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Abstract
Bridging intelligent symbolic agents and sub-symbolic predictors is a long-standing 
research goal in AI. Among the recent integration efforts, symbolic knowledge injection 
(SKI) proposes algorithms aimed at steering sub-symbolic predictors’ learning towards 
compliance w.r.t. pre-existing symbolic knowledge bases. However, state-of-the-art contri-
butions about SKI mostly tackle injection from a foundational perspective, often focussing 
solely on improving the predictive performance of the sub-symbolic predictors undergo-
ing injection. Technical contributions, in turn, are tailored on individual methods/experi-
ments and therefore poorly interoperable with agent technologies as well as among each 
others. Intelligent agents may exploit SKI to serve many purposes other than predictive 
performance alone—provided that, of course, adequate technological support exists: for 
instance, SKI may allow agents to tune computational, energetic, or data requirements of 
sub-symbolic predictors. Given that different algorithms may exist to serve all those many 
purposes, some criteria for algorithm selection as well as a suitable technology should be 
available to let agents dynamically select and exploit the most suitable algorithm for the 
problem at hand. Along this line, in this work we design a set of quality-of-service (QoS) 
metrics for SKI, and a general-purpose software API to enable their application to various 
SKI algorithms—namely, platform for symbolic knowledge injection (PSyKI). We provide 
an abstract formulation of four QoS metrics for SKI, and describe the design of PSyKI 
according to a software engineering perspective. Then we discuss how our QoS metrics 
are supported by PSyKI. Finally, we demonstrate the effectiveness of both our QoS metrics 
and PSyKI via a number of experiments, where SKI is both applied and assessed via our 
proposed API. Our empirical analysis demonstrates both the soundness of our proposed 
metrics and the versatility of PSyKI as the first software tool supporting the application, 
interchange, and numerical assessment of SKI techniques. To the best of our knowledge, 
our proposals represent the first attempt to introduce QoS metrics for SKI, and the software 
tools enabling their practical exploitation for both human and computational agents. In 
particular, our contributions could be exploited to automate and/or compare the manifold 
SKI algorithms from the state of the art. Hence moving a concrete step forward the engi-
neering of efficient, robust, and trustworthy software applications that integrate symbolic 
agents and sub-symbolic predictors.
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1 Introduction

The recent success of Machine and Deep Learning (ML and DL) is endowing computa-
tional agents with more and more smart behaviours ranging from text [1] to speech [2] rec-
ognition, stepping through image recognition [3], and many more [4]. Typically, such smart 
behaviours are learnt from data in a semi-automatic way via human-designed malleable 
predictors—such as neural networks—which can be algorithmically trained to fit that data. 
This represents a paradigm shift w.r.t. the well-established practice of software engineer-
ing where the source code governing computational agents’ smart behaviours is designed 
and produced by human beings. Arguably, the increased interest in ML and DL solutions 
may be attributed to the groundbreaking performance gain that data-driven approaches can 
bring in comparison to otherwise hard-to-formalise, manually-defined approaches.

However, despite being both flexible and performant, current data-driven solutions 
come with a number of issues. First, they are data eager—meaning that the learning agent 
should have access to huge amounts of examples concerning the phenomena to learn. When 
examples are too few, learning cannot happen. Second, learning takes time. Unlike humans, 
learning and exploitation of learnt information are quite distinct stages for computational 
agents. The trainable components of computational agents are commonly pre-trained by 
human designers, up to a given performance score, and then provided to the agents for 
exploitation. Hence, no further learning typically occurs after that. Finally, the benefits of 
data-driven solutions come at the price of a reduced understandability of smart behaviours 
in the eyes of human users. Modern ML solutions rely upon sub-symbolic predictors which 
work as black boxes—so, humans cannot observe them and tell what a predictor has learnt 
and how it computes its predictions. This may be troublesome when predictions are used 
by agents to automate decision-making in critical domains, such as e-health [5] and smart 
transportation systems [6].

The exploitation of sub-symbolic predictors comes with further issues in the multi-agent 
systems (MAS) context. As shown by recent surveys [7], it is quite common for the MAS 
community to represent knowledge and agents’ behaviours symbolically both at the con-
ceptual and technological level—often relying upon computational logic [8]. This makes 
the integration of sub-symbolic predictors both a conceptual and a technical issue, to be 
addressed since the earliest design phase down to implementation in any MAS engineer-
ing process. As a result, it becomes essential for agent-oriented programming frameworks 
to be interoperable with available ML libraries, and for those libraries to provide a clear 
and stable API supporting the automation of ML workflows—so that intelligent agents can 
autonomously exploit them.

Recently, symbolic knowledge injection (SKI) [9–11] has emerged as a possible solution 
to all the aforementioned issues. SKI is the task of letting sub-symbolic predictors acquire 
symbolic information and behave consistently w.r.t. it. For instance, this may involve a neu-
ral network taking into account the information represented by a logic theory when draw-
ing predictions. There, “symbolic” refers to the way knowledge is represented: we con-
sider as symbolic any intelligible language that is naturally interpretable by both human 
and computational agents. This includes a number of logic formalisms, and excludes the 
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fixed-sized tensors of numbers commonly exploited in sub-symbolic predictors. Therefore, 
SKI mechanisms aim at training sub-symbolic predictors towards desirable behaviours.

Thanks to SKI, agents (and their designers) are back in control. The benefits of SKI to 
the training of ML predictors [12] include the following ones: (1) it mitigates the issues 
arising from the lack of sufficient amounts of training data—as under-represented situa-
tions can be suitably represented in symbols—; (2) it reduces learning time by providing 
straight away the very knowledge that predictors would otherwise struggle to learn by pro-
cessing huge amounts of data; (3) it improves predictors’ predictive performance in cor-
ner cases—as in the case of unbalanced and overlapping classes—; (4) it prevents predic-
tors from working as full black boxes during their training—hence overriding the need for 
explanations. Furthermore, (5) it harmonises the symbolic and sub-symbolic components 
of intelligent agents. Hence, agent designers may take advantage of SKI to endow agents 
with common sense—encoded in some suitable symbolic formalism—, whereas agents 
themselves may exploit SKI to finely govern their sub-symbolic components—e.g., by tun-
ing them according to their beliefs or desires.

When tuning their sub-symbolic components via SKI, agents will typically aim at 
maximising predictive performance. It is a common practice to assess SKI mechanisms 
in terms of the performance gain they introduce w.r.t. some injection-free counterpart [9, 
10]. However, performance gain is not the only relevant metrics an agent may intend to 
optimise. For instance, agents situated into resource-constrained environments may need to 
minimise the energy required to train/exploit ML predictors, as well as the computational 
resources required for their execution. Analogously, agents in need to interact with human 
beings may be aiming at maximising the intelligibility of their decision-making processes. 
Overall, there are several aspects of sub-symbolic predictors that agents could optimise 
via SKI. Along this line, as part of our recent research activities [13], we sketched a set of 
quality-of-service (QoS) metrics for SKI covering several aspects—ranging from energy-
related to computational-cost-related ones via comprehensibility-related ones. Unfortu-
nately, at that time we could not assess QoS metrics empirically, due to the lack of general-
purpose software technologies supporting them.

The lack of viable software technologies for SKI is preventing not just the assessment 
of QoS metrics from [13], but also—and in the foremost place—the effective exploitation 
of SKI methods in MAS. However, as further discussed in [11], SKI methods from the lit-
erature share a general workflow, which can be briefly summarised as follows: (1) identify 
a suitable predictor w.r.t. the learning task at hand; (2) attain some symbolic knowledge 
aimed at describing relevant situations; (3) apply some SKI method to the given predic-
tor and knowledge, hence generating a new predictor that encapsulates the knowledge; (4) 
train the new predictor on the available data, as usual. Notably, the last two steps may be 
cyclically repeated by an agent until some target QoS score is reached. Hence, in princi-
ple, SKI methods are interchangeable at the functional level as well as at the assessment 
level. Along this line, we designed a unified open source software library for SKI—namely, 
PSyKI1—supporting the interchange, comparison, and exploitation of SKI methods in 
arbitrary ML workflows [11]. However, support for QoS-based assessment is currently 
missing.

