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Abstract

The present thesis aims to investigate the photon blockade effect, understood as a phenomenon in which the
presence of a single photon inhibits further photons, effectively transforming a system into one that emits one
photon at a time. This effect can be classified into two categories: The conventional photon blockade, which
relies on the nonlinearities of a system, and the unconventional photon blockade, which employs quantum
interference between two paths to cancel the probability to access a particular state.
In order to investigate the underlying physical mechanisms of these two forms of blockades, this thesis employs
numerical solutions of master equations, complemented by the application of analytical techniques for deter-
mining optimal conditions for each type of blockade. Specifically, the study finds that the driven dissipative
Jaynes-Cummings model represents an ideal scheme in which both mechanisms are exhibited simultaneously.
This enables the analysis of the photon blockade mechanism in a unique and experimentally feasible setup, such
as a cavity-QED scheme composed of a semiconductor quantum dot grown inside a micropillar. Additionally,
intrinsic differences between both blockade mechanisms are uncovered through the utilization of the theory of
frequency-filtered correlations and the integration of dissipative mechanisms such as phonon-mediated coupling.
Furthermore, new criteria for the theoretical classification based on the study of higher-order correlation
functions are employed to analyze the numerical solutions of the model, determining if the systems can act
as single photon sources. Moreover, the research applies the aforementioned tools to study a system that
consists of an elliptical microcavity with an embedded quantum dot, subject to external excitation by a laser
and a magnetic field. The optimal conditions for generating conventional photon blockade in this system were
identified, constituting it to act as a single photon polarization switch.

This thesis, therefore, provides a comprehensive examination of the photon blockade effect, which could
be used in the future for developing high-quality single photon sources, helping for the implementation of
quantum technologies.

Keywords: Conventional photon blockade, Unconventional photon blockade, Driven Dissipative Jaynes
Cummings, Single photon polarization switch, Single photon sources.





Abstract

La presente tesis tiene como objetivo investigar el efecto de bloqueo de fotones, entendido como un fenómeno
en el cual la presencia de un solo fotón inhibe la emisión de más fotones, transformando efectivamente un
sistema en uno que emite un fotón a la vez. Este efecto se puede clasificar en dos categorías: el bloqueo de
fotones convencional, que se basa en las no linealidades de un sistema, y el bloqueo de fotones no convencional,
que emplea la interferencia cuántica entre dos trayectorias para cancelar la probabilidad de acceder a un estado
particular.
Con el fin de investigar los mecanismos físicos subyacentes de estas dos formas de bloqueo, esta tesis utiliza
soluciones numéricas de ecuaciones maestras, complementadas con la aplicación de técnicas analíticas para
determinar las condiciones óptimas para cada tipo de bloqueo. Específicamente, el estudio encuentra que el
modelo de Jaynes-Cummings bombeado y disipativo representa un esquema ideal en el que ambos mecanismos
se exhiben simultáneamente. Esto permite el análisis del mecanismo de bloqueo de fotones en una configuración
única y experimentalmente factible, como un esquema de cavidad-QED compuesto por un punto cuántico
semiconductor crecido dentro de un micro-pilar. Se descubren a su vez diferencias intrínsecas entre ambos
mecanismos de bloqueo a través de la utilización de la teoría de correlaciones filtradas por frecuencia y la
integración de mecanismos disipativos como el acoplamiento mediado por fonones. Además, se emplean
nuevos criterios para la clasificación teórica basada en el estudio de funciones de correlación de orden superior
para analizar las soluciones numéricas del modelo, determinando si los sistemas pueden actuar como fuentes
de un solo fotón. Complementario a ello, la investigación aplica las herramientas mencionadas para estudiar
un sistema que consiste en una microcavidad elíptica con un punto cuántico incrustado, sujeto a excitación
externa por un láser y un campo magnético. Se identificaron las condiciones óptimas para generar un bloqueo
de fotones convencional en este sistema, lo que lo convierte en un interruptor de polarización de un solo fotón.

Esta tesis, por lo tanto, proporciona un examen exhaustivo del efecto de bloqueo de fotones, que podría
en el futuro servir para desarrollar fuentes de fotones individuales de alta calidad, que ayuden a la imple-
mentación de tecnologías cuánticas.

Palabras clave: Bloqueo de fotones convencional, Bloqueo de fotones no convencional, Jaynes-Cummings
bombeado y disipativo, Interruptor de polarización de un solo fotón, Fuentes de un solo fotón.
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Chapter 1
Backgrounds

1.1 State of the art

The improvement over the control in light-matter experiments has allowed scientists to build high-quality optical
cavities with embedded active media, where strong orders of interaction are possible. By strengthening the
interaction (g), the way in which light and matter respond to one another transforms from a simple perturbative
correction to a reversible exchange of energy. This allows the creation of a new type of quasiparticles, which
are understood as a superposition of matter and light wavefunctions: the polaritons.

The fundamental property of this quasiparticle is that the energy gap between same manifold polaritons
scales proportionally to

√
n, as one climbs up the energy ladder. This characteristic opens up the possibility

for generating Photon Blockade (PB), because if the system is resonantly driven at a frequency of one of
the polaritons manifold, then the possibility of accessing further states is blocked due to the non-resonant
distribution of the energy ladder. The term Photon Blockade was introduced in the seminal paper by Imamoglu
et al. (1997) [1], where they proposed a scheme with a nonlinear cavity that had an embedded Kerr media, which
was able to realize strong and deterministic antibunching. The term was coined after the effect observed for
mesoscopic systems, the Coulomb blockade, where electrons create a strong repulsion that enhances the position
of one electron while preventing the flow from others [2]. The first experimental proof of photon blockade was
performed by Birnbaum et al. (2005) [3], when they first proposed a setup for measuring the photon blockade
effect, by using the anharmonicity of the eigenstates of a system for suppressing non-resonant transitions.
Their results were the first experimental proof for photon blockade, finding values of g(2)(0) = 0.13±0.11 as
well as g(2)(0)< g(2)(τ), finding not only antibunching but as well a Subpoissonian property of the distribution.

Although the excellent result by Birnbaum was a fundamental step in the consolidation of the Photon Blockade,
scientists wanted to push forward the investigation on proposing schemes that could achieve the desired sup-
pression of the second order correlation function. In that sense, studies divided into two alternatives: Accessing
Photon Blockade via the anharmonicity of the eigenstate of a system, which was named as Conventional
Photon Blockade (CPB), or by the use of quantum interference, which was referred as Unconventional Photon
Blockade (UPB) [4] (2010). The proposal of Liew and Savona for UPB resembled the original idea from
Imamoglu, using a driven cavity with a nonlinear Kerr media inside. The difference in the proposal was that
they employed not one, but two cavities with these characteristics, allowing also an interchange of photons



2 Backgrounds

Figure 1.1 (Top row) Theoretical proposal for the photon blockade effect by Imamoglu et al. [1]. The picture
on the left illustrates the system that was studied, which consisted of a driven optical cavity that possesses
a nonlinear Kerr media, while the image on the right displays the results demonstrating antibunching in the
second-order correlation function. (Bottom row) Experimental confirmation of the photon blockade effect by
Birnbaum et al. [3]. The image on the left shows the experimental setup, which consisted of Cesium atoms that
were trapped in a Fabry-Perot cavity. The right image shows the experimental results for g(2)(0) = 0.13±0.11,
confirming the existence of PB.

due to the proximity between the cavities. The simulation for such a theoretical scheme indicated that photon
blockade could also be generated without the necessity of achieving strong interactions between light and
matter, and rather, was obtained by the use of small values of the Kerr nonlinearity U , which in principle was
easier to achieve experimentally. The first explanation of the UPB was performed by Bamba et al. (2011) [5],
where they identified that the origin of the photon blockade was due to subtle interferences that occur between
different paths to access a particular state, namely, the state with two photons in the cavity. If the interference
process could happen, the only states allowed were those with one photon (in the weak driving condition), thus
transforming the incident coherent radiation into a single photon turnstile.

An alternative explanation to the UPB phenomenon was proposed by Lemonde et al. (2014), where they proved
that the general aspect of the minimization of the second order correlation function was because the steady state
of the two interacting cavities model corresponded to a particular optimization of Gaussian states, which they
referred to as optimally squeezed Gaussian states. The particularity of these states was that there were optimal
relationships between the displacement in phase space, quantified by the coherent state amplitude α , and the
squeezing factor r, which would lead to a minimization of the g(2)(0).

Although this explanation provided a more general framework for UPB, since the displaced squeezed
states that sustained the g(2) minimization could be obtained by an interference process between a coherent
(|α⟩) and a squeezed (|ξ ⟩) state, the objectives around UPB in later years consisted in proposing various
schemes, mainly systems of Cavity QED, Hybrid Optomechanics, among others, that used the framework of
quantum interference of Bamba to obtain small values in the second order correlation function.

Despite those numerous theoretical proposals for the UPB, attempts to generate the experimental realiza-
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a.) c.)b.)

Figure 1.2 Two interacting cavity model that resulted in the birth of Unconventional photon blockade. a.)
Theoretical results of the second order correlation function with varying laser rotating frame energies of
the cavities Ei, as modeled by Liew and Savona [4] for a Kerr nonlinearity of U = 0.0428γ . b.) Quantum
interference process to obtain UPB in the two interacting cavities model, as proposed by Bamba et al. [5]. c.)
Explanation of the UPB as a particular realization of an optimally squeezed Gaussian state, as formulated by
Lemonde et al. [6].

tion of UPB were hindered by a lack of suitable platforms, as explained by Radulaski [7]. It was not until 2018
that two separate groups were able to experimentally demonstrate this effect.

The group of Snijders et al. [8] used a single quantum dot that was simultaneously coupled to two or-
thogonally polarized cavity modes, and by tuning the input and output state of the polarization, they were able
to observe UPB. The setup consisted of a self-assembled InAs/GaAs quantum dot embedded in a micropil-
lar cavity. This quantum dot presented a fine structure splitting, which allowed it to interact with different
polarization modes of the cavity. Their focus consisted of carefully studying the dependence between the
excitation angle of the cavity modes and the output polarization angle, finding that UPB is possible when
both cavity modes are excited. They were able to measure values as low as 0.005 in the g(2)(0) with their scheme.

On the other hand, Vaneph et al. [9] had a different approach than the experimental setup from Snijders.
They used a scheme of two coupled superconducting resonators (Nb), one being linear and the other weakly
nonlinear, which allowed them to find Unconventional Photon Blockade in the microwave region. The weakly
nonlinear resonator was achieved by coupling the end of the resonator to a SQUID. The relevant parame-
ters of the system, such as nonlinear strength U and coupling, J were tuned by means of the SQUID flux
φ0. The parameters they found were ωa = ωb = 2π × 5.878GHz, J = 2π × 25MHz, U = 2π × 0.3MHz and
γ = 2π ×8MHz. They were specifically chosen so that U fulfilled the optimal conditions proposed by Bamba
et al., given by Equations (3.10). Which such a setup, Vaneph et al. were able to confirm the Gaussian nature of
the state, and to minimize the g(2)(0). The best results showed a minimal value of g(2) ≈ 0.4 for a population
of 10−2 microwave photons.
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Figure 1.3 Experimental scheme used by Vaneph et. al [9] to measure UPB in the microwave regime. The
image of the left corresponds to the coupled Nb resonators, while the image of the right displays the complete
scheme to detect UPB.

Another seminal contribution to the field of photon blockade came in 2020 when Zubizarrieta et al. [10]
showed that the light emission characteristics of different systems associated specifically with conventional or
unconventional blockade mechanisms could be explained from the unified framework of interference between
quantum states and classical components. The theoretical aspects of this formalism, called Interference of
quantum states, will be a crucial component for analyzing the results of photon blockade through the second
order correlation function. For that reason, a complete derivation of the process will be explained in section 2.5.

The view introduced by Zubizarrieta established a more general explanation of the methods to be employed
to create single photon sources from the photon blockade effect, indicating that, since both conventional and
conventional features are understood from the same framework, a single system could be capable of generating
both types of blockades, simply by properly tuning its parameters. This represented a major contribution
because attention could now be centered in creating feasible experimental designs that exhibit both types of
blockades. As will be later shown, a semiconductor cavity system strongly interacting with a self-assembled
quantum dot is capable of generating both CPB and UPB, which, due to the excellent experimental control that
is currently available for this type of system, makes it a promising candidate for implementation as a single
photon source. Furthermore, this type of setup can be built in such a way as to take advantage of some of their
properties, such as intentionally including asymmetries in the microcavities which are directly related to the
polarization properties of the light. This allows the inclusion of more relevant contributions to the dynamics
that can be used as a parameter of control for tuning photon statistics, and therefore expanding the possibilities
for building stable single photon sources. This aspect will be exhaustively explored in section 3.3.
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1.2 The emergence of Quantum Optics

Light is a phenomenon that has inevitably inspired and aided in human evolution in countless ways. Some
vital applications of light range from its usefulness as a power source passed throughout the development of
agriculture by using light to grow crops, continuing through the establishment of communication systems such
as the telegraph and Internet, and finally, serving even for artistic and cultural expressions, came from ancient
rituals with fires to the modern stage lighting in theater.

The earlier formal study of the properties of light could be traced back to the ancient Greeks, where some
treatises by Aristotle regarding the nature of light and shadows could be found. Afterward, the development
of the scientific method in the 17th century inspired the work of scientists such as Robert Hooke and Isaac
Newton in order to try to find mathematical models that could describe the nature of light. Particularly, the
contributions of Newton in his renowned work Hypothesis of light gave the light a corpuscular nature, which
was emitted in all directions from the source. He used his vision to explain a wide range of phenomena,
such as the behavior of light when it passes through a prism. On the other hand, the opposing theory was
proposed by the Dutch mathematician Christiaan Huygens. He developed a theory in 1690 that postulated
light as a wave that propagates through an invisible medium, called luminiferous ether, which was later proven
to be nonexistent by the famous Michelson-Morley experiment. Among the main explanations of the wave
theory of light, the most prominently supported effects were the correct description of interference and diffrac-
tion, as supported by the experiments performed by Thomas Young in the 1800s. The debate came to an
“end” in 1850 when Leon Foucault was able to find a way to measure the speed of light, discovering that
light would travel slowly in a denser medium, contrary to the claims of Newton’s corpuscular theory that it
would travel faster, and for that reason, wave theory was constituted as the correct depiction of the nature of light.

The modern view of light began with the blooming of experiments on electricity and magnetism, such as the
ones performed by Michael Faraday and Ampère. Nevertheless, it was the Scottish mathematician James Clerk
Maxwell who envisioned light as a new form of a wave, the so-called electromagnetic wave. He proposed a
set of four equations that explained and related the oscillation of electric and magnetic fields, which could be
derived from a pair of wave equations for these fields that correctly propagated at a velocity c = 1/

√
ε0µ0.

Shortly after, the German physicist Heinrich Hertz developed an experiment that generated radio waves, which
behaved just as predicted by Maxwell’s electromagnetism theory.

Although Maxwell’s electromagnetism theory was regarded as one of the most solid theories ever devel-
oped, there were some phenomena that could not be correctly described by this formulation. Specifically, the
experiments on Black Body radiation were irreconcilable with classical electromagnetism, which led to the
renowned ultraviolet catastrophe. This problem was solved at the dawn of the 20th century by Max Planck
(1918 ), suggesting that although the light was a wave, electromagnetic radiation could only be emitted or
absorbed in discrete energy packages which he called quanta, later widely known as photons. In 1905, Albert
Einstein (1921 ) used this interpretation to correctly explain the Photoelectric Effect, and later on, Niels Bohr
(1922 ) would apply it to his model of the hydrogen atom. All these models joined with the mathematical
tools from Erwin Schrödinger (1933 ), Paul Dirac (1933 ), Wolfgang Pauli (1945 ), Werner Heisenberg
(1932 ), Louis De Broglie (1929 ), among others, gave rise to the field of Quantum Mechanics, which
aimed to provide an explanation of matter phenomena at the subatomic scale.
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Due to this theory, the modern perception of light emerged, in which light is neither a particle nor a wave, but
actually, it is described by both behaviors, establishing the famous wave-particle duality of light, proposed by
Louis De Broglie. This was corroborated by multiple experiments, such as the notorious double slit experiment,
which proved not only useful in the description of how light and matter behaves but actually opened the debate
over the multiple interpretations of quantum mechanics, such as the Copenhagen or Many Worlds interpretations.

Continuous studies from quantum mechanics led to fundamental technological developments in the mid-
1950s, such as the creation of the Maser by Townes (1964 ), and afterward the laser by Maiman in the 1960s.
Furthermore, the contributions from the American physicist Roy Glauber (2005 ), such as the development
of a theory of quantum coherence [11], which led to the creation of photon statistics and a complete theory
of the role that coherent states have regarding the quantum properties of light. These discoveries were the
framework that gave rise to the field of Quantum Optics, which aims to explain how photons interact with matter
at the nanoscale level. The seminal paper of Kimble, Dagenais, and Mandel [12] on Photon antibunching in
resonance fluorescence gave the first experimental confirmation that light was composed of photons. Even more,
the experimental confirmation by Slusher et al. [13] that quadratures of light could be reduced further than
the uncertainty of coherent states, i.e., squeezed states of light, set up the field of quantum optics as one of the
most thrilling fields for future developments in communication, computing, and metrology, which applications
that nowadays range from the discovery of gravitational waves at LIGO [14], to the claim of Google to have
reached Quantum supremacy [15].

1.3 Current Advancements in solid state Cavity-QED

In this section, we will briefly review the state of the art of Microcavities, Quantum Dots, and Single Photon
Sources. Each one of them is fundamental for the advancement of quantum technologies and will be a crucial
concept for the development of this thesis.

1.3.1 Microcavities

Optical resonators, or Optical cavities, are devices that use the principle of interference to confine light. The
most simple device that acts as an optical cavity is known as a Fabry Perot cavity, which is composed of
two mirrors facing each other, where light can reflect multiple times, generating constructive and destructive
interference that leads to a set of standing waves known as resonating modes. Meanwhile, Optical microcavities
(Henceforth microcavities) correspond to resonators that have dimensions that are close to the wavelength of
the confined light, generally of the size of a few microns (µm = 10−6m).

There are multiple realizations for microcavities, each one having its own characteristics. A common property
among all of them that measures its quality of confinement is known as the quality factor (Q factor). It is built
as the ratio of the resonant frequency and the bandwidth of the resonance

Q =
ωc

δωc
, (1.1)

and is also understood as a measure of the decaying energy of a system, where Q−1 corresponds to the loss
of energy in the microcavity after one round-trip (Kavokin, 2017, pg. 3 [16]). Nowadays, current techniques
allow the construction of microcavities that exhibit high-quality factors, with designs that vary substantially. In
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particular, we will refer in this thesis to semiconductor microcavities, which are microcavities that are built
using semiconductor materials such as gallium (Ga), arsenide (As), or silicon (Si). The different realizations of
semiconductor microcavities can be mostly classified into three categories: Whispering gallery mode cavities,
Photonic crystals, and Fabry-Perot cavities. Each one will be briefly introduced.

Whispering gallery mode cavities (WGM)

The effect of the principle of use for this type of microcavities was initially discovered in the field of acoustics,
specifically at St. Paul’s Cathedral in London, England, where Lord Rayleigh (1904 ) found that when people
spoke sideways over the curved dome in the church, they could clearly hear one another, even if they were
separated by a great distance [17]. In the context of semiconductor physics, these microcavities are formed by a
closed optical path, on which light can travel around multiple times. Although the shape of these structures
can vary, from triangles, squares, and even hexagons, the usually employed geometry is for circular structures,
where it could be made for disks (2D) or spheres (3D). For these geometries, ultrahigh quality factors, of
the order of 108 and, 109 have been obtained for microtoroid resonators [18] and microsphere resonators,
respectively [19]. One problem with WGM microcavities is that they have low coupling efficiency, meaning
that it is difficult to transfer light into and out of the resonator. For a review of the current methods for WGM
coupling, see [20]. However, they are suitable for applications for sensing and the study of nonlinear optics.

a.)

b.)

c.)

Figure 1.4 a.) Whispering Gallery of St. Paul’s Cathedral, London, England. b.) Snapshot of whispering
gallery modes. Image is taken from [21]. c.) Design for several Whispery Gallery Modes microcavities,
showing Microspheres, Microtorids and micro bottles. Image taken from [22].

Photonic crystals (PhC)

Photonic crystals are optical structures on the nanometric scale, which are formed from a periodic arrangement
of dielectric materials, such as semiconductors, that generate a bandgap within the structure. This forbids the
transmission of frequencies of light that reside inside this photonic bandgap. Furthermore, by deliberately
introducing a defect in the periodicity of the structure, light can be confined over a specific region. Although
previously these structures presented quality factors of the order of Q = 103 [23], current technologies have
found methods for obtaining ultrahigh photonic crystal cavities, with reported values of Q = 8×105 [24]. One
crucial application of the theory of photonic crystals resides in the fact that these structures unexpectedly arise
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in biological systems, such as in the wings of some butterflies (The Colombian Greta Oto species, also as
Glasswing butterfly), and in some bugs, such as the Colombian Jewel bettle. Photonic crystals on these animals
allow the generation of iridescence, which is responsible for their vibrant colors.

Figure 1.5 (Top row) Pictorial representation of different dimensions for photonic crystals, image taken from
[25]. (Bottom row) Photographs of the Colombian Glasswing butterfly. Electron microscope images reveal the
periodic structure responsible for iridescence. Image is taken from [26].

Fabry-Perot cavities (FPC)

As mentioned earlier, Fabry Perot microcavities are structures that use two mirrors that allow multiple reflections
of light, creating resonating modes. The reflections on these microcavities can be achieved by employing
mirrors composed of single (usually metallic) materials (Kavokin, 2017, pg. 8 [16]), or by using alternating
layers of materials with different refractive indexes. The latter is commonly known as Distributed Bragg
Resonators (DBR). An adequate design of the thickness of each layer, and a correct selection of the refractive
indexes, can cause the DBR to confine light from a specific range of wavelengths (Kavokin, 2017, pg. 9 [16]).
These results essential for the development of high-quality factor microcavities.

The semiconductor microcavity that will be of most interest in this thesis consists of the so-called pillar
microcavities. They are structures that employ DBRs on the top and the bottom in order to confine light in the
vertical direction, while light in lateral directions is normally confined by total internal reflection. They are
multiple techniques in order to grow these pillars. Molecular beam epitaxy (MBE) is one of the most commonly
used techniques. It consists of a process in which atoms are directed onto a substrate, where they deposit to
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a.) b.)

Figure 1.6 a.) An AlAs/GaAs micropillar that exhibited ultrahigh quality factors, image taken from [27]. b.)
Example of a micropillar with an elliptical geometry, image taken from [28].

form a thin film. the exact dimension of the films can be controlled with the properties of the source, such as
the temperature, pressure, flux, etc. Also, the ultra-high vacuum conditions that are normal for these setups
account for the precise growth of the thin semiconductor layers. This method also allows growing active media,
such as quantum dots and quantum wells inside the microcavity, facilitating the creation of setups that are ideal
for the study of light-matter interactions. It is important to note that the thin film growth method employed
in MBE for the DBR corresponds to a Frank Van der Mewe (FM) method, also known as the layer by layer
method. It is one of the three techniques of thin film growth, which occurs when adatoms attach preferentially
to the surface. The term adatom stems from adsorption-atom, which corresponds to the effect where atoms
adhere to one another (Adsorption is thus very different from absorption and should not be confused). The
other two methods will be mentioned in the next subsection.

On the other hand, they are also several techniques for controlling the geometry of the microcavities, such as
electron beam lithography or focused ion beams. The quality factor for these microcavities ranges between
6.000-20.000, however, ultrahigh quality factors exceeding Q = 250.000, have been already demonstrated in
micropillars that used 36(32) AlAs/GaAs layer pairs in the top (bottom) DBR [27].

1.3.2 Quantum Dots (QD)

The continuous comprehension of semiconductor physics led to experiments where a constraint in one of the
directions of motion resulted in a reduced dimensionality, due to quantum confinement. This is only possible
when dimensions of such confinement become comparable to the De Broglie scales of the carriers in the
semiconductors. From this idea, the concept of solids was translated to quantum wells (2D), continuing to
quantum wires (1D), and finally getting to quantum dots (0D). The complete reduction of the dimensionality
in Quantum Dots led to the discretization of their energy levels, exhibiting thus the same quantized energy
structure of real atoms. For this reason, they are also referred to as artificial atoms. They have dimensions
of a few nanometers and their characteristics can be controlled by varying the growth conditions, such as
the temperature and time of the process. There are various types of quantum dots, including semiconductor,
metallic, and superconducting QDs.

In this thesis, we will focus on semiconductor QDs that are grown by the method of molecular beam epitaxy,
the same one that was used to build Fabry Perot microcavities that employ DBRs. As was mentioned in the
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discussion of these types of microcavities (1.3.1), the MBE method that was used to grow the thin film layers
was known as the Frank Van der Mewe (FM) method. Here, although the same MBE process can be used to
grow the QDs, the thin film growth method is different from the aforementioned method. Specifically, for the
growth of QDs by means of molecular beam epitaxy, the Stranski-Krastanov (SK) method is employed, also
known as the layer plus island method.

The steps of the SK method can be understood as follows: First, a thin film of a semiconductor is deposited over
a substrate. The thickness of this film continues to grow by MBE deposition until it reaches a critical thickness.
When this happens, the strain energy overcomes the surface energy, leading to the formation of islands, which
are later covered with other semiconductor materials in order to protect them, or grow further heterostructures.
The value of the critical thickness depends on the lattice mismatch between the semiconductor and the substrate.
A common confusion arises from the fact that epitaxy refers to the growth of a film over a substrate with the
characteristic that they both share the same crystal structure. However, there could still be a mismatch in the
lattice constants. This can happen due to different compositions of the film semiconductor and the substrate,
even though, as required, the crystal structure remains the same. This can be observed, for example, by doping
the same material that was used as a substrate and depositing a thin film. A good experimental demonstration
of SK QDs was made by Yamaguchi et al. [29]. Semiconductor quantum dots can be constituted inside pillar
microcavities by the MBE technique, where common materials are InAs or InGa QDs, which are sandwiched
between AlGaAs/GaAs heterostructures [30–32].

a.) b.)

Figure 1.7 a.) Schematics of QD formation via the Stranski-Krastanov method, image taken from [33]. b.)
Current applications of semiconductor quantum dots, Image taken from [34]

Semiconductor quantum dots have a wide range of applications, from developing quantum technologies
such as single photon sources to everyday technologies like cameras and displays, and even in biological
systems for accurate tracking and drug delivery. For an in-depth revision of current progresses and future
challenges, refer to the excellent review by F. Pelayo Garcia de Arquer et al. [34].

1.3.3 Single Photon Sources

The last relevant quantum technology that will be reviewed is the single photon sources (SPS). SPS are devices
capable of producing streams of single photons, making them crucial for fields such as quantum computing,
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quantum communications, and testing intrinsic quantum mechanical properties in quantum optics setups. These
applications are based on the ability to control the production of single photons, which allows for the creation of
photonic qubits. In these qubits, information is encoded in the properties of the photon, such as its polarization
or momentum, making them ideal for fast and efficient transmission over long distances [35].

Some key concepts that surround SPS are the brightness and the purity of the emitted photons. The first
one corresponds to the number of single photons that can be emitted per unit of time, while the latter accounts
for the degree of indistinguishability of the emitted photons. While the single-photon nature of an SPS can
be studied by means of a Hanbury Brown Twiss setup, which consists of an interferometric scheme used to
measure the second-order correlation function (The experiment will be later clarified when we introduce the
notion of quantum correlation functions in section 2.3). On the other hand, the purity of the photons can be
quantified by using a Hong Ou Mandel setup [36], which consists of an interferometer that interferes single
photons on a beam splitter and measures the probability of detecting photons at the same port. If they are
indistinguishable, the probability of detection to observe each photon at different ports is nullified by a quantum
interference process (Gerry-Knight, 2004, pg. 141 [37]). Current challenges in the field correspond to the
production of high-purity and brightness single photon sources.

Single photon sources (SPS) can be divided into two main categories: probabilistic and on-demand. Probabilis-
tic SPS emit photons randomly with a specific probability, while on-demand SPS emit photons after excitation
of the system, whether by optical or electrical pulses, resulting in a controlled and deterministic emission rate.
The most famous schemes of probabilistic SPS rely on the effects of spontaneous parametric down conversion
(SPDC) or four-wave mixing (FWM). While on-demand sources are based on schemes such as single photon
emitters or NV color centers. A noteworthy remark was made by Eisaman et al. [35] in which they clarify that
although the classification of SPS is feasible in theory, real applications lead to a blur in the distinction, because
there are several processes that can turn a deterministic emission into a probabilistic one, such as losses in the
system.

Spontaneous Parametric Down Conversion (SPDC)

Spontaneous parametric down conversion refers to the nonlinear effect on which a high energy photon (pump),
after interacting with a nonlinear media, can decay into two lower energy photons, known as signal and idler
photons. This process can be achieved by means of interaction with nonlinear crystals such as Beta Barium
Borate (BBO) or Potassium Titanyl Phosphate (KTP) crystals. This decay process accounts for a physical
process that conserves energy and momentum, known as phase matching conditions:

ωp = ωs +ωi (1.2a)

kp = ks +ki. (1.2b)

Furthermore, the relationship among the polarization states between the pump and the idler and signal photons
differentiates the type of SPDC that is achieved. Type 0 SPDC is obtained when the polarization of the incident
beam is equal to both polarization states of the signal and idler photon. On the other hand, for type I, once again
both signal and idler share the same polarization state, but they are orthogonal to the incident beam. Finally, in
type II, the signal and idler photons have an orthogonal polarization state. This allows the generation of pairs of
entangled photons, and furthermore, since the photons are correlated, the detection of one photon heralds the
presence of another, effectively establishing a heralded single photon source. However, these sources may not
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be adequate for implementation in scalable quantum technologies, since the down conversion rate happens for a
few photons over millions of incident photons.

