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A B S T R A C T

Most research into causal learning has focused on atemporal contingency data settings while fewer studies
have examined learning and reasoning about systems exhibiting events that unfold in continuous time. Of
these, none have yet explored learning about preventative causal influences. How do people use temporal
information to infer which components of a causal system are generating or preventing activity of other
components? In what ways do generative and preventative causes interact in shaping the behavior of causal
mechanisms and their learnability? We explore human causal structure learning within a space of hypotheses
that combine generative and preventative causal relationships. Participants observe the behavior of causal
devices as they are perturbed by fixed interventions and subject to either regular or irregular spontaneous
activations. We find that participants are capable learners in this setting, successfully identifying the large
majority of generative, preventative and non-causal relationships but making certain attribution errors. We
lay out a computational-level framework for normative inference in this setting and propose a family of more
cognitively plausible algorithmic approximations. We find that participants’ judgment patterns can be both
qualitatively and quantitatively captured by a model that approximates normative inference via a simulation
and summary statistics scheme based on structurally local computation using temporally local evidence.
We naturally think about the world in terms of a progression of
events that cause and affect one another. When successful, causal
reasoning helps us abstract from our real-time experience to recognize
stable causal mechanisms that we can use to explain, predict and
sometimes control our environment (Sloman, 2005). However, infer-
ring causal structure in real environments is notoriously challenging,
involving a complex interplay between incoming evidence, action, and
intuitive theories of how causal influences manifest and link elements
of experience like events, objects and variables (Goodman, Ullman, &
Tenenbaum, 2011; Griffiths & Tenenbaum, 2009; Lagnado, 2011).

Two of the basic and well-studied notions of causality are generative
and preventative relationships. In a generative relationship, we think
of the occurrence of one event as bringing about the occurrence of
another. A generative causal claim implies the counterfactual that, had
the cause not occurred, the effect would not have occurred either.
In probabilistic accounts of causal reasoning, generative causality is
typically linked with an expectation of positive contingency: The pres-
ence of a generative causal variable is associated with an increase in
the probability of its effect(s) being present compared to cases where
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the cause is absent or inactive. The reverse of this is the notion of a
preventative causal relationship, where we think the occurrence of a
causal event as blocking another event from occurring. A preventa-
tive causal claim implies the counterfactual that, had the cause not
occurred, the effect would have occurred. Probabilistically, we thus
expect the presence of a preventative cause to decrease the probability
of its effect(s) occurring, compared with cases where the cause is absent
or inactive (Cheng, 1997; Griffiths & Tenenbaum, 2005; Sloman, 2005).

The majority of causal learning research has focused on infer-
ences from atemporal evidence, which can be represented in tables of
co-occurrence or contingency that reflect the statistical dependencies
among a set of variables (Buehner, Cheng, & Clifford, 2003; Cheng,
1997; Griffiths & Tenenbaum, 2005; Lagnado & Sloman, 2004; Rottman
& Hastie, 2014). This kind of data is central in scientific experimen-
tation, in that it depends on the collection of multiple independent
samples (Pearl, 2000; Pearl & Mackenzie, 2018; Zimmerman, 2007).
However, an intriguing question regarding human cognition is about
how people learn causal relationships from temporal data, given that
vailable online 16 August 2023
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we experience the world as one continuous timeline, and that real
world causal mechanisms often take time to produce their effects. The
temporal setting also allows that multiple events of the same type may
occur multiple times to a single individual. This more closely resembles
repeated-measure data from a single individual than reasoning from
large independent samples. In this setting, people might rely more on
‘‘soft’’ cues (e.g. time, prior knowledge) than the contingency principle
(Lagnado, Waldmann, Hagmayer, & Sloman, 2007). Understanding
how people learn from temporal data is crucial because it not only
improves our understanding of the basic mechanisms of human learn-
ing, but also clarifies the differences between scientific practices and
intuitive causal inference.

Besides this, studies of atemporal causal learning (Buehner et al.,
2003; Cheng, 1997; Griffiths & Tenenbaum, 2005; Lagnado & Sloman,
2004; Rottman & Hastie, 2014) as well as recent studies of temporal
causal learning (Bramley, Gerstenberg, Mayrhofer and Lagnado, 2018;
Buehner & McGregor, 2006) typically focus on one type of causal
relationship at a time. In contrast, this paper aims to investigate how
one can learn preventative and generative relationships where both
are in play at once. Can people identify what is causing and what is
preventing an effect despite, and perhaps even because of the ways that
such causal influences intertwine and interact in time. Although this
may sound like a ‘‘niche’’ scenario, it is actually very common. To illus-
trate such an everyday situation: Suppose you adopt a cat that, while
adorable, frequently urinates outside its litter. You would like to un-
derstand why and learn to prevent this behavior before she completely
ruins your soft furnishings.1 Identifying the causes of the problem
eeing, not to mention an effective pee-prevention strategy is nontrivial
nd might require considerable thought and experimentation. Perhaps
ou notice the cat rarely pees inappropriately when playing with its
easer. However it is unclear if teaser is an effective preventer, because
he times of day she is encouraged to play with it may be different
rom those when she pees. Intuitively, diagnosis becomes easier if you
an exploit the moments when you know she tends to urinate to test
hether the teaser is an effective preventer. For instance, if she often
rinates around 7 a.m, you could try introducing her teaser around this
ime. Alternatively, you might consider encouraging her to drink water
o stimulate additional need to urinate a little before the time she more
abitually plays with her teaser. In this way you might leverage either
n established baseline expectation or an established generative cause
extra water) to facilitate your preventative investigation.

The example above shows, firstly, that temporal expectations are
ecessary to make sensible causal inferences (Bramley, Gerstenberg,
ayrhofer et al., 2018; Buehner & McGregor, 2006; Greville & Buehner,

010; Lagnado & Sloman, 2006). In this case we need some sense of
hen the cat usually pees inappropriately, as well as an expectation
f how long it takes for water to pass through its body. Secondly, it is
ikely that generative and preventative influences interact in terms of

how they reveal or obscure one another (Lombrozo, 2010; Rottman,
2016). The existence of either a regular base rate occurrence of an
effect, or of effects generated by a known generative cause with regular
delays, makes it possible to form a strong expectation against which we
can test preventative causes.

In this paper we distill these reasoning patterns into a task and a
rational analysis that aim to examine: (1) whether people can use tem-
poral knowledge to learn causal systems that include both generative
and preventative causes, (2) how the regularity or predictability of the
base rate occurrence of an effect of inference affects the learning pro-
cess, and (3) whether there are interactions between learning different
types of causes.

Apart from establishing what factors influence temporal causal
learning, we also want to know how people learn, i.e. what kind
of inference process can capture human judgments. Causal Bayesian

1 This is a real life example for one of the authors of this paper.
2

Networks (CBNs) are an established mathematical framework repre-
senting and reasoning about causal structure giving rise to observations
(Allan, 1980; Pearl, 2000; Rottman & Hastie, 2014). In the psychology
of causal reasoning, they have served as a computational-level norm
(Marr, 1982) allowing researchers to investigate how the cognitive pro-
cesses of causal induction approximate or deviate from ideally reverse
engineering the generative causal mechanism most likely to be respon-
sible for one’s observations. Accordingly, a number of process-level
models have been proposed (Bramley, Dayan, Griffiths and Lagnado,
2017; Davis & Rehder, 2020) that each capture some of the ways
human performance departs from this kind of Bayesian ideal. How-
ever, CBNs and extant process-level models do not describe the role
of continuous-time information in human causal structure induction.
This is surprising, since as argued, time is a ubiquitous feature of
human interactions with their environment, and the need to process
rich temporal information in real time is a practical constraint on most
of our basic causal inferences. In this paper we take a rational analysis
approach (Anderson, 1990; Simon, 1982), starting with a normative
account of inference from observations of real-time events to their
underlying causal structure and developing a process-level approxi-
mation family that can capture human deviations from this. For our
normative account, we expand the CBNs framework so that it incorpo-
rates representing and learning via causal delay information. Alongside
this, we propose a process-level framework that exploits several tricks
for approximating intractable probabilistic inference: mental simula-
tion (Battaglia, Hamrick, & Tenenbaum, 2013; Ullman, Stuhlmüller,
Goodman, & Tenenbaum, 2018), local computations (Bramley, Dayan
et al., 2017; Fernbach & Sloman, 2009), and temporally local evidence
(Bonawitz, Denison, Gopnik, & Griffiths, 2014; Bramley, Dayan et al.,
2017; Bramley, Lagnado, & Speekenbrink, 2015).

1. Question 1: How do beliefs about causal orders and delays
shape causal structure learning?

One of our main goals is to test whether people can use their knowl-
edge about time and causality to learn causal structure. Previous studies
have demonstrated the temporal knowledge from three perspectives:
order, delay expectation, and delay variation.

Foundational to the notion of causation, is the principle that causes
must precede their effects (Hume, 1740). Accordingly, people use the
order of occurrence to constrain and sometimes fully attribute causal
structure among components of a system (Bramley, Gerstenberg, &
Lagnado, 2014). Indeed, event order appears to be a strong heuris-
tic cue to causal order, having been shown to override contingency
patterns even in settings where participants are instructed that order
is an unreliable guide (Lagnado & Sloman, 2006) or even completely
irrelevant to causal structure (Rottman & Keil, 2012).

As well as order, causal inferences are sensitive to delays between
events. People make stronger or more confident (generative) causal
attributions connecting events separated by short temporal delays than
by long temporal delays (Shanks & Dickinson, 1991; Shanks, Pearson,
& Dickinson, 1989; Tarpy & Sawabini, 1974). This reflects one of the
most basic forms of learning, in which animals associate stimuli at
a learning rate inversely related to their separation in time (Grice,
1948). However, going beyond automatic associations in time, human
causal attributions are moderated by domain-specific delay expecta-
tions, with shorter-than-expected delays also reducing the causal judg-
ment strength (Buehner & May, 2002; Buehner & McGregor, 2006; Hag-
mayer & Waldmann, 2002; Lagnado & Speekenbrink, 2010; Mendelson
& Shultz, 1976). For example, Hagmayer and Waldmann (2002) found
participants judged whether an insecticide prevents mosquitoes by
comparing prevalence of mosquitoes in fields with and without the
insecticide, but judged whether planting flowers prevents mosquitoes
based on whether the prevalence of mosquitoes was affected the year
after the flowers were planted, presumably expecting that flowers
would take longer to influence the insect population than insecticide.
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Besides the length of inter-event delays, people are also sensitive to
delay variability when they are repeatedly exposed to putative cause–
effect pairs. That is, people rate one kind of event as less of a strong
cause of another to the extent that the delay varies a lot across instances
(Greville & Buehner, 2010; Lagnado & Speekenbrink, 2010).

Recently several studies proposed models to capture human’s expec-
tations for delay length and variation, including scenarios of pairwise
causal learning (Pacer & Griffiths, 2012), structure learning (Bram-
ley, Gerstenberg, Mayrhofer et al., 2018; Pacer & Griffiths, 2015),
imputing hidden causes (Valentin, Bramley, & Lucas, 2022), or mak-
ing judgments of actual causation given a known causal structure
(Stephan, Mayrhofer, & Waldmann, 2020). Nevertheless, these studies
have predominantly focused on cases of generative causal influence.
Additionally, they have focused on inference from sets of independent
clips, in which root components are usually activated at the start and
effects follow from this. However, a more naturalistic and challenging
setting is one where causes and effects intermingle and components
can exhibit multiple activations, and both generative and preventative
influences can occur within a single learning episode. This is the setting
we will explore.