Accordingly, in this paper we extend our previous work by proposing a full modelling 
of the QoS metrics for SKI, as well as their empirical evaluation2 via PSyKI. To serve this 
purpose, we also extend PSyKI design, API, and codebase to support our QoS metrics. 

1 The code is public available at github. com/ psykei/ psyki- python.
2 Experiments are available at github. com/ pikal ab- unibo/ ski- qos- jaamas- exper iments- 2022.

https://github.com/psykei/psyki-python
https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
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Our empirical analysis demonstrates both the soundness of the proposed metrics and the 
versatility of PSyKI as the first software tool supporting the application, interchange, and 
numerical assessment of SKI techniques. Our proposals are—to the best of our knowl-
edge—the first attempt to introduce QoS metrics for SKI, along with the software tools 
enabling their practical exploitation by both human and computational agents.

The paper is organised as follows. Section 2 introduces some relevant definitions and 
summarises the background on SKI methods. Section 3 formally defines the QoS metrics, 
whereas Sect. 4 overviews PSyKI and describes the integration of QoS metrics. Section 5 
outlines the experiments and their design, and discusses the results. Finally, Sect. 6 sum-
marises the key findings and contributions, by highlighting the importance of the new QoS 
metrics in effectively evaluating the strength of SKI mechanisms.

2  Background and definitions

The benefits of sub-symbolic predictors in MAS come along with the issues deriving 
from their black-box nature and uncertain optimisation processes. This is why incorpo-
rating symbolic knowledge into the sub-symbolic prediction process could bring about a 
number of advantages. For instance, predictors may be able to make informed decisions 
based on prior knowledge, reducing the chances of producing unexpected results. Moreo-
ver, the injection of symbolic knowledge often results in improved prediction performance, 
as the predictors are better equipped to handle data with inherent structure and meaning. 
Therefore, a number of recent works [9, 10] have leveraged symbolic knowledge injection 
to mitigate the common problems of sub-symbolic predictors (lack of interpretability, poor 
generalisation, fuzzy optimisation procedure, etc.). The underlying idea is to enable the 
sub-symbolic predictor to take into account some prior symbolic knowledge when drawing 
its predictions, thus making the predictor more controllable.

The practice of SKI involves a rather simple workflow, yet it may rely on several dif-
ferent injection algorithms, often tailored on specific sorts of predictors or symbolic lan-
guages. Differences among those algorithms can be relevant, especially w.r.t. to how they 
perform injection. Hence, we can broadly define SKI as “any algorithmic procedure affect-
ing how sub-symbolic predictors draw their inferences so that predictions are either com-
puted as a function of, or made consistent with, some given symbolic knowledge”.

More formally, given an injection procedure I  , some symbolic knowledge K, and a 
sub-symbolic predictor N aimed at solving some supervised learning task, we define the 
“knowledge-aware” predictor N̂ as the result of the application of I  to K and N:

There, we call N the uneducated predictor—as it has not yet undergone injection—, and 
N̂ the educated one.

Focussing on the inputs of SKI—namely, the symbolic knowledge K and the sub-
symbolic predictor N—, nearly all SKI methods and techniques available in the literature 
assume that: (1) K is a logic knowledge base (KB, henceforth) of logic formulæ, encoded 
via some subset of first-order logic (FOL) [14], while (2) N is a neural network (NN). To 
support this statement, Table 1 reports a sample of the most relevant SKI techniques from 
the literature, pointing out the sorts of knowledge and predictor they support.

Should we speculate on the possible motivations behind the choice of FOL and NN, we 
would argue that logic brings great flexibility in representing knowledge in a way which is 

N̂ = I(K,N)
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similar to how humans reason, whereas neural networks bring about malleability, compos-
ability, and trainability to intelligent systems—as they can be structured in various ways to 
serve diverse purposes.

Many algorithms may fit the definitions above—mostly differing for the particular sort 
of logic formalism, injection strategy, or neural network they support. For a more detailed 
discussion on SKI algorithms see [12, 15, 16].

2.1  Knowledge injection workflow

SKI assumes the input knowledge consists of crisp logic formulæ expressed in a logical 
language of choice. Such formulæ must somehow be converted into numeric form for 
injection to take place. Later on, injection is performed by training neural networks as 
usual. In other words, SKI is a process affecting networks before and during training.

Overall, SKI relies on three basic operations, namely parsing ( Π ), fuzzification ( � ), and 
embedding (E).

The first step of any SKI method is parsing the input formulæ, hence producing a 
machine-interpretable and -browsable representation—namely, abstract syntax trees 
(AST). AST are then visited to produce a numeric representation of the input formulæ 

Table 1  Summary of relevant SKI techniques (not exhaustive)

In column Typology S stands for structural, C for constraining, and E for embedding. In column Predictor 
NN stands for (deep) neural network, MNN for Markov NN, and KM for kernel machine. In column Knowl-
edge FOL is first order logic, P is propositional logic, KG is knowledge graph, D is Datalog. In column Task 
C stands for classification, R for regression, LP for link prediction, and AR for automated reasoning

Algorithm Year Typology Predictor Knowledge Task

KBANN [17] 1990 S NN P C
Gaussian NN [18] 1992 C + S NN P C + R
C-IL2P [19] 1999 S NN P C
Fibred NN [20, 21] 2004–2005 S NN FOL AR
CODL [22] 2007 C MNN P C
RESCAL [23] 2011 E NN KG LP
TRESCAL [24] 2014 E NN KG LP
KALE [25] 2016 C NN KG C
Student-Teacher [26, 27] 2016 S NN FOL C
HolE [28] 2016 E + C NN KG LP
SBR (a) [29] 2017a C KM FOL C
SBR (b) [9] 2017b C NN P C
SLF [10] 2018 C NN P C
�ILP [30] 2018 C + S NN D C
LRNN [31] 2018 S NN D C
RotatE [32] 2019 E + C NN KG LP
LTN [33] 2020 S NN FOL C + R
KINS [34] 2022 S NN P C + R
KILL [35] 2022 C NN P C
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either consisting of functions of real numbers (e.g. a loss function, a neural network struc-
ture), or an array of real numbers.

Fuzzification is the process of converting some AST formula into a function of the 
form f ∶ ℝ

n
→ ℝ , whose input values are numeric interpretations of the original formula, 

whereas their outputs are either truth degrees (cf. [35])—e.g. 1 means ���� , 0 means 
����� , x ∈ [0, 1] means “ ���� with x% probability”—, or penalties (cf. [34])—e.g. 0 
means “no penalty”, x ≠ 0 means “penalty proportional to |x| ”. This is required when con-
verting formulæ into loss functions (like in constraining methods) or activation functions 
(like in structuring methods).

Embedding is the process of converting some formula’s AST into a numeric array of 
fixed size. This is necessary when converting formulæ into numeric datasets for training.

As also highlighted in Table 1, there are three sorts of SKI methods: those that perform 
injection constraining during the training of neural networks, those that affect their internal 
structure, and finally those that perform embedding.

2.2  Categorisation of injection methods from the literature

In the reminder of this section we delve into the details of the various injection strategies 
exploited by SKI, and elaborate on how the overall performance of SKI techniques can be 
assessed.

2.2.1  Constraining neural networks

The key idea behind SKI techniques of this sort is to steer the learning process of a neural 
network to make it behave consistently w.r.t. some given logic formulæ. This is achieved 
by penalising the network during training, whenever it violates the logic formulæ. Figure 1 
provides an overview of the approach.

A common way to penalise the network under training is by altering the loss function 
[9, 10, 36]. The neural network training process essentially consists in the use of gradient 
descent [37], i.e. an optimisation process where the weight of NN synapses are iteratively 

Fig. 1  Symbolic knowledge injection via constraining: data flow
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modified so as to minimise a loss function. Most commonly, the loss function quantifies the 
overall predictive error of the network: the greater the error, the greater the loss. However, 
when SKI is applied, the loss function also takes into account the consistency of the logic 
formulæ. In this way, the learning process not only minimises the network error w.r.t. data, 
but also its error w.r.t. symbolic knowledge. In other words, the predictor is constrained to 
be compliant with the prior knowledge up to a certain extent.