Quantum dots SPS

Quantum dots single photon sources are one of the most prominent schemes for producing on-demand single
photons. The level of control of the design of the quantum dots, such as for epitaxially grown QDs, and the
enhanced capabilities of confinement in optical resonators, account for the high versatility of these systems to
act as single photon sources. One great advantage of this system is that the wavelength of the emitted light
can be tailored depending on the employed semiconductor compounds for the quantum dots and microcavities,
and also, can be built to perform in increasing temperatures, reaching values close to even 100K [38], although
with the drawback of the introduction of non-desired effects such as broadening due to phonons [39]. for this
reason, most of the experimental demonstrations are performed using cryogenic cooling (4K). Furthermore,
the development of techniques such as the fluorescence imaging method allows to precisely determine the
position of the self-assembled quantum dots, with an uncertainty of 20nm, which allows growing SPS based on
positioned quantum dot exhibiting high brightness and purity [40].

The properties of these schemes provide single photon emission with high indistinguishability and efficiency,
and that could be generated deterministically. For a complete review of the progress of quantum dot-based SPS,
we encourage the reader to refer to the work of Arakawa and Holmes [39].

In the following sections, we will discuss how the photon blockade effect can further improve single photon
sources based on semiconductor quantum dot-microcavity systems [41], due to its distinctive characteristic
of suppressing multiphoton events, improving the quality of these SPS and making them more suitable for
quantum applications.

1.4 Scope of this thesis

Having understood the framework on which the phenomenon of Photon Blockade Effect relies, as well as
the current advancements on the technologies employed for its generation, we proceed to properly define the
general and specific objectives of this thesis.

General objective:
To study the differences and similarities between conventional photonic blockade effect (CPB) and the uncon-
ventional photonic blockade (UPB), reviewing whether the current criteria used for the classification of such
systems as single-photon sources are adequate.

Specific objectives:
• Conduct an in-depth literature review related to previous studies on photonic blockade.
• To pose and solve the master equations of the systems used to describe the CPB and the UPB.
• Calculate quantum correlation functions with and without time delay to analyze the ability to have

antibunching effects and Sub-poissonian distributions in the systems.
• Study the ability to exhibit conventional and unconventional behaviors simultaneously.
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To ensure the accomplishment of these objectives, the project is organized as follows:

Chapter 2 provides the Theoretical Framework, which serves as the foundation for understanding the Photon
Blockade effect. This chapter explicitly explores the essential tools necessary to grasp the concept. It encom-
passes a wide range of topics, starting from the fundamental principles of Quantum Mechanics. Here, we delve
into significant aspects, such as the definition of transforming into the rotating frame of a laser, as well as the
comprehension of Gaussian states and two-level systems.
Moreover, given the inherent connection between the Photon Blockade effect and the interaction between light
and matter, an extensive section dedicated to this topic is included. This section offers a comprehensive review
of critical concepts, including the quantization of the electromagnetic field. Furthermore, it examines both the
semiclassical and fully quantum perspectives of this interaction, providing a well-rounded understanding of the
phenomenon.

Furthermore, a dedicated section is introduced to explore the concept of Quantum correlation functions,
which is based on the theory of Glauber. These correlation functions play a pivotal role in understanding the
statistical properties of light, making them a fundamental notion in the classification of single photon sources.
To expand upon the basic definition of quantum correlation functions, we also delve into the notion of fre-
quency filtered quantum correlation functions. This approach involves calculating the correlation functions by
considering specific segments of the emission spectrum, instead of the conventional assumption of the complete
spectrum. By incorporating this perspective, we gain a deeper understanding of the intricate relationship
between the correlation functions and the emission characteristics.
Additionally, we explore how the phenomenon of interference of quantum states can be linked to the statistical
properties of light. This analysis allows us to highlight the significance of higher order contributions of quantum
correlation functions when developing an accurate criterion for characterizing single photon sources. By
considering these higher order effects, we can provide a more comprehensive and precise description of the
behavior and characteristics of single photons.

Later, in Chapter 3, we present the significant outcomes derived from the simulations conducted to explore the
Photon Blockade effect. Initially, we introduce the solutions associated with the models for Unconventional
Photon Blockade. These solutions are obtained through numerical methods by solving the master equations,
as well as through analytical approaches where we apply concepts such as Gaussian states and higher order
correlation functions to analyze the phenomenon of PB.
Furthermore, we thoroughly investigate the concept of Simultaneous Photon Blockade, where a system exhibits
both conventional and unconventional features by appropriately adjusting the relevant parameters. In this
analysis, we not only replicate the treatment discussed in the section dedicated to UPB, but also emphasize
the primary distinctions between these two types of blockades. To accomplish this, we draw upon the theory
of frequency filtered correlations and the notion of phonon-mediated coupling, enabling a comprehensive
understanding of the contrasting characteristics.
Additionally, we introduce an innovative model for a photon source, which not only enables on-demand single
photon generation but also offers the capability to control the polarization state of the photons by simply
tuning the magnetic field. This advancement holds significant potential for various applications in quantum
technologies, as it grants researchers precise control over the polarization properties of photons, opening doors
to new possibilities in the field.
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Finally, in Chapter 4, we summarize the main contributions and findings of our work regarding the Pho-
ton Blockade effect, as well as discuss the limitations and possible future directions of this research.



Chapter 2
Theoretical framework

In this chapter, the theoretical tools that will be used in order to analyze the quantum optics systems related
to Photon Blockade will be presented, with the hope to help those who want to learn about the beautiful (but
complicated) field that is quantum optics.

In the opening section of this chapter, Formalism of quantum mechanics, we establish the fundamental
concepts essential for comprehending quantum optics systems. We begin by introducing the transformation
into a rotating frame of a laser, which proves crucial in effectively handling time-dependent contributions in the
Hamiltonian. This transformation allows us to disentangle the effects of coherent pumping and facilitates a
clearer analysis of the Photon Blockade phenomenon. Furthermore, we delve into Gaussian states, which play a
vital role in understanding the Unconventional Photon Blockade effect. By combining coherent and squeezed
states, these optimally squeezed Gaussian states exhibit minimized second-order correlation functions when
specific parameters are chosen appropriately. We provide a thorough definition and examination of coherent
and squeezed states to foster a solid understanding of their characteristics and their impact on the Photon
Blockade effect. Additionally, we introduce the Wigner function, a quasiprobability distribution that visualizes
quantum mechanics in the phase space. Its use allows us to explore potential connections between the optimal
parameters minimizing the second-order correlation function in the Unconventional Photon Blockade and the
representation of these states in the phase space.

The second section, Light-matter interaction, focuses on the fundamental dynamics between light and matter.
We first explore the semiclassical theory, where the matter contribution is quantized, but the light is understood
as a classical component. For this case, we focus on the solutions of the population dynamics of a two-level
system under different driving conditions. Afterward, we briefly return to the notion of the quantization of the
electromagnetic field. Finally, by quantizing the electromagnetic field, we enter the realm of quantum theory
for light-matter interaction. In particular, we examine the Jaynes Cummings Hamiltonian, a key framework that
provides insights into the behavior and properties of light-matter systems. These foundational concepts form
the basis for our analysis of the Photon Blockade effect.

The third section, Quantum correlation functions, introduces the concept of quantum correlation functions
proposed by Roy Glauber. We derive the mathematical formalism for second and higher-order correlation
functions, enabling the characterization of photon bunching and antibunching. Furthermore, in the following
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section, entitled Frequency filtered quantum correlation functions, we explore correlations between photons of
different frequencies, providing insights into the complex behavior of light and its statistical properties. These
sections contribute to a deeper understanding of the Photon Blockade effect and its manifestation across the
electromagnetic spectrum.

Finally, on the fifth section, called Interference of quantum states, we show the theory that explores the
mixing of quantum states using a beam splitter and its impact on the second-order correlation function. By
analyzing this interference, we gain insights into how coherent and incoherent contributions can be combined
to generate single photons, refining the understanding of classifying photon sources. This section enhances the
criteria for characterizing single-photon sources, and serves to analyze whether is there a difference between
the incoherent components associated to the distinct mechanisms of Photon Blockade.

Disclaimer: This thesis builds upon the theoretical framework presented in Santiago Bermúdez Feijóo
bachelor thesis, entitled “Statistical and entanglement properties of light emitted by two interacting cavities”,
which was carried out with the same advisor of the present thesis. Nevertheless, the theoretical framework
here presented has been significantly expanded, reorganized, and revised to include new relevant information.
The modifications include a chapter regarding the formalism of quantum mechanics employed throughout the
research project, a revision, and the addition of information on the subsections for coherent and squeezed states,
as well as for the theory of open quantum systems. Furthermore, a complete section for light-matter interaction
and its particularities has been added, as well as the theory of frequency-filtered correlations. The interested
reader is referred to [42] for further information on the original framework.

2.1 Formalisms of Quantum Mechanics

2.1.1 Laser rotating frame transformation

One theoretical method that will be repeatedly used throughout this thesis is known as the laser rotating
frame transformation. It consists of a formalism in which the explicit time dependence of Hamiltonian terms
associated with coherent driving can be removed by making an appropriate change of coordinates by means of
a unitary transformation. The steps of this method will be highlighted next.

Let’s suppose that we have a time dependent Hamiltonian H(t) that can be split as

H(t) = H0 +V (t), (2.1)

where H0 corresponds to the time independent Hamiltonian and V (t) is the time dependent contribution. The
explicit time dependence of the Hamiltonian makes the time evolution of the state of the system more complex
than the case of a time independent one. However, in some cases, one can surpass this problem if a transforma-
tion that removes such dependence is performed. If such a transformation is possible, then the time dependency
of the Hamiltonian disappears and the effort to find the dynamics associated with the Hamiltonian becomes
straightforward.

To find the solution to this problem, first is shown that the evolution of a wave function due to a time in-
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dependent Hamiltonian is calculated as

|Ψ(t)⟩= Û0(t,0) |Ψ(0)⟩= E−iH0t/ℏ |ψ(0)⟩ , (2.2)

where Û0 is the usual propagator. Since In this case |Ψ(t)⟩ does not contain the time dependent contribution of
the Hamiltonian V (t), this state does not depict the correct evolution of the system. To completely describe the
evolution, one must apply a formalism that rotates the current state vector,∣∣Ψ′(t)

〉
= R̂(t) |Ψ(t)⟩ ⇐⇒ |Ψ(t)⟩= R̂†(t)

∣∣Ψ′(t)
〉
. (2.3)

Taking the time derivative of |Ψ′(t)⟩, and multiplying by iℏ gives

iℏ∂t
∣∣Ψ′(t)

〉
= iℏ

(
∂t R̂(t)

)
|Ψ(t)⟩+ iℏR̂(t)∂t |Ψ(t)⟩ (2.4)

= iℏ
(
∂t R̂(t)

)
|Ψ(t)⟩+ R̂H |Ψ(t)⟩

= iℏ
(
∂t R̂(t)

)
R̂†(t)

∣∣Ψ′(t)
〉
+ R̂HR̂†(t)

∣∣Ψ′(t)
〉

iℏ∂t
∣∣Ψ′(t)

〉
= H̃

∣∣Ψ′(t)
〉
.

Therefore, it is obtained that the rotated state follows Schrödinger equation with a modified Hamiltonian

H̃ = iℏ[∂t R̂(t)]R̂†(t)+ R̂(t)HR̂†(t). (2.5)

The choice of R̂(t) depends on the structure of each Hamiltonian, and an appropriate selection will make the
Hamiltonian H̃ to be time independent. In most cases, R̂(t) will consist of an exponential of the number operator
of the system.
E.g., :

R̂σ (t) = eiωLσ̂†σ̂ t = eασ̂†σ̂ (2.6a)

R̂a(t) = eiωLâ†â t = eα â†â. (2.6b)

As it will be shown in the next chapters, these operators are useful for moving into the laser rotating frame,
where in most cases, a time independent version of the system can be obtained. When dealing with these
transformations, and given that normally R̂ is proportional to a hermitian operator (i.e., the number operator),
one encounters that the transformation R̂(t)HR̂† translates into terms of the form eαÂB̂e−αÂ, which can be
expanded as

eαÂB̂e−αÂ = B̂−α
[
Â, B̂

]
+

α2

2!
[[

Â, B̂
]
, Â
]
− ... (2.7)

The usual combinations that one founds are Â= ĉ†ĉ, B̂= ĉ(ĉ†), so one must calculate the following commutators

[ĉ†ĉ, ĉ] = ĉ†[ĉ, ĉ]+ [ĉ†, ĉ]ĉ = [ĉ†, ĉ]ĉ =−ĉ (2.8a)

[ĉ†ĉ, ĉ†] = ĉ†[ĉ, ĉ†]+ [ĉ†, ĉ†]ĉ = ĉ†[ĉ, ĉ†] = ĉ†. (2.8b)
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This property holds true when ĉ is either a fermionic (σ̂ ) or bosonic (â) operator,

[σ̂†
σ̂ , σ̂ ] = [σ̂†, σ̂ ]σ̂ = σ̂

†
σ̂

2 − σ̂(σ̂†
σ̂) =−σ̂

[â†â, â] = [â†, â]â = (−1)â =−â.

The equality for the conjugate operators is equally proven. Since in the commutators one recursively obtains
either −ĉ or ĉ†, then the result of the property eαÂB̂e−αÂ for each case is

eα ĉ† ĉ ĉ e−α ĉ† ĉ = ĉ
{

1+α +
α2

2!
+

α3

3!
+ ...

}
= ĉe−α (2.9a)

eα ĉ† ĉ ĉ† e−α ĉ† ĉ = ĉ†
{

1−α +
α2

2!
− α3

3!
+ ...

}
= ĉ†eα , (2.9b)

and given that time dependent terms of coherent driving are usually of the form ∝
(
ĉeα + ĉ†e−α

)
, then

when moving to the rotating frame of the laser the exponentials cancels out leaving only the driving term
proportional to ∝ (ĉ+ ĉ†). Equations (2.9) hold either for bosonic or fermionic operators, and the results of
their transformation will be crucial for some models used in this thesis.

2.1.2 Gaussian states in Quantum Mechanics

The concept of phase space, when treated from a quantum mechanical perspective, is a little different from its
classical analog. In the latter one, the state of a system is entirely represented by exactly knowing the position
and momentum coordinates, which can be described in the phase space as a point. On the other side, due to
the restrictions that naturally arise from the uncertainty principle, one can not represent the state of a system
as a point in the phase space, because of the incompatibility to measure with infinite precision conjugated
variables such as position and momentum. Nevertheless, this concept can be extrapolated into a new definition
of phase space, by using generalized coordinates that are in agreement with the uncertainty principle. This
means that states envisioned through the phase space will not be represented as points, but rather as areas that
are in agreement with the uncertainty principle.

The concept of phase space in quantum mechanics will be a vital tool for visualizing the evolution of states to
determine their quantum properties. Some significant types of states are the so-called Gaussian states, which
means that their phase space representation has a Gaussian shape. The most famous states of this kind are the
coherent states and squeezed states. In the next subsection, their definition and properties will be profoundly
analyzed.

Wigner function

Regarding phase space in quantum mechanics, there are many ways in which states can be represented. Among
them, the most common tool that facilitates the exploration of dynamics in phase space is the Wigner function,
introduced by Eugine Wigner in 1932. It is a quasiprobability distribution, which means that it can take negative



2.1 Formalisms of Quantum Mechanics 19

values, commonly related to nonclassical states [43]. It is defined in terms of the density operator as

W (x, p) =
1

2πℏ

∫
∞

−∞

dx′e−ipx′/ℏ 〈x+ x′/2
∣∣ρ ∣∣x− x′/2

〉
(2.10a)∫

∞

−∞

dx
∫

∞

−∞

d pW (x, p) = 1. (2.10b)

Now, we will calculate the Wigner representation for some states, highlighting their most relevant properties.
We will start by giving the representation of Fock states |n⟩.

An equivalent form of writing the Wigner function employs the characteristic function, Ĉρ(λ ) = Tr{ρD̂(λ )},
where D̂ = exp

{
−|λ |2/2

}
exp
{

λ â†
}

exp{−λ ∗â} is referred to as the displacement operator, whose nature
will be clarified when we introduce the formal definitions of coherent states. The Wigner representation using
the characteristic function is,

W (α) =
1

π2

∫
eλ ∗α−λα∗

Ĉρ(λ )d2
λ (2.11)

Since the characteristic function depends on the density matrix, it will have a particular representation for each
state. For the case of the Fock basis, ρ = |n⟩⟨n|, and Cρ(λ ) turns to be

ĈFock(λ ) =
∞

∑
m=0

⟨m|n⟩⟨n| D̂(λ ) |m⟩= ⟨n|D(λ ) |n⟩= e−|λ |2/2 ⟨n|eλ â†
e−λ ∗â |n⟩

using the series expansion for the exponential operator yields,

ĈFock(λ ) = e−|λ |2/2
∞

∑
m=0

⟨n| (λ â†)m

m!
(−λ ∗â)m

m!
|n⟩= e−|λ |2/2

∞

∑
m=0

(−|λ |2)m

m!2 ⟨n| â†mâm |n⟩

= e−|λ |2/2
n

∑
m=0

(−|λ |2)m

m!2

(
n
p

)
= (−1)ne−|λ |2/2Ln(|λ |2)

Where Ln(|x|2) are the Laguerre polynomials. This means that the Wigner function for the Fock states can be
written as

W (α) =
1

π2

∫
eλ ∗α−λα∗

(−1)ne−|λ |2/2Ln(|λ |2)d2
λ

And by using the identity
∫

f (α)eα∗y−z|α|2π−1d2α = z−1 f (z−1y), one obtains the final representation

Wn(α) =
2
π
(−1)ne−2|α|2Ln(4|α|2) (2.12)

Where α is a complex number whose nature will be revealed afterward. An example of the first four Wigner
functions of the Fock states can be seen in Figure (2.1). The negative values on the Wigner function highlight
the nonclassical properties inherent to Fock states, which is a characteristic of non-Gaussian states. The Wigner
function for Gaussian states will be calculated after the formal definition of coherent and squeezed states.
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Figure 2.1 Wigner functions for the Fock state |n⟩, for n ∈ [1,4].

Coherent states

Since their original proposal by Schrödinger, these states have been rigorously studied, especially by Roy
Glauber, who developed the theory of optical coherence [11] by the use of coherence states to describe the
quantum properties of light.

Coherent states have been described in several ways. First, they are defined as the “most classical” states
allowed by quantum mechanics, which means that they correspond to the states that have the lowest possible
uncertainties. They are also defined as the eigenstates of the annihilation operator of the electromagnetic field.
These two properties can be summed up as

(
⟨x̂2⟩−⟨x̂⟩2)(⟨p̂2⟩−⟨p̂⟩2)≥ ( [x̂, p̂]

2

)2

=
1
4

(2.13a)

â |α⟩= α |α⟩ . (2.13b)

To understand better the phase state representation of a coherent state is useful to construct the dimensionless
momentum and position operators, denominated the quadrature operators, which are defined as

X̂1 =
â+ â†

2
(2.14a)

X̂2 =
â− â†

2i
. (2.14b)

Their expected value over coherent states is,

⟨α| X̂1 |α⟩= ⟨α|
{

â+ â†

2

}
|α⟩= α +α∗

2
= Re(α) (2.15a)

⟨α| X̂2 |α⟩= ⟨α|
{

â− â†

2i

}
|α⟩= α −α∗

2i
= Im(α), (2.15b)

this means that the complex α−plane acts as a phase space, with Re(α) and Im(α) being regarded as momentum
and position, respectively. This corresponds to the axis used in Figure (2.1). The Wigner representation of the
coherent states can now be calculated. Starting once again by calculating the characteristic function,

Ĉcoherent(λ ) = ⟨α0| D̂(λ ) |α0⟩= e−|λ |2/2 ⟨α0|eλ â†
e−λ ∗â |α0⟩= e−|λ |2/2eλα∗

0−λ ∗α0 ,
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where the second property of Equation (2.13) was applied. Inserting this characteristic function into the Wigner
function (2.11) gives

Wα0(α) =
∫

d2
λe(α−α0)λ

∗−(α∗−α∗
0 )λ e−|λ |2/2 =

2
π

e−2|α−α0|2 . (2.16)

This means that the phase space representation of a coherent state |α0⟩ corresponds to a displaced circle with
origin in the complex value α0, and its area, as mentioned earlier, is related to the uncertainty of the state. The
results of this can be seen in Figure (2.2), where a value of α0 = 1+ i has been used.

Another important result from coherent states is obtained by expanding them in a base of Fock states

0

0.2

0.4

0.6

Figure 2.2 Wigner’s function of the coherent state |α0⟩, where α0 = 1+ i.

since they form a complete set

|α⟩= ∑
n=0

Cn |n⟩ . (2.17)

By applying the annihilation operator and remembering that coherent states are their eigenstates, then

â |α⟩= α |α⟩= ∑
n=0

Cn â |n⟩= ∑
n=0

Cn
√

n |n−1⟩ .

The recurrence relationship for the Cn coefficients is

Cn =
α√

n
Cn−1 =

α2Cn−2√
n(n−1)

Cn−2 = ...=
αn
√

n!
C0.

By founding the normalization requirement for coherent states, C0 can be obtained, and thus, coherent states
can be represented in the Fock basis as

|α⟩= e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩ , (2.18)
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which is the textbook expression for coherent states. The previous formula helps to find some relevant quantities
of coherent states, such as the probability of finding n photons, P(n):

i). ⟨n|α⟩= e−|α|2/2
∞

∑
m=0

αm
√

m!
⟨n|m⟩= e−|α|2/2

∞

∑
m=0

αm
√

m!
δm,n = e−|α|2/2 αn

√
n!

(2.19)

ii). ⟨α|n⟩= e−|α|2/2 α∗n
√

n!

iii). P(n) = | ⟨n|α⟩ |2 = ⟨α|n⟩⟨n|α⟩= e−|α|2 |α|2n

n!
= e−n̄ n̄n

n!
.

Therefore, it is found that the probability of finding n photons in a coherent state corresponds to a Poisson
distribution, with average photon number ⟨n⟩= n̄ = |α|2. This result corresponds exactly to the photon statistics
obtained by a laser far above the threshold. I will also be a fundamental limit to compare the photon statistics
of different states, which will be tackled later on.

There is another useful way to envision coherent states. Recalling that any Fock state |n⟩ can be thought
of as an n-times application of the creation operator â† over the vacuum, i.e.,

|n⟩= (â†)n
√

n!
|0⟩ , (2.20)

then, one can replace this in the Fock representation of coherent states

|α⟩= e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩ (2.21)

= e−|α|2/2

(
∞

∑
n=0

(α â†)n

n!

)
|0⟩

= e−|α|2/2eα â† |0⟩ .

Taking advantage of the fact that eα∗â |0⟩= 0, then, one can also define a coherent state as

|α⟩= e−|α|2/2eα â†
eα∗â |0⟩= D̂(α) |0⟩ , (2.22)

where D̂(α) is denoted as the displacement operator (whose first appearance was made in the characteristic
function definition of the Wigner function, Equation 2.11, and now its nature will be clarified). This result
shows that coherent states can also be visualized as displaced vacuum states, with the center in the complex
number α , and it also indicates that the fluctuations from both states are the same. Furthermore, the zero
photon state |0⟩ is therefore a special case of a coherent state where α = 0, and it does not correspond to a non
Gaussian state such as the Fock states |n⟩.

Resuming the discussion on the subject of the displacement operator, an equivalent way to rewrite it can be found
by means of the Baker-Hausdorff formula. If Â and B̂ are two operators such that [[Â, B̂], Â] = [[Â, B̂], B̂] = 0,
then

eÂ+B̂ = e−[Â,B̂]/2eÂeB̂. (2.23)
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Choosing B̂ =−α∗â and Â = α â†,

eα â†+α∗â = e−|α|2/2eα â†
eα∗â = D̂(α). (2.24)

Now, we focus on searching what is the effect of a similarity transformation of the annihilation and creation
operators as D̂†(α)âD̂(α) and D̂†(α)â†D̂(α),

D̂†(α)âD̂(α) = e|α|2/2eα∗âe−α â†
âe−|α|2/2eα â†

e−α ∗̂a (2.25)

D̂†(α)âD̂(α) = e−α â†
âeα â†

. (2.26)

Once again, applying the property of Equation. (2.7), and since for Â = â† and B̂ = â the commutators[[
â, â†

]
, â†
]

are all zero, then

D̂†(α)âD̂(α) = â+α. (2.27)

Following a similar procedure for â† yields,

D̂†(α)â†D̂(α) = â† +α
∗. (2.28)

This means that the action of D̂(α) over the creation and annihilation operator is, as its name indicates, to
displace them by a value α . This property will be used later on.

Finally, to see the possible Hamiltonian descriptions for a coherent state, we will apply the open quantum
system formalism (Explained in detail in Appendix A), to find the steady state solution for a Quantum Harmonic
Oscillator driven by a laser. We will consider that this system is in contact with an external environment, which
leads to a loss of photons at a rate κa. This situation can be expressed by means of the following master equation
in Lindblad form,

Ha = ω̃aâ†â+Ωa(â+ â†) (2.29a)

∂tρ = i[ρ,Ha]+
κa

2
(
2âρ â† − â†âρ −ρ â†â

)
(2.29b)

∂t⟨Ô⟩(t) = i
〈
[Ha, Ô]

〉
+

κa

2
(
2⟨â†Ôâ⟩−⟨â†âÔ⟩−⟨Ôâ†â⟩

)
, (2.29c)

where ω̃a = ωa −ωL corresponds to the laser rotating frame frequency and Ωa refers to the strength of the
coherent driving. This Hamiltonian, which is written in the laser rotating frame, is obtained after applying
the transformation given in Equation (2.5). Although the exact procedure to obtain this new Hamiltonian will
be omitted at this point, an example of the complete derivation of a laser rotating frame transformation will
be realized in the following sections, when we deal with the problem of photon statistics in the driven Jaynes
Cummings model, Sec 3.2.

We will begin by finding the steady state solutions for an operator of the form Ô = â†µ âν . Applying the
Equation (2.29 c), this yields

∂t⟨â†µ âν⟩(t) = i
〈
[ω̃aâ†â+Ωa(â+ â†), â†µ âν ]

〉
+

κa

2
(
2⟨â†(â†µ âν)â⟩−⟨â†â(â†µ âν)⟩−⟨(â†µ âν)â†â⟩

)
.

(2.30)
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First, taking the case where µ,ν = 1, i.e., the equation of motion for the number operator, gives â†â

∂t⟨â†â⟩(t) = i
〈
[ω̃aâ†â+Ωa(â+ â†), â†â]

〉
+

κa

2
(
2⟨â†(â†â)â⟩−⟨â†â(â†â)⟩−⟨(â†â)â†â⟩

)
.

Using the operator algebra for the bosonic operators, [â, â†] = 1, one simplifies the previous equation to obtain

∂t⟨â†â⟩(t) = iΩa
(
⟨â⟩−⟨â†⟩

)
−κa⟨â†â⟩. (2.31)

Now, since the terms ⟨â⟩ and ⟨â†⟩ appear on the equation of motion for ⟨â†â⟩, we will need to apply once again
the procedure for finding the corresponding equation for one of both quantities (since the missing one can be
obtained by taking the complex conjugate of the equation). We take ν = 0, µ = 1 so we will find the equation
of motion for ⟨â†⟩,

∂t⟨â†⟩(t) = i
〈
[ω̃aâ†â+Ωa(â+ â†), â†]

〉
+

κa

2
(
2⟨â†(â†)â⟩−⟨â†â(â†)⟩−⟨(â†)â†â⟩

)
.

Applying some useful relations, such as ⟨â†ââ†⟩= ⟨â†⟩+ ⟨â†â†â⟩, the following master equation is obtained

∂t⟨â†⟩(t) = i
(
ω̃a⟨â†⟩+Ωa

)
− κa

2
⟨â†⟩. (2.32)

And by taking the hermitian conjugate one gets

∂t⟨â⟩(t) =−i(ω̃a⟨â⟩+Ωa)−
κa

2
⟨â⟩. (2.33)

Using the Equations (2.31-2.33), it is possible to find the following steady state solutions.

|α|2 = ⟨â†â⟩ss =
4Ω2

a

κ2
a +4ω̃2

a
(2.34a)

⟨â†⟩ss =
2iΩa

κa −2iω̃a
. (2.34b)

So, we have been able to find an expression that relates the population of a coherent state
(
|α|2

)
with the

parameters of the driven quantum harmonic oscillator master equation.

Squeezed states

A more general kind of state results when each quadrature must not necessarily have the same amount of
uncertainty as the other, so that they have a less amount than the one related to coherent states, although their
multiplication must still be equal to 1/4 in order to be considered minimum uncertainty states. These types of
states are the Squeezed states, which in order to satisfy the uncertainty principle, must fulfill that the quadrature
that is not being squeezed must have a noise increase. This property can be written as〈(

X̂1
)2
〉
<

1
4
. (2.35)

As in the case of coherent states, squeezed states can be described by applying an operator, called the squeezing
operator, to a given state.

|ζ ⟩= Ŝ(ζ ) |ψs⟩ , (2.36)
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where Ŝ(ζ ) = exp
(

ζ ∗

2 â2 − ζ

2 â†2
)

and ζ = reiθ . the parameter r is called the amplitude squeezing parameter
and can take values between 0 < r < ∞. The θ angle indicates the direction in which the squeezing of the
deviation takes place, satisfying 0 < θ < 2π . For the case of |ψs⟩= |0⟩, the states are referred to as squeezed
vacuum states.

