

THE UNIVERSITY of EDINBURGH

# Edinburgh Research Explorer

# Magellan/M2FS and MMT/Hectochelle Spectroscopy of Dwarf Galaxies and Faint Star Clusters within the Galactic Halo

# Citation for published version:

Walker, MG, Caldwell, N, Mateo, M, Olszewski, EW, Pace, AB, John, IBIII, Koposov, SE & Roederer, IU 2023, 'Magellan/M2FS and MMT/Hectochelle Spectroscopy of Dwarf Galaxies and Faint Star Clusters within the Galactic Halo', Astrophysical Journal Supplement, vol. 268, no. 1, 19, pp. 1-40. https://doi.org/10.3847/1538-4365/acdd79

# **Digital Object Identifier (DOI):**

10.3847/1538-4365/acdd79

# Link:

Link to publication record in Edinburgh Research Explorer

**Document Version:** Peer reviewed version

Published In: Astrophysical Journal Supplement

# **General rights**

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.



# Magellan/M2FS and MMT/Hectochelle Spectroscopy of Dwarf Galaxies and Faint Star Clusters within the Galactic Halo<sup>\*</sup>

| 2<br>3 | Matthew G. Walker, <sup>1</sup> Nelson Caldwell, <sup>2</sup> Mario Mateo, <sup>3</sup> Edward W. Olszewski, <sup>4</sup> Andrew B. Pace, <sup>1</sup><br>John I. Bailey, III, <sup>5</sup> Sergey E. Koposov, <sup>6,7,8,1</sup> and Ian U. Roederer <sup>3,9</sup> |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4      | <sup>1</sup> McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA                                                                                                                                                 |
| 5      | <sup>2</sup> Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138, USA                                                                                                                                                          |
| 6      | <sup>3</sup> Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA                                                                                                                                                                               |
| 7      | <sup>4</sup> Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA                                                                                                                                                             |
| 8      | <sup>5</sup> Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93016, USA                                                                                                                                                             |
| 9      | <sup>6</sup> Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK                                                                                                                                              |
| 10     | <sup>7</sup> Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK                                                                                                                                                                  |
| 11     | <sup>8</sup> Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK                                                                                                                                                           |
| 12     | <sup>9</sup> Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements (JINA-CEE), USA                                                                                                                                                       |
|        |                                                                                                                                                                                                                                                                      |
| 13     | ABSTRACT                                                                                                                                                                                                                                                             |
| 14     | We present spectroscopic data for 16369 stellar targets within and/or toward 38 dwarf spheroidal                                                                                                                                                                     |
| 15     | galaxies and faint star clusters within the Milky Way halo environment. All spectra come from ob-                                                                                                                                                                    |
| 16     | servations with the multi-object, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope                                                                                                                                                                |
| 17     | or Hectochelle at the MMT, reaching a typical limiting magnitude $G \lesssim 21$ . Data products include                                                                                                                                                             |
| 18     | processed spectra from all observations and catalogs listing estimates—derived from template model                                                                                                                                                                   |
| 19     | fitting—of line-of-sight velocity (median uncertainty 1.1 km s <sup>-1</sup> ) effective temperature (234 K), (base-                                                                                                                                                 |
| 20     | 10 logarithm of) surface gravity (0.52 dex in cgs units), [Fe/H] (0.38 dex) and [Mg/Fe] (0.24 dex)                                                                                                                                                                   |
| 21     | abundance ratios. The sample contains multi-epoch measurements for 3720 sources, with up to 15                                                                                                                                                                       |
| 22     | epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6078                                                                                                                                                                 |
| 23     | likely red giant stars (based on surface gravity), and 4494 likely members (based on line-of-sight ve-                                                                                                                                                               |
| 24     | locity and Gaia-measured proper motion) of the target systems. The number of member stars per                                                                                                                                                                        |
| 25     | individual target system ranges from a few, for the faintest systems, to $\sim 850$ for the most luminous.                                                                                                                                                           |
| 26     | For most systems, our new samples extend over wider fields than have previously been observed; of the                                                                                                                                                                |

For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 823 lie beyond  $2\times$  the projected halflight radius of their host system, and 42 lie beyond  $5R_{half}$ .

29 1. INTR

# 1. INTRODUCTION

The Galactic halo teems with stellar substructure. This local environment provides our clearest window conto the processes of galaxy formation and the nature data and the nature. The hierarchy of surviving Halo substructures stretches from the smallest scales, where diffuse star clusters overlap in luminosity with the faintest, for most primitive dwarf galaxies (Gilmore et al. 2007; Martin et al. 2008), to the readily-visible and star-forming

Corresponding author: Matthew G. Walker mgwalker@cmu.edu

<sup>38</sup> Magellanic Clouds. All of these objects are in various <sup>39</sup> stages of dissolution within the Galactic Halo, where <sup>40</sup> ghosts of their earlier-infalling cousins remain detectable <sup>41</sup> by their stellar-orbital configurations and chemical com-<sup>42</sup> position (e.g., Belokurov et al. 2018; Helmi et al. 2018; <sup>43</sup> Naidu et al. 2020).

Known Halo substructures exhibit a wide range of
properties that reveal details of their own formation, internal structure, and chemical evolution (Helmi 2020).
The abundance and systemic motions of Halo substructures can be used to trace and characterize the Galaxy's
extended dark matter halo. The internal kinematics of individual substructures—dwarf galaxies, stellar
streams and stellar overdensities—trace dark matter on
the smallest scales where it is known to exist (Aaronson 1983; Mateo et al. 1993; Willman et al. 2011). The

<sup>\*</sup> This paper presents data gathered with the Magellan Telescopes at Las Campanas Observatory, Chile, and the MMT Observatory, a joint facility of the Smithsonian Institution, and the University of Arizona.

139

<sup>54</sup> chemical abundance patterns of constituent stars reflect
<sup>55</sup> the processes at work in the earliest stages of cosmic star
<sup>56</sup> formation (Tolstoy et al. 2009; Weisz & Boylan-Kolchin
<sup>57</sup> 2017).

Over the past several decades, spectroscopic studies 58 <sup>59</sup> of individual stars within the Milky Way's surviving 60 satellites have developed in fits and starts. Early cam-<sup>61</sup> paigns used 2-4m class telescopes to target red giant  $_{62}$  candidates in the Milky Way's  $\sim 10$  'classical' dwarf 63 spheroidal companions, building line-of-sight velocity <sup>64</sup> samples for a few to several tens of member stars per sys-65 tem (e.g., Aaronson 1983; Olszewski & Aaronson 1985; <sup>66</sup> Mateo et al. 1991, 1993; Hargreaves et al. 1994b, a, 1996; <sup>67</sup> Olszewski et al. 1995). With the advent of multi-object  $_{68}$  fiber spectrographs, samples grew to  $\sim 100$  members <sup>69</sup> per system (e.g., Kleyna et al. 2002; Wilkinson et al. <sup>70</sup> 2004). Ultimately, multi-object spectrographs at 6-10m 71 class telescopes enabled samples not only of line-of-sight 72 velocity, but also chemical composition for several hun-<sup>73</sup> dreds to a few thousand members per system (e.g., Tol-74 stoy et al. 2004; Koch et al. 2006; Battaglia et al. 2006; 75 Koch et al. 2007b,a; Walker, Mateo & Olszewski 2009; <sup>76</sup> Kirby et al. 2010).; for a few bright confirmed member 77 stars, higher-resolution followup could then measure de-78 tailed abundance patterns (e.g., Shetrone et al. 2001; 79 Letarte et al. 2009; Aoki et al. 2009; Cohen & Huang <sup>80</sup> 2009; Lucchesi et al. 2020) Meanwhile, the same instru-<sup>81</sup> mentation provided samples reaching a few to tens of <sup>82</sup> members per each of the low-luminosity  $(M_V \gtrsim -6)$ , <sup>83</sup> 'ultra-faint' Milky Way satellites that were revealed by, <sup>84</sup> e.g., the Sloan Digital Sky Survey, Pan-STARRs and the <sup>85</sup> Dark Energy Survey (e.g., Kleyna et al. 2005; Muñoz 86 et al. 2006; Martin et al. 2007; Simon & Geha 2007; 87 Koposov et al. 2011).

These observational datasets have delivered a wealth 88 <sup>89</sup> of information about the systemic motions and internal <sup>90</sup> chemo-dynamical properties of the Milky Way satellite <sup>91</sup> population; for review articles, see Mateo (1998); Tol-<sup>92</sup> stoy et al. (2009); McConnachie (2012); Simon (2019); 93 Battaglia & Nipoti (2022); Belokurov & Evans (2022). 94 However, the available datasets leave room for substan-95 tial improvement. First there is the obvious statistical <sup>96</sup> improvement that would come with even larger sam-<sup>97</sup> ples and higher (spectroscopic) resolution. There is also 98 the systematic improvement that would come with ex-<sup>99</sup> panded spatial and temporal sampling. Due to finite 100 field sizes, the oldest, lowest-metallicity, most weakly <sup>101</sup> bound outermost member stars are under-represented in <sup>102</sup> nearly all existing spectroscopic samples of dwarf galax-<sup>103</sup> ies. While recent observational campaigns are beginning <sup>104</sup> to focus on outer regions (e.g. Waller et al. 2023; Sestito 105 et al. 2023; Tolstoy et al. 2023), most measurements of <sup>106</sup> stellar velocity and metallicity distributions, as well as
<sup>107</sup> formation histories, remain biased toward central values
<sup>108</sup> where stellar populations skew younger, kinematically
<sup>109</sup> colder and more chemically evolved (Tolstoy et al. 2009).
<sup>110</sup> Furthermore, the lack of multi-epoch observations for
<sup>111</sup> most stars precludes knowledge of intrinsic variability,
<sup>112</sup> limiting the accuracy with which, e.g., intrinsic veloc<sup>113</sup> ity distributions (and hence dynamical masses) can be
<sup>114</sup> inferred (e.g., McConnachie et al. 2009).

With the goal of overcoming these and other limita-<sup>115</sup> With the goal of overcoming these and other limita-<sup>116</sup> tions, we are using wide-field, high-resolution, multi-<sup>117</sup> object spectrographs at the 6.5m MMT and Magellan <sup>118</sup> telescopes in the northern and southern hemispheres, <sup>119</sup> respectively, to conduct a spectroscopic campaign that <sup>120</sup> targets the known dwarf galaxies and faint star clus-<sup>121</sup> ters within the Galactic halo. Compared to previous <sup>122</sup> efforts, our current observations provide higher spectro-<sup>123</sup> scopic resolution, wider spatial coverage and/or multi-<sup>124</sup> epoch temporal coverage. Here we describe the observa-<sup>125</sup> tions, data processing and quality, and release processed <sup>126</sup> spectra and data catalogs from our ongoing programs.

## 2. OBSERVATIONS

We present results from spectroscopic observations of 38 dwarf galaxies and star clusters within the Galactic Halo, conducted over portions of more than 200 clear nights during the years 2005 – 2022. All observations use multi-object, fiber-fed echelle spectrographs at one of two telescopes. We observe northern targets using the Hectochelle spectrograph (Szentgyorgyi 2006) at the 6.5m MMT Observatory in Arizona, and southern targets using the M2FS spectrograph (Mateo et al. 2012) at the 6.5m Magellan/Clay telescope at Las Campanas Observatory in Chile.

# 2.1. Target Selection

The quantity and quality of imaging data available 140 <sup>141</sup> for selecting spectroscopic targets have evolved dramat-142 ically over the course of our observations. Our ear-<sup>143</sup> liest spectroscopic targets were chosen based on our 144 own two-filter photometry, which was limited to rela-145 tively central regions of the most luminous dwarf galax-<sup>146</sup> ies (e.g., Mateo et al. 2008). Others use more recent data <sup>147</sup> sets from observational campaigns—e.g., the PRISTINE 148 survey (Starkenburg et al. 2017)—that target individ-<sup>149</sup> ual systems. In one case—M2FS observations of the <sup>150</sup> Reticulum II dwarf galaxy—we received targeting coor-<sup>151</sup> dinates directly from the Dark Energy Survey's Milky <sup>152</sup> Way working group, which had just discovered Reticu-<sup>153</sup> lum II based on their then-proprietary photometric cat-<sup>154</sup> alogs (The DES Collaboration et al. 2015). Most re-<sup>155</sup> cently, we select targets based on public data from large

<sup>156</sup> sky surveys—e.g., SDSS (Ahn et al. 2012), PanSTARRs
<sup>157</sup> (Flewelling et al. 2020), DES (Abbott et al. 2021)—that
<sup>158</sup> provide multi-color photometry and, with the *Gaia* mis<sup>159</sup> sion, precise and time-dependent astrometry over wide
<sup>160</sup> fields (Gaia Collaboration et al. 2016, 2022). In the
<sup>161</sup> special case of recent observations of star clusters at
<sup>162</sup> low Galactic latitude, we select targets based entirely
<sup>163</sup> on photometry and astrometry from *Gaia* (Pace et al.
<sup>164</sup> 2023).

One consequence of this progress is that our spec-165 <sup>166</sup> troscopic targeting criteria are heterogeneous, varying 167 not only from system to system, but also across differ-<sup>168</sup> ent fields and/or different epochs within a given sys-169 tem. Thus we cannot provide a rigorous and consistent 170 selection function that accounts for the sampling that <sup>171</sup> produced the spectroscopic data sets presented herein. 172 Instead, here we describe our general approach to select-<sup>173</sup> ing spectroscopic targets, and how that approach has <sup>174</sup> evolved in response to advances in imaging surveys. In 175 any case, our data products include coordinates of all 176 observed spectroscopic targets regardless of data qual-177 ity, allowing users to infer effective selection functions where necessary. 178

For nearly all of the stellar systems studied here, <sup>179</sup> For nearly all of the stellar systems studied here, <sup>180</sup> the member stars that are sufficiently bright for spec-<sup>181</sup> troscopy (magnitude  $G \leq 21$ ) are post-main-sequence <sup>182</sup> stars on the red giant, subgiant and horizontal branches. <sup>183</sup> At distances ranging from tens to hundreds of kpc, stars <sup>184</sup> at these evolutionary stages have broad-band colors and <sup>185</sup> magnitudes that are similar to those of late-type dwarf <sup>186</sup> stars in the Galactic foreground. Our general strategy <sup>187</sup> for target selection is first to use available photometry to <sup>188</sup> identify these sequences of evolved stars along the line <sup>189</sup> of sight to the system of interest, then to use additional <sup>190</sup> information (e.g., parallax and proper motion), where <sup>191</sup> available, to filter out likely foreground contaminants.

More specifically, since proper motion data became 192 <sup>193</sup> available with *Gaia's* second data release (Gaia Collab-<sup>194</sup> oration et al. 2018c), we select spectroscopic targets ac-<sup>195</sup> cording to the following procedure. First, we use wide-196 field survey photometry (e.g., SDSS, DES, PanSTARRS, <sup>197</sup> etc.) to identify red giant, horizontal and subgiant <sup>198</sup> branch candidates as likely point sources (based on <sup>199</sup> survey-specific criteria, e.g., requiring TYPE=6 for  $_{200}$  SDSS photometry, |wavg\_spread\_model\_r| < 0.003 for 201 DES data) having g-band magnitudes and g - r col-<sub>202</sub> ors within  $\delta$  magnitudes of a best-fitting (by eye) the-203 oretical isochrone (Dotter 2016). The tolerance  $\delta =$  $\sqrt{\delta_{\rm err}^2 + \delta_{\rm min}^2}$  is set by the observational error,  $\delta_{\rm err}$ , as-204 205 sociated with the photometric color, and a minimum <sup>206</sup> tolerance that takes a typical value of  $\delta_{\min} = 0.2 \text{ mag}$ . 207 Next we identify the photometrically-selected stars for

<sup>208</sup> which *Gaia* measures a parallax that is unresolved (par-<sup>209</sup> allax angle is smaller than 3 times its observational er-<sup>210</sup> ror), and a proper motion that is consistent, given ob-<sup>211</sup> servational errors, with the systemic mean (e.g., Gaia <sup>212</sup> Collaboration et al. 2018a; Pace & Li 2019). Given the <sup>213</sup> list of prospective spectroscopic targets that pass these <sup>214</sup> photometric and astrometric filters, we select randomly 215 from those that lie within the available field of view of <sup>216</sup> a given telescope pointing. For systems that extend be-<sup>217</sup> yond a single telescope pointing, our choice of pointing is <sup>218</sup> based on competing interests in 1) observing large num-<sup>219</sup> bers of high-probability member stars, which favors cen-<sup>220</sup> tral fields, 2) fairly sampling across the target system, <sup>221</sup> which requires outer fields where member stars can be 222 scarce, and 3) obtaining sufficient repeat measurements <sup>223</sup> to gauge observational errors and intrinsic variability. <sup>224</sup> Finally, we note that photometric and/or astrometric <sup>225</sup> filter tolerances can be adjusted based on target density <sup>226</sup> in order to make use of available fibers.

Figures 22 and 23 of the Appendix display sky po-227 <sup>228</sup> sitions, color-magnitude diagrams (CMDs), proper mo-229 tion coordinates and our own measurements of metallic- $_{230}$  ity, [Fe/H], vs. (heliocentric) line-of-sight velocity,  $V_{LOS}$ , <sup>231</sup> for spectroscopic targets toward each Galactic satellite 232 that we observe. As discussed above, our actual target 233 selection used a variety of different photometric data 234 sets; however, for uniformity of presentation the plotted <sup>235</sup> CMDs all use *Gaia's G*-band photometry and integrated <sup>236</sup> BP-RP spectra, with extinction corrections applied ac-237 cording to the procedure described by Gaia Collabora-<sup>238</sup> tion et al. (2018b). Overplotted in the CMDs are theo-<sup>239</sup> retical isochrones (Dotter 2016; Morton 2015) computed <sup>240</sup> for old (age=10 Gyr) stellar populations and published <sup>241</sup> values of metallicity for each object (e.g., McConnachie <sup>242</sup> 2012). Ellipses in the sky maps have semi-major axes  $_{243} a = 2R_{\text{half}}/\sqrt{1-\epsilon}$ , where  $R_{\text{half}}$  is the projected halflight <sup>244</sup> radius and  $\epsilon \equiv 1 - b/a$  is the measured ellipticity. In the  $_{245}$  proper motion and [Fe/H] vs.  $V_{LOS}$  panels, dashed lines <sup>246</sup> indicate previously-published values for systemic mean <sup>247</sup> proper motions and velocities (Pace et al. 2022), where 248 available.

#### 2.2. Magellan/M2FS

249

The Michigan/Magellan Fiber System (M2FS; Mateo et al. 2012) is a fiber-fed, double spectrograph operating telescope at Las Campanas Observatory, Chile. Each telescope at Las Campanas Observatory, Chile. Each to 128 fibers. A wide field corrector provides good imtes age quality over a field of diameter 30 arcmin. Fibers can operate at wavelengths between 3700 - 9500 Å, have entrance apertures of diameter 1.2 arcsec, and tolerate

<sup>259</sup> center-to-center target separations as small as 12 arc-<sup>260</sup> sec. M2FS observers plug fibers by hand into masks that are machined at the Carnegie Observatories ma-261 262 chine shop. Depending on choice of diffraction grating <sup>263</sup> and order-blocking filters, M2FS offers a wide range of observing configurations, with spectral resolution rang-264 <sup>265</sup> ing from  $\mathcal{R} \sim [0.2 - 34] \times 10^3$  and wavelength coverage <sup>266</sup> ranging from tens to thousands of Å.

For the vast majority of M2FS observations reported 267 <sup>268</sup> here, we use the high-resolution ('HiRes' hereafter) grat-<sup>269</sup> ing with both spectrographs, and with filters selected to  $_{\rm 270}$  pass light over a single order at 5130  $\lesssim$   $\lambda$   $\lesssim$  5190 Å. <sup>271</sup> The most prominent feature in this region is the Mg I 'b' <sup>272</sup> triplet, with rest wavelengths of 5167.32 Å, 5172.68 Å, <sup>273</sup> and 5183.60 Å. This region also contains many iron lines 274 that enable a direct measurement of iron abundance. With these choices, we acquire single-order spectra for 275 276 up to 256 sources per pointing, with resolving power  $_{277} \mathcal{R} \sim 24,000$ . We bin the detector at  $2 \times 2$  pixels<sup>2</sup>, giving <sub>278</sub> plate scale  $\sim 0.065$  Å/pixel over the useful wavelength 279 range.

For a small fraction of M2FS observations reported 280 <sup>281</sup> here, we use an alternative configuration that has at 282 least one of the two spectrographs using a medium-283 resolution (henceforth 'MedRes') grating that gives re-284 solving power  $\mathcal{R} \sim 7000$ . In order to cover the Mg triplet <sup>285</sup> region, we use an order-blocking filter that passes light <sub>286</sub> over the range 5115–5300 Å. Using the same  $2 \times 2$  binning that we use with the HiRes grating, the MedRes 287 <sub>288</sub> observations have plate scale  $\sim 0.2$  Å/pixel over the use-289 ful wavelength range.

During a typical observing night with M2FS, we take 290 100-200 zero-second 'exposures' in order to measure the 291 <sup>292</sup> bias levels of the detectors in both spectrographs. We <sup>293</sup> take between 3-10 exposures of the (scattered) solar <sup>294</sup> spectrum during evening and/or morning twilight. For a <sup>295</sup> typical science field, we expose for 1-3 hours, broken into 2-5 sub-exposures. Of the 256 available fibers, we assign 296  $\sim 30$  to regions of blank sky. Immediately before and af-297 <sup>298</sup> ter science exposures, and often between sub-exposures, we acquire calibration spectra of an LED source and 299 <sup>300</sup> then a ThArNe arc lamp, both of which are located at the secondary cage and illuminate the fibers at the focal 301 <sup>302</sup> surface. During daylight hours, we acquire sequences <sup>303</sup> of hour-long 'dark' exposures with both spectrographs' 304 shutters closed.

Table 1 lists the instrument configuration, central field 305 coordinates, date, total exposure time and number of 306 <sup>307</sup> targets for all M2FS science fields observed for our pro-<sup>308</sup> gram thus far. Including repeat observations, we have <sup>309</sup> observed a total of 92 science fields with M2FS for this <sup>310</sup> program—74 with both spectrographs using the HiRes

<sup>311</sup> grating, 1 with both using the MedRes grating, and 17 <sup>312</sup> with one spectrograph in HiRes mode and the other in <sup>313</sup> MedRes mode—for a total science exposure time of 0.68 <sup>314</sup> megaseconds (Ms). We obtain acceptable M2FS HiRes  $_{315}$  spectroscopic measurements for  $\sim 6.6$ k unique sources <sup>316</sup> within 18 different target systems, and we obtain ac- $_{317}$  ceptable M2FS MedRes measurements for  $\sim 82$  unique  $_{318}$  sources within 5 different systems. For  $\sim 1.4$ k M2FS <sup>319</sup> sources we have (up to 15 per source) multiple indepen-320 dent measurements.

# 2.3. MMT/Hectochelle

Hectochelle is a fiber-fed echelle spectrograph at the 322 323 f/5 focal surface of the MMT Observatory on Mt. Hop-<sup>324</sup> kins, Arizona, United States (Szentgyorgyi 2006). Hec-325 tochelle's optical fibers have entrance apertures of di-326 ameter 1.5 arcsec, and are positioned robotically, al-327 lowing simultaneous observation of up to 240 distinct 328 sources. A wide field corrector, coupled with an atmo-329 spheric dispersion compensator, gives a field of view of <sup>330</sup> diameter 1 degree. Hectochelle spectra consist of a sin-<sub>331</sub> gle diffraction order spanning  $\sim 150$  Å, with resolving <sub>332</sub> power  $\mathcal{R} \sim 32,000$  at wavelength  $\lambda \sim 5200$  Å. We use <sup>333</sup> Hectochelle's 'RV31' order-blocking filter, which isolates <sup>334</sup> the wavelength range 5150–5300 Å. We bin the detector <sub>335</sub> by factors of 2 and 3 in the spectral and spatial dimen-<sup>336</sup> sions, respectively, giving plate scale  $\sim 0.10$  Å/pixel.

Our observing strategy with Hectochelle is similar to 337 <sup>338</sup> the one described above for M2FS. On a typical night  $_{339}$  we acquire  $\sim 100$  zero-second bias 'exposures', plus ex-340 posures of the scattered solar spectrum during evening <sup>341</sup> and/or morning twilight. As with M2FS, for a given sci-<sup>342</sup> ence field we acquire between 2-5 sub-exposures totalling 343 1-3 hours of integration time. Before and after science <sup>344</sup> exposures we acquire spectra of a ThAr arc lamp. Either <sup>345</sup> before or after science exposures, we acquire the spec-346 trum of a quartz lamp. The observatory staff acquires 347 dark exposures regularly during daylight hours.

Table 2 lists the same information as Table 1, but for 348 349 Hectochelle observations. With Hectochelle we have ob-<sup>350</sup> served a total of 92 (including repeat observations) sci-<sup>351</sup> ence fields for a total science exposure time of 1.42 Ms.  $_{352}$  We obtain acceptable measurements for  $\sim 9.7$ k unique  $_{353}$  sources within within 21 target systems. For  $\sim 2.4$ k <sup>354</sup> sources we have (up to 13 per source) multiple inde-355 pendent measurements.