2. Question 2: How do generation, prevention, and background
causes interact in affecting causal learning?

Early studies of causal cognition focused on elemental pairwise
causal judgments based on contingency data. While not directly related
to the current temporal setting, these studies reveal general principles
of causal inference. For instance, the 𝛥𝑃 principle captures the change
in the probability of an effect occurrence with vs. without a putative
cause (𝑃 (𝐸|𝐶) − 𝑃 (𝐸|¬𝐶)), forming a basic metric for the strength
and direction of a potential causal effect (Allan, 1980). However,
researchers later found people are sensitive to the base rate of the effect
𝑃 (𝐸|¬𝐶). That is, how frequently the effect occurs in the absence of
the cause. For a fixed 𝛥𝑃 , people infer stronger generative influences
when base rates are high (because this implies the cause would have
succeeded a greater proportion of the time if it had the chance to
operate), and stronger preventative influences when base rates are low
(Buehner et al., 2003; Cheng, 1997; Wu & Cheng, 1999).

In addition to the size of the base rate, the regularity of the base
rate also influences causal inference. In Rottman (2016), participants
were asked to evaluate the effectiveness of two medications. In one
context, the baseline pain level was random from case to case, whereas
in another setting, it was autocorrelated (i.e. it tended to increase or
decrease smoothly over time). Participants were found to focus more
on the raw effect values in the random condition, while focusing more
on the change of effect values in the autocorrelated condition. This
indicates that people are sensitive to environmental stability, adapt-
ing how they accumulate and represent causal effect evidence when
receiving information in different environments (Biele, Erev, & Ert,
2009; Whittle, 1988). We will explore whether people are sensitive to
temporal regularity (periodic vs. unpredictable) and, if so, whether or
not they adjust their inference strategy accordingly.

Finally, humans show some ability to condition on other variables
when inferring the role of a target variable (Beckers, De Houwer,
Pineno, & Miller, 2005; Gopnik, Sobel, Schulz, & Glymour, 2001;
Rescorla & Wagner, 1972; Shanks, 1985). People can use informa-
tion regarding known causes to better understand unknown causes,
particularly preventative causes. The classic paradigm in prevention
learning is to let learners build a generative impression of a cause (𝐴+),
nd then expose them to negative results under the combination of
generative cause and a preventative cause (𝐴𝐵−). People learn the

reventive cause better in this case than when the preventative cause
s paired with the negative result alone (𝐵−, Lee & Lovibond, 2021;
ovibond & Lee, 2021; Melchers, Wolff, & Lachnit, 2006; Rescorla &
agner, 1972). However, the existence of temporal information may
3

ctually increase the difficulty of thinking about causal interactions:
To utilize the generative causes to learn about prevention, the learner
must have ensured that generative causes would have produced effects
in a particular time period when preventative causes are active.

Recent studies also demonstrate human limitations in dealing glob-
ally with joint probability, i.e. reasoning probabilistically about mul-
tiple interacting variables (Bonawitz et al., 2014; Davis, Bramley, &
Rehder, 2020; Fernbach & Sloman, 2009; Griffiths, Lieder, & Goodman,
2015; Markant, Settles, & Gureckis, 2016). Outside of very simple
learning problems, they may rather focus on local components of the
system rather than maintain a global perspective. For example, people
often infer an erroneous 𝐴 → 𝐶 link when reasoning about a generative
system with two links 𝐴 → 𝐵 → 𝐶, apparently failing to notice that 𝐵
an explain 𝐶 ’s dependence on 𝐴 (Davis et al., 2020; Fernbach & Slo-
an, 2009). Through model comparison, we will explore to what extent
eople can reason globally or locally about causal structure on the basis
f real time evidence, e.g. whether they can account for and potentially
ootstrap their inferences by considering interactions between causal
echanisms, or if they rather fail to make these accommodations.

. Question 3: How do people process temporal dynamics to make
ausal inferences?

We build two models for describing how the temporal information
ould be processed in order to make causal inferences. We will explain
he models at a theoretical level in this section and refer the readers to
ppendices B and C for technical details. To do this, we first introduce

he learning task before describing our model so that readers can get a
oncrete understanding of how it works.

.1. The learning task

In this study, participants must guess the structure of abstract
ausal ‘‘devices’’ (Bramley, Dayan et al., 2017; Bramley, Gerstenberg,
ayrhofer et al., 2018; Gong, Gerstenberg, Mayrhofer, & Bramley,

023) composed of three components (Fig. 1a–d): two ‘‘control compo-
ents’’ (i.e. Cause 𝐴, 𝐵) and one ‘‘target component’’ (i.e. Effect 𝐸) on
he basis of observations of those structures being perturbed by inter-
entions. To control the impact of interventions, our experiments focus
n a learning setting wherein the interventions are part of the stimuli,
eaning participants observe them taking place rather than selecting

nd performing them themselves. For each device, the connection
etween each control component and the target component could be
enerative, preventative, or they might be unconnected (non-causal).
hus, we focus on learning in a nominal hypothesis space of 9 possible
tructures including all combinations of generative, preventative and
on-causal connections from 𝐴 and 𝐵 to 𝐸 (Fig. 1e). As a first foray
nto preventative causation in real-time causal structure induction, we
ocus on this restricted hypothesis space of causal structures which
nly contains the common effect topology. However, the experimental
aradigm and computational models we introduce generalize directly
o learning in arbitrarily broader causal hypothesis spaces, as well as
nder different prior expectations about plausible delays and relations.

We focus on relationships between point events (i.e. activations)
ccurring at a device’s components at particular moments in time. We
ssume an activation of a generative component will always produce
n ‘‘extra’’ activation of the target component (i.e. causal strength = 1,
heng, 1997, see Fig. 2a). We use the gamma distribution to model and
enerate the delays between causes and effects (Bramley, Gerstenberg,
ayrhofer et al., 2018; Stephan et al., 2020; Valentin et al., 2022). See
ppendix A for more details.

We assume an activation of a preventative component blocks any
ctivations of the target component for a short stochastic time window
Fig. 2b). We assume that prevention occurs irrespective of whether
ctivations would have been caused by a generative causal influence
r would have occurred spontaneously. Preventative influences are
hus conceived as having a broad preventative scope (Carroll & Cheng,
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Fig. 1. Causal devices tested in this paper. (a–d) Experimental interfaces. Participants were instructed to the control components and target components in the causal devices and
observed how the system reacted to pre-set interventions. They marked their answers of the role of each connection during or after the observation. (e) The response hypothesis
space (all possible pairwise combinations of generative (G), non-causal (N), and preventative (P) connections). (f) The illustrations shown to participants in the regular (periodic)
vs. irregular (exogenous) base rate condition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Using gamma density distributions to generate the delays between cause and effect and the blocking windows of preventative causes. Circles indicate cause events and
diamonds indicate effect events. Each vertical line shows an actual sampled situation. (a) The distribution of delays between cause and effect. When a generative cause event
occurs, it will produce an effect event after 1.5 ± 0.5 s. (b) The distribution for preventative window length. When a preventative cause event occurs, all effect events supposed
to occur within 3 ± 0.5 s will be canceled, while effects outside the preventative window (the red box) would not be affected. (c) The distribution of delays between base rate
events in the regular condition. When a base rate effect occurs, the next base rate effect will occur after 5 ± 0.5 s. (d) The distribution of delays between base rate events in the
irregular condition. When a base rate effect occurs, the next base rate effect will occur after 5 ± 5 s. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
2009).2 By definition, activations of non-causal components have no
impact on the behavior of the target component.

Two forms of background activation are considered. In the Regular
base rate condition, the target component activates quasi-periodically
(Fig. 2c). In the Irregular base rate condition it occurs exactly as often
overall but is completely unpredictable when the next occurrence will
be (Fig. 2d; see Appendix A).

3.2. Bayesian inference

We now lay out an ideal Bayesian model as a normative model for
this task. The ideal reasoner is presumed to take all activation events
within the observation interval as the basis of their inference and use
the relative likelihood of these under different structural hypotheses to
update a distribution over causal structures. The calculation of likeli-
hood here depends on an expensive enumerative actual causal attribu-
tion step (Halpern, 2016). The basic idea is that accurate judgments
about type-level causal relationships (i.e. about the underlying causal
structure) depend on detailed considerations about the token-level cau-
sation giving rise to the observable evidence (i.e. which particular event
actually caused which particular effect). There are often a very large
number of possible ways that even a single causal hypothesis could
have produced a particular pattern of observed events. For instance,
if 𝐴 activates at 0.1 s and 𝐵 activates at 1.2 s (𝐢{𝑖(1)𝐴 = 0.1𝑠, 𝑖(1)𝐵 = 1.2𝑠}),

2 We recognize that there are other ways in which one might operationalize
prevention and we consider several alternatives in the General Discussion.
4

and the learner observes two subsequent effects (𝐝{𝑑(1) = 1.5𝑠, 𝑑(2) =
2.8𝑠}), even under the hypothesis that 𝐴 and 𝐵 are both generative
causes, the data could be produced in multiple ways: 𝐴 could have
caused the first effect and 𝐵 the later one (𝑖(1)𝐴 → 𝑑(1), 𝑖(1)𝐵 → 𝑑(2)) or
𝐴 could have caused the later effect and 𝐵 the earlier one (𝑖(1)𝐴 → 𝑑(2),
𝑖(1)𝐵 → 𝑑(1)). Alternatively one or both connections could have not
revealed their effects yet and meaning either or both observed effects
could simply be base rate activations. Therefore, in order to maintain
rational beliefs about causal structure, the ideal reasoner considers all
possible causal paths that could describe what actually happened given
each possible structural hypothesis.

Fig. 3a shows two examples of the tree of possible causal paths un-
der two of the possible structural hypotheses. Since one must consider
possible causal paths exhaustively, the complexity of this inference
scheme scales in a worse-than-polynomial manner as the number of
events a learner observes increases.

3.3. Simulation-and-summary-statistic approximation

While the enumerative approach achieves benchmark performance
by inverting the generative model, exhaustively considering pathways
linking all observed events, it makes unrealistic demands on memory
storage and computing power compared to what could plausibly be
involved in human cognition. Therefore, we propose a process-level
model that is more consistent with cognitive constraints. It is based on
the simulation-and-summary-statistic idea (also written as ‘‘summary-
statistic’’ for short), which is an important approach in Approximate
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Fig. 3. Illustrations of model algorithms. (a) Causal path construction under fully normative inference. i. Data: Each line indicates a cause (𝐴, 𝐵) or an effect (𝐸) event in the
evidence. ii-iii. Ideal observer sums over all possible pathways (branches) that explain all events evidence under each hypothetical structure. ii. e.g. Under the structure where
𝐴 and 𝐵 are both generative causes, there are 13 ways to explain Evidence 𝑑: one candidate cause for 𝐸0 (base rate), four candidate causes for 𝐸1, and 3–4 candidate causes
for 𝐸2 depending on how 𝐸1 is explained. iii. Possible pathways under a different structure. (b) Summary-statistic approach: i. Intervention-window or fixed-window evidence
segmentation. ii. Distributions for summary-statistics given different connection types based on pre-simulated data. The model uses likelihood of observed statistics under these
distributions as a proxy for generative model likelihood. Distributions slightly differ given different base rate conditions. (c) Example where posterior over structures differs among
models (assuming a regular base rate). Curved arrows indicate the true underlying generative process unknown to the models. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Bayesian Computation in statistics (Blum, Nunes, Prangle, & Sisson,
2013; Lintusaari, Gutmann, Dutta, Kaski, & Corander, 2017; Sunnåker
et al., 2013; Zhao et al., 2023). We explore this idea’s cognitive plausi-
bility as an explanation for human judgments in our setting. Our model
incorporates three features of bounded inference that are often high-
lighted in cognitive psychology: mental simulation, local computation,
and temporally local evidence.

