Metadata, citation and similar papers at core.ac.uk

Provided by Birkbeck Institutional Research Online

Birkbeck

T UNIVERSITY OF LONDON

BIRON - Birkbeck Institutional Research Online

Enabling open access to Birkbeck’s published research output

Stanley's character polynomials and coloured
factorisations in the symmetric group

Journal Article

http://eprints.bbk.ac.uk/2887

Version: Pre-print

Citation:

Rattan, A. (2008) Stanley's character polynomials and coloured
factorisations in the symmetric group - Journal of Combinatorial Theory,
Series A, 115(4), pp. 535-546

© 2008 Elsevier

Publisher version available at: http://dx.doi.org/10.1016/j.jcta.2007.06.008

All articles available through Birkbeck ePrints are protected by intellectual property law, including
copyright law. Any use made of the contents should comply with the relevant law.

Deposit Guide

Contact: lib-eprints@bbk.ac.uk



https://core.ac.uk/display/5864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/irstats.cgi
http://eprints.bbk.ac.uk/2887
http://dx.doi.org/10.1016/j.jcta.2007.06.008
http://eprints.bbk.ac.uk/deposit_guide.html
mailto:lib-eprints@bbk.ac.uk

arXiv:math/0610557v2 [math.CO] 21 Dec 2007

Stanley’s character polynomials and coloured
factorizations in the symmetric group

A. Rattan
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA, 02139
email: arattan@math.mit.edu

February 10, 2007

Abstract
In Stanley ﬂE], the author introduces polynomials which help evaluate symmetric group
characters and conjectures that the coefficients of the polynomials are positive. In [9],
the same author gives a conjectured combinatorial interpretation for the coefficients of
the polynomials. Here, we prove the conjecture for the terms of highest degree.

1 Introduction

A partition is a weakly ordered list of positive integers A = A\ As... Ag, where Ay > Ao >
. > Ai. The integers \1,...,\; are called the parts of the partition A, and we denote
the number of parts by ¢(A) = k. If Ay + ...+ A\x = d, then X is a partition of d, and we
write A = d. We denote by P the set of all partitions, including the single partition of 0
(which has no parts). For partitions w, A F n, let x,,(\) be the character of the irreducible
representation of the symmetric group &,, indexed by w, and evaluated on the conjugacy
class Cy of &,, where C is the class of all permutations whose disjoint cycle lengths are
specified by the parts of A. For a permutation «, we use the notation x(«) to denote the
number of cycles of . We use the convention that permutation are multiplied from right
to left.
Various scalings of irreducible symmetric group characters have been considered in the
recent literature, one of which is the central object of this paper. Suppose that p F & and
k < mn. For the conjugacy class C,1n—x, the normalized character is given by

Xoo(p 1)
Xo(1m)
where (n); is the falling factorial n(n — 1)---(n — k + 1). The normalized character has
been the topic of much recent literature and has been shown to have connections with
combinatorics and free probability, see for example @, E, @, B, ]
The subject of this paper is a particular polynomial expression for the normalized char-
acter, introduced in Stanley B] Consider the partition of n with p; parts of size ¢;, for

No(u 1"7F) = ()

i from 1 to m, with ¢ the largest part. Thus, pi,ps,...,pm are positive integers and
q1 > g2 > -+ > qm (see Figure[[). We denote this partition of n by p x q. Define the
expression Fj in indeterminates p1,...,Pm,q1,---,qm Dy

Fk(p17p27 <oy Pms 41,42, - - -, Q’m) = prq(k lnik) (1)
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Figure 1: The shape p x q.

We often use p for (p1,...,pm) and q for (q1,...,qm), giving us the notation Fi(p; q) for
Fr(p1,p2,---yPm; q1,92,---,qm)- The following theorem appears in Stanley B, Proposition
1].

Theorem 1.1 (Stanley). Fi(p; dq) is a polynomial in the p’s and q’s such that
(-DFF(1,1,...,1; =1,—1,...,=1) = (k+m — 1),.