The underlying assumption behind injection mechanisms of this kind is that logic for-
mulæ should be converted into functions of real numbers of the form:

where X  is the same input space of the network, and ℝ≥0 is the set of non-negative num-
bers—here representing penalties. There, for any given input vector x , the value f (x) repre-
sents the discrepancy among the network prediction corresponding to x and what the logic 
formulæ prescribe for x . Hence, f (x) = 0 means that the network is behaving consistently 
w.r.t. the formulæ, hence it should get no penalty. Conversely, f (x) > 0 means that the net-
work behaviour is deviating the formulæ, hence it should be penalised.

Some relevant SKI algorithms based on constraining can be found in [9, 10, 25, 29, 30, 
38].

2.2.2  Structuring neural networks

The key idea behind SKI techniques of this sort is to construct (a portion of) the neu-
ral network undergoing injection in such a way to make it reflect some given logic 
formulæ [18, 20, 30, 39, 40]. The resulting network is then trained as usual. How-
ever, given that (part of) its internals are tailored on the logic formulæ, the network 
is expected to have higher predictive performance—or at least require less training 
efforts to reach good performance scores—in all situations which are described by the 
logic formulæ. Figure 2 provides an overview of the approach.

The underlying assumption behind structuring SKI methods is that (a portion of) 
a neural network can be constructed to mimic the evaluation of one or more logic 

f ∶ X → ℝ≥0

Fig. 2  Symbolic knowledge injection via structuring: data flow
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formulæ. This is commonly achieved by letting neurons and synapses represent either 
logic variables or combinations of logic expressions via logic connectives or arithme-
tic operators. Methods may then decide to keep the weights of the structured portion of 
network free to vary during training, in order to let them adapt to the peculiarities of 
the training data at hand.

Some relevant SKI algorithms based on structuring can be found in [17–19, 21, 26, 
27, 31, 33].

2.2.3  Embedding knowledge into neural networks

The key idea behind SKI techniques of this sort is to convert symbolic knowledge into 
numeric-array form to be used as training data [41–43]. Predictors trained with such 
techniques are usually used as logic reasoning engines. Figure 3 provides an overview 
of the approach.

The underlying assumption behind embedding SKI methods is that input knowl-
edge can be represented as a (possibly multi-dimensional) array of numbers. This, is 
turn, requires the knowledge to ground (i.e. variable free)—a requirement which heav-
ily limits what logic can actually represent. So, in practice, embedding techniques are 
commonly applied to simple (i.e. less expressive) logics such as description logics. 
There, symbolic information consists of knowledge graphs [44], where nodes repre-
sent entities and edges represent relations among those entities. The graphs’ adjacency 
matrices are essentially numeric arrays—and this is one of the tricks exploited by 
embedding-based SKI methods.

Some relevant SKI algorithms based on knowledge graph embedding can be found 
in [23, 24, 28, 32].

2.3  Injection assessment

It is common for works in the SKI realm to measure the strength of their mechanism as 
the gain in performance achieved by the SKI predictor against its uneducated counter-
part. In that case, the effectiveness of the injection mechanism I  when applied to a neural 

Fig. 3  Symbolic knowledge injection via embedding: data flow
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network N to inject the knowledge K is measured via some performance score � (accuracy, 
F1-score, MSE, etc.), aimed at assessing the performance of N with respect some test data-
set T. More formally:

In other words, the effectiveness of some injection mechanism I  may be assessed dif-
ferently depending on which knowledge base, neural network, and dataset it is applied to.

While being indicative of the quality of the SKI approach w.r.t. predictive performance, 
that metric does not capture every aspect of the knowledge injection, as there exist mul-
tiple properties that one may be willing to optimise through SKI—see Sect. 3.1. Due to 
the sudden rise in research interest towards sustainable AI approaches [45], there exists 
the opportunity to analyse if and how SKI brings about benefit in terms of computations, 
energy consumption, and data required to train and deploy sub-symbolic approaches. In the 
remainder of this paper we identify other metrics to reliably measure the performance of 
SKI.

3  SKI quality‑of‑service metrics definition

In this section we propose and analyse the novel set of metrics for identifying the quality 
of SKI systems. An overview of our proposals, along with a brief classification, is pro-
vided in Sect. 3.1. Roughly speaking, we introduce metrics for measuring SKI method’s 
efficiency—under multiple goodness criteria.

3.1  Overview

The current practice of SKI assessment relies exclusively on measuring improvements 
in the predictive performance of some educated predictor over an equivalent uneducated 
counterpart. However, predictive performance is not the only relevant benefit of SKI one 
may be willing to measure.

There exist multiple aspects of neural predictors which may be affected by SKI—and 
for which metrics should be defined. Just to name a few, SKI may affect the memory foot-
print, the latency, as well as the data and energy requirements of the predictors it is applied 
to. Overall, all such properties contribute to what we informally call a predictor’ efficiency. 
In the remainder of this paper we rely on the following efficiency properties:

• memory footprint, i.e., the size of the predictor under examination;
• latency, i.e., the time required to run a predictor for inference;
• data efficiency, i.e., the amount of data required to train the predictor;
• energy consumption, i.e., the amount of energy required to train/run the predictor;

other than, of course:

• predictive performance, e.g. accuracy, F1-score, mean absolute/squared error, etc.

For the sake of brevity, we also denote as efficiency metrics any function aimed at 
measuring some efficiency property.

(1)�K,N,�,T (I) = �(I(K,N), T) − �(N, T)
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Efficiency metrics provide a score measuring how much some efficiency property P 
of a given uneducated predictor N improves in its educated counterpart N̂  . Of course, 
the resulting score may be largely influenced by a number of different aspects, such as: 

(A1)  Knowledge quality and coverage. The educated predictor N̂ is attained by injecting 
some input knowledge K. Furthermore, both N and N̂ are aimed at addressing the 
same learning task—say, classification or regression—, and they are both trained 
upon some training dataset D, which describes the task. Questions that may arise 
are, for instance: (1) are K and D coherent?, (2) is K covering situation which the 
data in D exemplifies?, (3) is K consistent, coherent, and correct? (4) can we say the 
same for D? Regardless of the particular efficiency property P being measured, the 
resulting score may greatly vary depending on the answers to these questions. So, 
in other words, efficiency measures depend on the particular input knowledge (K) 
and data (D) being used during SKI.

(A2)  Baseline quality. As both the educated ( N̂ ) and uneducated (N) predictors are tar-
getting the same learning task, one may wonder if N is adequate enough to address 
that learning task. In this setting, questions that may arise are: (1) is N biased 
[46] in statistical sense? (2) in case it is, can we expect N̂ to carry any observ-
able improvement on some efficiency measure P? (3) can we expect N̂ to carry any 
observable improvement on some efficiency measure P? (4) event in case where N 
is not biased, is the selected injection mechanism I  adequate for N? From these 
questions we understand that efficiency measures may also depend on the nature of 
the input predictor (N), and, of course, on the injection mechanism of choice ( I ).

(A3)  Task at hand. The learning task targeted by both N and N̂ determines the training 
dataset as well as the test dataset T. The choice of T impacts the assessment of both 
N and N̂ . Therefore, it may impact the score of any efficiency measure as well. So, 
efficiency measures may finally also depend on the target learning task, and, conse-
quently on the test data (T).

 Summarising, efficiency measures assess some injection method I  in a very specific 
setting that depends on (1) the particular knowledge to be injected, (2) the sort of pre-
dictor undergoing injection, (3) the training and (4) test data adopted for training. In 
other terms, any efficiency measure should be parametric w.r.t. K, N, D, and T.

Accordingly, in the following we propose the implementation and formalisation of 
metrics to assess the efficiency of SKI. In particular, as discussed at the beginning of 
this section, memory footprint, latency, energy consumption, and data efficiency are 
introduced as key performance indicators of SKI. Our objective is to assess the effi-
ciency of SKI in terms of computational resource usage, and to provide insight into 
how these metrics could be used to inform the design and optimisation of SKI-based 
systems, with a particular emphasis on their potential benefit within MAS frameworks. 
Notably, we believe that an in-depth understanding of the trade-off between perfor-
mance and efficiency is essential for the implementation of AI predictors in MAS 
frameworks.