Similarly than for coherent states, the similarity transformation for â and â†, as given by the Baker-Hausdorff
lemma are

Ŝ†(ζ )âŜ(ζ ) = âcoshr− eiθ â† sinhr = âξ (2.37)

Ŝ†(ζ )â†Ŝ(ζ ) = â† coshr− e−iθ âsinhr = â†
ξ
. (2.38)

From this, the deviation of the quadrature operators on squeezed states can be found, and from there, the
squeezing of each quadrature can be quantified. Remembering that the definition of the quadrature operators is

X̂1 =
â+ â†

2

X̂2 =
â− â†

2i
,

then, for the special case of squeezed vacuum states, one has to calculate the following product

⟨(∆X̂1)
2⟩= ⟨X̂2

1 ⟩−⟨X̂1⟩2

⟨ξ |(∆X̂1)
2 |ξ ⟩= ⟨0| Ŝ†(ξ )(∆X̂1)

2Ŝ(ξ ) |0⟩ ,

which is completely expressed as

⟨0| Ŝ†(ξ )(∆X̂1)
2Ŝ(ξ ) |0⟩= 1

4
[
⟨0| Ŝ†(â2 + ââ† + â†â+ â†2)Ŝ |0⟩− (⟨0| Ŝ†(â+ â†)Ŝ |0⟩)2] . (2.39)

Now, each one of these terms will be explicitly calculated. For the first case, it is done as follows

⟨0| Ŝ†(â2 + ââ† + â†â+ â†2)Ŝ |0⟩= ⟨0|(Ŝ†âŜŜ†âŜ+ Ŝ†âŜŜ†â†Ŝ+ Ŝ†â†ŜŜ†âŜ+ Ŝ†â†ŜŜ†â†Ŝ) |0⟩

= ⟨0|(â2
ξ
+ âξ â†

ξ
+ â†

ξ
âξ + â†2

ξ
) |0⟩ . (2.40)

The form of these transformed operators is

â2
ξ
= â2 cosh2 r− ââ†eiθ coshr sinhr− â†âeiθ coshr sinhr+ â†2e2iθ sinh2 r (2.41a)

âξ â†
ξ
= ââ† cosh2 r− â2e−iθ coshr sinhr− â†2eiθ coshr sinhr+ â†âsinh2 r (2.41b)

â†
ξ

âξ = â†âcosh2 r− â†2eiθ coshr sinhr− â2eiθ coshr sinhr+ ââ† sinh2 r (2.41c)

â†2
ξ

= â†2 cosh2 r− â†âe−iθ coshr sinhr− ââ†e−iθ coshr sinhr+ â2e−2iθ sinh2 r, (2.41d)
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and evaluating the expected value over the vacuum Fock state results in

⟨0| â2
ξ
|0⟩=−eiθ coshr sinhr (2.42a)

⟨0| âξ â†
ξ
|0⟩= cosh2 r (2.42b)

⟨0| â†
ξ

âξ |0⟩= sinh2 r (2.42c)

⟨0| â†2
ξ
|0⟩=−e−iθ coshr sinhr. (2.42d)

The second term of ⟨0| Ŝ†(ξ )(∆X̂1)
2Ŝ(ξ ) |0⟩ does not contribute at all because ⟨0| âξ |0⟩ and ⟨0| â†

ξ
|0⟩ is equal

to zero. It is thus finally obtained

⟨0| Ŝ†(ξ )(∆X̂1)
2Ŝ(ξ ) |0⟩= 1

4

[
cosh2 r+ sinh2 r− coshr sinhr

(
eiθ + e−iθ

)]
=

1
4
[
cosh2 r+ sinh2 r−2coshr sinhr cosθ

]
. (2.43)

By an analogous procedure, the result is also obtained for the second quadrature

⟨0| Ŝ†(ξ )(∆X̂2)
2Ŝ(ξ ) |0⟩= 1

4

[
cosh2 r+ sinh2 r+ coshr sinhr

(
eiθ + e−iθ

)]
=

1
4
[
cosh2 r+ sinh2 r+2coshr sinhr cosθ

]
. (2.44)

Now we will present the photon number distribution for the squeezed vacuum state, in analogy to the Poisson
distribution that was found for coherent states. First, starting with the property â |0⟩= 0 one can multiply both
sides of the equation by the squeezing operator, and introduce a unitary operator

â |0⟩= Ŝ(ξ )âŜ†(ξ )Ŝ(ξ ) |0⟩= Ŝ(ξ )âŜ†(ξ ) |ξ ⟩

(âcoshr+ â†eiφ sinhr) |ξ ⟩= (âµ + â†
ν) |ξ ⟩= 0,

so it has been found that the squeezed vacuum operator is the zero eigenstate of the operator (âµ + â†ν). Now,
using this fact, we will apply this operator to the Fock basis representation of the squeezed vacuum in order to
find a recursion relationship

|ξ ⟩= ∑
n

Cn |n⟩

(âµ + â†
ν) |ξ ⟩= ∑

n=0
Cn(âµ + â†

ν) |n⟩

∑
n=0

(
µCn+1

√
n+1+νCn−1

√
n
)
|0⟩= 0.

The recursion is solved by finding the expression for even states since they are the one that include vacuum
contributions (Gerry -Knight, 2004, pg.161) [37]. Thus, the squeezed vacuum expression in the Fock basis is

|ξ ⟩= 1√
coshr

∞

∑
m=0

(−1)m

√
(2m)!

2mm!
eimθ (tanhr) |2m⟩ , (2.45)
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and the photon number probability for even pairs of photons is (odd states directly yield zero)

P2m = | ⟨2m|ξ ⟩ |2 = (2m)!
22m(m!)2

(tanhr)2m

coshr
. (2.46)

Finally, to complete the analysis for the squeezed states, we will find the analytical expression for the Wigner
function. Applying once again the characteristic function representation given by Equation (2.11)

Ĉξ (λ ) = ⟨ξ | D̂(λ ) |ξ ⟩= ⟨0| Ŝ†(ξ )D̂(λ )Ŝ(ξ ) |0⟩ . (2.47)

This quantity is a well-known property whose result is

Ŝ†(ξ )D̂(λ )Ŝ(ξ ) = D̂(λ µ +λ
∗
ν), (2.48)

where µ = coshr and ν = eiθ sinhr are the similarity transformation coefficients given in Equation (2.38). With
this, the resulting form for the vacuum squeezed state is

Wξ (α) =
1

π2

∫
d2

λeαλ ∗−α∗β e−|λ µ+λ ∗ν |2/2 =
2
π

exp

{
−2

(
Re{α}2

e−2ξ
+

Im{α}2

e2ξ

)}
. (2.49)
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Figure 2.3 Wigner’s function of the vacuum squeezed state |ξ ⟩= Ŝ(ξ ) |0⟩.The squeezing parameter ξ is 0.7.

2.1.3 Two level systems

As its name indicates, Two level systems (2LS) characterize by having a Hilbert space of two independent
states, normally labeled as “ground” (|g⟩) and “excited” (|e⟩) states, although the state |g⟩ must not necessarily
coincide with the lowest energy state of a quantum system. Despite their apparent simplicity, 2LS describe a
wide range of physics phenomena, and their applications are essential for the development of new technologies.
Some famous examples of 2LS are Spin−1/2 systems, where spins can take the values of ±ℏ/2, as for the
models employed in nuclear magnetic resonance [44]. Furthermore, even complicated structures such as
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superconducting devices and quantum dots can be on certain occasions modeled as two level systems. Each of
these systems serves to constitute the basic unit of quantum information, the qubit, whose properties can be later
altered by the use of a set of operations (quantum gates) that permit the construction of complex algorithms[45].
The versatility of the construction of 2LS allows them to be the fundamental building blocks for a wide range
of quantum technologies, such as for the fields of quantum computing, by the implementation of schemes using
superconducting qubits [46], for quantum communication [47] and for quantum cryptography [48].

Another crucial property of two level systems refers to the process by which a system in an excited state
can decay into a lower energy state by emitting a photon, i.e., spontaneous emission. This important feature was
among the first properties that could not get a semiclassical explanation, but rather required the full quantum
formalism of light matter interaction in order to understand its nature. We will derive the expression and some
features in section (2.2).

In what follows, we will derive the analytical expression for the population of the 2LS (nσ = σ̂†σ̂ ), and
analyze the differences from the presence of coherent and incoherent pumping to the system.

The general operator equation that we will solve is

∂t⟨Ô⟩(t) = i
〈
[Hσ , Ô]

〉
+

1
2 ∑

k

(
2
〈

L̂†
kÔL̂k

〉
−
〈

L̂†
k L̂kÔ

〉
−
〈

ÔL̂†
k L̂k

〉)
. (2.50)

Coherent driving

In analogy to the driving of a harmonic oscillator, a laser field can coherently couple to two level systems,
which rises the following Hamiltonian in the laser rotating frame

Hσ = ω̃σ σ̂
†
σ̂ +Ωσ (σ̂ + σ̂

†), (2.51)

where once again ω̃σ corresponds to the detuning and Ωσ the driving strength. Using this Hamiltonian, and
taking into account spontaneous emission by setting L̂k =

√
γσ σ̂ , where γσ indicates the excited state decay

rate, the coupled differential equations are

∂t⟨σ̂†
σ̂⟩(t) = iΩσ

(
⟨σ̂⟩−⟨σ̂†⟩

)
− γσ ⟨σ̂†

σ̂⟩ (2.52a)

∂t⟨σ̂⟩(t) = iΩσ (2⟨σ̂†
σ̂⟩−1)−

(
iω̃σ +

γσ

2

)
⟨σ̂⟩ (2.52b)

∂t⟨σ̂†⟩(t) =−iΩσ (2⟨σ̂†
σ̂⟩−1)+

(
iω̃σ − γσ

2

)
⟨σ̂†⟩. (2.52c)

The steady state solution for this set of equations gives the following result for the population of the 2LS

nσ =
4Ω2

σ

γ2
σ +4ω̃2

σ +8Ω2
σ

. (2.53)

This indicates that different from the population of a coherently driven harmonic oscillator (Eq. 2.34), the
population of a coherently driven two level system saturates even when Ωσ/γσ −→ ∞.
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Incoherent pumping

For the case of also adding an incoherent pumping, the Hamiltonian will correspond to the same previously
employed, while the dissipator in Equation (2.50) will have two contributions, one for spontaneous emission
as previously considered, and the second one for the incoherent pumping which is given by the rate Pσ . The
dissipator for the term L̂k =

√
Pσ σ̂† is given by,

Pσ

2
(2
〈
σ̂Ôσ̂

†〉−〈σ̂ σ̂
†Ô
〉
−
〈
Ôσ̂ σ̂

†〉). (2.54)

Thus each one of the previous equations will have the following additions to the equations

∂t⟨σ̂†
σ̂⟩(t) = iΩσ

(
⟨σ̂⟩−⟨σ̂†⟩

)
− γσ ⟨σ̂†

σ̂⟩+Pσ (1−⟨σ̂†
σ̂⟩) (2.55a)

∂t⟨σ̂⟩(t) = iΩσ (2⟨σ̂†
σ̂⟩−1)−

(
iω̃σ +

γσ

2
+

Pσ

2

)
⟨σ̂⟩ (2.55b)

∂t⟨σ̂†⟩(t) =−iΩσ (2⟨σ̂†
σ̂⟩−1)+

(
iω̃σ − γσ

2
− Pσ

2

)
⟨σ̂†⟩. (2.55c)

Now, the steady solution for the population turns out to be

nσ =
P3

σ +2P2
σ γσ +4γσ Ω2

σ +Pσ [γ
2
σ +4(ω̃2

σ +Ω2
σ )]

(Pσ + γσ )(P2
σ +2Pσ γσ + γ2

σ +4ω̃2
σ +8Ω2

σ )
. (2.56)

Figure (2.4) displays the behavior of the population of a resonantly driven two level system when incoherent
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Figure 2.4 Two level system population in resonance as a function of coherent driving strength Ωσ and rate of
incoherent pumping Pσ .

pumping at a rate Pσ is also considered. This result indicates when the 2LS is only being coherently driven,
as portrayed by Equation (2.53), the population has an upper limit given by nσ < 1/2, which, as previously
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mentioned, indicates that it cannot saturate. On the contrary, introducing the incoherent excitation can reach
this value when the rate Pσ is bigger than the spontaneous emission decay γσ . The steady state value when only
an incoherent driving is considered (i.e., Ωσ = 0) is nσ = Pσ/(Pσ +1).

2.2 Light – Matter interaction

The interaction of light with matter is a fundamental problem in physics, with applications in quantum optics,
chemistry, biology, and material science, as discussed in the first chapter of this thesis.

The way we understand and study these interactions depends on the physical treatment assigned to each,
i.e., whether it is viewed from a classical or quantum mechanical perspective. From a classical perspective, we
can understand a broad range of phenomena such as reflection, refraction, diffraction, and others. However,
a more accurate description of certain phenomena requires a more refined approach. A semiclassical theory,
where atoms and molecules are quantized but the light is still considered an electromagnetic wave, allows for
the calculation of the probability of transitions between energy levels due to absorption or emission of radiation.
This approach also correctly describes the principle of lasing in lasers, which is a key technology in many
modern applications. In the purely quantum mechanical picture, phenomena such as spontaneous emission,
the lamb shift, and the Casimir effect can be studied, which provides a deeper understanding of the nature of
light-matter interactions. These different perspectives allow us to study light-matter interactions in various
ways, each providing a unique insight into the problem, and they are all essential to the advancement of the field.

In this section, we will present the theoretical foundations of a semiclassical theory of light-matter inter-
actions. We will also describe the process of quantizing light and explain the main features of the quantum
version of light-matter interaction that will be used in subsequent chapters.

2.2.1 Semiclassical theory of light-matter interaction

The theory where an electromagnetic wave interacts with the discretized energy levels of an atom or molecule is
called the semiclassical theory of light matter interaction. From this perspective, the time dependent perturbation
theory of excitation with a harmonic perturbation is applicable. It is known that the Hamiltonian of a charged
particle (in this case an electron) in the presence of an electromagnetic field is given as

H =
1

2m
(p̂− eA(r, t))2 + eφ(r, t)+V̂ (r), (2.57)

where A(r, t) and φ(r, t) are the electromagnetic field vector and scalar potentials, and V̂ (r) is the usual binding
Coulombian potential. Some considerations can be made in order to simplify the structure of this Hamiltonian.
For example, the first approximation is the so-called dipole approximation, which consists in taking up to the
first order in the multipolar expansion, i.e., eik·r = 1+ ik · r− ... ≈ 1. This consideration can only be made
because of the natural scales of the problem, where the size of the atomic structure (of the order of Armstrongs,
10−10) is much smaller than the characteristic wavelength of incident radiation, which for optical radiation
is given by a nanometer scale. The consequence is that the vector potential can be estimated to be position
independent. Furthermore, by an adequate selection of the gauge transformation, specifically to the Coulomb
gauge where the radiation is transverse, i.e., ∇ ·A = 0, and where φ(r, t) = 0, a transformed version of the
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interaction can be obtained as

H =
p̂2

2m
+V̂ (r)− d̂ ·E(t), (2.58)

where d̂ is the atomic dipole operator. A further simplification to this problem can be made if the atom can be
considered to be a two level system (Section 2.1.3), with a ground (|g⟩) and excited state (|e⟩). By means of
parity considerations of the dipole operator where diagonal elements are found to be zero, it can be expressed
as

d̂ = dge |g⟩⟨e|+deg |e⟩⟨g|

= dgeσ̂ +d∗
geσ̂

† (2.59a)

dge = ⟨g|d |e⟩ . (2.59b)

Assuming that the electric fields correspond to a monochromatic wave of frequency ω , E(t) = εE0 cosωt =
(εE0/2)

(
eiωt + e−iωt

)
, the semiclassical Hamiltonian transforms to

H = ℏωσ σ̂
†
σ̂ − ⟨g|ε · d̂ |e⟩E0

2
(σ̂eiωt + σ̂

†e−iωt + σ̂e−iωt + σ̂
†eiωt). (2.60)

In the Heisenberg picture, the operators σ̂ have an evolution of the form σ̂e−iωσ t , in accordance to the evolution
with the free Hamiltonian H0 = ωσ σ̂†σ̂ . This means that in this picture the interaction terms have two
exponential functions that oscillate with the detuning ∆ = ω −ωσ , e±i∆t and other two that oscillate with the
sum of the frequencies, e±i(ω+ωσ )t . Assuming that the transition frequency ωσ and driving frequency ω is close
to resonance, i.e., |ω −ωσ | ≪ ω +ωσ , the rotating wave approximation (RWA) can be performed, which focus
on the slow dynamics brought by the difference in the frequencies. With these remarks, the final Hamiltonian
from the semiclassical interaction of light and matter can be written as

H = ℏωσ σ̂
†
σ̂ +

ℏΩR

2
(
σ̂eiωt + σ̂

†e−iωt) , (2.61)

where we have introduced the term ΩR = −⟨g|ε · d̂ |e⟩E0/ℏ, named the Rabi frequency. Assuming a wave
function of the form |Ψ⟩ = cg |g⟩+ ce |e⟩, the Schrödinger equation for the previous Hamiltonian yields the
following set of coupled differential equations

∂tcg =− iΩR

2
ceeiωt (2.62a)

∂tce =−iωσ ce −
iΩR

2
cge−iωt . (2.62b)

Some solutions to the set of differential equations (2.62) can be seen in Figure (2.5). Panel a. calculates
the populations for the ground and excited states, given by Pα(t) = |cα(t)|2, for the condition where light is
resonant with the two level transition. It can be seen that the Rabi frequency sets the period of oscillations from
the 2LS population, where some relevant pulses can be seen in dashed lines. For ΩRt = π/2, the so-called
π/2−pulse it can be seen that the state corresponds to a superposition of ground and excited states, while for a
π −pulse all the population resides on the excited state. On panel b. the effect of detuning on the excited state
population is analyzed, where it can be seen that detuning gives the known interference pattern that arises from
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pulse

pulse

a.) b.) 1

Figure 2.5 Solutions for the semiclassical model of light matter interaction. a.) Populations Pα(t) = |cα(t)|2
under resonance condition. The dashed lines denote the π/2 and π pulses. b.) Excited state population as a
function of detuning for π/2 and π pulses.

the time dependent modulation theory of an atom driven by a harmonic perturbation (e.g., N.Zettili (2009), pg.
580 [49]).

2.2.2 Quantization of the Electromagnetic Field

As previously mentioned, quantizing the electromagnetic field was necessary to explain phenomena that were at
odds with classical physics, such as the photoelectric effect and the blackbody radiation problem. This process
is now a standard topic in quantum mechanics courses and textbooks. Here, an analogous procedure to the
one by Scully and Zubhairy (1997, chp. 1 [50]) will be performed, in order to establish the foundations for a
quantum theory of light-matter interaction.

The process starts from the framework on which classical electromagnetism was built: The Maxwell equations.
They consist of a self-containing set of equations that explain the behavior of electric and magnetic fields. They
are given by

∇ ·E =
ρ

ε0

∇×E =−∂B
∂ t

∇ ·B = 0

∇×B = µ0J+ ε0µ0
∂E
∂ t

. (2.63)

The process of quantization begins as follows. First, one must derive a wave equation for the electromagnetic
field. This is achieved by taking the curl on Faraday’s law,

∇
2E−µ0ε0

∂ 2E
∂ t2 =

∇ρ

ε0
+µ

∂J
∂ t

.

This last equation is recognized as the wave equation for the electric field E. If there are no sources, it takes
the simpler form ∇2E− c−2∂ 2

t E = 0. The next step consists of confining the electromagnetic radiation into a
resonating cavity with volume V = LA. The electric field E is taken polarized upon the x-direction and B upon
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the y-direction so that the electromagnetic field is directed into the z-direction. This confinement generates that
the electric and magnetic fields can be expanded into the normal mode oscillations of the cavity,

Ex(z, t) = ∑
j

A jq j(t)sin(k jz) = ∑
j

A jq j(t)sin
(

jπz
L

)
, (2.64)

where q j(t) refers to the normal mode amplitudes, A j =

√
2ν2

j m j

V ε0
, ν j are the eigenfrequencies of the cavity, and

m j is a constant with the dimensions of mass. The expansion for the magnetic field can be obtained using this
expression for Ex(z, t), and making use of Ampère-Maxwell law with no sources, yielding

Hy = ∑
j

A j

(
q̇ j(t)ε0

k j

)
cos(k jz). (2.65)

The classical Hamiltonian for the electromagnetic field is H = 1
2
∫

V dv′
(

ε0|E⃗|2 +µ0|H⃗|2
)

. Replacing the
obtained relationships for the electric and magnetic field leads to

H =
1
2

∫
V

dv′∑
j

A2
j{q2

jε0 sin2(k jz)+
q̇ j

2µ0ε2
0

k2
j

cos2(k jz)}

=
∫

V
dv′∑

j

ν2
j m j

V
{q2

j sin2(k jz)+
µ0ε0

k2
j

q̇ j
2 cos2(k jz)}.

Since ν j = k jc, then k j = ν j/c, and µ0ε0/k2
j = 1/ν2

j . The integration is done upon all volume V . Because the
variables only depend on z, the surface volume will result in A, and dividing with respect to V simply results in
A/V = 1/L

H =
1
L

{
∑

j
m jν

2
j q2

j

∫ L

0
sin2

(
jπz
L

)
dz+m jq̇ j

2
∫ L

0
cos2

(
jπz
L

)
dz

}

=
1
L

{
∑

j
m jν

2
j q2

j
L
4

(
2− sin(2π j)

π j

)
+m jq̇ j

2 L(2π j)+ sin(2π j)
4π j

}
.

Remembering that the sum is made in integer values, then sin(2π j) is always zero, which simplifies to

H =
1
2 ∑

j
m jν

2
j q2

j +m jq̇ j
2 =

1
2 ∑

j

(
mJν

2
j q2

j +
p2

j

m j

)
.

The last equation indicates that each mode of the field is equivalent to an harmonic oscillator. Transforming the
generalized coordinates q j and p j into operators that satisfy the known rules of commutation [q̂ j, p̂k] = iℏδ j,k

and [q̂ j, q̂k] = [p̂ j, p̂k] = 0, gives the quantized result of the problem.
Alternatively, one can use another approach to understand the quantized version of the Hamiltonian, by using
the creation and annihilation operators for the harmonic oscillator. These set of operators are defined as

â je−iν jt =
1√

2m jℏν j
(m jν jq̂ j + ip̂ j) (2.66)

â†
je

iν jt =
1√

2m jℏν j
(m jν jq̂ j − ip̂ j). (2.67)
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Multiplying the creation and annihilation operators gives

â†
j â j +

1
2
=

1
2ℏm jν j

(m2
jν

2
j q̂2

j + p̂2
j)

ℏν j

(
â†

j â j +
1
2

)
=

1
2
(
m jν

2
j q̂2

j + p̂2
j
)
.

It has thus been proven that the quantized version of the Hamiltonian can also be written as

H = ∑
j
ℏν j

(
â†

j â j +
1
2

)
(2.68)

2.2.3 Quantum theory of light-matter interaction

We will treat the quantum theory of light matter interaction by stating the most simple problem, the interaction
of a single cavity mode with a two level system. The Hamiltonian from this interaction is

H = ℏωσ σ̂
†
σ̂ +ℏωa(â†â)− d̂ ·E (2.69)

H = HA +HF +HAF.

The electric field operator of a single mode can be written as

E =−ε

√
ℏω

2ε0V

(
â+ â†)sinkz. (2.70)

For the interaction, the same approximation from the semiclassical theory will be applied (The dipole approxi-
mation). This means that the Hamiltonian yields

HAF =−ε ·dge sinkz

√
ℏω

2ε0V

(
σ̂ + σ̂

†)(â+ â†)= ℏg
(
σ̂ + σ̂

†)(â+ â†) . (2.71)

The parameter g = g0 sinkz, known as the Cavity QED coupling constant, is one of the most important quantities
in physics, since different regimes of light matter interaction could be accessed, depending on its value with
respect to dissipation rates and natural frequencies of the system. The full quantum Hamiltonian is thus

H = ℏωσ σ̂
†
σ̂ +ℏωaâ†â+ℏg(σ̂ â+σ â† + σ̂

†â+ σ̂
†â†). (2.72)

It is referred to as the Rabi Hamiltonian. By moving once again into the Heisenberg picture, an analogous
result to the one obtained in the semiclassical treatment gives that the interaction term has rapidly and slowly
rotating exponentials, with frequencies (ωa +ωσ ) and (ωa −ωσ ). It is therefore possible to construct a second
quantization version of a rotating wave approximation, in which rapidly oscillating terms are neglected, consid-
ering near resonance between atomic and light frequencies. Nevertheless, the validity of this approximation
is not only related to the near resonance requirement but also must be in agreement with the restriction that
the c-QED coupling constant must be much smaller than the frequencies, g ≪ ωa,ωσ . This constriction can
be seen if one performs a time independent perturbation theory for the interaction term, in which only terms
of the form g2/(ωa −ωσ ) contribute to the second order corrections to the energy. However, when the ratio
g2/(ωa +ωσ ) becomes nearly of the same order, the counter-rotating terms must be taken into account and the
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RWA cannot be made.

In the strong coupling regime the condition g ≪ ωa,ωσ is fulfilled and thus the RWA can be applied. This gives
the simpler Hamiltonian,

H = ωσ σ̂
†
σ̂ +ωaa†a+g(â†

σ̂ + âσ̂
†). (2.73)

This is the famous Jaynes-Cummings model (JC model), first derived by Edwin Jaynes and Frederic Cummings
in 1963 [51], and which corresponds to the first solvable model of a quantum picture of light matter interaction
(An analytical solution to the complete Rabi Hamiltonian was found by Braak [52] in 2011, but it is considerably
more difficult than the ones of the JC model).

The starting point for diagonalizing this Hamiltonian begins by defining the Hilbert space of this system,
understood as the outer product of the 2LS states and Fock states,|Ψ⟩= |α⟩⊗ |n⟩, where α = g,e. Noticing the
fact that the interaction term of the JC model yields transitions of the form |g,n⟩⇐⇒ |e,n−1⟩, the Hamiltonian
can be written in this basis as

H(n) =

(
nωa g

√
n

g
√

n ωσ +(n−1)ωa

)
m], (2.74)

and the corresponding eigenenergies are

E(±)
n =

ωσ +(2n−1)ωa

2
± 1

2

√
4ng2 +(ωa −ωσ )2. (2.75)

These results will be substantially used when we present the main results of this thesis in Chapter 3.

2.3 Quantum Correlation Functions

The concept of coherence has an essential role in the field of optics and quantum mechanics. In optics, it is
useful in the sense that it helps to indicate the capacity that two waves have to interfere. It, therefore, explains
a relationship between these waves and helps to quantify to what extent (of time or space) this relationship
remains invariant. From the classical theory of coherence, the standard setup for analyzing the interference
properties of a system consists of Young’s experiment proposal, where a plane wavefront is interrupted by a
barrier containing two slits. From each slit, the new-forming spherical wave propagates until the intensity is
detected on a screen. Depending on the correlation properties between the two waves, an interference pattern
will be obtained. This can be mathematically expressed as

I(r, t) = I1 + I2 +2
√

I1I2|γ12(τ)|cos(α12 −ϕ), (2.76)

where Ii corresponds to the intensity of each light source, γ12(τ) is referred to as the degree of coherence and
ϕ = 2π

λ̄
(r2 − r1) corresponds to a phase difference arising from the discrepancy in the optical path taken by

each front. The degree of coherence is a crucial ingredient that helps to quantify the interference procedure.
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This can be seen depending on its value, where the following limits are obtained

|γ12(τ)|=

0, incoherent limit

1, coherent limit.
(2.77)

For the in-between case, 0 < |γ12|< 1 the source is referred to as partially coherent.

The case for quantum coherence functions is analogous. The method starts by considering the quantized
electromagnetic field and splitting it into its positive and negative frequency components

Ê(r, t) = E0(r)âe−iωt +E0(r)â†eiωt = Ê(+)+ Ê(−). (2.78)

The probability of measuring a photon consists of a detector that absorbs it, and the incident energy is sufficient
to eject a photo-electron. Consequently, the term that will contribute to this probability is the one that destroys
the photon, Ê(+). This probability is then calculated as

Pf i =
∣∣∣⟨ f | Ê(+) |i⟩

∣∣∣2 , (2.79)

where |i⟩ , | f ⟩ indicates the initial and final states after the absorption procedure. Since one is not interested in
the final field, the recorded intensity can be taken by summing up all possible fields

I(r, t) = ∑
f

Pf i = ∑
f
⟨i| Ê(−)(r, t) | f ⟩⟨ f | Ê(+)(r, t) |i⟩= ⟨i| Ê(−)(r, t)Ê(+)(r, t) |i⟩ .

For the general case of a statistical mixture,

I(r, t) = ∑
i

Pi ⟨i| Ê(−)(r, t)Ê(+)(r, t) |i⟩= Tr
{

ρÊ(−)(r, t)Ê(+)(r, t)
}
. (2.80)

These intensity relationships will be the basis for calculating the coherence functions. The n order coherence
function is

G(n)(x1,x2, ...,xn) = Tr
{

ρÊ(−)(x1)...Ê(−)(xn)Ê(+)(xn)...Ê(+)(x1)
}
. (2.81)

For n = 1, this can be expressed only as G(1)(x1,x2) = Tr{ρÊ(−)(x1)Ê(+)(x2)} and is referred as the first order
coherence function. The normalized version of this can be written as

g(1)(x1,x2) =
G(1)(x1,x2)[

G(1)(x1,x1)G(1)(x2,x2)
]1/2 . (2.82)

As in the case of classical coherence theory, the first quantum coherence function helps to discern the degree of
coherence in a system, establishing the same boundaries as in the stated equation (2.77).

