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Quantifying the perceptual value of lexical and non-lexical channels in speech
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Abstract
Speech is a fundamental means of communication that can

be seen to provide two channels for transmitting information:
the lexical channel of which words are said, and the non-lexical
channel of how they are spoken. Both channels shape listener
expectations of upcoming communication; however, directly
quantifying their relative effect on expectations is challeng-
ing. Previous attempts require spoken variations of lexically-
equivalent dialogue turns or conspicuous acoustic manipula-
tions. This paper introduces a generalised paradigm to study
the value of non-lexical information in dialogue across uncon-
strained lexical content. By quantifying the perceptual value of
the non-lexical channel with both accuracy and entropy reduc-
tion, we show that non-lexical information produces a consis-
tent effect on expectations of upcoming dialogue: even when
it leads to poorer discriminative turn judgements than lexical
content alone, it yields higher consensus among participants.
Index Terms: spoken dialogue, speech perception, prosody,
discourse structure

1. Introduction
The human language system is often modelled as a predictive
processor where expectations about the upcoming linguistic sig-
nal are conditioned on a host of contextual cues, including the
previous signal [1]. These cognitive mechanisms have likely
evolved to optimize our predictive capabilities for spoken in-
teractions, a modality which can be framed as a multi-channel
signal consisting of the lexical channel and non-lexical channels
[2, 3]. Although there is plentiful evidence that both channels
are used to encode and decode information, the relative effect
of these channels on human expectations in dialogue is unclear
[4, 5, 6]. In this work, we quantify the value of information in
the lexical and non-lexical channels by how much it constrains
human expectations regarding the upcoming dialogue turn. In
particular, we address a previously-unanswered question of how
the non-lexical channel affects expectations when the lexical
channel is uninformative.

Attempts to disentangle channel effects often use acoustic
manipulations such as low-pass filtering to delexicalise speech,
and flattening pitch curves to remove changes in intonation
[7, 8]. These modifications may be conspicuous and leave cer-
tain acoustic properties such as duration intact. In previous
work, we proposed the turn discrimination paradigm, which
instead disentangles channel effects using separate lexical and
acoustic conditions [3]. Rather than examining a specific func-
tion of non-lexical information, this method quantifies the value
of non-lexical information as how much it affects performance
of the generic task of discriminating between upcoming turns.
By sampling contexts and responses from a conversational cor-

pus, we showed that people use prosodic cues to discriminate
the true response from alternative prosodic realisations in nat-
ural dialogue. This experimental design used sets of lexically-
equivalent responses to isolate variation between responses to
their prosodic realisations. However, this severely limited our
ability to quantify non-lexical channel value beyond short, often
back-channel responses [9], or across variable lexical content.

In this work, we present a generalisation of the turn discrim-
ination paradigm using a dialogue-based language model (LM)
to select lexically diverse but similarly plausible turns, as well
as a novel quantification of channel value as entropy reduction
to account for the inherent optionality in upcoming dialogue.
This augmented paradigm enables investigation into the effect
of non-lexical information on dialogue acceptability perception
for variable lexical content, and allows us to more fully address
the question of how non-lexical information is used when the
lexical channel is uninformative. We find that when the lex-
ical channel is ambiguous, non-lexical information increases
discriminative performance. However, when lexical content is
informative, non-lexical information can worsen discrimination
performance. Interestingly, it does so consistently: people tend
to interpret non-lexical cues in similar ways even if this leads to
incorrect judgements about the upcoming turn.

2. Background
2.1. Speech: multi-channel communication

As a communicative medium, speech encodes information in
both lexical and non-lexical content. Non-lexical information
includes features of a speaker’s identity and environment. How-
ever, in this work, we are primarily interested in prosodic in-
formation and how it affects dialogue perception. Generally
quantified by the acoustic correlates for intonation, intensity,
and rhythm (F0, energy, and unit duration), prosody contributes
to many important communicative functions such as marking
novel information and topic shifts, conveying attitudinal reac-
tions and uncertainty, and managing turn-taking [10].

There is experimental evidence for the interaction of lexi-
cal and prosodic information [11]; for example, [12] shows that
lexical and non-lexical channels are used jointly to mediate in-
formation density. However, such studies often use carefully
constructed stimuli or involve potentially conspicuous acoustic
manipulation, a far cry from conversational speech which is rife
with features like disfluencies and phonetic reduction [13].

