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Abstract. Assuming the robustness of a deep learning model to subop-
timal images is a key consideration, we asked if there was any value in
including training images of poor quality. In particular, should we treat
the (quality) threshold at which a training image is either included or
excluded as a tunable hyperparameter? To that end, we systematically
examined the effect of including training images of varying quality on
the test performance of a DL model in classifying the severity of diabetic
retinopathy. We found that there was a unique combination of (categor-
ical) quality labels or a Goldilocks (continuous) quality score that gave
rise to optimal test performance on either high-quality or suboptimal im-
ages. The model trained exclusively on high-quality images yielded worse
performance in all test scenarios than that trained on the optimally tuned
training set which included images with some level of degradation.

Keywords: Image quality · Tunable hyperparameter · Deep learning.

1 Introduction

A common pre-processing step in deep learning (DL) applied to retinal image
analysis is to exclude images of sub-optimal quality before training and testing a
model for a given downstream task. For instance, Poplin et al. filtered out 12% of
96,082 UK Biobank (UKBB) retinal images of ‘poor quality’ for a downstream
task of predicting different cardiovascular risk factors [14]. Likewise, 12% of
UKBB retinal images of ‘very poor quality’ were excluded in another study
aiming to predict refractive error [19]. Lin et al. removed 14,003 retinal images
that were ‘subjectively’ deemed to be poor – or if the optic disc and fovea were
not present simultaneously – from a total of 35,126 EyePacs images, with a view
to training a model to detect referable diabetic retinopathy (DR) [11].

The tacit assumption of removing poor images in the application of DL is
that only input images of relatively high quality are to be used when a model

⋆ F. Yii and R. Dutt contributed equally to this work. F. Yii is supported by the
Medical Research Council [grant number MR/N013166/1]
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is deployed in the real world. Such a model will, conceivably, not generalise
well to images with some degradation arising from, say, naturally occurring se-
nile eye conditions like cataract, or sub-optimal patient positioning leading to
non-uniform illumination. We are therefore drawn to think that careful inclu-
sion of images with some appropriate level of degradation may in fact make a
model more versatile, i.e. robust to a wider distribution of image quality. Indeed,
segmentation of retinal sublayers and choroid in optical coherence tomography
(OCT) images improves when a DL model is trained on degraded images [9].
Similar observation has been made when classifying non-medical images with
DL [3].

But how do we determine if a given training image has an appropriate level of
degradation, such that it is high enough to add some useful noise but low enough
to not undermine the model? We propose that the image quality threshold, at
which we decide if an image should or should not be used for training, can
be treated as a tunable hyperparameter. Our ultimate goal is to maximise the
performance of a trained model on the unfiltered test set to simulate real-world
distribution of image quality. This is in contrast to studies where the model is
trained and tested on filtered datasets. While some may argue that a simpler
approach is to apply various levels and types of image degradation [4], and settle
on the level that yields the best test performance, we are of the opinion that
such artificial image degradation, e.g. gaussian blur, is not nuanced enough to
capture the kind of degradation particular to a retinal image, e.g. areas of under-
and over-exposure during acquisition.

The idea that image quality threshold can be treated as a tunable hyperpa-
rameter raises the question of whether it should be done on a categorical or con-
tinuous scale. In this regard, it is conceivable that superior outcome (as judged
by the test performance of a downstream model trained on the resultant, filtered
dataset) is contingent upon one’s ability to partition training images based on
their quality at as granular a level as possible – since this renders any effect of
nuanced variation in image quality discernible. Thus, the main objectives of our
work are to see if:

– including images of poorer quality in the training set has a positive bearing
on the test performance (particularly on the unfiltered test set) of a DL
model for a downstream task of classifying DR severity. If so, should we
treat quality threshold as a tunable hyperparameter?

– tuning the quality threshold on a continuous scale offers additional value
(more optimal test performance) than tuning on a categorical scale. We
hypothesise an increase in test performance (model made more robust) as
the training set becomes noisier up to a point before falling.