356

# 3. PROCESSING OF RAW SPECTRA

| Instrument        | Field C                | lenter                 | UT date <sup><math>a</math></sup> | UT start <sup><math>b</math></sup> | Exp. Time | $N_{\rm exp}$ | $N_{\text{target}}$ | Object       |
|-------------------|------------------------|------------------------|-----------------------------------|------------------------------------|-----------|---------------|---------------------|--------------|
|                   | $\alpha_{2000}$ [deg.] | $\delta_{2000}$ [deg.] |                                   |                                    | [sec.]    |               |                     |              |
| M2FS HiRes        | 153.028333             | -001.754667            | 2014-02-24                        | 08:44:35                           | 8900      | 5             | 218                 | Sextans      |
| M2FS HiRes        | 100.746667             | -050.848333            | 2014-02-25                        | 03:01:36                           | 5400      | 3             | 214                 | Carina       |
| M2FS HiRes        | 100.610000             | -051.082361            | 2014-02-25                        | 05:04:05                           | 5700      | 3             | 214                 | Carina       |
| M2FS HiRes        | 153.684583             | -001.500944            | 2014-02-26                        | 08:00:05                           | 6600      | 5             | 216                 | Sextans      |
| M2FS HiRes        | 153.685000             | -001.501000            | 2014-02-27                        | 07:13:52                           | 3600      | 3             | 216                 | Sextans      |
| M2FS HiRes        | 153.292917             | -001.604694            | 2014-02-28                        | $07{:}46{:}28$                     | 3600      | 3             | 216                 | Sextans      |
| M2FS HiRes        | 100.399167             | -050.947139            | 2014 - 12 - 15                    | 06:28:27                           | 8100      | 3             | 218                 | Carina       |
| M2FS HiRes        | 100.835417             | -051.099611            | 2014 - 12 - 19                    | 08:05:29                           | 4500      | 3             | 207                 | Carina       |
| M2FS HiRes        | 099.959583             | -050.786417            | 2014 - 12 - 21                    | 07:56:08                           | 5400      | 3             | 187                 | Carina       |
| M2FS HiRes        | 099.961667             | -050.784722            | 2014 - 12 - 23                    | 08:01:05                           | 3600      | 3             | 177                 | Carina       |
| M2FS HiRes        | 053.810000             | -054.075444            | 2015-02-19                        | 02:24:12                           | 7200      | 3             | 186                 | Reticulum II |
| M2FS HiRes        | 153.292500             | -001.601639            | 2015-02-22                        | 06:50:05                           | 7200      | 4             | 214                 | Sextans      |
| M2FS HiRes/MedRes | 343.062917             | -058.493583            | 2015-07-18                        | 09:40:45                           | 9000      | 5             | 137                 | Tucana II    |

Table 1: Log of M2FS Observations of Galactic Halo Objects (abbreviated—see electronic version for full table)

 $^{a}$ YYYY-MM-DD format

 $^b\,{\rm Universal}$  time at start of first exposure; HH:MM:SS format

 Table 2: Log of MMT/Hectochelle Observations of Galactic Halo Objects (abbreviated—see electronic version for full table)

| Instrument  | Field C                | enter                  | UT date <sup><math>a</math></sup> | UT start <sup><math>b</math></sup> | Exp. Time | $N_{\rm exp}$ | $N_{\text{target}}$ | Object   |
|-------------|------------------------|------------------------|-----------------------------------|------------------------------------|-----------|---------------|---------------------|----------|
|             | $\alpha_{2000}$ [deg.] | $\delta_{2000}$ [deg.] |                                   |                                    | [sec.]    |               |                     |          |
| Hectochelle | 152.064708             | +012.349136            | 2005-04-01                        | 05:06:30                           | 9079      | 3             | 143                 | Leo I    |
| Hectochelle | 152.064708             | +012.349136            | 2005-04-02                        | 06:13:04                           | 14400     | 4             | 143                 | Leo I    |
| Hectochelle | 259.425000             | +058.049972            | 2005-04-02                        | 10:52:57                           | 8700      | 3             | 132                 | Draco    |
| Hectochelle | 152.166792             | +012.274975            | 2006-04-20                        | 05:53:41                           | 7500      | 3             | 135                 | Leo I    |
| Hectochelle | 152.107875             | +012.309992            | 2006-04-24                        | 05:07:09                           | 8100      | 3             | 135                 | Leo I    |
| Hectochelle | 168.355875             | +022.149333            | 2006-04-25                        | 05:12:38                           | 8100      | 3             | 114                 | Leo II   |
| Hectochelle | 260.958333             | +057.870000            | 2006-04-25                        | 08:12:45                           | 4846      | 5             | 107                 | Draco    |
| Hectochelle | 210.005667             | +014.483664            | 2006-05-08                        | 04:24:44                           | 5400      | 3             | 191                 | Bootes I |
| Hectochelle | 260.102667             | +057.885250            | 2007-02-23                        | 12:27:48                           | 5400      | 3             | 120                 | Draco    |
| Hectochelle | 257.091792             | +057.877306            | 2007-02-26                        | 10:03:25                           | 5400      | 3             | 139                 | Draco    |
| Hectochelle | 262.915167             | +058.382108            | 2007-02-26                        | 12:22:21                           | 7200      | 4             | 145                 | Draco    |
| Hectochelle | 152.765458             | -001.052389            | 2007-02-27                        | 09:57:01                           | 8400      | 4             | 203                 | Sextans  |
| Hectochelle | 259.407542             | +057.775056            | 2007-02-27                        | 12:05:59                           | 5400      | 3             | 89                  | Draco    |

 $^{a}$ YYYY-MM-DD format

 $^b\,{\rm Universal}$  time at start of first exposure; HH:MM:SS format

All MMT/Hectochelle spectra are processed using the standard TDC pipeline<sup>1</sup> which is written in IDL. Briefly, the four channels from two CCDs are corrected for bias and merged. Cosmic rays are then detected and interpolated over, and individual exposures are coadded. Dark structure is subtracted depending on the exposure time, and spectra are extracted in the manner described in the next section.

The remainder of this section describes the set of Python-based modules that we have written for endto-end processing of Magellan/M2FS spectra. Where applicable and convenient, we incorporate modules that are publicly available as part of the Astropy software package (Astropy Collaboration et al. 2013, 2018, 2022).

# 371 3.1. Overscan/bias/dark/gain corrections and 372 uncertainties

<sup>373</sup> We begin by using the Astropy-affiliated package 'ccd-<sup>374</sup> proc' (Craig et al. 2017) to perform standard corrections <sup>375</sup> for overscan, bias, dark current and gain. We apply all of <sup>376</sup> these corrections independently to images from each of <sup>377</sup> the two M2FS channels and, for a given channel, to each <sup>378</sup> of the 1024  $\times$  1028 (plus 128  $\times$  128 overscan) image sec-<sup>379</sup> tions read out via each detector's four independent am-<sup>380</sup> plifiers. 'ccdproc' replicates the tasks performed by the <sup>381</sup> original IRAF (Tody 1986) package of the same name, <sup>382</sup> but also calculates and stores a 2D array containing an <sup>383</sup> estimate of the variance at each pixel.

For each amplifier on each detector and for each M2FS 384 <sup>385</sup> run individually, we generate an image of the master  $_{386}$  bias level, denoted B, by averaging (after iteratively discarding  $3\sigma$  outliers at the pixel level)  $\gtrsim 100$  zero-387 <sup>388</sup> second (overscan-corrected) exposures. We generate an  $_{389}$  image of the master dark current rate, denoted D, by <sup>390</sup> averaging (again with iterative  $3\sigma$  outlier pixel rejection) the  $\approx 250$  3600-second dark exposures (after performing 391 <sup>392</sup> overscan correction and subtracting the run-dependent <sup>393</sup> master bias image) taken over all M2FS runs<sup>2</sup> involv-<sup>394</sup> ing observations presented here. For all individual ex-<sup>395</sup> posures of interest, we then use 'ccdproc' to perform <sup>396</sup> overscan correction to obtain an image of raw counts, denoted C, and then to subtract estimates of the master <sup>398</sup> bias and dark counts. Finally, 'ccdproc' applies the ap-<sup>399</sup> propriate gain correction (typically  $g \approx 0.68 \text{ e}^{-}/\text{ADU}$ )

400 to obtain an estimate of counts in units of electrons:

$$\hat{N} = g(\hat{C} - \hat{B} - t_{\exp}\hat{D}), \qquad (1)$$

<sup>402</sup> where  $t_{\text{exp}}$  is exposure time and we adopt the convention <sup>403</sup> under which  $\hat{X}$  denotes the estimate of X.

The variance estimated by 'ccdproc' is by default the 405 sum of the estimated gain-corrected count,  $\hat{N}$ , and the 406 square of the read noise. One problem with this esti-407 mate is that for weak signals, read noise can dominate 408 such that  $\hat{N}$  and hence the estimated variance can be 409 negative. Another problem with weak signals is that— 410 even in the absence of read noise—the observed count 411 skews toward values smaller than the expected count, 412 and hence the variance, of a Poisson distribution. For 413 example, for expected counts of 1, 10, 100, random draws 414 from Poisson distributions will be smaller than the ex-415 pectation value with probability 0.37, 0.46, 0.49, respec-416 tively, and larger than the expectation value with prob-417 ability 0.26, 0.42, 0.47.

Illustrating these problems and our ad hoc solution, 418  $_{419}$  Figure 1 depicts the mean value, from  $10^6$  trials over <sup>420</sup> a range of input signals, of  $\chi_1^2 \equiv (S - S_{\rm in})^2 / \hat{\sigma}_S^2$ , where  $_{421}$  S is a simulated observation,  $\hat{\sigma}_S^2$  is an estimate of its  $_{422}$  variance, and  $S_{in}$  is the known input signal. In each <sup>423</sup> trial, the simulated observation is  $S = S_0 + \epsilon$ , where<sup>3</sup>  $_{424} S_0 \sim \mathcal{P}_k(S_{\rm in})$  is drawn from the Poisson distribution  $_{425}$  with expected value equal to the input signal, and  $\epsilon \sim$ 426  $\mathcal{N}_x(0,\delta^2)$  is drawn from the normal distribution with <sup>427</sup> mean 0 and variance  $\delta^2$ . In our simulation, we set  $\delta$  equal <sup>428</sup> to the typical M2FS read noise of  $\sigma_r = 2.6 e^{-1}$ , and we 429 assume that any additional noise associated with, e.g., <sup>430</sup> empirical estimation of bias and dark levels is negligible. The black curve in Figure 1 indicates the mean values 431 432 of  $\chi_1^2$  that are calculated using the 'true' variance,  $\hat{\sigma}_S^2 =$ <sup>433</sup> Var $(S) = S_{in} + \delta^2$ . As expected, use of the true variance 434 gives mean  $\chi_1^2$  values of unity; unfortunately, the true 435 variance is inaccessible to the observer who does not 436 know the input signal.

<sup>437</sup> The blue curve in Figure 1 shows the result of estimat-<sup>438</sup> ing the variance as the observationally-accessible—and <sup>439</sup> commonly used—quantity  $\hat{\sigma}_S^2 = \max(S + \delta^2, \delta^2)$ . The <sup>440</sup> mean  $\chi_1^2$  asymptotes to unity only at  $N_{\rm in} \gtrsim 100$ . For <sup>441</sup>  $\delta \lesssim S_{\rm in} \lesssim 100$ , the aforementioned bias toward  $S < S_{\rm in}$ <sup>442</sup> gives mean  $\chi_1^2 > 1$  as the true variance is underesti-<sup>443</sup> mated. For the smallest signals,  $S_{\rm in} \lesssim \delta$ ,  $\chi_1^2 < 1$  as the <sup>444</sup> max operation causes the true variance to be overesti-<sup>445</sup> mated on average.

 $<sup>^1</sup>$  https://lweb.cfa.harvard.edu/mmti/hectospec/hecto\_pipe\_report.pdf

 $<sup>^2</sup>$  We do not generate a new master dark frame for each run because a given run permits the acquisition of only a few long dark exposures.

<sup>&</sup>lt;sup>3</sup> We use  $\mathcal{P}_k(\lambda)$  to denote the Poisson distribution of number of occurrences, k, with expected value  $\lambda$ , and we use  $\mathcal{N}_x(\mu, \sigma^2)$  to denote the normal distribution of random variable x, with expected value  $\mu$  and variance  $\sigma^2$ .



Figure 1: Mean value of  $\chi_1^2 \equiv (S - S_{\rm in})^2 / \hat{\sigma}_N^2$  as a function of expected signal  $S_{\rm in}$ , from 10<sup>6</sup> realizations at each input signal, assuming read noise  $\sigma_r = 2.6e^-$ ; see Section 3.1 for details. Curves show results for different estimators of the variance,  $\hat{\sigma}^2$ ; black uses the true variance, blue uses a commonly-used estimator, red uses the estimator we use for real M2FS data (Equation 2).

The red curve in Figure 1 shows the result of taking the variance to be

(2)

448 
$$\hat{\sigma}_S^2 = \max(S + 2 + \delta^2, 0.6\delta^2),$$

<sup>449</sup> a formula that we found, via experiment, to bring mean <sup>450</sup> values of  $\chi_1^2$  closer to unity at all input signals specifi-<sup>451</sup> cally when  $\delta \approx 2.6e^-$ ; for other values of the Gaussian <sup>452</sup> noise, the constants in Equation 2 would need to be re-<sup>453</sup> determined.

<sup>454</sup> Based on the above experiment, we use Equation 2 to <sup>455</sup> estimate the variance at each pixel of the real M2FS im-<sup>456</sup> ages. In our application to real data, we take the Poisson <sup>457</sup> component to be  $S = \hat{N} + t_{exp}\hat{D}$ , the sum of estimated <sup>458</sup> source (including background) and dark counts, and the <sup>459</sup> Gaussian component to be  $\delta^2 = \hat{\sigma}_r^2 + \sigma_{\hat{B}}^2 + t_{exp}^2 \sigma_{\hat{D}}^2$ , the <sup>460</sup> sum of contributions from the estimated read noise and <sup>461</sup> noise associated with empirical estimates of bias and <sup>462</sup> dark count levels.

<sup>463</sup> The estimated M2FS read noise is typically  $\hat{\sigma}_r \approx 2.6$ <sup>464</sup> e<sup>-</sup>, as calculated from the mean standard deviation over <sup>465</sup> all pixels within individual images contributing to the <sup>466</sup> master bias frames. The master dark frame indicates <sup>467</sup> a mean dark current rate of  $\hat{D} \approx 2.0$  e<sup>-</sup> hour<sup>-1</sup>. The <sup>468</sup> run-dependent master bias frames and the global mas-<sup>469</sup> ter dark frame have typical uncertainties of  $\sigma_{\hat{B}} \approx 0.15$ <sup>470</sup> e<sup>-</sup> and  $\sigma_{\hat{D}} \approx 0.25$  e<sup>-</sup> hour<sup>-1</sup>, respectively, calculated <sup>471</sup> as the standard deviations over the individual calibra<sup>472</sup> tion frames divided by the square root of the number of <sup>473</sup> calibration frames, and converted to units of electrons.

We reiterate that our application of Equation 2 rep-475 resents an ad hoc solution to the problem of estimat-476 ing variances of pixel counts directly from the data. It 477 is tuned specifically to produce  $\chi_1^2 \approx 1$  at  $N_{\rm in} \lesssim 100$ 478 electrons, given M2FS-like read noise; at other levels 479 of read noise the form of Equation 2 would need to be 480 re-determined. We note that there exist alternative so-481 lutions; e.g., Guy et al. (2022) develop a full model of 482 the CCD image in order to estimate the variance at each 483 pixel.

Finally, for each channel we stitch together the four independently-processed sections read by each amplifier in order to obtain a single image of size 2048 (columns) ×2056 (rows) square pixels. Figure 2 displays examples states of the stitched frames obtained for four types of exposures, with illumination by: LED (top-left), twilight sky (top-right), Thorium-Argon-Neon lamp (bottom-left), and target stars (bottom-right). Single-order spectra appear as horizontal bands, each spanning 5130–5190 Å over columns 300–1400. Signals outside this range are contributed by light from adjacent orders, which we distes card (see below).

## 496 3.2. Identification and Tracing of Spectral Apertures

M2FS disperses light approximately along the direc-497 <sup>498</sup> tion parallel to rows in the stitched images, henceforth 499 called the x direction, where x is a continuous variable <sup>500</sup> along the discrete 'column' axis (see Figure 2). Ad-<sup>501</sup> jacent spectra are offset approximately along the 'row'  $_{502}$  axis, which we represent with continuous variable y. In <sup>503</sup> order to identify and trace spectral apertures, we fol-<sup>504</sup> low procedures similar to those performed by IRAF's <sup>505</sup> 'apall' package. For each science field, we operate on <sup>506</sup> the corresponding stitched LED frame (top-left panel <sup>507</sup> of Figure 2), as it contains sufficient counts to identify <sup>508</sup> and trace most spectral apertures. For calibration expo-<sup>509</sup> sures of standard stars or of twilight sky, counts are suffi-<sup>510</sup> ciently high that we can operate directly on the stitched <sup>511</sup> standard and twilight frames themselves. The top-right <sup>512</sup> panel of Figure 2 displays the raw image obtained from <sup>513</sup> an exposure taken during evening twilight.

We begin by bundling the central 20 columns (columns 1013–1032), effectively combining them by storing their mean count as a function of row number (y value). Figure 3 displays a characteristic example of this function, which resembles an emission-line spectrum; but of profiles. We use the astropy.modeling package to fit a Chebyshev polynomial that represents the 'continuum' profiles the best-



Figure 2: Examples of raw M2FS (HiRes configuration) images obtained during exposures of a calibration LED source (top left), evening twilight (top right), ThArNe arc lamp (bottom left) and a science field (bottom right). Single-order spectra appear as horizontal bands, each spanning 5130–5190 Å over columns  $\sim 300-1400$  (signal outside this column range is contributed by light from adjacent orders and is not used). The separation into eight groups of 16 apertures reflects the physical bundling of fiber ends at the spectrograph.



Figure 3: Identification of spectral apertures in an example M2FS frame. Plotted for each row on the detector is the mean count recorded in columns 1013 - 1032 (the middle 20 columns). Local maxima signify the centers of spectral apertures.

<sup>523</sup> fitting model continuum, we use the find\_lines\_derivative <sup>524</sup> function from the astropy.specutils package to identify <sup>526</sup> aperture centers as local maxima.

We use these centers to initialize Gaussian fits (again via the astropy.modeling package) to the 'continuum'subtracted pseudo-spectrum, restricting our fits to the 10 rows around the centers returned by the find\_lines\_derivative function, but re-fitting those centers under the Gaussian model. The fitted Gaussian functions then represent the aperture illumination profiles across the center of the stitched image. We repeat the this process for all 102 bundles of 20 (noncoverlapping) consecutive columns, allowing us to quantify how the centers and widths of aperture profiles vary with column number across the stitched image.

Next we inspect, by eye, the pseudo-spectrum along the central column bundle, as well as the Gaussian fit to each aperture profile along that central bundle. Since the apertures in both 'blue' and 'red' channels are known to follow a regular pattern of eight approximately evenly-spaced groups, with each group containting 16 approximately evenly-spaced apertures (see Figure 2), we can delete any obviously spurious aperture detections and insert artificial placeholders to represent (for book-keeping purposes) apertures corresponding to unassigned and/or broken fibers.

Then, for each visually-confirmed aperture, we trace the full 2D shape by 'marching' from the center to each edge of the useful region (columns  $\sim 300 - 1400$ ; see Figure 2) in the stitched image. We begin at the position  $_{554}$  whose x coordinate is the median column number of the  $_{555}$  central column bundle, and whose y coordinate is the <sup>556</sup> fitted center of the aperture profile in that bundle. We <sup>557</sup> then find the fitted aperture center in the adjacent bun-558 dle that has the smallest deviation in its y coordinate. <sup>559</sup> If the deviation has absolute value smaller than some <sup>560</sup> threshold (we use 1.5 pixels), we step to a new posi- $_{561}$  tion whose x coordinate is the median column number  $_{562}$  of that adjacent bundle, and whose y value is the fit-<sup>563</sup> ted center of that bundle's aperture profile. We proceed <sup>564</sup> in this manner either to the edge of the useful region 565 in the image, or until three consecutive column bun-566 dles have no aperture whose center deviates from the  $_{567}$  current y coordinate by less than the specified thresh-<sup>568</sup> old. We then return to the center column and march, <sup>569</sup> in the same manner, toward the opposite edge. We thus 570 obtain a list of (x, y) positions that sample the aper-<sup>571</sup> ture's 2D trace pattern. To these data we fit and store  $_{572}$  a 4<sup>th</sup>-order polynomial function, iteratively rejecting  $3\sigma$ 573 outliers. We also fit and store 4<sup>th</sup>-order polynomials to 574 the stored amplitudes and standard deviations; these <sup>575</sup> two functions then characterize the aperture profile as a 576 function of x.

# 577 3.3. Correction for Variations in Pixel Sensitivity

M2FS does not have an internal lamp that uni-578 579 formly illuminates the detectors; all incident light trav-<sup>580</sup> els through the fibers. In order to correct for random <sup>581</sup> variations in pixel sensitivity within a given aperture, <sup>582</sup> we use the previously-fit (Section 3.2) polynomials that 583 represent center, amplitude and standard deviation of the LED aperture profile, all as functions of x, to gen-<sup>585</sup> erate a model 2D aperture image. At a given column <sup>586</sup> within the aperture, we evaluate the fitted polynomi-587 als to specify the parameters (center, amplitude, stan-<sup>588</sup> dard deviation) of the Gaussian aperture profile model. 589 We integrate that model to estimate the expected count <sup>590</sup> within each pixel along the column, including all rows <sup>591</sup> whose centers are within 3 aperture profile standard de-<sup>592</sup> viations of the aperture center. Repeating this proce-<sup>593</sup> dure at each column, we obtain a pixelated model of the <sup>594</sup> two-dimensional LED spectrum.

<sup>595</sup> Dividing the actual 2D LED spectrum by this model, <sup>596</sup> we obtain the equivalent of a normalized 'flat field' spec-<sup>597</sup> trum. After repeating for each aperture, we divide the <sup>598</sup> normalized 'flat field' frame into each individual stitched <sup>599</sup> image whose random variations in pixel sensitivity we <sup>600</sup> wish to correct (these include science, twilight, and arc-<sup>601</sup> lamp exposures).

## 3.4. Correction for Scattered Light

602

Having applied flat-field corrections to the stitched 603 (science and calibration) images, next we estimate and 604 <sup>605</sup> remove scattered light. We first use the corresponding 606 LED exposures (or bright standard star and/or twilight 607 exposures) to mask the regions corresponding to the <sup>608</sup> identified and traced spectral apertures. Specifically, we <sup>609</sup> mask all pixels whose centers lie more than 3 standard 610 deviations away from the center of the nearest aperture 611 trace pattern, where the center and scale length are ob-612 tained by evaluating the polynomial functions fit to the <sup>613</sup> aperture trace and aperture profile, respectively, at the  $_{614}$  pixel's x coordinate (Section 3.2).

Returning to the frame of interest, we then fit a 2D 615 <sup>616</sup> 4<sup>th</sup>-order polynomial to the unmasked pixels, iteratively <sub>617</sub> rejecting  $3\sigma$  outliers, in order to estimate the contribu-<sup>618</sup> tion from scattered light. We remove scattered light by <sup>619</sup> subtracting this function from the frame of interest.

620

# 3.5. Extraction of 1D spectra

In order to extract 1D spectra from each aperture, we 621 622 collapse each column within the aperture into a single <sub>623</sub> pixel regardless of the aperture trace pattern, thereby 624 preserving independence between adjacent columns. This strategy would be optimal in the case that the spec-625 626 tral dispersion axis is exactly parallel to the detector's axis. In reality the spectral apertures have nonzero 627 X 628 curvature (Section 3.2); our procedure therefore results <sup>629</sup> in some degradation of spectral resolution.

