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BIRATIONAL GEOMETRY OF MODULI OF CURVES WITH AN

S3-COVER

MATTIA GALEOTTI

Abstract. We consider the space RS3

g,S3
of curves with a connected S3-cover, proving that

for any odd genus g ≥ 13 this moduli is of general type. Furthermore we develop a set of
tools that are essential in approaching the case of G-covers for any finite group G.

Keywords: curves; moduli; covers; spin curves; principal bundles; admissible covers;
twisted covers.

1. Introduction

The goal of this paper, alongside its companion [20], is to analyze the birational geometry
of the moduli space of curves equipped with a G-cover, where G is any finite group. More

specifically, here we prove that the moduli space R
S3

g,S3
of genus g connected twisted S3-covers

is of general type for any odd genus g ≥ 13.
In a series of seminal works, Eisenbud, Harris and Mumford proved that the moduli Mg

of genus g smooth curves is a variety of general type for any genus g > 23 (see [22, 21, 13]).
The behavior is different for low genus, and in fact there is a large literature showing that
Mg is unirational for g ≤ 14 and rationally connected for g = 15 (see for instance [3, 30, 8]).
Recently, Farkas, Jensen and Payne showed that alsoM22 andM23 are of generaly type [15].

Many finite covers ofMg with a modular interpretation, have the same behavior: there is
a transition genus such that for any higher value the variety is of general type. The interest-
ing property is that in many cases the transition genus is strictly lower. Farkas and Ludwig
proved in [16] that the space Rµ2

g,µ2
of curves with a non-trivial 2-torsion bundle is of general

type for any genus g ≥ 14 and g 6= 15; Chiodo, Eisenbud, Farkas and Schreyer (see [11])
proved the same in the case of 3-torsion bundles for g ≥ 12; Farkas and Verra approached in
[18] the case of odd spin curves, which is of general type for g ≥ 12.

In this paper we focus on the moduli Rg,G of curves with a principal G-bundle for G finite

group. We build its compactification Rg,G as the moduli of twisted G-covers, that is balanced
representable maps φ : C→ BG where C is a Deligne-Mumford stack such that its coarse space
is a stable curve C, with non-trivial stabilizer only at some nodes. We properly introduce
twisted G-covers in §2.1, and in §2.2 we recall the equivalence with the notion of admissible
G-cover. In order to evaluate the Kodaira dimension of Rg,G it is necessary to consider a

desingularization R̂g,G → Rg,G, but it is difficult to evaluate the dimension of the space of

n-canonical sections H0(R̂g,G, nK). Following the approach of [22], we intend to focus in
those cases where it is the same to evaluate the dimension of the space of n-canonical sections
over the regular locus of Rg,G, that is those cases such that

H0
(
R̂g,G, nKR̂g,G

)
= H0

(
R

reg
g,G, nKR

reg

g,G

)
.
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A pluricanonical form defined locally over R
reg
g,G, extends uniquely to R̂g,G in smooth points

and in the so called canonical singularities (for a treatment of canonical and non-canonical
singularities see [27]). Therefore, we need an analysis of the locus of non-canonical singulari-
ties, as done by Chiodo and Farkas in [12] for level ℓ curves (that is curves with an ℓ-torsion
bundle), and by the author in [19] for the moduli space Rk

g,ℓ with a line bundle L such that

L⊗ℓ ∼= ω⊗k.
We search for a result allowing a global unique extension of pluricanonical forms. Consider

the natural project π : Rg,G → Mg, we know from the author work [20] that the locus of

non-canonical singularities is bipartitioned as SingncRg,G = Tg,G ∪ Jg,G, where the T -locus is
defined as Tg,G := SingncRg,G ∩ π

−1 SingncMg, while Jg,G is the locus of “new” singularities

that are not in the preimage ofMg singularities. We recall that the J-locus is empty for Rg,S3
,

a fact proven in [20, Theorem 5.2.1].
In Theorems 4.1.2 and 4.2.5 we prove the following.

Theorem. Consider a desingularization R̂g,G →Rg,G. If G is abelian and Jg,G = ∅, then

H0
(
R̂g,G, nKR̂g,G

)
= H0

(
R

reg
g,G, nKR

reg

g,G

)

for n sufficiently big and divisible. The same is true when G = S3 is the symmetric group of
order 3.

The extension result is obtained via a non-trivial generalization of Harris-Mumford tech-
niques used in [22], which is particularly tricky in the case G = S3 because the covering
Tg,S3

→ SingncMg is non-étale.

Finally, the main result of this paper concerns the component of Rg,S3
parametrizing con-

nected twisted S3-covers, that we denote by R
S3

g,S3
. The other components are finite covers

of the well known moduli of level curves of order 2 and 3. In order to prove the bigness of

the canonical divisor of R
S3

g,S3
, for every odd genus g = 2i + 1 we write it down as a linear

combination

K
R

S3
g,S3

= α · Ug + β · (π∗M1
g,i+1) + E + γ · λ ∈ PicQ(R

S3

g,S3
),

where α, β, γ are real coefficients, E is a boundary effective divisor and λ is the Hodge class,
which is known to be big. Furthermore, the divisor Ug is the jumping locus for the Koszul
cohomology Ki,1 of a particular rank 2 vector bundle (see Definition 5.2.4), its effectiveness is
proved in Proposition 5.2.6, while π∗M1

g,i+1 is the lifting of an effectiveMg divisor introduced

by Harris and Mumford (see Definition 5.2.12). Therefore Ug and π
∗M1

g,i+1 are both effective.
In Proposition 5.2.13 we prove that the coefficients α, β, γ can be chosen all positive for i > 5,

and this implies the bigness of λ and the space R
S3

g,S3
being of general type.

Theorem. The moduli space R
S3

g,S3
is of general type for every odd genus g ≥ 13.

In §2 we introduce the compactification of Rg,G via twisted G-covers and admissible G-

covers. In §3 we describe the boundary of Rg,S3
and evaluate its canonical divisor. In §4 the

extension of pluricanonical forms is shown and in §5 we build the Koszul divisor and conclude
the proof.
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2. Twisted and admissible covers

In this section we recall the notions of twisted G-cover and admissible G-cover, and their
equivalence in Theorem 2.2.15. In the following of the manuscript, we will adopt preferably
the twisted cover notation in Section 4 and 5, and the admissible cover notation in Section 3.

In §2.2 we also introduce the notion of admissible H-cover, where H is any subgroup
conjugacy class of G. This concept is central in classifying the components and boundary
divisors of any moduli space Rg,G, as we do in Section 3, in particular for the case G = S3.
In order to better understand these subjects, we also recall a series of group action tools.

Finally, in §2.3 we introduce a description of admissible G-covers via a monodromy-type
approach. This description allows to treat admissible G-covers as particular classes of group
morphisms.

2.1. Introduction to twisted G-covers.

Definition 2.1.1 (Twisted curve). A twisted n-marked S-curve is a diagram

Σ1,Σ2, . . . ,Σn ⊂ C

↓
C
↓
S.

(1) C is a Deligne-Mumford stack, proper over S, and étale locally it is a nodal curve
over S;

(2) the Σi ⊂ C are disjoint closed substacks in the smooth locus of C→ S for all i;
(3) Σi → S is an étale gerbe for all i;
(4) C→ C exhibits C as the coarse space of C, and it is an isomorphism over Cgen.

We recall that, given a scheme U and a finite abelian group µ acting on U , the stack [U/µ] is
the category of principal µ-bundles E → T , for any scheme T , equipped with a µ-equivariant
morphism f : E → U . The stack [U/µ] is a proper Deligne-Mumford stack and has a natural
morphism to its coarse scheme U/µ.

By the definition of twisted curve we get the local pictures:

• At a marking, morphism C→ C → S is locally isomorphic to
[
SpecA[x′]/µr

]
→ SpecA[x]→ SpecA

for some normal ring A and some integer r > 0. Here x = (x′)r, and µr is the cyclic
group of order r acting on SpecA[x′] by the action ξ : x′ 7→ ξx′ for any ξ ∈ µr.
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• At a node, morphism C→ C → S is locally isomorphic to[
Spec

(
A[x′, y′]

(x′y′ − a)

)
/µr

]
→ Spec

(
A[x, y]

(xy − aℓ)

)
→ SpecA

for some integer r > 0 and a ∈ A. Here x = (x′)ℓ, y = (y′)ℓ. The group µr acts by
the action

ξ : (x′, y′) 7→ (ξx′, ξmy′)

where m is an element of Z/r and ξ is a primitive rth root of the unit. The action
is called balanced if m ≡ −1 mod r. A curve with balanced action at every node is
called a balanced curve.

Definition 2.1.2 (Twisted G-cover). Given an n-marked twisted balanced curve (Σ1, . . . ,Σn; C→
C → S), a twisted G-cover is a representable stack morphism φ : C → BG, i.e. an object of
the category Fun(C, BG) which moreover is representable.

We observe that by adding the balancing hypothesis, we are using a slightly different notion
of twisted G-cover with respect to [1].

Definition 2.1.3. We consider the category Bbalg,n(G). The objects of Bbalg,n(G) are twisted
n-marked S-curves of genus g with a twisted G-cover, for any scheme S.

Consider two twisted G-covers φ′ : C′ → BG and φ : C → BG over the twisted n-marked
curves C′ and C respectively. A morphism (C′, φ′)→ (C, φ) is a pair (f, α) such that f : C′ → C

is a morphism of n-marked twisted curves, and α : φ′ → φ◦f is an isomorphism in Fun(C′, BG).

2.2. Introduction to admissible G-covers.

Definition 2.2.1 (Admissible cover). Given a nodal S-curve X → S with marked points, an
admissible cover u : F → X is a morphism such that:

(1) the composition F → S is a nodal S-curve;
(2) given a geometric point s̄ ∈ S, every node of Fs̄ maps via u to a node of Xs̄;
(3) the restriction F |Xgen

→ Xgen is an étale cover of degree d;

(4) given a geometric point s̄ ∈ S, the local picture of Fs̄
u
−→ Xs̄ at a point of Fs̄ mapping

to a marked point of X is isomorphic to

SpecA[x′]→ SpecA[x]→ SpecA,

for some normal ring A, an integer r > 0 and u∗x = (x′)r;

(5) the local picture of Fs̄
u
−→ Xs̄ at a node of Fs̄ is isomorphic to

Spec

(
A[x′, y′]

(x′y′ − a)

)
→ Spec

(
A[x, y]

(xy − ar)

)
→ SpecA,

for some integer r > 0 and an element a ∈ A, u∗x = (x′)r and u∗y = (y′)r.

The category Admg,n,d of n-pointed stable curves of genus g with an admissible cover of
degree d, is a proper Deligne-Mumford stack.

Consider F → C an admissible cover of a nodal curve C, a G-action on F such that the
restriction F |Cgen

→ Cgen is a principal G-bundle, a smooth point p of C and a preimage p̃ ∈ F
of p. We denote by Hp̃ ⊂ G the stabilizer of p̃. The G-action induces a primitive character
χp̃ : Hp̃ → GL(Tp̃F ) = C∗. In the set of pairs (H,χ), with H a G subgroup and χ : H → C∗

a character, we introduce the equivalence relation (H,χ) ∼ (H ′, χ′) if and only if there exists
s ∈ G such that H ′ = sHs−1 and χ′ = χs, where χs : h 7→ χ(s−1hs) is the conjugated
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character to χ. Consider a point p̃ on F with stabilizer Hp̃ and associated character χp̃. We
observe that for any point s · p̃ of the same fiber, Hs·p̃ = sHp̃s

−1 and χs·p̃ = χs
p̃. Therefore

the equivalence class of the pair (Hp̃, χp̃) only depends on the point p.

Definition 2.2.2. For any smooth point p̃ on F , we call local index the associated pair
(Hp̃, χp̃). For any smooth point p ∈ C, the conjugacy class of the local index of any p̃ in Fp

is called the G-type at p, following the notation in [7]. We denote the G-type by JHp, χpK,
where Hp is the stabilizer of one of the points in Fp, and χp the associated character.

