acquire
symbolic information and behave consistently w.r.t. it. For instance, this may involve a neu-
ral network taking into account the information represented by a logic theory when draw-
ing predictions. There, “symbolic” refers to the way knowledge is represented: we con-
sider as symbolic any intelligible language that is naturally interpretable by both human
and computational agents. This includes a number of logic formalisms, and excludes the

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 3 of 30 27

fixed-sized tensors of numbers commonly exploited in sub-symbolic predictors. Therefore,
SKI mechanisms aim at training sub-symbolic predictors towards desirable behaviours.

Thanks to SKI, agents (and their designers) are back in control. The benefits of SKI to
the training of ML predictors [12] include the following ones: (1) it mitigates the issues
arising from the lack of sufficient amounts of training data—as under-represented situa-
tions can be suitably represented in symbols—; (2) it reduces learning time by providing
straight away the very knowledge that predictors would otherwise struggle to learn by pro-
cessing huge amounts of data; (3) it improves predictors’ predictive performance in cor-
ner cases—as in the case of unbalanced and overlapping classes—; (4) it prevents predic-
tors from working as full black boxes during their training—hence overriding the need for
explanations. Furthermore, (5) it harmonises the symbolic and sub-symbolic components
of intelligent agents. Hence, agent designers may take advantage of SKI to endow agents
with common sense—encoded in some suitable symbolic formalism—, whereas agents
themselves may exploit SKI to finely govern their sub-symbolic components—e.g., by tun-
ing them according to their beliefs or desires.

When tuning their sub-symbolic components via SKI, agents will typically aim at
maximising predictive performance. It is a common practice to assess SKI mechanisms
in terms of the performance gain they introduce w.r.t. some injection-free counterpart [9,
10]. However, performance gain is not the only relevant metrics an agent may intend to
optimise. For instance, agents situated into resource-constrained environments may need to
minimise the energy required to train/exploit ML predictors, as well as the computational
resources required for their execution. Analogously, agents in need to interact with human
beings may be aiming at maximising the intelligibility of their decision-making processes.
Overall, there are several aspects of sub-symbolic predictors that agents could optimise
via SKI. Along this line, as part of our recent research activities [13], we sketched a set of
quality-of-service (QoS) metrics for SKI covering several aspects—ranging from energy-
related to computational-cost-related ones via comprehensibility-related ones. Unfortu-
nately, at that time we could not assess QoS metrics empirically, due to the lack of general-
purpose software technologies supporting them.

The lack of viable software technologies for SKI is preventing not just the assessment
of QoS metrics from [13], but also—and in the foremost place—the effective exploitation
of SKI methods in MAS. However, as further discussed in [11], SKI methods from the lit-
erature share a general workflow, which can be briefly summarised as follows: (1) identify
a suitable predictor w.r.t. the learning task at hand; (2) attain some symbolic knowledge
aimed at describing relevant situations; (3) apply some SKI method to the given predic-
tor and knowledge, hence generating a new predictor that encapsulates the knowledge; (4)
train the new predictor on the available data, as usual. Notably, the last two steps may be
cyclically repeated by an agent until some target QoS score is reached. Hence, in princi-
ple, SKI methods are interchangeable at the functional level as well as at the assessment
level. Along this line, we designed a unified open source software library for SKI—namely,
PSyKI1—supporting the interchange, comparison, and exploitation of SKI methods in
arbitrary ML workflows [11]. However, support for QoS-based assessment is currently
missing.

Accordingly, in this paper we extend our previous work by proposing a full modelling
of the QoS metrics for SKI, as well as their empirical evaluation2 via PSyKI. To serve this
purpose, we also extend PSyKI design, API, and codebase to support our QoS metrics.

1 The code is public available at github. com/ psykei/ psyki- python.
2 Experiments are available at github. com/ pikal ab- unibo/ ski- qos- jaamas- exper iments- 2022.

https://github.com/psykei/psyki-python
https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 4 of 30

Our empirical analysis demonstrates both the soundness of the proposed metrics and the
versatility of PSyKI as the first software tool supporting the application, interchange, and
numerical assessment of SKI techniques. Our proposals are—to the best of our knowl-
edge—the first attempt to introduce QoS metrics for SKI, along with the software tools
enabling their practical exploitation by both human and computational agents.

The paper is organised as follows. Section 2 introduces some relevant definitions and
summarises the background on SKI methods. Section 3 formally defines the QoS metrics,
whereas Sect. 4 overviews PSyKI and describes the integration of QoS metrics. Section 5
outlines the experiments and their design, and discusses the results. Finally, Sect. 6 sum-
marises the key findings and contributions, by highlighting the importance of the new QoS
metrics in effectively evaluating the strength of SKI mechanisms.

2 Background and definitions

The benefits of sub-symbolic predictors in MAS come along with the issues deriving
from their black-box nature and uncertain optimisation processes. This is why incorpo-
rating symbolic knowledge into the sub-symbolic prediction process could bring about a
number of advantages. For instance, predictors may be able to make informed decisions
based on prior knowledge, reducing the chances of producing unexpected results. Moreo-
ver, the injection of symbolic knowledge often results in improved prediction performance,
as the predictors are better equipped to handle data with inherent structure and meaning.
Therefore, a number of recent works [9, 10] have leveraged symbolic knowledge injection
to mitigate the common problems of sub-symbolic predictors (lack of interpretability, poor
generalisation, fuzzy optimisation procedure, etc.). The underlying idea is to enable the
sub-symbolic predictor to take into account some prior symbolic knowledge when drawing
its predictions, thus making the predictor more controllable.

The practice of SKI involves a rather simple workflow, yet it may rely on several dif-
ferent injection algorithms, often tailored on specific sorts of predictors or symbolic lan-
guages. Differences among those algorithms can be relevant, especially w.r.t. to how they
perform injection. Hence, we can broadly define SKI as “any algorithmic procedure affect-
ing how sub-symbolic predictors draw their inferences so that predictions are either com-
puted as a function of, or made consistent with, some given symbolic knowledge”.

More formally, given an injection procedure I , some symbolic knowledge K, and a
sub-symbolic predictor N aimed at solving some supervised learning task, we define the
“knowledge-aware” predictor N̂ as the result of the application of I to K and N:

There, we call N the uneducated predictor—as it has not yet undergone injection—, and
N̂ the educated one.

Focussing on the inputs of SKI—namely, the symbolic knowledge K and the sub-
symbolic predictor N—, nearly all SKI methods and techniques available in the literature
assume that: (1) K is a logic knowledge base (KB, henceforth) of logic formulæ, encoded
via some subset of first-order logic (FOL) [14], while (2) N is a neural network (NN). To
support this statement, Table 1 reports a sample of the most relevant SKI techniques from
the literature, pointing out the sorts of knowledge and predictor they support.

Should we speculate on the possible motivations behind the choice of FOL and NN, we
would argue that logic brings great flexibility in representing knowledge in a way which is

N̂ = I(K,N)

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 5 of 30 27

similar to how humans reason, whereas neural networks bring about malleability, compos-
ability, and trainability to intelligent systems—as they can be structured in various ways to
serve diverse purposes.

Many algorithms may fit the definitions above—mostly differing for the particular sort
of logic formalism, injection strategy, or neural network they support. For a more detailed
discussion on SKI algorithms see [12, 15, 16].

2.1 Knowledge injection workflow

SKI assumes the input knowledge consists of crisp logic formulæ expressed in a logical
language of choice. Such formulæ must somehow be converted into numeric form for
injection to take place. Later on, injection is performed by training neural networks as
usual. In other words, SKI is a process affecting networks before and during training.

Overall, SKI relies on three basic operations, namely parsing (Π), fuzzification (�), and
embedding (E).

The first step of any SKI method is parsing the input formulæ, hence producing a
machine-interpretable and -browsable representation—namely, abstract syntax trees
(AST). AST are then visited to produce a numeric representation of the input formulæ

Table 1 Summary of relevant SKI techniques (not exhaustive)

In column Typology S stands for structural, C for constraining, and E for embedding. In column Predictor
NN stands for (deep) neural network, MNN for Markov NN, and KM for kernel machine. In column Knowl-
edge FOL is first order logic, P is propositional logic, KG is knowledge graph, D is Datalog. In column Task
C stands for classification, R for regression, LP for link prediction, and AR for automated reasoning

Algorithm Year Typology Predictor Knowledge Task

KBANN [17] 1990 S NN P C
Gaussian NN [18] 1992 C + S NN P C + R
C-IL2P [19] 1999 S NN P C
Fibred NN [20, 21] 2004–2005 S NN FOL AR
CODL [22] 2007 C MNN P C
RESCAL [23] 2011 E NN KG LP
TRESCAL [24] 2014 E NN KG LP
KALE [25] 2016 C NN KG C
Student-Teacher [26, 27] 2016 S NN FOL C
HolE [28] 2016 E + C NN KG LP
SBR (a) [29] 2017a C KM FOL C
SBR (b) [9] 2017b C NN P C
SLF [10] 2018 C NN P C
�ILP [30] 2018 C + S NN D C
LRNN [31] 2018 S NN D C
RotatE [32] 2019 E + C NN KG LP
LTN [33] 2020 S NN FOL C + R
KINS [34] 2022 S NN P C + R
KILL [35] 2022 C NN P C

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 6 of 30

either consisting of functions of real numbers (e.g. a loss function, a neural network struc-
ture), or an array of real numbers.

Fuzzification is the process of converting some AST formula into a function of the
form f ∶ ℝ

n
→ ℝ , whose input values are numeric interpretations of the original formula,

whereas their outputs are either truth degrees (cf. [35])—e.g. 1 means ���� , 0 means
����� , x ∈ [0, 1] means “ ���� with x% probability”—, or penalties (cf. [34])—e.g. 0
means “no penalty”, x ≠ 0 means “penalty proportional to |x| ”. This is required when con-
verting formulæ into loss functions (like in constraining methods) or activation functions
(like in structuring methods).

Embedding is the process of converting some formula’s AST into a numeric array of
fixed size. This is necessary when converting formulæ into numeric datasets for training.

As also highlighted in Table 1, there are three sorts of SKI methods: those that perform
injection constraining during the training of neural networks, those that affect their internal
structure, and finally those that perform embedding.

2.2 Categorisation of injection methods from the literature

In the reminder of this section we delve into the details of the various injection strategies
exploited by SKI, and elaborate on how the overall performance of SKI techniques can be
assessed.

2.2.1 Constraining neural networks

The key idea behind SKI techniques of this sort is to steer the learning process of a neural
network to make it behave consistently w.r.t. some given logic formulæ. This is achieved
by penalising the network during training, whenever it violates the logic formulæ. Figure 1
provides an overview of the approach.