3.3.1. Mental simulation
The tendency to rely on simulation-based approximation to exact in-

ference has been hypothesized to play an important role in model-based
reasoning in many scenarios, including physical scene understanding
(Battaglia et al., 2013; Hamrick, Battaglia, Griffiths, & Tenenbaum,
2016; Ullman et al., 2018), mechanical reasoning (Hegarty, 2004),
and causal judgment (Gerstenberg, Goodman, Lagnado, & Tenenbaum,
2021; Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum, 2017).
The idea is that instead of computing the likelihood of a potential
generative model producing observed data exactly, people instead
compare their observations to mental simulations of what kind of
pattern they expect to happen under different generative models.

Critical to this process is the identification of a useful set of easily
tracked abstract cues or features with which to compare such simu-
lations to observations. When a scenario of interest involves complex
dynamics, direct surface-level (i.e. ‘‘pixel-level’’) comparison between
simulated and observed evidence is generally inappropriate for measur-
ing the likelihood of a hypothesis. Ullman et al. (2018) combined the
ideas of simulation and abstraction to model inferences about the latent
properties of physical objects (such as masses and forces) from observed
dynamics. As a simple example, if imagined heavy objects tend to move
more slowly than imagined light objects, this licenses the use of speed
as a (fallible) cue to mass.
5

Concretely, we explore whether simple salient local features of
event sequences that are diagnostic (if fallible) guides to local causal
relationships can explain human judgments better than a fully Bayesian
treatment. The implied cognitive process is that learners draw on
(imagined) evidence under different causal ground truth structures in
order to develop statistical cues that can be directly applied to pairwise
causal judgments. Here we simply investigate two straightforward and
salient cues that people might be sensitive to in the current task:

1. Delay: The interval between a cause component’s activation and
the next subsequent effect activation.

2. Count: The number of activations of the effect after the cause
activation within some time window.

These cues are hand-engineered, and far from exhaustive. However,
they are simple to track and turn out to discriminate reasonably well
between different types of causal connections. As shown in Fig. 3b, for
the delay cue, we generally expect to see shorter intervals between
a control component’s activation and the target component’s next
activation if the control component is a generative cause, a medium
and more variable interval if there is no connection or a longer interval
if it is preventative. For the count cue, more effect activations are
likely to follow the activation of the generative component on average
because of the existence of base rate activations as well as generation.
In contrast, fewer activations are likely to follow the activation of
preventative components. The former cue considers concrete delay
information but ignores the possibility of different causal pathways,
while the latter cue ignores the exact temporal interval between events
(cf. Bramley, Gerstenberg, Mayrhofer et al., 2018).

3.3.2. (Structurally) local computation
Both the count and delay cues introduced above ignore surrounding

structure and context leading to the potential for interference. For
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example, in the presence of a known preventative cause that has just
occurred, an ideal learner should reduce their expectation that a gen-
erative cause would produce a short delay to the next event, or a high
subsequent effect count. Thus, this approach also captures a principle
of local computation (Bonawitz et al., 2014; Bramley, Dayan et al.,
2017; Davis et al., 2020; Fernbach & Sloman, 2009; Griffiths et al.,
2015; Markant et al., 2016), predicting that learners will make causal
attributions at the level of individual links without accommodating the
global context and the full space of global causal models.

The other reason why we apply local computation to this process-
level model is that it can greatly reduce the computational cost com-
pared to the global computation approach. In the current continuous-
time setting, interventions could happen at any time making every
context unique. This means that conditioning one’s inference on even a
single previous intervention requires learners to simulate a much larger
number of one-off context-specific situations. Introducing more of this
context sensitivity (i.e. constructing separate summary statistics for
each possible combination of causes) would allow a summary-statistic
approach to perform closer to normative inference but at the cost of
increasing computational demands and reducing generality beyond the
set of contexts considered.

3.3.3. (Temporally) local evidence
The final cognitive feature we consider is related to how people

parse and segment the evidence encountered across an extended ob-
servation of a causal system. Ullman et al. (2018) applied a summary-
statistic approach to short observations (5 s) and allowed participants
unlimited replay opportunities, so assumed people could use cues based
on the entire observation. In the scenario considered here, the learner
observes causal dynamics for considerably longer (20 s, containing
dozens of events) without recourse to replays. In general, we experience
the world in a single ongoing timeline. Thus, with finite short-term
memory storage and attention, it seems plausible that people abstract
cues more locally than from full observation. In other studies, people
are found to often use temporally local (i.e. recent) information to drive
causal model learning (Bramley, Dayan et al., 2017; Davis et al., 2020;
Rehder, Davis, & Bramley, 2022). Furthermore, people are often unable
to recall older evidence exactly (Bramley et al., 2015; Harman, 1986),
rather remember whatever conclusions they have drawn on the basis
of it.

In line with these ideas, we hypothesize that people segment their
observations as they unfold, using recent events to update their beliefs
and then discarding their memory of them. We consider two ways
to segment continuous-time evidence. As shown in Fig. 3b, a unit of
evidence under both approaches begins with an intervention (i.e. the
activation of a control component), capturing the basic principle that
causes can only influence what happens later. An Intervention-window
segmentation approach treats one unit of observation as the interval
between one intervention and the next. This removes the distraction
of other interventions that might also influence the effect, but ignores
the fact that these interventions might be performed irregularly or
reactively, and also that actual effects may not have been revealed be-
fore the occurrence of the next intervention. A Fixed-window approach
ends one unit of observation after a fixed amount of time. This has
the advantage of stability in its odds of including all relevant effects’
but instead opens the door to confounding influences when subse-
quent interventions occur within the preceding observation window. A
fixed window approach also implies some degree of parallel processing
since fixed-length attentional windows may easily overlap in a single
timeline.

3.4. Summary of modeling frameworks

In sum, we have laid out two approaches to solving the current
learning problem. The normative model utilizes the exact timing infor-
mation of each event, considering all possible observation-consistent
6

w

ways in which the effects might have been generated or prevented.
The summary-statistic model compresses the information by abstracting
useful cues and comparing the similarity between cues summarized
from observation with mental simulation. We do not see the two
accounts as fundamentally in tension. Rather, the summary-statistic ap-
proach embodies a set of algorithmically plausible steps to approximate
the normative solution.

Given the information compression and the local focus of the
summary-statistic approach, its predictions diverge from the normative
one in some situations. One example is shown in Fig. 3c. When 𝐵
activates and then 𝐴 activates followed closely by two effects, the
normative learner finds this most consistent with the structure where 𝐵
is a generative cause because the delay between 𝐵 and the first effect
is consistent with its delay expectation, while the other effect could
easily be due to the base rate. For the summary-statistic models, the
intervention-window approach suffers from a blocking effect, where the
occurrence of 𝐴 masks any potential link between 𝐵 and the effects.
The fixed-window approach suffers from a local computations error,
where each effect is potentially attributed to both 𝐴 and 𝐵 leading to

marginal preference for the model with both 𝐴 and 𝐵 as generative
causes. We will show more similarities and differences between the two
modeling approaches alongside human behavior in Results sections.

4. Overview of experiments

We now report on three experiments that investigate how people
infer preventative and generative causal structures in continuous time.
Each experiment includes stimuli generated from each of the nine un-
derlying structures we consider (Fig. 1e). Experiment 1a and 1b aimed
at exploring how overall structure and regular and irregular base rates
influence causal judgments. Experiment 2 additionally includes stimuli
designed to probe whether people make specific mistakes predicted
by the summary-statistics model. All pre-registrations, materials, data,
and analysis code are available at https://osf.io/q8n72/. Stimuli for all
experiments can be viewed at https://github.com/tianweigong/causal_
diamond.

5. Experiment 1

5.1. Methods

5.1.1. Participants
One hundred and eighty-seven participants from Amazon Mechan-

ical Turk were recruited and reported for Experiment 1a (81 female,
105 male, 1 non-binary, aged 37 ± 11, regular vs. irregular condition:
93 vs. 94) and another 123 participants were recruited and reported for
Experiment 1b (45 female, 78 male, aged 39± 11, regular vs. irregular:
63 vs. 60). The sample size of Experiment 1a was determined by a
power analysis comparing two between-subject groups anticipating a
medium sized effect (𝑑 = 0.5) with a goal of .90 power at the standard
.05 alpha. The sample size for Experiment 1b followed a pilot study
(Gong & Bramley, 2020) given that both of them aimed to compare
participants’ performance with normative and heuristic models. Nine
additional participants in Experiment 1a were recruited but excluded
prior to analysis because they clicked (to respond) more than 300
times during the task (as average participants acted 113 ± 26 times).
Hence, we suspected these respondees were either inattentive or non-
human. Four additional participants in Experiment 1b were recruited
but excluded prior to analysis because they clicked more than 300 times
during the task (n = 2), or failed to pass at least one of two attention
questions (n = 2).3 Participants were paid between $1.00 and $2.08

3 We also pre-registered to exclude participants who took more than six
ttempts to pass all instruction comprehension check questions. However, with
he benefit of hindsight, we recognized that even attentive participants often
equired several attempts to pass our stringent comprehension checks. Thus,
e opted to relax this exclusion criteria.

https://osf.io/q8n72/
https://github.com/tianweigong/causal_diamond
https://github.com/tianweigong/causal_diamond
https://github.com/tianweigong/causal_diamond
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depending on their performance (see below) and experiments lasted
around 20 min.

5.1.2. Design & procedure
Overview. In both Experiment 1a and 1b, participants judged the causal
structure of 18 causal devices (Fig. 1e). When a generative cause event
occurred, it would produce an effect event after 1.5 ± 0.5 s (see Fig. 2a).
Whenever a preventative cause event occurred, any upcoming effect
events in the subsequent 3 ± 0.5 s were canceled (see Fig. 2b). Each
base rate event occurred 5 ± 0.5 s after the previous one in the regular
base rate condition, or 5 ± 5 s in the irregular base rate condition. The
choice of generative delay was based on past studies that suggest people
only reliably attribute causal relations to delays of up to around 2 s in
the absence of context information shaping delay expectations (Shanks
& Dickinson, 1991; Shanks et al., 1989). We chose the size of the true
preventative windows and base rates such that base rates are generally
lower than casual influences (i.e. activity is relatively sparse without
any generative events) and preventive influences last long enough to
have a reasonable chance of preventing something. The true sampled
causal delays are unknown to the learner (human or model), but for
simplicity we pre-trained (Experiment 1a) or told (Experiment 1b)
participants about typical patterns of base rate activations and about
typical generative delays and preventative durations in an instruction
phase, and so also assumed these parameters were available to all
models.

