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Abstract. For a safe drive with a vehicle and better
tyre life, it is important to regularly monitor the tyre
damages to diagnose its condition and chose appropri-
ate solution. This paper proposes a framework based
on pattern recognition utilizing the strength of texture
attributes and ensemble learning to detect the damages
on the tyre surfaces. In this paper, a concatenation of
the statistical and edge response based texture features
derived from Gray Level Co-occurrence Matrix and
Local directional pattern are proposed to describe
and represent the tyre surface characteristics and their
variations due to any damages. The derived fea-
tures are provided to train machine learning algorithms
using ensemble learning methods for a better under-
standing to discriminate the tyre surfaces into normal
or damaged. The experiments of tyre surface classifica-
tion were conducted on the tyre surface images acquired
from Kaggle tyre dataset. The results demonstrated the
ability of the combined texture features and ensemble
learning methods in effectively analysing the tyre sur-
faces and discriminate them with better performance
provided by adaboost and histogram gradient boosting
methods.
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1. Introduction

Tyre is an integral part of a vehicle that keeps it moving
establishing a continuous contact with the road surface.
The tyre treads play a significant role in ascertaining
the continuous contact and indicating the health of
the vehicle. It facilitates smooth driving, protection
against aquaplaning, brilliant snow and mud handling
capabilities, excellent road holding grip, low rolling
resistance and very good curve stability. The physi-
cal condition of the tyre depends upon various factors
such as climate, road conditions, the driving style and
frequency of use of the vehicle.

The tyres of the vehicles are affected by various
parameters that include: force exerted on the tyre,
velocity at which the tyre moves, geometry of the con-
tact, type of the contact surface and environmental
factors. Tyres in continuous use and contact with the
road surface gradually wear down due the friction gen-
erated between them. This affects the depth of the
tyre treads. Further tyres can be damaged due to var-
ious reasons that include: punctures, cracks, irregular
wear, cuts, punctures and bulges. It is also impor-
tant to observe the depth of the tread as the allowable
limit is 1.6 mm above which the tyre has to be re-
placed. Damaged tyres lead to unsafe driving. Thus,
regular monitoring of damages is much essential to
diagnose its condition and chose appropriate solution.
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Thus, maintenance of the tyre is important for a better
tyre life and safe drive.

Traditionally the tyres are inspected manually for
any damages and wear, additionally the tyre pressure
is frequently tested as the improper distention can lead
to uneven wear in tyre. And regularly wheel alignment
and balancing has to be checked for maintaining even
tyre wear. With the advancements in the technologies
other methods/techniques were explored to identify the
state of the tyre.

Sensor based methodologies were found to be
promising in detecting wear in the tyre tread patterns.
A RFID based tyre wear detection system was devised
by [1]. The complete system was embedded in the
tyre that provided warning if tyre wear is detected.
A system based on laser sensors was developed by [2]
for accurate identification of the tyre wear. Later as
an improvement [3] discussed about tyre control sys-
tem that incorporates sensing technologies with wire-
less data transmission into tyres to monitor pressure,
wheel loading, deformation, wheel loading, tread wear
and friction. However, the installation of sensors and
data transmission modules into a tyre is quite chal-
lenging. Further modelling based methods were inves-
tigated to detect and analyse tyre wear. An analysis on
the deformation of the tyre using the frictional charac-
teristics between road surface and tyre based on tyre
brush model was carried out by [4] and [5]. Similarly,
a computer based tyre tread wear predictive system
was developed by [6] where the method also assessed
the key parameters that affect the tread wear.

A study on Tyre Wear Quantity and Difference
(TWD) was done by [7]. The study aimed at
devising a mathematical model to analyse the effect
of the vehicle speed, braking force, road feature and
steering angle to evaluate the TWD during unsteady
condition of the vehicle. Further the experimental
results conveyed the significant effect of braking force,
road surface and vehicle speed on TWD. [8] estimated
the amount of lateral tyre wear devising a nonlinear
dynamic model for multi axle steering vehicle. A com-
parison was also made between the linear and nonlinear
models, of which nonlinear model proved to be better
for tyre wear estimation. The nonlinear model proved
to be significant in its use for design and optimization
of various parameters of vehicle for reducing tyre wear.
Finite Element Analysis was implemented by [9] to esti-
mate the cross-sectional wear for a specific conditions
of the vehicle. This methodology considered driving
style, system of vehicle and tyre construction effects to
predict the tread wear. A method based on abrasion
model is presented in [10]. The model considers abra-
sion and directional effects to calculate the tyre tread
wear.