A common way to penalise the network under training is by altering the loss function
[9, 10, 36]. The neural network training process essentially consists in the use of gradient
descent [37], i.e. an optimisation process where the weight of NN synapses are iteratively

Fig. 1 Symbolic knowledge injection via constraining: data flow

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 7 of 30 27

modified so as to minimise a loss function. Most commonly, the loss function quantifies the
overall predictive error of the network: the greater the error, the greater the loss. However,
when SKI is applied, the loss function also takes into account the consistency of the logic
formulæ. In this way, the learning process not only minimises the network error w.r.t. data,
but also its error w.r.t. symbolic knowledge. In other words, the predictor is constrained to
be compliant with the prior knowledge up to a certain extent.

The underlying assumption behind injection mechanisms of this kind is that logic for-
mulæ should be converted into functions of real numbers of the form:

where X is the same input space of the network, and ℝ≥0 is the set of non-negative num-
bers—here representing penalties. There, for any given input vector x , the value f (x) repre-
sents the discrepancy among the network prediction corresponding to x and what the logic
formulæ prescribe for x . Hence, f (x) = 0 means that the network is behaving consistently
w.r.t. the formulæ, hence it should get no penalty. Conversely, f (x) > 0 means that the net-
work behaviour is deviating the formulæ, hence it should be penalised.

Some relevant SKI algorithms based on constraining can be found in [9, 10, 25, 29, 30,
38].

2.2.2 Structuring neural networks

The key idea behind SKI techniques of this sort is to construct (a portion of) the neu-
ral network undergoing injection in such a way to make it reflect some given logic
formulæ [18, 20, 30, 39, 40]. The resulting network is then trained as usual. How-
ever, given that (part of) its internals are tailored on the logic formulæ, the network
is expected to have higher predictive performance—or at least require less training
efforts to reach good performance scores—in all situations which are described by the
logic formulæ. Figure 2 provides an overview of the approach.

The underlying assumption behind structuring SKI methods is that (a portion of)
a neural network can be constructed to mimic the evaluation of one or more logic

f ∶ X → ℝ≥0

Fig. 2 Symbolic knowledge injection via structuring: data flow

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 8 of 30

formulæ. This is commonly achieved by letting neurons and synapses represent either
logic variables or combinations of logic expressions via logic connectives or arithme-
tic operators. Methods may then decide to keep the weights of the structured portion of
network free to vary during training, in order to let them adapt to the peculiarities of
the training data at hand.

Some relevant SKI algorithms based on structuring can be found in [17–19, 21, 26,
27, 31, 33].

2.2.3 Embedding knowledge into neural networks

The key idea behind SKI techniques of this sort is to convert symbolic knowledge into
numeric-array form to be used as training data [41–43]. Predictors trained with such
techniques are usually used as logic reasoning engines. Figure 3 provides an overview
of the approach.

The underlying assumption behind embedding SKI methods is that input knowl-
edge can be represented as a (possibly multi-dimensional) array of numbers. This, is
turn, requires the knowledge to ground (i.e. variable free)—a requirement which heav-
ily limits what logic can actually represent. So, in practice, embedding techniques are
commonly applied to simple (i.e. less expressive) logics such as description logics.
There, symbolic information consists of knowledge graphs [44], where nodes repre-
sent entities and edges represent relations among those entities. The graphs’ adjacency
matrices are essentially numeric arrays—and this is one of the tricks exploited by
embedding-based SKI methods.

Some relevant SKI algorithms based on knowledge graph embedding can be found
in [23, 24, 28, 32].

2.3 Injection assessment

It is common for works in the SKI realm to measure the strength of their mechanism as
the gain in performance achieved by the SKI predictor against its uneducated counter-
part. In that case, the effectiveness of the injection mechanism I when applied to a neural

Fig. 3 Symbolic knowledge injection via embedding: data flow

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 9 of 30 27

network N to inject the knowledge K is measured via some performance score � (accuracy,
F1-score, MSE, etc.), aimed at assessing the performance of N with respect some test data-
set T. More formally:

In other words, the effectiveness of some injection mechanism I may be assessed dif-
ferently depending on which knowledge base, neural network, and dataset it is applied to.

While being indicative of the quality of the SKI approach w.r.t. predictive performance,
that metric does not capture every aspect of the knowledge injection, as there exist mul-
tiple properties that one may be willing to optimise through SKI—see Sect. 3.1. Due to
the sudden rise in research interest towards sustainable AI approaches [45], there exists
the opportunity to analyse if and how SKI brings about benefit in terms of computations,
energy consumption, and data required to train and deploy sub-symbolic approaches. In the
remainder of this paper we identify other metrics to reliably measure the performance of
SKI.

3 SKI quality‑of‑service metrics definition

In this section we propose and analyse the novel set of metrics for identifying the quality
of SKI systems. An overview of our proposals, along with a brief classification, is pro-
vided in Sect. 3.1. Roughly speaking, we introduce metrics for measuring SKI method’s
efficiency—under multiple goodness criteria.

3.1 Overview

The current practice of SKI assessment relies exclusively on measuring improvements
in the predictive performance of some educated predictor over an equivalent uneducated
counterpart. However, predictive performance is not the only relevant benefit of SKI one
may be willing to measure.

There exist multiple aspects of neural predictors which may be affected by SKI—and
for which metrics should be defined. Just to name a few, SKI may affect the memory foot-
print, the latency, as well as the data and energy requirements of the predictors it is applied
to. Overall, all such properties contribute to what we informally call a predictor’ efficiency.
In the remainder of this paper we rely on the following efficiency properties:

• memory footprint, i.e., the size of the predictor under examination;
• latency, i.e., the time required to run a predictor for inference;
• data efficiency, i.e., the amount of data required to train the predictor;
• energy consumption, i.e., the amount of energy required to train/run the predictor;

other than, of course:

• predictive performance, e.g. accuracy, F1-score, mean absolute/squared error, etc.

For the sake of brevity, we also denote as efficiency metrics any function aimed at
measuring some efficiency property.

(1)�K,N,�,T (I) = �(I(K,N), T) − �(N, T)

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 10 of 30

Efficiency metrics provide a score measuring how much some efficiency property P
of a given uneducated predictor N improves in its educated counterpart N̂ . Of course,
the resulting score may be largely influenced by a number of different aspects, such as:

(A1) Knowledge quality and coverage. The educated predictor N̂ is attained by injecting
some input knowledge K. Furthermore, both N and N̂ are aimed at addressing the
same learning task—say, classification or regression—, and they are both trained
upon some training dataset D, which describes the task. Questions that may arise
are, for instance: (1) are K and D coherent?, (2) is K covering situation which the
data in D exemplifies?, (3) is K consistent, coherent, and correct? (4) can we say the
same for D? Regardless of the particular efficiency property P being measured, the
resulting score may greatly vary depending on the answers to these questions. So,
in other words, efficiency measures depend on the particular input knowledge (K)
and data (D) being used during SKI.

(A2) Baseline quality. As both the educated (N̂) and uneducated (N) predictors are tar-
getting the same learning task, one may wonder if N is adequate enough to address
that learning task. In this setting, questions that may arise are: (1) is N biased
[46] in statistical sense? (2) in case it is, can we expect N̂ to carry any observ-
able improvement on some efficiency measure P? (3) can we expect N̂ to carry any
observable improvement on some efficiency measure P? (4) event in case where N
is not biased, is the selected injection mechanism I adequate for N? From these
questions we understand that efficiency measures may also depend on the nature of
the input predictor (N), and, of course, on the injection mechanism of choice (I).

(A3) Task at hand. The learning task targeted by both N and N̂ determines the training
dataset as well as the test dataset T. The choice of T impacts the assessment of both
N and N̂ . Therefore, it may impact the score of any efficiency measure as well. So,
efficiency measures may finally also depend on the target learning task, and, conse-
quently on the test data (T).

 Summarising, efficiency measures assess some injection method I in a very specific
setting that depends on (1) the particular knowledge to be injected, (2) the sort of pre-
dictor undergoing injection, (3) the training and (4) test data adopted for training. In
other terms, any efficiency measure should be parametric w.r.t. K, N, D, and T.

Accordingly, in the following we propose the implementation and formalisation of
metrics to assess the efficiency of SKI. In particular, as discussed at the beginning of
this section, memory footprint, latency, energy consumption, and data efficiency are
introduced as key performance indicators of SKI. Our objective is to assess the effi-
ciency of SKI in terms of computational resource usage, and to provide insight into
how these metrics could be used to inform the design and optimisation of SKI-based
systems, with a particular emphasis on their potential benefit within MAS frameworks.
Notably, we believe that an in-depth understanding of the trade-off between perfor-
mance and efficiency is essential for the implementation of AI predictors in MAS
frameworks.

3.2 Memory footprint

In the context of MAS, sub-symbolic predictors are gaining importance as the field
moves towards more efficient and sustainable AI. As the demand for AI predictors that

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 11 of 30 27

can operate on resource-constrained devices—such as IoT devices, edge devices, and
mobile devices—continues to rise, researchers have focused on developing solutions
that require less memory and computational resources [47–49].

To address those concerns, several metrics for measuring the memory footprint of AI
predictors—in particularly the sub-symbolic ones – have been recently proposed in the
literature [50–52]. For instance, in [13], the authors propose measuring neural networks’
memory footprint by counting the amount of parameters they are composed by—i.e.,
essentially, the amount of synapses composing each neural network. Alternatively, some
authors leverage metrics such as Floating Point OPerations (FLOPs) [53] or Multiplica-
tion Addition Computations (MACs) [54], which measure the amount of total opera-
tions or multiplications and additions required to perform a single inference respec-
tively. MACs consider solely multiplications and summations as they represent the most
common computations in NNs. Theoe measures are indicative of the amount of memory
required either to fit the whole sub-symbolic predictor—total number of parameters—or
to run it—FLOPs and MACs. Even though they are intuitive, those metrics are also
effective for measuring predictors complexity and the overall computational memory
efficiency. Here, we consider leveraging on such measures to analyse the efficiency gain
of SKI approaches. In other terms, we consider the ability of SKI mechanisms to pro-
duce lightweight sub-symbolic predictors—in terms of memory occupation.

