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LETTER TO EDITOR

Serum bile acids in liver cirrhosis promote neutrophil
dysfunction

Dear Editor,
Neutrophil dysfunction is common in cirrhotic patients1

and is associated with mortality.2 Given the highly
increased bile acid (BA) levels in liver cirrhosis3 and their
previously shown anti-inflammatory effects,4,5 we stud-
ied if BAs contribute to the development of cirrhosis-
associated neutrophil dysfunction.
We analysed phagocytosis and reactive oxygen species

(ROS) production of neutrophils and serum BAs in cir-
rhotic patients (n = 109) and healthy controls (n = 21)
(Table 1, Tables S3–S4, Supplementary Material and Meth-
ods). The cirrhotic cohort had a larger proportion of non-
phagocytosing neutrophils in whole blood (Figure S1A,B)
and dysregulated ROS production with more neutrophils
from cirrhotics producing ROS without a stimulus or in
response to N-formyl-met-leu-phe (fMLF), and less neu-
trophils from cirrhotics producing ROS in response to E.
coli compared to healthy controls (Figure S1C–E). The level
of intracellular ROS produced by these neutrophils was not
significantly different between the groups (Figure S2A–C).
Serum BA composition was also different in cirrhotic

patients compared to healthy controls (Figures S3A,B and
S4A,B). The relative abundance of total deoxycholic acid
(DCA) in cirrhotic patients was lower than in healthy con-
trols (Figure S3C, Table S5). Secondary, unconjugated and
glycine-conjugatedBAswere significantly less abundant in
cirrhotic patients’ sera compared to healthy sera. Taurine-
conjugated BAs were significantly more abundant in cir-
rhotic sera compared to healthy sera (Figure S3D–G, Table
S5).
Neutrophil function and BA composition were signif-

icantly different between the groups according to liver
cirrhosis severity and aetiology as shown by univariate
(Figures S5A–E and S6A–E, Tables S6 and S7) and multi-
variate analyses (Figures S7A–D, S8A–F and S9A–F). The
phagocytic capacity of neutrophils was lowest in hepatitis
C patients (Figure S6B), who had the highest relative abun-
dance of total chenodeoxycholic acid (CDCA) in serum
(Table S7).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics

Further analysis showed that higher total CDCA relative
abundance and lower ursodeoxycholic acid (UDCA) rela-
tive abundance could significantly predict the decreased
neutrophil phagocytosis in cirrhotic patients. Lower
UDCA relative abundance could also predict the dys-
functional ROS production in response to E. coli (Figure
S10A–C, Table S8).
In order to validate the findings observed with clini-

cal samples in vitro, we treated neutrophils from healthy
donors with an artificial ‘BA mix’ that mimicked the BA
composition in cirrhotic cohort, as well as with individual
or total (sum of unconjugated, taurine and glycine conju-
gated forms) BAs in pathophysiologically relevant concen-
trations (Figures 1A, 2A and 3A, Tables S1 and S2, Supple-
mentary Material and Methods). Cytotoxicity of BAs was
ruled out (Figure S11).
In our experiments ‘BA mix’ significantly induced ROS

production by unstimulated neutrophils (Figure 1B,C).
ROS production in response to fMLF or E. coli, how-
ever, was not changed after treatment with ‘BA mix’
(Figure S14A,B). Further experiments with individual
BAs revealed that total LCA, but not other BAs, caused
increasedROSproduction (Figure 1D,E, Figure S12A),with
glycolithocholic acid having the most pronounced effect
(Figure S13A). LCA has been shown to bind Takeda G
protein-coupled Receptor 5, whose activation can trigger
ROS production,6,7 which may explain the effects of LCA
and its conjugates.
Total CDCA and total LCA reduced ROS production in

response to fMLF (Figure 2B,D,F), but not their unconju-
gated and conjugated forms individually (Figure S13B,C).
CDCA has been previously described to inhibit neutrophil
chemotaxis and calcium flux, via competing with fMLF
for binding to the Formyl Peptide Receptor 1 (FPR1).8 The
decreased ROS production caused by pre-incubation with
total LCA might be a consequence of cell exhaustion fol-
lowing the LCA-mediated ROS release.
Total CDCA, its unconjugated and conjugated forms

individually, as well as total DCA caused a decrease in ROS
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TABLE 1 Demographic characteristics and liver function parameters of cirrhotic patients depending on liver cirrhosis aetiology (median
± interquartile range)

Characteristic
Alcoholic
(n = 54)

HCV
(n = 32)

Other
(n = 23) p-value

Age (years) 56 ± 12 60 ± 9 55 ± 14 n.s.
Sex (Male/Female, n) 42/12 22/10 13/10 n.s.
Child-Pugh group (A/B+C, n) 37/17 25/7 17/6 n.s.
Child-Pugh score 6 ± 2 5 ± 1 5 ± 2 n.s.
MELD score 12 ± 6 8 ± 4 10 ± 7 p = .014a

AST (U/l) 44 ± 26 91 ± 72 40 ± 38 p < .001a,b

ALT (U/l) 32.5 ± 19 70 ± 80 34 ± 38 p < .001a,
p = .001b

GGT (U/l) 105.5 ± 176 114.5 ± 135 120.5 ± 285 n.s.
AP (U/l) 109 ± 74 94 ± 45 105 ± 100 n.s.
Bilirubin (mg/dl) 1.5 ± 1.6 .9 ± .9 1.1 ± 3.5 p = .030a

INR (ratio) 1.3 ± .3 1.1 ± .3 1.2 ± .3 p = .030c

Creatinine (mg/dl) .8 ± .3 .8 ± .2 .8 ± .3 n.s.
Albumin (g/dl) 4.0 ± 1.1 4.0 ± .8 4.5 ± 1.0 n.s.
Neutrophils (x109/l) 2.9 ± 1.4 2.6 ± 1.0 3.1 ± 2.8 n.s.