The developments in computer vision, image
processing algorithms and artificial intelligence tech-
nology is providing solutions based on automation to
detect tyre degradation or defects. These frameworks
are developed to detect the tyre defect automatically
and provide appropriate action. A method using X-ray
images was used in [11] where texture features derived
from the images were evaluated for texture dissimilar-
ity and then provided to the segmentation algorithm to
identify the defects. An analysis of the method proved
to be good in identifying the defects on both side walls
and tread patterns. An investigation was carried out
in [12] to understand the deployment of Deep learning
methods to identify the tyre defects. The method used
regularization techniques to enhance the performance.
A tyre life prediction system is presented in [13] based
on pattern recognition framework. The method used
texture features to train k nearest neighbour classifier
to predict the tyre wear and the system proved to be
effective in predicting with better accuracy. A combi-
nation of supervised and unsupervised machine learn-
ing methods is implemented in [14] to identify the tyre
defects and their classification. The method used Laser
sensor and a camera where the data obtained from
the Laser sensor was used to detect the defects using
clustering algorithm and later the defects were clas-
sified using Visual Geometry Group (VGG)-16 deep
learning structure.

Further a work based on convolutional neural net-
work developed using VGG architecture [15] was found
to be efficient in identifying the tyre defects. This
method was able to identify the defects following three
phases of processing the data. A deep learning based
solution is provided in [16] to automatically detect the
tyre defects using a densely connected convolutional
neural network working on images from a smart phone.
Further, a methodology using GoogleNet architecture
is proposed in [17]. This method is found to be highly
accurate in detecting the tyre defects automatically.
A survey on the various methods provided comprehen-
sion on the use of various technologies and applica-
tion of machine learning and deep learning methods to
automatically detect/predict the tyre defects affected
by several parameters.

Unlike previous existing methods, the paper pro-
poses a pattern recognition framework utilizing the
advantages of feature integration and ensemble clas-
sification methods to improve the task of defect/crack
detection in tyres. As mentioned in the introduction
section, the degradation in tyre is a result of various
parameters acting on it and the effects can be observed
as punctures, cracks, irregular wear, cuts, and bulges.
The work presented here focuses on detecting the
cracks on the tyres using appropriate texture de-
scriptors and machine learning ensemble classification
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model. The detection can be mapped further towards
taking appropriate action required.

The contributions of this paper are:

• Derive and frame robust texture descriptors to
describe the detailed texture characteristics of tyre
surfaces.

• Analyse the features to understand the variations
in the texture on tyres.

• Effective discrimination of normal and cracked
tyre surfaces using ensemble learning by combin-
ing the predictions of multiple classifier models.

• Quantitative assessment of the ensemble learning
methods for their validity and reliability.

The rest of the paper is organized as following.
Section 2. provides details about methodology
formulation. Results and discussion are presented in
Sec. 3. and finally Sec. 4. concludes the paper.

2. Methodology Formulation

Identifying the defects in tyres requires a signif-
icant analysis of the tyre surfaces for any varia-
tions/deformation occurred. Deriving texture features
from the tyre surfaces and their analysis can effectu-
ally aid in identifying the deformations in the surface
characteristics of tyres as they are good in capturing
the variations in intensity levels/gradients of the pix-
els. These variations captured can be the attributes
that can easily discriminate between the normal and
damaged/cracked tyre surfaces. Further, deriving the
features from the images that can represent the vari-
ation of the tyre surfaces at global and local level en-
hances the performance of the tyre defect recognition
system. Thus, the proposed work on identifying the
defects/damages in tyre is a pattern recognition task
that derives the texture features from the tyre surface
images and builds a machine learning classifier model
to identify and categorize the tyre surfaces into normal
or defective. The formulation of methodology for the
proposed system is displayed in Fig. 1.

The details of the process are presented in the
subsequent subsections.