The second-order correlation function is a significant quantity that leads not with amplitudes of fields, but rather
with intensities. For this reason, it constitutes a suitable quantity to measure on interferometric setups (Hanbury
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Brow-Twiss, for example). It is given by

G(2)(x1,x2;x2,x1) = Tr
{

ρÊ(−)(x1)Ê(−)(x2)Ê(+)(x2)Ê(+)(x1)
}
, (2.83)

where once again, the normalized version of this quantity is

g(2)(x1,x2;x2,x1) =
G(2)(x1,x2;x2,x1)[

G(1)(x1,x1)G(1)(x2,x2)
] . (2.84)

Expressing it as a quantity that only takes into account the time difference of the detection of a photon, this is
given by

g(1)(t,τ) =

〈
Ê(−)(t)Ê(+)(t + τ)

〉
√〈

Ê(−)(t)Ê(+)(t)
〉〈

Ê(−)(t + τ)Ê(+)(t + τ)
〉 . (2.85)

g(2)(t,τ) =

〈
Ê(−)(t)Ê(−)(t + τ)Ê(+)(t + τ)Ê(+)(t)

〉
〈
Ê(−)(t)Ê(+)(t)

〉〈
Ê(−)(t + τ)Ê(+)(t + τ)

〉 . (2.86)

Finally, considering the quantization of light for a single mode, the last equation takes the form

g(2)(t,τ) =

〈
â†(t)â†(t + τ)â(t + τ)â(t)

〉
⟨â†(t)â(t)⟩⟨â†(t + τ)â(t + τ)⟩

. (2.87)

This expression is one of the most employed quantities in Quantum Optics, giving rise to the study of photon
statistics. The physical interpretation of this function is that of the detection of photons at a delayed time t + τ ,
given that others were already detected at the previous time t. This gives the correlations between photons at
different times, which is related to the intrinsic structure of the way photons are being emitted.

Some useful inequalities can be established by means of this correlation function. Defining the two-timed
intensity correlations as G(2)(t, t + τ) = ⟨I(t)I(t + τ)⟩, a version of the Cauchy-Schwarz inequality can be
written for the classical intensities as

|⟨I(t)I(t + τ)⟩|2 ≤ ⟨I2(t)⟩⟨I2(t + τ)⟩. (2.88)

It can be re-expressed by means of the second order correlation function as[
G(2)(t,t+τ)

]
≤ G(2)(t, t)G(2)(t + τ, t + τ). (2.89)

Using the normalized version of the correlation function, and taking the emission for a steady state field gives

g(2)(τ)≤ g(2)(0). (2.90)

This equation is always fulfilled by classical fields. However, quantum fields violate this inequality yielding

g(2)(0)< g(2)(τ). (2.91)
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This is the famous result of photon antibunching, which is a purely quantum mechanical effect that is di-
rectly related to the quantized nature of light [12]. The relationships between g(2)(0) and g(2)(τ) allow the
possibility to establish a threefold classification: If g(2)(0)> g(2)(τ), the emission is called to be bunched. If
g(2)(0),g(2)(τ) = 1, the emission is said to be uncorrelated. And finally as expressed before, if g(2)(0)< g(2)(τ)
the emission is antibunched. An alternative scheme from this same classification is used when the delay time is
taken to infinity. For this case, the detection of a photon is completely uncorrelated from another detected at a
sufficiently later time, and therefore limτ→∞ g(2)(τ) = 1, therefore the classification can also be expressed as
follows. g(2)(0)> 1 corresponds to bunched light, g(2)(0) = 1 represents uncorrelated light, and g(2)(0)< 1 is
related to antibunched light.

The quantity g(2)(0) is easier to calculate than the two timed expressions given in Equation (2.87), and
thus it is a useful result for some particular quantum states. For example, starting for the Fock states, the g(2)(0)
yields

g(2)n (0) =
⟨n| â†2â2 |n⟩
⟨n| â†â |n⟩2 =

n(n−1)
n2 = 1− 1

n
. (2.92)

This means that when the number in the Fock basis is small, a regime where this quantity is less than one is
obtained, which corresponds to quantum behavior. Specifically, when the system has only one photon, the value
of this function is zero. Also, it is seen that when n increases, it tends to the uncorrelated limit.

The second useful state to calculate this quantity are the coherent state. Recalling that they are defined
as the eigenstates of the annihilation operator (2.13 b), it takes the simple value

g(2)α (0) =
⟨α| â†2â2 |α⟩
⟨α| â†â |α⟩2 =

|α|4

|α|4
= 1. (2.93)

This is a property that is not unique to the second order correlation function. In fact, correlation functions at all
orders take the value of 1 for coherent states. For that reason, it is said that they pose an nth-order degree of
coherence. This value will represent a limit when classifying the statistical properties of emission of various
systems.

Another useful state is the previously studied Squeezed vacuum state defined as |ξ ⟩ = Ŝ(ξ ) |0⟩. The sec-
ond order correlation function can be written as

g(2)
ξ
(0) =

⟨ξ | â†2â2 |ξ ⟩
⟨ξ | â†â |ξ ⟩2 =

⟨0| Ŝ†â†2â2Ŝ |0⟩
⟨0| Ŝ†â†âŜ |0⟩2 (2.94)

=
⟨0| Ŝ†â†ŜŜ†â†ŜŜ†âŜŜ†âŜ |0⟩

⟨0| Ŝ†â†ŜŜ†âŜ |0⟩2

=
⟨ξ | â†2

ξ
â2

ξ
|ξ ⟩

⟨ξ | â†
ξ

âξ |ξ ⟩
2 ,

where we have used the fact that ŜŜ† is a unitary operator, and the expressions for â†
ξ

and âξ previously defined
in Equations (2.41). Employing the expectation values defined in Equation (2.42), the second order correlation
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function for the squeezed vacuum state is

g(2)
ξ
(0) = 2+ cothr2. (2.95)

For large values of the squeezing parameter r, the second order correlation function tends to 3, which is an
intrinsic characteristic of squeezed vacuum states.

Now another important discussion is the one related to photon statistics, which represents the field that
studies photon distributions that are generated from photon counting experiments, which indicates that is
also bounded to the emission properties of light. Photon statistics arise when a light beam is detected using
a device such as a photomultiplier tube. This device then records the detection of a photon by emitting a
photoelectron and registering it as a pulse, allowing the construction of a statistical distribution of photon counts.

We have already built some steps for the classification of light by photon statistics. When coherent states were
defined, it was found that the probability of finding n photons corresponded to a Poissonian distribution, where
the λ parameter corresponds to the average photon number in a coherent state n̄ = |α|2. A crucial characteristic
for analyzing photon distributions stems from the comparison between the mean and the variance, defined as

(∆n)2 = ∑
n
(n− n̄)2P(n) (2.96)

The classification of photon statistics is also threefold as before, and is given as follows: Poissonian statistics
corresponds to distributions where the variance is equal to the mean, (∆n)2 = n̄. On the other hand, Super
Poissonian statistics refers to distributions where the variance is larger than the mean, (∆n)2 > n̄. Finally, Sub
Poissonian statistics are those distributions where the variance is smaller than the mean, (∆n)2 < n̄. Super
Poissonian light can be found eg. for single mode thermal fields, whose mean photon number is described
by the Bose Einstein distribution, n̄ = (exp{ℏω/κBT})−1. For those fields, it is found that (∆n)2 = n̄(n̄+1)
is always greater than for the Poisson distribution. On the contrary, Sub Poissonian statistics, which has a
narrower distribution than for coherent states, is related to the quantum properties of light.

Photon statistics can be related to the discussion of quantum correlation functions, by writing the zero delay
second order correlation function in terms of the variance and the mean as

g(2)(0) = 1+
⟨(∆n̂)2⟩−⟨n̂⟩

⟨n̂⟩2 (2.97)

Although most of the time a Sub Poissonian distribution corresponds to a light source that displays antibunching,
it is not always the case. For example, in 1982 Surendra Singh [53] performed experiments of resonance
fluorescence, on which light was always antibunched, but may present regimes on which the photon distribution
could even correspond to Super Poissonian statistics. The contrary statement, that antibunching necessarily
generates Sub Poissonian distributions was also disproved by Zou and Mandel [54]. Therefore, although both
classification schemes serve to analyze the quantum properties of light, the correlation between both of them
must be treated carefully.

The final discussion for this section corresponds to the experimental realizations that helped to constitute
the field of Quantum Optics. It is worth mentioning two seminal experiments: The interferometric setup
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established by Hanbury Brown and Twiss [55, 56], and later on, the discovery of antibunching from Resonance
Fluorescence by Kimble, Dagenais and Mandel [12].

Robert Hanbury Brown and Richard Twiss were a couple of British astronomers who had an interest in
improving the methods for measuring the diameter of stars. At that time, the current method to measure such
quantities was made through a Michelson stellar interferometer, which was composed of two mirrors split by a
distance d. Each mirror directed the collected light upon a telescope, and if the light exhibited spatial coherence,
an interference pattern would form. This method was employed to measure the diameter of Betelgeuse, which
was found to be roughly 300 times bigger than the sun, giving rise to the discovery of red giants in astronomy.
The big limitation of this setup was that the distance between the mirrors could not be too large, since that
would complicate the generation of the interference fringes. To come around this issue, in 1954 Hanbury
Brown and Twiss proposed a simpler setup, known as an intensity interferometer. It consisted of two separated
detectors separated over a distance d that registered photocurrents which were afterward correlated. They used
the intensity interferometer to measure the diameter of the star Sirius. In this context of intensity correlations,
the concept of the second order correlation function is introduced naturally and helped to explain the photon
bunching results from the HBT experiment, which was understandable from a classical perspective.

The second relevant experiment was the discovery of photon antibunching in Resonance Fluorescence in
1977 by Kimble, Dagenais and Mandel. They used a sodium atomic beam that was excited with a laser that is
resonant to the 32S1/2 F = 2 and 32P3/2 F = 3 transition, which enabled them to describe the sodium atoms as
two level systems. Afterward, the light from resonance fluorescence was directed into an HBT interferometer,
which consisted of a 50:50 beam and two photomultipliers at the end of each path. The correlations given
by g(2)(τ) exhibited the characteristic dip for τ = 0, which conclusively demonstrated the effect of photon
antibunching, thus proving the quantized nature of light.

2.4 Frequency filtered quantum correlation functions

As we have seen until now, quantum correlations are a powerful tool for exploring the inherent properties of
certain systems, and specifically, for analyzing the quantum nature of the emission of light and its statistical
properties.

A critical concept that arises when measuring such correlation functions is known as frequency resolved
correlation functions, understood as the correlation between photons of different frequencies. This issue was
first presented by Eberly and Wodkiewicz, when they discussed the time dependent spectrum of light from
an observational point of view and define a time dependent physical spectrum based on counting rates at a
photodetector [57]. This method deals with the resolution of a number of integrals and time-ordered operations
that substantially increase the complexity of the problem as the order of the correlation functions grows.
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Figure 2.6 Scheme of a Hanbury Brown set up for measuring frequency correlations, by using two filters before
the detectors.

However, there are two additional formalisms that allow overcoming this complexity issue, facilitating the
calculation of frequency-resolved correlation functions. Each one will be introduced next.

2.4.1 Sensor method

The sensor method was introduced in 2012 by Elena del Valle et al. [58] as an alternative to the complex
methods previously employed to calculate frequency-resolved correlation functions. It simply consists of
analyzing the dynamics of an open quantum system (Q) that is being coupled to external sensors. Each sensor

Figure 2.7 Sensor method as proposed by del Valle et. al [58], where an open quantum system Q is coupled to
N two level systems that act as frequency sensors.

corresponds to a two level system described by an operator ξ̂i, with transition frequency ωi and linewidth Γi.
The idea is that these sensors have a vanishing coupling rate ε with the system so that the dynamics of the
latter are not affected by the measurement problem. The steps to apply the sensor method will be explained
by giving an example where the system consists of the Jaynes-Cummings model, given by Equation (2.73),
HJC = ωaâ†â+ωσ σ̂†σ̂ +g(â†σ̂ + âσ̂†). The open quantum system formalism takes into account the losses of
photons from a cavity (κa), the spontaneous emission rate (γσ ) from the 2LS and also an incoherent driving to
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the 2LS (Pσ ). Thus, the master equation of the system is

∂tρ = i [ρ,HJC]+
κa

2
Lâρ +

γσ

2
Lσ̂ ρ +

Pσ

2
L

σ̂†ρ. (2.98)

The sensor method indicates that the terms of energy of the sensors, as well as the interaction between the
sensors and the system, must be added to the Hamiltonian. For simplicity’s sake, only two sensors, i.e., two
scanning frequencies, will be used. The aforementioned terms are

Hsens = ω1ξ̂
†
1 ξ̂1 +ω2ξ̂

†
2 ξ̂2 (2.99a)

Hint = ε

(
â†

ξ̂1 + âξ̂
†
1 + â†

ξ̂2 + âξ̂
†
2

)
+ ε

(
σ̂

†
ξ̂1 + σ̂ ξ̂

†
1 + σ̂

†
ξ̂2 + σ̂ ξ̂

†
2

)
(2.99b)

Htotal = HJC +Hsens +Hint. (2.99c)

Adding the sensor dissipative terms (Γi/2)L
ξ̂i

ρ , gives the final version of the master equation of interest

∂tρ = i [ρ,Htotal]+
κa

2
Lâρ +

γσ

2
Lσ̂ ρ +

Pσ

2
L

σ̂†ρ +
Γ

2

(
L

ξ̂1
ρ +L

ξ̂2
ρ

)
. (2.100)

The interest will be put in solving this ME for the steady state and finding the second order frequency filtered
correlation function, which can be found as

g(2)
Γ
(ω1,ω2) = lim

ε→0

〈
ξ̂

†
1 ξ̂

†
2 ξ̂2ξ̂1

〉
〈

ξ̂
†
1 ξ̂1

〉〈
ξ̂

†
2 ξ̂2

〉 . (2.101)

10
1
0.1

Figure 2.8 Example of the sensor method for the incoherently driven Jaynes Cummings model. Parameters:
κa = 0.1g, γσ = 0.001g, Pσ = 0.5g, Γ = 0.1g.

Figure (2.8) shows the results for the frequency-filtered correlation function of the incoherently driven
Jaynes Cummings model, displaying all types of photon statistics: bunching, coherent (uncorrelated), and
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antibunching. Furthermore, a grid of horizontal and vertical lines can be clearly seen. This corresponds to the
correlation between real states, while the diagonal lines correspond to the leapfrog processes, where photons
are used to jump over lower manifolds. This was first identified in the work of Gonzalez Tudela et al. [59].
There, they explore the filtered correlations of numerous amount of systems.

Finally, the general statement of the problem for a set of system operators Ôs, and k-sensors ξ̂k, is given
by the following master equation,

∂tρ = i
[
ρ,Hs +Hξ +Hξ s

]
+

1
2 ∑

s
γsLÔs

ρ +
1
2 ∑

k
ΓkLξ̂k

ρ (2.102a)

Hξ = ∑
k

ωkξ̂
†
ξ̂ (2.102b)

Hξ s = ∑
k,s

ε

(
Ô†

s ξ̂k + Ôsξ̂
†
k

)
. (2.102c)

2.4.2 Cascaded formalism

The second method for calculating frequency correlation functions is the so-called Cascaded formalism, which
was introduced by Carmichael and Gardiner, becoming nowadays a subject of textbook material for quantum
optic courses. This method consists of using the output of a quantum system, the source, as the means of
excitation of another quantum system, the target, with the requirement that there is no backaction excitation
from the target to the source, establishing, therefore, a unidirectional means of excitation.

The mechanism to achieve this type of excitation is derived by the application of the input-output formalism,
which resides on expressing the quantum Langevin equation for the source and target operators and then
connecting the output from the first quantum system as the output of the second one.

Source target

Figure 2.9 Schematics of the cascaded coupling based on the input-output formalism.

The dynamics of this treatment can be described by the following master equation,

∂tρ = i[ρ,Hs +Hd ]+
1
2 ∑

s
γsLâs ρ +

1
2 ∑

k
ΓkLôk ρ +∑

ks

√
χkγkΓk

{
[âsρ, ô

†
k ]+ [ôk,ρ âs]

}
, (2.103)

where Hs is the source Hamiltonian with operators âs and Hd = ∑k ωkô†
k ôk. It is noticeable that this form of a

master equation does not correspond to a Lindblad type, i.e., it can be written as ∂tρ = Lρ , Nevertheless, it is
possible to convert it to a Lindblad form master equation by employing a set of jump operators defined as

Ôk =
√

λkγsŝ+
√
(1−κk)Γkôk. (2.104)
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Proper selection of the rates λk,κk lead to a Lindblad equation that is equivalent to the one shown in (2.103).
Using this formalism, the opportunities for studying the effect of exciting targets with quantum sources of light
are possible. For this particular subject, the interested reader may refer to the excellent Ph.D. dissertation by
Lopez Carreño [60], whose main topic was on exciting a plethora of quantum systems with quantum light, and
exploring the consequences and differences from classical (laser) excitation.

Case of study: Mollow triplet in Resonance Fluorescence

We will provide an application of the cascaded formalism, namely, studying how the perfect antibunching from
a two level system can produce a whole richness of photon correlations, once frequency measurements are
involved. The model for the source simply corresponds to a coherently driven two level system,

Hσ = ω̃σ σ̂
†
σ̂ +Ω(σ +σ

†) (2.105a)

∂tρ = i [ρ,Hσ ]+
γσ

2
Lσ̂ ρ, (2.105b)

where ω̃σ =ωσ −ωl is the rotating frame frequency. Using the 2LS system basis, this equation can be expressed
in matrix form as ∂t{ρ}=−M{ρ}, with {ρ}= (ρgg,ρge,ρeg,ρee)

T and

M =


0 −iΩ iΩ −γσ

−iΩ γσ/2− i ω̃σ 0 iΩ

iΩ 0 γσ/2+ i ω̃σ −iΩ

0 iΩ −iΩ γσ

 . (2.106)

The structure of the eigenvalues (Dp) of the Liouvillian matrix M gives information about the energy regime of
the system. The imaginary part of Dp indicate the energies of the transitions, while the real part is related to
the broadening. A particularity of this system is that depending on the ratio Ω/γσ it is possible to access two
different regimes: The low excitation regime, also known as Heitler regime, is achieved when Ω ≪ γσ . On the
other hand, the Mollow regime is obtained when Ω ≫ γσ . For the present case of study, we will focus on the
Mollow regime, whose principal characteristic is the appearance of side bands on the spectrum of emission,
known as the Mollow triplet. The reason for referring to a triplet is that when the strong driving condition
is fulfilled, the spectrum of the emission of the two level system transforms from a Lorentzian into a central
peak and two sidebands. The most direct interpretation of this spectrum comes as a result of the study of the
dressed stated formalism of semiclassical interaction of light and matter, giving rise to a manifold ladder that
consists of states {|−⟩ , |+⟩}, separated by the Rabi frequency, while subsequent manifolds are split with the
incident driving frequency ωl . With that picture in mind, the central peak arises from transitions of subsequent
manifolds that do not change the state, i.e., |±⟩ −→ |±⟩, while sidebands correspond to transitions of the form
|±⟩ −→ |∓⟩, and are shifted in energy ±Ω from the central peak. With this framework, it is easier to understand
the following results from the cascaded formalism, which we now introduce.

Since we are interested on measuring correlations to the second order, the source will require to excite
two targets. Thus, the master equation that needs to be solved is

∂tρ = i[ρ,Hσ +Ha +Hb]+
γσ

2
Lσ̂ ρ +

Γ

2
(Lâρ +Lb̂ρ) (2.107)

−
√

Γγσ/2
(
[â†, σ̂ρ]+ [ρσ̂

†, â]
)
−
√

Γγσ/2
(
[b̂†, σ̂ρ]+ [ρσ̂

†, b̂]
)
.
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Furthermore, we will complement the study of the frequency resolved photon correlations with the quantumness
of this system, calculated as the rate of violation of the Cauchy-Schwarz inequality (CSI) for the correlation
functions. Introducing the quantity g(2)ab = ⟨â†b̂†b̂â⟩/⟨â†â⟩⟨b̂†b̂⟩, the CSI inequality is,

[
g(2)ab

]2
≤ g(2)aa g(2)bb (2.108a)

R =
[
g(2)ab

]2
/(g(2)aa g(2)bb )≤ 1. (2.108b)

Thus, quantumness in the Mollow triplet is exhibited when R > 1.

Figure 2.10 a.) Transitions of the Two level system in the Mollow triplet. The states |±⟩ correspond to
the dressed states. b.) Second order correlation function. c.) Violation of the Cauchy-Schwarz inequality.
Parameters: Ω = 5γσ , Γ = 5γσ , ω̃σ = 0.

The results of this system are summarized on Figure (2.10). The first panel illustrates the aforementioned
dressed basis of the ladder. The transitions on the left side correspond to the ones that explain the appearance of
the sidebands in the spectrum. On the other hand, other noteworthy transitions are sketched on the right of this
panel, corresponding to the Leapfrog processes which consists of transitions from real states jumping over n
manifolds, and thus involving the emission of the same number of photons. For this scheme, three possible
leapfrogs can happen: ω̃a+ ω̃b = 0, ω̃a+ ω̃b = Ω+ and ω̃a+ ω̃b =−Ω+. Panel b. indicates that these processes
correspond to bunching behavior in the correlation functions, while correlations from the same sidebands result
in an antibunched effect. Complementarily, panel c. proves that leapfrogs are accompanied by a violation of
the CSI. For more in-depth theoretical discussions of these effects, the following papers are recommended
[61, 59, 62].

2.4.3 Experimental measurement of frequency filtered correlations

One noteworthy example of an experimental scheme that measures the aforementioned correlation functions
and Cauchy-Schwarz inequality in the Mollow triplet, was performed by Peiris et al. [63] in 2015.

The sample consisted of an InAs quantum dot that was grown by molecular beam epitaxy, and subject
to a tunable CW laser, which leads to the Mollow spectrum of emission. The HBT setup resembles the
simplified version sketched in Figure (2.6), where two tunable filters are placed before the detectors. With their
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scheme, they were able to reconstruct the types of maps shown in Figure (2.10). The method they employed
to reconstruct such maps was to record coincidences for each pair of filter frequencies (ω̃1, ω̃2), with a fixed
recording time of 165s, which corresponded to a total exposure time of 42h for each map.

Figure 2.11 Results from experimental measurements of the frequency filtered correlations in the Mollow
triplet by Peiris et al. [63].

The previous Figure shows the results for the second order correlation function and CSI for the Mollow
triplet, comparing both the theoretical prediction with the experimental results, demonstrating the feasibility of
frequency-filtered measurements.

The formalism will be applied when we return to the problem of finding differences or similarities between the
conventional and unconventional photon blockade effects.

2.5 Interference of quantum states

The main idea of this section is to understand what happens when quantum states interfere with other compo-
nents, whether their nature is also quantum mechanical or if they are classical contributions, and to exhibit the
relationship of this interference with the tuning of photon statistics with many systems in quantum optics, as
proposed by Zubizarrieta et al. [10]. We will thus derive the steps to formalize his calculations, which will be a
crucial feature for explaining the phenomena of photon blockade in the following chapter.

In order to explore this interference, a simple setup that consists of two incident channels that are mixed
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by means of a beam splitter will be used. Afterward, the correlation functions of the output beams will be
analyzed.
A general formulation of this interaction can be represented as follows:(

ô
ŝ

)
=

(
iR T d
T iR

)(
d̂
â

)
, (2.109)

where â, d̂ are the incident fields, R,T are the beam splitter reflection and transmission coefficients, and ô, ŝ
correspond to the resultant fields. With this transformation, one can analyze correlations of the type ⟨ŝ†nŝm⟩:

⟨ŝ†nŝm⟩=
〈(

T d̂† − iRâ†)n (
T d̂ + iRâ

)m
〉
. (2.110)

By applying the Binomial theorem, the term in the parenthesis can be expanded as

(a+b)n =
n

∑
k=0

n!
(n− k)!k!

an−kbk (2.111)

s†n = (T d̂† − iRâ†)n =
n

∑
p=0

(
n
p

)(
T d̂†)(n−p)

(−i)p (Râ†)p
(2.112)

sm = (T d̂ + iRâ)m =
m

∑
q=0

(
m
q

)(
T d̂
)(m−q)

(i)q (Râ)q . (2.113)

With these expressions, it is possible to find the term of the correlations according to the incident operators and
the components that define the beam splitter:

⟨ŝ†nŝm⟩=
n

∑
p=0

m

∑
q=0

(
n
p

)(
m
q

)〈
T (n−p)d̂†(n−p)(−i)p T p â†p T (m−q) d̂(m−q) (i)q Rqâq

〉
(2.114)

=
n

∑
p=0

m

∑
q=0

(
n
p

)(
m
q

)
T (n−p+m−q) R(p+q) (−i)p (i)q

〈
d̂†(n−p) â†pd̂(m−q)âq

〉
. (2.115)

The terms in red only define some normalization factors, so they can be momentarily neglected to focus on
the overall result. The problem can be simplified by considering that the incident fields have no correlations
between them. This means that the term that has the product of four operators can be split into two terms that
measure the respective correlations of each operator

⟨ŝ†nŝm⟩=
n

∑
p=0

m

∑
q=0

(
n
p

)(
m
q

)〈
d̂†(n−p) d̂(m−q)

〉〈
â†pâq〉 . (2.116)

Equation (2.116) will be the starting point to analyze some specific cases of interference.
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2.5.1 Interference of a classical source and a quantum source

In the specific case that d̂ is a quantum operator, but â is a classical (in general complex) component, then the
expression (2.116) simplifies into:

⟨ŝ†nŝm⟩=
n

∑
p=0

m

∑
q=0

(
n
p

)(
m
q

)
α
∗ p

α
q
〈

d̂†(n−p) d̂(m−q)
〉
, (2.117)

where α = ⟨a⟩. Let’s start by evaluating different values of n,m to observe what is the result of their correlations.

Case n,m = 1

The result for the simplest case, where both n,m are equal to 1 is

⟨ŝ†ŝ⟩=
1

∑
p=0

1

∑
q=0

(
1
p

)(
1
q

)
α
∗ p

α
q⟨d̂†(1−p) d̂(1−q)⟩ (2.118)

= ⟨d̂†d̂⟩+α⟨d̂†⟩+α
∗⟨d̂⟩+ |α|2

⟨n̂s⟩= |α|2 + ⟨n̂d⟩+2Re
{

α
∗⟨d̂⟩

}
.

This expression is reminiscent of the well-known result in both optics and mechanical physics, obtained through
the phenomenon of interference. Indeed, the first two terms resemble the intensities of the incident waves,
while the latter reflects the interference component between the waves.

Case n,m = 2

For the second order, the correlations yield,

⟨ŝ†2ŝ2⟩=
2

∑
p=0

2

∑
q=0

(
2
p

)(
2
q

)
α
∗ p

α
q⟨d̂†(2−p) d̂(2−q)⟩ (2.119)

= ⟨d̂†2d̂2⟩+2α⟨d̂†2d̂⟩+α
2⟨d̂†2⟩+2α

∗⟨d̂†d̂2⟩+4|α|2⟨d̂†d̂⟩

+2α|α|2⟨d̂†⟩+α
∗2⟨d̂2⟩+2α

∗|α|2⟨d̂⟩+ |α|4.

This result itself is not very elucidating with respect to the physics it describes. However, by using the expression
for the n,m = 1 case, a normalized version of a second-order correlation function can be obtained:

g(2)s =
⟨ŝ†2ŝ2⟩
⟨ŝ†ŝ⟩2 =

⟨ŝ†2ŝ2⟩
⟨n̂s⟩2 . (2.120)

In this way, with the normalization to the “average number of photons” ⟨n̂s⟩, a result grouped in orders
proportional to the classic component α can be unconvered:

g2
s =1+

(
⟨d̂†2d̂2⟩−⟨d̂†d̂⟩2

⟨n̂s⟩2

)
+

(
4Re

{
α∗ (⟨d̂†d̂2⟩−⟨d̂†d̂⟩⟨d̂⟩

)}
⟨n̂s⟩2

)
(2.121)

+2

(
Re
{

α∗2⟨d̂2⟩
}
+ |α|2⟨d̂†d̂⟩−2Re

{
α∗⟨d̂⟩

}2

⟨n̂s⟩2

)
.
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g2
s = 1+ I0 + I1 + I2. (2.122)

Equation (2.122) indicates that correlation statistics are given as a product of contributions of coherent signals,
denoted by the value of 1, and incoherent parts described by the Ik factors. Depending on how much each factor
weighs, the system statistics will change notably, obtaining values for purely quantum fields, coherent sources,
or even thermal fields. Although it is generally difficult to describe which physics holds each Ik term, some
things can be said about them.

The component I0 indicates the statistics of the quantum part of the mixture. The reason for this is that
its numerator corresponds to the variance of the operator d̂, which serves to classify the nature of the distri-
bution (Sub-Poissonian, Poissonian, Super-Poissonian). The negativity of this contribution indicates that a
Sub-Poissonian statistic is being accessed, i.e., when ⟨d̂†2d̂2⟩< ⟨d̂†d̂⟩2. For values where I0 has a dominant
value, the resulting statistics will surely correspond to quantum states. On the contrary, the I1 factor is not
as straightforward to physically understand, since it relates the correlations between the intensity and the
fluctuations of the field. This effect represents something anomalous that not all states present, however, a
squeezed coherent state presents these types of correlations. Finally, the component of the numerator I2 is
related to squeezing, because its numerator can be rewritten in terms of quadratures of the operator d̂, so it
indicates the variance of the quadratures of the field. The fact that I2 < 0 proves that there is a light squeezing
component involved in the photon statistics.

