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Chest X-ray imaging has become increasingly crucial for diagnosing

various medical conditions, including pneumonia, lung cancer, and heart dis-

eases. Despite the growing number of chest X-ray images, their interpretation

remains a manual and time-consuming process, often leading to radiologist

burnout and delays in diagnosis. The integration of domain knowledge and

deep learning techniques has the potential to improve diagnosis, classification,

and localization of abnormalities in chest X-rays, while also addressing the

challenge of model interpretability.

This work proposes a series of novel methods combining radiomics fea-

tures and deep learning techniques for chest X-ray diagnosis, classification, and

localization. We first introduce a framework leveraging radiomics features and

contrastive learning for pneumonia detection, achieving superior performance
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and interpretability. The second method, ChexRadiNet, utilizes radiomics fea-

tures and a lightweight triplet-attention mechanism for enhanced abnormality

classification performance.

In addition, we present a semi-supervised knowledge-augmented con-

trastive learning framework that seamlessly integrates radiomic features as a

knowledge augmentation for disease classification and localization. This ap-

proach leverages Grad-CAM to highlight crucial abnormal regions, extracting

radiomic features that act as positive samples for image features generated

from the same chest X-ray. Consequently, this framework creates a feedback

loop, enabling image and radiomic features to mutually reinforce each other,

resulting in robust and interpretable knowledge-augmented representations.

The Radiomics-Guided Transformer (RGT) fuses global image infor-

mation with local radiomics-guided auxiliary information for accurate car-

diopulmonary pathology localization and classification without bounding box

annotations.

Experimental results on public datasets such as NIH ChestX-ray, CheX-

pert, MIMIC-CXR, and the RSNA Pneumonia Detection Challenge demon-

strate the effectiveness of our proposed methods, consistently outperforming

state-of-the-art models in chest X-ray diagnosis, classification, and localization

tasks. By bridging the gap between traditional radiomics and deep learning

approaches, this work aims to advance the field of medical image analysis and

facilitate more efficient and accurate diagnoses in clinical practice.
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Chapter 1

Introduction

Chest X-ray imaging has become an essential diagnostic tool in modern

medicine due to its noninvasive nature and ability to visualize various medical

conditions, including pneumonia, lung cancer, and heart diseases. However,

despite the growing number of chest X-ray images, their interpretation remains

a manual and time-consuming process. Radiologists face significant challenges

in diagnosing and localizing abnormalities from these images, which often leads

to burnout and delays in patient care. Consequently, there is a pressing need

for automated and accurate methods to assist radiologists in interpreting chest

X-ray images.

The integration of domain knowledge and deep learning techniques has

the potential to improve the diagnosis, classification, and localization of ab-

normalities in chest X-rays while also addressing the challenge of model in-

terpretability. In recent years, radiomics, a subfield of radiology that focuses

on extracting quantitative features from medical images, has demonstrated its

potential to facilitate medical imaging diagnosis. The rise of deep learning has

further enhanced the ability to analyze chest X-ray images. However, the ex-

plainability of deep learning models often remains opaque, making it difficult
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for medical professionals to trust and adopt these models in clinical practice.

In this work, we propose a series of novel methods that combine ra-

diomics features and deep learning techniques for chest X-ray diagnosis, clas-

sification, and localization. These methods aim to provide accurate and inter-

pretable results while minimizing the reliance on manually annotated labels

and pixel regions. Our first method, a framework leveraging radiomics fea-

tures and contrastive learning, detects pneumonia in chest X-rays with supe-

rior performance and interpretability. The second method, ChexRadiNet, uses

radiomics features and a lightweight triplet-attention mechanism to enhance

abnormality classification performance.

Furthermore, we present a semi-supervised knowledge-augmented con-

trastive learning framework that seamlessly integrates radiomic features as a

knowledge augmentation for disease classification and localization. By leverag-

ing Grad-CAM to highlight crucial abnormal regions and extracting radiomic

features, this framework creates a feedback loop that enables image and ra-

diomic features to mutually reinforce each other, yielding robust and inter-

pretable knowledge-augmented representations.