2.1. Materials

The proposed work on Tyre Defect Detection (TDD)
and classification was implemented on the tyre sur-
face images acquired from the Kaggle dataset. The
dataset has a total of 1028 images of which 537 images
were captured from defective tyre surfaces with cracks

and remaining 491 were the normal surface images.
An observation of the images shows:

• The variations in the intensity of the cracked
surfaces,

• Variations in the resolution (dimension) of the
images,

• Variations in illumination when the images are
captured and low contrast. So, a methodology has
to be framed that works effectively subjected to
the variations mentioned.

2.2. Pre-processing

As the tyre surface images are with variable resolu-
tion and low contrast, they are resized and applied to
contrast enhancement techniques. With low contrast
it is hard to identify the variations in image. The
enhancement techniques adjust the intensity (bright-
ness and darkness) levels to improve the quality of the
images. The pixel values in a low contrast images
are defined within a narrow range, so the contrast
enhancement methods distributed the pixel values over
a wider range. Some of the widely used enhancement
techniques are [18] and [19]:

1) Gamma Transformation (GT)

The gamma transformation applied to an image I(x, y)
carries out exponential operation to saturate the top
one percent and bottom one percent of the image pix-
els. The transformed image Ip(x, y) is related to I(x, y)
by:

Ip(x, y) = c · I(x, y)γ , (1)

where c and γ (Gamma) are constants.

Depending on the value of γ, the intensity values of
the image are either brightened or darkened. When-
ever γ < 1, the pixels in the output image become
brighter and when γ < 1, they become darker. With
γ < 1, Ip(x, y) = I(x, y). For better results, the γ must
be appropriately chosen. For low contrast images, the
brightness levels of the pixels have to be modified to
have better visualization and representation. Normally
c is made 1 and γ is made greater than 1 (γ = 2.2).

2) Histogram Equalization (HE)

It is one of the frequently used procedure to improve
the contrast of an image I(x, y) because of its efficacy.
Histogram equalization depends upon the cumulative
distribution function (cdf) and it will alter the contrast
of an image by varying the distribution of the intensity
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Tyre surface images
(Normal and Damaged)

Preprocessing

Training dataset Testing dataset

GLCM LDP

GT={(gt1)i: (gt2)i: (gt3)i: (gt4)i}i=1,2,3,4 HLDP

TF=[GT : HLDP]

Feature Concatenation

Ensemble Learning

Ensemble Classifier 
model

Feature extraction and 
concatenation
TF=[GT : HLDP]

Prediction 
[Normal: Damaged]

Feature extraction

Tyre surface images split-Hold out

Fig. 1: The proposed framework for analysis and detection of tyre cracks.
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(a)

(b)

Fig. 2: Sample images indicating the variations in resolution and illumination captured from normal tyre surfaces (a)
and defective tyre surfaces (b).

levels. The resultant image after histogram equaliza-
tion is:

Ip(x, y) =

(
cdf (I (x, y)− cdfmin)

N − cdfmin

)
x (L− 1) , (2)

where N and L are size of the image and number of
gray levels respectively

3) Contrast Limited Adaptive Histogram
Equalization (CLAHE)

CLAHE is the adaptive histogram equalization method
that enhances the contrast of the image locally without
causing saturation. The method operates on smaller
regions of the images i.e., the image is divided into dis-
tinct regions and contrast of region is enhanced using
HE. This method solves the problem of noise amplifi-
cation and preserves the edges.

The contrast enhanced image with better informa-
tion is analysed to check the suitable texture features
that can be derived from the images for good represen-
tation.

2.3. Texture Feature Extraction

Analysing the tyre surface images is important to
identify the damages on the surfaces like cracks. This
requires the images to be represented efficiently using

descriptors that provide detailed information about the
characteristics of the surfaces. It is found that the
texture features provide a better understanding as it
represents the spatial relationships between the pixels
and describes the structure of the texture such as fine,
coarse, smoothness, grained. The literature indicates
the availability of methods that describe the texture
using numerical quantities such as statistical methods
and edge response based methods. These methods pro-
vide local descriptions or micro textures of the image
that are very apt for the proposed method that aims in
identifying the damages or cracks on tyre surfaces. The
texture features are proved successful in the domains
of healthcare [20] and [21], document analysis [22] and
[23], content based image retrieval [24], industrial prod-
uct inspection [25] and [26] etc. This paper focuses on
integrating the strengths of statistical: Gray Level Co-
occurrence Matrix (GLCM) and edge response based:
Local Directional Pattern (LDP) texture features to
provide detailed information about the characteristics
of tyre surfaces for better differentiation of normal and
damaged tyre surfaces.