Lemma 2.2.3 (see [20, Lemma 2.3.3]). Consider u : F → C an admissible cover of a nodal
curve C such that the restriction F |Cgen

→ Cgen is a principal G-bundle. If p̃ ∈ F is one of
the preimages of a node or a marked point, then the stabilizer Hp̃ is a cyclic group.

Observe that the set of characters χ : µr → C∗ of a cyclic group, is the group Z/rZ. In
particular, the character associated to k ∈ Z/rZ maps ξ 7→ ξk for any ξ rth root of the unit.
In the case of a node p̃ ∈ F , we observe that Hp̃ acts independently on the two branches U1

and U2. We denote by χ
(1)
p̃ and χ

(2)
p̃ the characters of these actions.

Definition 2.2.4. The G-action at node p̃ is balanced when χ
(1)
p̃ = −χ

(2)
p̃ , that is they are

opposite as elements of Z/rZ.

Definition 2.2.5 (Admissible G-cover). Take G finite group, an admissible cover u : F → C
of a nodal curve C is an admissible G-cover if

(1) the restriction u|Cgen
: F |Cgen

→ Cgen is a principal G-bundle. This implies, by Lemma
2.2.3, that for every node or marked point p̃ ∈ F , the stabilizer Hp̃ is a cyclic group;

(2) the action of Hp̃ is balanced for every node p̃ ∈ F .

This notion was developed by Abramovich, Corti and Vistoli in [1], and also by Jarvis,
Kaufmann and Kimura in [23].

Definition 2.2.6. We call AdmG
g,n the stack of stable curves of genus g with n marked points

and equipped with an admissible G-cover.

Remark 2.2.7. For any cyclic subgroup H ⊂ G, we choose the privileged root exp(2πi/|H|).
After this choice, The datum of (H,χ), is equivalent to the datum of the H generator h =

χ−1(e2πi/|H|). As a consequence, the conjugacy class JH,χK is identified with the conjugacy
class JhK of h in G.

Definition 2.2.8. Given an admissible G-cover F → C over an n-marked stable curve, the
series Jh1K, Jh2K, . . . , JhnK, of the G-types of the singular fibers over the marked points, is
called Hurwitz datum of the cover. The stack of admissible G-covers of genus g with a given
Hurwitz datum is denoted by AdmG

g,Jh1K,...,JhnK.

Remark 2.2.9. Given an admissible G-cover F → C, if p is a node of C and p̃ one of its
preimages on F , then the local index of p̃ and the G-type of p are well defined once we fix a
privileged branch of p. Switching the branches sends the local index and the G-type in their
inverses.

We denote by T (F ) the set of connected components of an admissible G-cover F → C, and
naturally it inherits the G-cover action ψ. The conjugacy class of the stabilizer HE ⊂ G of
any connected component E, is independent of the choice of E.
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We call T (G) the set of equivalence classes in Sub(G) with respect to conjugation. Then, for
every admissible G-cover there exists a canonical class H in T (G) and a canonical surjective
map T (F ) ։ H sending any component in its stabilizer. About the theory of group actions
that we use in this work, we also refer to [20, §2.1.2].

Definition 2.2.10. Consider two subgroup conjugacy classes H1,H2 in T (G), we say that
H2 is a subclass of H1, denoted by H2 ≤ H1, if for one element H2 ∈ H2 (and hence for all),
there exists H1 ∈ H1 such that H2 is a subgroup of H1. If the inclusion is strict, then H2 is
a strict subclass of H1 and the notation is H2 < H1.

Definition 2.2.11. We denote by HomG(T (F ), G) the set of maps v : T (F ) → G such that
v(ψ(g,E)) = g · v(E) · g−1.

Definition 2.2.12. Consider a subgroup conjugacy class H of G. An admissible H-cover is
an admissible G-cover such that every connected component has stabilizer in H.

Definition 2.2.13. We denote by AdmG,H
g the stack of admissibleH-covers over stable curves

of genus g, and we denote by AdmG,H
g,Jh1K,...,JhnK the stack of admissible H-cover with Hurwitz

datum Jh1K, . . . , JhnK over the n marked points.

Proposition 2.2.14 (see in [20, Proposition 2.3.14]). Consider (C; p1, . . . , pn) a nodal n-
marked curve, and F → C an admissible G-cover, then

AutAdm(C,F ) = HomG(T (F ), G).

We introduced the two categories Bbalg (G) (see Definition 2.1.3) and AdmG
g with the purpose

of “well” defining the notion of principal G-bundle over stable non-smooth curves. These two
categories are proven isomorphic in [1].

Theorem 2.2.15 (see [1, Theorem 4.3.2]). There exists a base preserving equivalence between
Bbalg (G) and AdmG

g , therefore in particular they are isomorphic Deligne-Mumford stacks.

Remark 2.2.16. From now on we will use the notation Rg,G = Bbalg (G) = AdmG
g for the

moduli stack of curves of genus g equipped with an admissible G-cover, and Rg,G for its coarse

space. Analogously, we will use the notation R
H
g,G = AdmG,H

g , and R
H
g,G, for the moduli stack

of admissible H-covers over stable curves of genus g, and its coarse space.

Remark 2.2.17. In the following, we will say that a twisted G-cover (C, φ) “is” an admissible
G-cover F → C (or the other way around), meaning that F → C is the naturally associated
admissible G-cover to (C, φ).

Remark 2.2.18. We recall the local description of Rg,G, following [20, Remark 2.2.8]. For

any twisted G-cover (C, φ), the local picture of Rg,G at [C, φ] is Def(C, φ)/Aut(C, φ), where
the action of the automorphism group is induced by the universal property. If we consider the
universal deformation Def(C; SingC) of C alongside with its nodes, this is naturally identified
with Def(C; SingC) where C is the coarse space of C. If C1, . . . , CV are the irreducible
components of C, Ci their normalizations, Di ⊂ Ci the divisors of the the preimages of the
nodes, then

Def(C; SingC) = Def(C; SingC) =
V⊕

i=1

Def(Ci;Di) =
V⊕

i=1

H1(Ci, TCi
(−Di)).
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We denote by q1, . . . , qδ the nodes of C, and we observe that we have a canonical splitting

Def(C)/Def(C; SingC) =

δ⊕

j=1

Rj.

For every j, Rj
∼= A1. These are the universal deformations (or smoothings) of nodes qj with

the associated stabilizers at C. We recall that for the coarse curve C, we have the splitting

Def(C)/Def(C; SingC) =
⊕δ

j=1Mj , where again Mj
∼= A1 and there exists a canonical mor-

phisms Rj →Mj of degree rj , the cardinality of the qj stabilizer, and branched at the origin.
In particular we call tj the coordinate ofMj , and t̃j the coordinate of Rj such that tj = (t̃j)

rj .

2.3. Monodromy description of admissible G-covers. Consider a smooth curve C of
genus g and n marked points p1, . . . , pn, the fundamental group of Cgen = C\{p1, . . . , pn}
has 2g + n generators α1, α2, . . . αg, β1 . . . , βg, γ1, . . . , γn. These are represented in the figure
below, where the arrows with the same label are identified respecting the orientation. As we
can also see in the figure, these generators respect the following relation,

(2.1) α1β1α
−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g · γ1 · · · γn = 1.

This is called the canonical representation of the fundamental group of a genus g smooth
curve.

α1

β1

α1 β1

α2

· · ·

βg

. . . γ2

γ1

p2

p1

p∗

It is possible to describe admissible G-covers over smooth curves by the monodromy action,
as done for example in [7, §2.3] and [28, §3.5]. Consider a smooth curve C, a generic point p∗

on it and an admissible G-cover F → C. We denote the points of the fiber Fp∗ by p̃
(g)
∗ for any

g ∈ G, in such a way that g · p̃
(1)
∗ = p̃

(g)
∗ . This induces a group morphism π1(Cgen, p∗) → G.

This monodromy morphism is well defined up to relabelling the points p̃
(g)
∗ , i.e. up to G

conjugation. The following proposition is a rephrasing of [7, Lemma 2.6].

Proposition 2.3.1. Given a smooth n-marked curve (C; p1, . . . , pn) and a point p∗ on its
generic locus Cgen, the set of isomorphism classes of admissible G-covers on C is naturally in
bijection with the set of conjugacy classes of maps

̟ : π1(Cgen, p∗)→ G.
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Remark 2.3.2. We also point out that, as represented in the figure, the monodromy of γi
at any point p

(g)
∗ , with g ∈ G, is given by a small circular lacet around the deleted point pi.

Therefore by definition of G-type, if JhiK is the G-type of pi, then J̟(γi)K = JhiK.

We consider now the case of an irreducible curve C with one type 0 node, i.e. an autointer-
section node. If C is the C normalization, we denote by p1 and p2 the preimages of the node
on C. An admissible G-cover F → C induces an admissible G-cover F → C on the 2-marked
genus g− 1 curve (C; p1, p2) and by what we said above, there exists an associated morphism
̟ : π1(Cgen) → G such that J̟(γ1)K = J̟(γ2)

−1K. As we obtain C from C by gluing p1 to

p2, F is obtained by gluing the fibers F p1 and F p2 .

Remark 2.3.3. In the last case, consider a path γ1,2 on C from p1 to p2. Gluing F p1 to

F p2 is equivalent to lift γ1,2 and therefore to give a monodromy factor hγ well defined up to

conjugation. Taking the twisted G-cover point of view, a point of F p1 has to be sent by hγ to
a point with the same local index (see [20, §2.2.2]). For example if we take a point with local
index w ∈ J̟(γ1)K, then the local index of its image is hγwh

−1
γ . This means that w and hγ

must commute. This condition allows to define hγ up to conjugation and is also sufficient to
make the gluing.

Remark 2.3.4. If C is a nodal curve with a type 0 node as above, the fundamental group
of the normalization π1(Cgen) is naturally a subgroup of π1(C), therefore the generators
α1, . . . , βg−1 are π1(C) elements. Consider a slight deformation F ′ → C ′ of F → C, smoothing
the node, such that C ′ is a smooth curve. This induces a natural morphism π1(C)→ π1(C

′),
in particular the αi, βi from π1(Cgen) are generators in the canonical representation of π1(C

′),
and we can complete this representation in such a way that the class of lacet γ1 becomes the
element αg in π1(C

′). The generator βg comes from the gluing data of the nodal fiber.

Following this monodromy approach, and in order to describe the components of Rg,S3

in §3.1.1, it is useful to introduce a notion of group morphism defined up to conjugation.

Definition 2.3.5. Consider two groups A, G, and the equivalence relation ∼ such that for
two morphisms ϕ,ϕ′ : A→ G, ϕ ∼ ϕ′ if there exists g ∈ G, ϕ′ = g · ϕ · g−1.

For any conjugacy class H ∈ T (G), we denote by Homs(A,H) the subset of Hom(A,G)/ ∼
induced by the morphisms whose image is a subgroup in H.

We will use the notation ϕ : A
G
 H for an element of Homs(A,H), that is a group mor-

phism A→ G defined up to conjugation whose image is in H.

3. Structure of Rg,S3

In the first section we study the boundary of Rg,S3
, i.e. the locus Rg,G\Rg,G. In the other

two sections we describe the canonical divisor of this space as a combination of the Hodge
divisor and boundary divisors.

3.1. Moduli boundary of Rg,S3
. For every subgroup conjugacy classH ∈ T (G), we consider

the moduli stack R
H
g,G of admissible H-covers over stable curves of genus g, i.e. admissible

G-covers such that the stabilizer of every connected component of a cover is in the class H (see
Definition 2.2.12 and Remark 2.2.16). These are all pairwise disconnected substacks of Rg,G.
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3.1.1. Components of Rg,S3
. We observe that S3 has 6 subgroups and 4 subgroup classes.