Let  $\hat{N}(X,Y)$  and  $\hat{\sigma}^2(X,Y)$  be the estimated count (in 630 631 electrons) and estimated variance (in electrons<sup>2</sup>), respec-632 tively, at discrete pixel (X, Y). Let f(x, y) be the func-<sup>633</sup> tion that generates the 2D image of the spectrum—i.e.,  $f_{634}$  f(x, y) dx dy is the expected count within area element 635 dx dy on the detector. Physically, the function f(x, y) is 636 set by the intrinsic source (plus background) spectrum, 637 the spectral resolution and the geometry of both aper-638 ture and detector. We assume that, perpendicular to 639 the spectral dispersion direction (i.e. the 'spatial' di-<sub>640</sub> rection, taken to be along the y axis), the signal decays 641 according to the Gaussian aperture profile whose param-642 eters we evaluate from our polynomial fits described in 643 Section 3.2, such that  $f(y|x) = \mathcal{N}(y_0(x), \sigma^2(x))$ , where  $_{644}$   $y_0(x)$  is the center of the aperture profile at dispersion <sub>645</sub> coordinate x, and  $\sigma(x)$  is the standard deviation.<sup>4</sup>

Under this model, the predicted count at discrete pixel 646  $_{647}(X,Y)$  is

648 
$$N_{\text{mod}}(X,Y) = \int_{X_1}^{X_2} \mathrm{d}x \int_{Y_1}^{Y_2} \mathrm{d}y \, f(x,y)$$
649 
$$= \int_{X_1}^{X_2} \mathrm{d}x \int_{Y_1}^{Y_2} \mathrm{d}y \, f(x) \, f(y|x))$$

65

65

661

672

673

$$= \int_{X_1}^{X_2} \mathrm{d}x \, f(x) \int_{Y_1}^{Y_2} \mathrm{d}y \, \mathcal{N}(y_0(x), \sigma^2(x))$$
  
=  $N_{\mathrm{mod}}(X) \int_{Y_1}^{Y_2} \mathcal{N}(y_0(X), \sigma^2(X)),$  (3)

 $_{652}$  where  $(X_1, Y_1)$  and  $(X_2, Y_2)$  are corners across the diag-653 onal of the pixel. The count  $N_{\text{mod}}(X)$  is, by definition, <sup>654</sup> the expectation value of  $f(x) = \int p(x,y) \, dy$  at column 655 X.

Within a given aperture, we take each of the  $N_{\rm row}$ 656  $_{657}$  pixels in column X to be drawn independently from a 658 normal distribution with mean predicted by Equation <sup>659</sup> 3 and variance equal to the estimated value,  $\hat{\sigma}^2(X, Y)$ . 660 We define

$$\chi^{2} \equiv \sum_{i=1}^{N_{\text{row}}} \frac{\left[\hat{N}(X, Y_{i}) - N_{\text{mod}}(X, Y_{i})\right]^{2}}{\hat{\sigma}^{2}(X, Y_{i})}$$
(4)

<sup>662</sup> Minimizing  $\chi^2$  with respect to  $N_{\text{mod}}(X)$ , we recover the <sup>663</sup> 'optimal' estimator of Horne (1986),

$$\hat{N}(X) = \frac{\sum_{i=1}^{N_{\text{pix}}} \frac{\hat{N}(X,Y_i)I_i}{\hat{\sigma}^2(X,Y_i)}}{\sum_{i=1}^{N} \frac{I_i^2}{\hat{\sigma}^2(X,Y_i)}}$$
(5)

665 where  $I_i \equiv \int_{Y_1}^{Y_{2_i}} \mathrm{d}y \,\mathcal{N}(y0(X), \sigma^2(X))$ . Given the data <sup>666</sup> in the 2D image, and the Gaussian aperture profile pa-

667 rameters fit to spectral apertures in the LED frame (Sec- $_{668}$  tion 3.2), the estimator in Equation 5 is fully specified. <sup>669</sup> For all science and calibration frames, we use Equation 5 <sup>670</sup> to extract 1D spectra at every column of every aperture. <sup>671</sup> We propagate the estimated variance as

$$\hat{\sigma}^{2}[\hat{N}(X)] = \left(\sum_{i=1}^{N_{\text{pix}}} \frac{I_{i}^{2}}{\hat{\sigma}^{2}(X, Y_{i})}\right)^{-1}.$$
 (6)

#### 3.6. Wavelength Calibration

We calibrate wavelengths using the 1D spectra ex-674 <sup>675</sup> tracted from exposures of the illuminated arc lamp con-<sup>676</sup> taining Thorium, Argon and Neon ('ThArNe') gases. At 677 the outset, for each individually-extracted 1D ThArNe <sup>678</sup> spectrum, we use a 5<sup>th</sup>-order polynomial to fit and sub-679 tract the continuum component, iteratively rejecting outliers at more than  $5\sigma$  below the fit or more than

<sup>&</sup>lt;sup>4</sup> Any functional dependence of  $y_0$  on x violates our starting assumption that the spectra are parallel to the x axis; however, in practice the spectra are approximately aligned such that the dependence is weak.

<sup>681</sup>  $1\sigma$  above (the asymmetry effectively rejects pixels that <sup>682</sup> sample emission features). To the continuum-subtracted <sup>683</sup> spectrum, we then use the 'find\_lines\_derivative' func-<sup>684</sup> tion from the astropy.specutils package to find emis-<sup>685</sup> sion features and estimate their centers in pixel space. <sup>686</sup> Within the ten pixels around the center of each identified <sup>687</sup> emission line, we fit a Gaussian function and store the <sup>688</sup> best-fitting center, standard deviation and amplitude. <sup>689</sup> The standard deviation quantifies the local spectral res-<sup>690</sup> olution.

Next we manually identify emission lines in a single 691 <sup>692</sup> 1D extracted ThArNe spectrum (i.e., the spectrum obtained in a single aperture), which thereafter serves as a 693 template for automatically identifying emission lines in 694 <sup>695</sup> all other ThArNe spectra in all apertures in all ThArNe posures acquired using the same M2FS configuration. 696 Operating on the template spectrum only, we use NOIR-697 698 Lab's thorium-argon spectral atlas (Palmer & Engleman 1983) to visually identify individual emission lines inter-699 <sup>700</sup> actively by eye. We store the atlas wavelength and pixel coordinate (from the Gaussian fit described above) of 701 each line center. 702

Since we retain the pixelation native to the detector 703 along the x (column) axis, we expect that the wave-704 <sup>705</sup> length/pixel relationship will be unique for each aper-<sup>706</sup> ture and—given small temporal changes in the aperture trace pattern—unique for each exposure. The 707 708 next task, then, is to transfer our mapping of emis-709 sion lines in the template ThArNe spectrum auto-<sup>710</sup> matically to all individual non-template ThArNe spec-711 tra. For a given non-template spectrum, we begin 712 by fitting a polynomial function that effectively dis-713 torts the template's pixel scale to bring the template's 714 emission lines into alignment with those of the non-<sup>715</sup> template spectrum. That is, letting T(X) and F(X) de-716 note continuum-subtracted template and non-template 717 ThArNe counts as functions of pixel number X, we The find the order-*m* polynomial  $P_m(x) = c_0 + c_1 \left(\frac{x-x_0}{x_s}\right) + c_2 \left(\frac{x-x_0}{x_s}\right)^2 + \ldots + c_m \left(\frac{x-x_0}{x_s}\right)^m$  that minimizes the sum region of squared residuals  $\sum_{i=1}^{N_{\text{pix}}} (F(X_i) - A_1 I(X_i))^2$ , where  $x_{121} x_0 \equiv 0.5 (X_{max} + X_{min})$  is the midpoint of the template <sup>722</sup> spectrum,  $x_s \equiv 0.5(X_{max} - X_{min})$  is half the range of <sup>723</sup> the template spectrum, and I(X) is the linear interpo-<sup>724</sup> lation of  $T(A_2 + x(1 + P_m(x)))$  at X. We adopt m = 4; 725 free parameters include the five polynomial coefficients 726 and constants  $A_1, A_2$ .

<sup>727</sup> We use the best-fitting model to transform the pixel <sup>728</sup> coordinates of known emission lines in the template <sup>729</sup> ThArNe spectrum to pixel coordinates in the non-<sup>730</sup> template spectrum. To each emission line in the non-<sup>731</sup> template spectrum, we assign the atlas wavelength of <sup>732</sup> the nearest line in the transformed template spectrum, <sup>733</sup> tolerating coordinate mismatches of  $\leq 2$  pixels. We then <sup>734</sup> conduct the following iterative procedure: 1) Using only <sup>735</sup> the matched features (which typically number between 736 25-40 per non-template spectrum), we fit a 5th-order 737 polynomial to the atlas wavelength as a function of pixel <sup>738</sup> coordinate at the line center; 2) using this updated wave-<sup>739</sup> length/pixel relation for the non-template spectrum, we 740 assign atlas wavelengths to any as-yet unidentified emis-741 sion lines in the non-template spectrum if their central 742 wavelengths match those of as-yet unused template lines <sub>743</sub> within a tolerance of  $\leq 0.05$  Å. After iterating up to 10 744 times, we save for each non-template ThArNe spectrum 745 the pixel coordinates at atlas wavelengths of the iden-746 tified emission lines, coefficients of the final polynomial 747 fit to the wavelength/pixel relation, the number of emis-<sup>748</sup> sion features used in the wavelength/pixel fit, and the 749 rms of residuals to the fit. For the HiRes (resp. MedRes) <sup>750</sup> configuration, over 34698 (3248) non-template ThArNe <sup>751</sup> spectra, the mean rms residual, after excluding those be-<sup>752</sup> low the 1st percentile and those above the 99th, is 0.009 753 Å (0.023 Å), with standard deviation 0.001 Å (0.003 Å).

The next step is to use the wavelength/pixel rela-754 <sup>755</sup> tions obtained for the ThArNe spectra to estimate wave-756 lengths at all pixels of each individual science frame ex-<sup>757</sup> posure. Typically we obtain ThArNe calibration frames 758 before and after each set of science exposures for a given 759 target field, sometimes with an additional ThArNe ex-<sup>760</sup> posure taken in between individual science exposures. <sup>761</sup> These sequences let us quantify systematic shifts in the <sup>762</sup> wavelength/pixel relationship that we expect to be due <sup>763</sup> to flexure of the detector hardware and its sensitivity to <sup>764</sup> temperature (as measured within the spectrograph cell) 765 changes. Using one science field's set of ThArNe expo-<sup>766</sup> sures as an example (observed with the HiRes grating), <sup>767</sup> Figure 4 displays, across both detector arrays, the slopes  $_{768} d\lambda/dT$  that we fit to the wavelength/temperature rela-769 tion at the location of each identified ThArNe emission 770 line. We detect smooth variation across both detectors. with slope ranging from  $\sim 0$  to  $\sim 0.04$  Å/K.

In order to compensate for these systematic drifts of the wavelength/pixel relation, for every pixel in the set of ThArNe exposures corresponding to a given science field, we fit a linear model for pixel wavelength as a function of time. Individual wavelengths are weighted by the inverse-square of the rms residual with respect to the fitted wavelength/pixel relation. For the time coordinate, we use the time at the exposure midpoint. At every pixel of a given science exposure, we then aswavelength/time function at the temporal midpoint of wavelength/time function at the temporal midpoint of the science exposure. In cases where multiple ThArNe exposures are not available for monitoring tempera-



**Figure 4**: Change in wavelength per change in temperature (as measured at the detector), from emission lines observed in calibration exposures acquired immediately before and immediately after M2FS (HiRes configuration) observations of one example science field. Left/right panels show results for the blue and red channel, respectively.

786 ture and/or time dependence of the wavelength solu-787 tion, we flag the corresponding catalog entries accord-788 ingly (see Section 5). The catalogs contain a column 'n\_wav\_calibrations' that states the number of indepen-789 dent ThArNe exposures used in the wavelength calibra-790 <sup>791</sup> tion. Two other columns, 'temp\_min' and 'temp\_max', <sup>792</sup> give the minimum and maximum spectrograph temperature, across the science sub-exposures. For the 221 spec-793 tra where n\_wav\_cal=1 and temp\_max-temp\_min > 1 794 <sup>795</sup> K (42 of which yield measurements passing our crude quality-control filter based on velocity uncertainty), we 796 set flag wav\_cal\_flag=True in the M2FS catalogs. 797

We do not apply heliocentric corrections to the calroy ibrated wavelengths, which therefore include Doppler son shifts due to the line-of-sight component of the obserroy vatory's velocity with respect to the barycentric rest frame. Instead we apply heliocentric corrections directly son to the line-of-sight velocities estimated using the observed wavelengths (Section 4.1.2).

#### 305 3.7. Identification and masking of cosmic rays

It is at this point that we identify and mask pixels in the extracted, wavelength-calibrated 1D science spectra that are affected by cosmic rays. To each science spectrum, we first fit the continuum level using a 4th-order <sup>810</sup> polynomial, iteratively rejecting outliers more than  $2\sigma$ <sup>811</sup> below or  $3\sigma$  above the fit, where  $\sigma$  is the root-mean-<sup>812</sup> square value of residuals. We then flag as a likely cosmic <sup>813</sup> ray signal any pixel value that exceeds the fitted contin-<sup>814</sup> uum level by more than  $5\sigma$ . In subsequent analysis, we <sup>815</sup> mask these as well as the four nearest pixels. While <sup>816</sup> this procedure will similarly mask bona fide emission <sup>817</sup> features, we expect emission lines to be largely absent <sup>818</sup> from the targeted stellar spectra over the observed spec-<sup>819</sup> tral region.

#### 3.8. Correction for variations in fiber throughput

We use the entire set of twilight exposures acquired during the observing run to estimate relative throughput as functions of fiber and wavelength. We begin by averaging, on a pixel-by-pixel basis within each aperture, the (3–10) 1D spectra from individual exposures during a given twilight sequence (i.e., the set of exposures taken during a given evening/morning twilight). When computing the mean, we weight the count in each pixel by its inverse variance. We then combine these nightly weighted-mean twilight spectra across all twilight observations within a given run, taking a new weighted mean count on a pixel-by-pixel basis within each aperture. This second averaging is unique to each science exposure, as the count in each pixel is weighted by the
inverse-squared difference in time between the midpoint
of the nightly twilight sequence and the midpoint of the
science exposure.

In order to estimate the relative fiber throughputs that 838 <sup>839</sup> pertain to a given science exposure, we operate on the <sup>840</sup> corresponding run-averaged twilight frame, where the <sup>841</sup> dominant spectral features are solar absorption lines. Within each aperture, we fit a 4th-order polynomial to 842 <sup>843</sup> the mean twilight count as a function of wavelength, <sup>844</sup> iteratively rejecting outliers more than  $3\sigma$  above and  $_{845}$  more than  $1\sigma$  below the fit in order to isolate the con-846 tinuum component. For each pixel of a given science <sup>847</sup> spectrum, we evaluate the twilight-continuum polyno-<sup>848</sup> mials from all apertures at the wavelength of the pixel <sup>849</sup> in the science spectrum. We then apply a wavelength-<sup>850</sup> dependent throughput correction by dividing the count <sup>851</sup> at each pixel by the ratio of the aperture's twilight continuum level to the median level across all apertures. 852

#### 3.9. Sky subtraction

853

877

A typical M2FS observation allocates 20–40 fibers to regions of blank sky, split approximately evenly among the two spectrographs. For each field and spectrograph, we combine the throughput-corrected sky spectra to obtain a median sky spectrum, and then subtract the mean sky spectrum from the all throughput-corrected spectra for all targets observed with that spectrograph.

When combining individual sky spectra to obtain a 861 <sup>862</sup> single median spectrum, we must again contend with the fact that the wavelength/pixel relation is unique 863 <sup>864</sup> to each individual spectrum. Following Koposov et al. (2011), we interpolate all individual sky spectra onto 865 common wavelength grid that oversamples, with ten 866 A <sup>867</sup> times the number of pixels, the original spectrum. We <sup>868</sup> then store the median sky spectrum in the oversam-<sup>869</sup> pled space, and record the variance at each pixel as <sup>870</sup> 2.198 $\pi$ MAD<sup>2</sup>/(2N<sub>sky</sub>), where N<sub>sky</sub> is the number of in-<sup>871</sup> dividual sky spectra and MAD is the median absolute <sup>872</sup> deviation (Koposov et al. 2011). From each individual <sup>873</sup> science spectrum, we then interpolate the median sky 874 (and variance) spectrum onto the pixel scale of the sci-875 ence spectrum, letting us then perform the sky subtrac-876 tion directly on a pixel by pixel basis.

#### 3.10. Stacking subexposures

The final step of our M2FS image processing is to combine, on an aperture-by-aperture basis, the spectra obtained in multiple exposures. For a given aperture, we combine spectra from multiple exposures by taking the weighted mean (sky-subtracted) count at each pixel. One drawback of this stacking on a pixel-by-pixel ba<sup>884</sup> sis is that it can exacerbate the effect of temperature <sup>885</sup> changes inside the spectrograph, which tend to cause <sup>886</sup> the aperture trace pattern and wavelength/pixel rela-<sup>887</sup> tion to drift (Section 3.6. In order to compensate for <sup>888</sup> this effect and assign wavelengths to individual pixels in <sup>889</sup> the stacked spectra, we follow the same procedure de-<sup>890</sup> scribed in Section 3.6, where we evaluate for each pixel <sup>891</sup> the linear wavelength vs. time relation determined from <sup>892</sup> ThArNe exposures. For each pixel in the stacked spec-<sup>893</sup> trum, we adopt as the time coordinate the mean mid-<sup>894</sup> point of the individual science exposures, weighted by <sup>895</sup> the inverse variance of the sky-subtracted count.

#### 3.11. Products

896

927

928

All processed M2FS spectra are available for download from the Zenodo database<sup>5</sup>. For each frame of (up to) 128 spectra obtained on one of the spectrograph channels, a fits file contains the pixel wavelengths (as calibrated to the observatory rest frame—i.e., not shifted to the heliocentric frame), the sky-subtracted counts and their variances, the sky spectrum that was subtracted, the pixel mask, and the best-fitting model spectrum (Section 4), plus various observational details (e.g., date, time and spectrograph temperature of each individual ergosure) and random samples from posterior probability distribution functions for model parameters inferred during analysis of the spectra (Section 4).

Figures 5, 6 and 7 display examples of fully processed 910 <sup>911</sup> spectra acquired with M2FS HiRes, M2FS MedRes and <sup>912</sup> Hectochelle, respectively. Source magnitude increases 913 from top to bottom. Left-hand and right-hand panels 914 show spectra from stars measured to have weak and <sup>915</sup> strong surface gravity, respectively, distinguishing the 916 likely red giant stars within Galactic halo structures 917 from dwarf stars in the Galactic foreground. Sub-<sup>918</sup> panels display residuals with respect to the best-<sup>919</sup> fitting model spectra (Section 4.1.2), normalized <sup>920</sup> by the propagated uncertainty in the observed 921 count. In the top two panels, hash marks iden-<sup>922</sup> tify wavelengths of known FeI, FeII and MgI ab-<sup>923</sup> sorption features that are listed in the database <sup>924</sup> maintained by the Virtual Atomic and Molecular 925 Data Centre (VALDC) Consortium, provided by <sup>926</sup> the BASS2000 website<sup>6</sup>

# 4. ANALYSIS OF MAGELLAN/M2FS AND MMT/HECTOCHELLE SPECTRA

<sup>929</sup> We analyze each individual processed spectrum by <sup>930</sup> fitting a model that is derived from a library of syn-

<sup>&</sup>lt;sup>5</sup> DOI: 10.5281/zenodo.7837922

<sup>&</sup>lt;sup>6</sup> https://doi.org/10.25935/9TXJ-F095.



Figure 5: Examples of Magellan/M2FS HiRes spectra (black, main panels; sky-subtracted counts are scaled to the dimensions of the plotting window), which for our observing configuration cover 5125–5190 Å at resolution  $\mathcal{R} \approx 24,000$ . Text indicates Gaia ID and Gaia G-band magnitude. Overplotted (red) are best-fitting model spectra. Smaller panels display normalized (by the count error propagated through the processing pipeline) residual with respect to the best fit. In the top panels, hash marks identify wavelengths (redshifted to match the observed spectrum) of known FeI (solid grey), FeII (broken grey) and MgI (solid black) lines. Left-hand (resp. right-hand) panels depict spectra for likely red giant (dwarf) stars, with surface gravity measured to be  $\log g < 1$  ( $\log g > 4$ ).



Figure 6: Same as Figure 5, but for example Magellan/M2FS MedRes spectra, which span 5115–5300 Å at  $\mathcal{R} \approx 7000$ .



Figure 7: Same as Figure 5, but for example MMT/Hectochelle spectra, which span 5150–5300 Å at  $\mathcal{R} \approx 32,000$ . The larger numbers of counts (cf. Figures 5 and 6) reflect the fact that the Hectochelle pipeline calculates the sum of counts across sub-exposures, while the M2FS pipeline calculates the average.

931 thetic template spectra. The procedure is similar to <sup>932</sup> others previously deployed for modeling stellar spectra 933 (e.g., Koleva et al. 2009; Koposov et al. 2011; Walker, 934 Olszewski & Mateo 2015; Li et al. 2019). Continuum-935 normalized synthetic spectra are computed over a grid 936 of stellar-atmospheric parameters that has dimensions  $_{937}$   $T_{\rm eff}$ ,  $\log g$ , [Fe/H], [Mg/Fe]. An additional grid dimension extends over a parameter,  $\sigma_{\text{LSF}}$ , that sets the spec-<sup>939</sup> tral line spread function and thus the resolving power 940 ( $\mathcal{R} \approx \lambda/(2.355\sigma_{\rm LSF})$ ). Given proposed values for these <sup>941</sup> parameters, we generate a model spectrum by combin-<sup>942</sup> ing (via kernel smoothing) the surrounding templates <sup>943</sup> within the multi-dimensional grid space, multiplying <sup>944</sup> by a flexible continuum model and adjusting template <sup>945</sup> wavelengths to account for source redshift as well as any <sup>946</sup> low-order corrections to the wavelength/pixel relation. <sup>947</sup> We use this model spectrum to evaluate the likelihood 948 of the observed spectrum. We use the likelihood eval-949 uations to perform Bayesian inference, ultimately ob-<sup>950</sup> taining a random sample from the posterior probability distribution function (PDF) in model parameter space. 951 We provide details of our analysis procedure below. In 952 most respects our procedure is identical to the one de-953 954 scribed by Walker, Olszewski & Mateo (2015) and subse-955 quently followed by Walker et al. (2015); Spencer et al. (2017, 2018); Buttry et al. (2022); Pace et al. (2021). 956 <sup>957</sup> However, our current implementation differs in one sig-<sup>958</sup> nificant way. In previous work, we adopted synthetic <sup>959</sup> template spectra originally used to analyze spectra from <sup>960</sup> the Sloan Digital Sky Survey's SEGUE project (Lee et <sup>961</sup> al. 2008), which implicitly assumed the abundance ratio  $_{962}$  of  $\alpha$  elements to Fe to be a fixed function of [Fe/H]. <sup>963</sup> Now we use a new set of synthetic template spectra  $_{964}$  (Section 4.1.1) that we have computed over a range of <sup>965</sup> [Mg/Fe], with the value of [Mg/Fe] no longer dependent 966 on [Fe/H].

#### 967

#### 4.1. Modeling

Given a continuum-normalized, zero-redshift template spectrum,  $T_{\theta}(\lambda)$ , corresponding to parameters  $\theta \equiv$  $T_{0}(T_{\text{eff}}, \log g, [\text{Fe}/\text{H}], [\text{Mg}/\text{Fe}], \sigma_{\text{LSF}})$ , we compute a model stellar spectrum according to

972 
$$M(\lambda) = P_l(\lambda) T_\theta \bigg( \lambda \big[ 1 + z + Q_m(\lambda) \big] \bigg), \qquad (7)$$

973 where

974 
$$P_{l}(\lambda) \equiv p_{0} + p_{1} \left[ \frac{\lambda - \lambda_{0}}{\lambda_{s}} \right] + p_{2} \left[ \frac{(\lambda - \lambda_{0})}{\lambda_{s}} \right]^{2}$$
975 
$$+ \dots + p_{l} \left[ \frac{(\lambda - \lambda_{0})}{\lambda_{s}} \right]^{l} \qquad (8)$$

<sup>976</sup> is an order-*l* polynomial that represents a smooth con-<sup>977</sup> tinuum component. In Equation 7, rest wavelengths of <sup>978</sup> the template spectrum are modified according to source <sup>979</sup> redshift (in the observatory rest frame),  $z \approx V_{\rm LOS}/c$ , <sup>980</sup> and an order-*m* polynomial,

$$q_{m}(\lambda) \equiv \frac{q_{1}}{c} \left[ \frac{\lambda - \lambda_{0}}{\lambda_{s}} \right] + \frac{q_{2}}{c} \left[ \frac{(\lambda - \lambda_{0})}{\lambda_{s}} \right]^{2} + \dots + \frac{q_{m}}{c} \left[ \frac{(\lambda - \lambda_{0})}{\lambda_{s}} \right]^{m}, \quad (9)$$

98

9

998

<sup>983</sup> that can apply non-linear corrections to the wave-<sup>984</sup> length/pixel relation. Note that we omit from  $Q_m(\lambda)$ <sup>985</sup> a zero<sup>th</sup>-order term, as it would be entirely degenerate <sup>986</sup> with source redshift in Equation 7. We examine zero-<sup>987</sup> point redshift errors via direct comparison to external <sup>988</sup> data sets (Section 4.3).

We choose l = 5 and m = 2, which provide sufficient flexibility to fit the continuum shape and to accommodate low-order corrections to the wavelength solution. We adopt scale parameters  $\lambda_0 = \frac{1}{2}(\lambda_{\max} + \lambda_{\min})$  and  $\lambda_s = \frac{1}{2}(\lambda_{\max} - \lambda_{\min})$  Å, such that  $-1 \leq (\lambda - \lambda_0)/\lambda_s \leq +1$ over the entire range of observed wavelengths. For M2FS HiRes we use the range  $\lambda_{\min} = 5127$  Å to  $\lambda_{\max} =$ 5190 Å. For M2FS MedRes and Hectochelle we use the range  $\lambda_{\min} = 5155$  Å to  $\lambda_{\max} = 5295$  Å.