For each device, participants clicked a ‘‘Start’’ button to watch
the clip. Each clip started with a base rate activation of the target
component and included three pre-set interventions on 𝐴 and three
on 𝐵 randomly spaced and intermingled over 20 s. After that, the
clip would end and no further activations could be observed. Com-
ponents’ activations were displayed as the component ‘‘lighting up’’
by changing from gray to yellow for 350 ms. The activation of the
control component was accompanied by a hand symbol (Fig. 1b) and
participants were told that this showed that control components were
being intervened on by someone or something external to the system,
meaning that the interventions happened at random moments rather
than following any informative pattern. Clips were selected to make
sure that no activation was masked by another on the same component
in the clips, and participants were also told about this rule.

Participants were invited to mark their guesses about the two
connections during or after the clip by clicking the space between the
components (Fig. 1d). Each clip could only be played once. The order
of 18 trials, as well as the click pattern (whether they would have to
click once, twice, or tree times to select generative, preventative or non-
causal), and the vertical position of 𝐴 and 𝐵 components (above or
below) were randomized independently between participants.

Participants were informed of the timing of three types of con-
nections as well as the target component’s self-activation prior to the
inference task. For the base rate specifically, participants in the regular
condition were told that the target component would activate regularly
about every five seconds and they saw an illustration with a circular
arrow to create the impression of periodic activation (Fig. 1f). Partici-
pants in the irregular condition were told that the target component
can activate by itself at completely random times and they saw an
illustration with an exogenous link intended to imply that someone
sometimes activates the target component directly but one cannot
anticipate when it will happen (Fig. 1f). In order to similarly provide
timing information, participants were told the base rate activation
happens about 2–7 times per clip. Participants had to pass introduction
check questions before starting the experiment. To properly incentivize
accurate judgments, a 3-cent bonus was paid for each correctly iden-
tified connection and non-connection during the main task in addition
to the basic $1 payment.
7
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Experiment 1a. In Experiment 1a, to generate stimuli from different
structures (e.g. both generative, one generative and one non-causal)
and different conditions (i.e. regular vs. irregular) comparable, we
used a Latin-square design. We first created 18 causal delay seeds
independently. Each of these included a set of timings for interventions,
base rate activations, which depended also on whether the base rate
was regular or irregular, and what generative delays (or blocking
windows) 𝐴 and 𝐵 would have if they were generative (or preventative)
components. Under each seed, 18 stimuli (9 causal structures × 2 base
rate settings) were generated by implementing generative or preven-
tative influences according to the ground-truth structure (see Fig. 4a
for an example of a single seed manifesting under each structure and
base rate condition). Across different seeds, the timing and order of
interventions were randomly generated to capture the diversity of ways
in which the interventions could be interleaved ranging from perfectly
interleaved (e.g. 𝐴𝐵𝐴𝐵𝐴𝐵) to perfectly clustered (e.g. 𝐴𝐴𝐴𝐵𝐵𝐵, see
Fig. 4b for an example of a single structure under different seeds and
base rate conditions). All stimuli were finally divided into 18 sets (9
sets for each base rate setting) according to a Latin-square design that
ensured participants would only see one structure under each seed
(see https://osf.io/sqv6c for the counterbalancing matrix). Participants
were randomly assigned to one of these 18 sets.

In the instructions, participants saw training videos that showed the
patterns of the target component’s base rate activations (corresponding
to their condition) and also what happens after intervening on a
causal system with a single (generative, non-causal, or preventative)
connection. They completed a single practice trial in which the true
causal device included one generative connection and one non-causal
connection. Feedback was provided in the practice trial but not in the
test trials.

Experiment 1b. Experiment 1b differed from Experiment 1a from two
perspectives. Firstly, although we assume the provenance of the
summary-statistic approximation to be mental simulation, cues might
also be derived from experience with the ‘‘labeled data’’ included in the
instructions or practice trials. Therefore, Experiment 1b only kept the
text instructions and removed the training videos and practice trials, to
show that labeled data were not necessary for participants to complete
the task.

Additionally, given that the stimuli in Experiment 1a were gener-
ated by one of the ground truth structures, the normative model and
summary-statistic approximations often made similar predictions. To
probe how participants react to situations with stronger discrepancies
between the normative and summary-statistic predictions, we created
some stimuli that were not generated by any particular causal device.
We created two blocks of stimuli in Experiment 1b. Block 1 included
nine stimuli for each participant, which replicated the procedure of
Experiment 1a, and served to ensure participants were habituated to
reacting to ‘‘normal’’ stimuli. In Block 2, we generated potential test
stimuli by randomly distributing six interventions and between 1 and
9 effects across a 20 s trial. We selected sequences for which the
structure predictions of the normative and summary-statistic models
were strongly dissimilar, while ensuring that these stimuli were not
too normatively improbable (i.e. that they could conceivably have been
generated by one of the causal structures).4 There were 27 stimuli for
each condition and each participant observed nine of them. Block 1

4 Specifically, we picked the stimuli where at least one (intervention-
indow) summary-statistic cue (Delay or Count) had a different dominant
nswer compared to the normative model and rejected any for which the
ikelihood of the most probable structure producing the data was extremely
ow (<10−40). The squared error between normative and summary-statistic
redictions in Block 1 (trials with the ground truth) and Block 2 (trials without
he ground truth) was 0.22 vs. 0.53 on average. The likelihood of the most
robable structure according to the normative model in Block 1 and Block 2
as 0.07 vs. 0.004 on average.

https://osf.io/sqv6c
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Fig. 4. (a) Examples of a single seed under different structures and base rate conditions (from one stimulus seed used in Experiment 1a). 𝑌 -axis refers to the roles of Component
𝐴 and 𝐵 (e.g. GP: 𝐴 is a generative cause and 𝐵 is a preventative cause). (b) Examples of a single structure manifesting under different seeds and base rate conditions. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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always preceded Block 2 so that the first half task would be identical
to Experiment 1a. Participants completed 18 trials in sequence without
any delineation between the blocks. All other experimental settings
remained identical to Experiment 2. The bonuses were, in reality,
determined by doubling the bonuses participants gained in Block 1.

5.2. Results

We focus on analyzing participants’ accuracy by comparing their
judgments against the ground truth. We investigate whether partic-
ipants’ performance was influenced by the nature of the underlying
causal mechanism, base rate regularity, or the observed intervention
sequence (i.e. whether this involves interleaved interventions on the
two components or clusters of interventions on one component then
the other). Since these analyses require there to be a correct answer,
for Experiment 1b we only include Block 1.

To compare our models’ behavior qualitatively with participants’,
we simulate judgments of each model type after observing the same
stimuli as the participants. We used one fitted softmax parameter for
each model and repeated each simulation 200 times per participant to
obtain stable and consistent distributions of simulated judgments (see
Appendix D for model fitting details). For summary-statistic models,
we average predictions under the two proposed features with equal
weights to form a combined prediction (cf. Ullman et al., 2018).
Results of intervention-window vs. fixed-window summary-statistics
were similar at the aggregated level, and hence we only visualize the
intervention-window results in the figures.

5.2.1. Overall performance
In Experiment 1a, participants in both regular and irregular condi-

tions performed above chance at the connection level (chance = 33%,
regular: 66% ± 22%, 𝑡(92) = 14.75, 𝑝 < .001, 𝑑 = 1.53, 95%CI of
𝑑 = [1.23, 1.84]; irregular: 61% ± 18%, 𝑡(93) = 14.67, 𝑝 < .001, 𝑑 = 1.52,
95%CI of 𝑑 = [1.22, 1.82]) as well as the structure level (1 = correct in
both connections; 0 = otherwise, chance = 11%, regular: 49% ± 27%,
𝑡(92) = 13.83, 𝑝 < .001, 𝑑 = 1.43, 95%CI of 𝑑 = [1.15, 1.73]; irregular:
41% ± 22%, 𝑡(93) = 13.27, 𝑝 < .001, 𝑑 = 1.37, 95%CI of 𝑑 = [1.09, 1.66]).
These patterns were replicated in Experiment 1b, where participants
also performed above chance at both connection (regular: 67% ± 22%,
𝑡(62) = 11.93, 𝑝 < .001, 𝑑 = 1.50, 95%CI of 𝑑 = [1.15, 1.88]; irregular:
59% ± 19%, 𝑡(59) = 10.11, 𝑝 < .001, 𝑑 = 1.30, 95%CI of 𝑑 = [0.96, 1.66])
and structure levels (regular: 49% ± 29%, 𝑡(62) = 10.64, 𝑝 < .001,
𝑑 = 1.34, 95%CI of 𝑑 = [1.00, 1.69]; irregular: 39% ± 23%, 𝑡(59) = 9.21,
𝑝 < .001, 𝑑 = 1.19, 95%CI of 𝑑 = [0.86, 1.53]). Indeed, accuracy did not
differ between Experiment 1a and 1b at the connection level (regular:
𝑡(154) = 0.09, 𝑝 = .926; irregular: 𝑡(152) = 0.81, 𝑝 = .418) or the
8
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structure level (regular: 𝑡(154) = 0.004, 𝑝 = .997; irregular: 𝑡(152) = 0.56,
𝑝 = .578). This means that labeled data in the form of video training and
practice trials were not a necessary condition for participants’ success in
this task. We therefore combine stimuli from two experiments in later
analyses to obtain a larger sample size.

5.2.2. Focal and neighboring causes
To investigate participants’ ability to identify generative, non-

causal, and preventative connections, as well as whether the base
rate regularity or the neighboring connections would influence per-
formance, we performed a 3 (focal cause: generative, non-causal,
preventative) × 3 (neighboring cause: generative, non-causal, preventa-
tive) × 2 (base rate regularity: regular, irregular) mixed ANOVA. Each
trial provided two data points here, one regarding 𝐴 as the focal cause
and 𝐵 as the neighboring cause and the other regarding 𝐵 as the focal
ause and 𝐴 as the neighboring cause.

There was a main effect of focal cause (𝐹 (2, 616) = 101.24, 𝑝 < .001,
2
𝑝 = .247, 95%CI of 𝜂2𝑝 = [.200, .293]). Participants performed best
t identifying generative connections (77% ± 24%), then preventative
onnections (63% ± 31%), and finally non-causal connections (51% ±
9%, Fig. 5a). The differences were all pairwise-significant (Bonferroni
djusted 𝑝 < .001).5

There was a main effect of base rate regularity (𝐹 (1, 308) = 7.07,
= .008, 𝜂2𝑝 = .022, 95%CI of 𝜂2𝑝 = [.003, .057]). Participants tended to

erform better in the regular (66%±22%) than the irregular (60%±19%)
ondition. However, there was an interaction between focal cause and
ase rate regularity (𝐹 (2, 616) = 3.69, 𝑝 = .026, 𝜂2𝑝 = 0.012, 95%CI of
2
𝑝 = [.001, .028]). Analysis of the simple effects showed that the regu-
arity difference was only significant for preventative causes (Fig. 5a).
his is consistent with the principle that identifying preventative causes
elies heavily on having a good counterfactual expectation of what
ould have happened in the causal system in the absence of the focal

ause.
The main effect of neighboring cause was non-significant

𝐹 (2, 616) = 2.76, 𝑝 = .064) while there was a interaction between
eighboring cause and base rate regularity (𝐹 (2, 616) = 6.66, 𝑝 = .001,
2
𝑝 = .021, 95%CI of 𝜂2𝑝 = [.005, .042]). The neighboring connections
ade a difference in the irregular condition (𝐹 (2, 308) = 8.56, 𝑝 <

001, 𝜂2𝑝 = .053, 95%CI of 𝜂2𝑝 = [.017, .095]), but not in the regular

5 To rule out that this main effect was merely due to people generally
electing more answers as generative and preventative than non-causal, we
alculated the F1-score for each cause (Powers, 2011). The patterns were the
ame when using the F1-score as the index (𝐹 (2, 540) = 181.89, 𝑝 < .001,
2 = .403, 95%CI of 𝜂2 = [.352, .448]).
𝑝 𝑝



Cognition 240 (2023) 105530T. Gong and N.R. Bramley
Fig. 5. (a) Accuracy of different causal connections in Experiment 1. (b) Accuracy in judging a connection (averaged across generative, preventative, or non-causal target connections)
when paired with different types of connections in Experiment 1. Lines indicate the performance of simulated normative and summary-statistic learners each with a fitted softmax
parameter based on participants’ data in Experiment 1 (see Appendix D). Error bars indicate 95% confidence intervals.
Fig. 6. Confusion matrices for participants’ and models’ choices under different ground truths in Experiment 1. The normative and summary-statistic learners were simulated with
a fitted softmax parameter based on participants’ data in Experiment 1 (see Appendix D).
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condition (𝐹 (2, 308) = 0.41, 𝑝 = .662, Fig. 5b). Participants in the
irregular condition performed better when the neighboring connection
was generative than non-causal (𝑡(308) = 2.48, 𝑝 = .041, 𝑑 = 0.099,
95%CI of 𝑑 = [0.003, 0.195]) or preventative (𝑡(308) = 4.13, 𝑝 < .001,
𝑑 = 0.165, 95%CI of 𝑑 = [0.069, 0.261]). This means that when the
base rate was uncertain, a generative cause could stand in by setting
up strong expectations. Other two-way or three-way interactions were
non-significant (𝑝𝑠 > .05).