2 Methods

2.1 Quality prediction on a categorical scale and continuous scale

To predict image quality on a categorical scale, we utilised Multiple Color-space
Fusion Network (MCF-Net), a DL model that achieved a state-of-the-art test
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accuracy of 91.75% [6]. Briefly, an image is considered good if there are no low-
quality factors; usable if there are some low-quality factors but important fea-
tures like the optic disc are still clear enough for ophthalmological assessment
to be carried out; reject if a full assessment is impossible.

Description of the adapted (regression) model. To turn the original model
into a regression model, we removed the softmax function corresponding to each
of the 5 loss functions. Mean absolute error (MAE) was used in place of the orig-
inal cross-entropy loss function. The output of the adapted model (normalised
between 0 and 1) would be closer to 0 for a high-quality image. The model
achieved an MAE of 0.154 on the test set. More information on the adapted
model is available as supplementary material (S1).

0.0 0.2 0.4 0.6 0.8 1.0
Continuous Quality

0

1000

2000

3000

4000

5000

Co
un

t

Regression Model
Reject (1)
Usable (0.5)
Good (0)

0.0 0.2 0.4 0.6 0.8 1.0
Continuous Quality

0

5000

10000

15000

20000

25000

30000

35000

40000

Co
un

t

Softmax Output of the Classification Model
Reject (1)
Usable (0.5)
Good (0)

Fig. 1. Distribution of continuous quality scores of the entire EyePACS dataset
(n=88,702) as predicted by the regression model (left) and as represented by the soft-
max output (Reject class, i.e. greater value corresponds to poorer quality) of the original
classification model (right). Each hue represents a different quality class.

As a baseline approach (owing to its simplicity), we also extracted the soft-
max output in the final classification layer of the original (classification) model.
In theory, the softmax output represents the confidence of the model in assign-
ing an input image to a particular class label, e.g. Reject, and may therefore
be treated as a continuous quality score of some sort. However, the distribution
of the quality scores as represented by the softmax output is qualitatively infe-
rior, i.e. as expected, cross-entropy loss function biases softmax output towards
the extremums, to those predicted by the regression model (Figure 1). Tuning
the quality filter threshold using the softmax output would conceivably be less
granular, e.g. setting the threshold to 0.4 or 0.5 would not make much of a dif-
ference to quality distribution, so we settled on the quality scores predicted by
the regression model for all experiments.

Validation of the regression model. We first extracted the vascular network
of 10,044 randomly selected Kaggle EyePACS retinal images using Deformable
U-Net [8]. It is widely held that low image quality has a detrimental effect

https://www.kaggle.com/c/diabetic-retinopathy-detection
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on vessel segmentation [12,16]. As such, one would generally expect a smaller
proportion of vascular network to be extracted from poorer images (Figure 2).
In line with this, images predicted as having poorer quality tend to return a
smaller proportion of vascular network (Pearson’s r=-0.69; p < 0.001; see S4).

Fig. 2. Examples of images predicted as having superior quality (top left) and inferior
quality (bottom left), with a quality score of 0.0 and 0.8, respectively, by the regression
model. The extracted vascular network corresponding to each image is also displayed.
A larger proportion of vascular network can be extracted from the high-quality image
compared with the poor-quality one.

2.2 Effect of varying image quality threshold

DR is a common diabetic complication that affects the retina. Timely treatments
are required to prevent or minimise vision loss when DR progresses to more severe
stages, e.g. growth of new, leaky blood vessels. As such, many DL algorithms
have been developed over the past few years to classify DR severity, with a
view to aiding large-scale DR screening programmes [13]. The Kaggle EyePACS
dataset was used in this study to elucidate the effect of varying quality threshold
on the downstream DR classification task. Each image is labelled with an integer
representing DR severity (ranges from 0 to 4) [21].