#### 4.1.1. Template Spectra

We present a new high-resolution grid of template spectra spanning  $5050 \le \lambda \le 5350$  Å around the Mg I 'b' triplet. It is sampled at  $\Delta \lambda = 0.05$  Å intervals, yielding a resolving power of  $\mathcal{R} \approx 104,000$ . We generate these template spectra using a recent version (2017) of the MOOG line analysis code (Sneden 1973; Sobeck et al. 2005 2011). We interpolate model atmospheres from the AT-LAS9 grid (Castelli & Kurucz 2004).

We generate line lists for the synthesis using the LINE-1007 <sup>1008</sup> MAKE code<sup>7</sup> (Placco et al. 2021). LINEMAKE creates <sup>1009</sup> an initial list of lines drawn from the Kurucz (2011) <sup>1010</sup> line compendia. It subsequentely updates the transi-<sup>1011</sup> tion probabilities, hyperfine splitting structure, and iso-<sup>1012</sup> tope shifts for lines with recent laboratory analysis (e.g., 1013 Lawler et al. 2009, 2017). LINEMAKE also incorporates <sup>1014</sup> recent laboratory work on molecules, including CH, CN,  $_{1015}$  C<sub>2</sub>, and MgH in this spectral range (Hinkle et al. 2013; 1016 Masseron et al. 2014; Ram et al. 2014; Sneden et al. <sup>1017</sup> 2014). The initial list includes more than 39,000 lines. <sup>1018</sup> We remove the weakest lines, ones contributing less than 1019 0.5% to the line-to-continuum opacity ratio, in a syn- $_{\rm 1020}$  the tic spectrum for a cool, metal-rich red giant ( $T_{\rm eff}$  = <sup>1021</sup> 4000 K,  $\log g = 0.0$ , [Fe/H] = +0.5). These lines con-<sup>1022</sup> tribute negligible absorption to stars that are warmer

<sup>7</sup> https://github.com/vmplacco/linemake

1100

1105

1110

1114

1023 and/or more metal poor. The final line list contains 1024 17,884 lines.

As a proof of concept, we compare a small region of 1025 1026 synthetic spectra generated using these tools with the observed spectra of the Sun and Arcturus (Kurucz et al. 1027 1984; Hinkle et al. 2000) in Figure 8. We adopt the 1028 <sup>1029</sup> Holweger & Müller (1974) empirical model atmosphere 1030 for the Sun, and we adopt the Ramírez & Allende Prieto (2011) model atmosphere parameters for Arcturus 1031  $(T_{\rm eff} = 4286 \text{ K}, \log g = 1.66, \text{ microturbulence velocity})$ 1032 parameter  $(v_t) = 1.74 \text{ km s}^{-1}$ , and [Fe/H] = -0.52). 1033 We also adopt [Mg/Fe] = +0.37, [Si/Fe] = +0.33, and 1034 [Ti/Fe] = +0.24 in our synthesis of the Arcturus spec-1035 trum. We have empirically adjusted a small fraction 1036  $(\approx 0.4\%)$  of the log(qf) values in our final linelist to bet-1037 <sup>1038</sup> ter reproduce the 300 Å region of interest for the Solar and Arcturus spectra. The overwhelming majority (75 1040 of 77) of these changes are to lines without modern laboratory work, and most are relatively weak and thus will 1041 <sup>1042</sup> have negligible impact on the fitting of metal-poor stel-<sup>1043</sup> lar spectra. The median absolute deviations for these  $_{1044}$  regions of the Solar and Arcturus spectra are 1.2% and 1045 3.8%, respectively, demonstrating the general reliability 1046 of our method.

We synthesize a grid spanning  $3900 \le T_{\text{eff}} \le 7500 \text{ K}$ 1047 1048 in intervals of 100 K,  $0.0 \le \log g \le 5.0$  [cgs] in intervals of 0.25 dex,  $-4.0 \leq [Fe/H] \leq +1.0$  in intervals of 1050 0.25 dex, and  $-1.0 \leq [Mg/Fe] \leq +1.4$  in intervals of 1051 0.20 dex. A few regions near the edge of this grid are 1052 excluded because they represent non-physical combina-<sup>1053</sup> tions of parameters or they extend beyond the ATLAS9 1054 grid. ATLAS9 models with  $\alpha$  enhancement are adopted  $_{1055}$  when [Mg/Fe] > +0.1. The microturbulence velocity 1056 parameter is adopted as a function of log g:  $v_{\rm t} = 1.0$  km 1057 s<sup>-1</sup> for dwarfs (log  $g \ge 4.0$ ),  $v_{\rm t} = 2.0$  km s<sup>-1</sup> for gi-1058 ants (log  $g \leq 1.0$ ), and varying linearly between these <sup>1059</sup> two points. The macroturbulence velocity is assumed to 1060 be 3.0 km s<sup>-1</sup> for dwarfs and subgiants (log  $g \geq 3.0$ ), 8.0 km s<sup>-1</sup> at log g = 0.0, and varying linearly between 1061 1062 these two points. We adopt the Solar values for carbon  $({}^{12}C/{}^{13}C = 89/1)$  and magnesium  $({}^{24}Mg/{}^{25}Mg/{}^{26}Mg =$ 1063 1064 79/10/11) isotope ratios. Our final grid contains a total of 186071 model spectra, all of which we make 1065 publicly available at the Zenodo database (DOI: 1066 10.5281/zenodo.7837922). 1067

<sup>1068</sup> We account for the finite spectral resolution of M2FS <sup>1069</sup> (resolving power  $\mathcal{R} \approx 24,000$  in our chosen configu-<sup>1070</sup> ration) and Hectochelle ( $\mathcal{R} \approx 32,000$ ) by broadening <sup>1071</sup> each template spectrum via Gaussian kernel smoothing. <sup>1072</sup> We repeat for six different values of smoothing band-<sup>1073</sup> widths: for modeling M2FS 'HiRes' and Hectochelle <sup>1074</sup> spectra we use  $\sigma_{\rm LSF} = 0.06$  Å, 0.09 Å, and 0.12 Å (re<sup>1075</sup> solving power  $\mathcal{R} \approx 37,000, 24,000$ , and 18,000, respec-<sup>1076</sup> tively, at  $\lambda = 5200$  Å). For modeling M2FS 'MedRes' <sup>1077</sup> spectra we use  $\sigma_{\text{LSF}} = 0.20$  Å, 0.30 Å, and 0.40 Å (re-<sup>1078</sup> solving power  $\mathcal{R} \approx 11,000, 7,400$ , and 5,500, respec-<sup>1079</sup> tively.

Thus we obtain a library of 'raw' synthetic stellar temlike plate spectra that discretely samples over a regular grid spanning a finite, 5-dimensional volume. We denote as  $T_{\theta_0}(\lambda)$  the raw template corresponding to grid point  $\theta_0 \equiv (T_{\text{eff}}, \log g, [\text{Fe/H}], [\text{Mg/Fe}], \text{ and } \sigma_{\text{LSF}})$ . In orlike der to evaluate models at arbitrary location (i.e., not necessarily at grid points), we combine the  $2^5 = 32$  surlike rounding raw templates via five-dimensional Gaussian kernel smoothing:

$$T_{\theta}(\lambda) = \frac{\sum_{i=1}^{32} T_{\theta_{0},i}(\lambda) K_{H}(\theta_{0,i} - \theta)}{\sum_{i=1}^{32} K_{H}(\theta_{0,i} - \theta)}, \qquad (10)$$

<sup>1090</sup> where  $K_H(\mathbf{x}) \equiv \exp\left[-\frac{1}{2}\mathbf{x}^T\mathbf{H}^{-1}\mathbf{x}\right]$ , and we adopt di-<sup>1091</sup> agonal bandwidth matrix  $\mathbf{H} = \operatorname{diag}(\mathbf{h} \circ \mathbf{h})$ , with  $\mathbf{h} =$ <sup>1092</sup> (300 K, 0.5, 0.25, 0.2, 0.03Å) so that the smoothing band-<sup>1093</sup> width in each dimension equals the grid spacing. We <sup>1094</sup> note that, as a result of this nearest-neighbor smooth-<sup>1095</sup> ing,  $T_{\theta}(\lambda)$  is not strictly a continuous function of  $\theta$  and <sup>1096</sup> does not necessarily equal  $T_{\theta_0}(\lambda)$  when evaluated at grid <sup>1097</sup> points. Nevertheless, tests with mock spectra generated <sup>1098</sup> directly from templates indicate reliable recovery of in-<sup>1099</sup> put parameters (Walker, Olszewski & Mateo 2015).

<sup>1101</sup> We estimate model parameters via Bayesian inference. <sup>1102</sup> Given observed spectrum S, the model specified by free <sup>1103</sup> parameter vector  $\theta$  has posterior probability distribution <sup>1104</sup>

$$P(\theta|S) = \frac{P(S|\theta) P(\theta)}{P(S)},$$
(11)

<sup>1106</sup> where  $P(S|\theta)$  is the conditional probability, given the <sup>1107</sup> model (or 'likelihood'), of obtaining the observed spec-<sup>1108</sup> trum,  $P(\theta)$  is the prior probability distribution function <sup>1109</sup> for model parameters, and

$$P(S) \equiv \int P(S|\theta) P(\theta) d\theta \qquad (12)$$

<sup>1111</sup> is the marginal likelihood. Assuming independence <sup>1112</sup> among the counts at all  $N_{\rm pix}$  pixels, the spectrum has <sup>1113</sup> likelihood

$$P(S|\theta) = \prod_{i=1}^{N_{\text{pix}}} \mathcal{N}_{S_i} (M(\lambda_i), \sigma_i^2), \qquad (13)$$



Figure 8: Validation of template spectra. Top panels compare observed Solar (left) and Arcturus (right) spectra with synthetic spectra generated using the same tools as for our template grid. Data points represent the observed spectra, resampled to the resolution of our models,  $\Delta \lambda = 0.05$  Å, which are shown by the red lines. Bottom panels illustrate the differences in percent.

1115 where

$$\mathcal{N}_{S_i}(M(\lambda_i), \sigma_i^2) \equiv \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{1}{2} \frac{\left(S_i - M(\lambda_i)\right)^2}{\sigma_i^2}\right]$$
(14)

1116

1121

<sup>1117</sup> is the normal distribution, with mean  $M(\lambda_i)$  equal to <sup>1118</sup> the model prediction (Equation 7) for the count at the <sup>1119</sup> wavelength assigned to pixel *i* in the observed spectrum, <sup>1120</sup> and variance

$$\sigma_i^2 \equiv s_1 \hat{\sigma}_{S_i}^2 + s_2^2 \tag{15}$$

<sup>1122</sup> allows for a linear correction to the variance originally <sup>1123</sup> estimated for the observed count. In practice, given the <sup>1124</sup> fixed and discrete wavelength sampling of our template <sup>1125</sup> spectra, we evaluate (the logarithm of) Equation 13 af-<sup>1126</sup> ter performing a linear interpolation of  $M(\lambda)$  onto the <sup>1127</sup> wavelengths assigned to pixels in the observed spectrum.

<sup>1128</sup> Our model contains 16 free parameters. Table 3 lists <sup>1129</sup> each parameter, along with the range over which the <sup>1130</sup> priors that we adopt are uniform and nonzero.

We use the software package MultiNest (Feroz & 1131 1132 Hobson 2008; Feroz et al. 2009) to perform the inference. MultiNest implements a nested sampling algo-1133 rithm (Skilling 2004) explicitly to compute the inte-1134 gral in Equation 12. As part of this procedure it ob-1135 1136 tains a random sample from the posterior PDF (Equaion 11). These samples, for all of our M2FS and Hec-1137 tochelle spectra, are provided along with the spectra at 1138 https://cmu.box.com/v/m2fs-hectochelle. 1139

<sup>1140</sup> For convenience and simplicity of downstream analy-<sup>1141</sup> sis, we use simple statistics to summarize the full pos-<sup>1142</sup> terior PDFs. Specifically, we use MultiNest's random <sup>1143</sup> sampling of the PDF to estimate the mean, standard <sup>1144</sup> deviation, skew and kurtosis of the marginal (1D) pos-<sup>1145</sup> terior PDF for each model parameter.

In previous work we have used the summary statis-In previous work we have used the summary statistics for posterior PDFs to define quality control filters. Posterior PDFs to define quality control filters. Integration of the sampled marginal PDF Integration of the sampled marginal PDF Integration of the standard deviation  $> 5 \text{ km s}^{-1}$ , and/or Integration with the sampled marginal PDF Integration of the standard deviation of the standard deviation Integration of the standard deviation of the standard the standard deviation alone. Therefore, in the Integration of the sampled marginal PDF for Integration of the sampled margi

In our M2FS HiRes (M2FS MedRes, Hectochelle) 1161 <sup>1162</sup> sample, 8983 (189, 13328) spectra yield measurements 1163 that pass our simple quality-control filter. These spec-<sup>1164</sup> tra come from 6609 (82, 9678) unique sources, with 1330 1165 (33, 2357) sources having multiple independent mea-<sup>1166</sup> surements. Figure 9 displays the distribution of number <sup>1167</sup> of independent measurements per star. As the number <sup>1168</sup> of independent measurements increases, the number of 1169 stars having that number of measurements declines ap-<sup>1170</sup> proximately as a power law, with the M2FS sample <sup>1171</sup> containing stars having as many as 16 measurements, 1172 and the Hectochelle sample containing stars having as <sup>1173</sup> many as 14 measurements. In the M2FS sample, all 1174 stars having more than 10 measurements come from re-1176 peated observations of the Tucana II dwarf galaxy.

<sup>1177</sup> We use the stars with repeat observations to fit mod-<sup>1178</sup> els that specify the observational error associated with <sup>1179</sup> each measurement of each physical model parameter <sup>1180</sup>  $(V_{\text{LOS}}, T_{\text{eff}}, \log g, [\text{Fe}/\text{H}], [\text{Mg}/\text{Fe}])$ . For a given physical <sup>1181</sup> parameter, denoted here generically as X, we consider <sup>1182</sup> all pairs of independent measurements,  $X_1$  and  $X_2$ , of <sup>1183</sup> the same sources. Following Li et al. (2019), we as-

1146

 Table 3: Free parameters and priors of Spectral Model

| parameter                                  | prior                                                                      | description                                                  |
|--------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|
| $\overline{V_{\rm LOS}/({\rm km~s^{-1}})}$ | uniform between $-500, +500$                                               | line-of-sight velocity                                       |
| $T_{\rm eff}/{\rm K}$                      | uniform between 3900, 7500                                                 | effective temperature                                        |
| $\log g$                                   | uniform between 0,5                                                        | base-10 logarithm of surface gravity, cgs units              |
| [Fe/H]                                     | uniform between $-4.0, +0.5$                                               | iron abundance                                               |
| [Mg/Fe]                                    | uniform between $-0.8, +1.0$                                               | magnesium abundance                                          |
| $p_0$                                      | uniform between <sup><i>a</i></sup> $-\max[S(\lambda)], +\max[S(\lambda)]$ | polynomial coefficient (continuum; eq 8)                     |
| $p_1$                                      | uniform between $-\max[S(\lambda)], +\max[S(\lambda)]$                     | polynomial coefficient (continuum; eq 8)                     |
| $p_2$                                      | uniform between $-\max[S(\lambda)], +\max[S(\lambda)]$                     | polynomial coefficient (continuum; eq 8)                     |
| $p_3$                                      | uniform between $-\max[S(\lambda)], +\max[S(\lambda)]$                     | polynomial coefficient (continuum; eq 8)                     |
| $p_4$                                      | uniform between $-\max[S(\lambda)], +\max[S(\lambda)]$                     | polynomial coefficient (continuum; eq 8)                     |
| $p_5$                                      | uniform between $-\max[S(\lambda)], +\max[S(\lambda)]$                     | polynomial coefficient (continuum; eq 8)                     |
| $q_1/({\rm km \ s^{-1}})$                  | uniform between $-10, +10$                                                 | polynomial coefficient (wavelength solution; eq. 9)          |
| $q_2/({\rm km \ s^{-1}})$                  | uniform between $-10, +10$                                                 | polynomial coefficient (wavelength solution; eq. 9)          |
| $\sigma_{\rm LSF}/{\rm \AA}$               | uniform between 0.06, 0.12 (M2FS HiRes, Hectochelle)                       | bandwidth of Gaussian kernel to broaden line spread function |
| $\sigma_{\rm LSF}/{\rm \AA}$               | uniform between 0.2, 0.4 (M2FS MedRes)                                     | bandwidth of Gaussian kernel to broaden line spread function |
| $\log_{10} s_1$                            | uniform between $-1, +6$                                                   | rescales observational errors (eq. 15)                       |
| $\log_{10} s_2$                            | uniform between $-2, +2$                                                   | adds to observational errors (eq. 15)                        |

 $a^{a} \max[S(\lambda)]$  is the maximum value (discounting pixels flagged as cosmic rays) of the sky-subtracted spectrum.



Figure 9: Distribution of number of independent measurements (having line-of-sight velocity error < 5 km s<sup>-1</sup>), for M2FS HiRes (blue), M2FS MedRes (cyan) and Hectochelle (red) samples. The bump in the M2FS HiRes sample at  $N_{\rm obs} > 10$  is contributed entirely by repeated observations of the Tucana II dwarf galaxy.

<sup>1184</sup> sume that deviations  $\Delta X \equiv X_1 - X_2$  are distributed as <sup>1185</sup> a mixture of two Gaussian distributions. The first has <sup>1186</sup> variance set by formal observational errors; the second, <sup>1187</sup> which allows for 'outlier' measurements—including spu-<sup>1188</sup> rious measurements and/or cases of true variability, as <sup>1189</sup> with velocities measured for stars in binary systems— <sup>1190</sup> has constant variance  $\sigma_{out}^2$  that is unrelated to formal ob-<sup>1191</sup> servational errors. That is, given zero-point offset  $\mu_{\Delta X}$ , <sup>1192</sup> variance  $\sigma_{\Delta X}^2 \equiv \sigma_{X_1}^2 + \sigma_{X_2}^2$  that is set by formal observa-<sup>1193</sup> tional errors  $\sigma_{X_1}$  and  $\sigma_{X_2}$ , outlier variance  $\sigma_{\text{out}}^2$  and out-<sup>1194</sup> lier fraction  $f_{\text{out}}$ , the deviation between measurements <sup>1195</sup> 1 and 2 of a common source has probability

<sup>196</sup>
$$P(\Delta X | \mu_{\Delta X}, \sigma_{\Delta X}^{2}, f_{\text{out}}, \sigma_{\text{out}})$$
<sup>197</sup>
$$= (1 - f_{\text{out}})\mathcal{N}(\mu_{\Delta X}, \sigma_{\Delta X}^{2}) + f_{\text{out}} \mathcal{N}(0, \sigma_{\text{out}}^{2}). \quad (16)$$

<sup>1198</sup> where  $\mathcal{N}(\mu, \sigma^2)$  denotes the normal distribution with <sup>1199</sup> mean  $\mu$  and variance  $\sigma^2$ . We assume  $\mu_{\Delta X} = 0$  when <sup>1200</sup> comparing measurements from the same instrument, as <sup>1201</sup> in this section, but not when comparing measurements <sup>1202</sup> from different instruments, as in Section 4.3. We model <sup>1203</sup> the formal random errors as linear (in quadrature) func-<sup>1204</sup> tions of the standard deviations, denoted  $\sigma_{X_{1,MN}}$  and <sup>1205</sup>  $\sigma_{X_{2,MN}}$ , obtained directly from MultiNest's random sam-<sup>1206</sup> pling of the marginal (1D) posterior PDF for parameter <sup>1207</sup> X. That is, we assume

1208 
$$\sigma_{X_1}^2 = s^2 + k^2 \sigma_{X_{1,MN}}^2,$$
1209 
$$\sigma_{X_2}^2 = s^2 + k^2 \sigma_{X_{2,MN}}^2,$$
(17)

<sup>1210</sup> and similar for all pairs of measurements obtained <sup>1211</sup> for common sources that deviate by amounts smaller <sup>1212</sup> than a threshold,  $|\Delta X|_{out}$ . We assume that devia-<sup>1213</sup> tions larger than  $|\Delta X|_{out}$  are are contributed by spu-<sup>1214</sup> rious measurements, which we then exclude from our <sup>1215</sup> analysis (but not from the catalogs presented below). <sup>1216</sup> We take  $|\Delta V_{\text{LOS}}|_{out} = 100 \text{ km s}^{-1}$ ,  $|\Delta T_{\text{eff}}|_{out} = 2000$ <sup>1217</sup> K,  $|\Delta \log g|_{out} = 2.5 \text{ dex}$ ,  $|\Delta [\text{Fe}/\text{H}]|_{out} = 2.5 \text{ dex}$  and <sup>1218</sup>  $|\Delta [\text{Mg}/\text{Fe}]|_{out} = 1.0 \text{ dex}$ . We assume that a single value <sup>1219</sup> of the error 'floor', *s*, and a single value of scaling pa-<sup>1220</sup> rameter, *k*, hold across the entire sample obtained with a <sup>1221</sup> given telescope/instrument. The total set of deviations,  $_{1222}$  over all  $N_{\text{pair}}$  pairs of measurements, has likelihood

1223

$$\prod_{i=1}^{N_{\text{pair}}} \frac{P(\Delta X_i | \mu_{\Delta X}, \sigma_{X_1}, \sigma_{X_2}, f_{\text{out}}, \sigma_{\text{out}})}{\int_{-|\Delta X|_{\text{out}}}^{+|\Delta X|_{\text{out}}} P(\Delta X_i | \mu_{\Delta X} \sigma_{X_1}, \sigma_{X_2}, f_{\text{out}}, \sigma_{\text{out}}) \, d(\Delta X)}.$$
(18)

We consider all pairs of measurements that both satisfy 1224 our crude quality-control criterion (velocity error < 51225  $\rm km \ s^{-1}$ ) for common sources, excluding measurements 1226 from sources listed in Gaia's (DR3) catalog of RR Lyrae 1227 variables (see Section 4.4). This selection gives  $N_{\text{pair}} =$ 1228  $_{1229}$  6830 for M2FS HiRes,  $N_{\rm pair}$  = 259 for M2FS MedRes,  $_{1230}$  and  $N_{\text{pair}} = 6301$  for Hectochelle. We use MultiNest 1231 to perform the inference. For each of the five physical 1232 parameters we infer from spectra, Table 4 lists the prior for each of the four parameters of our error model, as 1234 well as the mean and standard deviation of the marginal 1236 posterior PDF.

For M2FS HiRes (MedRes), we infer error 'floors' 1237  $_{\rm ^{1238}}$  of  $s_{V_{\rm LOS}}\,=\,0.57\,\pm\,0.01~{\rm km}~{\rm s}^{-1}$  (0.59  $\pm\,0.78~{\rm km}~{\rm s}^{-1}),$ 1239  $s_{T_{\rm eff}} = 58.59 \pm 2.13$  K (10.16  $\pm$  19.39 K),  $s_{\rm logg} =$ 1240  $0.12\pm0.02 \ (0.03\pm0.02), s_{\rm [Fe/H]} = 0.06\pm0.00 \ (0.12\pm0.08),$  $_{^{1241}} s_{[Mg/Fe]} = 0.04 \pm 0.01 \ (0.03 \pm 0.02)$ . For Hectochelle, the 1242 floors are all lower, presumably as a benefit of wider  $_{1243}$  spectral coverage, with  $s_{V_{\rm LOS}} = 0.39 \pm 0.01$  km s<sup>-1</sup>,  $_{^{1244}} s_{T_{\rm eff}} = 0.61 \pm 1.00$  K,  $s_{\rm logg} = 0.03 \pm 0.01$ ,  $s_{\rm [Fe/H]} =$  $_{1245}$  0.01 ± 0.00,  $s_{[Mg/Fe]} = 0.01 \pm 0.00$ . The inferred scaling 1246 parameters are scattered around unity, in several cases (including the velocity measurements for M2FS HiRes 1247 <sup>1248</sup> and Hectochelle) consistent with a value of unity within the 99% credible interval. The outlier fraction tends to 1249  $_{1250}$  comprise  $\leq 10\%$  of the samples, except for the measure-<sup>1251</sup> ments of [Fe/H] and [Mg/Fe], where the outlier fractions 1252 reach  $\sim 20 - 50\%$ . Analyses of chemical abundance dis-1253 tributions may therefore benefit from stricter sample se-1254 lection criteria than our fiducial one that is based solely  $_{1255}$  on the formal error in  $V_{\text{LOS}}$ .

Figure 10 shows distributions of pair-wise measure-1257 ment deviations normalized by combined measurement 1258 errors, with the combined measurement error cal-1259 culated from the standard deviations of the poste-1260 rior PDF originally sampled by MultiNest,  $\sigma_{\Delta X_{\rm MN}} =$ 1261  $\sqrt{\sigma_{X_{1,\rm MN}}^2 + \sigma_{X_{2,\rm MN}}^2}$  (black histograms), and from the 1262 formal errors returned by the best-fitting error model, 1263  $\sigma_{\Delta X} = \sqrt{\sigma_{X_1}^2 + \sigma_{X_2}^2}$  (red histograms). By design, the 1264 latter are generally closer to the standard normal dis-1265 tribution (solid black curves). In our data catalogs, the 1266 columns 'X\_error' list the errors for observable 'X' after 1267 performing the adjustment of Equation 17, with mean <sup>1268</sup> values of error model parameters listed in Table 4. The <sup>1269</sup> columns 'X\_error\_raw' list the pre-adjusted values ob-<sup>1270</sup> tained directly from the posterior sampled by MultiNest.