• The trivial subgroup (1) ⊂ S3. In this case R
1
g,S3

is isomorphic toMg.
• The three subgroups T1, T2, T3 of order 2, generated respectively by transpositions
(23), (13), (12). These subgroups all stay in the same conjugacy class T = {T1, T2, T3}.
We are going to show that the stack R

T
g,S3

is isomorphic to R
µ2
g,µ2
⊂ R

0
g,2, the moduli

stack of twisted curves equipped with a non-trivial square root of the trivial bundle.
Indeed, any admissible connected µ2-cover E → C is equivalent to the data (C, ρ)

of a curve C and ρ ∈ Homs(π1(C),µ2), as stated by Proposition 2.3.1 and using the

notation of Definition 2.3.5. There exists an isomorphism σ2 : µ2
S3
 T (see again

Definition 2.3.5), and this induces a set bijection

Homs(π1(C),µ2) ∼= Homs(π1(C), T ).

Therefore the map R
µ2
g,µ2
→ R

T
g,S3

defined by (C, ρ) 7→ (C, σ2 ◦ ρ) is an isomorphism.
We additionally observe that given an admissible T -cover F → C and any connected
component E ⊂ F , the map E → C is an admissible connected µ2-cover.

We observe that the isomorphism of moduli stacks extends to R
T
g,S3

∼= R
µ2

g,µ2
, but

the construction at the boundary introduces an additional complexity which is useless
for the purpose of this work.
• The normal subgroup N ⊂ S3, a cyclic group generated by the 3-cycle (123). With a
little abuse of notation we call N the class {N} ∈ T (S3). Consider the moduli stack
R
µ3
g,µ3
⊂ R

0
g,µ3

of twisted curves equipped with a non-trivial third root of the trivial

bundle. We are going to prove that there exists a 2 : 1 map R
µ3
g,µ3
→ R

N
g,S3

.
Indeed, any admissible connected µ3-cover E → C is equivalent to the data (C, ρ)

of a curve C and an element ρ ∈ Homs(π1(C),µ3). There exists an isomorphism

σ3 : µ3
S3
 N , and this induces a set surjection

Homs(π1(C),µ3)։ Homs(π1(C), N).

If ∧2: µ3 → µ3 is the second power map, then ∧2 also acts as an involution on

Homs(π1(C),µ3). We observe that if ρ : π1(C)
µ3
 µ3, then σ3 ◦ ρ = σ3 ◦ (∧2) ◦ ρ. In

fact, the following is true

Homs(π1(C),µ3)/(∧2) ∼= Homs(π1(C), N).

Therefore the map (C, ρ) 7→ (C, σ3 ◦ ρ) is the 2 : 1 map we were searching. As before

the map extends to R
µ3

g,µ3
→ R

N
g,S3

.

• The group S3 itself. In this case the stack R
S3

g,S3
is the moduli of curves equipped with

a connected admissible S3-cover. This is the “really new” component of moduli space
Rg,S3

, and our analysis will focus on it.

Furthermore, we observe that there exists a canonical map Rg,S3
→ Rg,µ2

. Any admissible
G-cover F → C is equivalent to the data of a curve C plus an element of Homs(π1(C), S3).
The quotient S3 ։ S3/N = µ2 induces a surjection Homs(π1(C), S3) ։ Homs(π1(C),µ2)
and therefore the map above.

3.1.2. The boundary divisors. To classify the boundary divisors of Rg,G, that is the divisors

filling the locus Rg,G\Rg,G, we start by recalling the boundary divisors ofMg.
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Definition 3.1.1. A node q of a nodal curve C is a disconnecting node if the partial nor-
malization of C at q is a disconnected scheme. This disconnected scheme has two connected
components noted C1 and C2. Consider C of genus g and q a disconnecting node, q is of
type i, with 1 ≤ i ≤ ⌊g/2⌋, if C1 and C2 have genus i and g − i. If q is a non-disconnecting
node, then it is called a node of type 0.

Definition 3.1.2. For every i with 1 ≤ i ≤ ⌊g/2⌋, the divisor ∆i ⊂Mg is the locus of curves

with a disconnecting node of type i. For i = 0, the divisor ∆0 ⊂ Mg is the locus of curves
with a node of type 0, or equivalently the closure of the locus of nodal irreducible curves.

For every i we denote by δi the class of ∆i in PicQ(Mg). We consider the natural morphism

π : Rg,G → Mg and look at the preimages π−1(∆i) for every i. The intersections of this

preimages with the connected components of Rg,G are the boundary components that we are
going to consider.

We start by focusing on the loci of curves with a disconnecting node, i.e. the preimages of
∆i with i 6= 0. In what follows for any curve C in ∆i we denote by q the node who separates
the components C1, of genus i, and C2, of genus g − i. As a consequence C1 ⊔C2 → C is the
partial normalization of C at q, and we denote by q1 and q2 the preimages of q respectively
on C1 and C2.

There exists, at the level of the moduli spaceMg, a natural gluing map

Mi,1 ×Mg−i,1 →Mg,

defined in such a way that a pair of points ([C1, q1], [C2, q2]), where C1 and C2 have genus i
and g − i respectively, is sent on the point associated to the nodal curve

C := (C1 ⊔ C2)/(q1 ∼ q2).

We recall that any admissible G-cover on C induces two admissible G-covers F1 on (C1; q1)
and F2 on (C2; q2) such that the G-types Jh1K and Jh2K on q1 and q2 are one the inverse of
the other, Jh1K = Jh−1

2 K.

Definition 3.1.3. Consider two subgroup conjugacy classes H1 and H2 in T (G), a conjugacy

class JhK in JGK and i such that 1 ≤ i ≤ ⌊g/2⌋. We denote by ∆H1,H2

i,JhK the locus in Rg,G of

curves C with a node q of type i and with an admissible G-cover F → C such that if we call
F1 → (C1; q1) and F2 → (C2; q2) the restrictions of F , then these are an admissible H1-cover
of (C1; q1) and an admissible H2-cover of (C2; q2) respectively (see Definition 2.2.12), and the
G-type at q, with respect to the branch of C1, is JhK. In order to simplify the notation we
will omit the G-type when it is trivial.

The loci ∆H1,H2

i,JhK are (not necessarily connected) divisors of the moduli space Rg,G.

For example in the case of Rg,S3
we have the following classes:

• ∆1,S3

i , ∆S3,1
i , ∆1,T

i , ∆T,1
i , ∆1,N

i , ∆N,1
i and ∆1,1

i
∼= ∆i are the cases of admissible

G-covers which are trivial over C1 or C2;

• ∆T,T
i ,∆T,N

i ,∆N,T
i ,∆T,S3

i ,∆N,N
i ,∆N,S3

i ,∆S3,N
i and ∆S3,S3

i are the other cases with triv-
ial G-type at the node q;

• ∆S3,S3

i,c3
is the only case with non-trivial stabilizer at q. Here we denoted by c3 the

conjugacy class J123K = {(123), (132)}.
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Remark 3.1.4. We observe that by Equation (2.1) and Remark 2.3.2, it is possible to have
non-trivial stabilizer at q only if for both covers F1 → C1 and F2 → C2, the associated mor-
phisms π1(Ci)→ S3 are surjective, and therefore both are connected admissible S3-covers.

Finally, we consider the preimage of ∆0, i.e. the locus of curves with a node of type 0. We
start by working on a covering stack of π−1(∆0).

Definition 3.1.5. Category D0 has for objects the data of a curve C with a node q of type 0
with an admissible G-cover F → C and a privileged branch at q. Morphisms are admissible
G-cover morphisms preserving the privileged branch.

Remark 3.1.6. Category D0 is a Deligne-Mumford stack. Its coarse space D0 comes with a
natural 2 : 1 morphism γ : D0 → π−1(∆0).

In what follows we consider a curve C with a node q of type 0, we call nor : C → C the
partial normalization of C at q. Given any admissible G-cover F → C, the pullback nor

∗F
over C is still an admissible G-cover.

Definition 3.1.7. Consider two conjugacy classes H1,H2 in T (G) such that H2 ≤ H1 (see

Definition 2.2.10). The category D
H1,H2

0,JhK is a full subcategory of D0. Its objects are stable

curves C with a node q of type 0, a privileged branch at q and an admissible H1-cover F → C
such that the pullback nor

∗F → C is an admissible H2-cover on C, and the G-type of F at
q with respect to the privileged branch is JhK. In case h = 1 we will omit its notation. The

category D
H1,H2

0,JhK
is again a Deligne-Mumford stack and we denote its coarse space by DH1,H2

0,JhK
.

Remark 3.1.8. By Equation (2.1) and Remark 2.3.2, there exists a compatibility condition

for the stack D
H1,H2

0,JhK to be non-empty. There must exist an element h in the class JhK and a

subgroup H2 in the class H2 such that h lies in the subgroup of commutators of H2.

Remark 3.1.9. There exists a natural automorphism inv : D0 → D0, which sends any curve
with an admissibile G-cover to the same curve and G-cover but changing the privileged branch

at the node. This sends isomorphically D
H1,H2

0,JhK
in D

H1,H2

0,Jh−1K
.

Definition 3.1.10. For any group G we consider the inverse relation in the set of conjugacy
classes JGK, that is JhK ∼ Jh′K if and only if JhK = Jh′K or JhK = Jh′−1K. Then we define the
set JGK as JGK := JGK/ ∼. we denote by JhK the class in JGK of any element h ∈ G.

We observe that any point [C,F ] of D0 and its image inv([C,F ]) are sent by γ : D0 →

π−1(∆0) to the same point. This means that the image of DH1,H2

0,JhK via γ depends only on

H1,H2 and on the class JhK ∈ JGK. Equivalently, for all JhK ∈ JGK, DH1,H2

0,JhK and DH1,H2

0,Jh−1K
have

the same image.

Definition 3.1.11. For every class H1,H2 in T (G) and JhK in JGK, the locus ∆H1,H2

0,JhK is the

image of DH1,H2

0,JhK via γ for any G-type JhK ∈ JhK. As before we will omit to note JhK in the

case of the trivial class J1K.

As before, we list the divisors in π−1(∆0):

• ∆N,1
0 , ∆T,1

0 and ∆1,1
0
∼= ∆0 are the divisor of admissible G-covers F → C such that

nor
∗F → C is trivial;
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• ∆T,T
0 , ∆S3,T

0 , ∆N,N
0 ,∆S3,N

0 and ∆S3,S3

0 are the other cases with trivial associated G-
type at node q;
• with another small abuse of notation, we define c2 := J12K = {(12), (13), (23)} and

c3 := J123K = {(123), (132)}. Then, ∆T,T
0,c2

, ∆S3,S3

0,c2
, ∆N,N

0,c3
and ∆S3,S3

0,c3
are the cases

with non-trivial stabilizer at q.

Observe that the divisors ∆S3,T
0,c2

and ∆S3,N
0,c3

are both empty as a direct consequence of Re-
mark 2.3.4.

3.2. The canonical divisor. To evaluate the canonical divisor we start by evaluating the

pullbacks of theMg boundary divisors. We denote by δH1,H2

i,JhK the class of the divisor ∆H1,H2

i,JhK in

the ring PicQ(Rg,S3
). Furthermore, we introduce some other notation to simplify the formulas

that will follow.

• For any i ≥ 1 we define

δ′i :=
∑

δH1,H2

i ,

where the sum is over al the divisors with trivial S3-type at the node.
• For i = 0 we define

δ′0 :=
∑

H2≤H1

δH1,H2

0 ,

δ0,c2 := δT,T0,c2
+ δS3,S3

0,c2
,

δ0,c3 := δN,N
0,c3

+ δS3,S3

0,c3
.

Given the classes δi in PicQ(Mg), and the natural morphism π : Rg,S3
→Mg, we consider

the pullbacks π∗δi to the ring PicQ(Rg,S3
).

Lemma 3.2.1. If i > 1, then

π∗δi = δ′i + 3δS3,S3

i,c3
.

Proof. This relation is true also in PicQ(Rg,S3
). We consider a general S3-cover (C, φ) in the

divisor ∆S3,S3

i,c3
, and we denote by C the coarse space of the curve and by q the type i node.

By construction we have
Aut(C, φ)

Aut(C)
= Aut(Cq) = µ3.

This implies that the morphism Rg,S3
→ Mg is 3-ramified over ∆S3,S3

i,c3
. Over ∆i but outside

∆S3,S3

i,c3
the morphism is étale, and the thesis follows. �

Lemma 3.2.2. If i = 1, then

π∗δ1 = δ′1 + 3δS3,S3

1,c3
.