3.2  Memory footprint

In the context of MAS, sub-symbolic predictors are gaining importance as the field 
moves towards more efficient and sustainable AI. As the demand for AI predictors that 



Autonomous Agents and Multi-Agent Systems           (2023) 37:27  

1 3

Page 11 of 30    27 

can operate on resource-constrained devices—such as IoT devices, edge devices, and 
mobile devices—continues to rise, researchers have focused on developing solutions 
that require less memory and computational resources [47–49].

To address those concerns, several metrics for measuring the memory footprint of AI 
predictors—in particularly the sub-symbolic ones – have been recently proposed in the 
literature [50–52]. For instance, in [13], the authors propose measuring neural networks’ 
memory footprint by counting the amount of parameters they are composed by—i.e., 
essentially, the amount of synapses composing each neural network. Alternatively, some 
authors leverage metrics such as Floating Point OPerations (FLOPs) [53] or Multiplica-
tion Addition Computations (MACs) [54], which measure the amount of total opera-
tions or multiplications and additions required to perform a single inference respec-
tively. MACs consider solely multiplications and summations as they represent the most 
common computations in NNs. Theoe measures are indicative of the amount of memory 
required either to fit the whole sub-symbolic predictor—total number of parameters—or 
to run it—FLOPs and MACs. Even though they are intuitive, those metrics are also 
effective for measuring predictors complexity and the overall computational memory 
efficiency. Here, we consider leveraging on such measures to analyse the efficiency gain 
of SKI approaches. In other terms, we consider the ability of SKI mechanisms to pro-
duce lightweight sub-symbolic predictors—in terms of memory occupation.

The key insight here is that knowledge injection may lift part of the learning burden 
from the predictor at hand, by relieving the network from the need to learn complex or 
data-uncovered notions via trial-and-error. Indeed, the a-priori concepts carried by the 
input knowledge might now be injected instead of being learnt in a data-driven way. As 
a result, the amount of notions that sub-symbolic predictors must learn in a data-driven 
way might be significantly reduced. Fewer concepts to be learned are typically associ-
ated with fewer parameters, FLOPs, and MACs—or, in other words, a smaller memory 
footprint [55]. In the context of SKI, we define the memory footprint improvement score 
�Ψ,K,N(I) as the amount of memory saved by the educated network N̂ w.r.t. its unedu-
cated counterpart N. The higher the score, the more memory efficient the educated pre-
dictor is w.r.t. the uneducated one. However, as one may measure the memory footprint 
of a sub-symbolic predictor in different ways – e.g., by counting the number of param-
eters, FLOPs or MACs—, our scoring function is parametric in Ψ—which represents 
the memory footprint metric of choice. More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N.
It is worth noticing how the proposed memory footprint score may be influenced by 

quality and coverage of the input knowledge (A1), as well as by the memory footprint of 
the input predictor N (A2). About (A1), the reason is simple: the better the input knowl-
edge, the lower the expected memory requirements of the educated predictor. Similarly, 
as far as (A2) is concerned, the better the input predictor, the lower the expected mem-
ory footprint improvements of the educated predictor. However, one may also notice 
from Equation (2) that our memory footprint score is not parametric when the current 
task is taken into account (A2). The reason is simple: the memory footprint of a neural 
network is not task-dependent, as it is a structural property of the neural network itself.

Finally, we stress that memory footprint of the educated predictor is expected to be 
lower than the one of the uneducated predictor. Indeed, our score is measuring the memory 
footprint improvement. A negative score �Ψ,K,N(I) means that the educated predictor is 

(2)�Ψ,K,N(I) = Ψ(N) − Ψ(I(K,N))
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more memory hungry than the uneducated one—i.e., that the SKI approach is not effective 
in reducing the memory footprint of the input predictor.

3.3  Energy consumption

The relationship between MAS and energy consumption is complex and articulated. In 
fact, to function effectively in resource-constrained environments, MAS require AI systems 
that consume a reduced amount of energy. Moreover, the distributed nature of MAS and 
the increasing demand for AI across a variety of applications drive the need for scalable 
and power-efficient solutions. This need is, however, aggravated by the dynamic and real-
time requirements of many MAS applications, which can result in high energy consump-
tion due to computational and resource requirements. The complexity of a MAS, with its 
multiple agents and agent interactions, adds a new level of difficulty, especially when pro-
cessing large amounts of data or executing complex algorithms. Altogether, those factors 
make energy consumption a crucial aspect of the design and implementation of AI systems 
in MAS frameworks.

Overall, there are numerous ways to address this problem. One approach could be to 
use energy-efficient hardware, such as low-power processors, or to use distributed and 
federated learning techniques that can distribute computation complexity across multiple 
devices [56]. Another approach could exploit more efficient algorithms and data structures 
so as to reduce the amount of computation required by agents to process data. Along that 
line, the integration of sub-symbolic predictors, which require less memory and compu-
tational resources than conventional symbolic AI approaches, could meaningfully reduce 
energy consumption. However, improvements can still be made from an energy point of 
view by making the sub-symbolic systems more efficient. For instance, several techniques 
rely on ad-hoc strategies to compress or optimise sub-symbolic predictors.

In this context, we see SKI approaches as providing MAS designers with a huge oppor-
tunity. In fact, the introduction of injection mechanisms in the data-driven pipeline of sub-
symbolic training mechanisms may reduce the amount of computations required to train 
and run sub-symbolic predictors. Indeed, knowledge injection reduces the complexity of 
the learning process, providing another source of knowledge other than the training data 
itself. Thus, one may be interested in assessing whether and to what extent SKI mecha-
nisms contribute to reducing the amount of computations required by a sub-symbolic pre-
dictor along its life-cycle.

We propose a new score aimed at measuring the energy consumption of SKI approaches. 
This is tightly related with memory footprint score from Sect. 3.2. Indeed, it is usually the 
case for smaller predictors to require fewer amounts of energy to train and run. However, 
there may exist memory efficient predictors requiring a higher amount of energy to train 
and run, such as sparse ones. Indeed, sparsity induces a lower amount of operations, but is 
not usually effectively implemented at hardware level, increasing power consumption [53]. 
Therefore, energy consumption is a property which is worth to be measured by itself.

In order to analyse energy consumption as well as the possible improvements that SKI 
could bring about, we first need to define the life cycle of AI predictors, analysing hungriness 
of each component resource. In order to build and deploy a data-driven AI solution, a number 
of stages need to be completed, namely: 
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1. Model definition, where data scientists analyse the task at hand and select the most 
adequate sorts of sub-symbolic predictors, and the most promising hyperparameters 
assignments for those predictors.

2. Model training, where the parameters of the sub-symbolic predictor of choice are auto-
matically tuned on the training data via some sort of training algorithm. There, the 
amount of training samples (as well as their dimensionality) may impact energy con-
sumption. Indeed, training algorithms commonly require running the predictor on the 
data and updating it several times.

3. Model testing, where the predictor is tested against a—limited—set of testing samples to 
check if the performance are satisfactory. As for the training case, energy consumption 
here may be affected by the amount (and dimensionality) of testing samples.

4. Model deployment, where the predictor runs multiple times, which a frequency which 
really depends on the specific application at hand

From the definition of the data-driven AI life-cycle, it is possible to highlight that the 
training and deployment phases are the most resource hungry. Indeed, training requires 
a huge— yet predictable—amount of predictor executions and updates, whereas deploy-
ment might be very energy demanding depending on the predictor usage frequency and life 
expectation—which are typically hard to anticipate.

Accordingly, as far as energy consumption is concerned, we are interested in measuring 
the energy consumption of the training and deployment phases, individually. More pre-
cisely, for the training phase, we are interested in measuring the energy consumption of the 
training algorithm itself, hence excluding the cost of the inferences drawn during the train-
ing process—as their cost is expected to be analogous to the one of the deployment phase.

Notably, this distinction allows us to evaluate the impact of SKI during both the train-
ing and deployment phases—which may, in general, be significantly different. In fact, we 
expect SKI to decrease the energy consumption of the deployed predictors, at the price of 
an increased energy consumption of the training phase.