In light of this theorem, we call the polynomials in () Stanley’s character polynomials.
These polynomials are the main objects in this paper. For example, for the case m = 2, the
first two polynomials are

Fi(a,p; b,q) = —ab — pq,
Fy(a,p; b,q) = —a’b + ab® — 2apq — p°q + pq

where we have set p; = a,p2 = p,q1 = b and g2 = ¢. Also in Stanley B] the author states
that if one defines F),(p; q) as

Fu(p; @) = Xpxa(p1"7"), (2)
where p - k < n then F,(p; q) is also polynomial. We emphasize that F,(p; q) is inde-
pendent of n as it is, formally, a polynomial in indeterminates in p1,...,p, and q1, ..., Gm.

Our understanding is that the polynomial F),(p; q) evaluates to the normalized character
in (2) when evaluated at a shape p x q that is a partition of n > k.

In Stanley [§], the author conjectures that (—1)*F,(p; —q) has positive coefficients. This
conjecture has only been proved in the case m = 1 for general p (see [§, Theorem 1.1)); in
particular, the conjecture is not known to be true for m > 1 even when u has one part;
that is, the conjecture is unknown even for (—1)*Fy(p; —q). Some partial results showing
positivity of the coefficients of (—1)* F, (p; —q) were given in Rattan [5], but otherwise little



is known about these polynomials. Recently, Stanley ﬂQ] has a conjectured combinatorial
interpretation for F),(p; q), which we now explain.

Let [m] be the set {1,2,...,m} and GI(Cm) be the set of permutations of the set [k] whose
cycles are coloured by [m]. Formally, if Cy(«) is the set of cycles in a then members of

G,Em) are ordered pairs (o, ) where a@ € &y and ¢ : Cx(a) — [m]. Define a product
o: GI(Cm) x & — G,Em) by the following: for (a, %) € 6,(;“), B € & and (o, )0 8 = (v,v),
where

1. y=af, and

2. Tfu=(uy ug ---uz) is a cycle of v and C*(u;) is the cycle of « containing the symbol
u; then
() = uas (9(C° (ui)}
In words, v(u) = t, where t is the largest value of ¥ (w), and where w ranges over all cycles
in a with an element, in common with u (see [9, Page 3] for an example). For (a, 1)) € G,Em)
let £ (a, 1)) = (ﬁgm)(a,w), Kgm) (o, ), ...) where fiim) (a, 1) is the number of cycles of «
m 1 (o

coloured 7 and for p = (p1,p2,---,Pm), p"”"( Nay) = Dt (@%) " We can now state the
conjecture we address in this paper, found in Stanley [9]

Conjecture 1.2 (Stanley). Suppose that & k, and let w,, be some fized element in the
conjugacy class C,, in &y. Then

(™) (o &) ((a,1h)ow
(—D)*Fu(p; —a) = > pr W (ewdeen),
(a,)e&™

As stated earlier, in Stanley ﬂa Theorem 1.1] Conjecture[[2has been proved for m = 1 (note
that this corresponds to factorizations without any colours), but otherwise this conjecture
remains open. However, for arbitrary m, it is shown in B] that

ﬁ (= (g +pj +Pjt1+ - +DPm))y
(r = (¢j +pj41 +Djr2 + "'+pm))k,

Filp; @) = — 1l (el 3)

Jj=1

where for an expression g(z) the notation [x7 1], g(z) is the coefficient of 1/2 when g(x) is
expanded in powers of 1/z. From this it follows (see |8, Proposition 2]) that if Gi(p; q) are
the terms of highest degree in Fj,(p; q) and Gp, q(z) =1+ Y 5o, Gk(p; q)z**! then

Gpiqlz) =1+ Z Gi—1(p; q)xi = —1y°
i>1 - (A=(gj+pjt1t-+pm)z)
B T =1 = (g +p+Fom)m)

T

(4)

where (—1) denotes compositional inverse. It easily follows from @) that Gp, () satisfies

—Gpi_q(—7) 1:[1 (E_GG::?(_CC) —(pj + - +pm)z + gj2) I (5)

=) = (pj41 + -+ + Pm)T + ¢57)

It is (@) that we will eventually use to prove our main theorem. It is known for m = 1
(Stanley ﬂa Page 9]) that the series G), 4(x) is the generating series for top factorizations
in the symmetric group; namely, we have

Gpafe) =1+ a7 S (g

k>1 u€ES
r(u)+r(uwy)=k+1



where wy, is used for w(y 2 ... ). Here, we have k(u) = %) (u) is the number of cycles of w.
We call products of the type in the previous sum i.e. products of permutations a3 = v in
Sy, such k() + k(B) = k + k(7) top products, top factorizations or minimal factorizations.
Such factorizations are an extremal case; namely, if o, 3,7 € & and aff = then

k(a) + K(B) <k + k() (6)

(see Goulden and Jackson [3]).