We should point out that the overwhelming majority of images graded as
having the most advanced stage of DR (level 4) are of poorer quality (Figure
3; refer also to the figure in S2). This naturally leads one to wonder if excluding
poorer training images might bias a downstream model against severe DR. The
original dataset (n=88,702) was made up of a training set (40%) and a test set
(60%). We used 30% (n=10,538) of training images to build a separate valida-
tion set. Images in each sub-dataset were filtered based on different pre-defined
(either categorical or continuous) quality thresholds. A ResNet-50 pre-trained on
ImageNet was then fine-tuned (detailed in S3) on the different resultant training
sets, before comparing their test performance with one another.
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Fig. 3. Frequency of each quality label as predicted by the original MCF-Net across
different DR severities. Similar figure using continuous score can be found in S2.

3 Experiments

3.1 Altering quality threshold on a categorical scale

As shown in Table 1, training the model on the unfiltered (G+U+R) training
set consistently yielded the highest test accuracy across different combinations
of quality labels – including the unfiltered test set. Furthermore, using poorer
images on top of good images (G+U+R) gave rise to optimal performance
on the test set comprised of exclusively good images (80.63%), which was even
higher than the model trained exclusively on good images (79.08%). This is
consistent with observation by Zhou et al. [23] that fine-tuning a model on poor
images (originally trained on good images) did not hurt the model’s performance
on ’clean’ data. Our observation therefore challenges conventional wisdom (see
conclusion in [4]) that poor training images have undesirable effect on the test
performance of a model, which presumably motivates the exclusion of suboptimal
images in studies cited in Section 1.

Test
Train

G+U+R (n=24,588) G+U (n=20,458) G+R (n=15,695) U+R (n=13,023) G (n=11,565)

G+U+R 78.24% 75.29% 76.11% 76.29% 75.72%

G+U 79.26% 76.74% 77.26% 77.34% 77.12%

G+R 78.66% 75.71% 76.63% 76.75% 76.36%

U+R 76.12% 72.49% 73.68% 74.11% 72.73%

G 80.63% 78.44% 78.85% 78.75% 79.08%

U 77.48% 74.53% 75.18% 75.48% 74.56%

R 73.25% 68.21% 70.53% 71.24% 68.89%

Table 1. Test accuracies (row) across different training sets (column). Best overall
performance is highlighted in bold. G=’Good’; U=’Usable’; R=’Reject’.

One caveat, however, is that the gain in performance accorded by theG+U+R
training set in all test scenarios might arise largely as a result of its sheer size
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(n=24,588) [17]. That said, the fact that a model trained on U+R – notwith-
standing its small size (n=13,023) – still performs better on all test sets compared
with a model trained on the much larger G+U training set (n=20,458), indi-
cates that the observed difference in performance might still be attributable to
a variation in quality distribution as opposed to the size of the training set.

Test
Train

G+U+A (n=24,458) G+R+A (n=24,195) U+R+A (n=24,023) G+A (n=24,130)

G+U+R 75.28% 74.51% 76.04% 73.80%

G+U 76.68% 75.77% 76.95% 74.93%

G+R 75.70% 75.19% 76.58% 74.65%

U+R 72.57% 71.72% 73.97% 70.95%

G 78.38% 77.66% 78.38% 76.98%

U 74.52% 73.30% 75.09% 72.24%

R 68.47% 68.41% 71.62% 68.23%

Table 2. Test accuracies (row) across different training sets (column), augmented
such that the resultant number of training images matches that of G+U+R (n=24,588).
G=’Good’; U=’Usable’; R=’Reject’; A=’Augmentation’.

What gives rise to the superior performance of G+U+R? Previous ex-
periments were repeated after applying just one of the following conventional
augmentation techniques to each randomly chosen training image: random ro-
tation of no greater than 30 degrees, vertical flip, horizontal flip and Gaussian
blur. 3 of these 4 techniques were not expected to alter image quality so the
quality distribution between the original and augmented datasets could be as-
sumed to be broadly similar. The number of augmented images was predefined
such that the size of the resultant training set would be comparable to that
of G+U+R (n=24,588), since our primary aim was to increase the size of the
smaller training sets while preserving their quality distribution. Any difference
in test performance between G+U+R could therefore be attributed largely to a
variation in quality distribution.