Delving into the details of the energy consumption measurements, we start by defining 
the Υ� score, aimed at measuring the average energy consumed by a sub-symbolic predictor 
N on a per-single-inference basis:

Our definition assumes a function �(N, t) is available to measure the energy consump-
tion of a single forward run of a sub-symbolic predictor N on a single sample t. Such a 
function may for instance estimate the heat dissipated by the hardware running the predic-
tor, during the single inference N(t). Under that assumption, Eq. (3) measures the average 
energy consumption of a sub-symbolic predictor N on a test dataset T composed by several 
samples.

We now define the Υ� score, aimed at measuring the average energy consumed while 
training a sub-symbolic predictor N on a training dataset T:

Our definition assumes the training involves e epochs, and that during each epoch 
the whole training set T is used to update the predictor N. The definition also assumes 
�(e,N, T) is a function estimating the overall energy consumed by the training phase as 

(3)Υ�

�
(N, T) =

1

|T|
∑

t∈T

�(N, t)

(4)Υ�

�,�
(e,N, T) =

�(e,N, T)

e ⋅ |T|
− Υ�

�
(N, T)



 Autonomous Agents and Multi-Agent Systems           (2023) 37:27 

1 3

   27  Page 14 of 30

whole—including the energy consumed by the inferences drawn during the training pro-
cess. Similarly to � , function � may for instance estimate the heat dissipated by the hard-
ware running the predictor, during the whole training process. Under such assumptions, 
Eq. (4) measures the average energy consumption required by the predictor N for a single 
update, during its training on the dataset T.

We can now define the energy consumption improvement of a SKI mechanism as the 
amount of energy saved by the educated predictor, compared to its uneducated counterpart. 
Again, we distinguish between energy consumption during training and energy consump-
tion during inference. Along this line, we introduce two scores, namely ��

�,K,N,T
(I) (resp. 

��
�,� ,K,N,T

(I) ), aimed at measuring the energy consumption improvement of a SKI mecha-
nism I  , during inference (resp. training). More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N, and T 
is a reference dataset of choice—most commonly, the training set in the case of �� , and the 
test set in the case of ��.

It is worth noticing how the proposed energy consumption scores may be influenced 
all aspects (A1)–(A2). About input knowledge (A1) the reason is simple: the more com-
plex the input knowledge, the higher (resp. lower) the expected energy consumption of the 
educated predictor during training (resp. inference). Similarly, as far as the input predic-
tor is concerned (A2), the more energy-hungry it is, the higher we expect the educated 
predictor’s energy consumption improvements to be. Lastly, the task at hand (A2) has a 
clear effect on our scores, as they are both parametric in the dataset—energy consumption 
improvements are typically task-specific.

3.4  Latency

The amount of time required to draw a single prediction is one of the most relevant and 
impactful efficiency measures for sub-symbolic predictors. In what follows, we refer to 
such time-lapse as latency. A small latency indicates that a sub-symbolic predictor is able 
to compute relevant predictions in useful time—which is an important property in real-
world applications. For instance, low latency is essential in those scenarios where human 
lives depend on the timely response of some AI system, such as intelligent transportation 
[6] and e-health [5]. Moreover, latency assumes a relevant role in multi-agent scenarios, 
where collaboration between multiple intelligent entities is required, and there can not exist 
lag between them due to lengthy computations [57]. Also, the processing of large amounts 
of data and execution of complex algorithms, such as those used in decision-making, can 
result in increased latency as the system struggles to keep up with the demands of the task. 
As a result, MAS complexity can contribute significantly to increase latency. This is why 
recent research efforts in the AI field are focussing on time-sensitive predictors.

One possible solution available to address this problem is the use of SKI approaches. By 
incorporating symbolic representations, SKI approaches can reduce the amount of compu-
tation required to process data, leading to reduced latency. Furthermore, the use of sym-
bolic representations could help to simplify the complexity of the system, making it easier 
to predict the behavior of the system and identify the root causes of an increased latency. 

(5)
��
�,K,N,T

(I) = Υ�

�
(N, T) − Υ�

�
(I(K,N), T)

��
�,� ,e,K,N,T

(I) = Υ�

�,�
(e,N, T) − Υ�

�,�
(e,I(K,N), T)
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As a result, we believe it is crucial to measure latency in order to assess the computational 
efficiency of present AI systems.

In the remainder of this section we assume latency to be computed by averaging the 
time required to draw a number of predictions from a reference test dataset. More formally, 
we define the latency of a predictor N as the average time required to draw a single predic-
tion from a dataset T:

where Θ(N, t) represents the time required to draw a prediction from N on the input t.
As far as SKI is concerned, we are interested in assessing the latency gain brought by 

a given SKI mechanism I  w.r.t. some uneducated predictor. Along this line, one may be 
interested in figuring out whether injection increases or decreases the latency of a given 
predictor. Hence, we define the latency gain �K,N,T (I) introduced by some SKI method I  
as the average difference between the inference time of the educated predictor N̂ and its 
uneducated counterpart N, over a reference test dataset T. More formally:

where N̂ = I(K,N) represents the educated predictor attained by injecting K into N.
Similarly to the energy measurement, the latency metric is tightly related to the com-

plexity of the educated sub-symbolic predictor and therefore with memory footprint. How-
ever, like energy consumption, latency is not always directly proportional to the amount of 
operations that construct the predictor at hand. Sparsely-structured operations might slow 
down the inference process due to their inefficient computation at hardware level. Moreo-
ver, input data complexity and quality might alter the latency achieved by the predictor. 
Indeed, inference over different—yet structurally analogous—samples may take vastly dif-
ferent timings, as shown in the attack proposed in [58].

It is worth noticing how the proposed latency score may be influenced all aspects (A1)–(A2). 
About input knowledge (A1), we argue it may have both a positive and a negative effect on the 
latency gain. In fact, on the one hand, some SKI mechanisms might introduce additional com-
putations—such as the ones required to process the input knowledge K in structuring meth-
ods—see Sect. 2.2.2. We expect this effect to be magnified in the case of large knowledge bases, 
as the number of operations required to process them is expected to be higher. On the other 
hand, SKI systems might also reduce the inference time of the given predictor, by reducing the 
number of computations required to draw a prediction—likely, at the expense of higher training 
times. As far as the input predictor in concerned (A2), the more time-consuming it is, the higher 
we expect the educated predictor’s latency gain to be. Lastly, the task at hand (A2) has a clear 
effect on our score, as latencies are computed over task-specific test sets.

3.5  Data efficiency

Data efficiency is a critical aspect of MAS, as the amount of data generated and pro-
cessed by these systems can be substantial. Inefficient data management can result in 
increased latency, decreased accuracy, and increased energy consumption, all of which 
can negatively impact the performance of MAS.

(6)Λ(N, T) =
1

|T|
∑

t∈T

Θ(N, t)

(7)𝜆K,N,T (I) =
1

|T|
∑

t∈T

(
Θ(N, t) − Θ(N̂, t)

)
= Λ(N, T) − Λ(N̂, T)
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Sub-symbolic predictors which rely on data-driven training algorithms, can pro-
vide groundbreaking performance and flexibility to MAS, but the data-driven proce-
dure comes with several shortcomings. These predictors require collecting significant 
amounts of data samples for each task to be tackled, leading to increased data storage 
and processing requirements. Furthermore, not only the quantity but also the quality of 
the data—here intended as its representativeness of the task at hand—is crucial for the 
predictor to learn effectively. All such requirements make the data collection process 
time–costly—and depending on the application—possibly affected to subjectivity or 
uncertainty—e.g., emotion recognition [59].

For all these reasons, recent research efforts have focused on proposing data-frugal 
predictors [60]. Among them, knowledge injection mechanisms play a significant role 
[10]. Indeed, leveraging a-priori knowledge, SKI relieves the learning process from 
part of its computational burdens. Concepts that an uneducated predictor would need to 
learn from data might now be injected into the educated predictor, instead. Hopefully, 
this would let the educated predictor’s learning process require lower amounts of data to 
attain acceptable performance levels. In this sense, SKI might be considered as a data-
efficiency mechanism.