Interest in the role of prosodic and lexical information in
dialogue has a long history [14]. Still, only a small number
of psycholinguistic studies have explored the use of prosody in
dialogue and for good reason [8, 15, 16, 17]. Disentangling lex-
ical and non-lexical effects is unsurprisingly difficult given the
complicated relationship between prosody and communicative



C1  A  "I think their pitching's deep enough that it doesn't matter um"
C2  B  "it may be"
C3  A  "I uh I like them a lot I I think they're going to go all the way um and and I I mean by saying

I like them I like their chances I I actually don't like the dodgers I'm a giants fan"

R1  B  "right"
R2  B  "yeah well they've they've built a new baseball stadium downtown um it's opening next year"
R3  B  "uh I mean of course this year is a good year to be a a chicago bulls fan I guess because 

they're doing pretty good"
R4  B  "I mean they were terrible they could not pitch you know they couldn't even take hand-offs it 

was terrible but um"
R5  B  "who the heck is gonna root for tampa bay right"

Figure 1: An example of plausible responses R[1:5] for speaker
B sampled from our dialogue language model based on context
turns C[1,2,3]

intent, and the complexity of studying natural dialogue.
Most similar to the work at hand is [18] which investigated

the roles of prosody and conversational context for turn-end es-
timation. Using button-press experiments in conditions where
participants either receive written transcripts or the full speech
signal, phrase-final prosodic cues were found to be relevant for
turn-end projection. However, their results reflect the complex-
ity of processing and studying dialogue. Although acoustic
context facilitated turn-end estimation for short utterances, it
produced an inhibitory effect on the accuracy of turn-end es-
timation for longer turns. Similarly, [19] found that listeners
leverage acoustic discourse context to make predictions. How-
ever, when acoustic context was relevant, participants’ turn-end
judgements were produced earlier, but not more precisely.

2.2. Optionality in communication

While the studies above provide evidence that both the lexi-
cal and non-lexical channels affect dialogue perception, con-
clusions don’t converge neatly. The majority of these studies
[8, 15, 17, 18, 19] quantified channel value with accuracy-based
metrics which don’t account for the expected variability of the
upcoming signal–its optionality. As text and speech generation
approaches human-like naturalness, better understanding of ap-
propriate production variability is increasingly important. We
propose quantifying channel value in terms of entropy reduc-
tion to account for optionality in upcoming dialogue.

The informational value of a message is often framed in
terms of how surprising it is [20, 1, 21]. Highly surprising
messages are informative but may be difficult to process. Con-
versely, if the future signal is perfectly predictable, there is lit-
tle value in expending effort to communicate at all. Recent
work has demonstrated that, rather than being more probable,
monological text that is perceived as natural encodes an amount
of information that is close to the expected information con-
tent of natural language [22]. In other words, humans expect
the upcoming linguistic signal to be within a certain interval
of surprisal. The degree of predictability in spoken dialogue
is likely to be more complicated: it involves multiple parties
with potentially different goals, and variation can occur across
both the lexical and non-lexical channels. Enactment studies
demonstrate the increased complexity of production variability
in speech: different speakers produce different prosodic realisa-
tions of the same lexical content [23].

3. Experimental design
3.1. Generalised turn discrimination paradigm

To quantify the perceptual value of lexical and non-lexical chan-
nels in constraining expectations of upcoming communication,
we use the task of turn-acceptability presented in our previous

work [3]: given conversational turns as context, participants are
asked to rate the plausibility of potential continuations. Stim-
uli are presented as transcripts (lexical condition) or as speech
recordings (acoustic condition). The value of non-lexical infor-
mation is quantified by rating differences between conditions.

As described in the Introduction, the requirement of
lexically-equivalent response sets in the original paradigm was
a severe limitation. However, large LMs are known to align with
aspects of human perception of monologues [24, 25, 26]. Along
with others [27, 28], we have recently shown that dialogue-
based LM scores also correlate with human turn acceptability
judgements [29]. Building on these recent findings, we remove
the lexical-equivalence constraint by using a dialogue-based
LM to sample plausible responses (model details are below).
Figure 1 displays a stimulus sampled from our model; responses
are similarly plausible but lexically diverse. This generalised
methodology allows us to investigate the effect of non-lexical
information on dialogue acceptability perception across uncon-
strained lexical content and variable responses.

3.2. Task & stimuli design

Each stimuli consists of 3 contiguous turns of a conversation
and five potential responses. Participants are instructed that
one response is the true continuation for this conversation, then
asked to score the plausibility of each response on a scale from
1 (‘Very Unlikely’) to 4 (‘Very Likely’). We describe the stimuli
construction and conditions below.