Set,
TopFactp; q(a:) = Z PRt Z pN(M)(aﬂp)qn(m)((Otv’l/l)owk)'
k>1 (a,w)eegcm)

r(a)+r(awy)=k+1
The following are the two main theorems of this paper. We will see that Corollary [[4]
follows from Theorem

Theorem 1.3 (Main Theorem). Conjecture [I.2 holds for the term of highest degree in
(—=1)*Fi(p; —q); that is,

—Gp,—q(—2) = =1+ (p1 + p2 + -+ + pm)x + TopFacty, (7). (7)

Corollary 1.4 (Main Corollary). For any partition p b k, Conjecture [L2 holds for the
terms of highest degree in (—1)*F,(p; —q).

We prove the main theorems at the end of Section Ml

2 The Goulden-Jackson construction for top factoriza-
tions

In Goulden and Jackson B], the authors give a construction for top factorizations in the
symmetric group in terms of black and white plane edge rooted trees. Namely, they give a
bijection between products of permutations af = (1 2 --- k) in &, such that x(a) + k(6) =
k + 1 and edge rooted plane trees on k + 1 vertices, with vertices coloured black and white
such that adjacent vertices receive different colours. The correspondence is very simple to
state; in the tree, label the edges beginning with the root edge (which obtains the label 1).
The edges are labelled in numerical order by travelling around the tree, keeping the tree
to the right and labelling an edge only when traversed from its white vertex to its black
vertex. From each white vertex a cycle is obtained for the permutation o by considering
the sequence of edges incident with the vertex in a clockwise direction. Likewise, the cycles
of 3 are obtained from the black vertices. In Figure[2] the plane tree given corresponds to
the pair a = (16 8 9)(2 5)(3)(4)(7)(10)(11) and 5 = (1 5)(2 3 4)(6 7)(8)(9 10 11). One can
easily check that af = (12 --- 11).

It is easy to see from the above construction, that top coloured factorizations are ob-
tained in the following way. Let (a, ) € G,Em) and (3 be such that a8 = (12 ---k). Now,
using the construction of Goulden and Jackson, from a and 3 create a black and white
plane edge rooted tree. As the white vertices of the tree correspond to cycles of «a, give
the white vertices an additional colour ¢ for 1 < ¢ < m using ¥. For a black vertex v, an
additional colour ¢ for 1 < ¢ < m is given with the rule that v obtains colour j, where j is
the maximum colour amongst all neighbours of v. Thus, to be clear, vertices have two types
of colours; they are either black or white and they have a colour 7, with 1 <+i < m. As the
black vertices determine the cycles of 3, the labels i determine a function ¢ : C(5) — [m].
Note that ¢ clearly determines a function ¢’ : Cr(87!) — [m] by ¢'(u™!) = ¢(u) for



root edge

Figure 2: On the left is a black and white plane edge rooted tree. Using the description
in the first paragraph of Section [ to label the edges of the tree on the left, we obtain
the tree on the right. A clockwise rotation around each white vertex gives a cycle of the
permutation o« = (1 6 8 9)(2 5)(3)(4)(7)(10)(11), and likewise for the black vertices and
B=(15)(234)(67)(8)(91011).

any cycle u of 3. One can easily check that (a,1) o (12 - k)=t = (871, ¢') (see Figure
B). We will, therefore, call the set of black and white plane edge rooted trees with this
additional colour restriction coloured black and white plane edge rooted trees and denote
this class by 7. Define for a tree T' € T the weights wg,m)(T) = (wq(;?)(T),wl(JZ)(T), o)
and wbm) (T) = (wém) (T),wé;n)(T), ...) where waT)(T) and wb:n) (T') are the number of

1
m Gm(r
white, respectively black, vertices in 7' coloured i. As usual, let p”iu (1) = Hip:uwl ™
m (1
and q‘*’l(a (1) — Hl q:)bi ( ), and define
Tp; q(x) _ Z pwgn)(T)qwgm)(T)Inumbcr of vertices of T'
TeT

Evidently, we have the following proposition from the above discussion.