The Radiomics-Guided Transformer (RGT) fuses global image infor-

mation with local radiomics-guided auxiliary information for accurate car-

diopulmonary pathology localization and classification without bounding box

annotations.

Experimental results on public datasets such as NIH ChestX-ray, CheX-
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pert, MIMIC-CXR, and the RSNA Pneumonia Detection Challenge demon-

strate the effectiveness of our proposed methods, consistently outperforming

state-of-the-art models in chest X-ray diagnosis, classification, and localization

tasks. By bridging the gap between traditional radiomics and deep learning

approaches, this work aims to advance the field of medical image analysis and

facilitate more efficient and accurate diagnoses in clinical practice.
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Chapter 2

Pneumonia Detection on Chest X-ray using

Radiomic Features and Contrastive Learning

2.1 Introduction

Pneumonia is the leading cause of people hospitalized in the US [5].

It requires timely and accurate diagnosis for immediate treatment. As one of

the most ubiquitous diagnostic imaging tests in medical practice, chest X-ray

plays a crucial role in pneumonia diagnosis in clinical care and epidemiological

studies [6]. However, rapid pneumonia detection in chest X-rays is not always

available, particularly in the low-resource settings where there are not enough

trained radiologists to interpret chest X-rays. There is, therefore, a critical

need to develop an automated, fast, and reliable method to detect pneumonia

on chest X-rays.

With the great success of deep learning in various fields, deep neural

networks (DNNs) have proven to be powerful tools that can detect pneumonia

to augment radiologists [7, 8, 9, 10]. However, most of the DNNs lacks ex-

plainability due to their black-box nature. Thus researchers still have a limited

understanding of DNNs’ decision-making process.

One method of increasing the explainability of DNNs in chest radio-
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graphs is to leverage radiomics. Radiomics is a novel feature transformation

method for detecting clinically relevant features from radiological imaging data

that are difficult for the human eye to perceive. It has proven to be a highly

explainable and robust technique because it is related to a specific region of

interest (ROI) of the chest X-rays [11]. However, directly combining radiomic

features and medical image hidden features provides only marginal benefits,

a result mostly due to the lack of correlations at a “mid-level”; it can be

challenging to relate raw pixels to radiomic features. In efforts to make more

efficient use of multimodal data, several recent studies have shown promising

results from contrastive representation learning [12, 13]. But, to the best of

our knowledge, no studies have exploited the naturally occurring pairing of

images and radiomic data.

In this study, we proposed a framework that leverages radiomic features

and contrastive learning to detect pneumonia in chest X-ray. Our framework

improves chest x-ray representations by maximizing the agreement between

true image-radiomics pairs versus random pairs via a bidirectional contrastive

objective between the image and human-crafted radiomic features. Experi-

ments on the RSNA Pneumonia Detection Challenge dataset [14] show that

our methods can fully utilize unlabeled data, provide a more accurate pneu-

monia diagnosis, and remedy the black-box’s transparency.

Our contribution in this chapter is three-fold: (1) We introduce a frame-

work for pneumonia detection that combines the expert radiographic knowl-

edge (radiomic features) with deep learning. (2) We improve chest X-ray

5



representations by exploring the use of contrastive learning. Our model thus

has the advantages of utilizing the paired radiomic features requiring no addi-

tional radiologist input. (3) We find that our models significantly outperform

baselines in pneumonia detection with improved model explainability.

2.2 Method

Inspired by recent contrastive learning algorithms [12], our model learns

representations by maximizing agreement between radiomics features related

to pneumonia ROI of the chest X-rays and the image features extracted by the

attention-based convolutional neural network (CNN) model, via a contrastive

loss in the latent space. Since radiomics can be considered as the quantified

prior knowledge of radiologists, we deem that our model is more interpretable

than others. As illustrated in Figure 2.1, our framework consists of three

phases: contrastive training, supervised fine-tuning, and testing.