A fundamental case that of the coherent decomposition (2.122) results when the same system provides
both the coherent and the quantum contribution to the interference, an effect known as self-homodyning. This
means that the quantum operator ŝ can be described as a superposition of its mean field (coherent contribution)
and its fluctuations (quantum contribution)

ŝ = ⟨s⟩+ d̂, where d̂ = ŝ−⟨s⟩. (2.123)

Obviously, by construction, the quantum operator d̂ has no mean-field,
(
⟨d̂⟩= 0

)
which greatly reduces the

terms of the Equation. (2.122). This can be done by replacing α −→ ⟨s⟩ and d̂ −→ ŝ−⟨s⟩, which results as the
followings expressions for the decomposition Ik in terms of the system operator ŝ

I0 =
⟨s†2s2⟩−⟨s†s⟩2 −4|⟨s⟩|4 +6|⟨s⟩|2⟨s†s⟩+2Re

{
⟨s†⟩2⟨s2⟩−2⟨s†⟩⟨s†s2⟩

}
⟨s†s⟩2

I1 = 4
Re
[
⟨s†⟩⟨s†s2⟩−⟨s†⟩2⟨s2⟩

]
+2|⟨s⟩|2

(
|⟨s⟩|2 −⟨s†s⟩

)
⟨s†s⟩2

I2 = 2
Re
[
⟨s†⟩2⟨s2⟩

]
+ |⟨s⟩2|⟨s†s⟩−2|⟨s⟩|4

⟨s†s⟩2 . (2.124)

The previous set of equations will be crucial for analyzing the second order correlation of any system operator
ŝ. I will therefore appeal to Equation. (2.124) repeatedly in subsequent sections.
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2.6 Theoretical criteria for single photon sources

In order to be able to study how well a system behaves as a single photon source, some criteria have to be
evaluated as a function of relevant parameters. Typically, the single photon nature of a system is based on the
measurement of the second order correlation function, where coincidences of the emission are measured as a
function of the delay τ , normally by means of a Hanbury Brown - Twiss setup [56]. A dip in the count histogram
when the delay time equals zero means that coincidences at the two detectors have not been registered and thus,
single photon emission can be confirmed. Furthermore, another important characteristic that the SPS must
sustain is that the emitted photons must be indistinguishable, which is evaluated through a Hong Ou Mandel
setup [36].

The fundamental classification criteria changed later on, from not on identifying photon antibunching, given
by g(2)(0) < g(2)(τ), but also on finding subpossionian fluctuations in the field, which are characterized by
g(2)(0)< 1. The theoretical goal was therefore to obtain g(2)(0) = 0, which is the result for the Fock |1⟩ state
photon (g(2)n (0) = 1− 1/n). For this reason, the main focus for the classification of a system as a plausible
single photon source was made through the minimization of the g(0)(0), although never reaching zero.

A true photon source is defined by the cancellation of multiphoton events, holding only one excitation at
a time. However, since the current classification schemes only rely on the measurements up to the second order,
this does not constitute a suitable element for examining the single photon emission of a system. This is the
main justification that Lopez Carreño et al. exploit in their work [64] for finding an adequate substitute that
classifies systems as single photon sources. As an example of the previous statement about the suppression of
the correlation functions, they came up with a state that has an arbitrarily low g(2)(0) (but nonzero), and high
g(n)(0) for n > 2.

ρ = α |0⟩⟨0|+β |1⟩⟨1|+ γ |3⟩⟨3| ,α =
297001
300000

,β =
1999

200000
,γ =

1
600000

⟨â†â⟩= Tr[ρ â†â] = ∑
n

n⟨n|ρ |n⟩= β +3γ

g(2)(0) =
⟨â†2â2⟩
⟨â†â⟩2 =

6γ

(β +3γ)2 =
1

10

g(3)(0) =
⟨â†3â3⟩
⟨â†â⟩3 =

6γ

(β +3γ)3 = 10.

This example helps to illustrate that g(2)(0) −→ 0 is a necessary but not sufficient requirement to classify a
system as a source of single photons. To avoid this issue, we propose employing an alternative method. The
idea behind this is to simply compute higher-order correlation functions, in a way that the behavior of a source
is not restricted to two photon coincidences, but rather, to map the whole statistical dependence of the system.
Afterward, it only takes a simultaneous minimization process, such as the least square method, or more refined
tools such as multi-objective optimization algorithms, to find the set of parameters that provide the best joint
antibunched behavior.

Regarding the experimental proposal for this criterion which relies on the measurement of higher-order
correlation functions, Figure (2.12) presents a mock-up scheme and an actually employed setup for such a
task. In the Top row of this figure, it is shown a draft of a possible extension of a Hanbury Brown Twiss setup,
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Figure 2.12 Experimental setups for measuring higher-order correlation functions. (Top row) Sketch of a
possible extension of a Hanbury Brown Twiss setup for measuring higher order correlation functions up to
g(4)(0). (Bottom row) Experimental scheme from Avenhaus et al. for measuring g(n) for coherent and chaotic
states by employing Time Multiplexing Detectors (TMD)[65].

on which it is possible to find coincidences in up to four detectors, meaning that it is possible to calculate
g(2), g(3) and g(4). The consequence of adding more detectors would be of extending the experimental process
in order to obtain a relevant amount of coincidences. On the other hand, the bottom row shows the scheme
used by Avenhaus et al. [65] for measuring higher order correlation functions of coherent and chaotic states,
by employing Time Multiplexing Detectors (TMD) [66]. With their techniques, they were able to measure
correlation functions up to the eighth order, founding an excellent agreement for the theory and experiment of
the measurement of coherent states (error of 0.01% for g(4)) and chaotic thermal states (error of 2.3% for g(4)).





Chapter 3
Results

In this chapter, we provide the main results regarding the analysis of the quantumness of photon blockade.

First, we derive the analytical and numerical solutions for the models associated with the Unconventional
Blockade effect (3.1), specifically, finding optimal conditions for the two interacting cavities model in order
to correctly obtain single photon emission by means of the higher order minimization criteria mentioned in
section (2.6). We also compare some modifications made to the original model by Liew and Savona, to clarify
if they improve the single photon criteria.

Afterward, we deal with the problem of simultaneous photon blockade. For that reason, we analyze the
driven dissipative Jaynes Cummings model. We provide the analytical conditions for obtaining CPB and UPB in
such a system, analyzing the result of different contributions, such as an admixing of the coherent drives to the
cavity and QD. We discuss feasible experimental schemes and intrinsic differences between the two blockade
mechanisms that arise when frequency filtering and phonon-mediated coupling are taken into consideration.

Finally, we apply all the tools to analyze a new system, namely, an elliptical micropillar with an embed-
ded QD subject to an external magnetic field and coherent driving. We provide the framework for generating
photon blockade in such setup, demonstrating the realization of a single photon polarization with by means of
the conventional photon blockade mechanism.

3.1 Unconventional photon blockade

3.1.1 Original proposal

As mentioned in Section 1.1, the idea of obtaining single photons by means of weak nonlinearities was initially
proposed by Liew and Savona in 2010 [4]. In their work, they considered a scheme of two coupled quantum
modes with small nonlinear interactions. As an example of the quantum modes, they mentioned that solid-state
implementations that use the tunneling of polaritons between quantum boxes, as well as coupled photonic
crystal cavities are suitable systems for that type of interaction.
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The model for such an interaction can be written as

H = ω̃aâ†â+ ω̃bb̂†b̂+U
(
â†2â2 + b̂†2b̂2)+ J

(
â†b̂+ âb̂†)+Ωa(â+ â†), (3.1)

where ω̃i corresponds to the frequency in the laser rotating frame of mode i, U is understood as a polariton-
polariton interaction, normally considered as a Kerr-type self-interaction mechanism, J is a tunneling rate
between the quantum boxes, and Ωa represents the CW excitation of the mode a. This was the birth of the
framework of the so-called Unconventional photon blockade, where the blockade is based on the use of weak
nonlinearities, rather than on strong couplings, which in principle is easier to generate experimentally, due
to the fact that many systems exhibit such weak nonlinearities naturally [67]. In their simulations, Liew and
Savona found that the coupling of the pair of quantum boxes can notably improve the statistics of the emission,
compared to those systems that rely on strong interactions (CPB), and for that reason, single photon emitters
based on the principle of the UPB were considered to provide optimal applications for further technological
developments. There are two different methods employed to understand the results from Liew and Savona.
Each one will be discussed next

Wave function approximation method

Inspired by this work, the group of Bamba et al.[5], used the same theoretical proposal, but explained the
nature of the UPB, identifying that specific quantum interference are responsible for that type of blockade. The
process to understand these results will be shown up next.

First, one must use the denoted wavefunction approximation, which considers an expansion of the wave-
function into the bare state basis, truncating up to a certain manifold, and solving the Schrödinger equation by
using an effective Hamiltonian which includes the dissipative processes (That in this case correspond to the
losses from both quantum boxes at a rate γi) and therefore leads to a non-Hermitian Hamiltonian.

Considering the original problem by Liew and Savona, given by Equation (3.1), the effective Hamiltonian and
the wavefunction of interest are

Heff = ω̃
′
aâ†â+ ω̃

′
bb̂†b̂+U

(
â†2â2 + b̂†2b̂2)+ J

(
â†b̂+ âb̂†)+Ωa(â+ â†) (3.2a)

|Ψ⟩=C00 |00⟩+C10 |10⟩+C01 |01⟩+C20 |20⟩+C11 |11⟩+C02 |02⟩ (3.2b)

iℏ∂t |Ψ⟩= Heff |Ψ⟩ , (3.2c)

where ω̃
′
c = ω̃c − iγc/2. With the set of Equations (3.2), it is possible to find the steady state by solving

the coupled algebraic equations of the Cnm terms. To allow a closed set of equations, the conditions C00 ≫
C10,C01 ≫C20,C11,C20, and C00 = 1, are imposed.

ω̃
′
a J 0 0 0

J ω̃
′
b 0 0 0√

2Ωa 0 2(ω̃
′
a +U)

√
2J 0

0 Ωa
√

2J ω̃
′
a + ω̃

′
b

√
2J

0 0 0
√

2J 2(ω̃
′
b +U)




C10

C01

C20

C11

C02

=


−Ωa

0
0
0
0

 . (3.3)
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From Equation (3.3) it can be seen that the coefficients that are related to C20 are C10 and C11, meaning that
those are responsible for the quantum interference. Indeed, the paths to access to the |20⟩ states are

Path 1: |0,0⟩ Ωa−→ |1,0⟩ Ωa−→ |2,0⟩ (3.4)

Path 2: |0,0⟩ Ωa−→ |1,0⟩ J−→ |0,1⟩ Ωa−→ |1,1⟩ J−→ |2,0⟩ . (3.5)

The steady state solutions for the coefficients are

C10 =
2Ωa(2ω̃b − iγ)

4J2 + γ2 +2iγω̃b −4ω̃aω̃b
(3.6a)

C01 =
4JΩa

4J2 + γ2 +2iγω̃b −4ω̃aω̃b
(3.6b)

C20 = [2
√

2ω
2
a (2Uγω̃a +6Uγω̃b +4γω̃aω̃b +8γω̃

2
b − γ

3)+ i(4J2U −2Uγ
2 − γ

2
ω̃a −5γ

2
ω̃b (3.6c)

+4Uω̃aω̃b +4Uω̃
2
b +4ω̃aω̃

2
b +4ω̃

3
b )]/[(4J2 + γ

2 −4ω̃aω̃b +2iγω̃a +2iγω̃b)(4J2
γ −4U2

γ + γ
3

−8Uγω̃a −2γω̃
2
a −8Uγω̃b −8γω̃aω̃b −2γω̃

2
b +8iJ2U +4iU2

γ +4iJ2
ω̃a −4iU2

ω̃a +3iγ2
ω̃a

−4iUω̃
2
a +4iJ2

ω̃b −4iU2
ω̃b +3iγ2

ω̃b −8iUω̃aω̃b −4iω̃2
a ω̃b −4iUω̃

2
b −4iω̃aω̃

2
b )]

C11 =−[8JΩ
2
a(U − iγ + ω̃a + ω̃b)(2U − iγ +2ω̃b)]/[(4J2 + γ

2 −4ω̃aω̃b +2iγω̃a +2iγω̃b) (3.6d)

(4iJ2
γ −4iU2

γ + iγ3 −8iUγω̃a −2iγω̃
2
a −8iUγω̃b −8iγω̃aω̃b −2iγω̃

2
b +8J2U +4U2

γ

+4J2
ω̃a −4U2

ω̃a +3γ
2
ω̃a −4Uω̃

2
a +4J2

ω̃b −4U2
ω̃b +3γ

2
ω̃b −8Uω̃aω̃b −4ω̃

2
a ω̃b

−4Uω̃
2
b −4ω̃aω̃

2
b )]

C02 = [8
√

2J2Ω
2
a(U − iγ + ω̃a + ω̃b)]/[(4J2 + γ

2 −4ω̃aω̃b +2iγω̃a +2iγω̃b) (3.6e)

(4iJ2
γ −4iU2

γ + iγ3 −8iUγω̃a −2iγω̃
2
a −8iUγω̃b −8iγω̃aω̃b −2iγω̃

2
b +8J2U +4U2

γ

+4J2
ω̃a −4U2

ω̃a +3γ
2
ω̃a −4Uω̃

2
a +4J2

ω̃b −4U2
ω̃b +3γ

2
ω̃b −8Uω̃aω̃b −4ω̃

2
a ω̃b

−4Uω̃
2
b −4ω̃.

Although the set of Equations (3.6) are quite bulky and not elucidating at first sight, they are useful for
calculating relevant observables, especially, to understand the conditions for perfect antibunching due to
quantum interference associated with the UPB. Contrary to the solutions given by [5], this set of expressions
are far more general and pose no constraints among the detunings ω̃i, which Bamba et al. imposes to be equal.
With (3.6), the observables na and g(2)a (0) can be found as

na = ⟨Ψ| â†â |Ψ⟩ ≈ |C10|2 (3.7)

g(2)a (0) =
⟨Ψ| â†2â2 |Ψ⟩
⟨Ψ| â†â |Ψ⟩2 ≈ 2

|C20|2

|C10|4
, (3.8)

so only by using the coefficients C10 and C20, the mean photon number and second order correlation function
can be analytically studied. Furthermore, It can be seen that the condition g(2)a (0) = 0 can be achieved by
making the numerator of C20 equal to zero. This results in two conditions

2Uω̃a +6Uω̃b +4ω̃aω̃b +8ω̃
2
b − γ

2 = 0 (3.9a)

4J2U −2Uγ
2 − γ

2
ω̃a −5γ

2
ω̃b +4Uω̃aω̃b +4Uω̃

2
b +4ω̃aω̃

2
b +4ω̃

3
b = 0. (3.9b)
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Following the lead of Bamba et al., for the simpler case where ω̃a = ω̃b = ω̃ , the previous equations can be
solved to obtain optimal expressions for ω̃ and U can be found, as functions of J,γ . This is achieved first by
solving for U in the simplified version of Equation (3.9 b), which gives U(ω), and then replacing that value on
(3.9 a) and solving for ω . This results in the following optimal relationships

ω̃opt =
1
2

√
−3J2 − γ2 + J

√
9J2 +8γ2 (3.10a)

Uopt =
3γ2ω̃opt −4ω̃3

opt

2J2 − γ2 +4ω̃2
opt

=
ω̃opt(5γ2ω̃opt +4ω̃2

opt)

2(2J2 − γ2)
. (3.10b)

These optimal equations synthesize the efforts of Bamba et al. to enlighten the mechanism responsible for UPB
constitutes a major contribution to the field, and which inspired numerous works that employed their analytical
treatment.

Optimally Squeezed Gaussian states

A second major contribution to the understanding of UPB came in 2014 in the work of Lemonde et al. [6],
where they related the nature of UPB to a much more intrinsic characteristic of the states that the two coupled
quantum modes were able to generate. The steady state of these systems turns out to be a special case of a
Gaussian state (As the ones explained in section 2.1.2), which are known as Optimally Squeezed Gaussian states.

The most general Gaussian state corresponds to a displaced squeezed thermal state, which has a density
matrix of the form

ρ̂α,ξ ,n̄ = D̂(α)Ŝ(ξ )ρ̂n̄Ŝ†(ξ )D̂†(α), (3.11)

with α = ᾱeiφ , ξ = reiθ and where D̂(α), Ŝ(ξ ) are the displacement and squeezing operators, and ρ̂n̄ is the
density matrix of a thermal state with thermal population n̄. The proposal from Lemonde et al. is that by
optimally displacing and squeezing this type of state, one can achieve non-classical states. Using similarities
transformations with the displacement and squeezing operators over the number operators, one can find (after
some algebra) compact expressions for the mean photon number and the general density matrix ρ̂α,ξ ,n̄ and
recalling that ⟨Ô⟩= Tr[ρ̂α,ξ ,n̄Ô]:

⟨â†â⟩= ᾱ
2 +(n̄+1/2)cosh2r−1/2 = ᾱ

2 +n (3.12)

g(0)(0) = 1+
2ᾱ2(n− s)+ s2 +n2

(ᾱ2 +n)2 , (3.13)

where s is defined as s = (n̄+1/2)sinh2r, and where the displacement and squeezing angles were chosen in
order to squeeze the amplitude quadrature (θ = 2φ ). It is therefore possible to study the dependence of the
expression (3.13) as a function of the squeezing parameter r, and the displacement parameter ᾱ (which for
notation’s sake will be written now on as α).
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Figure 3.1 Second order correlation function calculated for the optimally squeezed Gaussian states as a function
of the squeezing parameter r for various values of the displacement α .

For the case that there is no thermal contribution to the optimally squeezed Gaussian states, i.e. n̄ = 0,
Figure (3.1) shows the behavior of the g(2)(0) as a function of r for several values of α . It can be seen that
for an optimal choice of the squeezing parameter for each value of the displacement, there are regions where
g(2)r,α(0)< 1, proving that this condition is not unique to non-Gaussian states (e.g. Fock states) and therefore it is
not a suitable proof of non-Gaussianity of a state. There are also two relevant aspects of this graph: First, it can
be seen that the value of the antibunching can be brought closer to zero, by making small enough displacements
and squeezing to the state. Secondly, it is understood that arbitrarily increasing the squeezing factor r does
not decrease the second order correlation function but rather all plots tend to the value of 3, which means that
increasing r, and thus, reducing the fluctuations does not translate into a smaller g(2)(0). These two assertions
will be further inspected next.

To examine the first statement, it is relevant to study how g(2)(0) acts when α,r are both small. This is
explored in the figure below.
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Figure 3.2 a.) Second order correlation function of the optimally squeezed Gaussian sate for small deviations
of r,α . The dashed lines indicate the optimal relationship between r and α that minimize g(2). b.) Wigner
function of a Squeezed Coherent state |ξ ,α⟩, where r = 0.5 and α = 1.
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Figure (3.2 a) shows the statistics of g(2)r,α(0) for small deviations of r,α over the vacuum state. It can be
seen that by properly selecting a squeezing quantity for each displacement on the phase space, one can obtain
antibunching with the use of Gaussian states. The optimal relationship for antibunching is displayed in this
figure as a dashed black line, whose functional form has a quadratic nature in α , so it can be seen that in order
to get antibunching with Gaussian states, one must use a squeezing r = ropt(α)≈ α2, for small values of α . It
is also possible to find an optimal relationship between r and α that always minimizes g(2)(0), but since for big
values of these pairs the second order correlation function does not display a Subpoissonian nature, it is not of
my interest to explore this connection.

Now, since Gaussian state have an analytical calculation for their representation on phase space, as indi-
cated in Section (2.1.2), it results interesting to analyze whether their Wigner function has some differences
since there is a large difference for the states g(2)r,α depending on the selection of the parameters. Using the
techniques of the aforementioned section, it can be proven that the expression for the Wigner function of a
Squeezed Coherent state is

Wξ ,α0
(α) =

2
π

exp

{
−2

(
Re{α −α0}2

e−2ξ
+

Im{α −α0}2

e2ξ

)}
. (3.14)

Figure 3.3 Comparison of the Wigner function of the displaced squeezed vacuum for the conditions that
generate antibunching r, α = 0.02 (Red) and bunching r = 0.002, α =

√
r (Blue)

Thus, |ξ ,α⟩ is a squeezed state with a displacement given by α0. Figure (3.3) shows a calculation of
the Wigner function of these states, for two sets of parameters: I. r, α = 0.02 (Red), which corresponds to a
bunching condition in Figure (3.2), and r = 0.002, α =

√
r, corresponding to antibunching. As it can be seen,

although the deviation from both conditions is small, it is sufficient to generate a difference in the second order
correlation function of the order of 106, however, the intrinsic cause remains missing. Further explorations for
these types of states must be made in order to clarify the nature of such behavior.

To conclude this statement, it can be seen that for the specific model of the two coupled quantum modes
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the Kerr interaction is the one responsible for carrying the squeezed nature in the Hamiltonian, while the
coherent contribution is given by the CW driving. For this reason, it is seen that the suppression in the g(2)(0)
in this model is a particular case for the realization of optimally squeezed Gaussian states, which corresponds
to the steady state of the driven mode.

To analyze the next statement, on the reason these states tend to a value of 3, it is useful to directly in-
spect the squeezed vacuum states, since the behavior of the plots acts independently of α . For this purpose, one
must calculate the expectation values of the number operator and the g(2)(0) in the squeezed state |ξ ⟩= Ŝ(ξ ) |0⟩.
Recalling the similarities transformation given in Equation (2.38), and that the operator Ŝ(ξ ) is unitary, the
expressions can be obtained as follows

⟨â†â⟩ξ = ⟨0| Ŝ†(ξ )â†âŜ(ξ ) |0⟩= ⟨0| Ŝ†(ξ )â†Ŝ(ξ )Ŝ†(ξ )âŜ(ξ ) |0⟩= ⟨0| â†
ξ

âξ |0⟩= sinh2 r = n (3.15a)

⟨â†2â2⟩ξ = ⟨0| â†2
ξ

â2
ξ
|0⟩= 2sinh4 r+ sinh2 r cosh2 r (3.15b)

g(2)
ξ
(0) =

2sinh4 r+ sinh2 r cosh2 r
sinh4 r

= 3+
1

sinh2 r
= 3+

1
n
. (3.15c)

Therefore it has been proven that for large enough n, the squeezed vacuum state second order correlation
function (Equation 3.15c) tends to 3.

Numerical solution for the master equation

Now, having understood all the frameworks on which the UPB can be explained, it is time to proceed with the
numerical confirmation of the analysis, which will be performed by solving the following master equation,

∂tρ = i[ρ,H]+
γa

2
Lâρ +

γb

2
Lb̂ρ, (3.16)

where H is the original Hamiltonian from Liew and Savona (Equation 3.1). Solving for the steady state and
calculating g(2)(0) as a function of the mode detunings ω̃i yields
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Figure 3.4 a.) Mean photon number and b.) g(2) of the two coupled quantum modes model, as reproduced
from the references [4, 5]. U/γ is chosen to optimize antibunching as given by Equation (3.10 b). Parameters:
U = 0.0428γ , J = 3γ , Ωa = 0.001γ .
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As shown in Figure (3.4 b), the values of the g(2) with the UPB scheme reach values as low as 10−4, for
a Kerr nonlinearity of the order of 0.01γ . This outstanding result was the one that catapulted the UPB as a
feasible single photon source, since, as mentioned earlier, it does not require achieving strong coupling, but
also, it doesn’t employ the coupling of a cavity with an emitter, which always poses a technological challenge
(Although recent developments have made this process much easier). Nevertheless, as complemented with
Figure (3.4 a), it can be seen that mean photon values range between 10−7 and 2×10−4, which drawbacks
the single photon emission of this sort of systems because of the decrease in brightness (which is an essential
feature for an SPS to have technological applications), meaning that a source of this type corresponds to a
probabilistic source of single photons, making this sort of states inconvenient for applications.

Figure 3.5 Decomposition of g(2) in coherent and incoherent factors, for the values where ω̃a, ω̃b = ω̃ in Figure
(3.4) b. The nature of the antibunching of the UPB stems from a squeezing contribution of the incoherent factor
I2. Parameters: U = 0.0428γ , J = 3γ , Ωa = 0.001γ .

In Figure (3.5) the incoherent decomposition of the g(2)(0) is made, for the case were ω̃a = ω̃b. As expected,
the incoherent factor associated to squeezing, i.e., I2 is the distinctive feature for the cause of the antibunching
in the UPB, which confirms the nature of the steady state as an optimally squeezed Gaussian state. I0 and I2

are only non-zero near the optimal minimization point, which explains the coherent nature of this source for
most of the set of parameters. This optimally squeezed Gaussian state is only an infinitesimal deviation of the
vacuum, therefore is not large enough to show the anomalous correlations related to squeezed coherent states,
so the I1 contribution is zero.

Furthermore, following the idea that single photon sources must provide photon blockade at all orders, Figure
(3.6) shows the calculation of g(n)(0) up to n = 4, as a function of the detuning ω̃ (a) and the Kerr nonlinearity
strength U (b.). First, it can be seen that by properly selecting the cavity and laser detuning, the second
order correlation function can be adequately minimized. However, this situation contrasts with the case of
higher-order correlation functions, where for both n = 3,4 the behavior mostly resembles a chaotic light source.
To check that this phenomenon occurs for all values of U/γ , panel b. of the same figure displays the same
calculation of the higher order correlations as a function of the Kerr nonlinearity strength U , where we take the
value of ω̃/γ that optimizes the g(2), i.e., ω̃ = 0.0257γ . It can be seen that by increasing the order of n, the
value of U/γ that minimizes each correlation function keeps decreasing, which means that there is no value that
could simultaneously provide optimal antibunching at all orders. Moreover, although the g(4) can be minimized,
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the value it takes is greater than one, meaning that for the selection of the frequency that optimizes the second
order correlation function, it is not possible to obtain the same response for higher-order correlations. This
gives first insights with respect to the nature of the emission of this system, indicating that multiphotonic events
are still possible.
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a.) b.)

Figure 3.6 g(n)a for n = 2,3,4 as a function of the detuning ω̃ (a) and Kerr nonlinearity U/γ (b). In the first
panel, only g(2) obtains values lower than one, while higher-order correlation functions exhibit a bunched nature
for all frequencies. Selecting such the minimizing frequency, panel b indicates that there is no simultaneous
minimization of the correlation functions. Parameters: (a) U = 0.0428γ , (b) ω̃ = 0.0275γ . The rest of the
parameters are J = 3γ and Ωa = 0.001γ .

To give a complete understanding of the behavior of higher-order correlation functions, in Figure (3.7) we
map the previously calculated correlations, as a function of the detuning ω̃ and the Kerr nonlinearity strength
U . Here it can be seen that the selection of U/γ that minimizes g(2) yields bunching at higher order correlation
functions. Proceeding with this idea, we indicate in the plot the values of U that minimize the value of g(n),
noting that optimal antibunching in the three correlation functions is not possible, as previously indicated in
Figure (3.6 b.). Nevertheless, showing the minimal values for g(n) opens the possibility to define zones where,
although not optimal, it is possible to find the same statistical behavior for all orders in the correlation function.
by means of a minimization process in between the (II) and (III) zones, we found the optimal value for U that
simultaneously gives the lower possible values of g(n). Using this value, we calculate the correlation functions
with respect to the detuning. We found that this notoriously contrasts with the one observed in Figure (3.6 b),
where it is now possible to simultaneously realize antibunching for all orders, at the expense of decreasing the
value of the g(2). These results conclusively demonstrate that although the values of the model of Liew and
Savona do not correspond to a true single photon emitter, it is possible to find the optimal value of the Kerr
nonlinearity that gives the best simultaneous minimization of the correlation functions. Such criterion is much
more robust for classifying single photon sources, because describes the statistical behavior of the source at
higher orders, rather than merely relying on the values for the second order correlation function.
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Figure 3.7 a.) Higher order correlation function analysis of the two interacting cavity model, for a mapping
of the detuning ω̃ and Kerr nonlinearity U . The optimal Kerr nonlinearity value, Uopt, that gives the best
simultaneous minimization is found. b.) g(n) as a function of the detuning for the optimal Kerr nonlinearity,
U = 0.01025γ . Simultaneous antibunching is observed, indicating single photon emission for a detuning value
of ω̃/γ = 0.3 Parameters: J = 3γ , Ωa = 0.001γ .

3.1.2 Modifications to the original model

Inspired by the original work, many derivations of the Unconventional Photon Blockade have been made,
examining further systems that could minimize the second order correlation function. Most of them are
synthesized into hybrid systems, which include optomechanical interactions [68, 69], others study modifications
to the nature of the employed nonlinearity [70], and also have a more general approach to the original model,
such as driving both polariton boxes and posing different nonlinearities values for each one[71, 72].

Here, we will only consider the easiest deviation of the original model, as proposed by Xu and Li [71],
where they considered different CW strength and phase for each mode, and where the restriction for equal
nonlinearity of both modes U was lifted. Their Hamiltonian is

H = ω̃aâ†â+ ω̃ab̂†b̂+ J(â†b̂+ âb̂†)+Uaâ†2â2 +Ubb̂†2b̂2 +Ωa(â†eiφa + âe−iφa)+Ωb(b̂†eiφb + b̂e−iφb).
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The optimal conditions that they derived are

ω̃opt ≈ J/η (3.17a)

Uopt ≈
κ2

2J
η

η2 −1
, (3.17b)

with η = Ωa/Ωb, and where no relative phase between the drives was considered (φa = φb). The results of the
reproduction of their main result and the comparison with the new SPS criteria are shown up next
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Figure 3.8 Higher order correlation function analysis for the model by Xu and Li [71], as a function of
frequency and driving ratio η = Ωa/Ωb. The optimal value for the ratio of the drivings, ηopt = 25.2 is found by
minimizing simultaneously both correlation functions.