Proposition 2.1.
Ty, q(x) = TopFact,, 4(z).

In the following sections we show that Tp, q(z) + (p1 +p2 + - + pm)x — 1 = —Gp, (—2),
which proves that (@) holds by Proposition 211

3 Planted Trees

It is clear that the class of trees 7 is in bijective correspondence with the following class.
Let B; be the set of coloured plane planted trees whose planted vertex is coloured black (the
planted vertex does not otherwise have a colour ), the vertex adjacent to the planted vertex,
which we call the root, is white and coloured with the colour ¢ and the colouring of the rest
of the tree is consistent with the class of trees in 7. The planted vertex gives a linear order
to the edges connecting the root to its children (see Figure d]). Define WW; analogously; that
is, W is the class of plane planted trees with planted vertex coloured white (but with no
colour i) and with the black root vertex coloured i. In both these classes of trees, a vertex



2

root edge

Figure 3: The coloured black and white plane edge rooted tree in this figure is the same
as the one on the left in Figure Bl except with colours. Its edges would be labelled as
the tree on the right in Figure Pl Thus, this tree corresponds to («, ) and (5, v), where
a=(1689)(25)(3)(4)(7)(10)(11) and 8 = (1 5)(2 3 4)(6 7)(8)(9 10 11), and where the
cycles (16 89) and (4) of a are coloured 2 and 3 by v, respectively. Here, we assume m > 3.

v is the parent of a vertex w and w is, likewise, called a child of v if v and w are connected
by an edge and v is on the unique path joining w to the planted vertex of the tree. A tree
in the class By is given in Figuredl Define the generating series

(m) (m) . .
B, (.CC) pww (T)qwb (T):Cnumbcr of non planted vertices of T’
TeB;
(m) (m) . ices
w T) w T) ,.number of non planted vertices of T'
Wiz) = 3" pet @) gt (@), b

TeEW;

If we let P; be the class of white vertices with label 7 then it is easy to see that

UrUT - s
=1 i=1

from which it follows

m
Toiq(z) + (pr+p2+ -+ pm)z = Z Bi(x)
i=1
Thus, in order to find an expression for the generating series Tp. q(x) we find one for
>, Bi(x) (see Figure M). For convenience, we set Ip, o(z) be the previous generating
series; that is, we set

m

Ip; q(2) = Tp; q(2) + (01 +p2+"'+pm)I:ZBi(I) (9)

i=1
We now find relations between the classes B; and W; for 1 < i < m. In order to do this
we introduce a final class of trees. Define the class of improperly coloured trees, denoted
W;, planted at a white coloured vertex (but otherwise does not have a colour 7) and a black



planted vertex —=

Figure 4: The coloured plane planted tree in B2 (here, we assume that m > 3) that corre-
sponds to the coloured plane tree in Figure [3l The tree is obtained by attaching a planted
vertex to the white vertex incident with the root edge of the tree in Figure[3l The root edge
in Figure Bl becomes the first of the linearly ordered edges (from top to bottom) emanating
from the root.

root coloured i. The white children of the black root vertex can only be coloured with the
colours of 1,2,...,i—1 (hence, the name improperly coloured). Also note, we insist that the
black root has non-empty subtree below it (otherwise, such a tree would not be improperly
labelled). Define the generating series W;(z) of the class W; analogously to the series W;(z).
For i = 1, the class W, is empty and its corresponding generating series is Wi () =0. We
shall see their importance in the next section.