Comparing the test performance of the model trained on G+U+R in Table
1 to that of the models trained on the different augmented training sets (Table
2), the former model still had a clear edge over all latter models. Importantly,
G+U+R’s superior performance was evident across all test sets, including those
whose quality distribution differed from itself. For instance, even after increas-
ing the size of the U+R training set from 13,023 to 24,023, its performance on
the U+R test set (73.97%) still lagged far behind that of the model trained
on G+U+R (76.12%). The inferior performance of the augmented training sets
vis-a-vis G+U+R training set in all test scenarios also lends credence to our
proposition that conventional augmentations fail to capture the nuanced degra-
dation in, and variation between, naturally acquired retinal images.

On a side note, the paradoxical observation that the G+A training set re-
sulted in poorer test performance (e.g. 76.98% on G test set) than the G train-
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ing set (79.08% on G test set) despite the former’s significantly larger size could
plausibly be the result of exacerbated class imbalance, which was already se-
vere before augmentation (around 75% of G training images did not have DR).
This unreservedly biased the model to level 0 DR (S5). However, it is unclear
how augmentation could have worsened class imbalance as training images were
randomly augmented with uniform probability. Taken together, our findings can
only parsimoniously suggest that the optimally tuned training set does not owe
its superior performance to its sheer size.

’Clean’ training set biased model against severe DR. To see if training
the model on exclusively good images would bias a model against more severe
levels of DR (discussed in 2.2), we computed the model’s accuracy for classifying
images with level 3 and level 4 DR taken from the G+U test set. As hypothe-
sised, training the model on good images alone undermined its ability to classify
level 3 DR (15.72%) and level 4 DR (0%) compared with the test performance
gained by using the optimally tuned G+U+R training set (36.12% and 24.00%,
respectively). Augmenting the smaller training sets also did not improve their
performance anywhere near that seen with G+U+R. This further justifies our
contention against indiscriminate exclusion of poor training images and supports
the notion of treating quality threshold as a tunable hyperparameter.

3.2 Altering quality threshold on a continuous scale

Quality threshold was gradually increased from 0.10 to 1.00, i.e. progressively
poorer images are included at each step. All training details, e.g. model, opti-
miser, learning rate, seed for validation-test split, etc, were identical to previous
experiments to allow for a fair comparison of results. The performance of the
model trained on each resultant (filtered) training set was assessed based on
its accuracy on two different test sets, i.e. unfiltered and ’Good’ (based on the
original MCF-Net classification) images. As Figure 4 shows, the performance of
the model tends to increase on both test sets with the inclusion of increasingly
poorer images in the training set. The performance then peaked at 79.83% and
77.65% on the ’Good’ and unfiltered test sets, respectively, when the threshold
was set to 0.72, and dropped from that point on.

This observation is consistent with our postulation about the presence of a
Goldilocks level of image quality. Images beyond this optimal point are of such
poor quality that they only serve to undermine the model. In support of this we
observed disproportionately large changes in test accuracy as the threshold was
changed from the optimal point to 1.00 and from 0.66 to the optimal point, i.e.
-0.89% and +1.66%, despite relatively small changes in the number of images,
i.e. +497 and +529 (see S6 for full table). Some ’Reject’ images were poorer still
and had undesirable effect on test performance. Conversely, poor though those
529 additional images included at the optimal point were, they were beneficial
insofar as they helped the model learn some ’usable’ noise. As with before,
the fact that adding increasingly poorer training images improved the model’s
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Fig. 4. Classification accuracy of the downstream model trained on different datasets
filtered as per varying pre-defined continuous quality thresholds on two different test
sets: unfiltered (blue) and ’good’ (categorical quality) images (orange).

performance on good images up until the optimal point contradicts conventional
wisdom that using exclusively high-quality training images would yield optimal
performance on high-quality test images. Taken together, the very presence of
this optimal point which lies at some distance from the expedient threshold of
1.00 (i.e. inclusion of all images) further strengthens our justification that quality
threshold can – and should indeed be – treated as a tunable hyperparameter.