In Figure (3.8 a) we reproduce one of the main results from [71], where the numerical calculation of the
g(2)(0) is made as a function of the detuning ω̃ and the relative driving strength η = Ωa/Ωb. Their result
indicated that by properly selecting the relationship of the CW drivings for each mode, antibunching via the
UPB was achievable with much more ease than from the original model, by properly tuning the detuning
among the laser and the natural frequencies of the quantum modes. The optimal condition for the g(2) was
η = 3.5. Nevertheless, as shown in the higher order correlation analysis, just by calculating the following
correlation function (g(3)) the optimal parameter yields bunching, preventing single photon emission. Once
again, by applying a simultaneous minimization process, it is found that there is a value ηopt ≈ 25.2 where
both correlation functions can yield low values, namely, g(2) = 0.3 and g(3) = 0.13. For this system, however,
the mean photon number is still of the order of 10−7, so it poses the original brightness issue of the Liew and
Savona model.
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3.2 Simultaneous Photon Blockade

The fact that only two groups have been able to provide experiments to generate Unconventional Photon
Blockade as proposed in its original form, despite the numerous setups proposed in theoretical papers, shows
the limits on the implementations of these schemes, and the need to find alternative routes for generating single
photon sources through the Photon Blockade Effect. In that regard, the work of Zubizarrieta et al. [10, 73]
elucidates the path, by proving that some systems may exhibit conventional and unconventional features
simultaneously, just by properly tuning the relevant parameters, and which are explained through the unified
framework of admixing of coherent and squeezed states, as mentioned in section 2.5. Therefore, in this section,
we will explore a particular system and evaluate its usefulness as an SPS through the higher-order correlation
function minimization, as well as the discussion of their experimental realizations.

3.2.1 Driven-dissipative Jaynes Cummings model

One of the alternative systems that could serve as a real on-demand single photon source, as discussed by
Zubizarrieta et al., is described by the simplest, yet one of the most relevant models of Quantum Optics:
The Jaynes Cummings model, which was introduced when the quantum mechanical picture of light matter
interaction was discussed (section 2.2.3). The proposed system is specifically understood as a driven (and
dissipative) Jaynes Cummings model, which can be described by the following Hamiltonian:

H(t) = ℏωa â†â+ℏωσ σ̂
†
σ̂ +ℏg

(
â†

σ̂ + σ̂
†â
)
+Ωa

(
âeiωl t + â†e−iωl t

)
+Ωσ

(
σ̂eiωl t + σ̂

†e−iωl t
)
, (3.18)

where â, σ̂ are the annihilation and lowering operators for radiation and matter, ωa(σ) represents the frequency
of the cavity (2LS), g is the magnitude of the dipole interaction, and Ωa(σ), ω l corresponds to the amplitude
and frequency of the coherent pump to the cavity (2LS).

As it was mentioned in the previous section, moving into the laser rotating frame removes the explicit time
dependence of the Hamiltonian, facilitating the solution of the system. Here we will explicitly show how this
transformation can be made, in order to give full completeness to the problem. The unitary operator R̂ that
allows this transformation is

R̂(t) = eiℏωl(â†â+σ̂†σ̂) t = eiℏωl N̂T t , (3.19)

where N̂T = â†â+ σ̂†σ̂ is understood as the number excitation operator for the joint system. Given that light
and matter operators commute, i.e., [â†â, σ̂†σ̂ ] = 0, the exponentials of the unitary operator can be divided,
resulting in

R̂(t) = eiℏωl â†â teiℏωl σ̂
†σ̂ t . (3.20)

Once again, the transformation that allows transforming the Hamiltonian H to a new one established in the
rotating laser frame H ′ is given by Equation (2.5)

H ′ = iℏ R̂H(t) R̂† + iℏ∂t R̂R̂†. (3.21)
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To explicitly calculate H, the Baker-Campbell-Hausdorff formula explained beforehand, is employed. The first
term of the transformation is,

iℏ R̂H(t) R̂† = ℏωa

(
eiℏωl n̂c t â†â e−iℏωl n̂c t

)
+ℏωσ

(
eiℏωl σ̂†σ̂ t

σ̂
†
σ̂ e−iℏωl σ̂†σ̂ t

)
(3.22)

+ℏg
(

eiℏωl n̂c t eiℏωl σ̂†σ̂ t â†
σ̂e−iℏωl σ̂

†σ̂ t e−iℏωl n̂c t + eiℏωl n̂c t eiℏωl σ̂
†σ̂ t âσ̂

† e−iℏωl σ̂
†σ̂ te−iℏωl n̂c t

)
+ℏΩa

(
e−iωl teiℏωl n̂c t â†e−iℏωl n̂c t + eiωl teiℏωl n̂c t â†e−iℏωl n̂c t

)
+ℏΩσ

(
e−iωl teiℏωl n̂c t

σ̂
†e−iℏωl n̂c t + eiωl teiℏωl n̂c t

σ̂
†e−iℏωl n̂c t

)
,

while the second one is

iℏ∂t R̂R̂† =−ℏωl
(
â†â+ σ̂

†
σ̂
)
. (3.23)

To further simplify the calculations, some important commutators are used:
[
â†â, â†

]
= â†,

[
â†â, â

]
=

−â,
[
σ̂†σ̂ , σ̂†

]
= σ̂†,

[
σ̂†σ̂ , σ̂

]
=−σ̂ . With these results, and once again using the Baker-Campbell-Hausdorff

formula, the elements that appear in (3.22) that must be calculated result in:

eiωl â†ât â†â e−iωl â†ât = â†â (3.24a)

eiωl σ̂
†σ̂t

σ̂
†
σ̂ e−iωl σ̂

†σ̂t = σ̂
†
σ̂ (3.24b)

eiωl â†ât â† e−iωl â†ât = â† e−iωl t (3.24c)

eiωl â†ât â e−iωl â†ât = â eiωl t (3.24d)

eiωl σ̂
†σ̂t

σ̂
† e−iωl σ̂

†σ̂t = σ̂
† e−iωl t (3.24e)

eiωl σ̂
†σ̂t

σ̂ e−iωl σ̂
†σ̂t = σ̂ eiωl t . (3.24f)

Thus, the Hamiltonian of the coherently driven Jaynes Cumming model, expressed in the rotating frame of the
laser has proven to be of the following form:

H = ℏ ω̃a â†â+ℏ ω̃σ σ̂
†
σ̂ +ℏg

(
â†

σ̂ + âσ̂
†)+ℏΩa

(
â+ â†)+ℏΩσ

(
σ̂ + σ̂

†) , (3.25)

where ω̃i = ωi −ωl , i = {a,σ}. As expected, the effect of moving into the laser rotating frame is to remove the
explicit time dependency of the coherent pumping and to transfer its properties to the relationships between the
bare frequencies of the system and the driving frequency, without modifying the light-matter interaction.
One of the principal properties of adding the coherent drive to the system is that it loses the property of
commuting with the total number operator, and therefore from the Heisenberg equation it stops being a
conserved quantity: [

N̂T ,H
]
=
[
â†â+ σ̂

†
σ̂ , ℏΩa(â† + â)+ℏΩσ (σ̂

† + σ̂)
]

(3.26)

= ℏΩa(â† − â)+ℏΩσ (σ̂
† − σ̂)

dN̂T

dt
=

1
iℏ
[
N̂T ,H

]
̸= 0.

Nevertheless, for the case that the pumping magnitude is much less than the interaction term (And when the
picture is upgraded to a dissipative formalism, it must also be less than the decaying parameters γi), the total
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number operator will keep its conservation properties, which allows once again to write the Hamiltonian in a
block diagonal form, finding its eigenvalues and eigenvectors for a specific manifold n.

Recalling the bare basis projection of the Jaynes Cummings Hamiltonian given in Equation (2.74), and
the eigenenergies expression for each manifold (2.75), the steps for obtaining photon blockade via anharmonic-
ities (i.e., through the mechanism of CPB) are achieved by tuning the laser frequency with energy given by
ωl = En,±/ℏ. Specifically, if one is interested in generating one photon at a time, the proper laser frequency
(taking ℏ= 1) is

E(−)
1 = ωl =

ωσ +ωa

2
± 1

2

√
4g2 +(ωa −ωσ )2. (3.27)

With a bit of algebra, this expression can be simplified to obtain the following condition

2ωl = ωσ +ωa −
√

4g2 +(ωa −ωσ )2

(ω̃a + ω̃σ )
2 = 4g2 +(ω̃a − ω̃σ )

2

ω̃aω̃σ = g2. (3.28)

So, by properly choosing the laser frequency one can obtain one photon in the cavity. Expression (3.28) is the
conventional photon blockade condition for generating single photons. It will be the basis for analyzing CPB in
the following calculations.

On the other hand, to understand the unconventional photon blockade within the framework of the Jaynes
Cummings model, it is necessary to recall that the main mechanism relies on quantum interference, specifically,
on the interference between two different pathways to access the same state. If the probabilities of both paths
interfere, then this state will be unable to be reached. For the system under consideration, the paths to access
the two photon state, and which result in interference are

Path 1: |0,g⟩ Ωa−→ |1,g⟩ Ωa−→ |2,g⟩ (3.29)

Path 2: |0,g⟩ Ωa−→ |1,g⟩ g−→ |0,e⟩ Ωa−→ |1,e⟩ g−→ |2,g⟩ . (3.30)

This allows blocking the state of two photons, and due to the low rates of pumping, higher-order states won’t be
commonly accessed, although they are not blockaded.

In order to obtain the analytical condition that sustains the UPB, it is necessary to apply once again the
wave function approximation method. For this case, the ansatz for the wave function is,

|Ψ⟩=C0,g |0,g⟩+C1,g |1,g⟩+C0,e |0,e⟩+C1,e |1,e⟩+C2,g |2,g⟩ , (3.31)

where the coefficients |Cn,α |2 denote the probability to access the state |n,α⟩. The effective Hamiltonian to
employ is

He f f = ℏ ω̃a â†â+ℏ ω̃σ σ̂
†
σ̂ +ℏg

(
â†

σ̂ + âσ̂
†)+ℏΩa

(
â+ â†)− i

κa

2
â†â− i

γσ

2
σ̂

†
σ̂ (3.32)

= ℏ
(

ω̃a − i
κa

2

)
â†â+ℏ

(
ω̃σ − i

γσ

2

)
σ̂

†
σ̂ +ℏg

(
â†

σ̂ + âσ̂
†)+ℏΩa

(
â+ â†) . (3.33)
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For the moment, only driving to the cavity was considered. Once again, solving the Schrödinger equation yields
a set of coupled differential equations for the coefficients Cn,α

∂tCg,1 =
(

ω̃a − i
κa

2

)
Cg,1 +gCe,0 +Ωa

(
1+

√
2Cg,2

)
(3.34a)

∂tCe,0 =
(

ω̃σ − i
γσ

2

)
Ce,0 +gCg,1 +ΩaCe,1 (3.34b)

∂tCe,1 =

(
ω̃a +ωσ − i

κa + γσ

2

)
Ce,1 +

√
2gCg,2 +ΩaCe,0 (3.34c)

∂tCg,2 = 2
(

ω̃a − i
κa

2

)
Cg,2 +

√
2gCe,1 +

√
2ΩaCg,1. (3.34d)

∂tC1,G =
(

ω̃a − i
κa

2

)
C1,G +gC0,X +Ωa

(
1+

√
2C2,G

)
(3.35a)

∂tC0,X =
(

ω̃σ − i
γσ

2

)
C0,X +gC1,G +Ωa∂tC1,X (3.35b)

∂tC1,X =

(
ω̃a +ωσ − i

κa + γσ

2

)
∂tC1,X +

√
2gC2,G +ΩaC0,X (3.35c)

∂tC2,G = 2
(

ω̃a − i
κa

2

)
C2,G +

√
2g∂tC1,X +

√
2ΩaC1,G (3.35d)

To solve the steady state for the previous set of equations, one assumes ∂tCn,α = 0, and imposes the condition
that lower manifolds are more probable than higher manifolds. This means that the vacuum dominates over the
subsequent states, and therefore the following criterion is considered:

Cg,0 ≈ 1 ≫Ce,0 ,Cg,1 ≫Ce,1 ,Cg,2. (3.36)

The steady state solutions for some coefficients are

Cg,1 = Ωa

g2ω̃
′
σ − ω̃

′2
a ω̃

′
σ + ω̃

′
a

(
Ω2

a − ω̃
′2
σ

)
g4 −g2

(
ω̃

′2
a +2Ω2

a +2ω̃
′
aω̃

′
σ

)
+
(
ω̃

′2
a −Ω2

a
)[

ω̃
′
σ (ω̃

′
σ + ω̃

′
a)−Ω2

a
] (3.37)

Cg,2 =
Ω2

a√
2

g2 −Ω2
a + ω̃

′
σ (ω̃

′
σ + ω̃

′
a)

g4 −g2
(
ω̃

′2
a +2Ω2

a +2ω̃
′
aω̃

′
σ

)
+
(
ω̃

′2
a −Ω2

a
)[

ω̃
′
σ (ω̃

′
σ + ω̃

′
a)−Ω2

a
] , (3.38)

where ω̃
′
i = ω̃i − iγi/2. These expressions correspond to the complete form of the solution, differing, for

example, from the ones provided by Liang et al. [74], which are the approximated version (Although they are
proven correct since the complete solutions vary up to the third decimal). The reason for only showing the
explicit solution for these two coefficients is that the observables of main interest, i.e., the mean photon number
and the second order correlation function, can be completely described by these coefficients as

na = ⟨Ψ| â†â |Ψ⟩= |Cg,1|2 + |Ce,1|2 +2|Cg,2|2 ≈ |Cg,1|2 (3.39)

g(2)(0) =
⟨Ψ| â†â†ââ |Ψ⟩
⟨Ψ| â†â |Ψ⟩2 ≈ 2

|Cg,2|2

|Cg,1|4
. (3.40)
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From Equation (3.40) it is seen that to achieve the perfect suppression of the g(2)(0), it suffices that the
numerator of Cg,2 equals zero. So the condition turns out to be

g2 −Ω
2
a + ω̃

′
σ (ω̃

′
σ + ω̃

′
a) = 0

4(ω̃σ + ω̃a)ω̃σ +4g2 −4Ω
2
a − (κa + γσ )γσ −2i [ω̃aγσ +(κa +2γσ )ω̃σ ] = 0, (3.41)

Since Equation (3.41) comprises both real and imaginary parts, each one must fulfill the equality, so the criteria
can be rewritten as

ω̃σ =±

√
γσ

g2 −Ω2
a

κa + γσ

− γ2
σ

4
(3.42a)

ω̃a =−
(

κa

γσ

+2
)

ω̃σ . (3.42b)

With Equations (3.42) it is possible to obtain the optimal parameters to generate antibunching via the unconven-
tional photon blockade mechanism, by properly tuning the coupling rate g and the dissipative rates κa,γσ .

A criterion similar to the relationship found in the CPB for the (ω̃a, ω̃σ ) pairs can be found for the UPB
by using the real part of the criteria (3.41)

4(ω̃σ + ω̃a)ω̃σ +4g2 −4Ω
2
a − (κa + γσ )γσ = 0

(ω̃σ + ω̃a)ω̃σ +g2 = Ω
2
a +

γσ (γσ +κa)

4
. (3.43)

Therefore it has been found that for the Jaynes Cummings model, the analytical curves that allow antibunching
by UPB must satisfy Equation (3.43).

Now that both the analytical conditions for the generation of photon blockade in a conventional (Equa-
tion 3.28) and unconventional (Equation 3.43) framework have been found, it is time to solve the original
problem given by Equation (3.25). To do this, the master equation formalism will be once again applied, by
taking into account that the cavity can present losses at a rate κa, while the atom presents spontaneous emission
given by γσ . The corresponding equation is

∂tρ = i [ρ,H]+
κa

2
Lâρ +

γσ

2
Lσ̂ ρ = Lρ. (3.44)

This differential equation is numerically solved, in the same basis as referred before, |Ψ⟩= |α,n⟩ truncating
the analysis to a manifold that guarantees the convergence of the observables, such as the mean number of
photons. Since this system is analyzed in a weak driving regime (Ωi < κ,γ), and there are no further excitation
channels, it is found that a manifold up to two is enough to guarantee this convergence.

Both the mean photon number and the second order correlation function for the Driven-Dissipative Jaynes
Cummings model are shown in Figure (3.9) as a function of rotating frame detunings ω̃i/g. On panel b.) it can
be seen that the analytical conditions for antibunching via the CPB coincides with the lower and upper polariton
branches given in panel a.), meaning that this blockade occurs at the higher photon occupancy rate. The dotted
red line in panel b.) corresponds to the optimal antibunching condition for UPB (Equations 3.42), which
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Figure 3.9 a.) Mean Photon number and b.) Second order correlation function of the Driven Dissipative Jaynes
Cummings model as a function of rotating frame detunings ω̃i/g. Black lines in panel b.) Correspond to the
analytical conditions given by Equations (3.28, 3.43), and the dotted red line cuts the UPB line for the minimal
condition of the g(2)(0) given by Equations (3.42). Parameters: γσ = 0.01g, κa = 0.1g, Ωa = 0.001g, Ωσ = 0.

with the given parameters result in ωa = 3.61764g. Since a vertical line in this value exhibits all statistical
dependences, i.e., antibunching due to UPB, laser statistics, superbunching, and antibunching due to CPB, it
constitutes an ideal cut for analyzing the decomposition of the second order correlation function as explained
in the section 2.5. The fundamental result of Figure (3.9) is proof that both CPB and UPB can coexist within
the same range of parameters, and therefore it is possible with one system to explore the properties of both
mechanisms. Due to this coexistence, the question of which properties each one possesses, and how they differ,
arises. For this reason, it follows a characterization of the emission in order to find those relevant similarities
and differences.

Starting with the correlation function decomposition, by means of the set of Equations (2.124), with ŝ −→ â, the
terms Ik are calculated as a function of ω̃σ/g. The result of such decomposition is shown in Figure (3.10). It
shows for example that the reason for obtaining coherent statistics when ω̃σ/g =−3 is different from the case
with ω̃σ/g = 3, because the squeezing component I2 tends to be less negative, together with a diminishing in
the I0 component, although both cases satisfy the relationship I0 ≈−I2. On the contrary, this figure indicates
that the decomposition is not a suitable element to differentiate the nature of the blockades, because, in both
conventional and unconventional features, the balance between the Ik components satisfies the same relationship,
without appreciable differences for the points that minimize the blockade in both types. For that reason, in
order to categorize fundamental differences between the blockades, other quantities must be considered.

Turning now not to the decomposition of the second order correlation function, but rather to the calcu-
lation of the n-th order correlation function, a fundamental difference between both types of blockades arises.
Panel a.) of the Figure (3.11) shows that the conditions of conventional photon blockade, given as ω̃aω̃σ = g2,
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6
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CPB

Figure 3.10 Decomposition of the g(2)(0) in the red line of Figure (3.9). Parameters: ω̃a/g = 3.61764,
γσ = 0.01g, κa = 0.1g, Ωa = 0.001g, Ωσ = 0.

keep being completely fulfilled for all orders of the correlation functions. This contrast sharply with what
is observed for the unconventional photon blockade, since it can be seen that the optimal condition for the
g(2), given by Equations 3.42, does not coincide with the minimization curves of the UPB for increasing the
order n. The consequence of this is, as shown in panel b.) is that there are no conditions for the atom and
cavity detunings that could result in an optimal antibunching of the correlation functions for the unconventional
mechanism. There is, however, a region where they can all be simultaneously minimized, in analogy to the
two interacting cavities model. This value is found by the least squared methods, finding the condition that
gives the best minimal value for each correlation function. This can be seen in panel c. where now, by properly
selecting ω̃σ , it is possible to obtain g(n) < 1 for all n ∈ {2,3,4}. However, it is important to emphasize that
although the values are indeed lower than the uncorrelated limit, the g(2), in this case, is not sufficiently small
for guaranteeing single photon emission. Therefore, the results indicate that the CPB contribution is the only
mechanism that, on the driven Jaynes Cummings model, really consists of a single photon blockade, while
the UPB lines are completely washed out due to the bunched nature of the higher-order correlation functions.
With this set of parameters, it is proven that these systems can correctly act as a single photon source, once the
criteria given by Equation (3.28) are met.

Now, having understood the nature of the blockade mechanisms in the driven Jaynes Cummings model,
it is important to note that although in the original model, a coherent driving to the 2LS was included, the
calculations until now have only dealt with CW pumping to the cavity. So, for completeness’ sake, two
conditions will be studied when this driving is taken into account: When Ωσ = Ωa, and when Ωa = 0, Ωσ ̸= 0.
Both cases will be directly evaluated next.

The general system of equations for the steady state, considering both types of drivings, can be written
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Figure 3.11 a.) Higher order correlation function analysis for the Jaynes Cummings model as a function of
laser rotating frame detunings ω̃i. b.) Cut of the correlation functions through the optimal UPB value of the g(2),
given by ω̃a = 3.617g. c.) Cut of the correlation functions through the value that provides the best simultaneous
minimization for all orders, obtained by the least squares method, ω̃a = 3.467g. Parameters: γσ = 0.01g,
κa = 0.1g, Ωa = 0.001g, Ωσ = 0.

in matrix form as 
ω̃

′
a g

√
2Ωa Ωσ

g ω̃
′
σ 0 Ωa√

2Ωa 0 2ω̃
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 , (3.45)
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′
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C0,X

C2,G

C1,X

=−


Ωa

Ωσ

0
0

 , (3.46)

where once again ω̃
′
k = ω̃k − iγk/2. From the coupled algebraic equations shown in Equation (3.45), it is

once again possible to find the expression for each term Cαn. However, as mentioned earlier, the only relevant
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factor for generating the unconventional photon blockade consists of making the numerator of the coefficient
Cg2 equal to zero. For this reason, this will be the relevant expression to analyze. The condition is given in
general terms as follows

−2gΩaΩσ

(
ω̃

′
a + ω̃

′
σ

)
+g2 (

Ω
2
a +Ω

2
σ

)
+Ω

2
a

(
Ω

2
σ −Ω

2
a + ω̃

′
σ

[
ω̃

′
a + ω̃

′
σ

])
= 0. (3.47)

From this general equation, it is easy to analyze the conditions for achieving UPB. As the reader could show,
making Ωσ = 0 in Equation (3.47) coincides with the condition presented in Equation (3.43).

To begin the analysis of the introduction of a coherent driving into the 2LS, let’s start by making Ωa = 0 in
Equation (3.47), while Ωσ remains nonzero. This rapidly yields the following expression

g2
Ωσ = 0. (3.48)

Since both g and Ωσ are different from zero, the previous equation indicates that UPB in the Jaynes Cummings
model cannot be achieved only through a coherent driving to the two level system. This means that all blockade
mechanisms when only Ωσ is present will be due to a conventional feature because one can still match the
frequency of the driving to the energy of the |±1⟩ polariton, given by Equation (3.28). This can also be directly
understood since the term Ωσ (σ̂ + σ̂†) only allows transitions between |g, 0⟩ and |e, 0⟩, therefore there are no
suitable way that could access the state |g, 2⟩ with Hamiltonian transitions.

For the next case, where the strength of both drivings is the same, the general condition simplifies as

Ω
2
[
−2g

(
ω̃

′
a + ω̃

′
σ

)
+2g2 + ω̃

′
σ (ω̃

′
a + ω̃

′
σ )
]
= 0. (3.49)

Expanding the terms ω̃
′
k and splitting into two equations, one for the imaginary part and the other for the real

one, gives (after some straightforward algebra) the following solutions for the UPB:

ω̃a =−ω̃σ

(
κa

γσ

+2
)
+2g

(
κa

γσ

+1
)

(3.50)

ω̃σ = 2g± 1
2

√
γσ [8g2 − γσ (γσ +κa)]

γσ +κa
. (3.51)

These are the conditions to enhance the minimization of the g(2)(0), in equivalence of the ones treated for the
cavity driving (Given in Equations 3.42). To find the lines that sustain the whole UPB, rather than focusing
only on the minimum point, one must calculate the real part of Equation (3.49) as a function of ω̃a and ω̃σ .
To understand the different forms such lines can take with varying driving strength, the next Figure takes into
consideration different cases between the two types of driving.
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Figure 3.12 Unconventional photon blockade conditions to minimize g(2) for different rates of cavity and 2LS
driving. For comparison, the CPB conditions are also displayed as the black dashed lines, coinciding with the
case comparison,Ωa = 0 and Ωσ ̸= 0. Parameters: γσ = 0.01g, κa = 0.1g.

Figure (3.12) takes into consideration several combinations between the coherent drivings to the cavity and
the 2LS. The first case, where there is no driving to the 2LS, corresponds to the one analyzed in Figure (3.9).
In that case, it was obtained that there must be a difference in the sign between cavity and matter detunings
in order to generate UPB. Contrary to this, including the 2LS driving brings up an asymmetry that displaces
the conditions, allowing to obtain UPB even when ω̃a and ω̃σ share the same sign, with the consequence that
the range of ω̃a must be extended in order to have a symmetric behavior in the conditions. Furthermore, as
mentioned earlier, holding only driving to the 2LS does not allow the required transitions for interference, so
the case where Ωa = 0 and Ωσ ̸= 0 must directly correspond to a blockade in the conventional form.

Having understood the different features of the UPB when 2LS driving is also included, it is now time
to proceed with the calculation of the statistics of the emission for the complete Hamiltonian given in Equation
(3.25), for the cases where the driving is equal, and another where only 2LS pumping is considered.

The effects of the 2LS driving are shown in Figure (3.13). Panel a.) considers the case where Ωa and Ωσ

are equal. For the chosen range of parameters in ω̃a only one curve is able to generate UPB, although there is a
complementary one as indicated by the line (II) in Figure (3.12). The minimum values in the statistics are of
the same order in the g(2) as for the case where there was only driving to the cavity. Another important feature
is that there is a crossing between the UPB and CPB lines, indicating that it is not only possible to generate
simultaneous blockade in a system, but also, there are some conditions that hold both types of blockades,
meaning that one can access the best features of each one at the same time. On the other hand, panel b.)
considers uniquely a driving to the 2LS. In this case, it is obtained that the Unconventional photon blockade has
no contribution to the emission, reaching a value in the g(2) of 10−6, which is the lowest value achieved for the
Jaynes Cummings model.
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Figure 3.13 Effect of the coherent driving to the 2LS in the Jaynes Cummings statistics. The left panel (a.)
considers the case where both drivings are equal, Ωa,Ωσ = 0.01g, while the right one (b.) considers only
driving to the 2LS. Parameters:γσ = 0.01g, κa = 0.1g.

3.2.2 Experimental realizations

The theoretical results of the driven Jaynes Cummings model constitute a promising model to sustain real single
photon emission through the correct tuning of the parameters. But now, to complete the landscape and prove its
usefulness as a true single photon source, there must be a discussion about the experimental realizations of this
model, as well as their limitations.

As previously indicated, in order to exhibit blockade in this system, it is necessary to sustain a strong coupling
between light and matter. Although achieving this regime has always posed a technological challenge, current
developments in semiconductor physics have allowed reaching this level of interaction with more ease. The
seminal papers from Reithmaier et al. [75], Yoshie et al. [76] and Peter et al. [77] opened a field of research,
where light and matter could experimentally hybridize to form a new quasiparticle known as polaritons. The
strong coupling on those systems was confirmed by the anticrossing in the photoluminescence spectra between
the cavity and exciton states, characterized by the vacuum Rabi splitting.

For our problem in consideration, we will follow the scheme proposed by Reithmaier, in which by means of
molecular beam epitaxy (MBE), an InAs quantum dot is grown inside a pillar microcavity that consists of layers
of distributed Bragg reflectors (DBR) of AlAs and GaAs. As shown in Figure (3.14), this setup has optical
ranges of operation for the cavity and quantum dot, with ω ≈ 1eV, the coupling rate between light and matter is
of the order of 0.1 meV, while the dissipation rates are κa = 10−2meV and γσ = 10−3meV. Taking into account
that normally there is a small detuning between light and matter frequencies, that could be considered between
10meV, one could use tunable diode lasers, which nowadays range from 630nm to 2340nm (i.e. 1.968eV -
0.529eV), in order to correctly find the optimal relationships between ωL, g and ωa,σ to get conventional or
unconventional photon blockade. A similar setup to the one proposed has already been applied by multiple
groups [30, 78, 79, 31, 41, 39, 80, 38] for building single photon sources based on semiconductor materials.

Although the previous set-up consists of a scheme of cavity QED, which has proven itself to be an adequate
environment for the development of quantum technologies, there is another rising field that is suitable for
achieving strong interactions between light and matter. This corresponds to the field of Circuit cavity electrody-
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Figure 3.14 a.) Micropillar cavity of AlAs/GaAs DBR with an embedded InAs quantum dot that has been
grown by molecular beam epitaxy that acts as an SPS b) Hanbury-Brown Twiss setup for measuring g(2).

namics (Circuit-QED), defined in which one employs superconducting circuits that act as qubits, and interact
with confined light in the microwave domain. This field does not exclusively correspond to superconducting
devices, but actually, it allows employing elements from circuit QED, to couple with a plethora of quantum
systems, such as semiconductor quantum dots [81], generating hybrid quantum systems that get the best from
the cavity and circuit QED. We refer to the excellent paper by Blais et al. [82] for an up-to-date review of
current challenges and theoretical derivations for the superconducting elements.

For the particular experimental realization of strong coupling in circuit-QED, we refer to the seminal pa-
pers by Blais et al. [83] and Wallraff et al. [84], in which a superconducting two level system (Cooper
pair box) is strongly coupled to a single photon stored in an on-chip cavity, formed by a superconducting
transmission line resonator. In their system, the same condition for the Jaynes Cummings Hamiltonian is
valid, but with a change in the frequency scale of the model. The coupling rate g for this model would be
near 100MHz, while frequencies of the artificial atom and cavity are close to 6GHz, and dissipation rates are
κa/2π = 0.8MHz, γσ/2π = 0.7MHz. Assuming a near resonance condition between the superconducting two
level system frequency and the resonator frequency, the driving must excite the system with a frequency near of
5.9Ghz and with a strength of the order of Ω = 0.1MHz in order to obtain photon blockade in the microwave
regime.