• Gray Level Co-occurrence Matrix (GLCM)

GLCM [27], also known as the gray level spa-
tial dependence matrix is a statistical method of
analysing the texture in images. This approach
is based on the second order statistics that work
on pairs of pixels with a specific spatial relation-
ship existing between them [28] and [29]. This
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Os1=[0 1]

Os2=[-1 1]
Os3=[-1 0]

Os4=[-1 -1]

GLCM

Feature Extraction
gt1

gt2

gt3

gt4

GLCM Texture 
features

Concatenation
{(gt1)i:(gt2)i:(gt3)i:(gt4)i}i=1,2,3,4

G(x,y)

GT

Fig. 3: Texture feature extraction from GLCM.

process involves converting an image in to an
array/matrix G(x, y) whose elements represent the
frequency nxy of a pixel having an intensity value u
separated from another pixel with intensity value
v at a distance D/offset in the direction θ.

G (x, y) = [nxy]
N
x,y=1 , (3)

where N ×N is the dimension of G(x, y).

Here, for each contrast enhanced image four
GLCM arrays {G(x, y)i}41 are framed for θ =
[0◦, 45◦, 90◦, 135◦] with D = 1 as indicated in
Tab. 1. D was chosen to be ’1’ as the extrac-
tion and analysis of finer texture requires a smaller
value of D, larger D leads to the extraction of
coarser texture. Finer texture provides more de-
tailed information and can lead to better detection
of defects on tyre surface.

Tab. 1: GLCM arrays with different offsets and directions.

GLCM θ D/Offset
G(x, y)1 0◦ [ 0 1]
G(x, y)2 45◦ [−1 1]
G(x, y)3 90◦ [−1 0]
G(x, y)4 135◦ [−1 −1]

From each G(x, y) array four features: Con-
trast, Correlation, Energy and Homogeneity are
extracted [30] using Eq. (4), Eq. (5), Eq. (6) and
Eq. (7) that represent the texture of the image.

Constant =

N∑
x=1

N∑
y=1

|x− y|2 G (x, y) , (4)

Correlation =

N∑
x=1

N∑
y=1

(x− µx) (y − µy)G (x, y)

σxσy
,

(5)

where µx, µy, σx, σy are mean and standard
deviation respectively:

Energy =

N∑
x=1

N∑
y=1

G (x, y)

1 + [x− y]
, (6)

Homogeneity =

N∑
x=1

N∑
y=1

G (x, y)
□

1 + [x− y]
, (7)

Thus, for every image 16 texture features are ex-
tracted and concatenated to form a single feature
vector GT .

GT = (gt1)i : (gt2)i : (gt3)i : (gt4)ii=1,2,3,4 with
gt1 = Contrast, gt2 = Correlation, gt3 = Energy
and gt4 = Homogeneity. The process of texture
feature extraction from GLCM is illustrated in
Fig. 3.

• Local Directional Pattern (LDP)

Finding efficient features to represent the sur-
face image of the tyre is important to iden-
tify the defect. Local features have proved to
be better than global level features for image
representation [31] and are also robust to work
with images captured under uncontrolled envi-
ronments. The proposed work uses LDP which
is a local feature extraction method that consid-
ers the edge responses obtained in all directions
for better stability. That is the method relies
on directional information rather than intensity
levels.

The process involves application of Kirsch kernels
[32] of dimension 3 × 3 in eight different orienta-
tions [K1, K2, K3, K4, K5, K6, K7, K8] to obtain
eight edge responses [ER1, ER2, ER3, ER1, ER2,
ER3, ER1, ER2] specific to a respective direction.

Here each pixel of the input image is encoded using
eight-bit binary code. The process is illustrated
in Fig. 4. As LDP is a local feature extraction
method, the Kirsch kernel is slided on the input
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Fig. 4: Texture feature extraction from LDP.

image covering every image patch of size 3 × 3
with a stride of 1. The sliding is done over the
complete image. With every slide, convolution of
image patch and Kirsch kernel is performed to find
the binary code and the centre pixel of the image
patch is replaced by the binary code. Here it is
important to identify the significant l directions to
generate local directional pattern. So, the peak l
directional bits s are set to one while the remaining
(8 − l) bits of the LDP are made zero. The LDP
code thus derived is:

LDP =

7∑
j=1

sj (mj −ml)x 2
j , (8)

where, sj (α) =

{
1 α ≥ 0
0 α < 0

, ml is the lth most

important directional response.