3.3 Tuning on a continuous scale: does it confer additional value?

When quality threshold was tuned on a three-level categorical scale, the high-
est classification accuracy on the unfiltered and ’Good’ test sets came from the
model trained on G+U+R, i.e. 78.24% and 80.63%, respectively (Table 1). If
tuning the threshold on a finer scale had an additional benefit, one would ex-
pect the accuracy of the model on the same test sets to be even higher. However,
the test accuracy from tuning the threshold on a continuous scale was in fact
slightly lower – 77.40% and 79.83%, respectively (Figure 4). That said, our re-
sults should not be construed as evidence against the use of continuous over
categorical scale because we had not been able to fully account for the stochas-
tic nature of model training and evaluation, e.g. variation in minibatch images
across runs, etc. This is evident if one considers the fact that the test accuracy of
the model from the ’continuous’ experiments with quality threshold set to 1.00
did not agree with its categorical equivalent (G+U+R training images).

4 Discussions and Conclusions

Considering the diminishing returns of increasing network complexity [22,2] and
size of training data [18] in the domain of DL, it is apt that we focus our present
work on the quality of input images. In particular, we propose – and have pro-
vided empirical justification – that image quality threshold should be treated as
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a tunable hyperparameter. There is ample demonstration of the detrimental ef-
fect of synthetic image degradation on the performance of DL models trained on
’clean’ datasets [1,9,15,7,20,4]. In line with this, natural sources of image degra-
dation have also been shown to reduce the performance of a DL model trained
exclusively on high-quality retinal images [22]. Our work is therefore driven by a
desire to bring about a paradigm shift away from training a model exclusively on
high-quality images to carefully curating a training set that also includes some
suboptimal images. Indeed, when tested on poorer images (e.g. U test set) – in
relation to the G test set – the G training set experienced the largest drop in
accuracy among all training sets (Table 1).

To mitigate poor robustness to noise, much work has focused on retraining or
fine-tuning an existing model with an augmented dataset – e.g. contrast reduc-
tion, Gaussian noise, defocus blur, etc. [9,20,23,5]. While these studies have un-
equivocally demonstrated an improvement in model’s performance, this has only
been demonstrated in synthetically degraded test images. It remains (largely) un-
clear how close such augmentations mimic naturally occurring degradation par-
ticular to retinal images, and if they can equally help a model generalise to such
natural degradation as they are to synthetic degradation. Indeed, our concern
is not unfounded because even generalisation across different types of synthetic
degradation - from Gaussian noise to Gaussian blur [5] or from uniform defocus
blur to oriented motion blur [20] - is not guaranteed. Our finding that the model
trained on the augmented G training set did not have better performance on the
poorer U test set than the model trained on the original G training set therefore
fills the aforementioned gap by indicating that augmentation has limited gener-
alisability to naturally occurring degradation. Our work also sets the scene for a
solution centring on tuning the quality threshold for the training set.

Given that the stochastic nature of model training and evaluation has not
been fully accounted for in this study, future studies could repeat each set of our
experiments multiple times. This would allow one to better elucidate if there is
any additional value in tuning the quality threshold on a continuous scale. Future
work should also carry out a systematic investigation of the generalisability of
other (more nuanced) augmentations such as contrast reduction, localised blur,
etc. to naturally occurring degradation to help us confidently rule out the benefit
of augmentation over inclusion of poor images. Moreover, other DL-based retinal
image quality models could be used in addition to MCF-Net to verify the central
thesis of this paper. To the best of our knowledge, we are the first to investigate
the effect of tuning quality threshold on a downstream task related to retinal
pathology. As we focused on DR, future work could make use of other retinal
datasets [10], e.g. PALM, to see if similar conclusions apply to other diseases
such as age-related macular degeneration.
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