Contrastive training. The model is given two inputs, xu and xv.

xu is the original chest X-rays without a corresponding paired bounding box.

xv is the original chest X-rays with an additional paired bounding box. For

normal chest X-rays, we take the whole image as a bounding box.

For xu, we utilize the pre-trained attention-based CNN models, Resid-

ual Attention Network (ResNet-18Attention) [15] pre-trained on CIFAR-10

[16], as the backbone of the network. We replace the last fully-connected layer

with a multilayer perceptron (MLP) to generate a 128-dimensional image fea-
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Figure 2.1: An overview of the proposed model.

tures vector u. For xv, we apply the PyRadiomics1 to extract 102-dimensional

quantitative features, and [17] showed the details of these quantitative fea-

tures and extraction process. We then use an MLP to map the features to a

128-dimensional radiomics feature v.

At each epoch of training, we sample a mini-batch of N input pairs

(Xu, Xv) from the training data, and calculate their image features and ra-

diomics features pairs (U, V ). We use (ui, vi) to denote the ith pair. The

training loss function will be divided into two parts. The first part is a con-

1https://pyradiomics.readthedocs.io/en/latest/
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trastive image-to-radiomics loss:

Lu→v
i = − log

exp(< ui, vi > /τ)∑N
k=1 exp(< ui, vk > /τ)

(2.1)

where < ui, vi > represents the pairwise distance, i.e. [
∑

(ui − vi)
p]

1
p and

p represents the norm degree, e.g., p = 1 and p = 2 represent the Taxicab

norm and Euclidean norm, respectively; and τ ∈ R+ represents a temperature

parameter. In our model, we set p to 2 and τ to 0.1. Like previous work [12],

which uses a contrastive loss between inputs of the different modalities, our

image-to-radiomics contrastive loss is also asymmetric for each input modality.

We thus define a similar radiomics-to-image contrastive loss as:

Lv→u
i = − log

exp(< vi, ui > /τ)∑N
k=1 exp(< vi, uk > /τ)

(2.2)

Our final loss is then computed as a weighted combination of the two losses

averaged over all pairs in each minibatch where λ ∈ [0, 1] is a scalar weight

Ltrain =
1

N

N∑
i=1

(λLu→v
i + (1 − λ)Lv→u

i ) (2.3)

Supervised fine-tuning. We follow the work of Zhang et al. [12]

by fine-tuning both the CNN weights and the MLP blocks together, which

closely resembles how the pre-trained CNN weights are used in practical ap-

plications. In this process, the loss function is the cross-entropy loss where ŷ

and y represent the true and predicted disease label, respectively.:

Lfine−tune = −(ŷ log y + (1 − ŷ) log(1 − y)) (2.4)
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Testing. The model is only given one input, the original chest X-rays

xu without a corresponding paired bounding box. Image features are extracted

then mapped into the 128-dimensional feature representation u. Finally, the

predicted output is calculated based on u.

2.3 Experiments

2.3.1 Dataset and Experimental Settings

To evaluate the performance of our proposed model, we conducted ex-

periments on a public Kaggle dataset: RSNA Pneumonia Detection Chal-

lenge2. It contains 30,227 frontal-view images, out of which 9,783 images has

pneumonia with a corresponding bounding box. We used 75% imaged for

training and fine-tuning and 25% for testing.

We used SGD as our optimizer and set the initial learning rate as 0.1.

We iterated the training and fine-tuning process for 200 epochs with batch size

64 and early stooped if the loss did not decrease. We reported accuracy, F1

score, and the area under the receiver operating characteristic curve (AUC).

2.3.2 Results

We compared four models: (1) ResNet-18, (2) ResNet-18 with ra-

diomics features (ResNet-18Radi), (3) ResNet-18 with the attention mech-

anism (ResNet-18Att), and (4) ResNet-18Attention with radiomics features

(ResNet-18AttRadi).