The key insight here is that knowledge injection may lift part of the learning burden
from the predictor at hand, by relieving the network from the need to learn complex or
data-uncovered notions via trial-and-error. Indeed, the a-priori concepts carried by the
input knowledge might now be injected instead of being learnt in a data-driven way. As
a result, the amount of notions that sub-symbolic predictors must learn in a data-driven
way might be significantly reduced. Fewer concepts to be learned are typically associ-
ated with fewer parameters, FLOPs, and MACs—or, in other words, a smaller memory
footprint [55]. In the context of SKI, we define the memory footprint improvement score
�Ψ,K,N(I) as the amount of memory saved by the educated network N̂ w.r.t. its unedu-
cated counterpart N. The higher the score, the more memory efficient the educated pre-
dictor is w.r.t. the uneducated one. However, as one may measure the memory footprint
of a sub-symbolic predictor in different ways – e.g., by counting the number of param-
eters, FLOPs or MACs—, our scoring function is parametric in Ψ—which represents
the memory footprint metric of choice. More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N.
It is worth noticing how the proposed memory footprint score may be influenced by

quality and coverage of the input knowledge (A1), as well as by the memory footprint of
the input predictor N (A2). About (A1), the reason is simple: the better the input knowl-
edge, the lower the expected memory requirements of the educated predictor. Similarly,
as far as (A2) is concerned, the better the input predictor, the lower the expected mem-
ory footprint improvements of the educated predictor. However, one may also notice
from Equation (2) that our memory footprint score is not parametric when the current
task is taken into account (A2). The reason is simple: the memory footprint of a neural
network is not task-dependent, as it is a structural property of the neural network itself.

Finally, we stress that memory footprint of the educated predictor is expected to be
lower than the one of the uneducated predictor. Indeed, our score is measuring the memory
footprint improvement. A negative score �Ψ,K,N(I) means that the educated predictor is

(2)�Ψ,K,N(I) = Ψ(N) − Ψ(I(K,N))

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 12 of 30

more memory hungry than the uneducated one—i.e., that the SKI approach is not effective
in reducing the memory footprint of the input predictor.

3.3 Energy consumption

The relationship between MAS and energy consumption is complex and articulated. In
fact, to function effectively in resource-constrained environments, MAS require AI systems
that consume a reduced amount of energy. Moreover, the distributed nature of MAS and
the increasing demand for AI across a variety of applications drive the need for scalable
and power-efficient solutions. This need is, however, aggravated by the dynamic and real-
time requirements of many MAS applications, which can result in high energy consump-
tion due to computational and resource requirements. The complexity of a MAS, with its
multiple agents and agent interactions, adds a new level of difficulty, especially when pro-
cessing large amounts of data or executing complex algorithms. Altogether, those factors
make energy consumption a crucial aspect of the design and implementation of AI systems
in MAS frameworks.

Overall, there are numerous ways to address this problem. One approach could be to
use energy-efficient hardware, such as low-power processors, or to use distributed and
federated learning techniques that can distribute computation complexity across multiple
devices [56]. Another approach could exploit more efficient algorithms and data structures
so as to reduce the amount of computation required by agents to process data. Along that
line, the integration of sub-symbolic predictors, which require less memory and compu-
tational resources than conventional symbolic AI approaches, could meaningfully reduce
energy consumption. However, improvements can still be made from an energy point of
view by making the sub-symbolic systems more efficient. For instance, several techniques
rely on ad-hoc strategies to compress or optimise sub-symbolic predictors.

In this context, we see SKI approaches as providing MAS designers with a huge oppor-
tunity. In fact, the introduction of injection mechanisms in the data-driven pipeline of sub-
symbolic training mechanisms may reduce the amount of computations required to train
and run sub-symbolic predictors. Indeed, knowledge injection reduces the complexity of
the learning process, providing another source of knowledge other than the training data
itself. Thus, one may be interested in assessing whether and to what extent SKI mecha-
nisms contribute to reducing the amount of computations required by a sub-symbolic pre-
dictor along its life-cycle.

We propose a new score aimed at measuring the energy consumption of SKI approaches.
This is tightly related with memory footprint score from Sect. 3.2. Indeed, it is usually the
case for smaller predictors to require fewer amounts of energy to train and run. However,
there may exist memory efficient predictors requiring a higher amount of energy to train
and run, such as sparse ones. Indeed, sparsity induces a lower amount of operations, but is
not usually effectively implemented at hardware level, increasing power consumption [53].
Therefore, energy consumption is a property which is worth to be measured by itself.

In order to analyse energy consumption as well as the possible improvements that SKI
could bring about, we first need to define the life cycle of AI predictors, analysing hungriness
of each component resource. In order to build and deploy a data-driven AI solution, a number
of stages need to be completed, namely:

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 13 of 30 27

1. Model definition, where data scientists analyse the task at hand and select the most
adequate sorts of sub-symbolic predictors, and the most promising hyperparameters
assignments for those predictors.

2. Model training, where the parameters of the sub-symbolic predictor of choice are auto-
matically tuned on the training data via some sort of training algorithm. There, the
amount of training samples (as well as their dimensionality) may impact energy con-
sumption. Indeed, training algorithms commonly require running the predictor on the
data and updating it several times.

3. Model testing, where the predictor is tested against a—limited—set of testing samples to
check if the performance are satisfactory. As for the training case, energy consumption
here may be affected by the amount (and dimensionality) of testing samples.

4. Model deployment, where the predictor runs multiple times, which a frequency which
really depends on the specific application at hand

From the definition of the data-driven AI life-cycle, it is possible to highlight that the
training and deployment phases are the most resource hungry. Indeed, training requires
a huge— yet predictable—amount of predictor executions and updates, whereas deploy-
ment might be very energy demanding depending on the predictor usage frequency and life
expectation—which are typically hard to anticipate.

Accordingly, as far as energy consumption is concerned, we are interested in measuring
the energy consumption of the training and deployment phases, individually. More pre-
cisely, for the training phase, we are interested in measuring the energy consumption of the
training algorithm itself, hence excluding the cost of the inferences drawn during the train-
ing process—as their cost is expected to be analogous to the one of the deployment phase.

Notably, this distinction allows us to evaluate the impact of SKI during both the train-
ing and deployment phases—which may, in general, be significantly different. In fact, we
expect SKI to decrease the energy consumption of the deployed predictors, at the price of
an increased energy consumption of the training phase.

Delving into the details of the energy consumption measurements, we start by defining
the Υ� score, aimed at measuring the average energy consumed by a sub-symbolic predictor
N on a per-single-inference basis:

Our definition assumes a function �(N, t) is available to measure the energy consump-
tion of a single forward run of a sub-symbolic predictor N on a single sample t. Such a
function may for instance estimate the heat dissipated by the hardware running the predic-
tor, during the single inference N(t). Under that assumption, Eq. (3) measures the average
energy consumption of a sub-symbolic predictor N on a test dataset T composed by several
samples.

We now define the Υ� score, aimed at measuring the average energy consumed while
training a sub-symbolic predictor N on a training dataset T:

Our definition assumes the training involves e epochs, and that during each epoch
the whole training set T is used to update the predictor N. The definition also assumes
�(e,N, T) is a function estimating the overall energy consumed by the training phase as

(3)Υ�

�
(N, T) =

1

|T|
∑

t∈T

�(N, t)

(4)Υ�

�,�
(e,N, T) =

�(e,N, T)

e ⋅ |T|
− Υ�

�
(N, T)

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 14 of 30

whole—including the energy consumed by the inferences drawn during the training pro-
cess. Similarly to � , function � may for instance estimate the heat dissipated by the hard-
ware running the predictor, during the whole training process. Under such assumptions,
Eq. (4) measures the average energy consumption required by the predictor N for a single
update, during its training on the dataset T.

We can now define the energy consumption improvement of a SKI mechanism as the
amount of energy saved by the educated predictor, compared to its uneducated counterpart.
Again, we distinguish between energy consumption during training and energy consump-
tion during inference. Along this line, we introduce two scores, namely ��

�,K,N,T
(I) (resp.

��
�,� ,K,N,T

(I)), aimed at measuring the energy consumption improvement of a SKI mecha-
nism I , during inference (resp. training). More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N, and T
is a reference dataset of choice—most commonly, the training set in the case of �� , and the
test set in the case of ��.

It is worth noticing how the proposed energy consumption scores may be influenced
all aspects (A1)–(A2). About input knowledge (A1) the reason is simple: the more com-
plex the input knowledge, the higher (resp. lower) the expected energy consumption of the
educated predictor during training (resp. inference). Similarly, as far as the input predic-
tor is concerned (A2), the more energy-hungry it is, the higher we expect the educated
predictor’s energy consumption improvements to be. Lastly, the task at hand (A2) has a
clear effect on our scores, as they are both parametric in the dataset—energy consumption
improvements are typically task-specific.

3.4 Latency

The amount of time required to draw a single prediction is one of the most relevant and
impactful efficiency measures for sub-symbolic predictors. In what follows, we refer to
such time-lapse as latency. A small latency indicates that a sub-symbolic predictor is able
to compute relevant predictions in useful time—which is an important property in real-
world applications. For instance, low latency is essential in those scenarios where human
lives depend on the timely response of some AI system, such as intelligent transportation
[6] and e-health [5]. Moreover, latency assumes a relevant role in multi-agent scenarios,
where collaboration between multiple intelligent entities is required, and there can not exist
lag between them due to lengthy computations [57]. Also, the processing of large amounts
of data and execution of complex algorithms, such as those used in decision-making, can
result in increased latency as the system struggles to keep up with the demands of the task.
As a result, MAS complexity can contribute significantly to increase latency. This is why
recent research efforts in the AI field are focussing on time-sensitive predictors.

One possible solution available to address this problem is the use of SKI approaches. By
incorporating symbolic representations, SKI approaches can reduce the amount of compu-
tation required to process data, leading to reduced latency. Furthermore, the use of sym-
bolic representations could help to simplify the complexity of the system, making it easier
to predict the behavior of the system and identify the root causes of an increased latency.

(5)
��
�,K,N,T

(I) = Υ�

�
(N, T) − Υ�

�
(I(K,N), T)

��
�,� ,e,K,N,T

(I) = Υ�

�,�
(e,N, T) − Υ�

�,�
(e,I(K,N), T)

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 15 of 30 27

As a result, we believe it is crucial to measure latency in order to assess the computational
efficiency of present AI systems.