Finally, from the encoded image a histogram of
LDP HLDP is found that form the feature set.

The extracted texture features GT and HLDP

are concatenated to form a feature vector
TF = [GT : HLDP ] that assimilates the informa-
tion of both the features to discriminate the im-
ages efficiently to identify the defects in tyres. The
concatenated feature vector TF is later submitted
to the ensemble learning classifier algorithms for
classifier model creation and testing.

2.4. Ensemble Learning (EL)

Ensemble learning [33] is a machine learning approach
formulated to enhance the predictive performance of
pattern recognition system by merging the predictions
of multiple classifier models. EL has found to be signif-
icant in effective predictions and has proved its ability
in several domains such as nondestructive testing [34],
healthcare [35] and [36], detection of landslides and
natural disasters [37] and [38], stock financial frauds
[40], affective computing [41], anomaly detection [42]
etc., Ensemble Learning is categorized into: Bagging,
Stacking and Boosting methods. The bagging and
boosting methods are frequently used approaches for
ensemble learning. The idea behind these approaches
and the details of the methods is provided in the sub-
sequent paragraphs. market predictions [39], financial
frauds [40], affective computing [41], anomaly detec-
tion [42] etc., Ensemble Learning is categorized into:
Bagging, Stacking and Boosting methods. The bag-
ging and boosting methods are frequently used ap-
proaches for ensemble learning. The idea behind these
approaches and the details of the methods is provided
in the subsequent paragraphs.

© 2023 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 133



DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 21 | NUMBER: 2 | 2023 | JUNE

Dataset[TF]
Cocanetenated Texture Features
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Fig. 5: Framework of Bagging ensemble method.

Dataset[TF]
Cocanetenated Texture Features

[GT:HLDP]

Model1

(Base model)

Model2 Model3 Modeln

Aggregation of Predictions

Final Predictive 
Decision

p1 p2 p3 pn

Weighted Sample Weighted Sample Weighted Sample

e1 e2 e3

Predictions

Errors

Fig. 6: Framework of Boosting ensemble method.

1) Bagging

The main elements of Bagging are Bootstrap and Ag-
gregation. This approach considers one machine learn-
ing algorithm (relatively weak) to train with subsets
of the original training dataset generated using the
bootstrap sampling with replacement to create differ-
ent classifier models. These classifier models are fur-
ther used for testing and the final predictive decision
is made based on the aggregation of the predictions of
the individual models. The aggregation rule can be ei-
ther voting or averaging. Some of the algorithms avail-
able to work based on this method include Decision
trees, Random forest and Extra trees. The principle of
Bagging is illustrated in Fig. 5.

2) Boosting

Boosting follows a sequential process where it tries to
reduce the prediction errors of the classifier model.
This approach tries to build a strong classifier model
combining weak classifiers. To start with, the approach
considers the training dataset and equal weight assign-
ment is done on the dataset and builds a base (weak)
model to give predictions. The errors obtained after
the predictions are observed, the weights are modified
(increased) for the data samples which are misclassi-
fied. Further a new model is created to make the pre-
dictions and it corrects the errors caused by the previ-
ous model. As a subsequent process multiple classifier
models are built, each trying to correct the errors gen-
erated by the previous models. correcting the errors
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that were produced during the previous predictions.
The final prediction is by the final model built using
weighted average of all the previous models. Adaboost,
Gradient Boosting (GBM), Extreme Gradient Boost-
ing (XGBM) and Light Gradient Boosting (LGBM) are
the boosting algorithms that create build a strong clas-
sifier model to improve predictive performance. The
principle of Boosting is illustrated in Fig. 6.

The ensembles classifiers with boosting and bagging
algorithms are trained with suitable parameters and
tested for its performance. Here, the work also checks
for the presence of cracks on the tyres using appropriate
descriptors and machine learning classification model.
The detection can be mapped further towards taking
appropriate action required.

3. Results and Discussion

The proposed work focuses on identifying/predicting
the cracks on the tyre surfaces formed due to various
reasons. The work is implemented based on the pattern
recognition model that aids in providing appropriate
action required. This model makes use of appropriate
texture features and ensemble classifiers.