4 Decomposition of the classes B; and 1V, and the proof
of the Main Theorems

We begin by discussing the decomposition of the class B;, for 1 < i < m. Recall, a tree
in this class has a planted black vertex adjacent to a white root vertex with the colour
1. Every child of the root vertex is black and because of the colouring rule requiring the
colour of a black vertex to be the largest colour amongst it white neighbours, the colours
i,1+1,...,m are the possible colours for the children of the white root vertex. Each of these
black children have subtrees to which they are attached, and can be made into a planted
W; tree for i < j < m by attaching a planted white vertex to each of the black children
(see, for example, Figure[H). Note, however, we may also obtain an improperly labelled tree
Wj for i < j < m (as in, for example, the second subtree counting from the top in Figure
[B)). The final caveat here is that any black child of the white root vertex with colour strictly
greater than ¢, must have a non-trivial subtree below it (for otherwise that black vertex
would be not be properly coloured). Since the subtrees are linearly ordered, we see that
B;(z) satisfies

Bi(z) = 2 - ' (10)
1= (Wal) £ Wie) + (Wia () = qisn) - + (Win(a) = gi))
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Figure 5: The coloured plane planted tree in By given in Figure @] decomposed into two W,
one W3 and one W, trees.

We repeat that W, (z) = 0. We can similarly find expressions for the generating series W;(x)
and W;(x). Beginning with Wl(:v), for 2 <4 < m, we have by definition a tree in the class
Wi has a white planted vertex and black root vertex with colour ¢. The black root vertex
has white children coloured with 1,2,...7—1. Also by definition, the black root vertex must
have a non-trivial subtree beneath it. Since the subtrees are linearly ordered, we have

W(a) = @DBL@) + Bo(@) + -+ Bia (@)
T (Bi(@) £ Ba(@) + -+ B (@)

(11)

For the trees W;, by definition they are trees with a white planted vertex and a black root
vertex with colour ¢ and are properly coloured; that is, the black root vertex has no white
children with colour greater than i. The black root vertex may have a trivial subtree beneath
it, but if it does not it must have at least one white child coloured i (in order be properly
coloured). As these are the only restrictions, we see

Wi(z) = qiT B (¢;z)(B1(x) + Bo(z) + - -+ + Bi_1())
i 1—(Bi(z) + B2(x)+ -+ Bi(x)) 1—(Bi(x)+ B2(x)+ -+ Bi—1(x))
= qix _ Wz(x) (12)

1= (Bi(z) + Ba(x) + -+ + Bi(x))
We now show that I, q(x) given in (9)) satisfies the same equation as (&l).

Lemma 4.1.

pia(z) = 1= (piy1 + -+ pm)r + gz’




Proof. Our proof is by induction on i beginning at i = m. For ¢ = m we have by ([I0)

B, (x) = Pm®
L — (Wn(z) + Wi(z))
_ PmT
1-— dm T

1—(Bi(z)+:+Bm(z))
o me(Bl(I) 4o+ Bm(x) - 1)
Ip; () =1+ gmz

completing the base case.
Now suppose that our conclusion is true for i = t. We wish to show our conclusion holds
for i =t — 1. By the induction hypothesis, we have

ptl'(Bl (l’) + -+ Bt(l') — 1)
Ip;q(x) =1 — (De1 + -+ pm)x + @z’

Bt(.’L') =

and from (I0) we have

Pt—1T
— (Wema(@) + Wena () + (We(@) = o) + -+ (Win(2) = ) )|

from which we obtain

Bt,1 (I) =

—Pt—1x
(Wt—l(f) + Wisi(z) = Wila) — g
+ (Wt(ac) + Wi(x) + Wi (2) — 1z 4 - -+ Wi (2) — qu)) -1
—Ptx

g1z _ qrx + Ipia@) 1= (prortdpm)ztae
1-(Bi(z)++Bi—1(z))  1-(Bi(z)++Bi-1(z)) 1=(Bi(z)++B(x))

Bt,1 (.CC) =

)

(13)

where the last summand in the denominator of (I3) follows from (I0) with ¢ = ¢ and the
induction hypothesis. Continuing to simplify, ([I3]) becomes