We are here interested in computing the data-efficiency gain brought by a given SKI 
mechanism w.r.t. some uneducated predictor. To do so, we firstly need to define the data 
footprint of a given predictor. Informally, the data footprint of a predictor N is the amount 
of data it requires to be trained to reach a certain performance level. Hence, assuming that a 
predictor N is trained on a dataset D—of samples of potentially different dimensions—, via 
some training process involving e epochs, and that it reached a performance level �(N, T) 
over a test set T—and according to some test dataset T—, we define its data footprint as 
follows:

where d is a single training sample, and �(d) is the amount of bytes required for its in-
memory representation, and � is some performance score of choice. As the reader may 
notice, the data footprint is directly proportional to the number of epochs e, to the size of 
the training set, and to its dimensionality; whereas it is inversely proportional to the perfor-
mance score of the resulting predictor.

We define the data-efficiency gain �e,K,N,D,D�,T (I) of a given SKI mechanism I  as the 
difference between the data footprint of the uneducated predictor N—trained upon some 
dataset D—and that of the educated predictor I(K,N)—trained upon some other dataset 
D′ . The score assumes that the two predictors have been trained for the same number of 
epochs e, and that their performance is assessed using the same performance score � , on 
the same test set T—in order to keep the comparison fair. More formally:

The simplest approach to improve data efficiency in SKI mechanisms is to reduce the 
amount of samples that compose the training dataset—i.e. |N| in Eq. (8). However, one may 
also consider the option of decreasing the size of samples either by reducing their dimen-
sionality or by compressing their representations—in a nutshell, by reducing �(d) for all 
d ∈ D.

To increase the data-efficiency gain, one may also consider engineering SKI and, con-
sequently, the educated predictor. Along this line, the best strategy consist in reducing the 

(8)Δ�(e,N,D, T) =
e

�(N, T)

∑

d∈D

�(d)

(9)�e,K,N,D,D�,T (I) = Δ�(e,N,D, T) − Δ�(e,I(K,N),D�
, T)
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size of the training set D′ for the educated predictor by letting the input knowledge K com-
pensate for such lack of data. Notably, this is possible because our score is sensitive to both 
aspects (A1) and (A2). In other words, both the input knowledge and the task at hand have 
a measurable effect on the data-efficiency gain. Finally, as far as the baseline predictor is 
concerned (A2), we argue that the more data hungry it is, the more the data-efficiency gain 
will be.

4  Integration of SKI QoS metrics into PSyKI

In this section we thoroughly discuss the PSyKI system by first providing the reader with a 
comprehensive overview of the system, then delving into the specifics of how QoS metrics 
are integrated into the PSyKI library.

PSyKI—acronym for “platform for symbolic knowledge injection”—is a Python library 
that provides support for the injection of prior symbolic knowledge into sub-symbolic pre-
dictors by letting the users—e.g., MAS designers—choose the most adequate method with 
respect to the ML task to accomplish [11]. PSyKI is a tool for intelligent systems engineers 
who need to either experiment with already-existing SKI algorithms or invent new ones. 
PSyKI is public and available at github. com/ psykei/ psyki- python.

Currently, PSyKI can be used with predictors created by Tensorflow [61] and supports 
the following SKI algorithms: (1)KBANN, one of the first SKI algorithms proposed in lit-
erature [17]; (2) KINS, a structuring-based injector that integrates symbolic knowledge into 
a target neural networks [34]; (3) KILL, a constraint-based injector that affect the training 
of a target neural network [35].

Essentially, PSyKI is designed around the notion of injector, whose block diagram 
is shown in Fig.  4. An injector is any algorithm accepting as input a ML predictor and 
prior symbolic knowledge (typically logic formulæ) and producing a new predictor as out-
put. In order to properly perform injection, injectors may require additional information, 
such as algorithm specific hyperparameters. The general workflow for SKI with PSyKI is 

Fig. 4  PSyKI design. Each SKI algorithm is follow the workflow represented in the figure The four yellow 
boxes represent the four main steps of the workflow. The first step is the parsing ( Π ) of the symbolic knowl-
edge. The second step is the fuzzification ( � ) of the parsed knowledge. The third step is the injection ( I  ) of 
the fuzzified knowledge into the uneducated target predictor (P). The fourth step is the training ( T  ) of the 
new predictor, making it educated ( P′)

https://github.com/psykei/psyki-python
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compliant to the one presented in Sect. 2.1—with specific attention to parsing ( Π ), fuzzifi-
cation ( � ) and injection ( I ).

PSyKI supports the processing of symbolic knowledge represented via logic formulæ. 
Based on the sort of logic adopted, user can build an abstract syntax tree (AST) for each 
formula. The AST can be inspected through a fuzzifier via pattern visitor [62] to encode the 
symbolic knowledge into a sub-symbolic form (e.g. fuzzy logic functions, ad-hoc layers). 
The resulting sub-symbolic object can finally be used by an injector to create a new predic-
tor. This process—denoted with � in Figs. 1, 2 and 3—is injector-specific; instead, the same 
parser Π can be used independently of the injector for logic formulæ of the same type.

The software is organised into well-separated packages and interfaces, so as to ensure 
extensibility towards new sorts of logics and fuzzifiers—see Fig. 5. A formula AST is rep-
resented in the software via instances of the Formula abstract class and its manifold sub-
types (not shown in the figure)—aimed at covering the many logic-specific aspects sup-
ported by PSyKI. Ad-hoc implementations of Formula are included in PSyKI, one for 
each the logic formalism supported by our framework—currently, Prolog, Datalog, and 
their sub-sets –, and more may be introduced in the future by either us or other researchers 
by simply extending that class. The same holds for fuzzifiers (resp. injectors), i.e., sub-
types of the Fuzzifier (resp. Injector) abstract class. Currently-available implemen-
tations of those class cover the KBANN [17], KINS [34], and KILL [35] injection algo-
rithms—and the corresponding injectors as well,

However, in its original state PSyKI does not include any particular facility to assess 
SKI. This is why in the remainder of this paper we propose a PSyKI extension aimed at 
supporting engineers in need of practically assessing the effectiveness—as well as the 
other QoS properties discussed in this paper—of their SKI workflows.

4.1  QoS metrics implementation in PSyKI

QoS metrics are implemented as a set of classes that extend the Metric abstract class. 
Each class corresponds to a specific metric and is responsible for computing the corre-
sponding score. Therefore, the Metric class provides a common interface for all metrics.

In particular, it provides two methods to compute the metric value between two pre-
dictors. The first method is compute_during_training and it is used to compute 

Fig. 5  Class diagram of PSyKI. Main entities are Injector, Formula, and Fuzzifier 
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the metric during the training phase of the predictors. The second method is compute_
during_inference and it is used to compute the metric when predictors are already 
trained. Both methods, accept the predictors to compare as input parameters. Additional 
parameters can be passed to the methods to customise the computation of the metric to 
meet the specific needs of the user (e.g., training set, batch size, etc.).

Implemented metrics are: 

1. Memory: memory consumption efficiency of the predictors—Equation (2);
2. Energy: energy consumption efficiency of the predictors—Equation (5);
3. Latency: latency efficiency of the predictors—Equation (7);
4. DataEfficiency: data efficiency of the predictors—Equation (9).

Metrics are included into the psyki.qos package. It is worth noting that all the metrics 
can be computed using any kind of predictors: no need to have one uneducated and one 
educated predictor. Instead, one can also compare, say, two educated predictors, or two 
uneducated predictors of any sort.

5  Experiments

In this section we present several experiments aimed at assessing the effectiveness of the 
proposed QoS metrics, as implemented in PSyKI. We first describe the experimental setup, 
the datasets we adopt, and the rationale behind their choice. Then, we present the results of 
our experiments, and we discuss them.

The design of our experiments is as follows: 

1. we select three relevant classification tasks from the literature, covering different appli-
cation domains, and coming with datasets of increasing cardinality;

2. for each task and its corresponding dataset D, we (1) train some uneducated neural 
predictor N over the data in D—of course performing train/test-set splitting—, and we 
(2) select some symbolic knowledge base K to be injected in N;

3. for each uneducated predictor N we then apply SKI multiple times, one per each injec-
tion technique currently supported by PSyKI, namely KBANN, KINS, and KILL—
hence attaining as many educated predictors;

4. finally, for each educated predictor N̂ , we compute our QoS metrics, hence comparing 
that N̂ and N w.r.t. (1)data efficiency, energy consumption, memory footprint, latency, 
and accuracy variation.