Proof. The case of a curve C with an elliptic tail, is different from the case i > 1 because there
exists an elliptic tail involution on C. This involution always lifts to an admissible S3-cover.
Indeed, an admissible S3-cover over an elliptic curve (E, p∗) is the datum of a morphism
π1(E, p∗) → S3 defined up to conjugation, and this is always preserved by the involution.

Thus, π∗∆1 = ∆′
1 + ∆S3,S3

1,c3
. To obtain the result we observe that, as in the case of Lemma

3.2.1, the morphism Rg,S3
→Mg is 3-ramified over ∆S3,S3

1,c3
. �



BIRATIONAL GEOMETRY OF MODULI OF CURVES WITH AN S3-COVER 13

Lemma 3.2.3. If i = 0, then

π∗δ0 = δ′0 + 2δ0,c2 + 3δ0,c3 .

Proof. Similarly to what observed in the case of Lemma 3.2.1, the morphism Rg,S3
→ Mg is

2-ramified over ∆0,c2 , 3-ramified over ∆0,c3 and étale elsewhere over ∆0. �

From the Harris and Mumford work [22], we know the evaluation of the canonical divisor
KMg

of the moduli spaceMg. Knowing that the morphism π : Rg,S3
→Mg is étale outside

the divisors ∆i and a sublocus of codimension greater than 1, we can now evaluate the
canonical divisor KRg,S3

.

Lemma 3.2.4. On the smooth variety R
reg
g,S3

, the sublocus of regular points, we have the
following evaluation of the canonical divisor,

KRg,S3

= 13λ − (2δ′0 + 3δ0,c2 + 4δ0,c3)− (3δ′1 + 7δS3,S3

1,c3
)−

⌊g/2⌋∑

i=2

(2δ′i + 4δS3,S3

i,c3
).

Proof. As proved in [22, Theorem 2 bis, p.52], onM
reg
g we have

KMg
= 13λ − 2δ0 − 3δ1 − 2δ2 − · · · − 2δ⌊g/2⌋.

We know, from the description above, that the ramification divisor of π : Rg,S3
→Mg is

R = δ0,c2 + 2δ0,c3 + 2

⌊g/2⌋∑

i=1

δS3,S3

i,c3
.

By Hurwitz formula we have KRg,S3

= π∗KMg
+R, this is true on π−1(M

reg
g ), but this locus

and R
reg
g,S3

differ by a codimension 2 locus, therefore the evaluation is unchanged on R
reg
g,S3

.

Precisely, if π is non-étale in a point [C,F ] ∈ Rg,S3
outside the π−1(∆i), then necessarily

C is an irreducible curve with a non-trivial automorphism group. The thesis follows by the
evaluations of the divisors π∗δi of Lemmata 3.2.1, 3.2.2 and 3.2.3. �

3.3. The subspace of covers on irreducible curves. We consider the full substack R̃g,S3

of Rg,S3
of irreducible stable curves of genus g with an admissible S3-cover. We denote by R̃g,S3

its coarse space. We will prove that the bigness of the canonical divisor KRg,S3

over R̃g,S3

implies the bigness over Rg,S3
. As a consequence, it suffices to prove that KRg,S3

is big

over R̃g,S3
, to prove Rg,S3

being of general type.

We build some pencils filling up specific divisors of R
S3

g,S3
. To do this we follow [16] and [17].

Given a general K3 surface X of degree 2i − 2 in Pi, the map Bli2(X) → P1 is a family of
genus i stable curves lying on X, where Bli2(X) is the blowup of X in i2 points. This induces
a pencil B ⊂ Mi. Moreover, there exists at least one section σ on B, therefore for every
genus g > i we can glue along σ a fixed 1-marked curve (C2, p∗) of genus g − i, thus inducing
a pencil Bi ⊂Mg. The pencils Bi fill up the divisors ∆i except for i = 10, if i = 10 then the
B10 fill up a divisor Z in ∆10 which is the locus of smooth curves of genus 10 lying on a K3

surface and attached to a curve of genus g− 10. We denote by Z ′ the preimage of Z in R
S3

g,S3
.
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Lemma 3.3.1. Consider an effective divisor E in PicQ(R
S3

g,S3
) such that

[E] = a ·λ− b′0 · δ
′
0− b0,c2 · δ0,c2 − b0,c3 · δ0,c3 − b

′
1 · δ

′
1− b

S3,S3

1,c3
· δS3,S3

1,c3
−

⌊g/2⌋∑

i=2

(b′i · δ
′
i+ b

S3,S3

i,c3
· δS3,S3

i,c3
)

in PicQ(R
S3

g,S3
), where the a and b are rational coefficients.

If a ≤ 13, b′0 ≥ 2, b0,c2 ≥ 3 and b0,c3 ≥ 4, then b′i ≥ 3 and bS3,S3

i,c3
> 7 for all i ≥ 1 and i 6= 10.

The same is true for i = 10 if E does not contain Z ′.

Proof. By [17, Lemma 2.4] we have

Bi · λ = i+ 1, Bi · δ0 = 6i+ 18, Bi · δi = −1, Bi · δj = 0 ∀j 6= 0, i.

We introduce some pencils lying in the preimage of Bi with respect to the natural projection

π : R
S3

g,S3
→Mg.

The pencil AT,N
i is the preimage of Bi in ∆T,N

i . It is obtained by taking any 1-marked
stable curve C1 of genus i with an admissible T -cover, and gluing it to a fixed general 1-
marked curve C2 of genus g − i with an admissible N -cover. We remark that the gluing is
uniquely defined.

The pencil AS3,S3

i,c3
is the preimage of Bi in ∆S3,S3

i,c3
. It is obtained by taking any 1-marked

stable curve (C1, p
′
∗) of genus i with an admissible connected S3-cover and S3-type equal to c3

at p′∗, and gluing it to a fixed general 1-marked curve (C2, p∗) of genus g−i with an admissible
connected S3 cover and the same S3-type at p∗. Again, the gluing is unique.

We can write down some intersection numbers for the AT,N
i :

• AT,N
i · λ = (22i − 1)(i + 1), which is true because π∗λMg

= λRg,S3

and moreover

π∗A
T,N
i = Bi · deg(A

T,N
i /Bi);

• AT,N
i · δ′0 = (22i−1 + 1)(6i + 18), AT,N

i · δ0,c2 = (22i−1 − 2)(6i + 18), AT,N
i · δ0,c3 = 0.

The third equality is clear. The second one is obtained by counting the admissible
T -covers over a curve of genus i−1 and by multiplying for the 2 possible gluing factors
at the node. The first equality is obtained by difference;

• AT,N
i · δS3,S3

j,c3
= 0 for all j and AT,N

i · δ′j = 0 for all j 6= i and AT,N
i · δ′i = −(2

2i − 1)

because it is the same of AT,N
i · π∗δi.

Consider an effective divisor E of RS3

g,S3
, as the pencils AT,N

i fill up the boundary divisor

∆T,N
i for i 6= 10, we have AT,N

i · E ≥ 0 that is, by the relations above,

(i+ 1) · a−
22i−1 + 1

22i − 1
· (6i+ 18) · b′0 −

22i−1 − 2

22i − 1
· (6i+ 18) · b0,c2 + b′i ≥ 0,

which implies b′i ≥ 3 for all i ≥ 1. The same is true for i = 10 if E does not contain the locus Z ′.

We define d := deg(AS3,S3

i,c3
). As in the previous case, also for AS3,S3

i,c3
we have the equalities

• AS3,S3

i,c3
· λ = d · (i+ 1);

• AS3,S3

i,c3
· δS3,S3

i,c3
= −d;

• AS3,S3

i,c3
· δ′j = 0 for all j and AS3,S3

i,c3
· δS3,S3

j,c3
= 0 for all j 6= i.

Similarly we have AS3,S3

i,c3
· (δ′0 + δ0,c2 + δ0,c3) = AS3,S3

i,c3
· π∗δ0 = d · (6i+ 18).
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The following inequality is also true

(3.1) AS3,S3

i,c3
· (δ0,c2 + δ0,c3) ≥ A

S3,S3

i,c3
· δ′0.

For any effective divisor E of RS3

g,S3
, as the pencils AS3,S3

i,c3
fill up a connected component

of the boundary divisor ∆S3,S3

i,c3
for i 6= 10, we have AS3,S3

i,c3
· E ≥ 0. This implies, by the

inequalities above,

d · bS3,S3

i,c3
≥ AS3,S3

i,c3
· (2δ′0 + 3δ0,c2 + 4δ0,c3)− d · (i+ 1) · a ≥

5

2
· AS3,S3

i,c3
· (δ′0 + δ0,c2 + δ0,c3)− d · (i+ 1) · a > d · 7.

The same is true if i = 10 and E does not contain the locus Z ′.

It remains to prove the inequality (3.1). Consider a 1-marked curve (C1, p
′
∗) of genus i

with an autointersection node q, we call C1 the partial normalization at q. By Remarks
2.3.2 and 2.3.3, an admissible S3-cover on (C1, p

′
∗) is equivalent to an admissible S3-cover

on (C1, p
′
∗) plus the data of the S3-type Jh1K at q and a gluing factor hγ at the same node

(defined up to conjugation), such that hγ is in the centralizer of h1.

Consider the pencil AS3,S3

i,c3
obtained by joining any such curve (C1, p

′
∗) to a fixed general

1-marked curve (C2, p∗) of genus g− i with a connected admissible S3-cover on it. Any curve

in the (finite) intersection AS3,S3

i,c3
∩ ∆0,c2 induces a curve in the intersection AS3,S3

i,c3
∩ ∆′

0 by

putting a trivial S3-type at q instead of Jh1K. The same is true for AS3,S3

i,c3
∩ ∆0,c3 . All the

points of AS3,S3

i,c3
∩∆′

0 are obtained at least once via these operations of S3-type trivialization.
This proves the inequality. �

Proposition 3.3.2. If

KRg,S3

= a′ · λ+ E′

on R̃S3

g,S3
, where a′ is a positive coefficient and E′ an effective divisor not containing Z ′, then

the canonical divisor is big over the space R
S3,reg
g,S3

.

Proof. The equation in the hypothesis implies that the canonical divisor is big on R̃S3

g,S3
, be-

cause λ is a big divisor. If we consider the cloture E
′
of E′ on the space R

S3,reg
g,S3

, we observe
that after Lemma 3.2.4, it respects the hypothesis of Lemma 3.3.1, and therefore there exists

another effective boundary divisor E′′ ∈ PicQ(R
S3,reg
g,S3

) such that KRg,S3

= a′ · λ+E
′
+E′′ on

R
S3,reg
g,S3

, and the proof is completed. �

4. Extension of pluricanonical forms

We recall that to every twisted G-cover (C, φ) is uniquely associated an admissible G-cover
F → C and vice versa, see Remark 2.2.17. In this and the following sections, we will mainly
use the notation of twisted G-covers.

In order to evaluate the Kodaira dimension of any moduli space Rg,G, we want to prove an

extension result of pluricanonical forms, as done for example by Harris and Mumford forMg

(see [22]) and by Chiodo and Farkas for R
0
g,ℓ with ℓ < 5 and ℓ = 6 (see [12]). In particular
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given a desingularization R̂g,G → Rg,G, and denoting by R
reg
g,G the sublocus of regular points,

we know that H0
(
R̂g,G, nKR̂g,G

)
⊂ H0

(
R

reg
g,G, nKRg,G

)
and we would like to prove

H0
(
R̂g,G, nKR̂g,G

)
= H0

(
R

reg
g,G, nKRg,G

)

for n sufficiently big and divisible. This condition is verified locally for smooth points and
canonical singularities, it remains to treat the non-canonical locus SingncRg,G.

First, we recall the structure of SingncMg. Consider a curve [C] ∈ Mg, then [C] is a non-
canonical singularity if and only if C admits an elliptic tail automorphism of order 6. This
means that C has an irreducible component which is an elliptic curve E such that E ∩ C\E
is a single point and E admits an automorphism of order 6. In the following, we denote by
(E, p∗) the elliptic tail of a curve C, where p∗ is the preimage of the node. Moreover we define

C1 := C\E and we mark the preimage p′∗ of the node on C1. With this notation C = C1 ∪E.