Note: Median ± interquartile range. Group ‘Other’ included patients with alpha-1 antitrypsin deficiency (n = 1), secondary sclerosing cholangitis in critically ill
patients (n = 2), hepatitis B (n = 4), haemochromatosis (n = 2), non-alcoholic fatty liver disease (n = 5), medication associated (n = 2), Wilson disease (n = 3)
and cryptogenic cirrhosis (n = 4). ALT, alanine transaminase; AP, alkaline phosphatase; AST, aspartate transaminase; GGT, gamma-glutamyl transferase; HCV,
hepatitis C virus; INR, international normalized ratio; MELD, model for end-stage liver disease; n.s., not significant.
aBetween HCV and alcoholic;.
bBetween HCV and other;.
cBetween other and alcoholic groups.

F IGURE 1 Total LCA induce ROS production by unstimulated neutrophils. (A) Experimental setup. (B–E) ROS production of isolated
healthy donor neutrophils after treatment with bile acid (BA)/vehicle. (C and E) Representative examples and (B and D) total ROS production
over time. ROS data were normalised and compared to vehicle-treated control (PBS) and represent a minimum of four separate experiments.
Data are presented for bile acids, which significantly influenced ROS production; error bars, SEM; *p < .05, **p < .01, ***p < .001 (unpaired
t-test). BAs, bile acids; LCA, lithocholic acid; PBS, phosphate-buffered saline; RLUs, relative light units; ROS, reactive oxygen species; SEM,
standard error of the mean
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F IGURE 2 Bile acids inhibit neutrophil ROS production in response to fMLF and E. coli. (A) Experimental setup. (B–G) ROS production
of isolated healthy donor neutrophils after treatment with bile acid/vehicle and stimulation with (B, D, and F) fMLF (1.45 μM) or (C, E, and G)
E. coli (40 bacteria/cell). (D–G) Representative examples and (B and C) total ROS production over time. Total ROS data were normalised and
compared to vehicle-treated (PBS or different concentrations of DMSO) stimulated control and represent a minimum of four separate
experiments. Data are presented for bile acids, which significantly influenced ROS production; error bars, SEM; *p < .05,**p < .01,***p < .001
(unpaired t-test). CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; DMSO, dimethyl sulfoxide; fMLF, N-formyl-met-leu-phe; LCA,
lithocholic acid; PBS, phosphate-buffered saline; RLUs, relative light units; ROS, reactive oxygen species; SEM, standard error of the mean

production in response to E. coli (Figure 2C,E,G, Figure
S13D,E).DCAhas previously been described to inhibit neu-
trophil chemotaxis and calcium mobilisation and is also
thought to be able to inhibit FPR1 signalling.9 There were
no significant changes in ROS production after the treat-
ment with total cholic acid (CA) and total UDCA (Figure
S12A–C). Reduction in ROS production in response to
fMLF andE. coli caused by BAsmay contribute to an expla-
nation for the reduced ROS production, which has been
shown previously in neutrophils from cirrhotic patients.10
We also tested if treatment with BAs influence phago-

cytosis in vitro (Figure 3A). ‘BA mix’ did not significantly
affect neutrophil phagocytosis (Figure 3B); however, total

CDCA and total DCA (but neither their unconjugated
and conjugated forms individually, nor total CA, total
UDCA and total LCA) significantly reduced phagocyto-
sis of E. coli (Figure 3C,D; Figures S15A,B and S16A–C).
The inhibitory effects of total CDCA and total DCA were
reversible – neutrophil phagocytosis was not inhibited
anymore after the BAs were washed out from the assay
medium (Figure 3E–G).
In conclusion, we performed an extensive analysis of

neutrophil function and serum BA composition in a large
cohort of cirrhotic patients. We show that BAs are associ-
ated with neutrophil dysfunction in the clinical data from
cirrhotic patients, as well as in the experiments where
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F IGURE 3 Total CDCA and total DCA inhibit neutrophil phagocytosis. (A) Experimental setup. (B–G) 5 × 105 isolated healthy donor
neutrophils were pre-incubated with bile acids and then allowed to phagocytose 4 × 107 E. coli. (E–G) Bile acids were or were not washed out
following pre-incubation with the cells for 45 min. Phagocytic capacity (B, C, E, and F) and percentage of non-phagocytic neutrophils (B, D,
and G) were measured by flow cytometry. The responses were normalised to the response of vehicle-treated (PBS or different concentrations
of DMSO) neutrophils. A minimum of four separate experiments are combined in these graphs; error bars, SEM; *p < .05,**p < .01,***p < .001
(unpaired t-test). CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline; SEM,
standard error of the mean

we directly treated neutrophils with BAs. These findings
should be validated in patients with more severe stages of
cirrhosis, and the molecular mechanisms of the observed
BA effects on neutrophil function need to be explored in
further studies. The reversibility of neutrophil dysfunction
caused by BAs, which we observed, suggests that thera-
peuticalmodulation of serumBAprofile toward a ‘healthy’
composition could potentially not only prevent neutrophil
dysfunction but also restore already impaired neutrophil
function in cirrhotic patients. This in turnwill allow reduc-
ing bacterial infections and associated morbidity and mor-
tality in liver cirrhosis. BA profile modulation may be
achieved by oral intake of BAs or modified BAs and by tar-
geting the gut microbiome involved in BA metabolism.
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