In the remainder of this section we assume latency to be computed by averaging the
time required to draw a number of predictions from a reference test dataset. More formally,
we define the latency of a predictor N as the average time required to draw a single predic-
tion from a dataset T:

where Θ(N, t) represents the time required to draw a prediction from N on the input t.
As far as SKI is concerned, we are interested in assessing the latency gain brought by

a given SKI mechanism I w.r.t. some uneducated predictor. Along this line, one may be
interested in figuring out whether injection increases or decreases the latency of a given
predictor. Hence, we define the latency gain �K,N,T (I) introduced by some SKI method I
as the average difference between the inference time of the educated predictor N̂ and its
uneducated counterpart N, over a reference test dataset T. More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N.
Similarly to the energy measurement, the latency metric is tightly related to the com-

plexity of the educated sub-symbolic predictor and therefore with memory footprint. How-
ever, like energy consumption, latency is not always directly proportional to the amount of
operations that construct the predictor at hand. Sparsely-structured operations might slow
down the inference process due to their inefficient computation at hardware level. Moreo-
ver, input data complexity and quality might alter the latency achieved by the predictor.
Indeed, inference over different—yet structurally analogous—samples may take vastly dif-
ferent timings, as shown in the attack proposed in [58].

It is worth noticing how the proposed latency score may be influenced all aspects (A1)–(A2).
About input knowledge (A1), we argue it may have both a positive and a negative effect on the
latency gain. In fact, on the one hand, some SKI mechanisms might introduce additional com-
putations—such as the ones required to process the input knowledge K in structuring meth-
ods—see Sect. 2.2.2. We expect this effect to be magnified in the case of large knowledge bases,
as the number of operations required to process them is expected to be higher. On the other
hand, SKI systems might also reduce the inference time of the given predictor, by reducing the
number of computations required to draw a prediction—likely, at the expense of higher training
times. As far as the input predictor in concerned (A2), the more time-consuming it is, the higher
we expect the educated predictor’s latency gain to be. Lastly, the task at hand (A2) has a clear
effect on our score, as latencies are computed over task-specific test sets.

3.5 Data efficiency

Data efficiency is a critical aspect of MAS, as the amount of data generated and pro-
cessed by these systems can be substantial. Inefficient data management can result in
increased latency, decreased accuracy, and increased energy consumption, all of which
can negatively impact the performance of MAS.

(6)Λ(N, T) =
1

|T|
∑

t∈T

Θ(N, t)

(7)𝜆K,N,T (I) =
1

|T|
∑

t∈T

(
Θ(N, t) − Θ(N̂, t)

)
= Λ(N, T) − Λ(N̂, T)

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 16 of 30

Sub-symbolic predictors which rely on data-driven training algorithms, can pro-
vide groundbreaking performance and flexibility to MAS, but the data-driven proce-
dure comes with several shortcomings. These predictors require collecting significant
amounts of data samples for each task to be tackled, leading to increased data storage
and processing requirements. Furthermore, not only the quantity but also the quality of
the data—here intended as its representativeness of the task at hand—is crucial for the
predictor to learn effectively. All such requirements make the data collection process
time–costly—and depending on the application—possibly affected to subjectivity or
uncertainty—e.g., emotion recognition [59].

For all these reasons, recent research efforts have focused on proposing data-frugal
predictors [60]. Among them, knowledge injection mechanisms play a significant role
[10]. Indeed, leveraging a-priori knowledge, SKI relieves the learning process from
part of its computational burdens. Concepts that an uneducated predictor would need to
learn from data might now be injected into the educated predictor, instead. Hopefully,
this would let the educated predictor’s learning process require lower amounts of data to
attain acceptable performance levels. In this sense, SKI might be considered as a data-
efficiency mechanism.

We are here interested in computing the data-efficiency gain brought by a given SKI
mechanism w.r.t. some uneducated predictor. To do so, we firstly need to define the data
footprint of a given predictor. Informally, the data footprint of a predictor N is the amount
of data it requires to be trained to reach a certain performance level. Hence, assuming that a
predictor N is trained on a dataset D—of samples of potentially different dimensions—, via
some training process involving e epochs, and that it reached a performance level �(N, T)
over a test set T—and according to some test dataset T—, we define its data footprint as
follows:

where d is a single training sample, and �(d) is the amount of bytes required for its in-
memory representation, and � is some performance score of choice. As the reader may
notice, the data footprint is directly proportional to the number of epochs e, to the size of
the training set, and to its dimensionality; whereas it is inversely proportional to the perfor-
mance score of the resulting predictor.

We define the data-efficiency gain �e,K,N,D,D�,T (I) of a given SKI mechanism I as the
difference between the data footprint of the uneducated predictor N—trained upon some
dataset D—and that of the educated predictor I(K,N)—trained upon some other dataset
D′ . The score assumes that the two predictors have been trained for the same number of
epochs e, and that their performance is assessed using the same performance score � , on
the same test set T—in order to keep the comparison fair. More formally:

The simplest approach to improve data efficiency in SKI mechanisms is to reduce the
amount of samples that compose the training dataset—i.e. |N| in Eq. (8). However, one may
also consider the option of decreasing the size of samples either by reducing their dimen-
sionality or by compressing their representations—in a nutshell, by reducing �(d) for all
d ∈ D.

To increase the data-efficiency gain, one may also consider engineering SKI and, con-
sequently, the educated predictor. Along this line, the best strategy consist in reducing the

(8)Δ�(e,N,D, T) =
e

�(N, T)

∑

d∈D

�(d)

(9)�e,K,N,D,D�,T (I) = Δ�(e,N,D, T) − Δ�(e,I(K,N),D�
, T)

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 17 of 30 27

size of the training set D′ for the educated predictor by letting the input knowledge K com-
pensate for such lack of data. Notably, this is possible because our score is sensitive to both
aspects (A1) and (A2). In other words, both the input knowledge and the task at hand have
a measurable effect on the data-efficiency gain. Finally, as far as the baseline predictor is
concerned (A2), we argue that the more data hungry it is, the more the data-efficiency gain
will be.

4 Integration of SKI QoS metrics into PSyKI

In this section we thoroughly discuss the PSyKI system by first providing the reader with a
comprehensive overview of the system, then delving into the specifics of how QoS metrics
are integrated into the PSyKI library.

PSyKI—acronym for “platform for symbolic knowledge injection”—is a Python library
that provides support for the injection of prior symbolic knowledge into sub-symbolic pre-
dictors by letting the users—e.g., MAS designers—choose the most adequate method with
respect to the ML task to accomplish [11]. PSyKI is a tool for intelligent systems engineers
who need to either experiment with already-existing SKI algorithms or invent new ones.
PSyKI is public and available at github. com/ psykei/ psyki- python.

Currently, PSyKI can be used with predictors created by Tensorflow [61] and supports
the following SKI algorithms: (1)KBANN, one of the first SKI algorithms proposed in lit-
erature [17]; (2) KINS, a structuring-based injector that integrates symbolic knowledge into
a target neural networks [34]; (3) KILL, a constraint-based injector that affect the training
of a target neural network [35].

Essentially, PSyKI is designed around the notion of injector, whose block diagram
is shown in Fig. 4. An injector is any algorithm accepting as input a ML predictor and
prior symbolic knowledge (typically logic formulæ) and producing a new predictor as out-
put. In order to properly perform injection, injectors may require additional information,
such as algorithm specific hyperparameters. The general workflow for SKI with PSyKI is

Fig. 4 PSyKI design. Each SKI algorithm is follow the workflow represented in the figure The four yellow
boxes represent the four main steps of the workflow. The first step is the parsing (Π) of the symbolic knowl-
edge. The second step is the fuzzification (�) of the parsed knowledge. The third step is the injection (I) of
the fuzzified knowledge into the uneducated target predictor (P). The fourth step is the training (T) of the
new predictor, making it educated (P′)

https://github.com/psykei/psyki-python

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 18 of 30

compliant to the one presented in Sect. 2.1—with specific attention to parsing (Π), fuzzifi-
cation (�) and injection (I).

PSyKI supports the processing of symbolic knowledge represented via logic formulæ.
Based on the sort of logic adopted, user can build an abstract syntax tree (AST) for each
formula. The AST can be inspected through a fuzzifier via pattern visitor [62] to encode the
symbolic knowledge into a sub-symbolic form (e.g. fuzzy logic functions, ad-hoc layers).
The resulting sub-symbolic object can finally be used by an injector to create a new predic-
tor. This process—denoted with � in Figs. 1, 2 and 3—is injector-specific; instead, the same
parser Π can be used independently of the injector for logic formulæ of the same type.

The software is organised into well-separated packages and interfaces, so as to ensure
extensibility towards new sorts of logics and fuzzifiers—see Fig. 5. A formula AST is rep-
resented in the software via instances of the Formula abstract class and its manifold sub-
types (not shown in the figure)—aimed at covering the many logic-specific aspects sup-
ported by PSyKI. Ad-hoc implementations of Formula are included in PSyKI, one for
each the logic formalism supported by our framework—currently, Prolog, Datalog, and
their sub-sets –, and more may be introduced in the future by either us or other researchers
by simply extending that class. The same holds for fuzzifiers (resp. injectors), i.e., sub-
types of the Fuzzifier (resp. Injector) abstract class. Currently-available implemen-
tations of those class cover the KBANN [17], KINS [34], and KILL [35] injection algo-
rithms—and the corresponding injectors as well,

However, in its original state PSyKI does not include any particular facility to assess
SKI. This is why in the remainder of this paper we propose a PSyKI extension aimed at
supporting engineers in need of practically assessing the effectiveness—as well as the
other QoS properties discussed in this paper—of their SKI workflows.

4.1 QoS metrics implementation in PSyKI

QoS metrics are implemented as a set of classes that extend the Metric abstract class.
Each class corresponds to a specific metric and is responsible for computing the corre-
sponding score. Therefore, the Metric class provides a common interface for all metrics.

In particular, it provides two methods to compute the metric value between two pre-
dictors. The first method is compute_during_training and it is used to compute

Fig. 5 Class diagram of PSyKI. Main entities are Injector, Formula, and Fuzzifier

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 19 of 30 27

the metric during the training phase of the predictors. The second method is compute_
during_inference and it is used to compute the metric when predictors are already
trained. Both methods, accept the predictors to compare as input parameters. Additional
parameters can be passed to the methods to customise the computation of the metric to
meet the specific needs of the user (e.g., training set, batch size, etc.).

Implemented metrics are:

1. Memory: memory consumption efficiency of the predictors—Equation (2);
2. Energy: energy consumption efficiency of the predictors—Equation (5);
3. Latency: latency efficiency of the predictors—Equation (7);
4. DataEfficiency: data efficiency of the predictors—Equation (9).

Metrics are included into the psyki.qos package. It is worth noting that all the metrics
can be computed using any kind of predictors: no need to have one uneducated and one
educated predictor. Instead, one can also compare, say, two educated predictors, or two
uneducated predictors of any sort.