Following again [20], we introduce the T -curves over Rg,G.

Definition 4.0.1 (T -curve). A twisted G-cover (C, φ) is a T -curve if there exists an auto-
morphism a ∈ Aut(C, φ) such that its coarsening a is an elliptic tail automorphism of order 6.
The locus of T -curves in Rg,G is denoted by Tg,G.

In order to introduce J-curves, we recall the definition of the age invariant associated to
a linear automorphism. Given a finite order automorphism h ∈ GL(m), we can diagonalize
it as h = Diag

(
ξa1r1 , . . . , ξ

am
rm

)
, where ξri is an rith root of the unit. Then, its age is defined

as age(h) :=
∑

(ai/ri). A finite subgroup of GL(m) with no quasireflections is junior if it
contains a non-trivial element h with age(h) < 1. While the notion of age depends on the
choice of the roots ξri , the notion of junior group is independent from this choice. For a wider
introduction to the age invariant see [20, §5.1.1].

Definition 4.0.2 (J-curve). A twisted G-cover (C, φ) is a J-curve if the group

AutC(C, φ)/QRC(C, φ),

which is the group of ghosts quotiented by its subgroup of quasireflections, is junior (see [20,
Definition 4.1.2] for the notion of ghost automorphism). The locus of J-curves in Rg,G is
denoted by Jg,G.

As proved in [20, Theorem 5.1.8], SingncRg,G) is the union of Tg,G and Jg,G. We consider
the cases where the second one is empty, and therefore we treat the T -locus by generalizing
the Harris-Mumford technique forMg. In particular, we focus in the case of G abelian group
and in the case of G = S3 the symmetric group of order 3.

4.1. The case G abelian group.

Lemma 4.1.1. Consider a twisted G-cover (C, φ) with G finite abelian group. If (C, φ) is a
T -curve, then the restriction of the cover to the elliptic tail is trivial.

Proof. By Proposition 2.3.1, the set of admissible G-covers over the elliptic curve (E, p∗)
(that is the set of twisted G-covers over the same curve) is in bijection with the set of maps
̟ : π1(Egen, p∗)→ G. If (E, p∗) admits an order 6 automorphism a6, then E ∼= C/(Z⊕Z ·Ω),
where Ω is a primitive 6th root of the unit and p∗ is the origin. Therefore a6 acts on E as
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multiplication by Ω. The fundamental group π1(E, p∗) ⊂ π1(Egen, p∗) is generated by a and
b which are the classes of the two laces γa and γb such that

γa : [0, 1]→ C : γa(t) = t

γb : [0, 1]→ C : γb(t) = t · Ω.

We have as a consequence a6(a) = b, and a6(b) = ba−1. Therefore if we call ̟′ the map a
∗
6̟,

by Proposition 2.3.1, a6 lifts to the cover if and only if ̟′ = ̟. This is true if and only if
̟ ≡ 1, i.e. the restriction of (C, φ) to the elliptic tail must be trivial. �

Theorem 4.1.2. In the case of a moduli space Rg,G of twisted G-covers with G finite abelian

group, we consider a desingularization R̂g,G → Rg,G. If the locus Jg,G ⊂ Rg,G is empty, then

H0(R
reg
g,G, nKR

reg

g,G
) = H0(R̂g,G, nKR̂g,G

),

for n sufficiently big and divisibile.

In [22] the same is proved for the moduli spaceMg. The idea is the following. Consider a

general non-canonical singularity ofMg, that is a point [C] where C = C1 ∪E, C1 is smooth
of genus g − 1 and without automorphisms, and E is an elliptic tail admitting an order 6
automorphism. Consider the operation of gluing any elliptic tail E′ at C1 along the same
node. This gives an immersion

(4.1) Ψ:M1,1 →֒ Mg,

and the image of Ψ passes through the point [C]. Furthermore, there exists a neighborhood
S = S([C]) of ImΨ inMg with the following properties:

(1) it exists a smooth (3g−3)-dimensional variety B and a birational morphism g : S → B;
(2) it exists a subvariety Z ⊂ B of codimension 2 such that g−1(B\Z) ∼= B\Z;

(3) as B\Z ⊂ S ⊂Mg, we have B\Z ⊂M
0
g ⊂M

reg
g , whereM

0
g is the subspace of stable

curves with trivial automorphism group.

ImΨ S([C]) Mg

B B/Z M
0
g

g

This allows to conclude. Indeed, for every pluricanonical form ω on S([C])reg, we consider its
restriction to B\Z, this extends to the smooth variety B and pullbacks to a desingularization

Ŝ([C])→ S([C])→ B. We use the Ludwig approach for Rg,µ2
developed in [24]. In order to

complete this, we need a generalization of the age tools and the age criterion [20, Proposition
5.1.4].

Proposition 4.1.3 (see Appendix 1 to §1 of [22]). Consider a complex vector space V ∼= Cn,

G ⊂ GL(V ) finite subgroup, a desingularization V̂/G→ V/G and a G-invariant pluricanonical
form ω on V . Consider an element h in G, V 0 ⊂ V the subset where G acts freely and
Fix(h) ⊂ V the fixed point set of h. By an abuse of notation we denote by Fix(h) also the
image of the fixed point set in V/G. Let U ⊂ V/G be an open subset such that V 0/G ⊂ U
and such that for every h with age h < 1 (with respect to some primitive root of the unit), the

intersection U ∩ Fix(h) is non-empty. We denote by Û ⊂ V̂/G the preimage of U under the
desingularization.
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If ω, as a meromorphic form on V̂/G, is holomorphic on Û , then it is holomorphic on V̂/G.

Proof of Theorem 4.1.2. Consider a pluricanonical form ω on R
reg
g,G. We show that ω lifts to

a desingularization of an open neighborhood of every point [C, φ] of Rg,G.
If [C, φ] is a canonical singularity this is obvious by definition.
If [C, φ] is a non-canonical singularity, at first we consider the case of a general non-canonical

singularity. As SingncRg,G = Tg,G, then by Lemma 4.1.1 a general point [C, φ] ∈ Tg,G is a
T -curve C whose coarse space C has two irreducible components (E, p∗), an elliptic tail, and
(C1, p

′
∗) of genus g − 1. Moreover, if (C1, φ1) and (E, φE) are the restrictions, then (E, φE) is

the trivial cover of E, C1 = C1 and Aut(C1, φ1) is trivial.
Once we fix the twisted G-cover (C1, φ1), we consider the morphism Ψ1 : M1,1 → Rg,G

sending any point [E′] ofM1,1 to the point [C,φ] obtained by joining C1 and E′ along their
marked points, and by considering the G-cover φ such that φ|C1

= φ1 and φ|E′ is trivial.
Following [24], we see that the projection π : Rg,G → Mg sends ImΨ1 isomorphically on

ImΨ, and π|ImΨ is a local isomorphism. Indeed, Def(C;φ) = Def(C) and for every point
of ImΨ1 the automorphism group Aut(C,φ) is isomorphic to Aut(C). Therefore if we con-
sider the neighborhood S([C]) of [C] ∈ ImΨ introduced by Harris and Mumford, then up to
shrinking π−1S([C]) ∼= S([C]), we have a neighborhood of [C,φ] with the same properties.

It remains to consider the case of any non-canonical singularity [C, φ]. Here C is a twisted

curve such that C = C1∪
⋃

E
(i), where the E(i) are all the elliptic tails of C admitting an elliptic

tail automorphism of order 6. Again we follow the last part of the Ludwig’s demonstration of
[24, Theorem 4.1]. We consider for each i a small deformation (C(i), φ(i)) of (C, φ) which fixes

the ith elliptic tail. That is, C(i) = C
(i)
1 ∪ E

(i) where C
(i)
1 is irreducible. Moreover, the twisted

G-cover admits no non-trivial automorphism over C
(i)
1 and it is unchanged over E

(i). By the

previous point we consider S(i) := S([C(i), φ(i)]). Up to shrinking the open subsets S(i), they
are all disjoint. Given the point [C, φ] of Rg,G, we consider the local picture of its universal
deformation V := Def(C, φ) ∼= C3g−3, and recall that the local picture at [C, φ] is the same of
V/Aut(C, φ) at the origin. We define

S([C, φ]) := (V/Aut(C, φ)) ∪
(⋃

S(i)
)
.

If V 0 is the V subset where Aut(C, φ) acts freely, let U ⊂ S([C, φ]) be the set

U := (V 0/Aut(C, φ)) ∪
(
(V/Aut(C, φ)) ∩

⋃
S(i)

)
.

If ω is a pluricanonical holomorphic form on Sreg, then it extends to Ŝ(i) by definition of the
neighborhoods S(i). Moreover, by applying Proposition 4.1.3 to the subset U , ω extends to

V̂
Aut(C,φ) , and therefore to the whole Ŝ. �

Remark 4.1.4. If we consider G = µℓ, we observe that this is the case (treated in [12]) of

the moduli space R
0
g,ℓ of curves equipped with a line bundle which is an ℓth root of the trivial

bundle. The proof above applies with minor adjustments also to the case of the moduli space

R
k
g,ℓ for any k (see [19]), that is the moduli space of curves with an ℓth root of ωk. Therefore

the extension result is true also in this case if the J-locus Jk
g,ℓ of R

k
g,ℓ is empty.
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4.2. The case G = S3. We know from [20] that in Rg,S3
the non-canonical singular locus

coincides with the T -locus.

Lemma 4.2.1. Consider a twisted S3-cover (C, φ) which is a T -curve. If E is an elliptic tail
admitting an elliptic tail automorphism a6 of order 6, then the restriction (E, φE) is a trivial
cover or an admissible N -cover, i.e. in this last case it has two connected components and
trivial S3-type on the marked point p∗.

Proof. We follow the same approach of Lemma 4.1.1. By Proposition 2.3.1, the set of admis-
sible S3-covers on E is in bijection with the conjugacy classes of maps ̟ : π1(Egen, p∗)→ S3.
As before we note that if (E, p∗) is an elliptic curve admitting and order 6 automorphism,
then E ∼= C/(Z ⊕ Z · Ω), where Ω is a primitive 6th root of the unit and p∗ is the origin.
Here a6 acts as multiplication by Ω. If a and b are defined as before, then again a6(a) = b
and a6(b) = ba−1. If ̟′ = a

∗
6̟, then by Proposition 2.3.1, a6 lifts to the cover if and only if

̟′ = h ·̟ · h−1 for some element h ∈ S3. This is true in the case ̟ ≡ 1 and for every group
morphism ̟ : π1(E) ։ N ⊂ S3, where N is the normal non-trivial subgroup of S3, that is
the group generated by any 3-cycle. By definition of admissibleN -cover, the thesis follows. �

As observed in §3.1.1, there exists an isomorphism, R
1
1,S3

∼= M1,1. We remarked in the

same section that there exists a natural 2 : 1 morphism R
µ3

1,µ3
→ R

N
1,S3

. As the natural

morphism R
µ3

1,µ3
→M1,1 is 8 : 1, we have that ΨN : R

N
1,S3
→M1,1 is a 4 : 1 morphism.

Remark 4.2.2. Consider (E, p∗) a general elliptic curve, we list the four preimages of [E, p∗] ∈
M1,1 with respect to ΨN . We characterize every class with a representative ̟ : π1(E, p∗)։ N
of the correspondent conjugacy class of morphisms. We recall that π1(E, p∗) is a free abelian
group generated by a and b.

̟ : π1(E, p∗)։ N

(i) a 7→ 1; b 7→ (123)

(ii) a 7→ (123); b 7→ (123)

(iii) a 7→ (123); b 7→ (132)

(iv) a 7→ (123); b 7→ 1

We recall thatM1,1
∼= P1, R

N
1,S3

is a connected curve and we are interested in finding the
branch points for ΨN . We observe that the only automorphism of a general elliptic curve is the
natural involution i, and this always lifts to any admissible S3-cover. Following Remark 2.2.18,
we detect a branch point in three cases.