#### 4.3. External Comparisons

1271

We compare our M2FS and Hectochelle catalogs di-1272 <sup>1273</sup> rectly to each other and to large spectroscopic data sets 1274 that are previously published and/or in progress. Our 1275 primary goal is to detect and quantify systematic differ-1276 ences, e.g., zero-point offsets. The top panels of Figures 1277 11 and 12 compare velocities and stellar-atmospheric 1278 parameters, respectively, that we measure with M2FS 1279 HiRes, M2FS MedRes and Hectochelle, for all stars that 1280 appear in at least two instrument-specific samples. In 1281 both figures, the bottom three rows of panels compare <sup>1282</sup> our M2FS and Hectochelle measurements to those from 1283 external catalogs by Walker, Mateo & Olszewski (2009, <sup>1284</sup> 'W09' hereafter), Kirby et al. (2010, 'K10' hereafter), 1285 the Sloan Digital Sky Survey's APOGEE project (Ab-1286 durro'uf et al. 2022, DR17), and the Hectochelle in the 1287 Halo at High Resolution Survey (Conroy et al. 2019, 1289 'H3' hereafter).

W09's catalog includes 8855 line-of-sight velocities 1291 1292 measured for 7103 unique sources toward the dwarf 1293 spheroidal galaxies Carina, Fornax, Sculptor and Sex-1294 tans. The W09 spectra were acquired using the <sup>1295</sup> Michigan-MIKE Fiber System (Walker et al. 2007), a <sup>1296</sup> precursor to M2FS at Magellan that operated at similar 1297 spectral resolution over a similar spectral range. The <sup>1298</sup> W09 catalog has 1440 sources in common with our cur-<sup>1299</sup> rent M2FS HiRes sample, 10 sources in common with <sup>1300</sup> our M2FS MedRes sample, and 194 sources in common <sup>1301</sup> with our Hectochelle sample. While W09 measure spec-1302 troscopic indices for iron and magnesium absorption fea-<sup>1303</sup> tures, they do not measure the set of stellar-atmospheric 1304 parameters that we have in our current samples. Our 1305 comparisons to W09's catalog are therefore limited to 1306 line-of-sight velocities.

<sup>1307</sup> K10 measure  $T_{\rm eff}$ , log g, [Fe/H] and [Mg/Fe] for ~ <sup>1308</sup> 3000 stars in eight of the Milky Way's dSph satellites. <sup>1309</sup> The K10 catalog has 115 (all HiRes mode) and 326 <sup>1310</sup> stars in common with our M2FS and Hectochelle sam-<sup>1311</sup> ples, respectively. The K10 spectra have resolving power <sup>1312</sup>  $\mathcal{R} \sim 6500$  near the calcium triplet at  $\lambda \sim 8500$  Å, prob-<sup>1313</sup> ing a different wavelength range at lower resolution than <sup>1314</sup> the other catalogs considered here. In contrast to our es-<sup>1315</sup> timates of  $T_{\rm eff}$  and log g, which rely entirely on informa-<sup>1316</sup> tion contained in the spectrum, K10 incorporate stellar <sup>1317</sup> photometry into their estimate of  $T_{\rm eff}$  and use photom-<sup>1318</sup> etry alone to estimate log g. The K10 catalog does not <sup>1319</sup> list measurements of  $V_{\rm LOS}$ ; therefore, our comparisons



Figure 10: Internal validation of formal uncertainties. For each of the spectroscopic observables  $V_{\text{LOS}}$ ,  $T_{\text{eff}}$ , log g, [Fe/H], [Mg/Fe], panels indicate distributions of pair-wise deviations between independent measurements of the same target, normalized by the combined error in both measurements. Errors are calculated using the standard deviation taken directly from the marginal posterior PDFs returned by MultiNest (blue 'before' histograms), and using the formal errors obtained by fitting the error model described in Section 4.2 (red 'after' histograms). Individual panels in the top, middle and bottom rows show results from 6830 pairs of M2FS HiRes observations, 259 pairs of M2FS MedRes observations, and 6301 pairs of Hectochelle observations, respectively. In all panels, the solid black curve is the standard normal distribution.

<sup>1320</sup> to K10's catalog are limited to stellar-atmospheric pa-<sup>1321</sup> rameters.

The APOGEE catalog, from the 17th data release 1322 of the Sloan Digital Sky Survey (DR 17; Abdurro'uf 1323 et al. 2022), includes line-of-sight velocities and stellar-1324 atmospheric parameters measured from high-resolution 1325  $(\mathcal{R} \sim 22,500 \text{ over} \sim 1.5 - 1.7 \text{ microns in wavelength})$ 1326 spectra obtained for  $\sim 650,000$  stars in the Milky Way 1327 and a few of its dwarf galaxy satellites. We select 1328 all sources from the APOGEE DR17 'allstar' catalog 1329 for which the APOGEE Stellar Parameters and Abun-1331 dances Pipeline (ASPCAP) returns measurements for <sup>1332</sup> all of  $T_{\rm eff}$ ,  $\log q$ , [Fe/H] and [Mg/Fe] (ASPCAP lists <sup>1333</sup> separate measurements of [Mg/Fe] and  $[\alpha/Fe]$ ; we use 1334 only the former for purposes of direct comparison).

<sup>1335</sup> We then discard any sources for which the 'RV\_FLAG' <sup>1336</sup> bitmask has the 'RV\_SUSPECT' bit set, and/or the <sup>1337</sup> 'ASPCAPFLAG' bitmask has the 'STAR\_WARN' bit <sup>1338</sup> set. After applying these filters and then removing <sup>1339</sup> stars for which we measure [Fe/H] < -2.5 (i.e., below <sup>1340</sup> the minimum metallicity of APOGEE's template spec-<sup>1341</sup> tra), there are 117 APOGEE stars in common with <sup>1342</sup> our M2FS HiRes sample, 2 stars in common with our <sup>1343</sup> M2FS MedRes sample, and 94 in common with our Hec-<sup>1344</sup> tochelle sample. For a given star, we take the mean <sup>1345</sup> APOGEE velocity as given by the 'VHELIO\_AVG' pa-<sup>1346</sup> rameter, with observational error given by 'VERR'.

Finally, the H3 Survey (Conroy et al. 2019) is ongoing,
using the same MMT/Hectochelle configuration that we
do. H3 is designed to map the Galactic stellar halo, tar-

| quantity                 | 8                            | k             | $f_{ m out}$       | $\sigma_{ m out}$                    |
|--------------------------|------------------------------|---------------|--------------------|--------------------------------------|
|                          | (floor)                      | (multiplier)  | (outlier fraction) | (outlier std. dev.)                  |
| M2FS HiRes               |                              |               |                    |                                      |
| $V_{\rm los}$            | $0.57\pm0.01{\rm km~s^{-1}}$ | $0.86\pm0.02$ | $0.10\pm0.00$      | $24.30\pm0.69{\rm km~s^{-1}}$        |
| $T_{ m eff}$             | $58.59\pm2.13~\rm{K}$        | $0.91\pm0.01$ | $0.08\pm0.01$      | $424.43 \pm 24.79 \ {\rm K}$         |
| $\log_{10}[g]$           | $0.12\pm0.02$                | $0.86\pm0.04$ | $0.13\pm0.06$      | $0.61\pm0.38$                        |
| [Fe/H]                   | $0.06\pm0.00$                | $1.18\pm0.02$ | $0.17\pm0.02$      | $0.29\pm0.02$                        |
| [Mg/Fe]                  | $0.04\pm0.01$                | $0.74\pm0.03$ | $0.48\pm0.01$      | $0.34\pm0.01$                        |
| M2FS MedRes              |                              |               |                    |                                      |
| $V_{\rm los}$            | $0.59\pm0.78{\rm km~s^{-1}}$ | $1.38\pm0.14$ | $0.12\pm0.03$      | $116.61 \pm 170.64  \rm km \ s^{-1}$ |
| $T_{\rm eff}$            | $10.16 \pm 19.39 ~{\rm K}$   | $1.00\pm0.10$ | $0.18\pm0.10$      | $507.14 \pm 519.59 ~\rm{K}$          |
| $\log_{10}[g]$           | $0.03\pm0.02$                | $0.46\pm0.05$ | $0.09\pm0.05$      | $4.24\pm2.43$                        |
| [Fe/H]                   | $0.12\pm0.08$                | $1.34\pm0.15$ | $0.19\pm0.12$      | $0.51\pm0.55$                        |
| [Mg/Fe]                  | $0.03\pm0.02$                | $0.80\pm0.07$ | $0.19\pm0.10$      | $0.97 \pm 1.50$                      |
| MMT/Hectochelle          |                              |               |                    |                                      |
| $\overline{V_{\rm los}}$ | $0.39\pm0.01{\rm km~s^{-1}}$ | $0.94\pm0.02$ | $0.06 \pm 0.00$    | $27.64 \pm 1.14 \text{ km s}^{-1}$   |
| $T_{\rm eff}$            | $0.61\pm1.00\mathrm{K}$      | $1.17\pm0.01$ | $0.06\pm0.01$      | $216.25 \pm 26.55  {\rm K}$          |
| $\log_{10}[g]$           | $0.03\pm0.01$                | $1.05\pm0.02$ | $0.10\pm0.02$      | $0.42\pm0.04$                        |
| [Fe/H]                   | $0.01\pm0.00$                | $1.20\pm0.02$ | $0.16\pm0.01$      | $0.37\pm0.02$                        |
| [Mg/Fe]                  | $0.01\pm0.00$                | $1.11\pm0.02$ | $0.23\pm0.02$      | $0.38\pm0.02$                        |

**Table 4**: Summary of posterior PDFs for parameters of ther model used to adjust observational errors (Section 4.2).

 $_{1350}$  geting  $\sim 2 \times 10^5$  halo stars down to a magnitude limit of  $r \leq 18$ . H3's and our spectra are acquired and mod-1351 eled independently, but processed using the same CfA <sup>1353</sup> pipeline discussed at the beginning of Section 3. The H3 team models individual spectra using the software pack-1354 <sup>1355</sup> age MINESweeper (Cargile et al. 2020), which simultaneously fits isochrone models to stellar magnitudes mea-1356 sured from broad-band photometry. H3's incorporation 1357 of photometric information provides additional power to 1358 1359 constrain stellar-atmospheric parameters, while also giv-<sup>1360</sup> ing capability to infer spectro-photometric distances to 1361 individual sources.

The faint end of H3's sample overlaps only slightly with the bright end of ours, leaving relatively few stars common to both surveys. In order to provide a more meaningful basis for comparison, the H3 team applied their MINESweeper analysis directly to our Hectochelle spectra from four different fields in the Sextans dSph galaxy (P. Cargile, private communication). While not part of the actual H3 survey, this comparison 'H3' sample contains 77 sources common to our M2FS HiRes 1371 sample, 1 sources common to our M2FS MedRes sample,1372 and 767 sources common to our Hectochelle sample.

<sup>1373</sup> For a given observable quantity, X, we infer zero-<sup>1374</sup> point offsets for each of the above catalogs simultane-<sup>1375</sup> ously. We begin by constructing vectors of deviations, <sup>1376</sup>  $\Delta X \equiv X_1 - X_2$ , and corresponding errors,  $\sigma_{\Delta X} =$ <sup>1377</sup>  $\sqrt{\sigma_{X,1}^2 + \sigma_{X_2}^2}$ , for all pairs of sources common to differ-<sup>1378</sup> ent catalogs '1' and '2'. We loop over all possible combi-<sup>1379</sup> nations of catalogs, such that a star appearing at least <sup>1380</sup> once in all six catalogs will have 10 pairs of measure-<sup>1381</sup> ments<sup>8</sup>; within a given catalog, multiple measurements <sup>1382</sup> of the same source are replaced by the inverse-variance-<sup>1383</sup> weighted mean value.

<sup>1384</sup> We assume that, for a given observable, X, the pair-<sup>1385</sup> wise deviations,  $\Delta X$ , follow a Gaussian distribution, <sup>1386</sup> with standard deviation  $\sigma_{\Delta X}$  and pair-dependent mean, <sup>1387</sup>  $\mu_{\Delta X} = \overline{\Delta X_1} - \overline{\Delta X_2}$ , that is specified by the differ-

<sup>&</sup>lt;sup>8</sup> Recall that the W09 catalog lacks stellar-atmospheric parameters and the K10 catalog lacks line-of-sight velocities, so measurements of a given quantity for a given star can appear in up to five different catalogs.



**Figure 11**: *Top row:* Difference between line-of-sight velocities measured by M2FS HiRes and either M2FS MedRes (cyan) or Hectochelle (blue), for stars common to both samples. *Bottom three rows:* Differences between line-of-sight velocities we measure using M2FS HiRes (red), M2FS MedRes (cyan) or Hectochelle (blue) and those measured in external surveys by Walker, Mateo & Olszewski (2009, second row), APOGEE (DR17; Abdurro'uf et al. 2022, third row), the H3 survey (Conroy et al. 2019, fourth row).

<sup>1388</sup> ence in mean offsets (from some standard zero point) <sup>1389</sup> of catalogs 1 and 2. This model and the correspond-<sup>1390</sup> ing likelihood function can be specified by Equations 16 <sup>1391</sup> and 18, respectively, only now with the outlier fraction <sup>1392</sup> assumed to be  $f_{\text{out}} = 0$  and the catalogued observa-<sup>1393</sup> tional errors taken at face value (s = 0, k = 1). In or-<sup>1394</sup> der to guard against catastrophic outliers, as described <sup>1395</sup> in Section 4.2, we discard pairs with deviations in ex<sup>1396</sup> cess of  $|\Delta V_{\text{LOS}}|_{\text{out}} = 100 \text{ km s}^{-1}$ ,  $|\Delta T_{\text{eff}}|_{\text{out}} = 2000$ <sup>1397</sup> K,  $|\Delta \log g|_{\text{out}} = 2.5 \text{ dex}$ ,  $|\Delta [\text{Fe/H}]|_{\text{out}} = 2.5 \text{ dex}$  and <sup>1398</sup>  $|\Delta [\text{Mg/Fe}]|_{\text{out}} = 1.0 \text{ dex}$ . Four free parameters spec-<sup>1399</sup> ify zero-point offsets:  $\overline{\Delta X}_{\text{M2FS}}, \overline{\Delta X}_{\text{Hecto}}, \overline{\Delta X}_{\text{H3}}$ , and <sup>1400</sup>  $\overline{\Delta X}_{\text{W09}}$  (if  $X = V_{\text{LOS}}$ ),  $\overline{\Delta X}_{\text{K10}}$  (if  $X = T_{\text{eff}}, \log g$ , [Fe/H] <sup>1401</sup> or [Mg/Fe]).

Given the APOGEE catalog's size and widespread use across different sub-fields, we choose that catalog to define the absolute zero point, assuming  $\overline{\Delta X}_{Apo} = 0$  for and  $\overline{\Delta X}_{Apo} = 0$  for an all X. Table 5 lists offsets, relative to the APOGEE zero point, that we infer (again via MultiNest, as in Section and  $\overline{\Delta X} > 0$  for each observable and each catalog. Positive offand  $\overline{\Delta X} > 0$ , imply that a catalog's zero point is more and positive than APOGEE's. For each catalog named in and Column 1, Columns 2–7 identify the number of pairs and of sources in common with each of the other individual and catalogs.

Examining the results for our M2FS and Hectochelle 1414 samples, we find that, whereas the Hectochelle sample <sup>1415</sup> shows little velocity offset with respect to APOGEE  $_{1416}$  ( $\overline{\Delta V_{\text{LOS}}}_{\text{Hecto}} = -0.14 \pm 0.05 \text{ km s}^{-1}$ ), the M2FS HiRes <sup>1417</sup> sample is systematically offset by  $\overline{\Delta V_{\text{LOS}M2FS,\text{HiRes}}} =$  $_{1418}$  0.47  $\pm$  0.05 km s<sup>-1</sup>. The M2FS MedRes sample shows  $_{1419}$  no significant offset, with  $\overline{\Delta V_{\rm LOS}}_{\rm M2FS, MedRes}$  = 0.07  $\pm$  $_{1420}$  0.44 km s<sup>-1</sup>, but with a large uncertainty reflecting <sup>1421</sup> the fact that the M2FS MedRes sample has relatively 1422 few stars in common with the other samples. For <sup>1423</sup> most stellar-atmospheric parameters, both M2FS HiRes 1424 and Hectochelle samples show statistically significant 1425 offsets from APOGEE. The offsets in surface gravity  $_{1426}$   $(\overline{\Delta \log g}_{M2FS \, HiRes} = -0.53 \pm 0.02 \text{ and } \overline{\Delta \log g}_{Hecto} =$  $_{1427}$  -0.49 ± 0.01) and metallicity ( $\overline{\Delta [Fe/H]}_{M2FS\,HiRes}$  $_{1428} - 0.26 \pm 0.01$  and  $\overline{\Delta}$ [Fe/H]<sub>Hecto</sub> =  $-0.26 \pm 0.01$ ) are simi-1429 lar for both samples, while the difference in temperature <sup>1430</sup> offsets ( $\Delta T_{\rm eff\,M2FS\,HiRes} = -141 \pm 5$  K and  $\Delta T_{\rm eff\,Hecto} =$  $_{1431}$  -221 ± 4 K) likely reflects the different wavelength cov-1432 erage of the different instruments/configurations. How-<sup>1433</sup> ever, the smaller temperature offset of the H3 sample <sup>1434</sup>  $(\overline{\Delta T_{\text{eff}}}_{\text{H3}} = -69 \pm 4 \text{ K})$ , which uses the same Hectochelle 1435 configuration that we do, also implicates differences in 1436 analysis procedure as a source of systematic error. Fi-<sup>1437</sup> nally, while our Hectochelle sample shows good agree-<sup>1438</sup> ment with APOGEE in terms of the magnesium abun-<sup>1439</sup> dance ( $\overline{\Delta}$ [Mg/Fe]<sub>Hecto</sub> = -0.01 ± 0.01), the M2FS sam-1440 ple is offset by  $\overline{\Delta}$ [Mg/Fe]<sub>M2FS</sub> = 0.19 ± 0.01.

Perhaps most eye-catching among the external comlinear parisons are those involving surface gravity in the H3 catalog (bottom row, second column of Figure 12). The H3 surface gravities are multi-modal at log  $g \gtrsim 2$ . This feature is likely real (i.e., reflecting a true multi-modality



Figure 12: Top row: Comparison of stellar-atmospheric parameters measured (before applying zero-point adjustments) by M2FS HiRes and either M2FS MedRes (cyan) or Hectochelle (blue), for stars common to both samples. Bottom three rows: Comparison of parameters that we measure (before applying zero-point adjustments) using M2FS (red) and Hectochelle (blue) to those measured in external surveys by Kirby et al. (2010, second row), APOGEE (DR17; Abdurro'uf et al. 2022, third row), and the H3 survey (Conroy et al. 2019, fourth row). In all panels of the bottom three rows, the quantity plotted along the horizontal axis is the measurement from M2FS (red) and/or Hectochelle (blue).

<sup>1446</sup> among the observed high-gravity stars) and detectable here because of H3's simultaneous fitting of isochrone 1447 and spectral models. The modes at  $\log g \sim 4.5$ ,  $\log g$ 1448  $\sim 3.7$  and log  $q \sim 2.5$  correspond to the main sequence, 1449 <sup>1450</sup> sub-giant and horizontal branches, respectively, all of which are confined to distinct ranges of surface gravity 1451 in isochrone space. H3's fitting of isochrone models to 1452 broad-band photometry effectively requires these evolu-1453 tionary stage to be separated, giving rise to the observed 1454  $_{1455}$  multi-modality in log g space.

The primary lesson we take from all of these external <sup>1457</sup> comparisons is that zero-point offsets among *all* of the <sup>1458</sup> independent datasets are common at the level of a few <sup>1459</sup>  $\times 0.1$  km s<sup>-1</sup> in line-of-sight velocity,  $\sim 100$  K in effec-<sup>1460</sup> tive temperature, and a few  $\times 0.1$  dex in surface grav-<sup>1461</sup> ity, metallicity and magnesium abundance. Offsets of <sup>1462</sup> these magnitudes are perhaps not surprising, given the <sup>1463</sup> variety of spectral resolutions, wavelength ranges and <sup>1464</sup> analysis techniques employed. We acknowledge that our

 Table 5: Zero-point offsets (with respect to APOGEE DR17) inferred for M2FS, Hectochelle and external data sets (Section 4.3).

| $Sample^{a}$    | $N_1$ | $N_2$ | $N_3$ | $N_4$ | $N_5$ | $N_6$ | $N_7$ | $\overline{\Delta V_{ m LOS}}b$ | $\overline{\Delta T_{\rm eff}}$ | $\overline{\Delta \log g}$ | $\overline{\Delta {\rm [Fe/H]}}$ | $\overline{\Delta [{ m Mg}/{ m Fe}]}$ |
|-----------------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|---------------------------------|----------------------------|----------------------------------|---------------------------------------|
| M2FS HiRes      |       | 180   | 26    | 1440  | 115   | 77    | 117   | $0.47\pm0.05$                   | $-141\pm5$                      | $-0.53\pm0.02$             | $-0.26\pm0.01$                   | $0.19\pm0.01$                         |
| M2FS MedRes     |       |       | 4     | 10    | 0     | 1     | 2     | $0.07\pm0.44$                   | $-323\pm16$                     | $-0.40\pm0.05$             | $-0.59\pm0.06$                   | $0.09\pm0.06$                         |
| Hectochelle     |       |       |       | 194   | 326   | 767   | 94    | $-0.14\pm0.05$                  | $-221\pm4$                      | $-0.49\pm0.01$             | $-0.26\pm0.01$                   | $-0.01\pm0.01$                        |
| W09             |       |       |       |       |       | 91    | 281   | $-0.19\pm0.05$                  |                                 |                            | •••                              |                                       |
| K10             |       |       |       |       |       | 25    | 75    |                                 | $-172\pm3$                      | $-0.26\pm0.01$             | $-0.18\pm0.01$                   | $0.24\pm0.02$                         |
| H3 <sup>C</sup> |       |       |       |       |       |       | 22    | $-0.31\pm0.05$                  | $-69 \pm 4$                     | $-0.20\pm0.01$             | $-0.01\pm0.01$                   | $0.23\pm0.01$                         |

<sup>a</sup>Samples: 1=M2FS HiRes; 2=M2FS MedRes; 3=Hectochelle; 4=Walker, Mateo & Olszewski (2009); 5=Kirby et al. (2010); 6=H3; 7=APOGEE DR17

<sup>b</sup> A value  $\overline{\Delta X} \equiv \overline{X - X_7} > 0$  implies a zero point that is more positive than that of the APOGEE catalog.

<sup>c</sup> The 'H3' sample that we use here is from the H3 team's analysis of a subset of  $\sim 750$  spectra from our program.

<sup>1465</sup> M2FS+Hectochelle results for individual stars are sus-<sup>1466</sup> ceptible to systematic errors at these levels.

In the M2FS (HiRes and MedRes) and Hectochelle 1467 catalogs presented below, we subtract from each individ-1468 ual measurement of  $V_{\rm LOS}$ ,  $T_{\rm eff}$ , log g, [Fe/H] and [Mg/Fe] 1469 the zero-point offset listed in Table 5, such that the cat-1470 alogs are effectively shifted to the APOGEE zero point. 1471 Table columns labeled 'X' list values of observable 'X' 1472 after shifting to the Apogee zero point. Columns labeled 1473 <sup>1474</sup> 'X\_raw' list the original values—i.e., before applying the 1475 zero-point correction.