Data We construct stimuli from the Switchboard Telephone
Corpus [30] which consists of over 2,400 dual-channel con-
versations between 542 speakers. 642 of these conversations
were annotated post-hoc with information such as dialogue acts,
information status, and prosodic features (Switchboard NXT
[31]). We use these conversations as validation and test sets. We
segment all conversations into turns using the associated word
timings. First, all words spoken contiguously by a speaker are
joined into segments. We remove completely overlapping seg-
ments before joining contiguous speaker segments into turns.

Dialogue language model We use a state-of-the-art re-
sponse selection model to sample plausible responses (cf. [29]).
The architecture is a BERT cross-encoder post-trained and fine-
tuned on Switchboard [32]. Our model is implemented in Py-
Torch. We use bert-base-uncased from the Transform-
ers library as our base model and follow the training procedure
from the original paper. Post-training augments the standard
masked LM task with an utterance relevance classification task;
response selection is the fine-tuning objective. Both train stages
apply early stopping using our validation set of Switchboard.
We post-train and fine-tune for 9 and 17 epochs, respectively.

Transcript preprocessing We clean the transcripts to train
our dialogue-based LM and present stimuli to participants. In
particular, characters specific to the Switchboard transcription
guidelines1 (mispronunciations, pronunciation variants, partial
words, coinages) and non-speech sounds including vocalised
noises and laughter are removed. We treat these as transcrip-
tions of the non-lexical channel, rather than lexical content.
However, the importance of filled pauses such as “uh” and “um”
is widely accepted [33, 34]. We opt for the more conservative
channel split and retain them in transcripts.

Audio preprocessing Overlapping speech is a prominent
feature of conversation. Although Switchboard recordings are
dual-channel (one per speaker), certain conversations contain

1https://isip.piconepress.com/projects/
switchboard



significant channel bleed. To maintain overlapping turns in our
stimuli, we de-bleed all conversations: projections of the power
spectra of both speaker channels are subtracted from each other
before recomposing the individual channels into waveforms.

Stimuli construction We randomly select a context as 3
contiguous speaker turns from the NXT conversations. We ran-
domly sample 1000 unique responses to score with our dialogue
LM. The five responses for this context consist of its true re-
sponse, along with the top-scoring responses. Random sam-
pling allows us to explore the effect of non-lexical information
across a range of linguistic functions. However, we perform
broad filtering to ensure stimuli contain enough information but
are not too long for the behavioural study. The final context turn
must contain 3−50 tokens with an audio length of 2−10 s. Po-
tential responses must be of length 0.25−10 s, preceded by a
pause within −2−2 s, and should not be from the same speaker
as the context. The five first and last turns from all conversations
are removed as the lexical content of greetings and farewells is
highly conventionalised. We construct 120 stimuli in total2.

Conditions In both lexical and acoustic conditions, partici-
pants receive transcripts of the context. In the lexical condition,
participants also receive transcripts of all potential responses; in
the acoustic condition, responses are presented in audio format
with each response spliced onto the final context turn. Follow-
ing [3], pause length is treated as a feature of utterance design.
Each response is thus extracted with its preceding pause which
is used to join it with the final context turn.

3.3. The online task & stimuli sets

Participants were recruited from Prolific Academic. We se-
lected participants from North America for whom English was
their first language to increase familiarity with the accents of
speakers in Switchboard. Each participant received stimuli
from one condition. Manually-constructed stimuli where only
the true response was acceptable were interspersed throughout
each survey as attention checks. Results of participants who ob-
tained less than 80% accuracy on these questions were removed
(24% and 26% of participants in the lexical and acoustic condi-
tions). Participants were presented with 20 random stimuli and
the same five check questions. Average durations were 18.5±8
(lexical) and 45.5±26 (acoustic) minutes. In total, we collected
1200 responses: 5 × 120 stimuli in both conditions (45 and 50
participants in the lexical and acoustic conditions resp.)

Stimuli sets Our primary research question is whether
participants use non-lexical information to guide expectations
about an upcoming turn when the lexical channel is uninforma-
tive but diverse. To ensure that lexical content is uninformative,
we create a subset of stimuli where participants did not reliably
score the true response highest in the lexical condition (i.e., no
more than two of the five participants ranked the true response
as the only highest-scoring). From the 120 stimuli, this pro-
duced a subset of 63 ambiguous stimuli.