For simulated model-based learners, the summary-statistic learner
exhibited a similar tendency as participants, performing worse in iden-
tifying non-causal connections (Fig. 5a). The accuracy of both nor-
mative and summary-statistic learners was partly dependent on the
neighboring cause. As shown in Fig. 3b, the summary-statistic distri-
butions of the non-causal type, particularly the Delay distributions,
frequently exhibit overlaps with both other distributions, and further-
more, the other types (generative or preventative) typically have higher
density in the overlapping region.

5.2.3. Confusion matrices
Fig. 6 shows the proportion of participants’ choices under different

ground truths. We explored the frequency of choices when people
made inconsistent judgments with the ground truth. Under the regular
base rate, people were equally likely to judge a generative connection
9

‘

as a non-causal one or a preventative one (12% vs. 10%, chi-square
goodness of fit: 𝜒2(1) = 3.01, 𝑝 = .082). They were equally likely
to judge a non-causal connection as a generative or preventative one
(22% vs. 25%, 𝜒2(1) = 2.65, 𝑝 = .103) while they more often judged
a preventative connection as a non-causal one than a generative one
(22% vs. 9%, 𝜒2(1) = 83.41, 𝑝 < .001). The results of irregular base
rate were similar (non-causal ground truth: 25% vs. 26%, 𝜒2(1) = 0.70,
𝑝 = .404; preventative ground truth: 30% vs. 12%, 𝜒2(1) = 107.96,
𝑝 < .001) except now participants also more often judged a generative
onnection as non-causal than preventative (18% vs. 9%, 𝜒2(1) = 29.55,
< .001). The summary-statistic learner exhibited a similar tendency

o human participants, tending to mistake preventative or generative
onnections more often as non-causal, rather than mistaking one for
he other.

.2.4. Intervention order
We examined the influence of the intervention sequence. The inter-

ention patterns in the experimental stimuli were randomly generated
albeit balanced to include 3 interventions per control component) and
ence varied in terms of the sequence. In some trials, participants
bserved data in which interventions on one component were ‘‘inter-
eaved’’ (e.g. 𝐴 in 𝐴𝐵𝐴𝐵𝐴𝐵 or 𝐴𝐵𝐵𝐴𝐵𝐴), in others they were fully

‘clustered’’ (e.g. 𝐴 in 𝐴𝐴𝐴𝐵𝐵𝐵 or 𝐵𝐴𝐴𝐴𝐵𝐵), and in others they were



Cognition 240 (2023) 105530T. Gong and N.R. Bramley

E
p
i

p
‘
p
×
p
o
a
w

c
(
a
𝜂
p
s
o
a

Fig. 7. Accuracy separated by intervention order in Experiment 1. Lines indicate the performance of simulated normative and summary-statistic learners each with a fitted softmax
parameter based on participants’ data in Experiment 1 (see Appendix D). Error bars indicate 95% confidence intervals.
Fig. 8. Scatterplots of simulated model-based learners predictions and human judgments on the proportion of choosing different causal types in stimuli with no ground truth in
xperiment 1b. Each connection in a stimulus is represented by three data points in the figure corresponding to the participant’s and models’ average probability assigned to that
ossibility. The normative and summary-statistic learners were simulated with a fitted softmax parameter based on participants’ data in Experiment 1 (see Appendix D). Error bars
ndicate 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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artially clustered (e.g. 𝐴 in 𝐴𝐴𝐵𝐴𝐵𝐵 or 𝐴𝐵𝐵𝐵𝐴𝐴) which we called a
‘medium’’ level. We performed a 3 (focal cause: generative, non-causal,
reventative) × 3 (intervention order: interleaved, medium, clustered)
2 (base rate regularity: regular, irregular) mixed ANOVA. Each trial

rovided two data points, one regarding 𝐴 as the focal cause and the
ther regarding 𝐵 as the focal cause. The effects regarding focal cause
nd base rate regularity were similar to previous analyses and hence
e only focus on the effects related to intervention order here.

There was a main effect of intervention order (𝐹 (2, 538) = 9.39,
𝑝 < .001, 𝜂2𝑝 = .034, 95%CI of 𝜂2𝑝 = [.012, .061]) and an interaction
effect between intervention order and focal cause (𝐹 (4, 1076) = 3.22,
𝑝 = .012, 𝜂2𝑝 = .012, 95%CI of 𝜂2𝑝 = [.001, .022]). As shown in Fig. 7, the
lustering intervention mainly benefited the identification of generative
𝐹 (2, 269) = 11.40, 𝑝 < .001, 𝜂2𝑝 = .078, 95%CI of 𝜂2𝑝 = [.031, .131])
nd non-causal (𝐹 (2, 269) = 3.76, 𝑝 = .025, 𝜂2𝑝 = .027, 95%CI of
2
𝑝 = [.002, .063]) connections, while the effect was insignificant for
reventative connections (𝐹 (2, 269) = 0.07, 𝑝 = .935). The summary-
tatistic learner demonstrated a similar influence of the intervention
rder as humans, while the normative learner performed indifferently
cross different intervention orders (Fig. 7).
10

a

.2.5. Trials optimized for model discrimination
Block 2 in Experiment 1b contained stimuli that were not generated

rom a particular ground truth structures, but rather generated so
s to distinguish strongly between normative and summary-statistic
odels. Fig. 8 shows the choice proportion of human learners vs.

imulated learners on each stimulus. The choices simulated from the
ummary-statistic model were better correlated with human judgments
cross generative, non-causal, and preventative answers. In particular,
he summary-statistic model captured when people tended to judge a
ariable as non-causal (gray points and line) which often diverged from
he normative prediction.

.2.6. Model fitting
To check quantitatively how well the models we have considered

apture participants’ causal judgments, we fit all participant judgments
ith our normative and summary-statistic models at both aggregate
nd individual levels. The details of the model fitting procedure can
e found in Appendix D.

Participants choices were best captured by the summary-statistic

pproach, specifically by the variant that segments evidence according
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Table 1
Model fits.

CV BIC 𝜏 N (Regular) N (Irregular)

Experiment 1a
Normative −6054 12 110 0.44 17%(14%) 19%(13%)
SS (intervention-window) −5857 11718 0.23 53%(47%) 46%(45%)
SS (fixed-window) −5998 12 002 0.30 19%(17%) 26%(21%)
Random −7430 14 859 11%(22%) 10%(21%)

Experiment 1b
Normative −4426 8833 0.58 14%(11%) 10%(7%)
SS (intervention-window) −4054 8113 0.23 60%(51%) 58%(52%)
SS (fixed-window) −4167 8338 0.33 21%(17%) 25%(25%)
Random −4887 9774 5%(21%) 7%(17%)

Experiment 2
Normative −1058 2113 4.43 2%(0%)
SS (intervention-window) −948 1835 0.19 50%(50%)
SS (fixed-window) −955 1915 0.34 43%(40%)
Random −1059 2119 5%(10%)

Note: SS refers to summary-statistic models. The ‘‘N (Regular)’’ and ‘‘N (Irregular)’’
columns display the proportion of individuals best-fit by each model according to CV,
with BIC results in the brackets.

to the intervals between interventions (Table 1). This is corroborated
by the individual level fits, where the largest proportion of partici-
pants were fit by summary-statistic (intervention based) in both regular
nd irregular conditions across experiments (model fits separated by
onditions are shown in Table E.1).

We provide additional model fitting results in Appendix E. In Ta-
le E.2 we fit answers from Experiment 1b separated by blocks. The
ifference in cross-validation log-likelihood or BIC between normative
nd summary-statistic models was more pronounced in the no-ground-
ruth block than in the ground-truth block, which reflected that people’s
udgments were indeed more similar to the summary-statistic model.
n Table E.3 we fit participants’ answers with each cue separately to
ee whether they were dominated by Delay or Count rather than their
ombination. Results indicate that models with one or another cue
id not fit participants’ judgments better than models that mixed two
ues. In Fig. E.1, we performed a grid search in [1, 7] s with a step
f 0.5 s to test whether the fixed-window model fits were sensitive
o our choice of a 4 s window. Models with different fixed-window
engths always had substantially larger BICs than the model with the
nter-intervention window approach, meaning that, even had we fit
indow length as an additional parameter it would not outperform
y-intervention segmentation in describing participants. This was true
espite the fact that the models’ accuracy in causal identification is
uite sensitive to the window length.

.3. Discussion

In Experiment 1, we showed that people are capable of using tem-
oral information to learn causal structures that involve generative and
reventative relationships. It also showcases several interesting differ-
nces between generative and preventative causation, which we return
o in the General Discussion. Human judgments were better aligned
ith the summary-statistic models’ predictions in both quantitative

esults and aggregate qualitative results. Nevertheless, the data in Ex-
eriment 1 was complicated, meaning we can do more to distill simpler,
ore intelligible examples of how the normative and summary-statistic
odels diverge in their judgments. In Experiment 2, we examine judg-
ents about minimal event sequences for which the summary-statistic

nd normative learners differ in their dominant answers.

. Experiment 2

We designed two types of stimuli for which two models have dif-
erent dominant answers. They are based on the two locality principles
riving the summary-statistic model: (1) Local computation; meaning
11

s

summary statistic learners fail to account for the influence of the other
connections in the system, and (2) Local evidence; meaning summary
statistic learners fail to take into account whatever happened before
their current observation window. For the first type of stimuli we use
scenarios where a learner needs to identify a generative target cause
that is paired with a preventative cause. This presents a challenge
for local computation because the preventative cause can block the
generative causes’ influence and mislead a local learner into believing
the target connection is a non-causal connection, because it is statisti-
cally associated with fewer events per window or longer delays than
generative causes have on average across the task. The second case
type is scenarios where a non-causal target is paired with a generative
neighboring component. For a local learner who only focuses on a small
time window after each intervention, the generative influences can
easily spill over to the observation window during which the learner
is focused on the target non-causal component and leading to statistics
more typical of generative causation, because it is associated with
more events and shorter delays than non-causal components exhibit
on average across the task. Experiment 2 focused on the regular base
rate condition, since this yields the larger predicted difference between
normative and summary-statistic based judgments, though we also
checked that the dominant answer for each model was the same under
the irregular base rate parameters.