As mentioned in the materials section, the images
captured are subjected to variations in the intensity,
dimension and contrast. That required the use of pre-
processing techniques for effective representation. Ini-
tially all the images were converted to gray scale and
resized to have uniform dimensions. Further contrast
enhancement techniques such as Gamma Transforma-
tion (GT), Histogram Equalization (HE) and Contrast
Limited Adaptive Histogram Equalization (CLAHE)
were used to improve the contrast and overcome the
variations in intensity. The enhancement techniques
were qualitatively and quantitatively assessed for its
improvement and the method with best result was con-
sidered to continue with the further process. The role
of enhancement techniques was also investigated to
know their importance in differentiating the cracked
tyre surfaces from the normal ones. Figure 7 displays
the resultant images after enhancement process.

These images are analysed further using the mea-
sures Entropy, Mean Squared Error (MSE), Peak Sig-
nal to Noise Ratio (PSNR), Absolute Mean Brightness
Error(AMBE) and Gray level energy [43]. The mea-
sures are computed using the equations [9], [10], [11],
[12] and [13]:

Entropy = −
G−1∑
i=0

pi ln pi, (9)

G is the number of gray levels, pi is the probability of
a image pixel having a gray level i.

MeanSquaredError =

=
1

M ×N

M−1∑
x=0

N−1∑
y=0

(Ip (x, y)− I (x, y))
2
,

(10)

M × N is the size of the image, I(x, y) and Ip(x, y)
represents the actual and contrast enhanced images
respectively

PeakSignaltoNoiseratio =

= 10 log10

(
(G− 1)

2

MSE

)
,

(11)

AMBE = | |E(B)− E(A)| , (12)

E(B) and E(A) are the mean gray levels of the
enhanced and actual images represented as:

E (B) =
1

M ×N

M−1∑
x=0

N−1∑
y=0

Ip (x, y) ,

E (A) =
1

M ×N

M−1∑
x=0

N−1∑
y=0

I (x, y) ,

(13)

Gray Level Energy (GLE) =

G−1∑
i=0

p2i . (14)

An observation on the quantitative measures indi-
cates the higher values in entropy and PSNR while
lower values in MSE and AMBE for CLAHE . Thus
the images were enhanced using CLAHE for further
process of feature extraction.

From the data set holding 1028 images, all were pre-
processed: Ip(x, y). Later the images {Ip(x, y)i}1028i=1
were divided using hold out into training set and test-
ing set with a ratio of 70:30. Further the images of
both training and testing sets were applied to feature
extraction module to derive texture features based on
GLCM: GT = {(gt1)i : (gt2)i : (gt3)i : (gt4)i}i=1,2,3,4

and LDP: HLDP . To have a better image rep-
resentation and discrimination between the normal
tyre surfaces and damaged (cracked) the features
were concatenated/integrated to form feature vector
TF = [GT : HLDP ].

Subsequent to this process, as stated above the fea-
tures derived from the normal and damaged tyre sur-
faces were investigated with respect to image enhance-
ment to understand their significance. It revealed that,
the features extracted from the enhanced images are
more significant and were able to distinguish aptly the
tyres belonging to the normal or cracked categories.
Figure 8 displays the feature space that exhibits the
importance of image enhancement in discrimination.
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(a) (b)

(c) (d)

Fig. 7: Contrast enhancement results with: (a) depicting the original image while, (b) gamma transformation output,
(c) histogram equalization and (d) contrast Limited Adaptive histogram equalization.

Tab. 2: Contrast enhancement performance measure.

Measures Entropy MSE PSNR AMBE Gray level energy
Gamma transformation 5.6362 2966.1 13.4089 45.2279 0.1301
Histogram equalization 5.3469 10747 7.8179 83.3038 0.052281
Contrast Limited Adaptive
histogram equalization 7.2099 2089.3 14.9307 37.8891 0.13503

In feature space presented in Fig. 8(a), the blocked
features in red dotted lines indicate the overlap of
the features extracted from images before enhance-
ment. This clearly specifies the presence of ambigu-
ity in differentiating the normal and cracked tyre im-
ages, whereas the features extracted after enhancement
(Fig. 8(b)) there is a clear distinction between the im-
ages. Thus, the enhancement process plays a crucial
role in this proposed framework.