The rationale behind this setup is to demonstrate the effectiveness of our QoS metrics in 
assessing the efficiency SKI techniques of different sorts.

It is worth highlighting that the experiments presented in this section are not intended 
as a comprehensive evaluation of knowledge injection techniques per se. Instead, they aim 
to demonstrate the validity of the proposed QoS metrics, w.r.t. their capability of revealing 
variations in relevant efficiency metrics, as introduced by SKI. In this respect, negative val-
ues may be imputed to either the injections algorithms themselves, or to their implementa-
tion in PSyKI. In fact, the primary goal of PSyKI is to provide correct—despite not fully 
optimised—SKI techniques.
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For the sake of reproducibility, the code is public available at https:// github. com/ pikal 
ab- unibo/ ski- qos- jaamas- exper iments- 2022.

5.1  Datasets

We select three different datasets from the UCI repository3: BCW, PSJGS, and CI.

• Breast cancer Wisconsin dataset (BCW) [63] The BCW dataset contains 699 instances 
of breast cancer biopsy results, each with 9 features—summarising biological char-
acteristics—and one class label. Values are integers in the range [1, 10]. The feature 
BareNuclei has 16 missing values, which are replaced with the value zero. The data-
set’s target variable is a binary indicator of whether a biopsy was benign ( � ) or malig-
nant ( � ), class repartition is 458 and 241 respectively. The purpose of the dataset is to 
develop predictors that can accurately diagnose breast cancer based on biopsies using 
the information contained in the features.

• Primate splice junction gene sequences (PSJGS) [64] The PSJGS dataset includes 
information regarding gene splicing. The dataset includes 3190 instances, each repre-
senting a sequence of 60 DNA nucleotides. Each nucleotide is represented by one of 
the four letters � (adenine), � (thymine), � (cytosine), and � (guanine). Each sequence 
begins at position -30 and ends at 30, position zero is excluded.

  One DNA sequence can be classified as an exon–intron ( �� ) boundary, an intron–
exon ( �� ) boundary, or none ( � ) of them. Class frequencies are 50% for � , 25% for both 
�� and ��.

  In addition to the four nucleotides, the dataset also includes other letters that indicate 
that for one specific position different nucleotides are allowed. For our experiments, we 
preprocess the dataset by binarising the nucleotides. In other words, each nucleotide is 
represented by a vector of 4 elements, where each element is 0 except for the one corre-
sponding to the nucleotide itself, which is 1. Table 2 reports the complete binarisation 
of the nucleotides.

• Census income (CI) [65] The CI dataset contains individual information from the 1994 
United States Census. The dataset contains 48,842 instances, each corresponding to one 
census participant. Each data row includes information such as age, education, and occupa-
tion, as well as income data about a single person. The purpose of the dataset is to predict 
whether an individual’s annual income is greater than or less/equal than/to 50,000 USD 
based on their demographic information. Hence, the target variable is binary—37,155 earn 
less/equal than/to 50,000 USD and 11,687 earn more than that amount per year.

Table 2  Mapping of aggregative 
symbols and the four nucleotides

Each symbol can be substituted with one base on the right that has a 
dot

Symbol Adenine Cytosine Guanine Thymine

� ∙ ∙ ∙

� ∙ ∙

� ∙ ∙

� ∙ ∙

� ∙ ∙

3 https:// archi ve. ics. uci. edu/ ml/ index. php.

https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
https://archive.ics.uci.edu/ml/index.php
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  For our experiments, we convert the target Income to a binary output (1 if the income 
exceeds 50,000 USD and 0 otherwise). We also drop three features—namely Fnlwgt , 
Education , and Race—as they are irrelevant for our experiment ( Fnlwgt is a similar-
ity metric computed over the other features, the information provided by Education 
is already present thanks to the feature EducationNumeric ) or possibly introduce cul-
tural bias ( Race ). The remaining features are discretised. In particular, CapitalGain and 
CapitalLoss are binarised, while the remaining nominal categorical features are trans-
formed into one-hot-encoded data.

We choose these datasets because of their increasing cardinality, which ranges from 102 to 
104 . In this way, we are able to observe the scalability and robustness of our predictors and 
metrics in handling datasets of different volume or dimensionality. This is important to get 
a broader overview about the performance of the different predictors both in terms of their 
accuracy and in terms of the various efficiency metrics proposed in this work.

We divide each dataset into train and test sets, with a ratio of 2/3 and 1/3 respectively.
Finally, we attain the knowledge bases to be injected in a task-specific way. As far as the 

PSJGS dataset is concerned, we rely on the knowledge base described into the correspond-
ing paper [17], which we suitably convert in Prolog form. Conversely, as far as the BCW 
and CI datasets are concerned, we leverage upon symbolic knowledge extraction [66] to 
automatically generate knowledge bases in Prolog form out of trained predictors. This pro-
cess is better discussed into “Appendix”.

5.2  Methodology

We define and train several neural predictors, for each dataset—in particular, one unedu-
cated network and multiple educated counterparts. We attain educated networks by apply-
ing SKI via the KINS, KILL, and KBANN algorithms—each one exploiting some different 
approach to perform knowledge injection—see Sect. 4. By constructing all such predictors, 
we are able to compare and evaluate their performance and their metrics on each dataset.

For each uneducated predictor, we tune the structural hyperparameters (i.e. amount 
of layers and neurons per layer) by using a grid search with cross-validation. Networks 
attained via KBANN are a notable exception here, as in those cases the entire architecture 
of the network is dictated by KBANN, as a function of the input knowledge. In particular, 
we chose to vary the number of layers (from 1 to 3) and the number of neurons per layer 
(10, 50, and 100). The same process of grid search with cross cross-validation is repeated 
for the “educated” predictors. In this way, we can ensure good hyperparameters selection—
in terms of predictive performance—, while still keeping the computation time reasonable. 
Table 3 shows the selected hyperparameters for each dataset and predictor.

In order to tune the (hyper-)parameters of each predictor in a statistically significant 
way, we repeat the training 30 times, each time with different initial conditions and/or ran-
dom seeds, grasping statistics about the average accuracy along the way. This lets us reduce 
the variability of the results and obtain a more accurate estimate of a predictor’s actual per-
formance. The outcome of this procedure is shown in Table 4.

After calculating the average accuracy, we proceed in computing predictors’ efficiency 
metrics, for each dataset. In particular, we compute data efficiency, energy, memory, and 
latency metrics—see Sect. 3. The corresponding scores are presented in Table 4, and dis-
cussed in the following section.
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5.3  Discussion

In the following we thoroughly analyse and interpret the results of our experiments. 
Accordingly, we examine the columns of Table 4 from left to right.

It is worth noticing how data-efficiency scores vary hugely across predictors and data-
sets. We recall that a positive data-efficiency score indicates that the educated predictor 
is more efficient than its uneducated counterpart, whereas a negative score indicates the 
opposite. In general, as stated in Sect.  3, it is important to consider how data-efficiency 
scores can be affected by all three aspects (A1)–(A2). Thus, for instance, the high vari-
ation of this score points out the importance of selecting the most appropriate predictor 
for a given task (A2). For instance, the KINS-based solution has a lower data-efficiency 
score than the other predictors tailored on the BCW dataset. This may indicate that KINS 
is not the best solution for this task. In contrast, we note that the CI dataset shows positive 
data-efficiency scores for all three predictors, indicating that, in terms of data efficiency, an 
improvement is obtained by using all three SKI algorithms proposed in this work.

The second column of Table  4 shows the energy metrics for both train and test. With 
regard to each predictor and dataset, we mostly see negative values for this metric. Again, 
it is important to note that energy consumption scores can be affected by a number of fac-
tors, including input knowledge (A1), input predictor (A2), and task to be performed (A2). 
In most cases, the table indicates that the KBANN-based solution consumes more energy 
than the other predictors. In contrast, the KILL-based solution consumes significantly less 
energy than the other predictors. Additionally, it is important to shift the emphasis towards 
input knowledge (A1). As stated in Sect. 3, it is expected that the more complex the input 
knowledge, the more energy the educated predictor will consume during training. Hence, in 
terms of data efficiency, we argue that more complex knowledge may produce a gain for the 
educated predictor—possibly at the price of higher expenses in terms of energy consumption.