5 Experiments

In this section we present several experiments aimed at assessing the effectiveness of the
proposed QoS metrics, as implemented in PSyKI. We first describe the experimental setup,
the datasets we adopt, and the rationale behind their choice. Then, we present the results of
our experiments, and we discuss them.

The design of our experiments is as follows:

1. we select three relevant classification tasks from the literature, covering different appli-
cation domains, and coming with datasets of increasing cardinality;

2. for each task and its corresponding dataset D, we (1) train some uneducated neural
predictor N over the data in D—of course performing train/test-set splitting—, and we
(2) select some symbolic knowledge base K to be injected in N;

3. for each uneducated predictor N we then apply SKI multiple times, one per each injec-
tion technique currently supported by PSyKI, namely KBANN, KINS, and KILL—
hence attaining as many educated predictors;

4. finally, for each educated predictor N̂ , we compute our QoS metrics, hence comparing
that N̂ and N w.r.t. (1)data efficiency, energy consumption, memory footprint, latency,
and accuracy variation.

The rationale behind this setup is to demonstrate the effectiveness of our QoS metrics in
assessing the efficiency SKI techniques of different sorts.

It is worth highlighting that the experiments presented in this section are not intended
as a comprehensive evaluation of knowledge injection techniques per se. Instead, they aim
to demonstrate the validity of the proposed QoS metrics, w.r.t. their capability of revealing
variations in relevant efficiency metrics, as introduced by SKI. In this respect, negative val-
ues may be imputed to either the injections algorithms themselves, or to their implementa-
tion in PSyKI. In fact, the primary goal of PSyKI is to provide correct—despite not fully
optimised—SKI techniques.

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 20 of 30

For the sake of reproducibility, the code is public available at https:// github. com/ pikal
ab- unibo/ ski- qos- jaamas- exper iments- 2022.

5.1 Datasets

We select three different datasets from the UCI repository3: BCW, PSJGS, and CI.

• Breast cancer Wisconsin dataset (BCW) [63] The BCW dataset contains 699 instances
of breast cancer biopsy results, each with 9 features—summarising biological char-
acteristics—and one class label. Values are integers in the range [1, 10]. The feature
BareNuclei has 16 missing values, which are replaced with the value zero. The data-
set’s target variable is a binary indicator of whether a biopsy was benign (�) or malig-
nant (�), class repartition is 458 and 241 respectively. The purpose of the dataset is to
develop predictors that can accurately diagnose breast cancer based on biopsies using
the information contained in the features.

• Primate splice junction gene sequences (PSJGS) [64] The PSJGS dataset includes
information regarding gene splicing. The dataset includes 3190 instances, each repre-
senting a sequence of 60 DNA nucleotides. Each nucleotide is represented by one of
the four letters � (adenine), � (thymine), � (cytosine), and � (guanine). Each sequence
begins at position -30 and ends at 30, position zero is excluded.

 One DNA sequence can be classified as an exon–intron (��) boundary, an intron–
exon (��) boundary, or none (�) of them. Class frequencies are 50% for � , 25% for both
�� and ��.

 In addition to the four nucleotides, the dataset also includes other letters that indicate
that for one specific position different nucleotides are allowed. For our experiments, we
preprocess the dataset by binarising the nucleotides. In other words, each nucleotide is
represented by a vector of 4 elements, where each element is 0 except for the one corre-
sponding to the nucleotide itself, which is 1. Table 2 reports the complete binarisation
of the nucleotides.

• Census income (CI) [65] The CI dataset contains individual information from the 1994
United States Census. The dataset contains 48,842 instances, each corresponding to one
census participant. Each data row includes information such as age, education, and occupa-
tion, as well as income data about a single person. The purpose of the dataset is to predict
whether an individual’s annual income is greater than or less/equal than/to 50,000 USD
based on their demographic information. Hence, the target variable is binary—37,155 earn
less/equal than/to 50,000 USD and 11,687 earn more than that amount per year.

Table 2 Mapping of aggregative
symbols and the four nucleotides

Each symbol can be substituted with one base on the right that has a
dot

Symbol Adenine Cytosine Guanine Thymine

� ∙ ∙ ∙

� ∙ ∙

� ∙ ∙

� ∙ ∙

� ∙ ∙

3 https:// archi ve. ics. uci. edu/ ml/ index. php.

https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://archive.ics.uci.edu/ml/index.php

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 21 of 30 27

 For our experiments, we convert the target Income to a binary output (1 if the income
exceeds 50,000 USD and 0 otherwise). We also drop three features—namely Fnlwgt ,
Education , and Race—as they are irrelevant for our experiment (Fnlwgt is a similar-
ity metric computed over the other features, the information provided by Education
is already present thanks to the feature EducationNumeric) or possibly introduce cul-
tural bias (Race). The remaining features are discretised. In particular, CapitalGain and
CapitalLoss are binarised, while the remaining nominal categorical features are trans-
formed into one-hot-encoded data.

We choose these datasets because of their increasing cardinality, which ranges from 102 to
104 . In this way, we are able to observe the scalability and robustness of our predictors and
metrics in handling datasets of different volume or dimensionality. This is important to get
a broader overview about the performance of the different predictors both in terms of their
accuracy and in terms of the various efficiency metrics proposed in this work.

We divide each dataset into train and test sets, with a ratio of 2/3 and 1/3 respectively.
Finally, we attain the knowledge bases to be injected in a task-specific way. As far as the

PSJGS dataset is concerned, we rely on the knowledge base described into the correspond-
ing paper [17], which we suitably convert in Prolog form. Conversely, as far as the BCW
and CI datasets are concerned, we leverage upon symbolic knowledge extraction [66] to
automatically generate knowledge bases in Prolog form out of trained predictors. This pro-
cess is better discussed into “Appendix”.

5.2 Methodology

We define and train several neural predictors, for each dataset—in particular, one unedu-
cated network and multiple educated counterparts. We attain educated networks by apply-
ing SKI via the KINS, KILL, and KBANN algorithms—each one exploiting some different
approach to perform knowledge injection—see Sect. 4. By constructing all such predictors,
we are able to compare and evaluate their performance and their metrics on each dataset.

For each uneducated predictor, we tune the structural hyperparameters (i.e. amount
of layers and neurons per layer) by using a grid search with cross-validation. Networks
attained via KBANN are a notable exception here, as in those cases the entire architecture
of the network is dictated by KBANN, as a function of the input knowledge. In particular,
we chose to vary the number of layers (from 1 to 3) and the number of neurons per layer
(10, 50, and 100). The same process of grid search with cross cross-validation is repeated
for the “educated” predictors. In this way, we can ensure good hyperparameters selection—
in terms of predictive performance—, while still keeping the computation time reasonable.
Table 3 shows the selected hyperparameters for each dataset and predictor.

In order to tune the (hyper-)parameters of each predictor in a statistically significant
way, we repeat the training 30 times, each time with different initial conditions and/or ran-
dom seeds, grasping statistics about the average accuracy along the way. This lets us reduce
the variability of the results and obtain a more accurate estimate of a predictor’s actual per-
formance. The outcome of this procedure is shown in Table 4.

After calculating the average accuracy, we proceed in computing predictors’ efficiency
metrics, for each dataset. In particular, we compute data efficiency, energy, memory, and
latency metrics—see Sect. 3. The corresponding scores are presented in Table 4, and dis-
cussed in the following section.

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 22 of 30

5.3 Discussion

In the following we thoroughly analyse and interpret the results of our experiments.
Accordingly, we examine the columns of Table 4 from left to right.

It is worth noticing how data-efficiency scores vary hugely across predictors and data-
sets. We recall that a positive data-efficiency score indicates that the educated predictor
is more efficient than its uneducated counterpart, whereas a negative score indicates the
opposite. In general, as stated in Sect. 3, it is important to consider how data-efficiency
scores can be affected by all three aspects (A1)–(A2). Thus, for instance, the high vari-
ation of this score points out the importance of selecting the most appropriate predictor
for a given task (A2). For instance, the KINS-based solution has a lower data-efficiency
score than the other predictors tailored on the BCW dataset. This may indicate that KINS
is not the best solution for this task. In contrast, we note that the CI dataset shows positive
data-efficiency scores for all three predictors, indicating that, in terms of data efficiency, an
improvement is obtained by using all three SKI algorithms proposed in this work.

The second column of Table 4 shows the energy metrics for both train and test. With
regard to each predictor and dataset, we mostly see negative values for this metric. Again,
it is important to note that energy consumption scores can be affected by a number of fac-
tors, including input knowledge (A1), input predictor (A2), and task to be performed (A2).
In most cases, the table indicates that the KBANN-based solution consumes more energy
than the other predictors. In contrast, the KILL-based solution consumes significantly less
energy than the other predictors. Additionally, it is important to shift the emphasis towards
input knowledge (A1). As stated in Sect. 3, it is expected that the more complex the input
knowledge, the more energy the educated predictor will consume during training. Hence, in
terms of data efficiency, we argue that more complex knowledge may produce a gain for the
educated predictor—possibly at the price of higher expenses in terms of energy consumption.

The third column of Table 4 shows the results of the memory metric. We recall that a
positive value here indicates that the educated predictor consumes less memory than the

Table 3 Results of a
comprehensive grid search on
various datasets

The models evaluated in this study are the uneducated one, and the
three different educated models with KBANN, KILL, and KINS. Note
that the model used by KBANN is identical to the model obtained via
grid search for the uneducated model. The table provides a summary of
the number of layers and neurons used in each model for each dataset

Dataset Model Layers Neurons

BCW Uneducated 3 [100, 10, 50]
KBANN 3 [100, 10, 50]
KILL 3 [100, 10, 50]
KINS 3 [100, 10, 10]

PSJGS Uneducated 3 [100, 10, 10]
KBANN 3 [100, 10, 10]
KILL 3 [100, 10, 10]
KINS 3 [50, 10, 10]

CI Uneducated 3 [10, 50, 50]
KBANN 3 [10, 50, 50]
KILL 3 [10, 50, 10]
KINS 3 [10, 50, 10]

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 23 of 30 27

uneducated one. Conversely, a negative value indicates that the educated predictor con-
sumes more memory. For example, in the case of the BCW dataset and the KBANN-based
solution, the educated predictor shows a positive difference in memory consumption—
which means it uses less memory than the uneducated one. In the PSJGS dataset, both
KBANN- and KINS-based solutions show negative memory metrics. This suggests that, in
this case, those educated predictors are more memory intensive than the uneducated one.
Regarding the KILL-based solution, it often shows a memory metric of 0, indicating that
there is no difference in memory between the educated and uneducated predictors.