• The elliptic curve E4 admitting an automorphism a4 of order 4. Automorphism a4

acts on π1(E4, p∗) by sending a 7→ b and b 7→ a−1, therefore it does not lift to any
admissible N -cover: in particular it exchanges classes (i) and (iv), and also classes
(ii) and (iii). Therefore over [E4] ∈ M1,1 we have two branch points of order 2 that
we denote by [E′

4] and [E′′
4 ].

• The elliptic curve E6 admitting an automorphism a6 of order 6. Automorphism a6

acts on π1(E6, p∗) by sending a 7→ b and b 7→ ba−1, therefore it lifts to the cover (iii).
Moreover, it sends (i) to (ii), (ii) to (iv) and (iv) to (i). Therefore over [E6] ∈ M1,1

we have one branch point [E′
6] of order 3, and moreover we have another preimage

point [E′′
6 ].
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• The curve E0 with an autointersection node q1, whose normalization E0 is a rational
curve. By Remark 2.2.18, [E0] ∈ M1,1 has two preimages via ΨN , one is obtained
by putting an order 3 stabilizer at q1, we call this preimage [E′

0] and it is an order 3
branch point. The other preimage, called [E′′

0 ], is associated to an admissible N -cover
with trivial stabilizer at q1.

Lemma 4.2.3. The moduli space R
N
1,S3

is isomorphic to P1.

Proof. This is a consequence of Hurwitz formula plus the observations we just listed. �

We consider a general genus g − 1 curve with one marked point (C1, p
′
∗) and a twisted

S3-cover (C1, φ1) with trivial S3-type at p′∗. For any twisted G-cover (E, φE) which is an
admissible N -cover over an elliptic curve (E, p∗), we glue (C1, φ1) and (E, φE) along their

marked points, to get a node q. We obtain a map Υ: R
N
1,S3
→Rg,S3

which is an isomorphism
into the image and fits into the diagram

R
N
1,S3

Rg,S3

M1,1 Mg.

ΨN

Υ

π

Ψ

Therefore the projection π|ImΥ : ImΥ→ ImΨ is the 4 : 1 morphism we described above.

Remark 4.2.4. Before stating the main theorem of this section, we describe the local picture
of π at the points of ImΥ. We call (C, φ) the admissibile S3-cover obtained via the gluing.
By Remark 2.2.18, the local picture of Rg,S3

at [C, φ] is
(
Def(C1, p

′
∗)⊕ A1

t̃q
⊕ A1

t̃E

)
/Aut(C, φ).

Here t̃q and t̃E are the (non-canonical) coordinates associated to the smoothing of node q and

to the deformation of (E, φE). At the same time the local picture ofMg at [C] is
(
Def(C1, p

′
∗)⊕ A1

tq ⊕ A1
tE

)
/Aut(C).

Here tq and tE are associated to the smoothing of node q and the deformation of the elliptic
curve E. As the S3-type at q is trivial, t̃q = tq, while for the other coordinate there are
different cases. As the automorphism group acts non-trivially only on tq, tE and t̃E, we focus
on these coordinates. Moreover we recall that the canonical elliptic tail involution of E, acts
trivially.

We consider again the case treated by Harris and Mumford in [22], the birational morphism
g : S([C]) → B at a general non-canonical singularity [C]. This means that the associated
curve C is the junction of (C1, p

′
∗), a genus g − 1 smooth automorphism free curve, and

(E, p∗), an elliptic tail. By construction S([C]) ∼= S1×Def(C1, p
′
∗) and B

∼= B1×Def(C1, p
′
∗),

where S1 is a singular surface, B1 is a smooth surface and g is the identity on the component
Def(C1, p

′
∗). We denote by D the projection of ImΨ on S1. In particular the coordinates

tq, tE span exactly the tangent space to S1 at any point of D.

If [C, φ] is a general non-canononical singularity or Rg,S3
, then the curve coarse space C is a

union C1∪E as before. We denote by S([C, φ]) the component of π−1(S([C])) containing [C, φ].
By Lemma 4.2.1, the restriction φE is trivial or an admissible N -cover, we focus in the second
case and we observe that as a consequence ImΥ ⊂ S([C, φ]). Following the construction
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above, S([C, φ]) = S2 ×Def(C1, p
′
∗), where S2 is a singular surface. We call D′ the projection

of ImΥ on S2. With an abuse of notation we call π : S2 → S1 the natural projection.
In the following list we describe the local picture of S2 → S1 at any point. For the sake of

simplicity we identify D′ with R
N
1,S3

and D withM1,1. We use the notation
(
a1
r1
, · · · , amrm

)
to

denote the diagonal matrix Diag(ξa1r1 , . . . , ξ
am
rm ), where ξr = exp(2πi/r) is the privileged rth

root of the unit.

• At the two points [E′
4], [E

′′
4 ] ∈ S2, the automorphism a4 does not lift. It acts as

tq 7→ ξ2tq and tE 7→ ξ2tE locally at [E4] ∈ S1, therefore the local picture of π at [E′
4]

and [R′′
4 ] is the canonical projection C2 → C2/

(
1
2 ,

1
2

)
.

• At the two points [E′
6], [E

′′
6 ] ∈ S2, the automorphism a6 does not lift to [E′

6] but it lifts
to [E′′

6 ]. It acts as tq 7→ ξ3tq and tE 7→ ξ3tE at [E6] ∈ S1, therefore the local picture of
π at [E′

6] is the projection C2 → C2/
(
1
3 ,

1
3

)
, and the local picture of π at [E′′

6 ] is the

identity C2/
(
1
3 ,

1
3

)
→ C2/

(
1
3 ,

1
3

)
.

• At the two points [E′
0], [E

′′
0 ] ∈ S2, we have that tE = t̃3E in the case of [E′

0] because
of the definition of admissible S3-cover. Instead in the case of [E′′

0 ], tE = t̃E . In both
cases there are no additional automorphisms, therefore the local picture of π at [E′

0]
is the projection C2 → C2/

(
1, 13
)
∼= C2, and the local picture at [E′′

0 ] is the identity

C2 → C2.
• Elsewhere on D′ and on the whole surface S2, the projection π is étale, therefore its
local picture is the identity C2 → C2.

Theorem 4.2.5. Consider a desingularization R̂g,S3
→Rg,S3

of the moduli space of genus g
curves equipped with an admissible S3-cover. Then,

H0
(
R

reg
g,S3

, nKR
reg

g,S3

)
= H0

(
R̂g,S3

, nKR̂g,S3

)

for n sufficiently big and divisible.

Proof. We are going to prove the result for a general non-canonical singularity of Rg,S3
.

As a consequence, the extension of pluricanonical forms is true also for any non-canonical
singularity via a patchwork of “good” neighborhoods analogous to what we do in the proof
of Theorem 4.1.2.

Consider a general non-canonical singularity [C, φ] ∈ Rg,S3
, therefore C = C1 ∪ E as de-

scribed before and by Lemma 4.2.1 the restriction φE is trivial or it is an admissible N -cover.
In the first case, [C, φ] is in a component of π−1 (ImΨ) which is isomorphic to ImΨ and the
construction of S([C, φ]) is the same of Theorem 4.1.2. In the second case, [C, φ] is in ImΥ and
we are going to show a neighborhood S([C, φ]) = S2×Def(C1, p

′
∗) and a birational morphism

S2 → B2 such that B2 has at most canonical singularities.
Consider the blowup at the points [E4], [E6] ∈ D ⊂ S1. We denote by A4 and A6 the

two corresponding exceptional curves, by the description of singularities we gave above, the
autointersection numbers of these divisors are A2

4 = −2 and A2
6 = −3. We denote by S∗

1

the blown up surface and by D the strict transform of D after the blowups. We know
by the Harris-Mumford result resumed above, that there exists a contraction of the curve
A4 ∪ A6 ∪D, and the contracted surface is smooth. By [6, Theorem II.11] we must have a

sequence of (−1)-curve contractions, and this happens if and only if D
2
= −1, and all the

three curves are rational.
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Consider the blowup at the points [E′
4], [E

′′
4 ], [E

′
6], [E

′′
6 ] ∈ D

′ ⊂ S2. We denote by A′
4, A

′′
4 , A

′
6, A

′′
6

the corresponding exceptional divisors, by S∗
2 the blown up surface and by D

′
the strict trans-

form of D′. From the description of the singularities we gave above, we know (A′
4)

2 =
(A′′

4)
2 = (A′

6)
2 = −1 and (A′′

6)
2 = −3. Moreover, after the blowups there exists a morphism

π̃ : S∗2→ S∗1 of degree 4 and whose ramification locus is 2A′
6 (plus some component of codi-

mension 2). Therefore π̃∗D = 4D
′
, and so (D

′
)2 = −4. By costruction all the A′

i and A
′′
i are

rational curves and D
′
is a rational curve too by Lemma 4.2.3. We obtain that there exists a

birational morphism S2 → B2 contracting the curve A′
4 ∪ A

′′
4 ∪ A

′
6 ∪ A

′′
6 ∪D

′. Indeed, by [5,
Theorem III.5.1] there exists such a contraction and B2 has a singularity of type C2/

(
1
2 ,

1
2

)
,

that is a canonical singularity.
We obtained a contraction g′ : S([C, φ]) → B′ = B2 × Def(C1, p

′
∗) such that B′ has only

canonical singularities, moreover there exists a locus Z ′ ⊂ B′ of codimension 2 such that
(g′)−1(B′\Z ′) ∼= B′\Z ′. By construction (g′)−1(B′\Z ′) is naturally a subset of Rg,S3

and this
allows to conclude as in the previous case. �

5. Evaluating the Kodaira dimension

In order to calculate the Kodaira dimension, we need to develop some calculations in the
tautological ring of the moduli space. In §5.1 we develop Grothendieck Riemann-Roch type
calculations for vector bundles. In §5.2 we apply it to evaluate the canonical divisor KRg,S3

and prove its bigness over R
S3

g,S3
, the connected component of Rg,S3

of connected S3-covers.

5.1. Adapted Grothendieck Riemann-Roch.

5.1.1. Tautological classes. In this section we recall some well known tautological classes in
the Chow ring A∗(Mg,n) of the moduli space of curves, and their generalizations to Rg,G. For
a wider survey of the tautological relations and the tautological rings structure see [4, §17],
[26] and [14].

There exists two natural morphisms “coming from the geometry of curves” on the moduli
spaces Mg,n. With this we mean that we can define them using the modular interpretation
of the space.

• The forgetful morphism is a morphism

µ :Mg,n →Mg,n−1

sending any geometric point [C; p1, . . . , pn] to the same marked stable curve without
the last point, [C; p1, . . . , pn−1].
• The gluing morphisms are of two types

ι :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2
and ι :Mg−1,n+2 →Mg,n.

In the first case [C; p1, . . . , pn1+1] × [C ′; p′1, . . . , p
′
n2+1] is sent two the junction of C

and C ′ along the marked points pn1+1 and p′n2+1. The new curve maintains all the
other marked points. In the second case [C; p1, . . . , pn+2] is sent to the quotient curve
C/(pn+1 ∼ pn+2) with the same other marked points.

Definition 5.1.1. The system of tautological rings R∗(Mg,n) ⊂ A
∗(Mg,n) with g, n varying

on the non-negative integers, is the smallest system of Q-algebras closed under the pushfor-
wards of the forgetful morphisms and the gluing morphisms.
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We define n tautological ψ-classes inside the Chow ring A∗(Mg,n). We consider the univer-

sal family u : Cg,n →Mg,n, where Cg,n is a Deligne-Mumford stack such that every geometric
fiber of u is isomorphic to the associated n-marked stable curve, and there exist n sections
σ1, . . . , σn : Mg,n → Cg,n. For every i = 1, . . . , n the line bundle Li over Mg,n is the ith
cotangent line bundle, Li := σ∗i (T

∨
u ). Then we define

ψi := c1(Li) ∈ A
1(Mg,n).

Remark 5.1.2. The ψ-classes are in the tautological ring R1(Mg,n), as showed for example
in [14].

There are two other type of classes that are very important for our analysis and belong to
the tautological ring. To introduce κ-classes we consider the log-canonical line bundle on Cg,n,

ωlog
u := ωu(σ1 + · · ·+ σn). Therefore we have

κd := u∗

(
c1(ω

log
u )d+1

)
.