After applying the zero-point corrections, we compare 1476 our current M2FS and Hectochelle catalogs to measure-1477 1478 ments that we have previously published for subsets 1479 of the current samples—including stellar targets in the dwarf galaxies Draco, Reticulum II, Tucana II, Grus I, 1480 Crater II, Leo II, Ursa Minor, Hydrus I and Fornax 1481 (Walker, Olszewski & Mateo 2015; Walker et al. 2015, 1482 2016; Caldwell et al. 2017; Spencer et al. 2017, 2018; Ko-1483 1484 posov et al. 2018; Pace et al. 2021). Despite using the 1485 same raw M2FS+Hectochelle spectra, the previously-1486 published measurements can differ systematically from current ones even before applying zero-point corrections, 1488 as they are derived using an entirely different library of <sup>1489</sup> synthetic template spectra. Specifically, the previously-<sup>1490</sup> published measurements are based not on the library we introduce in Section 4.1.1, but instead on a library 1491 that was designed originally for use with the SDSS Segue 1492 Stellar Parameter Pipeline ('SSPP' Lee et al. 2008). The 1493 <sup>1494</sup> SSPP library is computed over a fixed grid in  $T_{\rm eff} \log q$ <sup>1495</sup> and [Fe/H], and assumes a monotonic relationship be-<sup>1496</sup> tween  $\alpha$ -element abundance and [Fe/H]. Experiment-1497 ing with three independent libraries of synthetic tem-1498 plate spectra, Walker, Olszewski & Mateo (2015) ob<sup>1499</sup> served library-dependent zero-point offsets as large as <sup>1500</sup>  $\overline{\Delta V_{\text{LOS}}} \sim 0.5 \text{ km s}^{-1}, \overline{\Delta T_{\text{eff}}} \sim 300 \text{ K}, \overline{\Delta \log g} \sim 0.7 \text{ dex}$ <sup>1501</sup> and  $\overline{\Delta [\text{Fe}/\text{H}]} \sim 0.5 \text{ dex}.$ 

The previously published M2FS HiRes, M2FS 1502 <sup>1503</sup> MedRes and Hectochelle data sets contain 1265, 33 and <sup>1504</sup> 3008 sources, respectively, from our current samples. <sup>1505</sup> Comparing these measurements directly to the current <sup>1506</sup> ones, we find that the previously-published M2FS HiRes <sup>1507</sup> (M2FS MedRes) measurements are offset from current <sup>1508</sup> (raw, i.e., before applying an offset to the APOGEE 1509 zero point) values by  $\overline{\Delta V_{\rm LOS}} = -0.47 \pm 0.03 \ {\rm km \ s^{-1}}$  $_{1510}$  (-2.19 ± 0.63 km s<sup>-1</sup>),  $\overline{\Delta T_{\text{eff}}} = 168 \pm 3$  K (123 ± 36  $_{1511}$  K),  $\overline{\Delta \log g} = 0.45 \pm 0.01 \text{ dex } (0.15 \pm 0.07 \text{ dex})$  and  $_{1512} \Delta [Fe/H] = 0.21 \pm 0.01 \text{ dex } (0.20 \pm 0.07 \text{ dex}), \text{ where}$ <sup>1513</sup> positive values imply that the current measurements <sup>1514</sup> are, on average, larger than the previously-published 1515 ones. The previously-published Hectochelle measure-<sup>1516</sup> ments show offsets of similar magnitude, with  $\Delta V_{\rm LOS} =$  $_{1517} 0.68 \pm 0.01 \text{ km s}^{-1}, \ \overline{\Delta T_{\text{eff}}} = -180 \pm 1 \text{ K}, \ \overline{\Delta \log g} = -180 \pm 1 \text{ K}$  $_{1518} -0.24 \pm 0.00 \text{ dex and } \overline{\Delta[\text{Fe}/\text{H}]} = -0.18 \pm 0.00 \text{ dex. We}$ <sup>1519</sup> notice that these offsets with respect to current values <sup>1520</sup> are similar to, or smaller than, the zero-point shifts that <sup>1521</sup> were applied to raw measurements in the previously-1522 published work (see Walker, Olszewski & Mateo 2015; <sup>1523</sup> Walker et al. 2015 for details). Those shifts were de-<sup>1524</sup> termined empirically, based on observed offsets between 1525 known solar values and values measured from high-S/N <sup>1526</sup> spectra acquired during twilight exposures. Specifically, <sup>1527</sup> the previously-published M2FS measurements include <sup>1528</sup> zero-point shifts (i.e., quantities that were added to raw 1529 measurements) of  $\Delta V_{\text{LOS}} = 0 \text{ km s}^{-1}$ ,  $\Delta T_{\text{eff}} = -69 \text{ K}$ ,  $_{1530} \Delta \log q = -0.09 \text{ dex}, \Delta [\text{Fe/H}] = +0.20 \text{ dex}, \text{ while the}$ <sup>1531</sup> previously-published Hectochelle measurements include <sub>1532</sub> shifts of  $\Delta V_{\text{LOS}} = -0.81$  km s<sup>-1</sup>,  $\Delta T_{\text{eff}} = +303$  K,  $_{1533} \Delta \log q = +0.63 \text{ dex}, \Delta [\text{Fe/H}] = +0.48 \text{ dex}.$  Based on these direct comparisons, then, we find that our switch 1534 to the new template library (described in Section 4.1.1), 1535 1536 followed by our new zero-point calibration based on external comparisons, results in relatively small offsets 1537 from previous values. 1538

Finally, after having applied the zero-point calibra-1539 1540 tion as discussed above, we compare our measurements of [Fe/H] and [Mg/Fe] directly to previously-published 1541 1542 abundance measurements derived from high-resolution <sup>1543</sup> spectra acquired for relatively small samples of individual stars in dSph galaxies. The external samples come 1544 <sup>1545</sup> from observations with the HIRES spectrograph at the <sup>1546</sup> Keck Telescopes (Shetrone et al. 2001; Fulbright et al. 1547 2004; Cohen & Huang 2009, 2010; Frebel et al. 2010), <sup>1548</sup> the High Dispersion Spectrograph at the Subaru Telescope (Sadakane et al. 2004; Aoki et al. 2009), the UVES 1549 (Shetrone et al. 2003; Norris et al. 2010; Tafelmeyer et al. 1550 2010; Lucchesi et al. 2020) and X-Shooter (Starkenburg 1551 et al. 2013) spectrographs at the Very Large Telescope, 1552 and the MIKE spectrograph at Magellan (Simon et al. 1553 2015). Figure 13 displays the comparisons. 1554

Comparing [Fe/H] metallicities (left panel of Fig-1555 1556 ure 13) we find generally good agreement with the The bulk of measurements 1557 high-resolution studies. 1558 are consistent with a small offset such that our values may be systematically metal-rich by  $\sim 0.1$  dex, with 1559 1560 no significant dependence on additional stellar-<sup>1561</sup> atmospheric parameters like  $T_{\text{eff}}$  or  $\log g$ . At the very metal-poor end, however, our measurements for 1562 two stars (both in the Sculptor dSph galaxy) with 1563  $_{1564}$  previously-published values [Fe/H]  $\lesssim -4$  (Tafelmeyer  $_{1565}$  et al. 2010; Simon et al. 2015) both come in at [Fe/H]  $_{1566} \gtrsim -3$  in our work, disagreeing with the previous mea-<sup>1567</sup> surements at the  $\sim 2\sigma$  level. One of these stars, Scl07-<sup>1568</sup> 50, has been identified (based on the previous measure-<sup>1569</sup> ments) as the most metal-poor star known in an external galaxy (Tafelmeyer et al. 2010). It is potentially concerning that our measurements do not reproduce this 1571 <sup>1572</sup> result. However, we note that our library of template <sup>1573</sup> spectra includes only metallicities [Fe/H] > -4, and that our applied offsets of  $\Delta$ [Fe/H] imply that the minimum 1574 metallicity that we can in principle measure is [Fe/H] 1575 -3.75. The relatively large uncertainties on our mea-1576 <sup>1577</sup> surements of these two stars imply that the mean values <sup>1578</sup> will be correspondingly larger than this minimum. We expect, therefore, that users may choose to apply stricter 1579 quality-control filters (e.g., a threshold in formal uncer-1580 tainty) when analyzing chemical abundances, especially 1581 when working near the limits of our metallicity scale. 1582

Comparing [Mg/Fe] abundances (right panel of Fig-1583 <sup>1584</sup> ure 13, we see what is perhaps the opposite problem, as <sup>1585</sup> our template library extends to lower [Mg/Fe] than is <sup>1586</sup> allowed in some previous studies. At solar and higher <sup>1587</sup> values of [Mg/Fe] we find generally good agreement with 1588 the results of previous high-resolution studies. At sub-<sup>1589</sup> solar abundance, our measurements of [Mg/Fe] tend to <sup>1590</sup> be lower than those previously reported. Again, we ex-<sup>1591</sup> pect that users may want to tighten quality-control fil-<sup>1592</sup> ters when analyzing chemical abundances; we note that <sup>1593</sup> requiring our measurement of [Fe/H] to have uncertainty <sup>1594</sup> smaller than 0.5 dex would remove from the comparison 1595 sample all but one of the stars for which we measure [Mg/Fe] to be sub-solar.

1596

1620

1597 We perform one additional external cross-check on <sup>1598</sup> our metallicity measurements, fitting our spectral mod-<sup>1599</sup> els (Section 4) to archival Hectochelle spectra acquired 1600 during observations of globular and open star clusters. These observations, performed by other investigators 1601 <sup>1602</sup> (including the H3 team), used the same spectrograph <sup>1603</sup> configuration and processing pipeline that we employ <sup>1604</sup> for our own Hectochelle spectra. Figure 14 displays histograms of [Fe/H] that we obtain for each of the clusters 1605 1606 M3, M13, M67, M71, M92, M107, which span a range  $_{1607}$  of  $-2.2 \leq [Fe/H] \leq 0$  in metallicity. For each cluster we 1608 keep only stars for which our measurements have veloc-1609 ity error  $< 5 \text{ km s}^{-1}$ , metallicity error < 0.5 dex, and — in order to reduce contamination from non-member 1610 1611 sources —  $\log g < 3$  and  $V_{\text{LOS}}$  within 10 km s<sup>-1</sup> of the <sup>1612</sup> systemic mean tabulated by Harris (1996), except for <sup>1613</sup> M67, for which we adopt the spectroscopic mean ve-<sup>1614</sup> locity and metallicity measured by Pace et al. (2008). <sup>1615</sup> Figure 14 shows the resulting distributions of [Fe/H] 1616 observed toward each cluster, with clear peaks associ-1617 ated with cluster members. We find good agreement with the previously-published mean metallicities, giving 1618 <sup>1619</sup> confidence that our calibrated zero-point is accurate.

#### 4.4. Anomalous Sources

Our target selection filters (Section 2) are designed to 1621 <sup>1622</sup> isolate primarily red giant stars in the Galactic halo sub-<sup>1623</sup> structures of interest, with contamination contributed 1624 mainly by dwarf stars in the Galactic foreground. Our <sup>1625</sup> spectral templates are designed to fit individual stars 1626 within the limited range of stellar-atmospheric parame-<sup>1627</sup> ters identified in Section 4.1.1, which can accommodate <sup>1628</sup> the vast majority of selected targets. Nevertheless, we <sup>1629</sup> expect our target selection filters to admit various kinds 1630 of anomalous sources for which our templates may pro-<sup>1631</sup> vide relatively poor fits—e.g., carbon-enhanced stars, 1632 unresolved galaxies and quasars.

In order to identify anomalous sources systematically, 1633 1634 first we look for cases where the observed spectrum, 1635  $S(\lambda)$ , exhibits relatively large residuals with respect to



Figure 13: Comparison of current M2FS+Hectochelle measurements of [Fe/H] (left) and [Mg/Fe] (right) to previouslypublished values derived from high-resolution spectra.

1636 the best-fitting model spectrum,  $M(\lambda)$ . For each individual spectrum in our M2FS (top) and Hectochelle 1637 (bottom) samples, the top two panels of Figure 15 plot 1638 the mean value of  $\chi^2 \equiv \sum_{i=1}^{N_{\text{pix}}} (S_i - M(\lambda_i))^2 / \text{Var}[S_i]$ 1639 as a function of the median S/N ratio, where the mean 1640 and median are evaluated over all  $N_{\rm pix}$  unmasked pixels. 1641 The variance spectrum, Var[S], is the original one, un-1642 corrected by the linear re-scaling parameters inferred as 1643 part of the spectral fit (see Equation 15), as the re-scaled 1644 variance will be inflated to compensate for template mis-1645 <sup>1646</sup> match. For both M2FS and Hectochelle, we find that the mean value of  $\chi^2$  is approximately constant at median 1647  $_{1648}$  S/N $\lesssim 10$ , with characteristic values of  $\chi^2/\text{pix} \sim 1.0$  for M2FS and  $\chi^2/\text{pix} \sim 1.5$  for Hectochelle, suggesting that the uncertainties in pixel counts estimated by the Hectochelle pipeline tend to be under-estimated by  $\sim 20\%$ . We reiterate that, by design, our linear re-scaling of the 1652 1653 raw variances (Equation 15) brings the typical values to 1654  $\chi^2/\text{pix} \sim 1.$ 

Figure 15 also reveals that mean  $\chi^2$  values rise steadily at S/N ratios  $\gtrsim 10$ . One contribution to this behavior comes from the fact that our polynomial model for the scontinuum spectrum is fixed at order l = 5 (Section 4), limiting ability to fit details of the continuum structure that become apparent only at high S/N. In order to flag anomalous spectra despite the steady rise in  $\chi^2$  with S/N ratio, we identify outliers above the smooth S/Ndependent curves drawn in both panels of Figure 15. He curves are broken power laws of the form  $\chi^2/\text{pix} =$  $a_1(1 + (S/N)/a_2)^3$ , with  $(a_1, a_2) = (1.2, 25)$  for M2FS <sup>1666</sup> and (4.0, 75) for Hectochelle. For all anomalous spec-<sup>1667</sup> tra identified in this way, we set the flag chi2\_flag=True <sup>1668</sup> in the data catalogs (Section 5). We identify 60 such <sup>1669</sup> anomalous M2FS HiRes spectra, 114 anomalous M2FS <sup>1670</sup> MedRes spectra and 131 anomalous Hectochelle spec-<sup>1671</sup> tra having median S/N ratio  $\geq$  1 per pixel. For sources <sup>1672</sup> having at least one observation that passed our quality-<sup>1673</sup> control filter, we set the flag 'any\_chi2\_flag=True' if the <sup>1674</sup> spectrum from any of the individual accepted observa-<sup>1675</sup> tions has chi2\_flag=True. There are 44 such sources in <sup>1676</sup> our M2FS HiRes catalog (not necessarily the same as <sup>1677</sup> those that have S/N $\geq$  1), 28 in our M2FS MedRes cat-<sup>1678</sup> alog and 41 in our Hectochelle catalog.

Figure 16 displays representative examples of these 1679 anomalous spectra, some types of which have already 1680 <sup>1681</sup> been identified and discussed in previous M2FS papers 1682 by Walker, Olszewski & Mateo (2015); Song et al. (2019, <sup>1683</sup> 2021). The top two M2FS spectra (left-hand panels) <sup>1684</sup> and the top Hectochelle spectrum (right-hand panels) 1685 are from stars showing various levels of carbon enhance-1686 ment, with the Swan (1857)  $C_2$  bandhead clearly visible <sup>1687</sup> near 5165 Å. The second (from top) Hectochelle spec-<sup>1688</sup> trum is dominated by emission lines, presumably from a <sup>1689</sup> distant star-forming galaxy; a few tens of similar spectra <sup>1690</sup> are among the  $\chi^2$  outliers in our Hectochelle sample but <sup>1691</sup> not, due to our masking of strong emission-like features 1692 (Section 3.7), in our M2FS sample. The third (from 1693 top) row of spectra are from cool M dwarf stars, with <sup>1694</sup> the TiO bandhead visible near 5170 Å. The bottom row <sup>1695</sup> of spectra are from known quasars, previously measured



Figure 14: Histograms of metallicities we infer from archival Hectochelle observations of targets in the star clusters (top to bottom) M92, M13, M3, M107, M71 and M67. In each panel, the the dashed vertical line indicates the metallicity tabulated by Harris (1996), except for the metallicity of M67, which we adopt from Pace et al. (2008).

<sup>1696</sup> to have redshifts of  $z \sim 3.7$  (Boutsia et al. 2021, left) <sup>1697</sup> and  $z \sim 3.4$  (Pâris et al. 2014).

<sup>1698</sup> Following Song et al. (2021), we obtain a cleaner sam-<sup>1699</sup> ple of carbon stars by comparing the median flux across <sup>1700</sup> the bandpass 5160–5167 Å, denoted  $W_{5163}$  to the me-



**Figure 15**: Top three panels:  $\chi^2$  per pixel vs median S/N ratio per pixel, from the best-fitting model for each individual spectrum obtained with M2FS HiRes, M2FS MedRes and Hectochelle. Red points identify observations that pass our crude quality-control filter, with raw velocity error  $\leq 5 \text{ km s}^{-1}$ . Outliers having  $\chi^2$ /pix above the dashed curves tend to correspond to anomalous sources, primarily carbon stars, background galaxies and quasars. Bottom three panels: Ratio of median flux in the 5160 – 5167 Å bandpass to the median flux in the 5176 – 5183 Å bandpass, vs. median S/N ratio. Outliers having flux ratios below the dashed curves are flagged in our data catalogs as likely carbon stars.



Figure 16: Examples of M2FS HiRes (left) and Hectochelle (right) spectra from anomalous sources, with text indicating celestial coordinates, HJD of observation and Gaia G-band magnitude (if available). The top two M2FS spectra, and the top Hectochelle spectrum, come from stars showing various levels of carbon enhancement, with the prominent Swan (1857) C<sub>2</sub> bandhead near 5165 Å. The second (from top) Hectochelle spectrum is dominated by emission lines from an extragalactic source. Spectra in the third row are from cool M giant stars, with the TiO bandhead apparent near 5170 Å. Spectra in the bottom row are from known quasars, at redshift  $z \sim 3.7$  (Boutsia et al. 2021, left) and  $z \sim 3.4$  (Pâris et al. 2014, right).

dian flux across 5176–5183 Å, denoted  $W_{5180}$ . The bot-1701 1702 tom two panels of Figure 15 plot the ratio  $W_{5163}/W_{5180}$ <sup>1703</sup> as a function of median S/N ratio. We identify as candi-1704 date carbon stars those sources for which the flux ratio 1705 falls below the curves drawn in the bottom two panels <sup>1706</sup> of Figure 15; spectra that satisfy this criterion have flag carbon\_flag=True in the data catalogs (Section 5). The 1707 1708 M2FS HiRes sample contains 37 sources that have at 1709 least one spectrum that is flagged as carbon enhanced  $_{1710}$  and has S/N> 1; the M2FS MedRes sampled contains 1711 1 such sources and the Hectochelle sample contains 144 such sources. For sources having at least one observa-1712 tion that passed our quality-control filter, we set the flag 1713 'any\_carbon\_flag'=True if the spectrum from any of the 1714 <sup>1715</sup> individual accepted observations has carbon\_flag=True. There are 37 such sources in our M2FS HiRes catalog, 0 1716 <sup>1717</sup> in our MedRes catalog and 88 in our Hectochelle catalog.

Our samples also contain sources that the Gaia 1718 (DR3) database flags as photometrically variable 1719 ('phot\_variable\_flag='VARIABLE') in the main source 1720 catalog, and/or lists in dedicated variability tables for 1721 active galactic nuclei (variability table 'vari\_agn') or RR 1722 <sup>1723</sup> Lyrae ('vari\_rrlyrae'). Our spectroscopic catalogs list 1724 for each source the value of Gaia's phot\_variable\_flag, and also sets flags gaia\_agn=True, gaia\_rrl=True if the 1725 source appears in the corresponding variability tables. 1726 Considering only those having at least one spectrum 1727 with  $S/N \ge 1$ , our M2FS HiRes, M2FS MedRes and 1728 <sup>1729</sup> Hectochelle samples contain 551, 3 and 764 sources, re-1730 spectively, that Gaia flags as photometric variables in 1731 the main source catalog, with 75, 1 and 363 sources ap-<sup>1732</sup> pearing in Gaia's dedicated AGN table. For all but 3, 0 <sup>1733</sup> and 6 of these sources, our M2FS HiRes, M2FS MedRes 1734 and Hectochelle observations do not yield measurements 1735 that pass our quality-control criteria.

Finally, considering only those sources having at least 1736 one M2FS HiRes, M2FS MedRes or Hectochelle obser-1737 vation that passed our quality control filter, 292, 0 and 1738 <sup>1739</sup> 40, respectively, are listed in Gaia's dedicated RR Lyrae 1740 table. While we can obtain good fits to the spectra of RR Lyrae, our repeat measurements detect the in-1741 1742 trinsic line-of-sight velocity variability of these pulsat-1743 ing stars. For each of our sources that have multi-1744 ple spectroscopic measurements that pass our quality-1745 control filter, histograms in Figure 17 show distributions 1746 of the ratio of the weighted standard deviation (about <sup>1747</sup> the weighted mean) of the measured  $V_{\rm LOS}$ ,  $T_{\rm eff}$ ,  $\log g$ , <sup>1748</sup> [Fe/H] and [Mg/Fe] to the weighted mean error. This 1749 ratio is a measure of intrinsic variability of the source. 1750 Red (blue) histograms represent sources that are (are <sup>1751</sup> not) listed in Gaia's (DR3) RR Lyrae variability table <sup>1752</sup> (vari\_rrlyrae). The ratios for RRL stars generally track <sup>1753</sup> those of the non-RRLs for the atmospheric parameters <sup>1754</sup>  $T_{\rm eff}$ , log g, [Fe/H] and [Mg/Fe]. For  $V_{\rm LOS}$ , however (left-<sup>1755</sup> most panel of Figure 17), the RRLs exhibit dramatically <sup>1756</sup> larger scatter than the non-RRLs, directly reflecting the <sup>1757</sup> rates at which the pulsating stars expand and contract. <sup>1758</sup> Users who are interested in the observed stars as dynam-<sup>1759</sup> ical tracers will need to take into account this source of <sup>1760</sup> intrinsic velocity variability.

<sup>1762</sup> Of course, there are sources of intrinsic variability <sup>1763</sup> other than pulsation—e.g., binary star systems—for <sup>1764</sup> which we do not necessarily have a diagnostic classifi-<sup>1765</sup> cation *a priori*. For all stars having multiple indepen-<sup>1766</sup> dent measurements that pass our quality-control filter, <sup>1767</sup> we identify sources exhibiting potentially intrinsic vari-<sup>1768</sup> ability as those for which the ratio of weighted stan-<sup>1769</sup> dard deviation to weighted mean error exceeds a value <sup>1770</sup> of 3, regardless of whether the source is classified as <sup>1771</sup> RRL. In our data catalogs (Section 5), we set the flag <sup>1772</sup> 'X\_variable\_flag'=True for such cases, where X can be <sup>1773</sup> any of the observables 'vlos', 'teff', 'logg', 'feh', 'mgfe'.

## 5. M2FS+HECTOCHELLE DATASET

1774

We provide complete data catalogs for our M2FS 1775 1776 HiRes, M2FS MedRes and Hectochelle samples. The 1777 catalogs are stored as binary tables in standard '.fits' for-1778 mat, and are available electronically at both the Journal 1779 website and the Zenodo database (DOI: 10.5281/zen-Table 6 lists and briefly explains 1780 odo.7837922). 1781 each of the columns listed in these catalogs. Most 1782 users will need to be mindful of the 'obs' and/or 'good\_obs' columns, which indicate for a given star 1783 <sup>1784</sup> the chronologically-ordered observation number. A star 1785 having only one observation will have 'obs=1', but 1786 for stars observed multiple times, the first observa-1787 tion will have 'obs=1', the second will have 'obs=2', 1788 etc. The 'good\_obs' parameter works the same way, 1789 but counts only those observations that pass our crude 1790 quality-control filter (velocity error  $\sigma_{V_{\rm LOS}} \leq 5~{\rm km}$  $(1791 \text{ s}^{-1})$ ; all measurements for stars having zero 'good' <sup>1792</sup> measurements will have good\_obs=0. This informa-1793 tion can be used in tandem with the (inverse variance-1794 weighted) mean parameter estimates that are com-<sup>1795</sup> puted over all 'good' observations of a given star, and <sup>1796</sup> listed for each individual-epoch measurement ('good' 1797 or otherwise) of the star. So, for example, a user <sup>1798</sup> who wants only the mean parameter estimates for each 1799 star (as opposed to individual-epoch measurements) 1800 can select the mean values (e.g., vlos\_mean, teff\_mean, 1801 logg\_mean, feh\_mean, mgfe\_mean, with associated er-1802 rors vlos\_mean\_error, teff\_mean\_error, logg\_mean\_error, <sup>1803</sup> feh\_mean\_error, mgfe\_mean\_error) listed for only obser-1804 vations with good\_obs=1.



Figure 17: Distributions of the ratio of weighted standard deviation to weighted mean uncertainty of spectroscopicallymeasured parameters, for stars having multiple independent measurements passing our quality-control filter. Red (resp. blue) histograms correspond to sources that do (do not) appear in Gaia's (DR3) RR Lyrae catalog. The left-most panel demonstrates the intrinsic variability of  $V_{\text{LOS}}$  for RRL stars.

<sup>1805</sup> The Zenodo database (DOI: 10.5281/zenodo.7837922) <sup>1806</sup> also makes available all of the individual (extracted, 1D, <sup>1807</sup> wavelength-calibrated) spectra produced by our pro-<sup>1808</sup> cessing pipeline. The spectra are provided in multi-<sup>1809</sup> extension .fits files. A given file contains all (up to 128 <sup>1810</sup> for M2FS, up to 240 for Hectochelle) spectra obtained <sup>1811</sup> on a given data frame. In the .fits catalogs discussed
<sup>1812</sup> above, the 'fits\_filename' and 'fits\_index' columns spec<sup>1813</sup> ify the filename and array index where the processed
<sup>1814</sup> spectrum can be found. Along with the spectra, these
<sup>1815</sup> multi-extension fits files provide the central wavelength,
<sup>1816</sup> variance, best-fitting model, mean sky level, and (bad
<sup>1817</sup> pixel) mask status at each pixel.