The fourth column of Table 4 shows the latency results. Comparing the latency
of educated predictors with the uneducated ones, we observe that, as far as KILL is
concerned, the results between the two solutions are very similar—i.e., the metric is
close to 0 in both cases. KBANN and KINS, on the other hand, have a slightly-worse
latency, on all three datasets. As discussed in Sect. 3, we argue this is due to the com-
plexity of the injected input knowledge, which can lead to negative effects in terms of
latency—especially in structuring-type SKI methods, such as KBANN.

Finally, by looking at the accuracy scores—see the last column of the Table 4—, we
observe that the educated and uneducated predictors show very similar results. Further-
more, the results indicate that the accuracy of all predictors on all three datasets is very

Table 4 Comparison of the performance of different models (KBANN, KILL, and KINS) respect to the
uneducated one on three datasets (Breast Cancer, Splice Junction, and Census Income) in terms data effi-
ciency, energy consumption, memory usage, latency, and accuracy

Note that the train accuracy is the mean of 30 runs

Dataset Model Set Data effi-
ciency (KB)

Energy
(mWh)

Memory
(FLOPs)

Latency (ms) Accuracy (%)

BCW Uneducated – – – – 94.53
KBANN Train 35.89 −1.47 3933 −1.70 95.45

Test −0.10
KILL Train 4.09 −0.99 0 0.35 94.63

Test 0
KINS Train −9.97 −1.22 − 559 −1.41 94.29

Test −0.09
PSJGS Uneducated – – – – 93.91

KBANN Train −4946.81 −4.67 -66944 −2.56 92.84
Test −0.22

KILL Train 553.89 − 3 0 0.04 94.02
test 0

KINS Train −954.80 −6.53 − 161,779 −4.75 93.70
Test −0.51

CI Uneducated – – – – 84.63
KBANN Train 1653.79 −1.41 − 2468 −0.43 84.78

Test −0.02
KILL Train 4016.90 −0.70 4200 0 84.81

Test 0
KINS Train 4263.50 −1.41 -6220 −0.44 84.77

Test −0.02

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 24 of 30

similar and consistent. In general, results suggest that all predictors perform well and can
accurately predict the results of the datasets.

To conclude, in terms of data efficiency, the educated predictor generally requires less
data to achieve similar accuracy than the uneducated one. This is a positive result, as it sug-
gests that the trained predictor is able to make accurate predictions using less data, which
can be a nice-to-have feature in resource-constrained settings.

As far as energy is concerned, our results show a gain in energy during the training
phase for the uneducated predictor, but during the inference phase this difference is close to
0. We argue that this is due to the knowledge injection process, which in these experiments
required more energy expense for the educated predictor than the uneducated one. About
memory, the results are somehow mixed: the educated predictor sometimes requires more
memory and sometimes less memory than the uneducated one. Finally, as far as latency
is concerned, results indicate that the uneducated predictor tends to have a slightly lower
latency than the educated one.

Overall, our analysis provides valuable information that can be used to understand the
performance of different injection predictors on different datasets: this can be useful for
evaluating a predictor with higher integrity without resorting to accuracy metrics only.
This points out the importance of adopting specific metrics when evaluating knowledge
injection predictors. Using these sorts of metrics in the MAS context could provide intelli-
gent systems engineers with a critical tool for comparing different predictors and selecting
the best one for a given task.

6 Conclusions

In this work we propose a set of quality-of-service (QoS) metrics for SKI mechanisms, aim-
ing at putting MAS engineers and agents back in control of the selection of the best pre-
dictor for a given task. In particular, our metrics focus upon efficiency gains achievable
through SKI. Along this line, we formally define four metrics, namely: (1) memory footprint
efficiency—i.e., gain in terms of predictor’s complexity; (2) energy efficiency—i.e., gain in
terms of total energy required to train and deploy a sub-symbolic predictor; (3) latency effi-
ciency—i.e., improvements in terms of time required for inference; and (4) data efficiency—
i.e., improvement in terms of amount of data required to optimise a sub-symbolic predictor.

Furthermore, to support their practical exploitation, we also introduce an extension of
the PSyKI library for symbolic knowledge injection, which includes a general-purpose
software implementation of the metrics.

Enabled by PSyKI, we then perform a number of experiments aimed at demonstrating
the effectiveness of our metrics. Overall, our experiments show that the proposed metrics
can be exploited to grasp insights about whether a given SKI mechanism is actually able to
improve the efficiency of a given predictor or not—according to some specific efficiency cri-
teria among the aforementioned ones. As a by-product of our experiments we also show that
the injection mechanisms currently supported by PSyKI leaves some room for improvement.

In perspective, our QoS metrics for SKI have a role to play in addressing various issues
in the field of agent-oriented systems. Indeed, the design and implementation of MAS pre-
sent significant challenges, such as energy consumption, latency, memory, and data effi-
ciency. System complexity, coupled with the real-time requirements of many multi-agent
applications, may lead to increased energy consumption and latency. In addition, the
amount of data generated and processed by MAS can have a significant impact on their
performance. Along this line, we observe that SKI approaches could reduce the amount of

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 25 of 30 27

computation required to process data, thus leading to reduced latency and improved energy
efficiency. Similarly, it could reduce the amount of data needed for training and improve
the quality of data used, thus resulting in improved performance and efficiency. The key
point here is that measuring efficiency gains in all such regards paves the way towards the
automation of agents’ decision-making, which may then dynamically optimise their sub-
symbolic components according to their goals.

Appendix: Details about the knowledge

Table 5 lists the logic rules that constitute the symbolic knowledge used in the SKI algo-
rithms for the breast cancer dataset. A similarly-shaped knowledge has been used also in
the SKI algorithms for the census income dataset.

Table 5 Knowledge used for the breast cancer dataset

Symbolic knowledge (Prolog formalism)

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize < �,NormalNucleoli > �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize < �,NormalNucleoli > �,BareNuclei > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize < �,NormalNucleoli < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize < �,NormalNucleoli > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion < �,NormalNucleoli < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion < �,NormalNucleoli > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

NormalNucleoli < �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

BareNuclei > �, SingleEpithelialCellSize < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

SingleEpithelialCellSize > �.

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 26 of 30

Acknowledgements This paper was partially supported by the CHIST-ERA IV project CHIST-ERA-19-
XAI-005, co-funded by EU and the Italian MUR (Ministry for University and Research).

Author contributions All authors wrote and reviewed the manuscript. MM wrote and supervised the experi-
ments. GC prepared the figures.

Funding Open access funding provided by Alma Mater Studiorum - Università di Bologna within the
CRUI-CARE Agreement.

Declarations

Competing interests Partial financial support was received from CHIST-ERA.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Otter, D. W., Medina, J. R., & Kalita, J. K. (2021). A survey of the usages of deep learning for natural
language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624.
https:// doi. org/ 10. 1109/ TNNLS. 2020. 29796 70

 2. Nassif, A. B., Shahin, I., Attili, I. B., Azzeh, M., & Shaalan, K. (2019). Speech recognition using
deep neural networks: A systematic review. IEEE Access, 7, 19143–19165. https:// doi. org/ 10. 1109/
ACCESS. 2019. 28968 80

 3. Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019). Object detection with deep learning: A review.
IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–3232. https:// doi. org/ 10.
1109/ TNNLS. 2018. 28768 65

 4. Agiollo, A., & Omicini, A. (2022). GNN2GNN: Graph neural networks to generate neural networks.
In J. Cussens & K. Zhang (Eds.), Uncertainty in artificial intelligence. Proceedings of machine learn-
ing research, vol. 180, pp. 32–42. ML Research Press, Maastricht, The Netherlands. Proceedings of the
thirty-eighth conference on uncertainty in artificial intelligence, UAI 2022, 1–5 August 2022, Eind-
hoven, The Netherlands. https:// proce edings. mlr. press/ v180/ agiol lo22a. html

 5. Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., Topol, E., Dean, J., &
Socher, R. (2021). Deep learning-enabled medical computer vision. NPJ Digital Medicine, 4(1), 1–9.
https:// doi. org/ 10. 1038/ s41746- 020- 00376-2

 6. Grigorescu, S. M., Trasnea, B., Cocias, T. T., & Macesanu, G. (2020). A survey of deep learning tech-
niques for autonomous driving. Journal of Field Robotics, 37(3), 362–386. https:// doi. org/ 10. 1002/ rob.
21918

 7. Calegari, R., Ciatto, G., Mascardi, V., & Omicini, A. (2021). Logic-based technologies for multi-agent
systems: A systematic literature review. Autonomous Agents and Multi-Agent Systems, 35(1), 1–1167.
https:// doi. org/ 10. 1007/ s10458- 020- 09478-3. Collection “Current Trends in Research on Software
Agents and Agent-Based Software Development”.

 8. Kakas, A. C., & Sadri, F. (Eds.). (2002). Computational logic: Logic programming and beyond, essays
in honour of Robert A. Kowalski, part I. Lecture Notes in Computer Science (Vol. 2407). New York:
Springer. https:// doi. org/ 10. 1007/3- 540- 45628-7

 9. Diligenti, M., Roychowdhury, S., & Gori, M. (2017) Integrating prior knowledge into deep learning.
In 2017 16th IEEE international conference on machine learning and applications (ICMLA) (pp. 920–
923). https:// doi. org/ 10. 1109/ ICMLA. 2017. 00- 37

 10. Xu, J., Zhang, Z., Friedman, T., Liang, Y., & den Broeck, G. V. (2018). A semantic loss function for
deep learning with symbolic knowledge. In: Dy,J., Krause, A. (Eds.), 35th International Conference

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865
https://proceedings.mlr.press/v180/agiollo22a.html
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1007/3-540-45628-7
https://doi.org/10.1109/ICMLA.2017.00-37

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 27 of 30 27

on Machine Learning(ICML 2018).Proceedings of Machine Learning Research (PLMR),vol. 80, pp.
5502–5511. Stockholmsmässan, Stockholm, Sweden. https:// proce edings. mlr. press/ v80/ xu18h. html

 11. Magnini, M., Ciatto, G., & Omicini, A. (2022). On the design of PSyKI: A platform for symbolic
knowledge injection into sub-symbolic predictors. In D. Calvaresi, A. Najjar, M. Winikoff, & K.
Främling (Eds.), Explainable and transparent AI and multi-agent systems. Lecture Notes in Com-
puter Science (Vol. 13283, pp. 90–108. Springer, Cham, Switzerland. Chap. 6. 4th International
Workshop, EXTRAAMAS 2022, Virtual Event, Revised Selected Papers. https:// doi. org/ 10. 1007/
978-3- 031- 15565-9_6

 12. Calegari, R., Ciatto, G., & Omicini, A. (2020). On the integration of symbolic and sub-symbolic tech-
niques for XAI: A survey. Intelligenza Artificiale, 14(1), 7–32. https:// doi. org/ 10. 3233/ IA- 190036

 13. Agiollo, A., Rafanelli, A., & Omicini, A. (2022). Towards quality-of-service metrics for symbolic
knowledge injection. In A. Ferrando & V. Mascardi (Eds.), WOA 2022—23rd Workshop “From Objects
to Agents”. CEUR Workshop Proceedings (Vol. 3261, pp. 30–47). http:// ceur- ws. org/ Vol- 3261/ paper3.
pdf

 14. Smullyan, R. M. (1968). First-order logic. New York: Springer.
 15. Besold, T. R., d’Avila Garcez, A. S., Bader, S., Bowman, H., Domingos, P. M., Hitzler, P., et al. (2017).