As before the class κd is well defined in the Chow ring Ad(Mg,n). We state without proof

the known fact that κd = µ∗(ψ
d+1
n+1) and being ψn+1 in the tautological ring, the κ-classes is

contained in the tautological ring too.
The Hodge bundle overMg,n is the rank g vector bundle E := u∗ωu, i.e. the vector bundle

whose fiber at [C; p1, . . . , pn] is H
0(C;ωC). The Hodge class is

λ := c1(E) ∈ A
1(Mg,n).

The Hodge class is proved to be in the tautological ring R1(Mg,n) in [25].

We define the universal family also on Rg,G and we use the same notation u : Cg,G →Rg,G.
We will see in the next section that this family is equipped with a universal twisted G-cover.
On A∗

(
Rg,G

)
it is possible to define as before the κ classes and the Hodge class λ.

5.1.2. Using Grothendieck Riemann-Roch in the Chow ring of Rg,G. The universal family

of curves over Cg,G → Rg,G is equipped with a universal twisted G-cover Φ: Cg,G → BG.

In particular for every geometric point [C, φ] of Rg,G, the restriction of Φ to the associated
geometric fiber is isomorphic to the twisted G-cover φ : C→ BG.

We consider the singular locus N ⊂ Cg,G of the universal family, whose points are the
nodes of Cg,G fibers. Furthermore, we consider the stack N ′ whose points are nodes equipped
with the choice of a privileged branch. There exists a natural étale double cover N ′ → N ,
and an involution ε : N ′ → N ′ associated to the branch switch. There exists also a natural
decomposition of N ′: given a conjugacy class JhK in JGK, we denote by N ′

i,JhK ⊂ N
′ the

substack of nodes such that the associated privileged branch is in a component of genus i,
and it has JhK as G-type. In the case of a node of type 0, the component is N ′

0,JhK. Therefore

N ′ =
⊔

0≤i≤g−1,
JhK∈JGK

N ′
i,JhK.

We denote the natural projection by j : N ′ → Rg,G. Furthermore, we denote by ji,JhK the

restriction of the map j to the component N ′
i,JhK. We finally define the classes ψ and ψ′

on N ′:
ψ := c1(T

∨
N ′); ψ′ := c1(ε

∗T∨
N ′).
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In order to evaluate the Chern character of some line bundle pushforwards, we state a
generalization of the Grothendieck Riemann-Roch formula, following the approach of Chiodo
in [9]. In the case treated by Chiodo, this vector bundle is the universal root of the trivial
(or canonical) line bundle. Here we generalize to the case of any vector bundle coming from
a representation of the group G.

Consider W , a dimension w representation of group G, then W can be regarded as a vector
bundle on BG. We consider the universal cover Φ: Cg,G → BG, then the pullback

WCg,G := Φ∗W

is a vector bundle of rank w on the universal family Cg,G. From now on we will use the more
compact notation WC .

We observe that the projection ji,JhK : N
′
i,JhK →Rg,G is locally isomorphic to Bµr → SpecC

at every point of Rg,G, where r = r(h) is the order of class JhK in G. We follow the approach
of [29, §2.2] to decompose the restriction of WC to any locus N ′

i,JhK. The local picture of

Cg,G at any point of N ′
i,JhK is a Deligne-Mumford stack [U/µr] where U is an affine scheme,

therefore the vector bundle restriction WC |N ′

i,JhK
is a µr-equivariant vector bundle. Following

[20, §2.3.2], µr acts naturally on WC |N ′

i,JhK
, so there exists a decomposition in subbundles,

WC |N ′

i,JhK
=W0 ⊕W1 ⊕ · · · ⊕Wr−1,

where Wk is the eigen-subbundle with eigenvalue ξkr for all k = 0, . . . , r − 1. We denote by
wi,JhK(k) the rank of Wk, and clearly these integers satisfy the equation

∑
k wi,JhK(k) = w. We

also recall the Bernoulli polynomials Bd(x) defined by the generating function

text

et − 1
=

∞∑

d=0

Bd(x)
td

d!
.

The Bernoulli numbers Bd := Bd(0) are the evaluations of the Bernoulli polynomials at 0.
With this setting we can state the following.

Proposition 5.1.3. On Rg,G we have the following evaluation for the degree d component of
the Chern character of Ru∗WC.

chd(Ru∗WC) =
w ·Bd+1

(d+ 1)!
κd+

+
1

2
·
∑

0≤i≤g−1,
JhK∈JGK


 ∑

0≤k<r(h)

(
r(h)2 · wi,JhK(k) ·Bd+1 (k/r(h))

(d+ 1)!

)
· (ji,JhK)∗

( ∑

a+a′=d−1

ψa(−ψ′)a
′

)
 .

This formula follows directly from Tseng formula (7.3.6.1) in [29]. In Tseng notation the
morphism evn+1 is the u morphism, the representation W is denoted by F and moreover

(u∗(ch(ev
∗W )Td∧(Ln+1)))d

is the first term in our formula, the one with κ classes. The ψi-classes terms are associated
to marked points and therefore are absent in our formula. Finally, the terms Am (see [29,
Definition 4.1.2]) give the last term of our formula.



BIRATIONAL GEOMETRY OF MODULI OF CURVES WITH AN S3-COVER 25

5.2. Bigness of the canonical divisor. We consider the moduli space R
S3

g,S3
of genus g

curves equipped with a connected admissible S3-cover. This is a component of Rg,S3
.

The goal of this section is to prove that the canonical divisor of R
S3

g,S3
is big over the

subspace R̃S3

g,S3
⊂ R

S3

g,S3
of covers on irreducible curves, for every odd genus g > 11. By

Proposition 3.3.2, this implies that R
S3

g,S3
is of general type for every odd genus g ≥ 13.

The approach follows the strategy of [11] for R
µ3

g,µ3
. We write down the canonical divisor

as a sum

(5.1) K = α · U + β ·M+ E + γ · λ ∈ PicQ(R̃
S3

g,S3
).

Here U ,M, E are effective divisors, λ is the hodge class, α, β positive coefficients and γ a
strictly positive coefficient.

5.2.1. Basic notions of syzygy theory. The divisor U in equation (5.1) will be defined following
the approach of Chiodo-Eisenbud-Farkas-Schreyer paper [11]. It is the locus of curves with
“extra” syzygies with respect to a particular vector bundle, and it has a determinantal struc-

ture over an open subset of R
S3

g,S3
. To properly define this, we recall some fundamental notions

of syzygy theory over stable curves, following the notations of Aprodu-Farkas paper [2].
Consider a finitely generated graded module N over the polynomial ring S = C[x0, . . . , xn].

The module has a minimal free resolution 0← N ← F0 ← F1 ← · · · , where

Fi =
∑

j

S(−i− j)bi,j .

The numbers bi,j are well defined and are called the Betti numbers of N , moreover we have

bi,j = dim(TorSi (N ;C))i+j .

Remark 5.2.1. In an irreducible flat family of modules Nt, the Betti numbers bi,j(Nt) are
semicontinuous, and simultaneously take minimal values on an open set. The jumping locus
for their values is where one of the values bi,j(Nt) is bigger than this minimum.

For every stable curve we consider a line bundle L ∈ Pic(C), a sheaf F on C, the polynomial
ring S := SymH0(C;L) and the graded S-module

ΓC(F ;L) :=
⊕

n∈Z

H0(C;F ⊗ L⊗n).

From now on we will use the Green notation by calling

Ki,j(C;F , L) := (TorSi (ΓC(F , L);C))i+j .

One fundamental idea of syzygy theory is that the vector space Ki,j(C;F , L) can be evaluated
via a minimal S resolution of C, where the latter is seen as a graded S-module. To do this
we introduce the vector bundle ML of rank H0(L) − 1 over C, via the following short exact
sequence

(5.2) 1→ML → H0(C;L)⊗OC
ev
−→ L→ 1.

Using this vector bundle we can state the following lemma

Lemma 5.2.2 (see [2, Theorem 2.6]). Consider C a stable curve, L a line bundle on it, F a
coherent sheaf on it and m a positive integer. Then,

Km,1(C;F , L) = H0

(
m∧
ML ⊗F ⊗ L

)
.
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5.2.2. The Koszul divisor. The symmetric group S3 has 3 irreducible representations.

(1) The trivial representation I : S3 → GL(1;C) = C∗;
(2) the parity representation ǫ : S3 → C∗, which sends even elements to 1 and odd elements

to −1;
(3) given a vector space R ∼= C2, the representation ρ : S3 → GL(R) ∼= GL(2;C) such that

ρ((12)) =

(
−1 −1
0 1

)
ρ((23)) =

(
0 1
1 0

)
ρ((13)) =

(
1 0
−1 −1

)
.

Remark 5.2.3. In particular, if we consider the tautological representation over the vector
space P := 〈v1, v2, v3〉C such that S3 acts naturally by permutation, then P is the direct sum
of the trivial representation and R, P = CI⊕R. At the same time, if we consider the regular
representation C[S3] of dimension |S3| = 6, we have C[S3] = CI ⊕ Cǫ ⊕R

⊕2.

As explained above, we consider R as a line bundle over the stack BS3. Given a twisted
G-cover [C, φ], the pullback RC := φ∗R is a rank 2 vector bundle over C. In particular if
C = C is a scheme theoretic curve, RC is a usual scheme theoretic vector bundle.

We consider the case of odd genus g = 2i+1, and we focus on the Koszul cohomology Ki,1.
We introduce the locus Ug as the locus with non-zero cohomology Ki,1. Supposing that the

minimal value assumed by dimKi,1 on R
S3

g,S3
is 0, this is therefore the jumping locus for Ki,1.

In particular we will show that Ug is a virtual divisor, i.e. Ug is an effective divisor if and only
if dimKi,1 takes value 0 on a general curve, or equivalently on at least one curve.

Definition 5.2.4. Given an odd genus g = 2i+ 1,

Ug :=
{
[C,φ] ∈ RS3

g,S3
| Ki,1(C;RC , ωC) 6= 0

}
⊂ R

S3

g,S3
.

We want to show that Ug is a virtual divisor. For any stable curve C, by Lemma 5.2.2
applied in the case L = ωC with the vector bundle RC as the sheaf F , we have

Ki,1(C;RC , ωC) = H0

(
i∧
Mω ⊗ ωC ⊗RC

)
.

We can reformulate the definition of Ug with another scheme theoretic condition. Consider
the Equation (5.2) in the case of the canonical line bundle L = ωC . As ωC is a line bundle,
by a well known property we have the short exact sequence

0→
i∧
Mω ⊗ ωC ⊗RC →

i∧
H0(ωC)⊗ ωC ⊗RC →

i−1∧
Mω ⊗ ω

⊗2
C ⊗RC → 0.

Passing to the long exact sequence we have

0→ H0

(
i∧
Mω ⊗ ωC ⊗RC

)
→

i∧
H0(ωC)⊗H

0(ωC ⊗RC)
Λ
−→ H0

(
i−1∧

Mω ⊗ ω
⊗2
C ⊗RC

)

Proposition 5.2.5. The two vector spaces

i∧
H0(ωC)⊗H

0(ωC ⊗RC) and H0

(
i−1∧

Mω ⊗ ω
⊗2
C ⊗RC

)
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have the same dimension. As a consequence any point [C,φ] of RS3

g,S3
is in Ug if and only if

the associated Λ morphism is not an isomorphism.

Proof. We start by proving that

(5.3)

i∧
H0(ωC)⊗H

1(ωC ⊗RC) = H1

(
i−1∧

Mω ⊗ ω
⊗2
C ⊗RC

)
= 0.

We observe that this two terms fit in the long exact sequence

· · · →
i∧
H0(ωC)⊗H

1(ωC⊗RC)→ H1

(
i−1∧

Mω ⊗ ω
⊗2
C ⊗RC

)
→ H2

(
i∧
Mω ⊗ ωC ⊗RC

)
→ · · ·

and because the last term is 0, it suffices to prove that H1(ωC ⊗RC) = H0(R∨) = 0.