3.4. Metrics

We use several metrics to quantify the perceptual value of
acoustic information. Accuracy is easy to interpret, however,
human acceptability judgements have been shown to be prob-
abilistic [35, 24, 29]. As such, it is possible for multiple re-
sponses to be considered plausible. To account for this optional-
ity, we employ entropy reduction to examine the convergence of

2We publish our stimuli: https://sarenne.github.io/
is-2023

participants’ judgements at both response- and question-levels.
Entropy has previously been used to quantify the potential value
of non-lexical component of spoken dialogue [36].

Accuracy Accuracy reflects the frequency with which the
true response was rated highest. We also weight this frequency
by the proportion of score mass assigned to the true response by
each participant (weighted accuracy).

Ordinal Entropy We measure entropy-per-response using
a variant of cumulative paired ϕ-entropy to account for the ordi-
nal nature of scores [37]. Standard entropy H(S) is a function
of categorical label probabilities. Ordinal entropy HOrd(S) is
instead a function of the cumulative probability for each score,
thus reflecting dispersion among scores [38].

Permutation Entropy Permutation entropy measures en-
tropy at the stimulus-level. Ordinal Pattern Analysis (OPA) is
often used to quantify the complexity of time-series data by
converting it to a sequence of ordinal patterns before comput-
ing standard Shannon entropy H(S) across pattern frequencies
[39]. We convert participant scores across responses to rank
patterns. This quantifies agreement at the stimulus-level.

H(S) = −
n∑

i=1

pi log pi (1)

Hord(S) = −
n∑

i=1

(
p≤k log p≤k − (1− p≤k) log(1− p≤k)

)
(2)

For score counts Si over scores i ∈ 1, ..., n, we denote
pi = P (Si) and p≤k =

∑k
i=1 pi

4. Results & Discussion
To test whether participants use non-lexical information to
guide their expectations when the lexical channel is uninfor-
mative but unconstrained, we compare scoring behaviour in the
lexical and acoustic conditions across the ambiguous stimuli.
Chance performance is estimated by shuffling each set of par-
ticipant ratings 100 times to maintain score distributions.

Additionally, we analyze the effect of condition on ordinal
entropy while controlling for other factors with Bayesian mul-
tilevel regression models. As entropy values are bounded and
continuous, we scale them to [0, 1] and use Zero-One Inflated
Beta Regression. Models were fit using brms in R [40]. To
investigate potential cognitive load differences, we include re-
sponse length (in seconds) as a predictor. Following [27], we
include the mean surprisal of the response conditioned on the
context, and an indicator for whether the response was the true
continuation to see if participants treated true and false continu-
ations differently. Group-level effects (i.e., random effects) for
context and response dialogue acts from the Switchboard NXT
annotations [31], as well as effects for context, and context-
response identifiers are included to control for stimuli varia-
tion. We include interaction terms with response length, target,
mean surprisal, and dialogue acts to see if effects varied with
the acoustic/lexical condition. We see non-zero variance esti-
mates for the group-level effects, i.e., these factors do account
for variation in the entropy.

We use the emmeans package [41] to compute estimated
marginal means and 95% Highest Posterior Density Regions,
i.e. Credible Intervals (CIs), to examine effects of predictors.

4.1. Accuracy

As can be seen in Table 1, accuracy for ambiguous stimuli in the
lexical condition is close to chance. In the acoustic condition,



Table 1: Evaluations of ambiguous stimuli across conditions,
and the mean per-question difference between them (standard,
weighted accuracy (acc, acc{W}), ordinal, permutation en-
tropy (HOrd, HPerm); all normalised). Differences are all sig-
nificant using a directional Wilcoxon rank sum test (p < 0.002).

Condition

Metric Chance Lexical Acoustic Difference

acc 0.07± 0.01 0.08 0.25 0.16
acc{W} 0.05± 0.01 0.05 0.17 0.11
HOrd 0.66± 0.01 0.54 0.48 -0.06
HPerm 0.94± 0.01 0.90 0.86 -0.04

Table 2: Accuracy metrics for check questions

Condition

Metric Lexical Acoustic Difference

acc 0.96 0.96 0.00
acc{W} 0.91 0.74 -0.17

it is significantly higher. Increased accuracy provides strong
evidence that participants leverage non-lexical cues to constrain
their expectations about the upcoming dialogue turn.

Table 3 contains results for the remaining stimuli–where
participants could discriminate the true response relatively ac-
curately from the lexical channel alone. People judge these
stimuli more accurately. However, their accuracy drops in the
acoustic condition. Surprisingly, people are less apt at selecting
the true turn when provided with non-lexical information.