Neural-symbolic learning and reasoning: A survey and interpretation. CoRR abs/1711.03902 arxiv:
1711. 03902

 16. Xie, Y., Xu, Z., Meel, K. S., Kankanhalli, M. S., & Soh, H. (2019). Embedding symbolic knowledge
into deep networks. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, & R.
Garnett (Eds.), Advances in neural information processing systems, 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada,
pp. 4235–4245. https:// proce edings. neuri ps. cc/ paper/ 2019/ hash/ 7b66b 4fd40 1a271 a1c72 24027 ce111
bc- Abstr act. html

 17. Towell, G. G., Shavlik, J. W. & Noordewier, M. O. (1990). Refinement of approximate domain theo-
ries by knowledge-based neural networks. In Proceedings of the 8th national conference on artificial
intelligence (pp. 861–866)

 18. Tresp, V., Hollatz, J. & Ahmad, S. (1992) Network structuring and training using rule-based knowl-
edge. Advances in Neural Information Processing Systems, 5, 871-878

 19. d’Avila Garcez, A. S., & Zaverucha, G. (1999). The connectionist inductive learning and logic pro-
gramming system. Applied Intelligence, 11(1), 59–77. https:// doi. org/ 10. 1023/A: 10083 28630 915

 20. d’Avila Garcez, A. S., & Gabbay, D. M. (2004). Fibring neural networks. In D. L. McGuinness & G.
Ferguson (Eds.), Proceedings of the nineteenth national conference on artificial intelligence, sixteenth
conference on innovative applications of artificial intelligence, July 25–29, San Jose, California, USA
(pp. 342–347). AAAI Press/The MIT Press. http:// www. aaai. org/ Libra ry/ AAAI/ 2004/ aaai04- 055. php

 21. Bader, S., d’Avila Garcez, A. S., & Hitzler, P. (2005). Computing first-order logic programs by fibring
artificial neural networks. In I. Russell, & Z. Markov (Eds.), Proceedings of the eighteenth interna-
tional florida artificial intelligence research society conference (pp. 314–319). Clearwater Beach, FL:
AAAI Press. http:// www. aaai. org/ Libra ry/ FLAIRS/ 2005/ flair s05- 052. php

 22. Chang, M., Ratinov, L., & Roth, D. (2007). Guiding semi-supervision with constraint-driven learning.
In J. A. Carroll, A. van den Bosch, & A. Zaenen (Eds.), ACL 2007, proceedings of the 45th annual
meeting of the association for computational linguistics, June 23–30, Prague, Czech Republic. https://
aclan tholo gy. org/ P07- 1036/

 23. Nickel, M., Tresp, V., Kriegel, H.-P. (2011). A three-way model for collective learning on multi-rela-
tional data. ICML, 11, 809–816. https:// icml. cc/ 2011/ papers/ 438ic mlpap er. pdf

 24. Chang, K.-W., Yih, W.-t., Yang, B., & Meek, C. (2014). Typed tensor decomposition of knowledge
bases for relation extraction. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (pp. 1568–1579).

 25. Guo, S., Wang, Q., Wang, L., Wang, B., & Guo, L. (2016). Jointly embedding knowledge graphs and
logical rules. In J. Su, X. Carreras & K. Duh (Eds.), Proceedings of the conference on empirical meth-
ods in natural language processing (EMNLP), Austin, Texas, USA, November 1–4, 2016, pp. 192–
202. https:// doi. org/ 10. 18653/ v1/ d16- 1019

 26. Hu, Z., Ma, X., Liu, Z., Hovy, E. H., & Xing, E. P. (2016). Harnessing deep neural networks with logic
rules. In Proceedings of the 54th annual meeting of the association for computational linguistics, ACL
2016, August 7–12, 2016, Berlin, Germany, Volume 1: Long Papers. https:// doi. org/ 10. 18653/ v1/ p16- 1228

 27. Hu, Z., Yang, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep neural networks with massive learned
knowledge. In J. Su, X. Carreras, & K. Duh (Eds.), Proceedings of the 2016 conference on empirical
methods in natural language processing, EMNLP 2016, Austin, Texas, USA, November 1–4, 2016, pp.
1670–1679. https:// doi. org/ 10. 18653/ v1/ d16- 1173

https://proceedings.mlr.press/v80/xu18h.html
https://doi.org/10.1007/978-3-031-15565-9_6
https://doi.org/10.1007/978-3-031-15565-9_6
https://doi.org/10.3233/IA-190036
http://ceur-ws.org/Vol-3261/paper3.pdf
http://ceur-ws.org/Vol-3261/paper3.pdf
http://arxiv.org/abs/1711.03902
http://arxiv.org/abs/1711.03902
https://proceedings.neurips.cc/paper/2019/hash/7b66b4fd401a271a1c7224027ce111bc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7b66b4fd401a271a1c7224027ce111bc-Abstract.html
https://doi.org/10.1023/A:1008328630915
http://www.aaai.org/Library/AAAI/2004/aaai04-055.php
http://www.aaai.org/Library/FLAIRS/2005/flairs05-052.php
https://aclanthology.org/P07-1036/
https://aclanthology.org/P07-1036/
https://icml.cc/2011/papers/438icmlpaper.pdf
https://doi.org/10.18653/v1/d16-1019
https://doi.org/10.18653/v1/p16-1228
https://doi.org/10.18653/v1/d16-1173

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 28 of 30

 28. Nickel, M., Rosasco, L., & Poggio, T. (2016). Holographic embeddings of knowledge graphs. In Pro-
ceedings of the AAAI conference on artificial intelligence (Vol. 30). https:// doi. org/ 10. 1609/ aaai. v30i1.
10314

 29. Diligenti, M., & Gori, M., & Saccà, C. (2017). Semantic-based regularization for learning and infer-
ence (Vol. 244, pp. 143–165). https:// doi. org/ 10. 1016/j. artint. 2015. 08. 011

 30. Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research, 61, 1–64. https:// doi. org/ 10. 1613/ jair. 5714

 31. Sourek, G., Aschenbrenner, V., Zelezný, F., Schockaert, S., & Kuzelka, O. (2018). Lifted relational
neural networks: Efficient learning of latent relational structures. Journal of Artificial Intelligence
Research, 62, 69–100. https:// doi. org/ 10. 1613/ jair.1. 11203

 32. Sun, Z., Deng, Z.-H., Nie, J.-Y. & Tang, J. (2019) Rotate: Knowledge graph embedding by relational
rotation in complex space. CoRR arXiv: 1902. 10197

 33. Badreddine, S., d’Avila Garcez, A., Serafini, L., & Spranger, M. (2022). Logic tensor networks. Artifi-
cial Intelligence, 303, 103649. https:// doi. org/ 10. 1016/j. artint. 2021. 103649

 34. Magnini, M., Ciatto, G., & Omicini, A. (2022). KINS: Knowledge injection via network structuring. In
R. Calegari, G. Ciatto, & A. Omicini (Eds.), CILC 2022—Italian Conference on Computational Logic
CEUR Workshop Proceedings (Vol. 3204, pp. 254–267). http:// ceur- ws. org/ Vol- 3204/ paper_ 25. pdf

 35. Magnini, M., Ciatto, G., & Omicini, A. (2022). A view to a KILL: Knowledge injection via lambda
layer. In A. Ferrando & V. Mascardi (Eds.), WOA 2022—23rd workshop “From objects to agents”.
CEUR workshop proceedings (Vol. 3261, pp. 61–76). http:// ceur- ws. org/ Vol- 3261/ paper5. pdf

 36. Marra, G., Giannini, F., Diligenti, M., & Gori, M. (2019). LYRICS: A general interface layer to integrate
logic inference and deep learning. In U. Brefeld, É. Fromont, A. Hotho, A. J. Knobbe, M. H. Maathuis,
& C. Robardet (Eds.), Machine learning and knowledge discovery in databases—European conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, proceedings, Part II. Lecture Notes
in Computer Science, vol. 11907, pp. 283–298. Springer. https:// doi. org/ 10. 1007/ 978-3- 030- 46147-8_ 17

 37. Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR abs/1609.04747
arxiv: 1609. 04747

 38. Demeester, T., Rocktäschel, T. & Riedel, S. (2016). Lifted rule injection for relation embeddings. In
J. Su, X. Carreras, & K. Duh (Eds.), Proceedings of the conference on empirical methods in natural
language processing (EMNLP), Austin, Texas, USA, November 1–4, 2016, pp. 1389–1399 https:// doi.
org/ 10. 18653/ v1/ d16- 1146

 39. França, M. V. M., Zaverucha, G., & Garcez, A. S. D. (2014). Fast relational learning using bottom
clause propositionalization with artificial neural networks. Machine Learning, 94(1), 81–104. https://
doi. org/ 10. 1007/ s10994- 013- 5392-1

 40. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021). Neural probabilistic
logic programming in deepproblog. Artificial Intelligence, 298, 103504. https:// doi. org/ 10. 1016/j. art-
int. 2021. 103504

 41. Bordes, A., Usunier, N., García-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embed-
dings for modeling multi-relational data. In C. J. C. Burges, L. Bottou, Z. Ghahramani, & K. Q. Wein-
berger (Eds.), Proceedings of 27th annual conference on neural information processing systems (Neu-
rIPS), Lake Tahoe, Nevada, United States, December 5–8, 2013, pp. 2787–2795. https:// proce edings.
neuri ps. cc/ paper/ 2013/ hash/ 1cecc 7a779 28ca8 133fa 24680 a88d2 f9- Abstr act. html

 42. Wang, Q., Wang, B., & Guo, L. (2015). Knowledge base completion using embeddings and rules. In
Q. Yang, & M. J. Wooldridge (Eds.), Proceedings of the 24th international joint conference on arti-
ficial intelligence (IJCAI), Buenos Aires, Argentina, July 25–31, pp. 1859–1866. AAAI Press. http://
ijcai. org/ Abstr act/ 15/ 264

 43. Liu, Q., Jiang, H., Ling, Z., Wei, S., & Hu, Y. (2016) Probabilistic reasoning via deep learning: Neural
association models. CoRR abs/1603.07704 arxiv: 1603. 07704

 44. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L.,
Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (CSUR), 54(4), 1–37.