Consider the group quotient S3/N = µ2, it induces a twisted µ2-cover C
φ
−→ BS3 → Bµ2.

This is equivalent to a principal µ2-bundle ϕ : F → C. As RC is defined via the represen-
tation ρ : S3 → GL(R) ∼= GL(2;C), its pullback on F is given by the restriction ρ|N which
is a representation of N ∼= µ3, which decomposes as direct sum of two irreducible µ3 repre-
sentations of rank 1. We observe in particular that ϕ∗R∨

C = η ⊕ η⊗2 where η is a non-trivial
line bundle such that η⊗3 ∼= OF . Therefore H

0(η) = H0(η⊗2) = 0 and a fortiori H0(R∨
C) = 0.

Since the first cohomology group is trivial, we have that the Euler characteristic of both
vector bundles coincides with the dimension of their spaces of global sections. In particular,
if E is one of these vector bundles, H0(E) = χ(E) = deg(E) + rk(E)(1 − g).

• If E =
∧iH0(ωC)⊗H

0(ωC ⊗RC), then

dim(E) = dim

(
i∧
H0(ωC)

)
· dim

(
H0(ωC ⊗RC)

)
.

The first term is simply
(
g
i

)
because h0(ωC) = g. For the second term we have

h0(ωC ⊗RC) = χ(ωC ⊗RC) = deg(ωC ⊗RC) + 2− 2g = 2g − 2. Therefore

dim

(
i∧
H0(ωC)⊗H

0(ωC ⊗RC)

)
= 4i

(
2i+ 1

i

)
.

• If E = H0(
∧i−1Mω ⊗ ω

⊗2
C ⊗RC), then

deg(E) = 2 · deg

(
i−1∧

Mω

)
+

(
g − 1

i− 1

)
· deg(ω⊗2

C ⊗RC) = 4(3i + 1)

(
2i

i− 1

)
.

Knowing that rk(E) = 2 ·
(g−1
i−1

)
, we have

dim(E) = 4

(
2i

i− 1

)
(2i+ 1) = 4i

(
2i+ 1

i

)
,

and this completes the proof.

�

Proposition 5.2.6. Consider a general hyperelliptic curve (C, p) of genus g ≥ 2 with a
Weierstrass point. Then there exists a twisted S3-cover φ : C → BG such that, if RC is the
vector bundle of rank 2 associated to the R representation via φ, then H0(C,RC ((g−1)p)) = 0.
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This proves the effectiveness of Ug by following the approach of [11, Theorem 2.3]: via the
proposition we prove that [C,φ] is a point outside Ug in the case of genus g = 2i + 1, and
therefore that Ug is effective. Indeed, MωC

= OC(−2p)
⊕g−1 and therefore

i∧
Mω ⊗ ωC ⊗RC = (RC((g − 1)p))⊕(

g−1

i ).

This means that [C,φ] /∈ Ug if and only if H0(RC((g − 1)p)) = 0.

Proof. We recall that RC is obtained by pulling back via φ the irreducible representation
ρ : S3 → GL(R) ∼= GL(2;C). Consider the normal subgroup N ⊂ S3, and the group quotient

S3/N = µ2. This induces a twisted µ2-cover C
φ
−→ BS3 → Bµ2. As C is a scheme theoretic

curve, this is simply a principal µ2-bundle π : F → C. We use the notationW := RC((g−1)p)
and we want to show that π∗W decomposes as direct sum of two line bundles. By construction
the image of F → C → BS3 is BN , that is π∗W is induced by a representation of N ∼= µ3.
The group µ3 has 3 irreducible representations: the trivial one, the identity η : µ3 →֒ C∗

and η⊗2. The restriction ρ|N decomposes as η ⊕ η⊗2. With a little abuse of notation we
denote by η and η⊗2 the order 3 line bundles induced by these representations. Moreover, we
call A1 := η((g − 1)p) and A2 := η⊗2((g − 1)p).

By construction we have the decomposition π∗W = π∗A1 ⊕ π∗A2. We observe that
H0(W ) = H0(π∗W )+, that is the space of sections which are invariant by the natural invo-
lution of F . If H0(π∗W )+ 6= 0, then one between H0(π∗A1)+ and H0(π∗A2)+ is non-empty,
but H0(π∗Aj)+ = H0(Aj) and by [11, Theorem 2.3] there exists (C,φ) such that both H0(Aj)
are empty.

To prove this last point, observe that by [11, Theorem 2.3] there exists a point a point [C, ν]

outside the divisor Ug,3 ⊂ R
µ3

g,µ3
, where ν is a non-trivial third root of OC , or equivalently a

non-trivial principal µ3-bundle on C. As the locus of hyperelliptic curves with a Weiestrass
point and a third root, is not included in Ug,3, then by dimensional considerations there exists
an hyperelliptic curve C such that [C, ν] /∈ Ug,3 for any ν. And this completes the proof. �

We use the result of Proposition 5.2.5 to evaluate the class of Ug in the Chow ring, and also

the class of its closure on the space R̃S3

g,S3
. Consider the universal family u : Cg,S3

→ R
S3

g,S3

and the universal rank 2 vector bundle RC associated to the representation R. Introduce the

vector bundle Mu on R
S3

g,S3
defined by the short exact sequence

0→Mu → u∗(u∗ωu)→ ωu → 0.

The geometric fiber of Mu over any point [C, φ] of RS3

g,S3
is the previously defined vector

bundle Mω.

Definition 5.2.7. We introduce a series of sheaves on R
S3

g,S3
,

Ej,b := u∗

(
j∧
Mu ⊗ ω

⊗b
u ⊗RC

)
,

with j ≥ 0 and b ≥ 1 integers.

Remark 5.2.8. To prove that these sheaves are locally free on R̃S3

g,S3
, by Grauert’s Theorem

it suffices to prove that h1(Mω ⊗ω
⊗b
C
⊗RC) = 0 for every twisted S3-cover (C, φ) in R̃

S3

g,S3
. As

showed in the proof of Proposition 5.2.5, this reduces to prove h0((ω∨
C
)⊗(b−1) ⊗ R∨

C
) = 0 for

all b ≥ 1. In the proof of Proposition 5.2.5 we showed this equality for b = 1 and a scheme
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theoretic curve C = C, but the same proof works for every b ≥ 1 and for every twisted curve
C such that its coarse space is irreducible.

By Proposition 5.2.5, onRS3

g,S3
the locus Ug is the degeneration locus of a morphism between

the vector bundles Ei−1,2 and
∧i E⊗E0,1, where E is the Hodge bundle u∗ωu. In the following

we will evaluate this degeneration locus on the space R̃S3

g,S3
. We denote by Ug the closure of

the locus Ug on the space R̃S3

g,S3
.

Lemma 5.2.9. Given an odd genus g = 2i+ 1, the class of Ug in PicQ(R̃
S3

g,S3
) is

[U g] = c1

(
Hom

(
Ei−1,2,

i∧
E⊗ E0,1

))
= rk(Ei−1,2) ·

(
i∑

b=0

(−1)b+1c1

(
i−b∧

E⊗ E0,b+1

))
.

Proof. Given two vector bundles A and B over R̃S3

g,S3
, the morphism vector bundle Hom(A,B)

is isomorphic to B⊗A∨ and therefore c1(Hom(A,B)) = rk(A)c1(B)−rk(B)c1(A). To conclude
we observe that by the definition of the vector bundles Ej,b, they fit in the short exact sequences

0→ Ej,b+1−j →

j∧
E⊗ E0,b+1−j → Ej−1,b+2−j → 0,

for all j ≥ 0 and b ≥ j. �

Lemma 5.2.10. The first Chern class of E0,b is

c1(E0,b) = 2λ+ 2

(
b

2

)
κ1 −

1

4
δT0 −

2

3
δN0 ∈ PicQ(R̃

S3

g,S3
).

Proof. This is a direct application of Proposition 5.1.3 in the evaluation of ch1(Ru∗WC). By
[10] we have

λ = ch1(u∗ωu) =
B2

2
κ1 +

1

2
·
∑

0≤i≤g−1,
JhK∈JGK

r(h) · (ji,JhK)∗

(
B2

2
·

∑

a+a′=d−1

ψa(−ψ′)a
′

)
.

To complete the proof we only need the eigenvalues decomposition of R((12)) and R((123)),
where R : S3 → GL(C, 2) is the irreducible S3 representation of dimension 2. �

With these lemmata we can develop the calculations to evaluate [Ug] in terms of the Hodge
class and the boundary classes.

Proposition 5.2.11. In the Picard group PicQ(R̃
S3

g,S3
) we have,

[U g] = rk(Ei−1,2) · 2 ·

(
2i− 2

i− 1

)(
2(3i + 1)

i
λ− δ′0 −

(
6i+ 1

4i

)
δT0 −

(
5i+ 2

3i

)
δN0

)
.

Proof. From the result of Lemma 5.2.10, we have that

c1

(
i−b∧

E⊗ E0,b+1

)
= rk(

i−b∧
E) · c1(E0,b+1) + rk(E0,b+1) · c1(

i−b∧
E) =

=

(
g

i− b

)
·

(
2λ+ 2

(
b+ 1

2

)
κ1 −

1

4
δT0 −

2

3
δN0

)
+ 2(2b + 1)(g − 1) ·

(
g − 1

i− b− 1

)
λ.
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This, thanks to Lemma 5.2.9, allows to conclude the evaluation. �

We are ready to introduce the divisor M of Equation (5.1) over R
S3

g,S3
, with g = 2i+1 odd

genus. Harris and Mumford introduced in [22] the following divisor.

Definition 5.2.12. If W r
d (C) is the set of complete linear series over C of degree d and

dimension at least r, it defines the locus

Mi
g,i+1 := {[C] ∈ Mg | W

1
i+1(C) 6= ∅} ⊂ Mg.

In the same paper they proved

Mi
g,i+1 = c′ ·

(
6(i + 2)

i+ 1
λ− δ0

)
∈ PicQ(M̃g),

where M̃g ⊂Mg is the locus of irreducible stable curves, and c
′ is a positive coefficient. Then,

[π∗M1
g,i+1] = c′ ·

(
6(i+ 2)

i+ 1
λ− δ′0 − 2δT0 − 3δN0

)
∈ PicQ(R̃

S3

g,S3
),

where π is the natural projection R̃S3

g,S3
→ M̃g.

Summarizing,

(5.4) [KR̃g,S3

] = α · [Ug] + β · [π∗M1
g,i+1] + E + γ · λ,

for every odd genus g = 2i + 1, with α and β positive coefficients and E an effective sum of
boundary divisors.

Proposition 5.2.13. In Equation (5.4) the γ coefficient can be chosen strictly positive for
any i > 5.

Proof. By scaling appropriately every coefficient, the equation is equivalent to choosing a real
number s ∈ [0, 1] such that

s ·

(
2(3i + 1)

i
λ− δ′0 −

(
6i+ 1

4i

)
δT0 −

(
5i+ 2

3i

)
δN0

)
+

+(1− s) ·

(
6(i+ 2)

i+ 1
λ− δ′0 − 2δT0 − 3δN0

)
+ E + γ · λ =

=
13

2
λ− δ′0 −

3

2
δT0 − 2δN0 .

For E to be an effective divisor we must have s·
(
6i+1
4i

)
+(1−s)·2 ≥ 3

2 and s·
(
5i+2
3i

)
+(1−s)·3 ≥ 2,

and therefore s ≤ 3i
4i−2 is a necessary and sufficient condition for E to be an effective boundary

divisor.
To complete the proof we evaluate the γ coefficient,

s ·

(
6i+ 2

i

)
+ (1− s) ·

(
6i+ 12

i+ 1

)
+ γ =

13

2
.

After calculations this gives γ = i−11
2(i+1) + s · 4i−2

i(i+1) , which means a maximal possible value of

γ =
i− 5

2(i+ 1)
,

which is positive if and only if i > 5. �
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After this proposition, the canonical divisor over R̃S3

g,S3
is big for every odd genus g ≥ 13.

Then, thanks to Proposition 3.3.2, the moduli space R
S3

g,S3
is of general type for every odd

genus g ≥ 13.
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