3.2.3 Effects of frequency filtered correlations on photon blockade

As we previously mentioned in Section (2.4), the introduction of filters before the detection happens can alter the
nature of the emission of a quantum source. The case study of such section calculated the frequency-resolved
correlations from the Mollow triplet, where it was observed that the perfect antibunching associated with the
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driven QD was completely changed, registering a different kind of photon statistics.

Connecting this with the framework of the photon blockade effect, the question if there are any differences
between the single photon emission from the conditions of conventional and unconventional photon blockade
effects naturally arises. First, we will recall that the conditions of CPB and UPB in the driven dissipative Jaynes
Cummings model are given by the following relationships (3.28, 3.43):

ω̃aω̃σ = g2 (3.52)

(ω̃σ + ω̃a)ω̃σ +g2 = Ω
2
a +

γσ (γσ +κa)

4
(3.53)

. We will select the same parameters that were used in Figure (3.9), i.e., γσ = 0.01g, κa = 0.1g, Ωa = 0.001g,
Ωσ = 0. For the frequencies, ω̃a, ω̃σ we will choose the same values that were employed on the decomposition
of the g(2), which are ω̃a/g = 3.61764, ω̃σ/g =−0.301454 for the UPB and ω̃a/g = 3.61764, ω̃σ/g = 1/ω̃a

for CPB. Regarding the selected calculation method, we will apply the sensor method developed by Del Valle
et al. [58], due to its facility for a computational calculation. The master equation is thus

Hs = ω̃aâ†â+ ω̃σ σ̂
†
σ̂ +g(â†

σ̂ + âσ̂
†)+Ωa(â+ â†) (3.54a)

Hξ = ω̃ξ1
ξ̂

†
1 ξ̂1 + ω̃ξ2

ξ̂
†
2 ξ̂2 (3.54b)

Hξ s = ε

(
σ̂

†
ξ̂1 + σ̂ ξ̂

†
1 + σ̂

†
ξ̂2 + σ̂ ξ̂

†
2 + â†

ξ̂1 + âξ̂
†
1 + â†

ξ̂2 + âξ̂
†
2

)
(3.54c)

∂tρ = i[ρ,Hs +Hξ +Hξ s]+
γσ

2
Lσ̂ ρ +

κa

2
Lâρ +

Γ

2
(Lξ1

ρ +Lξ2
ρ). (3.54d)

This master equation is solved for the steady state. Afterward, the sensor cross correlated function, g(2)
Γ

=

⟨ξ̂ †
1 ξ̂

†
2 ξ̂2ξ̂1⟩/⟨ξ̂ †

1 ξ̂1⟩⟨ξ̂ †
2 ξ̂2⟩, is calculated as a function of the sensor frequencies ω̃ξ1

, ω̃ξ2
. By properly selecting

the values of ω̃a and ω̃σ such as the conditions for the CPB and UPB are met, it is possible to study how
frequency filtering alters the single photon emission rate from each one of the blockade mechanisms.

This effect is summarized in Figure (3.15), where the effects of frequency filtering for the CPB (Upper
row) and UPB (Bottom row) for two values of the sensor bandwidth Γ are shown. Once again, it is proven
that for both cases, adding frequency filters before the detection takes place alters the rate of emission of the
photons, changing the statistical properties of emission, and thus generating a variety of correlations depending
on the frequencies of the sensors. However, the most important feature is that there are some notable differences
and similarities s between both blockade mechanisms. For instance, With a narrow bandwidth Γ = 0.001g, a
leapfrog process, such as the ones evidenced in the Mollow triplet, is observed for both types of blockades
when the condition ω̃ξ1

+ ω̃ξ2
= 0. This effect however is stronger in the UPB since by increasing the detector

width, the bunched nature of the emission tends to remain present, while for the CPB this effects tend to an
uncorrelated rate. Furthermore, in both graphs there is a grid of horizontal and vertical lines, which, as identified
by Gonzalez-Tudela et al. [59] for the case of an incoherently driven Jaynes Cummings model, correspond to
correlation between real states of subsequent manifolds.
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Figure 3.15 Frequency resolved correlations of the driven Jaynes Cummings model for the conditions that
generate Conventional photon Blockade (Upper row) and Unconventional photon Blockade (Bottom row).
Parameters:γσ = 0.01g, κa = 0.1g, Ωa = 0.001g, Ωσ = 0, ε = 10−6.

Another striking difference between both mechanisms results when one analyzes the transition over those
grids. Figure (3.16) displays a cut in the frequency-resolved correlations for a fixed value of ω̃ξ1

= −3, for
the two previously employed detector bandwidth values. It can be observed that even for the narrow width
Γ = 0.001g, CPB mostly continues to display the antibunching nature that was observed by the photons previous
to the interaction with the filters, while for UPB the detection process completely alters the correlation process.
This is further verified when increasing the sensor bandwidth, where UPB still exhibits bunching of the detected
photons for some frequencies.

This elucidates that there is definitely a difference between the photons that are emitted from the conven-
tional and the unconventional mechanisms, confirming that even after the introduction of frequency filters, the
CPB maintains the single photon statistics of the emission.
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Figure 3.16 Frequency resolved correlation function of the sensors for a fixed frequency value ω̃ξ1
=−3, for

two sensors bandwidth. The parameters are the same as in the previous figure.

3.2.4 The role of phonon mediated coupling in photon blockade

The contribution of phonons, i.e., the quantized vibrational modes of a solid, as mediators in light mat-
ter interaction is an effect that has been intensively studied [85, 86]. For example, in a series of papers
Echeverri-Arteaga et al. explained that diverse effects, such as that of the appearance of an extra peak in
off-resonant cavity-QED schemes [87], or a strange attraction phenomenon between cavity and exciton modes
[88] can be successfully explained by the mechanism of Phonon mediated coupling (PhmC). In this section,
we present how this mechanism can alter the photon blockade effect in a semiconductor QD-microcavity system.

As shown by Majumdar et al. [86], phonon-mediated coupling can be modeled by adding the following
terms to the master equation

γθ

2
Lâσ̂†ρ =

γθ

2
(2âσ̂

†
ρ â†

σ̂ − â†âσ̂ σ̂
†
ρ −ρ â†âσ̂ σ̂

†) (3.55a)

Pθ

2
Lâ†σ̂

ρ =
Pθ

2
(2â†

σ̂ρ âσ̂
† − ââ†

σ̂
†
σ̂ρ −ρ ââ†

σ̂
†
σ̂), (3.55b)

where γθ transfers an excitation of the cavity to the QD and Pθ corresponds to the inverse process. Therefore,
the master equation within the framework of photon blockade is

∂tρ = i[ρ,H]+
γσ

2
Lσ̂ ρ +

κa

2
Lâρ +

γθ

2
Lâσ̂†ρ +

Pθ

2
Lâ†σ̂

ρ. (3.56)

With H given by Equation (3.25). We will analyze how the addition of these terms affects the previously studied
conditions for photon blockade. For this reason, the same parameters that were used in Figure (3.9) will be
maintained, while varying the strengths of γθ ,Pθ . Following the procedure for the last subsection, the effects
for CPB and UPB are analyzed separately, by means of the adequate tuning of the parameters ω̃a, ω̃σ , where
once again, for UPB these values are ω̃a/g = 3.61764, ω̃σ/g =−0.301454 for the UPB and ω̃a/g = 3.61764,
ω̃σ/g = 1/ω̃a for CPB. As for the case with frequency-filtered correlations, Figure (3.17) indicates that there is
also an intrinsic difference between both mechanisms against the dissipation given by photon mediate coupling.
It can be observed that only for high values of the rates γθ/g,Pθ/g the conventional photon blockade mechanism
affected, however still maintaining values of g(2)(0)≈ 0.5. On the other hand, unconventional photon blockade
is much more sensitive to these effects, where even a small contribution of the phonon-mediated rates can
destroy the process of quantum interference and thus generate bunching behavior on the system.
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Figure 3.17 Effects of phonon mediated coupling dissipative terms γθ ,Pθ on each mechanism of the photon
blockade. Parameters: γσ = 0.01g, κa = 0.1g, Ωa = 0.001g, Ωσ = 0.
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Figure 3.18 Effect of the simultaneous phonon mediated coupling rate ξθ on the mechanisms of photon
blockade.

To further clarify this difference, we analyze the simultaneous values of the PhmC rates, i.e., Pθ ,γθ = ξθ

on both mechanisms of photon blockade. As it can be seen from Figure (3.18), CPB only suffers noticeable
changes on the second order correlation function when ξθ/g ≈ 10−1, which can be related to the value of
κa, and then continue to increase smoothly as the factor ξθ grows. On the contrary, the effect that this rate
has on unconventional photon blockade is to destroy all antibunched correlations, even for small values of ξθ .
It is nonetheless interesting to notice that the second order correlation function in the UPB appears to have
a polynomial tendency (The x-axis is displayed in log10 scale), showing a maximum value

(
ξθ/g = 10−2

)
,

which could be related to the QD dissipative rate γσ . After this maximum is reached, it keeps decreasing, even
partially restoring antibunching, until arriving at a minimum value, which is observed for ξθ/g ≈ 1.47, from
which it displays the same nature as the CPB.

These results indicate that phonon-mediated coupling directly alters the single photon emission via pho-
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ton blockade in a driven dissipative Jaynes Cummings scheme, and with an adequate selection of the PhmC
rates, it could be used to suppress antibunching of UPB without altering the emission due to CPB.

3.2.5 Photon blockade beyond the strong coupling regime

The most important development of light matter interaction for circuit QED was that strong coupling was easier
to achieve than in cavity QED systems, where the condition of ω > g > |κa − γσ |/4 could be accessed in the
microwave region using superconducting devices. Furthermore, these setups allowed to experimentally achieve
a new regime of light matter interaction: the Ultrastrong coupling regime (USC). This regime is theoretically
defined when one has interaction strengths near the characteristic frequencies of the system, which is bounded
by the limit ω/g < 10 [89, 90]. Niemczyk et al. [91] were among the first teams to provide an experiment
of USC in circuit QED. Furthermore, another regime where the interaction strength is even greater than the
resonant frequencies of the system has also been proposed, the so-called Deep strong coupling regime (DSC),
where effects such as a decoupling of light and matter interaction take place.

Using perturbation theory to calculate the corrections to the energy due to the interaction in the Jaynes-
Cummings Hamiltonian, it is possible to see that when g is in the strong coupling regime, corrections due to
counter-rotating terms in the Hamiltonian can be safely neglected. Contrary to this, in the USC coupling regime,
since the interaction rates are comparable to the frequencies of the system, the corrections due to the terms
proportional to g2/(ωa +ωσ ) must be considered, and thus, the rotating wave approximation performed over
the interaction term cannot be discarded and must be taken into account. This means that the Jaynes Cummings
model must be upgraded to the full quantum interaction model, given by the quantum Rabi model

H = ωaa†a+ωσ σ
†
σ +g(a+a†)(σ +σ

†). (3.57)

The main difference from this model with respect to the Jaynes Cummings model is that in the strong coupling
regime, the Hilbert space could be decoupled as infinite independent two level systems, each one describe by a
Hamiltonian H(n) as given by Equation (2.74). Contrary to this, the presence of the terms a†σ† +aσ connects
two manifolds, where a coupling between states |G,n⟩ and |X ,n+1⟩ is now possible. This implies that the
Hamiltonian does not conserve the total number of excitations, so the solution of the spectral properties of the
system becomes nontrivial. The distinctive trait of the quantum Rabi model is that it preserves the same parity
of the states, given by the parity operator Π =−σz(−1)a†a.

Another relevant aspect that must be inspected when treating light matter interactions in the USC regime
is the fact that many of the theoretical tools employed to characterize the dynamics of the interaction, fail to
provide a correct picture to describe the problem. As pointed out by Le Boité et al. [89], the description through
a master equation approach fails to correctly account for the dynamics of the system. Furthermore, as has been
substantially used throughout the calculations in this thesis, the presence of coherent driving to the cavity and
atom is fundamental for the development of photon blockade. In an environment where counter-rotating terms
cannot be neglected, the rotating frame transformation fails to generate a time-independent framework and
more sophisticated strategies must be applied, such as using Floquet theory.

But truly the most noteworthy deviation from the strong coupling corresponds to the calculation of the
correlation functions for the analysis of photon statistics, which directly relates to the topic at hand of this
thesis, photon blockade. The problem is that a direct application of the correlation functions through the cavity
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operators as g(n) = ⟨a†nan⟩/⟨a†a⟩n would predict an unphysical stream of photons, as pointed out by Ridolfo et
al. [92]. In fact, they were also the first to address the problem of photon blockade in the ultrastrong coupling
regime. They derived the correct input-output relationships, given as

aout(t) = ain(t)− i
εc√

8π2ℏε0ν
Ẋ+.

The main difference is that Ẋ+ does not directly correspond to the cavity operator a, as in the strong coupling
case. The second order correlation function is thus

g(2)(τ) = lim
t→∞

⟨Ẋ−(t)Ẋ−(t + τ)Ẋ+(t + τ)Ẋ+(t)⟩
⟨Ẋ−(t)Ẋ+(t)⟩2 .

The most important result from the photon statistics by Ridolfo et al. is that when the cavity and an atom enter
an ultra strong coupling regime, the photon blockade vanishes due to the emergence of parametric processes
with origin from the counter-rotating terms in the Hamiltonian. To further study this, Le Boité et al. [93]
studied the fate of photon blockade in the deep strong coupling regime. They found that the photon statistics
suffer multiple transitions as the rate g/ωa keeps increasing, finding first a breakdown of photon blockade for
values where g ∼ 0.45ωa, while a subsequent revival characterized by a strong antibunching could be found in
regimes where 1 ≤ g/ωa ≤ 2.5.

We will leave the rigorous analysis of photon blockade in the USC and DSC regimes for further studies.

3.3 Single photon polarization switch via photon blockade

In this section, we will apply all the tools employed beforehand regarding the methods to analyze the phenomena
of photon blockade, to characterize a particular system that could be used as a feasible single photon source: An
elliptical microcavity with an embedded quantum dot that is being excited with an external magnetic field. The
role of the magnetic field will be that of acting as a parameter of control to modify both the photon occupation
and the emission statistics.

The Hamiltonian that describes this system consists of four contributions: Excitons, Cavity, Magnetic field, and
Coherent excitation. Each term will be explained next.

On the first hand, we will assume that the embedded quantum dot presents an asymmetry that splits the
exciton states into two linearly polarized states, with frequencies ω1 and ω2 for x and y polarizations, respec-
tively. Both frequency modes are related through the fine structure splitting, δ = ω2 −ω1, which will be taken
to be δ = 0.1meV.

HQD = ω1σ11 +ω2σ22 +
δ

2
(σ12 +σ21), (3.58)

where σi j = |i⟩⟨ j|, with i, j = 0,1,2, are the transition operators of the excitons, with |0⟩ being the ground state,
|1⟩ the excited state for photons with x polarization and |2⟩ the excited state for the ones with y polarization.
On the other hand, the micropillar system is considered to have an elliptical symmetry, causing the cavity to
sustain two orthogonal and linearly polarized modes, labeled as x and y cavity modes. This micropillar has an
asymmetry that generates that the cavity frequencies are non-degenerate. We will fix the x-mode frequency to
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be ωx = 1000meV, while for the y mode ωy = ωx +0.2. Each mode only interacts with the exciton state that
has the same polarization and does it with an interaction strength given by g

Hcav = ωxa†
xax +g(a†

xσ01 +axσ10) (3.59)

+ωya†
yay +g(a†

yσ02 +ayσ20).

The next relevant contribution to the Hamiltonian, as previously mentioned, will be the effect of the magnetic
field, where depending on the direction of the appliance it is possible to obtain different responses from the
excitonic system. The most relevant application of the magnetic field is to indirectly populate dark excitonic
(DE) states, i.e., states that do not optically interact with light, as opposed to the bright excitonic (BE) states
that will be considered hereafter. The reason to avoid the contributions of the DE states to the Hamiltonian is
that the direction of the magnetic field will be considered to be fixed and parallel to the direction of growth of
the QD, in the so-called Faraday configuration. This configuration has the characteristic that it will only open,
but not mix the BE and DE states. As shown by Jiménez-Orjuela et al. [94] when the magnetic field is taken
to be parallel to the direction of growth of the QD, the DE population is significantly reduced, and thus, the
contributions can be safely neglected. The magnetic field Hamiltonian is

Hmag = iβ (σ12 −σ21)+αB2(σ11 +σ22), (3.60)

with β = µBBsinθ(gez +ghz)/2, µB = 0.0579meV/T is the Bohr magneton, gez =−0.8 are the electron and
hole ghz =−2.2 g-factors in the z direction, and α = 0.02meV/T2 is the diamagnetic shift. These values are
typical for InAs/GaAs Quantum dots. Finally, the cavity and quantum dot are exposed to coherent drivings,
which are described as

Hpump = Ωi(a
†
i e−iωLt + c.c)+Ωα(σα0e−iωLt + c.c), (3.61)

where i = x,y is the coherent excitation to the cavity and α = 1,2 is the one to the QD. Therefore, having
understood each particular contribution, the total Hamiltonian for the system is

Htotal = HQD +Hmag +Hcav +Hpump. (3.62)

Once again, it is convenient to transform the total Hamiltonian (3.62) to a frame that rotates with the laser
frequency, eliminating the explicit time dependence present in the coherent driving, translating the relation-
ships to the frequencies of the cavity and the Quantum Dot. In that regard, the relevant detuning is built
as the difference between the laser frequency ωL and the central frequency of the micropillar modes, i.e.,
∆L = ωc −ωL, where ωc = (ωx +ωy)/2. The excitons frequencies are detuned from the cavity central fre-
quency by ωc −ω0 = 0.5 meV, establishing ω1 = ω0 −δ/2, ω2 = ω0 +δ/2.

We will perform two calculations to solve the dynamics of this system. First, we will give the numerical
description by solving the following master equation in the Lindblad form,

∂tρ = i[ρ,Htotal]+
κ

2
{
Lax ρ +Layρ

}
(3.63)

+
γ

2
{
Lσ01 ρ +Lσ02 ρ

}
,
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where κ(γ) represents the cavity(QD) dissipation rate. The relevant observables of the system are calculated
by solving Equation (3.63), projecting it into a basis that corresponds to the outer product of light and matter
states, |Ψ⟩=

∣∣nx,ny
〉
⊗|α⟩, where, as previously indicated, α applies solely to the bright exciton’s basis, i.e.

α ∈ {0,1,2}, and ni corresponds to the number of photons of the ith mode.

We will also apply the same analytical treatment that was extensively used in earlier sections, which consists of
using the wave function approximation and solving the Schrödinger equation for a Hamiltonian that contains
the dissipation rates shown in the master equation (3.63), with a wave function that is truncated up to the second
manifold. To our problem under consideration, given that we have taken a weak driving limit, i.e. Ω ≪ γ,κ , a
wavefunction up to the second manifold will suffice to describe the system. Using the same notation as for the
numerical solution,

∣∣nx,ny,α
〉
, the relevant wavefunction will be

|Ψ⟩=C100 |100⟩+C010 |010⟩+C001 |001⟩+C002 |002⟩ (3.64)

+C200 |200⟩+C110 |110⟩+C020 |020⟩+C101 |101⟩+C011 |011⟩+C102 |102⟩+C012 |012⟩ .

the line break is made on purpose to separate the first and second manifolds. The non-Hermitian operator is
constructed by using the Hamiltonian given in Equation. (3.62) and adding the following dissipative terms, in
accordance with the master equation (3.63)

Heff = Htotal − i
κ

2
(
a†

xax +a†
yay
)
− i

γ

2
(σ11 +σ22) . (3.65)

The Schrödinger equation can be written in matrix form by projecting into the basis established on the wave
function, and writing a differential equation for each one of the coefficients Cα,nx,ny .

M =



ω̃
′
x 0 g 0

√
2Ωx 0 0 0 0 0 0

0 ω̃
′
y 0 g 0 Ωx 0 0 0 0 0

g 0 ω̃
′
1 δ/2− iβ 0 0 0 Ωx 0 0 0

0 g δ/2+ iβ ω̃
′
2 0 0 0 0 0 Ωx 0√

2Ωx 0 0 0 2ω̃
′
x 0 0

√
2g 0 0 0

0 Ωx 0 0 0 ω̃
′
x + ω̃

′
y 0 0 g g 0

0 0 0 0 0 0 2ω̃
′
y 0 0 0

√
2g

0 0 Ωx 0
√

2g 0 0 ω̃
′
1 + ω̃

′
x 0 δ/2− iβ 0

0 0 0 0 0 g 0 0 ω̃
′
1 + ω̃

′
y 0 δ/2− iβ

0 0 0 Ωx 0 g 0 δ/2+ iβ 0 ω̃
′
2 + ω̃

′
x 0

0 0 0 0 0 0
√

2g 0 δ/2+ iβ 0 ω̃
′
2 + ω̃

′
x



, (3.66)

where the equations are written in the order given by the following coefficient vector

x = (C100,C010,C001,C002,C200,C110,C020,C101,C011,C102,C012)
T ,

and the frequencies are given as ω̃
′
x(y) = ω̃x(y)− iκ/2 and ω̃

′
1(2) = ω̃1(2)− iγ/2+αB2 (the tilde denotes that

we are on the laser rotating frame). Due to the weak pumping limit, the coefficient from each manifold must
be bigger than the ones from the subsequent manifold, e.g. C000 = 1 ≫C100 ≫C200. This means that some
simplifications to the M matrix can be made, such as turning to zero the higher order elements that appear on



84 Results

the first manifold of equations. This allows solving each manifold iteratively:

M(1) −→


ω̃

′
x 0 g 0

0 ω̃
′
y 0 g

g 0 ω̃
′
1 δ/2− iβ

0 g δ/2+ iβ ω̃
′
2




C100

C010

C001

C002

=


−Ωx

0
0
0

 . (3.67)

M(2) −→



2ω̃
′
x 0 0

√
2g 0 0 0

0 ω̃
′
x + ω̃

′
y 0 0 g g 0

0 0 2ω̃
′
y 0 0 0

√
2g√

2g 0 0 ω̃
′
x + ω̃

′
1 0 δ/2− iβ 0

0 g 0 0 ω̃
′
y + ω̃

′
1 0 δ/2− iβ

0 g 0 δ/2+ iβ 0 ω̃
′
x + ω̃

′
2 0

0 0
√

2g 0 δ/2+ iβ 0 ω̃
′
y + ω̃

′
2





C200

C110

C020

C101

C011

C102

C012


=



−
√

2ΩxC
S(1)
100

−ΩxC
S(1)
010

0

−ΩxC
S(1)
001

0

−ΩxC
S(1)
002

0


. (3.68)

We have added the notation S(1) to highlight that those coefficients are not variables, but the solutions of the
form Cα,nx,ny(B,∆L) derived from the first manifold.

The analytical expression for the observables of interest can be found in terms of the coefficients Cnx,ny,α

as (We do not provide the explicit expressions for the coefficients, since they are way too bulky to give a
compact representation).

nx ≈ |C100|2 (3.69a)

ny ≈ |C010|2 (3.69b)

g(2)x ≈ 2
|C200|2

|C100|4
(3.69c)

g(2)y ≈ 2
|C020|2

|C010|4
. (3.69d)

Once the theoretical framework has been understood, it is time to show some of the most relevant results that
this system displays. To start understanding the inherent properties of this system, Figure (3.19) shows the
calculations of the eigenenergies of the total Hamiltonian (Eq. 3.62), which shows the anticrossings of the
exciton states with the x and y cavity modes. This occurs for B = 3T,B = 3.75T respectively, and repeats once
again for B = 3T,B = 3.75T.

As previously analyzed by Jiménez-Orjuela et al. [95], the system of an elliptical micropillar with an
embedded quantum dot, subject to an external magnetic field in the Faraday configuration is an ideal setup for
controlling polarization states inside the cavity, just by properly selecting the strength of the magnetic field,
acting thus as an optical polarization switch. This means that incident photons with a particular polarization
could leave the orthogonal state after the interaction with the system has taken place.
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Figure 3.19 Eigenenergies of the total Hamiltonian as a function of the magnetic field. The first manifold
shows clear anticrossings at B = 3T and B = 3.75T which corresponds to the interaction of the exciton states
with the x and y mode of the cavity, respectively. This behaviour repeats itself for B = 7T and B = 8T.
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Figure 3.20 Cavity mean photon number for x (a.) and y (b.) polarization, and polarization factor (c.) as a
function of the magnetic field (B) and driving frequency detuning (∆L). Parameters: Ωx = 0.001meV.
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The efficiency of the rate on which photons transform into the orthogonal polarization, is measured through
the polarization factor (PF) defined as

PF =
⟨a†

xax⟩−⟨a†
yay⟩

⟨a†
xax⟩+ ⟨a†

yay⟩
. (3.70)

Depending on the pumping to the cavity, this polarization factor will have positive or negative values. For
example, when there is a coherent driving to the x mode, a value of −1 corresponds in this case to a complete
switch on the polarization state, while if a coherent driving to the y mode is considered, the polarization switch
would happen when PF is 1. In accordance with [95], Figure (3.20) shows the behavior of cavity occupation and
the polarization factor PF as a function of the magnetic field strength B and laser frequency detuning ∆L, when
only driving to the x-cavity mode has been considered. The populations for cavity mode with x-polarization
exhibit two anticrossings, for B = 3T and B = 7T, corresponding to the points where the QD interacts with
the cavity with the x polarization mode which can also be seen on the diagonalization of the Hamiltonian. On
the other hand, since the magnetic field mixes the x and y exciton polarization modes, the cavity occupations
for the y mode presents a triple anticrossing, at B = 3T where there is an interaction of the QD and the cavity
with x polarization and at B = 3.75T, where the interaction between the QD and the cavity with y polarization
takes place. The same behaviour repeats for B = 7T and B = 8T, respectively. Finally, the third panel of this
figure shows that the optimal polarization switch coincides with the interaction between the QD and the cavity
mode with the orthogonal polarization to the driving, in this case for the y polarization mode. This means that
by properly selecting the values of B and ∆L it is possible to generate photons with a state orthogonal to the
driving mode, completing the optical switch.

Now, the following relevant question is to analyze whether this system is able to sustain photon blockade, acting
thus as a single photon polarization switch, which could have relevant potential applications in the development
of quantum technologies. To this end, we follow the standard procedure performed throughout this section, by
calculating the second order correlation function for both cavity modes, then analyzing the constituent factors
via the incoherent decomposition (2.122) and finally, contrasting the g(2) results with higher order correlation
functions to verify single photon behavior. We first fixed the magnetic field strength to coincide with the
optimal photon conversion to the y mode cavity polarization, which happens at B = 3.75T, and characterize the
dependence of the statistics with the laser frequency detuning.

As shown in Fig. (3.21), for some values of ∆L, there are regions where the mean number of photons
of the orthogonal mode to the driving (y-polarization) has a higher population than the driven cavity mode.
Furthermore, panel b. of this Figure analyzes the statistics of the emission by means of the g(2)i (0). It can be
seen that for the same values where ⟨a†

yay⟩ is enhanced over the x-cavity mode population (∆L ≈ 0.05 and
∆L ≈ 0.2), there is a reduction on the second order correlation function up to an order of 10−2, favoring single
photon emission, and complementarily increasing the brightness of the source due to the increase in photon
number. There is also a value of the frequency where g(2)y is as low as 4×10−4, but presenting a decrease in the
cavity population, which is of the order of 10−3. Contrary to this, the statistics for the x-polarization mode
mostly fluctuate around the value for a coherent source (g(2) = 1), or yields bunched behavior, as for the values
of ∆L that increases the mean population.

Since the relevant antibunching conduct is the one exhibited by the orthogonal mode of the driving, in
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a.) B= 3.75 T

(meV) (meV)

b.) B= 3.75 T

Figure 3.21 Mean photon number (a.) and second order correlation function (b.) for both cavity polarization
modes as a function of the driving frequency detuning ∆L. The magnetic field is fixed to the first anticrossing
between the exciton and y-mode of the cavity. Parameters: Ωx = 0.001meV B = 3.75T.
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II I
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Figure 3.22 Decomposition of the second order correlation function of the y-polarization mode into coherent
and incoherent fractions, as given by Equations (2.122). The dashed line on the insets indicates the position
where g(2)y displays antibunching. Parameters: Ωx = 0.001meV B = 3.75T.

Figure (3.22) we inspect the decomposition of the second order correlation of the y-polarization mode, as given
by Equations. (2.122). The two zones where antibunching in the second correlation function is found are
selected on the inset. The results from the I0 component mostly display a positive behavior for all values of ∆L,
meaning that subpoissonian behavior is not the main mechanism for single photon statistics. Furthermore, it
can be seen that the nature of the decomposition is completely different. For instance, the inset on the region
(I) shows that for the point where g(2)y exhibit antibunching (as denoted by the dashed lines) both I0 and I2
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are positive, meaning there are no Sub-Poissionian or Squeezed contributions to the global nature of g(2)y .
Rather than that, the leading factor is the enhanced anomalous correlations calculated through I1, indicating
that with this selection of the magnetic field and laser frequency, the state could be approximated to a squeezed
coherent state. On the other hand, in region (II) it is obtained that 1+ I0 ≈ 2 is compensated by both anomalous
correlations and the squeezing factor, I1, I2 −→−1.

Now, to analyze whether the antibunching of the g(2)y correlation function could be truly classified as sin-
gle photon emission, we perform the calculation of the higher order correlation functions up to n = 4, for the
same cut in the magnetic field (B=3.75 T). The results from Figure. (3.23) specifies that there is a simultaneous
minimization of all functions for the values of ∆L previously analyzed, meaning that for that tuning not only
the second order correlation function gets minimized, but higher order correlation function does it as well,
stipulating that the emission corresponds to single photons. This is a particular feature related to the phenomena
of conventional photon blockade, indicating that this is the leading mechanism for single photon generation in
this system.