6.1. Methods

6.1.1. Participants
Sixty participants from Prolific were recruited and reported (32

female, 28 male, aged 41 ± 12). The sample size was determined by a
ower analysis assuming a medium sized effect (𝑑 = 0.5) in comparing
ithin-subject judgments on the target cause and the goal of .90 power
t the standard .05 alpha. No participants were excluded from this
xperiment based on the criteria we pre-registered.

.1.2. Design & procedure
Participants’ task was very similar to the regular condition in Ex-

eriment 1b, where they needed to judge the roles of two connections
iven a 20-second clip of evidence. No video training or feedback
as provided. The hand-crafted stimuli are shown in Fig. 9. For each

timulus, we call one component the ‘‘target’’, and the other the ‘‘lure’’,
hich could affect participants’ judgments about the target. Each clip

ontained two segments of evidence where the two components acti-
ated close together, so their influences on the system (if any) were
isleading to the summary statistic model (gray shadows in Fig. 9),

ut also contained evidence where the components occurred far enough
part to make the true structure recoverable by the normative model.

We constructed four exemplars of the two stimulus types (Fig. 9).
or the 𝑃𝐺 type (preventative lure and generative target), the lure
ften cancels the influence of the target, and hence the summary
tatistics of the target are more aligned with the non-causal summary
tatistics. For the 𝐺𝑁 type (generative lure and non-causal target),
he lure’s influence spills over into the observation window of the
arget, leading to summary statistics more consistent with a generative
arget component. Therefore, the summary-statistic approach predicts
ystematic errors in these cases that are not predicted by the normative
odel (Fig. 9).

Participants went through 6 practice trials sampled from Experi-
ent 1 (with structures 𝐺𝐺, 𝑁𝐺, 𝐺𝑃 , 𝑁𝑁 , 𝑃𝑁 , 𝑃𝑃 ) before 8 testing

rials, to ensure that they had some experience with different structures
nd edge types under more normal conditions. The vertical positions
f two control components (above or below) were randomized across
rials. The order of trials was randomized within the practice and
esting phases. Participants completed 14 trials in sequence without any
elineation between the practice and critical trials. The bonuses were,
n reality, administered proportional to the bonuses participants gained
n the practice phase (given that we predicted participants would make

ystematic errors in the test phase).
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Fig. 9. Stimuli and model predictions in Experiment 2. (a) Stimuli. Curved arrows indicate the true underlying generative process. (b) Judgment predictions from different models.
he normative and summary-statistic models particularly differ in their judgments about the target components, with opaque bars used to highlight where the modal response
hifts between normative and summary statistic models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.2. Results & discussion

For the 𝑃𝐺 stimuli, participants judged the targets as non-causal
.8 ± 1.1 times on average out of 4 trials (above the 33% change
evel, 𝑡(59) = 3.15, 𝑝 = .003, 𝑑 = 0.41, 95%CI of 𝑑 = [0.14, 0.67]).

More importantly, participants judged them more often as non-causal
than generative (𝑡(59) = 3.62, 𝑝 < .001, 𝑑 = 0.82, 95%CI of 𝑑 =
[0.44, 1.19]) or preventative (𝑡(59) = 2.11, 𝑝 = .04, 𝑑 = 0.49, 95%CI of
𝑑 = [0.12, 0.85]). For the 𝐺𝑁 stimuli, participants judged the targets as
he generative one 3.1 ± 1.0 times on average out of 4 trials (above
he 33% change level, 𝑡(59) = 6.03, 𝑝 < .001, 𝑑 = 0.78, 95%CI of
𝑑 = [0.49, 1.07]). Meanwhile, participants judged them more often as
generative than non-causal (𝑡(59) = 10.64, 𝑝 < .001, 𝑑 = 2.63, 95%CI
of 𝑑 = [2.13, 3.11]) or preventative (𝑡(59) = 16.50, 𝑝 < .001, 𝑑 = 3.58,
5%CI of 𝑑 = [3.00, 4.16]). This means that for both kinds of stimuli,
articipants’ dominant answers lined up with the summary-statistic
odels and diverged from those of the normative model.

The model fitting results are shown Table 1. Similar to Experi-
ent 1, participants’ answers were better fit by the summary-statistic
odels than the normative model. In general, they were also better

ligned with the intervention-window segmentation than the fixed-
12

indow segmentation. This is also supported by a qualitative result
hat for 𝐺𝑁 stimuli, both the intervention-window model (Fig. 9)
nd participants (Fig. 10) regarded the lure as less likely to be a
enerative cause than the target component (𝑡(59) = 5.56, 𝑝 < .001,

𝑑 = 1.04, 95%CI of 𝑑 = [0.65, 1.41]), while the fixed-window model
regarded the probabilities as more even (Fig. 9). When it comes to
the individual difference, participants split more evenly across the
intervention-window and fixed-window models than Experiment 1,
which may imply that some participants do consider longer windows in
situations when interventions interleaved heavily and hence evidence
of intervention-based windows was sometimes too short to rely on.

7. General discussion

This paper examined how people infer causal structure on the basis
of observing events in continuous time. The project was motivated by
the fact that classical causal structure induction research has largely
focused on inferences from atemporal statistical information, essen-
tially sidestepping the role of event timing and delay, or else reducing
it to a simple sequence of equally spaced measurements. Meanwhile,
empirical research (not to mention common sense) suggests people rely
strongly on event timing for causal reasoning, using temporal informa-
tion to guide causal attributions even when it is inappropriate to do so.
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Fig. 10. Judgments of two types of stimuli in Experiment 2. Each type included four stimuli. Participants’ dominant answers for the target component are consistent with the
ominant answers from the summary-statistic model (the green dots) rather than the dominant answers from the normative model (the purple stars). Error bars indicate 95%
onfidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
t seems likely, therefore, that time is integral to our representation of
ausality and hence deserves careful formal and empirical treatment.

While the space of causal structures we explored was relatively re-
tricted, our task was challenging due to the spontaneous activations of
he effect component and potential interactions between generative and
reventative cause components. There were always multiple competing
xplanations for any effect occurrence or surprising non-occurrence,
nd as such, normative reasoning about the structure behind the evi-
ence required entertaining and marginalizing over many hypothetical
appings between events. Nevertheless, participants’ were able to

orrectly identify the majority of causal components well above chance
ven when base rate activations of the effect were unpredictable (Ex-
eriment 1a and 1b) and even without pretraining about the true causal
elays (Experiment 1b). Our experiments thus provide an initial empir-
cal demonstration that people can use real-time temporal information
o detangle the influences of generative and preventative causes and
dentify causal structures involving combinations thereof.

.1. Empirical findings

By including both preventative and generative relationships in our
ask, we have empirical results showing how the identification of these
wo types of relationships differ from each other in a continuous-time
etting.

First, base rate regularity has a larger impact on identifying pre-
entative relationships than generative relationships. Participants can
etter identify preventative connections when the effect otherwise
ctivates regularly. This is aligned with the principle that detecting
reventative causation relies heavily on one’s expectation of what
ould otherwise have happened in the causal system (Buehner et al.,
003; Cheng, 1997; Griffiths & Tenenbaum, 2005).

Second, when judging a causal connection in the system, the type of
eighboring connections matters. Experiment 1 showed that when the
ase rate is irregular, participants could better identify a connection
hen it was paired with a generative neighbor rather than a non-

ausal or preventative neighbor. This can be explained by the fact
hat a generative connection can increase the predictability of the
ffect, which is helpful in general but particularly when the base rate
s unpredictable. Experiment 2 showed that a preventative neighbor
an cancel out a generative influence and mislead people to judge a
enerative connection as non-causal.

Third, the timing and sequence of interventions matter when mak-
ng causal judgments, and it affects the identification of generative
13
and preventative connections in different ways. Participants identified
generative and non-causal relationships better when the interventions
were clustered, rather than interleaved. This makes sense given that the
evidence under clustered interventions involves less interference from
neighboring connections. We confirmed this in Experiment 2 where we
show that deliberately interleaved evidence leads participants to sys-
tematically mistake the roles of generative and non-causal connections.
In contrast, the advantage of clustered interventions disappeared when
it came to prevention. To identify preventative relationships, it makes
sense to spread out interventions so their influence covers more of the
timeline, and in particular to perform them ahead of whenever one
has a strong expectation of the effect occurring (Lovibond & Lee, 2021;
Melchers et al., 2006). To our knowledge, these findings represent the
first systematic investigation of how human causal judgments engage
with a setting where generative and preventative causal influences
intertwine and interact in time.

7.2. Normative vs. summary-statistics

To better understand how participants made their judgments, we
contrasted two learning models: An exhaustive normative account and
a summary-statistic-based local approximation. Both accounts were
able to identify generative and preventative influences well in our task,
but only the summary statistic account could capture cases in which
participants were worse at identifying the non-causal connections (Ex-
periment 1) and misled by interleaved interventions (Experiment 1 and
2). Quantitatively, the summary-statistic account also fits participants’
judgments across both experiments better.

Our normative model demonstrates that near perfect inversion of
the generative causal model is possible for a learner with exactly the
correct delay assumptions and unlimited processing power. It works
via reasoning at the token level of actual attribution (Halpern, 2016),
suggesting this kind of reasoning is key for achieving benchmark per-
formance in this small data setting. The summary-statistics account
takes a different approach that is computationally much more frugal
and scalable to more complex causal models, but has the cost of being
less sensitive to precise event timing, and being more susceptible to
interference between components. The approach combines several core
principles of bounded cognitive processing: Use of simulation from
generative mental models and comparison via summary statistics in
place of an exact or intractable likelihood calculation (Battaglia et al.,

2013; Blum et al., 2013; Lintusaari et al., 2017; Sunnåker et al., 2013;
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Ullman et al., 2018). It combines this with local (Bramley, Dayan et al.,
2017; Davis et al., 2020; Fernbach & Sloman, 2009) and incremental
(Bramley, Dayan et al., 2017; Davis et al., 2020; Rehder et al., 2022)
processing to break up the global inference problem into a series of
spatially and temporally local subproblems. The departures from the
ideal of the global normative thinker allow it to explain several error
patterns exhibited by participants. In general the normative model
serves to showcase the rapidly compounding challenge of maintaining
a global perspective when processing evidence that includes multiple
causal influences that intertwine and interact in real time (Bramley,
Mayrhofer, Gerstenberg and Lagnado, 2017; Gong et al., 2023).

Imagined experiences are a core feature of our conscious experience
and as such, mental simulation has been implicated by a number of
theories of cognition as playing key roles in both model-based inference
and planning (Battaglia et al., 2013; Bramley, Gerstenberg, Tenenbaum
and Gureckis, 2018; Gerstenberg et al., 2021; Hamrick et al., 2016;
Ludwin-Peery, Bramley, Davis, & Gureckis, 2020; Ullman et al., 2018).
Mental simulation is thought to be key to offline (Hinton, Dayan, Frey,
& Neal, 1995), and simulation phases are now a common part of the
training regimen for large reinforcement learning models (Ellis et al.,
2020; Mnih et al., 2015). Our experiments add one small piece to this
research line, showing how an inference mechanism grounded in simu-
lation and the extraction of summary statistics may explain how people
mitigate the computational costs involved in reverse engineering the
causal mechanisms that explain the events we observe in real time.