Now the feature vectors derived TF = [GT : HLDP ]
are provided to the ensemble learning module with
boosting and bagging methods for classifier model
creation and validation.

(i) For creating the ensemble classifier models, the
ensemble learning methods/algorithms such as Bag-
ging Classifier (BGC) with base estimators (a) Support
Vector Machine (SVM) and (b) k Nearest Neighbour
(kNN), Random Forest Classifier (RFC), Extra Trees
Classifier (ETC), Extreme Gradient Boosting (XGB),
Adaboost (ADA), Gradient Boosting (GBC) and His-
togram Boosting (HBC) were used.

These ensemble classifier algorithms were trained
with the appropriate parameters. At the start, the
bagging classifier was trained with the two base estima-
tors: SVM and kNN. During the process, the number
of estimators, maximum number of features, maximum
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Fig. 8: Feature space with features extracted from (a) actual images and (b) enhanced images.

number of samples, kernels of SVM and the number of
neighbours in kNN were tuned and selected. The base
estimator SVM with radial basis function kernel and
kNN with three neighbours provided the better perfor-
mance during the process. In case of Adaboost method,
number of estimators, learning rate and the base esti-
mator parameter were tuned for better performance.

Later decision tree based methods such as Ran-
dom forest, Extremely random tree classifier, Gradient
boosting, Extreme gradient boosting and Histogram
boosting were trained. Random forest, an ensemble
of decision tree classifiers is trained by adjusting the
parameters that specify the number of trees, depth
of a tree, number of samples for splitting an internal
node and the criteria that specify the quality of the
split. Here the criteria help in finding the best split
so as to build a best decision tree. During training
Gini index was selected as the criteria. Subsequently,

an extremely random tree classifier was also trained
with Gini index. Then the gradient boosting and Ex-
treme gradient boosting methods that work by boost-
ing the weak learners adapting gradient descent frame-
work were trained to find the best solution. The key
parameters of the Histogram gradient boosting which
is devised based on the application of the binning con-
cept on the decision tree is tuned by varying the learn-
ing rate, maximum depth and the number of iterations.

(ii) Once the ensemble classifier methods were
trained or ensemble classifier models were created, the
models are to be tested using the samples from the
testing data set images. Henceforward, it is very im-
portant to assess or evaluate the models for validity
and reliability. This step is crucial for developing
an effective classifier model. Through the reliability,
a level of confidence can be obtained on the models
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Tab. 3: Performance metrics from ensemble classifier methods.

Accuracy
(%)

Precision
(%)

Recall
(%)

MCC AUC
(%)

Kappa F1-score

BGC_SVM(rbf) 66.87 76.06 66.87 0.2722 66.12 0.2490 69.55
BGC_kNN 68.62 76.87 68.62 0.4451 72.96 0.4008 69.08

RFC 63.38 73.17 63.38 0.3602 68.32 0.3140 63.68
ETC 63.08 72.63 63.08 0.3511 67.89 0.3070 63.40
ADA 70.46 76.78 70.46 0.4570 73.80 0.4242 71.04
GBC 68.31 75.67 68.31 0.4271 72.13 0.3898 68.85
XGB 67.69 75.70 67.69 0.4232 71.85 0.3822 68.19
HGB 69.85 78.58 69.85 0.4760 74.50 0.4263 70.26
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Fig. 9: Performance metrics to assess validity of the models.
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Fig. 10: Performance metrics to assess reliability of the models.
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for their predictions whereas validation indicates how
good are the models in providing better accuracy. The
validation was carried through the process of quanti-
fying the performance of the model based on the met-
rics [44]: Accuracy (Ac), Recall, Precision, Area under
the Curve (AUC) and F1-score. Matthews Correlation
Coefficient (MCC) and Kappa scores were selected for
assessing the reliability. These metrics are computed
by generating a contingency table/confusion matrix in-
dicating the number of correct classifications and miss
classifications and the elements of the confusion matrix
indicate True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). The computa-
tion expressions for computing the metrics are provided
in the equations Eq. (11) through Eq. (17):

Accuracy_(Ac) =
TP + TN

TP + TN + FP + FN
,

Range =
[
0 1

]
,

(15)

Precision =
TP

TP + FP
,

Range =
[
0 1

]
,

(16)

Recall =
TP

TP + FN
,

Range =
[
0 1

]
,

(17)

MCC =
TP · TN − FP · FN

x
,

where

x =√
((TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)),

Range =
[
−1 1

]
,

(18)

F1− score =
2 · Precision · Recall
Precision + Recall

,

Range =
[
0 1

]
,

(19)

Kappa =
Po− Pe

1− Pe
,

with

Po = Accuracy(ACC),

P e =

(TP + FN) · (TP + FP ) + (FP + TN) · (FN + TN)

TP + TN + FP + FN
.