Table 6. Columns in electronic data catalogs

| column name       | description                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| instrument        | Instrument used to acquire spectrum ('Hectochelle', 'M2FS_HiRes' or 'M2FS_MedRes')                                  |
| target_system     | Name of target system (name of dwarf galaxy, star cluster, etc.)                                                    |
| obs_id            | unique identifier for this observation (R.ADec_HJD)                                                                 |
| exptime           | exposure time (s)                                                                                                   |
| gaia_source_id    | source ID in Gaia (DR3) catalog, if available                                                                       |
| gaia_gmag         | Gaia (DR3) G magnitude, if available                                                                                |
| gaia_bpmag        | Gaia (DR3) BP magnitude, if available                                                                               |
| gaia_rpmag        | Gaia (DR3) RP magnitude, if available                                                                               |
| gaia_siggmag      | Gaia (DR3) error in gaia_gmag                                                                                       |
| gaia_sigbpmag     | Gaia (DR3) error in gaia_bpmag                                                                                      |
| gaia_sigrpmag     | Gaia (DR3) error in gaia_rpmag                                                                                      |
| gaia_gmag_dered   | Gaia (DR3) G magnitude, de-reddened                                                                                 |
| gaia_bpmag_dered  | Gaia (DR3) BP magnitude, de-reddened                                                                                |
| gaia_rpmag_dered  | Gaia (DR3) RP magnitude, de-reddened                                                                                |
| gaia_pmra         | Gaia (DR3) proper motion, right ascension component, if available (mas $yr^{-1}$ )                                  |
| gaia_pmdec        | Gaia (DR3) proper motion, declination component, if available (mas $yr^{-1}$ )                                      |
| gaia_sigpmra      | Gaia (DR3) error in gaia_pmra (mas $yr^{-1}$ )                                                                      |
| gaia_sigpmdec     | Gaia (DR3) error in gaia_pmdec (mas $yr^{-1}$ )                                                                     |
| gaia_parallax     | Gaia (DR3) parallax, if available (mas)                                                                             |
| gaia_sigparallax  | Gaia (DR3) error in gaia_parallax (mas)                                                                             |
| ra                | Right Ascension (J2000)                                                                                             |
| dec               | Declination (J2000)                                                                                                 |
| ra_dec_source     | source catalog from which ra_deg and dec_deg are adopted (Gaia DR3 if available)                                    |
| hjd               | Heliocentric Julian Date of spectroscopic observation (days)                                                        |
| sn_ratio          | median signal-to-noise ratio per pixel                                                                              |
| vlos_raw          | mean of posterior PDF for $V_{\rm LOS}$ (km s <sup>-1</sup> ; solar rest frame), without shift to APOGEE zero point |
| vlos_raw_error    | standard deviation of posterior PDF for $V_{\rm LOS}$ (km s <sup>-1</sup> ), as sampled by MultiNest                |
| vlos_raw_skew     | skewness of posterior PDF for $V_{\rm LOS}$ , as sampled by MultiNest                                               |
| vlos_raw_kurtosis | kurtosis of posterior PDF for $V_{\text{LOS}}$ , as sampled by MultiNest                                            |
| vlos              | vlos_raw, shifted to APOGEE zero point                                                                              |
| vlos_error        | error in vlos_raw and vlos (km s <sup><math>-1</math></sup> ), after applying adjustment in Section 4.2             |
| teff_raw          | mean of posterior PDF for $T_{\rm eff}$ (K), without shift to APOGEE zero point                                     |
| teff_raw_error    | standard deviation of posterior PDF for $T_{\rm eff}$ (K), as sampled by MultiNest                                  |

# M. G. Walker et al.

Table 6 (continued)

| column name                   | description                                                                                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------|
| teff_raw_skew                 | skewness of posterior PDF for $T_{\rm eff}$ , as sampled by MultiNest                                 |
| teff_raw_kurtosis             | kurtosis of posterior PDF for $T_{\rm eff}$ , as sampled by MultiNest                                 |
| teff                          | teff_raw, shifted to APOGEE zero point                                                                |
| teff_error                    | error in teff_raw and teff (K), after applying adjustment in Section 4.2                              |
| logg_raw                      | mean of posterior PDF for $\log g(\text{cgs units})$ , without shift to APOGEE zero point             |
| logg_raw_error                | standard deviation of posterior PDF for $\log g$ (cgs units), as sampled by MultiNest                 |
| logg_raw_skew                 | skewness of posterior PDF for $\log g$ , as sampled by MultiNest                                      |
| logg_raw_kurtosis             | kurtosis of posterior PDF for $\log g$ , as sampled by MultiNest                                      |
| logg                          | logg_raw, shifted to APOGEE zero point                                                                |
| logg_error                    | error in logg_raw and logg, after applying adjustment in Section 4.2 (cgs units)                      |
| feh_raw                       | mean of posterior PDF for [Fe/H] without shift to APOGEE zero point                                   |
| feh_raw_error                 | standard deviation of posterior PDF for [Fe/H], as sampled by MultiNest                               |
| feh_raw_skew                  | skewness of posterior PDF for [Fe/H], as sampled by MultiNest                                         |
| feh_raw_kurtosis              | kurtosis of posterior PDF for [Fe/H], as sampled by MultiNest                                         |
| feh                           | feh_raw, shifted to APOGEE zero point                                                                 |
| feh_error                     | error in feh_raw and feh, after applying adjustment in Section 4.2                                    |
| mgfe_raw                      | mean of posterior PDF for [Mg/Fe] without shift to APOGEE zero point                                  |
| mgfe_raw_error                | standard deviation of posterior PDF for [Mg/Fe], as sampled by MultiNest                              |
| mgfe_raw_skew                 | skewness of posterior PDF for [Mg/Fe], as sampled by MultiNest                                        |
| mgfe_raw_kurtosis             | kurtosis of posterior PDF for [Mg/Fe], as sampled by MultiNest                                        |
| mgfe                          | mgfe_raw, shifted to APOGEE zero point                                                                |
| mgfe_error                    | error in mgfe_raw and mgfe, after applying adjustment in Section 4.2                                  |
| smooth_raw                    | bandwidth $\sigma_{\text{LSF}}$ (Angstroms), of Gaussian smoothing kernel applied to template spectra |
| smooth_raw_error              | standard deviation of posterior PDF for $\sigma_{\text{LSF}}$ (Angstroms), as sampled by MultiNest    |
| smooth_raw_skew               | skewness of posterior PDF for $\sigma_{\text{LSF}}$ , as sampled by MultiNest                         |
| $smooth_raw_kurtosis$         | kurtosis of posterior PDF for $\sigma_{\text{LSF}}$ , as sampled by MultiNest                         |
| logs1_raw                     | base-10 logarithm of error re-scaling parameter $s_1$ (Equation 15)                                   |
| logs1_raw_error               | standard deviation of posterior PDF for $\log_{10} s_1$ , as sampled by MultiNest                     |
| logs1_raw_skew                | skewness of posterior PDF for $\log_{10} s_1$ , as sampled by MultiNest                               |
| logs1_raw_kurtosis            | kurtosis of posterior PDF for $\log_{10} s_1$ , as sampled by MultiNest                               |
| logs2_raw                     | base-10 logarithm of error floor parameter $s_2$ (Equation 15)                                        |
| logs2_raw_error               | standard deviation of posterior PDF for $\log_{10} s_2$ , as sampled by MultiNest                     |
| logs2_raw_skew                | skewness of posterior PDF for $\log_{10} s_2$ , as sampled by MultiNest                               |
| logs2_raw_kurtosis            | kurtosis of posterior PDF for $\log_{10} s_2$ , as sampled by MultiNest                               |
| median_sky                    | median count of sky spectrum that was subtracted                                                      |
| standard_deviation_median_sky | standard deviation of median_sky, over spectra acquired in same observation                           |
| filter_name                   | name of filter used for observation                                                                   |
| chi2                          | $\chi^2$ for best-fitting model spectrum, using original variance spectrum                            |
| chi2_rescaled                 | $\chi^2$ for best-fitting model spectrum, using re-scaled variance spectrum from Equation 15          |
| npix                          | number of (unmasked) pixels included in spectrum fit                                                  |
| w5163                         | median (sky-subtracted) counts over spectral range $5160 - 5167$ Å                                    |

 Table 6 continued

Table 6 (continued)

| column name        | description                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------|
| w5180              | median (sky-subtracted) counts over spectral range $5176 - 5183$ Å                                                   |
| vhelio_correction  | heliocentric correction that was applied (added) to $V_{\rm LOS}$ after spectrum model fitting (km s <sup>-1</sup> ) |
| fits_filename      | name of multi-extension fits file containing processed spectrum                                                      |
| fits_index         | index containing the spectrum of this source (in multi-extension fits frame)                                         |
| obs                | (chronological) observation number for this source                                                                   |
| n_obs              | total number of observations of this source                                                                          |
| good_obs           | (chronological) observation number for this source, after quality control filter                                     |
| good_n_obs         | total number of observations of this source, after quality control filter                                            |
| vlos_raw_mean      | (inverse-variance) weighted mean of vlos_raw (km $s^{-1}$ ; solar rest frame) over good_n_obs observations           |
| vlos_mean          | vlos_raw_mean, shifted to APOGEE zero point $(\text{km s}^{-1})$                                                     |
| vlos_mean_error    | error in vlos_raw_mean and vlos_mean $(\text{km s}^{-1})$                                                            |
| vlos_mean_scatter  | (inverse-variance) weighted standard deviation of $V_{\rm LOS}$ (km s <sup>-1</sup> ) over good_n_obs observations   |
| teff_raw_mean      | (inverse-variance) weighted mean of teff_raw (K) over good_n_obs observations                                        |
| teff_mean          | teff_raw_mean, shifted to APOGEE zero point (K)                                                                      |
| teff_mean_error    | error in teff_raw_mean and teff_mean (K)                                                                             |
| teff_mean_scatter  | (inverse-variance) weighted standard deviation of $T_{\rm eff}$ (K) over good_n_obs observations                     |
| logg_raw_mean      | (inverse-variance) weighted mean of logg_raw over good_n_obs observations                                            |
| logg_mean          | logg_raw_mean, shifted to APOGEE zero point                                                                          |
| logg_mean_error    | error in logg_raw_mean and logg_mean                                                                                 |
| logg_mean_scatter  | (inverse-variance) weighted standard deviation of $\log g$ over good_n_obs observations                              |
| feh_raw_mean       | (inverse-variance) weighted mean of feh_raw over good_n_obs observations                                             |
| feh_mean           | feh_raw_mean, shifted to APOGEE zero point                                                                           |
| feh_mean_error     | error in feh_raw_mean and feh_mean                                                                                   |
| feh_mean_scatter   | (inverse-variance) weighted standard deviation of [Fe/H] over good_n_obs observations                                |
| mgfe_raw_mean      | (inverse-variance) weighted mean of mgfe_raw over good_n_obs observations                                            |
| mgfe_mean          | mgfe_raw_mean, shifted to APOGEE zero point                                                                          |
| mgfe_mean_error    | error in mgfe_raw_mean and mgfe_mean                                                                                 |
| mgfe_mean_scatter  | (inverse-variance) weighted standard deviation of [Mg/Fe] over good_n_obs observations                               |
| n_wav_cal          | (M2FS only) number of ThArNe calibration frames used for wavelength calibration                                      |
| $temp\_min$        | (M2FS only) minimum temperature (°C) recorded at detector during science sub-exposures                               |
| temp_max           | (M2FS only) maximum temperature (°C) recorded at detector during science exposures                                   |
| wav_cal_flag       | (M2FS only) True if n_wav_cal=1 and temp_max_temp_min $\geq 1~^\circ\mathrm{C}$                                      |
| chi2_flag          | True if chi2 is above curve in top panels of Figure 15                                                               |
| carbon_flag        | True if flux ratio $W_{5163}/W_{5180}$ is below curve in bottom panels of Figure 15                                  |
| any_chi2_flag      | True if any observations contributing to mean have chi2_flag=True                                                    |
| any_carbon_flag    | True if any observations contributing to mean have carbon_flag=True                                                  |
| vlos_variable_flag | True if vlos_mean_scatter $\geq 3$ vlos_mean_error                                                                   |
| teff_variable_flag | True if teff_mean_scatter $\geq 3$ teff_mean_error                                                                   |
| logg_variable_flag | True if logg_mean_scatter $\geq 3$ logg_mean_error                                                                   |
| feh_variable_flag  | True if feh_mean_scatter $\geq 3$ feh_mean_error                                                                     |
| mgfe_variable_flag | True if mgfe_mean_scatter $\geq 3$ mgfe_mean_error                                                                   |

 Table 6 continued

M. G. Walker et al.

Table 6 (continued)

| column name             | description                                                                    |
|-------------------------|--------------------------------------------------------------------------------|
| gaia_phot_variable_flag | Gaia (DR3) phot_variable_flag                                                  |
| gaia_rrl                | True if source is listed in Gaia DR3 variability RR Lyrae table (vari_rrlyrae) |
| gaia_agn                | True if source is listed in Gaia DR3 variability AGN catalog (vari_agn)        |

We now present some of the macroscopic properties 1818 <sup>1819</sup> of the M2FS+Hectochelle dataset. Figure 18 provides 1820 a comprehensive view of chemo-dynamical structure within the Galactic Halo, plotting metallicity against 1821 line-of-sight velocity for the entire sample (using inverse-1822 variance-weighted mean values for stars with multiple 1823 good measurements), with marker color coded accord-1824 ing to surface gravity. Red giants within dwarf galaxies 1825 are conspicuous as bluer (log  $g \leq 3$ ) points that tend to 1826 <sub>1827</sub> have lower mean metallicity ([Fe/H]  $\leq -1.5$ ) and cluster into narrower velocity distributions (velocity disper-1828  $1829 \text{ sion} \leq 10 \text{ km s}^{-1}$  than do foreground stars, which tend 1830 to be late-type dwarfs (log  $g \gtrsim 4$ ) contributed by the Galactic disk. Visually dominating population of sub-1831 structures traced by red giants are the classical dwarf 1832 spheroidals Ursa Minor ( $V_{\rm LOS} \sim -250 \text{ km s}^{-1}$ ), Draco 1833  $(V_{\rm LOS} \sim -290 \text{ km s}^{-1})$ , Fornax  $(V_{\rm LOS} \sim +55 \text{ km s}^{-1})$ , 1834  $_{\rm 1835}$  Leo II ( $V_{\rm LOS}$   $\sim$  +80 km s^{-1}), Sculptor ( $V_{\rm LOS}$   $\sim$  +110 1836 km s<sup>-1</sup>), Carina/Sextans (both at  $V_{\rm LOS} \sim 220$  km s<sup>-1</sup>)  $_{1837}$  and Leo I ( $V_{\rm LOS} \sim +280 {\rm ~km~s^{-1}}).$  Many less luminous 1838 Halo substructures are present in our sample, but are 1839 less obvious against the foreground populations. Fig- $_{1840}$  ures 22 and 23 display the [Fe/H] vs  $V_{\rm LOS}$  scatterplots 1842 for individual systems.

Figure 19 plots [Mg/Fe] against [Fe/H] for our 1843 <sup>1844</sup> M2FS+Hectochelle sample. For clarity, we display only the 8189 stars for which observational errors in  $\log q$ , 1845 [Fe/H] and [Mg/Fe] are all  $\leq 0.5$  dex. The red giant 1846 1847 sample (bluer points), dominated by Halo substructures, is clearly offset toward lower metallicity than the fore-1848 ground Galactic stellar populations. Also apparent, al-1849 though blurred somewhat by the inclusion of all targeted 1850 systems simultaneously, is the characteristic 'knee' (near 1851 [Fe/H]  $\sim -2$ ), where [Mg/Fe] declines toward higher 1852 metallicities because stars have formed from gas pre-1853 enriched by Type-Ia supernovae. 1855

Figure 20 plots surface gravity against effective tem-<sup>1857</sup> perature, with marker color indicating [Fe/H]. Again, <sup>1858</sup> for clarity, we display only stars for which errors in  $\log g$ , <sup>1859</sup> [Fe/H] and [Mg/Fe] are all  $\leq 0.5$  dex. Overplotted are <sup>1860</sup> MESA isochrones (Morton 2015; Dotter 2016), calcu-<sup>1861</sup> lated for age = 10 Gyr and a range of stellar metallic<sup>1862</sup> ity. Reassuringly, low-gravity stars within our sample <sup>1863</sup> clearly populate the red giant branch expected for low-<sup>1864</sup> metallicity stars ( $-3 \leq [Fe/H] \leq -1$ ). Higher-gravity <sup>1865</sup> stars populate regions near the main sequence expected <sup>1866</sup> for the higher-metallicity stars contributed by the Galac-<sup>1868</sup> tic foreground.

We note the presence in Figures 18 and 19 of ~ 10 <sup>1870</sup> sources that are measured to have extremely low metal-<sup>1871</sup> licity ([Fe/H] $\leq -3.6$ ), high surface gravity (log  $g \gtrsim 4.5$ ) <sup>1872</sup> and approximately solar [Mg/Fe]. Figure 21 of the Ap-<sup>1873</sup> pendix displays spectra from each of these sources, with <sup>1874</sup> best-fitting models overplotted. We find that most of <sup>1875</sup> these spectra exhibit the broad absorption features char-<sup>1876</sup> acteristic of AGN, suggesting that our measurements for <sup>1877</sup> these sources are spurious. However, none of the sources <sup>1878</sup> are listed in Gaia's AGN variability table.

We do not attempt here to evaluate the population (e.g., dwarf galaxy vs Galactic foreground) membership teal status of individual stars within our sample. The reastatus of individual stars within our sample. The reaconstruction of the star's observed properties, deteal pends fundamentally on the model invoked to describe the ensemble of populations. We hope and anticipate that our dataset will be used to evaluate a large variety of models. Therefore we leave to the user any evaluation the of membership status for individual stars.

Instead we use our spectroscopic measurements to give rough indications of the mixtures of stellar populations that are present within our samples. As is evident in Figure 20, our measurements of surface gravity can effectively distinguish red giants from dwarf stars. While red most of the dwarf galaxies and Halo substructures targeted by our program, systems at distances  $\leq 50$  kpc ran have observed targets on the sub-giant branch at log  $g \gtrsim 3$ . Moreover, we expect red giant samples to most of the Galactic halo. Thus the number of observed red ginum the Galactic halo. Thus the number of observed red ginum to the galaxies within the targeted systems.

<sup>1903</sup> Therefore, in order to summarize the contents of our <sup>1904</sup> spectroscopic samples, we count not just the number of <sup>1905</sup> red giant sources, but also the number of sources that <sup>1906</sup> have both  $V_{\rm LOS}$  and proper motion consistent with mem-



Figure 18: Chemo-dynamic substructure within the Milky Way Halo: Metallicity vs. line-of-sight velocity, from Magellan/M2FS and MMT/Hectochelle spectra acquired for 16369 stars observed toward 38 Galactic Halo objects. Marker color indicates spectroscopically-estimated surface gravity. Given our color/magnitude criteria for spectroscopic target selection, redder marker colors tend to identify dwarf stars in the Galactic disk, while bluer marker colors indicate giant stars in the Galactic halo and its substructures. The halo objects that are most obvious here are the 'classical' dwarf spheroidal galaxies Draco ( $V_{\rm LOS} \sim -290 \text{ km s}^{-1}$ ), Ursa Minor ( $-250 \text{ km s}^{-1}$ ), Fornax ( $+55 \text{ km s}^{-1}$ ), Leo II ( $+80 \text{ km s}^{-1}$ ), Sculptor ( $+110 \text{ km s}^{-1}$ ), Carina/Sextans (both at  $+220 \text{ km s}^{-1}$ ) and Leo I ( $+280 \text{ km s}^{-1}$ ).

<sup>1907</sup> bership (regardless of  $\log q$ ). Text in Figures 22 and 23 <sup>1908</sup> lists numbers of individual sources observed (denoted  $N_{\rm obs}$  with at least one 'good' measurement that passes <sup>1910</sup> our crude quality-control filter, the number of likely giant stars (denoted  $N_{\text{giant}}$ ), identified as sources mea-1911 <sup>1912</sup> sured to have  $\log g \lesssim 3$ , and the number of sources that <sup>1913</sup> have  $V_{\text{LOS}}$  and Gaia=measured (DR3) proper motion to <sup>1914</sup> be within  $3\sigma$  of the previously-measured systemic mean <sup>1915</sup> values (denoted  $N_{\rm mem}$ ). For the  $V_{\rm LOS}$  criterion, we de-<sup>1916</sup> fine  $\sigma$  to be quadrature sum of formal uncertainties in <sup>1917</sup> our measurement of  $V_{\rm LOS}$  for the source, the measure-<sup>1918</sup> ment of the systemic mean velocity, and the (previously-<sup>1919</sup> measured) systemic velocity dispersion. We take the <sup>1920</sup> previously-published mean values from the compilation <sup>1921</sup> by Pace et al. (2022). For the proper motion crite<sup>1922</sup> rion, we take  $\sigma$  to be the propagated uncertainty in the <sup>1923</sup> separation (in 2D proper motion space, neglecting co-<sup>1924</sup> variance between the components) between the source <sup>1925</sup> and previously-measured systemic mean proper motions <sup>1926</sup> (Pace et al. 2022).

<sup>1927</sup> Our samples contain several hundred members in each <sup>1928</sup> of the Milky Way's eight 'classical' dSph satellites, rang-<sup>1929</sup> ing from  $\sim 200$  in Leo II to  $\sim 850$  in Carina and Sculp-<sup>1930</sup> tor. In the less luminous satellites and star clusters, <sup>1931</sup> likely member samples range from zero to a few tens. <sup>1932</sup> These samples extend to larger galactocentric radii than <sup>1933</sup> most previously-published counterparts. We count 823 <sup>1934</sup> (124, 64, 42) likely members projected farther than 2 <sup>1935</sup> (3, 4, 5) projected halflight radii from the center of their <sup>1936</sup> host galaxy, providing information about the stellar pop1939

1956



Figure 19: Magnesium abudance vs. metallicity, for the 8189 stars in our M2FS+Hectochelle dataset that have observational errors  $\leq 0.5$  in each of log g, [Fe/H] and [Mg/Fe]. Marker color indicates spectroscopicallyestimated surface gravity.



Figure 20: Surface gravity vs. effective temperature (both estimated spectroscopically), for the 8189 stars in our M2FS+Hectochelle dataset that have observational errors  $\leq 0.5$  in each of log g, [Fe/H] and [Mg/Fe]. Marker color indicates spectroscopically-estimated metallicity. Overplotted, for comparison, are theoretical isochrones (Morton 2015; Dotter 2016) calculated for age = 10 Gyr and a range of [Fe/H].

<sup>1937</sup> ulations and dynamical state in the outer parts of these <sup>1938</sup> systems.

## 6. SUMMARY

We have presented new spectroscopic data and cata-1940 <sup>1941</sup> logs of new measurements of spectroscopic parameters <sup>1942</sup> for 16369 unique sources toward 38 target systems. The <sup>1943</sup> sample includes repeat (multi-epoch) measurements for <sup>1944</sup> 3720 sources, with as many as 15 epochs per source. We 1945 have calibrated internal errors and used external data <sup>1946</sup> sets to calibrate zero points for each physical parame-<sup>1947</sup> ter. We have defined criteria for identifying anomalous <sup>1948</sup> sources that should be handled carefully in subsequent <sup>1949</sup> analysis. Using simple but crude diagnostic criteria, we 1950 estimate that the sample includes  $\sim 6078$  red giant stars  $_{1951}$  and  $\sim 4494$  members of the target systems, in some <sup>1952</sup> many cases pushing the available samples beyond sev-<sup>1953</sup> eral halflight radii. Data products include catalogs of <sup>1954</sup> measured stellar parameters and all processed and cali-1955 brated spectra.

## ACKNOWLEDGEMENTS

<sup>1957</sup> We thank the anonymous referee, whose feed-<sup>1958</sup> back and suggestions improved the manuscript. <sup>1959</sup> We thank David Nidever and Paul Cristofari for provid-<sup>1960</sup> ing helpful tests and feedback about the M2FS process-<sup>1961</sup> ing pipeline. We thank Charlie Conroy, Phill Cargile <sup>1962</sup> and the H3 team for providing comparison measure-<sup>1963</sup> ments using methodology from the H3 survey, and for <sup>1964</sup> providing spectra from H3's observations of globular <sup>1965</sup> clusters.

1966 E.O. wants to remember Jill Bechtold here.

M.G.W. acknowledges support from National Science
Foundation (NSF) grants AST-1813881, AST-1909584
and AST-2206046. M.M. acknowledges support from
NSF grants AST-0923160, AST-1312997, AST-1815403
and AST-2205847. E.O. acknowledges support from
NSF grants AST-1815767, AST-1313006, AST-0807498.
Nelson Caldwell acknowledges support from NSF grant
AST-1812461. I.U.R. acknowledges support from NSF
grants AST-1815403, AST-2205847, and PHYS-1430152
(Physics Frontier Center/JINA-CEE). A.B.P. acknowldeges support from NSF grant AST-1813881.