Accuracy metrics for the check questions are shown in Ta-
ble 2. Weighted accuracy decreases by −0.17 in the acoustic
condition, reflecting less decisive scores for check questions.
This is surprising as multi-modal communication is suggested
to offer greater communicative power than single-channel com-
munication [42, 43]. We hypothesise that acoustic stimuli place
a higher cognitive load on participants. As such, these results
likely understate non-lexical channel value.

4.2. Entropy Reduction

Given that the upcoming communicative signal is not perfectly
predictable, we also quantify the effect of non-lexical informa-
tion as entropy reduction over participant scores. Both entropy-
based metrics decrease in the acoustic condition for the ambigu-
ous stimuli–participants agree more in the acoustic condition
(Table 1). This suggests that the non-lexical channel provides
additional cues for what may come next and that participants
interpret them similarly. Crucially, although Table 3 shows re-
duced accuracy between conditions for the remaining stimuli,
score entropies decrease and to similar degrees as found across
the lexically-ambiguous stimuli. The non-lexical channel seems
to produce consistent perceptual effects, regardless of how in-
formative lexical content is for turn discrimination.

Higher entropy in the lexical condition is reflected by our
regression model, but the difference varies depending on other
factors. In particular, we see an interaction between condition
and response length: a positive slope estimate in the acoustic
condition (0.02, CI=(0.01, 0.03)), and a flat slope for the lexi-
cal condition (−0.001, CI=(−0.01, 0.01)). That is, participants
show higher agreement in the acoustic condition than the lexi-
cal condition for short responses, but the difference shrinks with
utterance length. This further suggests potential differences in
cognitive load between conditions.

We calculate estimated marginal mean ordinal entropy for

Table 3: Evaluations of remaining stimuli. Mean per-question
differences are all significant using a directional Wilcoxon rank
sum test at p < 0.0001 except permutation entropy (p < 0.02).

Condition

Metric Chance Lexical Acoustic Difference

acc 0.14± 0.02 0.54 0.36 -0.18
acc{W} 0.10± 0.01 0.38 0.25 -0.12
HOrd 0.70± 0.01 0.55 0.48 -0.06
HPerm 0.96± 0.01 0.89 0.86 -0.03

true and false responses (by condition), while averaging over
other predictors, to see their effect. We see lower entropy for
true responses overall. Similarly, entropy is reduced in the
acoustic condition compared to the lexical condition. However,
the difference between conditions is greater for true responses
(−0.13, CI=(−0.26,−0.001) vs. (−0.10, CI=(−0.20, 0.001)).
This suggests that true responses have acoustic features that par-
ticipants make use of for this task.

Interestingly, surprisal affects ordinal entropy differently
between conditions. The estimated effect is likely positive in
the acoustic condition (0.08, CI=(−0.001, 0.16)), i.e., more
lexically surprising responses result in less agreement. How-
ever, the effect in the lexical condition peaks around zero (0.00,
CI=(−0.07, 0.08)). The latter estimate is likely a result of the
ambiguous stimuli selection, but also again indicates that acous-
tic information changes participant expectations.

5. Conclusions

The generalised turn-discrimination paradigm presented here
enabled our analysis of how lexical and non-lexical channels
are used jointly for a much broader set of language than was
previously possible. Our results provide firm evidence that non-
lexical information constrains expectations of spoken dialogue–
people can leverage non-lexical cues to discriminate true con-
tinuations from false candidates when the lexical channel is un-
informative. However, when the lexical content is informative
for the discriminative task, acoustic information can hinder per-
formance. Although surprising, similar results were found by
[19] who showed that listeners respond earlier but not necessar-
ily more accurately in turn-end detection tasks when context
is informative. Quantifying channel value as entropy reduc-
tion provides a novel perspective on channel value: even when
it leads to incorrect discriminative judgements, the non-lexical
channel affects expectations in consistent ways.

We believe our methodology has implications both for
learning perceptually-motivated representations of spoken com-
munication and for speech generation where the degree of ac-
ceptable production variability across both lexical and non-
lexical channels in dialogue is relatively unexplored. Here, we
investigated a small number of factors that could affect non-
lexical channel value and found evidence of complex interac-
tions with acoustics; in future work, we hope to develop a more
formal conditional quantification of channel value. For exam-
ple, different speech acts have been shown to exhibit greater
prosodic variation, potentially indicating that the information
mass is skewed more heavily towards the non-lexical channel
for certain speech acts [44].
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