(20)

Area Under the Curve (AUC) is computed using the
receiver operator characteristics, which is a plot of true
positive rate vs false positive rate. The results of the
quantitative performance are tabulated in Tab. 3.

The results are to be analysed further to understand
the performance of the classifiers in identifying the de-
fective tyre surface. Bar charts are plotted for compar-
ing the performance of all the classifier models with
respect to all the metrics considered and the same are
displayed in Fig. 9 and Fig. 10.

An observation of Accuracy indicates an average
value of 67.28 % and the best Accuracy of 70.46 %
is provided by ADA method. To have effective
performance analysis, Precision and Recall are to be
observed. The results indicate that all the models were
able to provide a Precision greater than 72 % that is
the fraction of positive predictions that are indeed true
and Recall greater than 63 % indicating the effective-
ness of the models in correctly classifying the positive
samples. The best Precision and Recall were provided
by HGB and ADA methods with 78.58 % and 70.46 %
respectively. The highest AUC of 74.5 % is reported
by HGB classifier model. An overall performance score
was provided by F1 measure that combined Precision
and Recall. ADA provided considerably high F1 score
of 71.04 %. In case of reliability, HGB provided MCC
and Kappa values of 0.4760 and 0.4263 respectively.
A Kappa value of 0.4263 indicates there is a 42.63 % of
agreement between the actual class labels of the tyre
surfaces and predictions of the HGB model and there
is a 47.60 % of correlation between the actual and pre-
dicted outputs.

An observation of the performance of individual
classifier models with respect to all the metrics indi-
cated a notable performance from the ADA and HGB
models.

4. Conclusion

This paper presented a methodology based on pattern
recognition to identify and differentiate the cracked
tyres from the normal tyres based on the analysis of the
tyre surface texture patterns. The proposed method
utilized the strengths of GLCM, a statistical texture
descriptor and LDP, edge response based descriptors
by integrating them for efficient representation of tex-
tures. These features were trained and tested using the
ensemble classifier models with bagging and boosting
methods on the tyre images obtained from the Kaggle
dataset. The experimental results were analysed to as-
sess the validity and reliability of the ensemble classifier
models. The results indicated the acceptable perfor-
mance of Adaboost and Histogram boosting methods
that provided Accuracy, Precision, Recall and F1 score
greater than or equal to 75 % while MCC and Kappa
values greater than 40 %. These measures signify the
effectiveness of combining the local texture features for
detailed representation and merging of the predictions
of multiple classifier models in ensemble learning for
better predictive performance.
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Appendix A

Tab. 4: List of abbreviations.

GLCM Gray Level Co-occurrence Matrix
LDP Local Directional Pattern
RFID Radio Frequency IDentification
TWD Tyre Wear quantity and Difference
VGG Visual Geometry Group
TDD Tyre Defect Detection
GT Gamma transformation
HE Histogram Equalization

CLAHE Contrast Limited Adaptive Histogram Equalization
GT GLCM based texture features
OS Offset
ER Edge response
K Kirsch kernel

HLDP Histogram of LDP
TF Concatenated texture feature vector
EL Ensemble learning

GBM Gradient Boosting
XGBM Extreme Gradient Boosting
LGBM Light Gradient Boosting
MSE Mean Squared Error
PSNR Peak Signal to Noise ratio
AMBE Absolute Mean Brightness Error
GLE Gray level energy
BGC Bagging classifier
SVM Support Vector Machine
kNN k nearest neighbor
RFC Random Forest Classifier
ETC Extra Trees Classifier
ADA Adaboost
HBC Histogram Boosting Classifier
MCC Matthews Correlation Co Efficient
TP True Positive
TN True Negative
FP False Positive
FN False Negative

AUC Area under the Curve
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