This work has made use of NASA's Astrophysics Data System Bibliographic Services. This paper made use of the Whole Sky Database (WSDB), created by Sergey Koposov and maintained at the Institute of Astronomy Sergey Koposov, Vasily Belokurov and Wyn Evans with financial support from the Science & Technology Facilities Council (STFC) and the European Research Council (ERC). This work made use of As-

39

<sup>1986</sup> tropy:<sup>9</sup> a community-developed core Python package <sup>1987</sup> and an ecosystem of tools and resources for astronomy.

<sup>1988</sup> For the purpose of open access, the author has applied <sup>1989</sup> a Creative Commons Attribution (CC BY) licence to <sup>1990</sup> any Author Accepted Manuscript version arising from <sup>1991</sup> this submission.

<sup>1992</sup> This work has made use of data from the European <sup>1993</sup> Space Agency (ESA) mission Gaia (https://www. cos-<sup>1994</sup> mos.esa.int/gaia), processed by the Gaia Data Process-<sup>1995</sup> ing and Analysis Consortium (DPAC, https://www. <sup>1996</sup> cosmos.esa.int/web/gaia/dpac/consortium). Funding <sup>1997</sup> for the DPAC has been provided by national institu-<sup>1998</sup> tions, in particular the institutions participating in the <sup>1999</sup> Gaia Multilateral Agreement.

Figures 5-7 use atomic line identifications from the Virtual Atomic and Molecular Data Centre (VAMDC) Consortium (Dubernet et al. 2016), provided by the BASS2000 website.

This work has made use of data from the Sloan Digital
Sky Survey IV. Funding for the Sloan Digital Sky Survey
IV has been provided by the Alfred P. Sloan Foundation,
the U.S. Department of Energy Office of Science, and the
Participating Institutions.

2009 SDSS-IV acknowledges support and resources from 2010 the Center for High Performance Computing at the Uni-2011 versity of Utah. The SDSS website is www.sdss4.org.

SDSS-IV is managed by the Astrophysical Research 2012 Consortium for the Participating Institutions of the 2013 SDSS Collaboration including the Brazilian Partici-2014 pation Group, the Carnegie Institution for Science, 2015 Carnegie Mellon University, Center for Astrophysics 2016 Harvard & Smithsonian, the Chilean Participation 2017 Group, the French Participation Group, Instituto de 2018 2019 Astrofísica de Canarias, The Johns Hopkins Univer-2020 sity, Kavli Institute for the Physics and Mathematics of the Universe (IPMU) / University of Tokyo, the Ko-2021 rean Participation Group, Lawrence Berkeley National 2022 2023 Laboratory, Leibniz Institut für Astrophysik Potsdam 2024 (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA 2025 Garching), Max-Planck-Institut für Extraterrestrische 2026 2027 Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York Uni-2028 versity, University of Notre Dame, Observatário Na-2029 cional / MCTI, The Ohio State University, Pennsylva-2030 nia State University, Shanghai Astronomical Observa-2031 tory, United Kingdom Participation Group, Universidad 2032 2033 Nacional Autónoma de México, University of Arizona, 2034 University of Colorado Boulder, University of Oxford,

<sup>2035</sup> University of Portsmouth, University of Utah, Univer<sup>2036</sup> sity of Virginia, University of Washington, University of
<sup>2037</sup> Wisconsin, Vanderbilt University, and Yale University.

This project used public archival data from the Dark 2038 Energy Survey (DES). Funding for the DES Projects 2039 <sup>2040</sup> has been provided by the U.S. Department of Energy, 2041 the U.S. National Science Foundation, the Ministry of 2042 Science and Education of Spain, the Science and Tech-2043 nology FacilitiesCouncil of the United Kingdom, the <sup>2044</sup> Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli 2046 Institute of Cosmological Physics at the University of 2047 Chicago, the Center for Cosmology and Astro-Particle <sup>2049</sup> Physics at the Ohio State University, the Mitchell Insti-<sup>2050</sup> tute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, 2051 Fundação Carlos Chagas Filho de Amparo à Pesquisa 2053 do Estado do Rio de Janeiro, Conselho Nacional de 2054 Desenvolvimento Científico e Tecnológico and the Min-2055 istério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Insti-2056 <sup>2057</sup> tutions in the Dark Energy Survey. The Collaborat-<sup>2058</sup> ing Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University 2060 of Cambridge, Centro de Investigaciones Energéticas, 2061 Medioambientales y Tecnológicas-Madrid, the Univer-2062 sity of Chicago, University College London, the DES-2063 Brazil Consortium, the University of Edinburgh, the <sup>2064</sup> Eidgenössische Technische Hochschule (ETH) Zürich, 2065 Fermi National Accelerator Laboratory, the Univer-2066 sity of Illinois at Urbana-Champaign, the Institut de 2067 Ciències de l'Espai (IEEC/CSIC), the Institut de Física 2068 d'Altes Energies, Lawrence Berkeley National Labo-<sup>2069</sup> ratory, the Ludwig-Maximilians Universität München 2070 and the associated Excellence Cluster Universe, the 2071 University of Michigan, the National Optical Astron-2072 omy Observatory, the University of Nottingham, The Ohio State University, the OzDES Membership Con-2073 2074 sortium, the University of Pennsylvania, the Univer-2075 sity of Portsmouth, SLAC National Accelerator Labora-2076 tory, Stanford University, the University of Sussex, and 2077 Texas A&M University. Based in part on observations 2078 at Cerro Tololo Inter-American Observatory, National 2079 Optical Astronomy Observatory, which is operated by <sup>2080</sup> the Association of Universities for Research in Astron-2081 omy (AURA) under a cooperative agreement with the 2082 National Science Foundation.

This project has made use of public data from the Pan-STARRS1 survey. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astron-

<sup>&</sup>lt;sup>9</sup> http://www.astropy.org

<sup>2087</sup> omy, the University of Hawaii, the Pan-STARRS Project
<sup>2088</sup> Office, the Max-Planck Society and its participating in<sup>2099</sup> stitutes, the Max Planck Institute for Astronomy, Hei<sup>2090</sup> delberg and the Max Planck Institute for Extraterres<sup>2091</sup> trial Physics, Garching, The Johns Hopkins University,
<sup>2092</sup> Durham University, the University of Edinburgh, the
<sup>2093</sup> Queen's University Belfast, the Harvard-Smithsonian
<sup>2094</sup> Center for Astrophysics, the Las Cumbres Observatory
<sup>2095</sup> Global Telescope Network Incorporated, the National

2105

<sup>2096</sup> Central University of Taiwan, the Space Telescope Sci-<sup>2097</sup> ence Institute, the National Aeronautics and Space Ad-<sup>2098</sup> ministration under Grant No. NNX08AR22G issued <sup>2099</sup> through the Planetary Science Division of the NASA <sup>2100</sup> Science Mission Directorate, the National Science Foun-<sup>2101</sup> dation Grant No. AST-1238877, the University of Mary-<sup>2102</sup> land, Eotvos Lorand University (ELTE), the Los Alamos <sup>2103</sup> National Laboratory, and the Gordon and Betty Moore <sup>2104</sup> Foundation.

## APPENDIX



Figure 21: Examples of M2FS (top left) and Hectochelle (all other panels) spectra corresponding to spurious measurements of extremely low metallicity ([Fe/H]  $\leq -3.6$ ), high surface gravity (log  $g \geq 4.5$ ) and alpha-enhanced [Mg/Fe]. Over-plotted in red are best-fitting models, which tend to find absorption features but fail to reproduce their broadness. Text indicates target coordinates, Gaia G-band magnitude, and values of spectroscopically-inferred parameters.

## REFERENCES

2106 Aaronson, M. 1983, ApJL, 266, L11

<sup>2107</sup> Abbott, T. M. C., Adamów, M., Aguena, M., et al. 2021,
 <sup>2108</sup> ApJS, 255, 20



Figure 22: Sky maps, color-magnitude diagrams (CMDs; middle), proper motion coordinates and spectroscopic [Fe/H] vs  $V_{\text{LOS}}$ , from *Gaia* photometry/astrometry and Magellan/M2FS spectroscopy of point sources toward Galactic satellites. Colored points indicate sources for which we report spectroscopic measurements, with bluer colors identifying likely red giant stars belonging to the satellites. In sky maps, dashed ellipses have semi-major axis  $a = 2R_{\text{half}}/\sqrt{1-\epsilon}$ , where  $R_{\text{half}}$  is the projected halflight radius and  $\epsilon \equiv 1 - b/a$  is the measured ellipticity, both adopted from the compilation by Pace et al. (2022). In CMDs, gray points indicate unobserved point sources within 1° of the satellite center; in sky maps, gray points indicate unobserved sources within  $\delta = \max(0.15, \sqrt{\sigma_{\rm G}^2 + \sigma_{\rm BP}^2 + \sigma_{\rm RP}^2})$  magnitudes of the theoretical isochrone (Morton 2015; Dotter 2016) overplotted in the corresponding CMD (chosen for typical age =10 Gyr and according to previously published mean metallicity). Dashed lines indicate previously measured mean systemic proper motions and line-of-sight velocities.



Figure 22 (Continued) :



Figure 22 (Continued) :



Figure 22 (Continued) :



Figure 23: Same as Figure 22, but for Galactic satellites observed with MMT/Hectochelle.



Figure 23 (Continued) :



Figure 23 (Continued) :



Figure 23 (Continued) :



- Figure 23 (Continued) :
- <sup>2109</sup> Abdurro'uf, Accetta, K., Aerts, C., et al. 2022, ApJS, 259,
   <sup>2110</sup> 35

Ursa Major II

- <sup>2111</sup> Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012,
  <sup>2112</sup> ApJS, 203, 21
- <sup>2113</sup> Aoki, W., Arimoto, N., Sadakane, K., et al. 2009, A&A,
  <sup>2114</sup> 502, 569
- Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
  et al. 2013, A&A, 558, A33
- <sup>2117</sup> Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,
  <sup>2118</sup> et al. 2018, AJ, 156, 123
- Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
   et al. 2022, ApJ, 935, 167
- <sup>2121</sup> Battaglia, G., & Nipoti, C. 2022, Nature Astronomy, 6, 659
  <sup>2122</sup> Battaglia et al. 2006, A&A, 459, 423
- <sup>2123</sup> Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., &
  <sup>2124</sup> Deason, A. J. 2018, MNRAS, 478, 611
- 2125 Belokurov, V., & Evans, N. W. 2022, Nature Astronomy, 6,
   2126 911
- <sup>2127</sup> Boutsia, K., Grazian, A., Fontanot, F., et al. 2021, ApJ,
  <sup>2128</sup> 912, 111
- <sup>2129</sup> Buttry, R., Pace, A. B., Koposov, S. E., et al. 2022,
- <sup>2130</sup> MNRAS, 514, 1706
- <sup>2131</sup> Caldwell, N., Walker, M. G., Mateo, M., et al. 2017, ApJ,
  <sup>2132</sup> 839, 20
- <sup>2133</sup> Cargile, P. A., Conroy, C., Johnson, B. D., et al. 2020, ApJ,
  <sup>2134</sup> 900, 28
- 2135 Castelli, F., & Kurucz, R. L. 2004, ArXiv e-prints,
- 2136 arXiv:astro-ph/0405087
- <sup>2137</sup> Cohen, J. G., & Huang, W. 2009, ApJ, 701, 1053
- <sup>2138</sup> —. 2010, ApJ, 719, 931
- <sup>2139</sup> Conroy, C., Bonaca, A., Cargile, P., et al. 2019, ApJ, 883,
  <sup>2140</sup> 107
- 2141 Craig, M., Crawford, S., Seifert, M., et al. 2017,
- 2142 astropy/ccdproc: v1.3.0.post1,
- 2143 doi:10.5281/zenodo.1069648
- 2144 Dotter, A. 2016, ApJS, 222, 8

2145 Dubernet, M. L., Antony, B. K., Ba, Y. A., et al. 2016,

log g

5

3

2

1

٥

- Journal of Physics B: Atomic, Molecular and OpticalPhysics, 49, 074003
- <sup>2148</sup> Feroz, F., & Hobson, M. P. 2008, MNRAS, 384, 449
- <sup>2149</sup> Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS,
  <sup>2150</sup> 398, 1601
- <sup>2151</sup> Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al.
  <sup>2152</sup> 2020, ApJS, 251, 7
- <sup>2153</sup> Frebel, A., Simon, J. D., Geha, M., & Willman, B. 2010,
  <sup>2154</sup> ApJ, 708, 560
- <sup>2155</sup> Fulbright, J. P., Rich, R. M., & Castro, S. 2004, ApJ, 612,
  <sup>2156</sup> 447
- <sup>2157</sup> Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al.
  <sup>2158</sup> 2016, A&A, 595, A1
- <sup>2159</sup> Gaia Collaboration, Helmi, A., van Leeuwen, F., et al.
  <sup>2160</sup> 2018a, A&A, 616, A12
- <sup>2161</sup> Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al.
  <sup>2162</sup> 2018b, A&A, 616, A10
- <sup>2163</sup> Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.
   <sup>2164</sup> 2018c, A&A, 616, A1
- <sup>2165</sup> Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al.
  <sup>2166</sup> 2022, arXiv e-prints, arXiv:2208.00211
- <sup>2167</sup> Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., et al. 2007,
   <sup>2168</sup> ApJ, 663, 948
- <sup>2169</sup> Guy, J., Bailey, S., Kremin, A., et al. 2022, arXiv e-prints,
   <sup>2170</sup> arXiv:2209.14482
- <sup>2171</sup> Hargreaves, J. C., Gilmore, G., Irwin, M. J., & Carter, D.<sup>2172</sup> 1994a, MNRAS, 269, 957
- 2173 —. 1994b, MNRAS, 271, 693
- <sup>2174</sup> —. 1996, MNRAS, 282, 305
- 2175 Harris, W. E. 1996, AJ, 112, 1487
- 2176 Helmi, A. 2020, ARA&A, 58, 205
- <sup>2177</sup> Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018,<sup>2178</sup> Nature, 563, 85
- 2179 Hinkle, K., Wallace, L., Valenti, J., & Harmer, D. 2000,
- 2180 Visible and Near Infrared Atlas of the Arcturus
- <sup>2181</sup> Spectrum 3727-9300 A



- <sup>2182</sup> Hinkle, K. H., Wallace, L., Ram, R. S., et al. 2013, ApJS,
  <sup>2183</sup> 207, 26
- <sup>2184</sup> Holweger, H., & Müller, E. A. 1974, SoPh, 39, 19
- <sup>2185</sup> Horne, K. 1986, PASP, 98, 609
- <sup>2186</sup> Kirby, E. N., Guhathakurta, P., Simon, J. D., et al. 2010,
   <sup>2187</sup> ApJS, 191, 352
- <sup>2188</sup> Kleyna, J., Wilkinson, M. I., Evans, N. W., Gilmore, G., &
  <sup>2189</sup> Frayn, C. 2002, MNRAS, 330, 792
- <sup>2190</sup> Kleyna, J. T., Wilkinson, M. I., Evans, N. W., & Gilmore,
   <sup>2191</sup> G. 2005, ApJL, 630, L141
- <sup>2192</sup> Koch, A., Grebel, E. K., Wyse, R. F. G., et al. 2006, AJ,
  <sup>2193</sup> 131, 895
- <sup>2194</sup> Koch, A., Kleyna, J. T., Wilkinson, M. I., et al. 2007a, AJ,
  <sup>2195</sup> 134, 566
- <sup>2196</sup> Koch, A., Wilkinson, M. I., Kleyna, J. T., et al. 2007b,
  <sup>2197</sup> ApJ, 657, 241
- <sup>2198</sup> Koleva, M., Prugniel, P., Bouchard, A., & Wu, Y. 2009,
  <sup>2199</sup> A&A, 501, 1269
- <sup>2200</sup> Koposov, S. E., Gilmore, G., Walker, M. G., et al. 2011,
  <sup>2201</sup> ApJ, 736, 146
- <sup>2202</sup> Koposov, S. E., Walker, M. G., Belokurov, V., et al. 2018,
   <sup>2203</sup> MNRAS, 479, 5343
- $_{\rm 2204}$  Kurucz, R. L. 2011, Canadian Journal of Physics, 89, 417
- 2205 Kurucz, R. L., Furenlid, I., Brault, J., & Testerman, L.
- $_{\rm 2206}$   $\,$  1984, Solar flux atlas from 296 to 1300 nm
- 2207 Lawler, J. E., Sneden, C., Cowan, J. J., Den Hartog, E. A.,
- & Wood, M. P. 2017, Canadian Journal of Physics, 95,
   783
- Lawler, J. E., Sneden, C., Cowan, J. J., Ivans, I. I., & Den
  Hartog, E. A. 2009, ApJS, 182, 51
- $_{\rm 2212}$  Lee et al. 2008, AJ, 136, 2050
- <sup>2213</sup> Letarte, B., Chapman, S. C., Collins, M., et al. 2009, ArXiv<sup>2214</sup> e-prints, arXiv:0901.0820
- $_{\rm 2215}$  Li, T. S., Koposov, S. E., Zucker, D. B., et al. 2019,
- <sup>2216</sup> MNRAS, 490, 3508
- <sup>2217</sup> Lucchesi, R., Lardo, C., Primas, F., et al. 2020, A&A, 644,
  <sup>2218</sup> A75
- <sup>2219</sup> Martin, N. F., de Jong, J. T. A., & Rix, H.-W. 2008, ApJ,
  <sup>2220</sup> 684, 1075
- Martin, N. F., Ibata, R. A., Chapman, S. C., Irwin, M., &
  Lewis, G. F. 2007, MNRAS, 380, 281
- Masseron, T., Plez, B., Van Eck, S., et al. 2014, A&A, 571,
   A47
- 2225 Mateo, M., Bailey, J. I., Crane, J., et al. 2012, in Society of
- 2226 Photo-Optical Instrumentation Engineers (SPIE)
- $_{\tt 2227}$   $\,$  Conference Series, Vol. 8446, Ground-based and Airborne
- <sup>2228</sup> Instrumentation for Astronomy IV, ed. I. S. McLean,
- 2229 S. K. Ramsay, & H. Takami, 84464Y
- 2230 Mateo, M., Olszewski, E., Welch, D. L., Fischer, P., &
- <sup>2231</sup> Kunkel, W. 1991, AJ, 102, 914

- <sup>2232</sup> Mateo, M., Olszewski, E. W., Pryor, C., Welch, D. L., &
- <sup>2233</sup> Fischer, P. 1993, AJ, 105, 510
- Mateo, M., Olszewski, E. W., & Walker, M. G. 2008, ApJ,
  675, 201
- <sup>2236</sup> Mateo, M. L. 1998, ARA&A, 36, 435
- <sup>2237</sup> McConnachie, A. W. 2012, AJ, 144, 4
- McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009,
  Nature, 461, 66
- Morton, T. D. 2015, isochrones: Stellar model grid package,
  Astrophysics Source Code Library, record ascl:1503.010,
- ascl:1503.010
- 2243 Muñoz, R. R., Carlin, J. L., Frinchaboy, P. M., et al. 2006,
  2244 ApJL, 650, L51
- 2245 Naidu, R. P., Conroy, C., Bonaca, A., et al. 2020, ApJ, 901,
  2246 48
- 2247 Norris, J. E., Yong, D., Gilmore, G., & Wyse, R. F. G.
  2248 2010, ApJ, 711, 350
- <sup>2249</sup> Olszewski, E. W., & Aaronson, M. 1985, AJ, 90, 2221
- <sup>2250</sup> Olszewski, E. W., Aaronson, M., & Hill, J. M. 1995, AJ,
  <sup>2251</sup> 110, 2120
- <sup>2252</sup> Pace, A. B., Erkal, D., & Li, T. S. 2022, ApJ, 940, 136
- <sup>2253</sup> Pace, A. B., & Li, T. S. 2019, ApJ, 875, 77
- <sup>2254</sup> Pace, A. B., Walker, M. G., Koposov, S. E., et al. 2021,
  <sup>2255</sup> ApJ, 923, 77
- <sup>2256</sup> Pace, A. B., Koposov, S. E., Walker, M. G., et al. 2023,
  <sup>2257</sup> arXiv e-prints, arXiv:2304.06904
- 2258 Pace, G., Pasquini, L., & François, P. 2008, A&A, 489, 403
- Palmer, B. A., & Engleman, R. 1983, Atlas of the Thoriumspectrum
- Pâris, I., Petitjean, P., Aubourg, É., et al. 2014, A&A, 563,
   A54
- 2263 Placco, V. M., Sneden, C., Roederer, I. U., et al. 2021,
- Research Notes of the American Astronomical Society, 5,92
- Ram, R. S., Brooke, J. S. A., Bernath, P. F., Sneden, C., &
  Lucatello, S. 2014, ApJS, 211, 5
- 2268 Ramírez, I., & Allende Prieto, C. 2011, ApJ, 743, 135
- 2269 Sadakane, K., Arimoto, N., Ikuta, C., et al. 2004, PASJ, 56, 2270 1041
- 2271 Sestito, F., Roediger, J., Navarro, J. F., et al. 2023,
- <sup>2272</sup> MNRAS, 523, 123
- 2273 Shetrone, M., Venn, K. A., Tolstoy, E., et al. 2003, AJ, 125,
  2274 684
- 2275 Shetrone, M. D., Côté, P., & Sargent, W. L. W. 2001, ApJ,
  2276 548, 592
- 2277 Simon, J. D. 2019, ARA&A, 57, 375
- <sup>2278</sup> Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
- 2279 Simon, J. D., Jacobson, H. R., Frebel, A., et al. 2015, ApJ,
  2280 802, 93

- 2281 Skilling, J. 2004, in American Institute of Physics
- 2282 Conference Series, Vol. 735, Bayesian Inference and
- 2283 Maximum Entropy Methods in Science and Engineering:
- 2284 24th International Workshop on Bayesian Inference and
- 2285 Maximum Entropy Methods in Science and Engineering,
- 2286 ed. R. Fischer, R. Preuss, & U. V. Toussaint, 395–405
- 2287 Sneden, C., Lucatello, S., Ram, R. S., Brooke, J. S. A., &
- 2288 Bernath, P. 2014, ApJS, 214, 26
- 2289 Sneden, C. A. 1973, PhD thesis, The University of Texas at2290 Austin.
- <sup>2291</sup> Sobeck, J. S., Kraft, R. P., Sneden, C., et al. 2011, AJ, 141, <sup>2292</sup> 175
- <sup>2293</sup> Song, Y.-Y., Mateo, M., Bailey, J. I., et al. 2021, MNRAS,
   <sup>2294</sup> 504, 4160
- <sup>2295</sup> Song, Y.-Y., Mateo, M., Mackey, A. D., et al. 2019,
- 2296 MNRAS, 490, 385
- 2297 Spencer, M. E., Mateo, M., Olszewski, E. W., et al. 2018,
   2298 AJ, 156, 257
- 2299 Spencer, M. E., Mateo, M., Walker, M. G., et al. 2017, AJ,
  2300 153, 254
- 2301 Starkenburg, E., Hill, V., Tolstoy, E., et al. 2013, A&A,
  2302 549, A88
- 2303 Starkenburg, E., Martin, N., Youakim, K., et al. 2017,
   2304 MNRAS, 471, 2587
- 2305 Swan, W. 1857, Transactions of the Royal Society of2306 Edinburgh, 21, 411429
- 2307 Szentgyorgyi, A. 2006, New Astronomy Review, 50, 326

- 2308 Tafelmeyer, M., Jablonka, P., Hill, V., et al. 2010,
- 2309 ArXiv:1008.3721, arXiv:1008.3721
- <sup>2310</sup> The DES Collaboration, Bechtol, K., Drlica-Wagner, A.,
- et al. 2015, ArXiv:1503.02584, arXiv:1503.02584
- <sup>2312</sup> Tody, D. 1986, in Society of Photo-Optical Instrumentation
  <sup>2313</sup> Engineers (SPIE) Conference Series, Vol. 627,
- 2314 Proc. SPIE, ed. D. L. Crawford, 733
- 2315 Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371
- <sup>2316</sup> Tolstoy, E., Skúladóttir, Á., Battaglia, G., et al. 2023,
- <sup>2317</sup> arXiv e-prints, arXiv:2304.11980
- <sup>2318</sup> Tolstoy et al. 2004, ApJL, 617, L119
- <sup>2319</sup> Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2015,
  <sup>2320</sup> ApJ, 808, 108
- 2321 —. 2007, ApJS, 171, 389
- <sup>2322</sup> —. 2016, ApJ, 819, 53
- 2323 Walker, Mateo & Olszewski. 2009, AJ, 137, 3100
- <sup>2324</sup> Walker, Olszewski & Mateo. 2015, (accepted for publication<sup>2325</sup> in MNRAS), 0, 0
- <sup>2326</sup> Waller, F., Venn, K. A., Sestito, F., et al. 2023, MNRAS,
- 2327 519, 1349
- <sup>2328</sup> Weisz, D. R., & Boylan-Kolchin, M. 2017, MNRAS, 469,
  <sup>2329</sup> L83
- <sup>2330</sup> Wilkinson, M. I., Kleyna, J. T., Evans, N. W., et al. 2004,
  <sup>2331</sup> ApJL, 611, L21
- 2332 Willman, B., Geha, M., Strader, J., et al. 2011, AJ, 142, 128