 45. Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. (2021). Artificial intel-
ligence in sustainable energy industry: Status quo, challenges and opportunities. Journal of Cleaner
Production, 289, 125834. https:// www. scien cedir ect. com/ scien ce/ artic le/ abs/ pii/ S0959 65262 10005 48

 46. Piedmont, R. L. (2014). In A. C. Michalos (Ed.), Bias, statistical (pp. 382–383). Dordrecht: Springer.
https:// doi. org/ 10. 1007/ 978- 94- 007- 0753-5_ 2865

 47. Liberis, E., Dudziak, L., & Lane, N. D. (2021). �nas: Constrained neural architecture search for micro-
controllers. In E. Yoneki, & P. Patras (Eds.), EuroMLSys@EuroSys 2021, proceedings of the 1st work-
shop on machine learning and Systemsg virtual event, Edinburgh, Scotland, UK, 26 April, 2021, pp.
70–79. ACM. https:// doi. org/ 10. 1145/ 34379 84. 34588 36

https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.1609/aaai.v30i1.10314
https://doi.org/10.1016/j.artint.2015.08.011
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.1.11203
http://arxiv.org/abs/1902.10197
https://doi.org/10.1016/j.artint.2021.103649
http://ceur-ws.org/Vol-3204/paper_25.pdf
http://ceur-ws.org/Vol-3261/paper5.pdf
https://doi.org/10.1007/978-3-030-46147-8_17
http://arxiv.org/abs/1609.04747
https://doi.org/10.18653/v1/d16-1146
https://doi.org/10.18653/v1/d16-1146
https://doi.org/10.1007/s10994-013-5392-1
https://doi.org/10.1007/s10994-013-5392-1
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
http://ijcai.org/Abstract/15/264
http://ijcai.org/Abstract/15/264
http://arxiv.org/abs/1603.07704
https://www.sciencedirect.com/science/article/abs/pii/S0959652621000548
https://doi.org/10.1007/978-94-007-0753-5_2865
https://doi.org/10.1145/3437984.3458836

Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

Page 29 of 30 27

 48. Agiollo, A., Ciatto, G., & Omicini, A. (2021). Shallow2Deep: Restraining neural networks opac-
ity through neural architecture search. In D. Calvaresi, A. Najjar, M. Winikoff, K. Främling (Eds.),
Explainable and transparent AI and multi-agent systems. Third international workshop, EXTRAAMAS
2021, virtual event, May 3–7, 2021, Revised Selected Papers. Lecture Notes in Computer Science (Vol.
12688, pp. 63–82). Cham, Switzerland: Springer. https:// doi. org/ 10. 1007/ 978-3- 030- 82017-6_5. http://
link. sprin ger. com/ 10. 1007/ 978-3- 030- 82017-6_5

 49. Agiollo, A., & Omicini, A. (2021). Load classification: A case study for applying neural networks in
hyper-constrained embedded devices. Applied Sciences. https:// doi. org/ 10. 3390/ app11 24119 57. Spe-
cial Issue “Artificial Intelligence and Data Engineering in Engineering Applications”.

 50. Kang, D., Kim, E., Bae, I., Egger, B., & Ha, S. (2018). C-good: C-code generation framework for
optimized on-device deep learning. In 2018 IEEE/ACM international conference on computer-aided
design (ICCAD) (pp. 1–8). https:// doi. org/ 10. 1145/ 32407 65. 32407 86

 51. Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., et al. (2018) Shift: A Zero FLOP, Zero
Parameter Alternative to Spatial Convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 9127–9135). https:// doi. org/ 10. 1109/ CVPR. 2018. 00951

 52. Liberis, E., Dudziak, Ł., & Lane, N. D. (2021) �nas: Constrained neural architecture search for micro-
controllers. In Proceedings of the 1st workshop on machine learning and systems (pp. 70–79).

 53. Huang, G., Liu, S., van der Maaten, L., & Weinberger, K. Q. (2018). Condensenet: An efficient
densenet using learned group convolutions. In 2018 IEEE conference on computer vision and pattern
recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, Computer Vision Foundation/IEEE
Computer Society, pp. 2752–2761. https:// doi. org/ 10. 1109/ CVPR. 2018. 00291

 54. Cheng, H., Zhang, T., Yang, Y., Yan, F., Teague, H., Chen, Y., et al. (2019). Msnet: Structural wired
neural architecture search for internet of things. In 2019 IEEE/CVF international conference on com-
puter vision workshops, ICCV Workshops 2019, Seoul, Korea (South), October 27–28, pp. 2033–2036.
IEEE. https:// doi. org/ 10. 1109/ ICCVW. 2019. 00254

 55. Wu, B. (2019) Efficient deep neural networks. CoRR abs/1908.08926 arxiv: 1908. 08926
 56. Savazzi, S., Nicoli, M., Bennis, M., Kianoush, S., & Barbieri, L. (2021). Opportunities of federated

learning in connected, cooperative, and automated industrial systems. IEEE Communications Maga-
zine, 59(2), 16–21.

 57. Hou, W., Fu, M., Zhang, H., & Wu, Z. (2017). Consensus conditions for general second-order multi-
agent systems with communication delay. Automatica, 75, 293–298. https:// doi. org/ 10. 1016/j. autom
atica. 2016. 09. 042

 58. Shumailov, I., Zhao, Y., Bates, D., Papernot, N., Mullins, R. D., & Anderson, R. (2021). Sponge exam-
ples: Energy-latency attacks on neural networks. In IEEE European symposium on security and pri-
vacy, EuroS &P 2021, Vienna, Austria, September 6–10, pp. 212–231. IEEE. https:// doi. org/ 10. 1109/
EuroS P51992. 2021. 00024

 59. Deng, J., & Ren, F. (2021) A survey of textual emotion recognition and its challenges. IEEE Transac-
tions on Affective Computing, 14, 49-67. https:// doi. org/ 10. 1109/ TAFFC. 2021. 30532 75

 60. Sanchez-Iborra, R., & Skarmeta, A. F. (2020). TinyML-enabled frugal smart objects: Challenges and
opportunities. IEEE Circuits and Systems Magazine, 20(3), 4–18. https:// doi. org/ 10. 1109/ MCAS. 2020.
30054 67

 61. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. https:// www. tenso rflow. org/

 62. Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J.M. (1993). Design patterns: Abstraction and
reuse of object-oriented design. In O. Nierstrasz (Ed.), ECOOP’93—Object-oriented programming,
7th European conference, Kaiserslautern, Germany, July 26–30, 1993, Proceedings. Lecture Notes in
Computer Science (Vol. 707, pp. 406–431). Springer. https:// doi. org/ 10. 1007/3- 540- 47910-4_ 21

 63. Wolberg, W. H. (1992). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
 64. Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial Intel-

ligence, 70(1–2), 119–165. https:// doi. org/ 10. 1016/ 0004- 3702(94) 90105-8
 65. Dua, D., & Graff, C. (2017). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
 66. Sabbatini, F., Ciatto, G., Calegari, R., & Omicini, A. (2022). Symbolic knowledge extraction from

opaque ML predictors in PSyKE: Platform design & experiments. Intelligenza Artificiale, 16(1),
27–48. https:// doi. org/ 10. 3233/ IA- 210120

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/978-3-030-82017-6_5
http://link.springer.com/10.1007/978-3-030-82017-6_5
http://link.springer.com/10.1007/978-3-030-82017-6_5
https://doi.org/10.3390/app112411957
https://doi.org/10.1145/3240765.3240786
https://doi.org/10.1109/CVPR.2018.00951
https://doi.org/10.1109/CVPR.2018.00291
https://doi.org/10.1109/ICCVW.2019.00254
http://arxiv.org/abs/1908.08926
https://doi.org/10.1016/j.automatica.2016.09.042
https://doi.org/10.1016/j.automatica.2016.09.042
https://doi.org/10.1109/EuroSP51992.2021.00024
https://doi.org/10.1109/EuroSP51992.2021.00024
https://doi.org/10.1109/TAFFC.2021.3053275
https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/10.1109/MCAS.2020.3005467
https://www.tensorflow.org/
https://doi.org/10.1007/3-540-47910-4_21
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/0004-3702(94)90105-8
http://archive.ics.uci.edu/ml
https://doi.org/10.3233/IA-210120

 Autonomous Agents and Multi-Agent Systems (2023) 37:27

1 3

 27 Page 30 of 30

Authors and Affiliations

Andrea Agiollo1 · Andrea Rafanelli2,3 · Matteo Magnini1 · Giovanni Ciatto1 ·
Andrea Omicini1

 * Matteo Magnini
 matteo.magnini@unibo.it

 Andrea Agiollo
 andrea.agiollo@unibo.it

 Andrea Rafanelli
 andrea.rafanelli@phd.unipi.it

 Giovanni Ciatto
 giovanni.citatto@unibo.it

 Andrea Omicini
 andrea.omicini@unibo.it

1 Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater Studiorum—Università di
Bologna, Cesena, Italy

2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
3 Dipartimento di Informatica – Scienza e Ingegneria e Matematica (DISIM), Università dell’Aquila,

L’Aquila, Italy

	Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments
	Abstract
	1 Introduction
	2 Background and definitions
	2.1 Knowledge injection workflow
	2.2 Categorisation of injection methods from the literature
	2.2.1 Constraining neural networks
	2.2.2 Structuring neural networks
	2.2.3 Embedding knowledge into neural networks

	2.3 Injection assessment

	3 SKI quality-of-service metrics definition
	3.1 Overview
	3.2 Memory footprint
	3.3 Energy consumption
	3.4 Latency
	3.5 Data efficiency

	4 Integration of SKI QoS metrics into PSyKI
	4.1 QoS metrics implementation in PSyKI

	5 Experiments
	5.1 Datasets
	5.2 Methodology
	5.3 Discussion

	6 Conclusions
	Appendix: Details about the knowledge
	Acknowledgements
	References