Until now, we have restricted the analysis to a fixed value of the magnetic field, while varying the laser

Figure 3.23 Comparison of the higher order correlation function of the y-polarization cavity mode for fixed
magnetic field strength. Parameters: Ωx = 0.001meV, B = 3.75T.

frequency. However, we are interested in using both quantities as parameters of control as a way to tune the
statistics of the emission of the cavity modes. To give the complete mapping of the problem, we make use of
the analytical results for the correlation function explained before, and calculate the second order correlation
functions with the coefficients given by Equations (3.69 c. and d.).

The results shown in Figure (3.24) indicate that, clearly, the mode that has orthogonal polarization to the
incident driving is favored regarding single photon statistics. Furthermore, the black dashed lines correspond to
the solution of the eigenvalue problem associated with the conventional photon blockade effect, thus demonstrat-
ing that not only it is possible to control of polarization state of the emitting light as a function of the magnetic
field and the laser detuning, but also they serve as a parameter of control for tuning the desired statistics of the
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system. And also, given that the regions where the polarization factor indicates a complete transformation to the
orthogonal polarization state also coincide with perfect antibunching from the source, it has been demonstrated
that conventional photon blockade in this system allows obtaining single photon polarization switch, facilitating
the implementation of quantum technologies that require to create polarization qubits with single photons.
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eV

)

a.) b.)

Figure 3.24 Mapping of the analytical second order correlation function for the x (a) and y-polarization (b), for
pumping to the x mode, as a function of detuning ∆L and the magnetic field B. Parameters: Ωx = 0.001meV.





Chapter 4
Conclusions and perspectives

In this thesis, we have studied the mechanisms that generate the so-called photon blockade effect, which can be
divided into two categories, the conventional photon blockade (CPB) and the unconventional photon blockade
(CPB). Some relevant findings are listed next.

1. We studied the original system related to the UPB, the two interacting cavity model, by numerically
solving the master equations on the steady state, and calculating the second order correlation function.
We have found that, while for the value of the Kerr nonlinearity proposed by Liew and Savona, this
system present astonishing low values for g(2)(0), the calculation of higher-order correlation functions
g(n)(0) (n > 2) exhibit large bunching values. Nevertheless, we applied a procedure for simultaneously
minimizing higher-order correlation functions, finding the optimal value of the Kerr nonlinearity to
guarantee single photon emission by this system.

2. We studied a system, namely the driven-dissipative Jaynes Cummings model, which is able to sustain both
types of blockades simultaneously. By applying a diagonalization procedure and using the wavefunction
approximation method, we found the optimal conditions for generating CPB and UPB, by a proper
selection of the natural frequencies of the system and the incident driving frequency.

3. Exploring the differences and similarities between both mechanisms, some interesting results were found.
First, the correlation function decomposition is not able to differentiate specific properties for each type
of blockade, since the incoherent components balance exactly. However, when considering frequency
filtered correlations, a difference between both mechanisms was found, identifying that the antibunching
effect is more robust to frequency filtering, while UPB exhibits an alteration of the emission rates which
generates new types of correlations that differs to sole antibunching.

4. When considering a dissipative scheme that takes into account the effect of phonon mediated coupling
(PhmC), another important difference between CPB and UPB was found, especially when both dissipative
rates increase simultaneously. For the case of CPB, only when the phonon-mediated coupling rates are
close to the cavity decay rate κa, the second order correlation function starts to increase. On the contrary,
for UPB, even low values of PhmC could destroy the quantum interference process needed to obtain
antibunching through UPB. Moreover, the second order correlation function of this mechanism displays a
nonlinear nature, attaining maximum bunching when ξθ/g = γσ and a lower minimum when ξθ/g ≈ 1.5.

5. We studied a system based on an elliptical pillar with an embedded quantum dot subject to an external
magnetic field and coherent driving. By applying the formalisms related to photon blockade, it was found
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that the magnetic field strength and the laser frequency can be used to obtain single photons from the
conventional photon blockade perspective, constituting this system as a single photon polarization switch,
which could have potential applications for the development of quantum technologies.

Regarding the perspectives that could follow from this work, the more relevant are

• Study the nature of photon blockade when the interaction strength between light and matter reaches new
regimes, such as the ultrastrong and deep strong coupling regime, focusing on the different characteristics
that are unique to those regimes.

• Perform quantum Montecarlo simulations of the frequency-resolved correlation in the driven dissipative
Jaynes Cummings model in order to discover new differences between the blockade mechanisms.

• Study if the introduction of dark excitonic states in the model, when a tilted magnetic field is considered,
has relevant differences regarding the photon blockade effect.



Appendix A
Open Quantum systems

The theory of open quantum systems is studied when the framework of the usual quantum mechanics, where
a system under consideration is taken as isolated, is moved over for a more general and realistic perspective,
where an external entity, an environment can alter the dynamics of the system. The unwanted interaction of the
degrees of freedom of the environment with the system can considerably change the resulting dynamics of the
system. Furthermore, in many situations, only by considering this complete framework, some experimental
results can be understood. An example of this consists of the appearance of a central peak in off-resonant cavity
QED systems, which can only be explained by introducing phonon-mediated couplings [87]. In the case of the
present work, only by considering imperfect cavity mirrors that allow the escape of photons from the system is
that the theoretical basis of light-emitting devices can be correctly described. The theoretical tools derived here
are based on the calculations given in chapter 3 of the excellent book by Breuer and Petruccione, The theory
of open quantum systems [96]. In the following, I will present all the steps in the derivation of the Lindblad
master equation.

Formal derivation of Lindblad equation

The first step for constructing the open quantum system formalism results in considering the interaction of a
system with an external environment. The Hilbert space will be spanned as

HSB = HS ⊗1B +HB ⊗1S +HI (A.1)

The first and middle terms refer to the system as an environment Hamiltonian, while the last term is the
interaction between both of them. The density matrix approach can be used to describe the dynamics of the
S+B system. A first important approximation consists of the initial condition of this joint arrangement,

ρS⊗B(t = 0) = ρ(t) = ρS(t = 0)⊗ρB (A.2)

The reason for this subsists is by considering the environment as a steady-state reservoir. A vital assessment that
has to be emphasized is that, even by introducing external degrees of freedom, this will be in general infinite
and thus impossible to describe. The new behavior still resides in the system’s density matrix; for that reason, a
process of tracing out the environment or bath degrees of freedom will be continuously made throughout the
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formalism. The joint density matrix (A.2) will generally evolve as

ρ(t) =U(t, t0)ρ(t0)U†(t, t0) (A.3)

and the resulting evolved system density matrix will be obtained by a tracing process over the bath degrees of
freedom

ρ(t) = trB
{

U(t, t0)ρ(t0)U†(t, t0)
}

(A.4)

The corresponding equation that (A.4) will follow is

dρS(t)
dt

=− i
ℏ

trB [H(t),ρ(t)] (A.5)

The process for obtaining an equation that describes the dynamics of the system when there are correlations
with the bath will begin as follows: Consider a spectral decomposition for both system a bath density matrices
as

ρS = ∑
i

λi |αi⟩⟨αi| (A.6)

ρB = ∑
i

γ j
∣∣β j
〉〈

β j
∣∣ (A.7)

replacing this notation in (A.4) yields

ρS(t) = trB

[
∑
i j

U(t,0)λi |αi⟩⟨αi|⊗
(
γ j
∣∣β j
〉〈

β j
∣∣)U†(t,0)

]
(A.8)

= ∑
i jk

λiγ j ⟨βk|U(t,0) |αi⟩⟨αi|⊗
∣∣β j
〉〈

β j
∣∣U†(t,0)

= ∑
jk

γ j ⟨βk|U(t,0)
∣∣β j
〉
⊗∑

i
λi |αi⟩⟨αi|⊗

〈
β j
∣∣U†(t,0) |βk⟩

= ∑
jk

γ j ⟨βk|U(t,0)
∣∣β j
〉
⊗ρS(0)⊗

〈
β j
∣∣U†(t,0) |βk⟩ (A.9)

defining a new set of operators, Wjk(t) =
√

γ j ⟨βk|U(t,0)
∣∣β j
〉

and W †
jk(t) =

√
γ j
〈
β j
∣∣U†(t,0) |βk⟩ allows rewrit-

ing the previous equation as

ρS(t) = trB ∑
jk

Wjk(t)ρS(0)W
†
jk(t) =V (t)ρS(0) (A.10)

The term V (t) in (A.10) can be interpreted as a dynamical map that only evolves the subsystem S, not giving
the unitary dynamics of the complete S⊗B interaction. If the correlations in the environment B decay much
faster than the characteristic time scales in S, then the degrees of freedom in S only depend upon its present
states, allowing to fulfill the following property

V (t1 + t2) =V (t1)V (t2) (A.11)
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This characteristic is formally related to a dynamical semigroup, which implies the existence of a generator L
that creates the action of the dynamical map as

V (t) = eLt (A.12)

the generator L is usually referred to as the Lindblad super operator, resulting in

ρS(t) =V (t)ρS(0) = eLt
ρS(0) (A.13)

taking a time derivative in (A.13) yields

dρS(t)
dt

=
deLt

dt
ρS(0) = LeLt

ρS(0)

dρS(t)
dt

= LρS(t) (A.14)

The expression (A.14) is the famous Lindblad equation, which shows that when LρS(t) corresponds to the
commutator of the Hamiltonian, then the Liouville Von Neumann equation is recovered, implying that the
Lindblad equation is a more generic formalism that explains both open and closed evolution.

The following task resides in encountering a general expression of equation (A.14). The Lindblad space has
dimensions of dim(LS) = N2. Defining a basis Fi that is orthonormal to the inner product (Fi,Fj) = trs

(
F†

i Fj

)
,

where i = 1,2...,N2 and fN = (N)−1/21S. Expanding the operator Wjk(t) and the related conjugate on the Fi

basis results in

Wα,β (t) =
N2

∑
i=1

Fi(Fi,Wα,β (t)) =
N2

∑
i=1

Fitrs

(
F†

i Wα,β

)
=

1
N

trS(Wα,β⊮S)+∑
k

FktrS

(
F†

k Wα,β

)
(A.15)

and

W †
α,β (t) =

1
N

trS(W
†
α,β⊮S)+∑

k
FktrS

(
W †

α,β Fk

)
(A.16)

replacing equations (A.15) and (A.16) in (A.4) gives

ρS(t) = ∑
i j

[{
1
N

trS(Wi j(t))1S +∑
k

trS

(
F†kWi j(t)

)
Fk

}
ρS(0)

{
1
N

trs(W
†
i j1S)+∑

k′
trS

(
W †

i j(t)Fk′
)

F†
k′

}]
(A.17)

ρS(t) = ∑
i j

1
N2

∣∣trSWi j(t)
∣∣2 ρS(0)+

1
N ∑

i jk
(trSWi j(t)) trS

(
W †

i jFk

)
ρS(0)F

†
k +

1
N ∑

i jk
trS

(
F†

k Wi j(t)
)

trS

(
W †

i jFk

)
FkρS(0)+ ∑

i jkk′
trS

(
F†

k Wi j(t)
)

trS

(
W †

i j(t)Fk′
)

FkρS(0)F
†
k′ (A.18)
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defining

f (t) = ∑
i j

1
N2

∣∣trSWi j(t)
∣∣2 (A.19)

ck,k′(t) = ∑
i j

trS

(
F†

k Wi j(t)
)

trs

(
W †

i j(t)Fk′
)

(A.20)

F(t) = ∑
i j

1
N

trS (Wi j(t)) trs

(
W †

i j(t)
)

(A.21)

the equation (A.17) can be recast for an arbitrary time t ′ as

ρS(t) = f (t)ρS(t ′)+ρS(t ′)F†(t)+F(t)ρS(t)+∑
kk′

ckk′(t)FkρS(t ′)F
†
k′ (A.22)

taking a derivative with respect to time and evaluating at a time t ′ = t

dρS(t)
dt

= ḟ (t)ρS(t)+ρS(t)Ḟ†(t)+ Ḟ(t)ρS(t)+∑
kk′

ċkk′(t)Fk(t)ρS(t)F
†
k′(t) (A.23)

The previous equation can be more easily recognized by making the following definitions H(t)= 1
2i

(
Ḟ†(t)− Ḟ(t)

)
,

G(t) = 1
2

(
ḟ (t)+ Ḟ†(t)+ Ḟ(t)

)
and akk′(t) = ċkk′(t)

dρS(t)
dt

=
−i
ℏ

[H(t),ρS(t)]+{G(t),ρS(t)}+∑
kk′

akk′(t)Fk(t)ρS(t)F
†
k′ (A.24)

taking a trace in the system degrees of freedom, recalling that a dynamical map preserves the trace results in

d
dt

trS (ρS(t)) = 0 =
−i
ℏ

trS [H(t),ρS(t)]+ trS

(
∑
kk′

akk′FkρS(t)F
†
k

)
(A.25)

The first and second term result in

trS (H(t)ρS(t)−ρS(t)H(t)) = trS (H(t)ρS(t)−H(t)ρS(t)) = 0 (A.26)

trS (G(t)ρS(t)+ρS(t)G(t)) = trS (G(t)ρS(t)−G(t)ρS(t)) = 2G(t)ρS(t) (A.27)

where the cyclic properties of the trace have been used. With these results in mind, the trace conditions
transform in

trS

{(
2G(t)+∑

kk′
akk′F

†
k Fk

)
ρS(t)

}
= 0 (A.28)

This equality is satisfied when G(t) =− 1
2 ∑kk′ akk′F

†
k′Fk. Equation (A.24) can be rewritten as

dρS(t)
dt

=− i
ℏ
[H(t),ρS(t)]+∑

kk′
akk′

(
FkρSF†

k′ −
1
2

{
F†

k′Fk,ρS

})
(A.29)
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The coefficients akk′ refer to a matrix that, in general, can be diagonalized by means of a unitary matrix as
akk′ = ∑l ukl(t)γlu∗k′l . This can be seen as

a = uγu† =


γ1 0 ... 0
0 γ2 ... 0
0 0 ... 0
0 0 ... γN2−1

 (A.30)

The resulting master equation is,

dρS(tis,
dt

=−−i
ℏ
[H(t),ρS(t)]+∑

k
γk

(
Ak(t)ρS(t)A

†
k −

1
2

A†
kAkρS(t)−

1
2

ρS(t)A
†
kAk

)
(A.31)

This is the general form of the Lindblad equation. The coefficients Ak are named Lindblad operators, γk are
relaxation rates that indicate different decay modes of the open system. The whole term involved in the sum
over k is referred to as the dissipator.

Derivation via first principles

This was a formal approach to obtain the general form of the Lindblad equation (A.31). As a big part of physics,
one of the main scopes is to derive scientific postulates on which vast quantities of statements and theorems can
be obtained, aka first principles. The case of the formalism of open quantum systems is no exception. Starting
once again with a Hamiltonian of the form,

HSB = HS ⊗1B +HB ⊗1S +HI (A.32)

A limit on the degree of interaction between system a bath has to be made. If the dynamics of the system does
not greatly alter the corresponding dynamics of the bath, then a weak coupling approximation among them
could be made. This will have some interesting consequences that will be later presented.

Moving to the interaction picture, an equation of motion of the following form is obtained

dρS(t)
dt

=− i
ℏ
[H̃(I)(t),ρt ] (A.33)

And the formal solution can be written as

ρ(t) = ρ(0)− i
ℏ

∫ t

0
ds[H̃(I)(s),ρ(s)] (A.34)

Replacing this solution on the right side of the interaction picture Liouville equation, and tracing out the bath
degrees of freedom gives

dρS(t)
dt

=

(
−i
ℏ

)2 ∫ t

0
trB [HI(t), [HI(s),ρ(s)]]ds (A.35)

Born and Markov approximations: The first strong approximation that will be applied are the so-called
Born and Markov approximations. The meaning of both of them will be thoroughly explained.



98 Open Quantum systems

The first approximation corresponds to the effects that the system has over the bath dynamics. If what
happens in S does not modify the behavior of B, then the evolution of the joint system can be considered
separable,

ρ ≈ ρS(t)⊗ρB (A.36)

This also can be understood by employing the characteristic time scales of both the system and bath. If the order
of magnitude of the bath relaxation time, τB is considerably smaller than the ones of the bath, the approximation
of Equation (A.36) can be made. Numerical evidence of this approximation is shown when a thermal bath with
low (But nevertheless experimentally achievable) temperatures are considered,

τB =

(
κBT
ℏ

)−1

=

(
[1.38×10−23JK−1

][4K]

6.63×10−34Js

)−1

≈ 10−11s (A.37)

The characteristic times of the system are given by their own coupling constants g. An example of a two level
system interacting with a cavity mode has interaction strengths of the order of 400MHz. this gives a timescale
of τS = 1/400×106Hz ≈ 10−9s, which is greater than τB and thus Born approximation can be made. Replacing
(A.36) in (A.35)

dρS(t)
dt

=

(
−i
ℏ

)2 ∫ t

0
trB[HI(t), [HI(s),ρS(s)⊗ρB]]ds (A.38)

The previous equation indicates that the state of the system at a given time t depends on all previous times,
as the integration of

∫ t
0 ρS(s) shows. If the information that S passes into B is quickly dissipated (Normally

because of the size of the bath in comparison with that of the system), then the dynamics of the ρS only depend
on its present state.

dρS(t)
dt

=

(
−i
ℏ

)2 ∫ ∞

0
trB[HI(t − s), [HI(s),ρS(t)⊗ρB]]ds (A.39)

A replacement of t −→ t − s was made in the previous equation in order to obtain a quantum Markovian equation.

Secular approximation The next approximation that has to be made in order to derive the Lindblad equation
is called the secular approximation. Its basis resides in disregarding fast oscillating terms that appear on the
quantum master equation, which corresponds to a rotating wave approximation. To express this point, let’s
write the interaction Hamiltonian as a product of system and bath operators

HI = ∑
α

Aα ⊗Bα (A.40)

Supposing that the eigenstates of the Hamiltonian of the system are known, HS |ηε⟩ = ε |ηε⟩ , the system
operators Aα can be expanded in this basis as

A(ω) = ∑
ε−ε ′=ℏω

|ηε⟩⟨ηε |Aα |ηε ′⟩⟨ηε ′ | (A.41)
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then, the interaction Hamiltonian results in HI = ∑ω,α Aα(ω)⊗ Bα . Moving into the Dirac frame, the
Schrödinger operators transform into

H̃I = ∑
ω,α

eiHSt/ℏAα(ω)e−iHSt/ℏ⊗ eiHBt/ℏBα e−iHBtℏ (A.42)

The system transformed operators can be written in a more compact form introducing the system projectors

eiHSt/ℏAα(ω)e−iHSt/ℏ = ∑
ε−ε ′

eiHSt/ℏ |ηε⟩⟨ηε |Aα(ω) |ηε ′⟩
〈
ηε

′∣∣e−iHSt/ℏ

= ∑
ε−ε ′

eiεt/ℏ |ηε⟩⟨ηε |Aα(ω) |ηε ′⟩
〈
ηε

′∣∣e−iε ′t/ℏ

= ∑
ε−ε ′

e−iωt |ηε⟩⟨ηε |Aα(ω) |ηε ′⟩
〈
ηε

′∣∣
= e−iωtAα(ω) (A.43)

The resulting Hamiltonian is

H̃I(t) = ∑
α,ω

e−iωtAα(ω)⊗Bα(t) (A.44)

With this expression for the Hamiltonian, an expansion on the of the term trB[H̃I(t), [H̃I(t − s),ρS(t)⊗ρB]] has
to be made

[HI(t), [HI(t − s,ρS(t)⊗ρB)]] = HI(t)HI(t − s)ρS(t)⊗ρB −HI(t − s)ρS(t)⊗ρBHI(t)+h.c (A.45)

trB [HI(t), [HI(t − s,ρS(t)⊗ρB)]] = trB (HI(t)HI(t − s)ρS(t)⊗ρB −HI(t − s)ρS(t)⊗ρBHI(t))+h.c

= trB (HI(t − s)ρS(t)⊗ρBHI(t)−HI(t)HI(t − s)ρS(t)⊗ρB)+h.c (A.46)

introducing this term into Equation. (2.133) yields

dρS(t)
dt

≈− 1
ℏ2

∫
∞

0
trB ∑

αβωω ′

[
e−iω(t−s)Aα(ω)⊗Bα(t)(ρS(t)⊗ρB)eω ′tA†

β
(ω ′)⊗B†

β
(t)
]

+
1
ℏ2

∫
∞

0
trB ∑

αβωω ′

[
eiω ′tA†

β
(ω ′)′⊗B†

β
(t)e−iω(t−s)Aα(ω)⊗Bα(t − s)ρS(t)⊗ρB

]
+h.c (A.47)

dρS(t)
dt

≈− 1
ℏ2

∫
∞

0
∑

αβωω ′
trB

[
ei(ω ′−ω)teiωs

(
Aα(ω)ρS(t)A

†
β
(ω ′)ωBα(t − s)ρBB†

β
(t)
)]

+
1
ℏ2

∫
∞

0
∑

αβωω ′
trB

[
ei(ω ′−ω)teiωs

(
A†

β
(ω ′)Aα(ω)ρS(t)⊗B†

β
(t)Bα(t − s)ρB

)]
+h.c (A.48)
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Rearranging terms by each Hilbert subspace results in,

dρS(t)
dt

≈ ∑
αβωω ′

e(ω
′−ω)t

(
Aα(ω)ρS(t)A

†
β
(ω ′)−A†

β
(ω ′)Aα(ω)ρS(t)

)
⊗ ...

...⊗ −1
ℏ2

∫
∞

0
dseiωstrB

(
Bα(t − s)ρBB†

β
(t)−B†

β
(t)Bβ (t − s)ρB

)
+h.c (A.49)

Which can finally be written in a more compacted way as

dρS(t)
dt

≈ ∑
αβωω ′

Γαβ (ω, t)e(ω
′−ω)t

(
Aα(ω)ρS(t)A

†
β
(ω ′)−A†

β
(ω ′)Aα(ω)ρS(t)

)
+h.c (A.50)

where Γαβ (ω, t)= −1
ℏ2

∫
∞

0 dseiωstrB

(
Bα(t − s)ρBB†

β
(t)−B†

β
(t)Bβ (t − s)ρB

)
=− 1

ℏ2

∫
∞

0 dseiωt
〈

B†
β
(t)Bα(t − s)

〉
are the Fourier transform of the bath correlation functions. If the bath is taken as a bosonic bath, then in the inter-
action picture the only important contribution is due to time differences, and therefore Γαβ (ω, t)−→ Γαβ (ω) =

− 1
ℏ2

∫
∞

0 dseiωt
〈

B†
β
(s)Bα(0)

〉
. The next approximation that has to be made is the secular approximation, which

indicates that the only important dynamics that will contribute to the system occur when a time τS = ω
−1
S has

passed, meaning that the exponential terms eω ′−ω will only be relevant in the resonant case, while the other
frequencies will rapidly decay and thus not contribute to the dynamics of the system.

With these two previous considerations, the final steps for obtaining the Lindblad equation will be made.
Expressing Γαβ (ω) as

Γαβ (ω) =
1
2

γαβ (ω)+ iSαβ (A.51)

where Sαβ (ω) = Im(Γαβ (ω)) and γαβ (ω) = 2Re(Γαβ (ω)). Making the corresponding replacements yields

dρS

dt
≈ ∑

αβω

(
1
2

γαβ (ω)+ iSαβ (ω)

)(
Aα(ω)ρS(t)A

†
β
(ω ′)−A†

β
(ω ′)Aα(ω)ρS(t)

)
(A.52)

+ ∑
αβω

(
1
2

γ
∗
αβ

(ω)− iS∗
αβ

(ω)

)(
A†

β
(ω)ρS(t)Aα(ω

′)−ρS(t)A†
α(ω)Aβ (ω)

)
(A.53)

Taking into account that γ∗
βα

= γβα and S∗
βα

= Sβα , a dummy index replacement of α −→ β and β −→ α can be
made in the second sum, yielding

dρS(t)
dt

≈ ∑
αβω

γαβ (ω)

2

(
Aα(ω)ρS(t)A

†
β
(ω)−A†

β
(ω)Aα(ω)ρS(t)+A†

α(ω)ρS(t)Aβ (ω)−ρS(t)A
†
β
(ω)Aα(ω)

)
(A.54)

− i∑
α

(
Aα(ω)ρS(t)A

†
β
(ω)−A†

β
(ω)Aα(ω)ρS(t)+A†

α(ω)ρS(t)Aβ (ω)−ρS(t)A
†
β
(ω)Aα(ω)

)
(A.55)

This expression can be finally compressed as

dρS(t)
dt

≈−i [HLS,ρS(t)]+D(ρS(t)) (A.56)
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where HLS =∑αβω Sαβ (ω)A†
α Aβ (ω) and D(ρS)=∑αβω γαβ (ω)

(
Aβ (ω)ρSA†

α − 1
2

{
A†

α(ω)Aβ (ω),ρS

})
. Equa-

tion (A.56) is the same Lindblad equation shown in Equation.(A.31).

The formalism derived in this chapter will be used to numerically solve the dynamics and steady states
of some QED systems, which will be modeled with Lindblad master equations with dissipators of the form
Dĉ(ρS).

Master equation for operators

After having derived the Lindblad equation for the master equation, we will briefly discuss the aspect of a
master equation for operators. The Lindblad equation for the density matrix once again is,

∂tρ(t) = i[ρ,H]+
1
2 ∑

k
(2L̂kρL̂†

k − L̂†
k L̂kρ −ρL̂†

k L̂k) = i[ρ,H]+
1
2 ∑

k
LL̂k

ρ (A.57)

Where Lk are the jump operators. This equation is written in the Schrödinger picture because the time evolution
is presented for the density matrix ρ , which is a projection of states as ρ = ∑ j p j

∣∣Ψ j(t)
〉〈

Ψ j(t)
∣∣. Now the

question is since an operator O is independent in the Schrödinger picture, is it possible to derive a master
equation for its time evolution? The direct answer is yes. You can obtain a Lindblad master equation for an
operator in the Schrödinger picture. We will outline this procedure next.

Since Ô is time independent one could write the following property for the expected value of this opera-
tor

Ô∂tρ(t) = ∂t
(
Ôρ(t)

)
Tr{∂t

(
Ôρ(t)

)
}= ∂tTr{Ôρ(t)}= ∂t⟨Ô⟩(t)

∂t⟨Ô⟩(t) = Tr{Ô∂tρ(t)}

Now, we obtain that the time evolution of the operator O can be obtained using the Lindblad equation for the
density operator as

∂t⟨Ô⟩(t) = Tr

{
Ô

(
i[ρ,H]+

1
2 ∑

k
(2L̂kρL̂†

k − L̂†
k L̂kρ −ρL̂†

k L̂k)

)}
(A.58)

After some straightforward calculations, on which the cyclic properties of the trace must be used, one can
finally obtain the following equation for the evolution of the expectation value of ⟨Ô⟩

∂t⟨Ô⟩(t) = i
〈
[H, Ô]

〉
+

1
2 ∑

k

(
2⟨L̂†

kÔL̂k⟩−⟨ÔL̂†
k L̂k⟩−⟨L̂†

k L̂kÔ⟩
)

(A.59)

The reader can rapidly identify that the first part of the equation coincides with the Ehrenfest theorem for
Heisenberg’s equation of motion, and the dissipative term actually corresponds to the conjugated version of
the Lindblad master equation for the density matrix, i.e., the dissipator L†

L̂k
is the one that applies for the time

evolution of an operator O. Equation (A.59) constitutes an important result that we will apply later on when we
solve specific Hamiltonians.
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[75] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Ku-
lakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor
microcavity system. Nature, 432(7014):197–200, November 2004.

[76] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and
D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature,
432(7014):200–203, November 2004.

[77] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch. Exciton-Photon
Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity. Physical Review Letters,
95(6):067401, August 2005.

[78] Satoshi Kako, Charles Santori, Katsuyuki Hoshino, Stephan Götzinger, Yoshihisa Yamamoto, and Ya-
suhiko Arakawa. A gallium nitride single-photon source operating at 200 K. Nature Materials, 5(11):887–
892, November 2006.

[79] Michael Förtsch, Josef U. Fürst, Christoffer Wittmann, Dmitry Strekalov, Andrea Aiello, Maria V.
Chekhova, Christine Silberhorn, Gerd Leuchs, and Christoph Marquardt. A versatile source of single
photons for quantum information processing. Nature Communications, 4(1):1818, October 2013.

[80] J. A. Timpson, D. Sanvitto, A. Daraei, P. S. S. Guimaraes, H. Vinck, S. Lam, D. M. Whittaker, M. S.
Skolnick, A. M. Fox, C. Y. Hu, Y.-L. D. Ho, R. Gibson, J. G. Rarity, S. Pellegrini, K. J. Gordon, R. E.
Warburton, A. Tahraoui, G. S. Buller, P. W. Fry, and M. Hopkinson. Single photon sources based upon
single quantum dots in semiconductor microcavity pillars. Journal of Modern Optics, 54(2-3):453–465,
January 2007.

[81] Guido Burkard, Michael J. Gullans, Xiao Mi, and Jason R. Petta. Superconductor–semiconductor
hybrid-circuit quantum electrodynamics. Nature Reviews Physics, 2(3):129–140, January 2020.

[82] Alexandre Blais, Arne L. Grimsmo, S.M. Girvin, and Andreas Wallraff. Circuit quantum electrodynamics.
Reviews of Modern Physics, 93(2):025005, May 2021.

[83] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity
quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation.
Physical Review A, 69(6):062320, June 2004.

[84] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and
R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum
electrodynamics. Nature, 431(7005):162–167, September 2004.

[85] Ulrich Hohenester. Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-
assisted cavity feeding. Physical Review B, 81(15):155303, April 2010.

[86] Arka Majumdar, Erik D. Kim, Yiyang Gong, Michal Bajcsy, and Jelena Vučković. Phonon mediated
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