The third column of Table 4 shows the results of the memory metric. We recall that a 
positive value here indicates that the educated predictor consumes less memory than the 

Table 3  Results of a 
comprehensive grid search on 
various datasets

The models evaluated in this study are the uneducated one, and the 
three different educated models with KBANN, KILL, and KINS. Note 
that the model used by KBANN is identical to the model obtained via 
grid search for the uneducated model. The table provides a summary of 
the number of layers and neurons used in each model for each dataset

Dataset Model Layers Neurons

BCW Uneducated 3 [100, 10, 50]
KBANN 3 [100, 10, 50]
KILL 3 [100, 10, 50]
KINS 3 [100, 10, 10]

PSJGS Uneducated 3 [100, 10, 10]
KBANN 3 [100, 10, 10]
KILL 3 [100, 10, 10]
KINS 3 [50, 10, 10]

CI Uneducated 3 [10, 50, 50]
KBANN 3 [10, 50, 50]
KILL 3 [10, 50, 10]
KINS 3 [10, 50, 10]
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uneducated one. Conversely, a negative value indicates that the educated predictor con-
sumes more memory. For example, in the case of the BCW dataset and the KBANN-based 
solution, the educated predictor shows a positive difference in memory consumption—
which means it uses less memory than the uneducated one. In the PSJGS dataset, both 
KBANN- and KINS-based solutions show negative memory metrics. This suggests that, in 
this case, those educated predictors are more memory intensive than the uneducated one. 
Regarding the KILL-based solution, it often shows a memory metric of 0, indicating that 
there is no difference in memory between the educated and uneducated predictors.

The fourth column of Table  4 shows the latency results. Comparing the latency 
of educated predictors with the uneducated ones, we observe that, as far as KILL is 
concerned, the results between the two solutions are very similar—i.e., the metric is 
close to 0 in both cases. KBANN and KINS, on the other hand, have a slightly-worse 
latency, on all three datasets. As discussed in Sect. 3, we argue this is due to the com-
plexity of the injected input knowledge, which can lead to negative effects in terms of 
latency—especially in structuring-type SKI methods, such as KBANN.

Finally, by looking at the accuracy scores—see the last column of the Table 4—, we 
observe that the educated and uneducated predictors show very similar results. Further-
more, the results indicate that the accuracy of all predictors on all three datasets is very 

Table 4  Comparison of the performance of different models (KBANN, KILL, and KINS) respect to the 
uneducated one on three datasets (Breast Cancer, Splice Junction, and Census Income) in terms data effi-
ciency, energy consumption, memory usage, latency, and accuracy

Note that the train accuracy is the mean of 30 runs

Dataset Model Set Data effi-
ciency (KB)

Energy 
(mWh)

Memory 
(FLOPs)

Latency (ms) Accuracy (%)

BCW Uneducated – – – – 94.53
KBANN Train 35.89 −1.47 3933 −1.70 95.45

Test −0.10
KILL Train 4.09 −0.99 0 0.35 94.63

Test 0
KINS Train −9.97 −1.22 − 559 −1.41 94.29

Test −0.09
PSJGS Uneducated – – – – 93.91

KBANN Train −4946.81 −4.67 -66944 −2.56 92.84
Test −0.22

KILL Train 553.89 − 3 0 0.04 94.02
test 0

KINS Train −954.80 −6.53 − 161,779 −4.75 93.70
Test −0.51

CI Uneducated – – – – 84.63
KBANN Train 1653.79 −1.41 − 2468 −0.43 84.78

Test −0.02
KILL Train 4016.90 −0.70 4200 0 84.81

Test 0
KINS Train 4263.50 −1.41 -6220 −0.44 84.77

Test −0.02
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similar and consistent. In general, results suggest that all predictors perform well and can 
accurately predict the results of the datasets.

To conclude, in terms of data efficiency, the educated predictor generally requires less 
data to achieve similar accuracy than the uneducated one. This is a positive result, as it sug-
gests that the trained predictor is able to make accurate predictions using less data, which 
can be a nice-to-have feature in resource-constrained settings.

As far as energy is concerned, our results show a gain in energy during the training 
phase for the uneducated predictor, but during the inference phase this difference is close to 
0. We argue that this is due to the knowledge injection process, which in these experiments 
required more energy expense for the educated predictor than the uneducated one. About 
memory, the results are somehow mixed: the educated predictor sometimes requires more 
memory and sometimes less memory than the uneducated one. Finally, as far as latency 
is concerned, results indicate that the uneducated predictor tends to have a slightly lower 
latency than the educated one.

Overall, our analysis provides valuable information that can be used to understand the 
performance of different injection predictors on different datasets: this can be useful for 
evaluating a predictor with higher integrity without resorting to accuracy metrics only. 
This points out the importance of adopting specific metrics when evaluating knowledge 
injection predictors. Using these sorts of metrics in the MAS context could provide intelli-
gent systems engineers with a critical tool for comparing different predictors and selecting 
the best one for a given task.

6  Conclusions

In this work we propose a set of quality-of-service (QoS) metrics for SKI mechanisms, aim-
ing at putting MAS engineers and agents back in control of the selection of the best pre-
dictor for a given task. In particular, our metrics focus upon efficiency gains achievable 
through SKI. Along this line, we formally define four metrics, namely: (1) memory footprint 
efficiency—i.e., gain in terms of predictor’s complexity; (2) energy efficiency—i.e., gain in 
terms of total energy required to train and deploy a sub-symbolic predictor; (3) latency effi-
ciency—i.e., improvements in terms of time required for inference; and (4) data efficiency—
i.e., improvement in terms of amount of data required to optimise a sub-symbolic predictor.

Furthermore, to support their practical exploitation, we also introduce an extension of 
the PSyKI library for symbolic knowledge injection, which includes a general-purpose 
software implementation of the metrics.

Enabled by PSyKI, we then perform a number of experiments aimed at demonstrating 
the effectiveness of our metrics. Overall, our experiments show that the proposed metrics 
can be exploited to grasp insights about whether a given SKI mechanism is actually able to 
improve the efficiency of a given predictor or not—according to some specific efficiency cri-
teria among the aforementioned ones. As a by-product of our experiments we also show that 
the injection mechanisms currently supported by PSyKI leaves some room for improvement.

In perspective, our QoS metrics for SKI have a role to play in addressing various issues 
in the field of agent-oriented systems. Indeed, the design and implementation of MAS pre-
sent significant challenges, such as energy consumption, latency, memory, and data effi-
ciency. System complexity, coupled with the real-time requirements of many multi-agent 
applications, may lead to increased energy consumption and latency. In addition, the 
amount of data generated and processed by MAS can have a significant impact on their 
performance. Along this line, we observe that SKI approaches could reduce the amount of 
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computation required to process data, thus leading to reduced latency and improved energy 
efficiency. Similarly, it could reduce the amount of data needed for training and improve 
the quality of data used, thus resulting in improved performance and efficiency. The key 
point here is that measuring efficiency gains in all such regards paves the way towards the 
automation of agents’ decision-making, which may then dynamically optimise their sub-
symbolic components according to their goals.

Appendix: Details about the knowledge

Table 5 lists the logic rules that constitute the symbolic knowledge used in the SKI algo-
rithms for the breast cancer dataset. A similarly-shaped knowledge has been used also in 
the SKI algorithms for the census income dataset.

Table 5  Knowledge used for the breast cancer dataset

Symbolic knowledge (Prolog formalism)

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize < �,NormalNucleoli > �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize < �,NormalNucleoli > �,BareNuclei > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize < �,NormalNucleoli < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize < �,NormalNucleoli > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion < �,NormalNucleoli < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

UniformityCellSize > �,BareNuclei > �,BlandChromatin < �,UniformityCellSize > �,MarginalAdhesion < �,NormalNucleoli > �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

NormalNucleoli < �,BareNuclei < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ���������) ∶ −

BareNuclei > �, SingleEpithelialCellSize < �.

diagnosis (BareNuclei,BlandChromatin,ClumpThickness,MarginalAdhesion,Mitoses,

NormalNucleoli, SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, ������) ∶ −

SingleEpithelialCellSize > �.
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