The idea of combining sampling from a generative model with sum-
mary statistics stems from Approximate Bayesian Computation (Blum
et al., 2013; Lintusaari et al., 2017; Sunnåker et al., 2013). The ap-
proach makes it possible to approximate an intractable Bayesian infer-
ence by using the similarity between data simulated from a hypoth-
esized model or parameter setting and observed data as a proxy for
the likelihood of that model or parameter setting. Choosing the best
summary statistics or loss function for a domain is a research area
in itself in machine learning (Csilléry, Blum, Gaggiotti, & François,
2010), while identifying what summary statistics might be used in
cognition is another challenging and unsolved problem. We do not
solve this problem here, but simply hand selected two basic summary
statistics (cf. Ullman et al., 2018) on the grounds that they reflect
the most basic and easily reported timing measurements people can
make in online settings. We showed that the delay and count cues were
reasonably diagnostic in our task (Experiment 1) but also unpacked the
circumstances under which they can be misleading (Experiment 2).

Within the summary-statistic framework, we considered two ways
participants might segment the trials into counting windows. We pro-
posed they might either track events within fixed-length windows after
each intervention or use the gaps between each intervention directly as
a count window. The inter-intervention segmentation variant captured
participants’ behavior better despite the fact that the windows were of
markedly different lengths detracting from the reliability of the metric.
A potential explanation for this is that people may be fundamentally
unable to track events from multiple causal perspectives in parallel,
thus being forced to rely on the uneven inter-event windows (Bramley,
Gerstenberg, Mayrhofer et al., 2018; Davis et al., 2020). Of course, in an
active learning context, the learner is free to perform interventions at
their own pace. This research suggests that what learners are able to at-
tend to and measure is likely to shape their approach to interventions in
time. For instance, one way to make inter-intervention count statistics
as powerful as possible is to intervene on a regular schedule, eliminat-
ing the confound of episode length, while leaving as large as possible
gaps between interventions additionally minimizes spillover effects.
Interestingly, these are cognitive rather than normative considerations
since the ideal observer is practically indifferent to the regularity of the
14

intervention spacing.
7.3. Alternative accounts

One popular recent idea in the causal cognition literature is that
people form and adjust causal theories locally and incrementally (Bram-
ley, Dayan et al., 2017; Bramley, Mayrhofer et al., 2017; Davis et al.,
2020; Fernbach & Sloman, 2009; Markant et al., 2016). For instance,
Bramley, Dayan et al. (2017) model causal structure learning (in dis-
crete trial contexts) as a process of incremental adaptation of a single
global hypothesis driven by the need to accommodate new evidence
as it arrives. They argue that causal learners do focus locally when
grappling with complex structures, but that many are able to condition
on their current beliefs about neighboring connections rather than
ignoring them altogether, leading to patterns of sequential local focus
and anchoring that still tend to favor the correct global structure in the
limit. We did not collect the interim judgments we would need to probe
this account directly, but we think it is entirely plausible that people
focused on the roles of the components not just separately but also
serially, perhaps flipping their attention back and forth several times
throughout a trial. For example, if participants focused on a generative
component first and a preventative component second, they might have
been able to take advantage of their expectation of events produced by
the apparently generative component to supercharge their inferences
about prevention.

The other idea is based on the ‘‘smart initialization and short
search’’ algorithm in Ullman et al. (2018). Analogous to our findings,
they showed that although human physical learning was better cap-
tured by a summary-statistic account than a noisily normative Bayesian
model, responses could be even better fit by a mechanism that combines
the two. Their best-fit model used the prediction of a summary-statistic
approach as a starting hypothesis, and then made local adjustments to
this by running a short Markov Chain Monte Carlo search chain. Such a
smart initialization could play an important role here too. It is plausible
that some participants may have performed similar steps, i.e. forming
an impression of the role of a component due to the delays and counts
but adjusting this when accommodating a belief about the neighboring
connection or an understanding of the regularity of the base rate.

7.4. Future directions

To date, causal learning in continuous time has received little
attention, meaning there are numerous basic research questions still
to be addressed. In the current paper, we focus on just one of these,
providing a close examination of the interplay between inference about
generative and preventative causal relationships. However, for this we
make specific assumptions about the scope with which preventative
influences work. Concretely, we conceive of preventative influences as
eliminating all expected effects for a short time no matter their cause.
However, there are several alternatives that seem at least as salient and
may be more appropriate depending on knowledge of the context and
mechanisms involved. For example, prevention could work by blocking
the next one event (or perhaps the next 𝑁 events) rather than blocking
everything for a fixed window. Prevention could also operate on ‘‘links’’
rather than ‘‘nodes’’ within the causal graph, for example blocking the
action of a generative cause on an effect, but leaving the spontaneous
activations of that effect intact, or visa versa (Carroll & Cheng, 2009;
Chow, Lee, & Lovibond, 2023; Fraser & Holland, 2019).

In the current learning task, causal influences were represented as
operating between point events. This is a major simplification from
many real scenarios in which variables involved in causal interactions
are often able to take multiple, or even a continuum of, values. The
cat in our motivating example might drink more or less water or
hold different teaser toys in higher or lower regard leading to faster,
slower, more or less intense effects. Even though events are abstractions
of continuous inputs, and many, such as state changes, are readily
thought of as punctate, many everyday event concepts clearly have

non-zero duration and often have internal structure such as a gradual
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or sudden onset or offset. For example, given enough time, many of
the states referred to in causal learning scenarios are not permanent.
‘‘Wet ground’’ dries. ‘‘Tanned skin’’ fades. Many disequilibria will either
dissipate or recover without external intervention. Other states, such
as a turned-on light bulb may tend to persist until canceled, i.e. by
switching the switch a second time. These could be seen as events
with an infinitely long duration (i.e. permanent state-changes). As event
duration reduces, it becomes less likely that events will overshadow
one another. Point events are a limiting-case abstraction of this where
the duration is reduced to zero, resulting in a setting where there is
no true causal overshadowing (Paul & Hall, 2013). That is, generative
cause will always produce an observable effect even if it occurs close
to another event. However, in settings with longer events it becomes
increasingly important to consider the super-secession situations and
perhaps to apply the noisy-or or noisy-and-not frameworks (Cheng,
1997; Griffiths & Tenenbaum, 2009) that capture how in contingency
settings, effects can easily be hidden due to an already-occurring,
or already-prevented target. Future research could study how people
represent the duration of causal events as well as their influences and
thus begin to form a richer theory of causal concepts in time that
captures a wider range of relata, variables, influences, and events.

Finally, we focused on online causal learning here, where informa-
tion flowed in rapidly and learners had no opportunity to replay and
revise. However, it is possible that people are capable of reasoning
more normatively in offline learning tasks when they are provided with
information summarized in a timeline and can take as long as they like
to consider the fit between the data and different causal hypotheses
(Bramley, Gerstenberg, Mayrhofer et al., 2018). Furthermore, to the
extent that summary-statistic based inference and normative inference
deviate, it seems likely that people’s judgments after additional think-
ing time could differ from their more instinctive or gut responses
(Ludwin-Peery et al., 2020). Reflective thinking has been studied for
decades in human reasoning and decision making (Kahneman, 2011;
Sloman, 1996), while it is less studied in causal inference. The norma-
tive vs. summary-statistic contrast in this paper provides a potential
paradigm for operationalizing the role of reflective thinking in causal
inference.

7.5. Conclusions

In this paper, we showed that people can use information in con-
tinuous real time to learn about causal systems that potentially con-
tain generative and preventative causal relationships. Their perfor-
mance was influenced by multiple factors, including the nature of the
causal influences (generative, non-causal, preventative), interactions
with neighboring connections, base rate regularity, and intervention
patterns. We laid out both a normative framework and a process-
level model. Both qualitatively and quantitatively, human judgments
were better captured by the process-level summary-statistic account,
capturing the idea that people may infer causal structure via statistical
cues such as average delays and counts that are much easier to track
in real time than the exact generative model likelihoods. This work
thus provides a quantitative account of how people manage to learn
causal structure, in particular preventative influences, on the basis of
continuous temporal dynamics. This contributes to our understanding
of natural cognition and sheds light on the challenging question of how
any cognitive agent can succeed in forming an internal causal model of
a complex and continuous environment.
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Data availability

The pre-registrations, materials, data, and analysis code are avail-
able at https://osf.io/q8n72/. Stimuli for all experiments can be viewed
at https://github.com/tianweigong/causal_diamond.

Appendix A. Gamma distributions

We use the gamma distributions to generate causal delays for ex-
perimental stimuli, and also to model causal inferences over time
(Bramley, Gerstenberg, Mayrhofer et al., 2018; Bramley, Mayrhofer
et al., 2017; Stephan et al., 2020; Valentin et al., 2022). Gamma distri-
butions Gamma(𝛼, 𝛽) define a density over (0,+∞) with two parameters
— shape 𝛼 and rate 𝛽— controlling the expectation and central ten-
dency of the delay (mean 𝜇 = 𝛼∕𝛽 and variance 𝜎2 = 𝛼∕𝛽2, see Fig. 2
for examples). Memoryless exponential distributions are special cases of
gamma distributions when 𝛼 = 1, where the expected delay is constant,
no matter how long you have already waited for (Fig. 2d). This is
useful for representing occurrence of events generated by unknown
and unobserved background causes. Gamma distributions also have a
convenient transition property that facilitates the calculation of preven-
tative causation: if 𝑋, 𝑌 ∼ Gamma(𝛼, 𝛽) then 𝑋 + 𝑌 ∼ Gamma(2𝛼, 𝛽). As
an example, suppose a bus arrives every 12±2 min. If you arrive at the
bus stop just as it leaves you might expect to wait Gamma(𝛼 ∶ 36, 𝛽 ∶
3, [𝜇 ∶ 12, 𝜎 ∶ 2]) minutes. However, if you then are told the next bus
is canceled, the expected waiting time will double while the variance
will increase rather less: Gamma(𝛼 ∶ 36, 𝛽 ∶ 3) + Gamma(𝛼 ∶ 36, 𝛽 ∶ 3) is
equal to Gamma(𝛼 ∶ 72, 𝛽 ∶ 3, [𝜇 ∶ 24, 𝜎 ∶ 2.8]). We will take advantage
of this feature in building our normative inference model.

Appendix B. Normative calculations

The normative learner updates the prior over structures 𝑃 (𝑆) (here
assumed to be uniform), with a likelihood function to obtain a posterior
distribution, given the set of gamma parameters 𝐰 which indicates the
belief about delays:

𝑃 (𝑆|𝐝,𝐰; 𝐢) ∝ 𝑝(𝐝|𝑆,𝐰; 𝐢) ⋅ 𝑃 (𝑆) (1)

Here 𝐝 refers to effect data (E’s activations), which is conditioned upon
a set of interventions 𝐢 on the causes (A or B).