—pe—12(l = (Bi(@) + - + Bi(2)))(1 — (Bi(x) +--- + Bi—1(2)))
(1= (Bi(z) + -+ Bi(2))) (g 1$—Qt117)+( ca(2) —1
—(pt+1 + -+ pm)x 4+ qix)) + Bi(x)(Ip; () = 1 = (Pe41 + - + Pm) T + qi)
_ —pr—1z(l — (Bi(z) + -+ Bi(2)))(A = (Bi(z) + -+ Bi-1(2)))
(1= (Bi(x) + -+ Be(2)))Ip; q(¥) =1 = (P41 + - +pm)$ +qi—17)
+ pex(Bi(x) + -+ + Be(x) — 1)

_ pi—12(Bi(x) + -+ Bi—1(x) — 1)
Ip; q(®) =1 = (pt +pea1 + -+ Pm)T + qg—12’

completing the proof. O

Lemma 4.2. For 0 <i < m the following equation holds:

T Upiq(@) —1—(pj + -+ pm)z + qsz)

Bi(z) + -+ Bi(z) — 1 = (Ip; o(7) — 1)j:i+1 (Ip: q(z) = 1 — (pjs1 + -+ + DPm)x + ¢;7)




Proof. The proof is by induction on i, beginning at i = m. The case i = m is trivial.
Now suppose for ¢ = t the statement of this lemma is true; that is,

7 pia(@) = 1—(pj + - +pm)z+ qx)

Bi(x) + -+ By(w) — 1 = (Ip; () — 1>j:t+1 (Ip a(@) = 1= (pjr1 + -+ Pm)z + ¢57)

By Lemma E.1] we have

Bi(x) = .
@) = @ —1- G FpT a0

But,

Bl($) +"'+Bt_1($) -1
Ip. () =1 = (pr41+ - +pm)r + @i

ptx
_ (Bl(l') + .. —f—Bt(fL’) — 1) (1 - Ip;q(iﬂ) 1 (pt+1 + .- +pm)x+qt17>

=DBi(z)+ -+ Bi(z) — 1 —

_ o TT Upa(@) = 1= (pi 4 + pm)z + g57)
= (Ip; q(fﬂ) 1)j£1 (Ip; q(x) — 1= (pj+1 + ot pm)x+ qjx)

i (Ip;a(z) =1 — (e + -+ Pm)T + @)
(Ip: q(x) =1 = (pey1 + - + Pm)x + qi)
_ T U a(@) —1—(pj + -+ pm)x + ¢;2)
= (Ip;q(z) — 1) H Toa@) — 1= (prs + T po)z + y2)

J=t

completing the proof. O
We now give a proof of the main theorems.

Proof of Theorem From Lemma 2] we have by setting ¢ = 0

z) = 1—(pj+ - +pm)r+qz)

) -
)

T _Up: o
(Ip; () — 1)31;[1 (Ip: q(x) =1 = (pjg1 + -+ pm)x + qj7)

Thus, Iy, g(x)—1 and —Gp,—q(—2) both satisfy ({). Combining this with (9)) and Proposition
2.1 gives the result. O

Proof of Corollary .4l If 1 = pipo...ue F k, then the terms of highest degree in
E—l)kFH(p; —q), which have degree k+/¢(u), are given by Hle (—=1)* G, (p; —q) (see Sniady

, Theorem 4.9] and [6, Theorem 9] and references therein. To see how Kerov polynomials
are used to obtain characters of the symmetric group and Stanley’s polynomials, see Rattan
[5)). Assuming that o8 = v in &), where 7 has cycle type p and k() + k(8) = k + £(7)
then the product af = v necessarily decomposes into k() products of the form «;/3; = 7,
where

1. ~; is a cycle of ~;

2.y =alal---af and B; = Bp% -+ L, where o] and 37 are cycles in « and f3, respec-

tively; the cycles a7 and ﬁg are precisely the cycles in o and g that contain elements

in the support of 7;; i.e. the elements h of {1,2,...,k} such that ~;(h) # h;
3. if the length of v; is k; then x(a;) + w(8;) = ki + 1

10



(see Goulden and Jackson ﬂi Section 4]). From this it follows that

£(1)
Z pﬁ(wn)(aﬂw)qn(m)((a,w)ow“) — H (—1)H G, (p; —q).
(e (™) i=1
r(o)+r(awp)=k+r(u)
completing the proof. O
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