In order to maintain rational beliefs about causal structure, the ideal
reasoner considers all possible causal paths 𝐙𝑠 that could describe what
actually happened given each possible structural hypothesis 𝑠 ∈ 𝐒,
summing up the individual likelihood of these mutually exclusive and
exhaustive possibilities to assess the overall likelihood of each structure
hypothesis:

𝑃 (𝐝|𝑠,𝐰; 𝐢) =
∑

𝑧′∈𝐙𝑠

𝑃 (𝑧′|𝑠,𝐰; 𝐢) (2)

Normative causal attribution involves three steps: (1) attributing
causes to effects that have occurred; (2) explaining away effects that
should or might have occurred but were not observed; (3) examining
the temporal distance between presumed preventative events and the
subsequent effect event. Step 1 and 2 correspond to path construction.
We use {𝛼𝑔 , 𝛽𝑔}, {𝛼𝑝, 𝛽𝑝}, {𝛼𝑏, 𝛽𝑏} to denote parameters of gamma dis-
tributions for generative delays, preventative windows, and base rate
delays. In the current experiments: {𝛼𝑔 = 9, 𝛽𝑔 = 6}, {𝛼𝑝 = 36, 𝛽𝑝 = 12},
and {𝛼𝑏 = 100, 𝛽𝑏 = 20} (regular base rate) or {𝛼𝑏 = 1, 𝛽𝑏 = 0.2}
(irregular base rate).

Step 1 is to form 𝑔′ → 𝑒′ pairs where (1) the effect event 𝑒′ is not
ver-determined (i.e. has a single actual cause), (2) the cause event 𝑔′
oes not produce its effect twice, and (3) 𝑔′ precedes 𝑒′. The likelihood
f each pair is then determined by mapping the delay between 𝑔′ and

𝑒′ to the gamma density function:

𝑃 (𝑔′ → 𝑒′|𝛼 , 𝛽 ) = 𝑃 (𝑡 = 𝑡 |𝛼 , 𝛽 ) (3)
𝑔 𝑔 𝑔′→𝑒′ 𝑔′𝑒′ 𝑔 𝑔

https://osf.io/q8n72/
https://github.com/tianweigong/causal_diamond
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Step 2 involves forming 𝑔′ → ℎ pairs where ℎ is a hidden effect
event assumed to happen sometime after the observable period or at
ome point during a preventative window. The likelihood calculation
epends on the gamma cumulative density falling beyond the end of
he clip or within the window:

𝑃 (𝑔′ → ℎ|𝛼𝑔 , 𝛽𝑔 , 𝛼𝑝, 𝛽𝑝) = 𝑃 (𝑡𝑔′→ℎ > 𝑡𝑒𝑛𝑑 |𝛼𝑔 , 𝛽𝑔)+

(𝑡𝑔′→ℎ ⩽ 𝑡𝑒𝑛𝑑 |𝛼𝑔 , 𝛽𝑔)(1 −
∏

𝑝′
(1 − 𝑃 (𝑡𝑔′→ℎ < 𝑡𝑔′ + 𝑡𝑝′→ℎ|𝛼𝑔 , 𝛽𝑔 , 𝛼𝑝, 𝛽𝑝))) (4)

ase rate activations of the effect event are represented as having
een caused by the previous base rate activation, which can also be
epresented as 𝑔′ → 𝑒′ pairs where 𝑔′ is actually the target component’s
i.e. E) activation. When there are presumed preventative cause events,
he base rate activation could be prevented but then subsequently
‘recover’’. Therefore, for base rate activation we could jointly consider
tep 1 and Step 2 as 𝑔′ → ℎ(1) → ⋯ → ℎ(𝑛) → 𝑒′, where ℎ(1) …ℎ(𝑛)

appens within the preventative windows. Meanwhile, according to
he transition property of the gamma distribution (see Appendix A),
f 𝑋, 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) then 𝑋 + 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(2𝛼, 𝛽). The probability
(𝑔′ → ℎ(1) → ⋯ → ℎ(𝑛) → 𝑒′) can thus be represented as Eq. (5), where

he calculation of 𝑃 (𝑔′ → 𝑒′) is similar to Eq. (3), and the calculation
f 𝑃 (𝑔′ → ℎ(𝑛′)) is similar to Eq. (4) except that 𝑡𝑒𝑛𝑑 is substituted with
𝑒′ and only the second item of prevention is considered.

𝑃 (𝑔′ → ℎ(1) → ⋯ → ℎ(𝑛) → 𝑒′|𝛼𝑏, 𝛽𝑏, 𝛼𝑝, 𝛽𝑝) =

(𝑔′ → 𝑒′|(𝑛 + 1)𝛼𝑏, 𝛽𝑏)
∏

𝑛′∈𝑛
𝑃 (𝑔′ → ℎ(𝑛

′)
|𝑛𝛼𝑏, 𝛽𝑏, 𝛼𝑝, 𝛽𝑝)

(5)

inally, the prevention examination in Step 3 extracts all presumed
reventative events and their nearest effect events to form 𝑝′ → 𝑒′ pairs
there is no need for examination if no effect events happen after 𝑝′),
nd then applies the gamma cumulative density function of prevention:

(𝑝′ → 𝑒′|𝛼𝑝, 𝛽𝑝) = 𝑃 (𝑡𝑝′→𝑒′ < 𝑡𝑝′𝑒′ |𝛼𝑝, 𝛽𝑝) (6)

ppendix C. Implementation of simulation-and-summary-statistic
odels

.1. Cue distributions

We constructed the cue distributions (see Fig. 3b) for each type of
onnection (generative, non-causal, preventative) under two base rates
regular, irregular) by simulating 90,000 interactions with imagined
ausal devices. These included 10,000 simulations of each of the 9
ausal structures considered here. In each simulation the structure is
erturbed by interventions performed in random orders with random
imings.6 In this way we establish a marginal distribution for each
ummary statistic under each type of connection. Note that we used
large number of simulations to produce smooth distributions for our

ater model fitting, however similar distributions can be achieved with
much smaller number of simulations (Ullman et al., 2018). As shown

n Fig. 3b, the delay cue is independent of questions of segmentation by
efinition since it always relates to the earliest subsequent effect event
fter each intervention. The count cue, however, is sensitive to the
hoice of segmentation, meaning we consider intervention-window and
ixed-window assumptions separately. For delay distributions, we use a
robability density function smoothed with Gaussian kernels, while for
ount distributions we can use the discrete probability mass functions
irectly.

6 Similar to generating the experimental stimuli, each simulation included
hree interventions on A and three interventions on B. Distinct from the
xperimental stimuli, simulated sequences here were not cut at twenty seconds
o as to avoid the complex boundary effects in distribution construction.
16
C.2. Likelihood calculation

We assume each connection is estimated independently as either
generative, non-causal, or preventative, and then combined to yield an
overall probability for each candidate causal structure. For example,
an intervention on 𝐴 with the nearest effect occurring 2.5 s later has
a likelihood of [.2, .7, .1] of having been produced by a generative,
non-causal or preventative 𝐴 → 𝐸 connection respectively under the
regular base rate and [.3, .6, .2] under the irregular base rate. When
the next intervention on 𝐴 happens, the posterior is updated by taking
he product of this new likelihood with the preceding ones.

.3. Boundary situations

We consider boundary situations when observing evidence as fol-
ows: If no effect occurs within the observation window, in both seg-
entation approaches, the delay cue will be marked as larger than the

bservation window and the probability is estimated according to the
umulative density function falling after this. If the observation window
s less than the fixed window length for the fixed-window approach
which often happens near the end of the clip), or there is no next
ntervention in the intervention-window approach, the count cue will
e marked as greater than or equal to the observed count of effects and
he probability is also estimated on the basis of its cumulative mass
unction.

ppendix D. Model fitting procedure

We considered four models in total:

1. Fully normative inference based on marginalizing over all pos-
sible causal pathways.

2. Summary-statistic (SS) based inference, using a fixed 4 s window
to count events following each intervention.

3. Summary-statistic based inference, using the interval until the
next intervention to count events.

4. A parameter free baseline that predicts all structure judgments
to be selected with equal probability.

As in our comparison to simulations, we simply assume the delay
nd count cues are equally weighted and merged. We assume learners
egin each problem with a uniform prior over causal structures. We
eel this is a reasonable choice here since the relatively small hypothesis
pace,a balanced set of trials, and the abstract setting leave little for in-
uctive biases to attach to. Nevertheless, we accept that we cannot rule
ut the possibility that some of the findings we attribute to evidence
rocessing enter through prior preferences. To map models’ posterior
robabilities to judgments, we assumed participants’ responses result
rom a softmax over a posterior probability vector 𝑣:

(𝑛) =
exp(𝑣𝑛∕𝜏)

∑

𝑛′∈𝑁 exp(𝑣𝑛′∕𝜏)
(7)

The ‘‘temperature’’ parameter 𝜏 ∈ (0,+∞] controls how reliably the
participant selects the most probable answer (i.e. that with the largest
𝑣𝑛 in choice 𝑛). Smaller 𝜏 connotes higher choice reliability with 𝜏 = 0
orresponding to hard maximization and 𝜏 → ∞ approaching random
esponding.

We evaluate model fit using cross-validation. At the aggregate level,
e fit parameters to the judgments from 𝐾 − 1 subsets of the complete

dataset, and evaluate model performance in terms of its log-likelihood
of predicting the left-out subset. 𝐾 was defined via the stimulus seeds
in each experiment (i.e. 𝐾 = 18 in Experiment 1a and 𝐾 = 12 in
Experiment 1b including stimuli with and without a ground truth).
This provides a rigorous and generalizable test of the models, since
the actual sampled values of the stimuli (e.g. intervention timing, base

rate activating timing, etc.) are always outside of the training sample
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Fig. E.1. Cross validation results and model accuracy under different fixed-window lengths for summary-statistic models. Horizontal dashed lines indicate cases of
ntervention-window segmentation.
Table E.1
Model fits separated by conditions.

Regular Irregular

CV BIC 𝜏 CV BIC 𝜏

Experiment 1a
Normative −2894 5789 0.45 −3162 6327 0.43
SS (intervention-window) −2822 5648 0.23 −3036 6076 0.22
SS (fixed-window) −2924 5853 0.31 −3074 6153 0.29
Random −3695 7390 −3735 7469

Experiment 1b
Normative −2256 4497 0.62 −2167 4332 0.51
SS (intervention-window) −2041 4086 0.23 −2014 4032 0.24
SS (fixed-window) −2114 4232 0.35 −2052 4106 0.31
Random −2503 5006 −2384 4768

Table E.2
Model fits separated by blocks in Experiment 1b.

Ground truth No ground truth

CV BIC 𝜏 CV BIC 𝜏

Normative −2009 4022 0.46 −2361 4725 0.88
SS (intervention-window) −1917 3840 0.24 −2141 4279 0.23
SS (fixed-window) −1982 3969 0.32 −2188 4373 0.35
Random −2443 4887 −2443 4887

Table E.3
Model fits with one cue.

Delay Count

CV BIC 𝜏 CV BIC 𝜏

Experiment 1a
SS (intervention-window) −5994 11 990 0.31 −6065 12 134 0.20
SS (fixed-window) −6040 12 084 0.35 −6228 12 460 0.33

Experiment 1b
SS (intervention-window) −4136 8277 0.33 −4173 8343 0.20
SS (fixed-window) −4196 8393 0.39 −4292 8585 0.36

for all test sets. On the individual level, we similarly applied hold-one-
stimulus-out as our cross-validation scheme for all experiments. For
easy familiarity and comparability with other model based analyses
of causal learning data, we also report Bayesian Information Criterion
(BIC) penalized fits to the full dataset.

Appendix E. Alternative model fitting results

See Tables E.1–E.3 and Fig. E.1.
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