2https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
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Experimental results are shown in Table 2.1. Compared with the

baseline models (ResNet-18 and ResNet-18Att), our radiomics-based mod-

els (ResNet-18Radi and ResNet-18AttRadi) achieved better performance on

the pneumonia/normal binary classification task. It suggests that radiomic

features can provide additional strengths over the image features extracted

by the CNN model. Compared ResNet-18Att with ResNet-18 and ResNet-

18AttRadi with ResNet-18Radi, we observed that the attention mechanism

could effectively boost the classification accuracy. It proves our hypothesis

that pneumonia is often related to some specific ROI of chest X-rays. Hence,

the attention mechanism makes it easier for the CNN model to focus on those

regions.

Table 2.1: Experimental results

Model Accuracy F1 score AUC

ResNet-18 0.763 0.782 0.795
ResNet-18Att 0.815 0.826 0.848
ResNet-18Radi 0.851 0.901 0.898
ResNet-18AttRadi 0.886 0.927 0.923

Figure 2.2 shows the training and fine-tuning loss convergence for the

ResNet-18AttRadi model on the training set. We find that the loss drops

rapidly during the pre-training stage within just a few epochs, revealing that

contrastive learning makes the model learn to extract image features fast and

effectively.

To fairly evaluate the impact of radiomics features on ROI, we con-

ducted additional experiments using the whole image as a bounding box to
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Figure 2.2: The training and fine-tuning loss convergence for the ResNet-
18AttRadi model.

extract the radiomics features, denoted as ResNet-18FairRadi and ResNet-

18AttFairRadi. Table 2.2 shows that even if without ROI, the radiomics fea-

tures could improve the performance of the deep learning model by 5% in

F1 score. This observation further demonstrates that combining radiomics

features with a deep learning model for reading chest X-rays is necessary.

Table 2.2: Experimental Results Without Using Bounding Box

Model Accuracy F1 score AUC

ResNet-18 0.763 0.782 0.795
ResNet-18FairRadi 0.821 0.841 0.864

ResNet-18Att 0.815 0.826 0.848
ResNet-18AttFairRadi 0.854 0.884 0.877
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Figure 2.3: An example of visualization of attention maps. The left figure is
the original Pneumonia chest X-ray with a bounding box. The right two
figures are the attention maps of the final attention layer ResNet-18Att and
ResNet-18AttRadi, respectively.

2.3.3 Visualization of the deep learning model

To demonstrate the interpretability of our model, we show some se-

lected examples of model visualization, i.e., attention maps of ResNet-18Att

and ResNet-18AttRadi. Figure 2.3 shows the original chest X-ray with a

bounding box, attention map of the final attention layer of the ResNet-18Att

and ResNet-18AttRadi, respectively. These examples suggest that our ResNet-

18AttRadi model can focus on a more accurate area of the chest X-ray while

ResNet-18Att attends to almost the whole image and contains plenty of atten-

tion noise. This illustrates that contrastive learning can help the model learn

from radiomics features related to certain ROIs and thus attend more to the

correct regions. And more examples of the attention maps can be found in the

supplemental material.
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2.4 Conclusion

In this chapter, we present a novel framework by combining radiomic

features and contrastive learning to detect pneumonia from chest X-ray. Ex-

perimental results showed that our proposed models could achieve superior

performance to baselines. We also observed that our model could benefit from

the attention mechanism to highlight the ROI of chest X-rays. There are two

limitations to this method. First, we evaluated our framework on one deep

learning model (ResNet). We plan to assess the effect of radiomic features

on other DNNs in the future. Second, our model relies on bounding box an-

notations during the training phase. We plan to leverage weakly supervised

learning to automatically generate bounding boxes on large-scale datasets to

ease the expert annotating process. In addition, we will compare contrastive

learning with multitask learning to further exploit the integration of radiomics

with deep learning. While our method only scratches the surface of contrastive

learning using radiomics knowledge in the medical domain, we hope it will shed

light on the development of explainable models that can efficiently use domain

knowledge for medical image understanding.
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Chapter 3

Using Radiomics as Prior Knowledge for

Thorax Disease Classification and Localization

in Chest X-rays

3.1 Introduction

The chest X-ray is one of the most common medical procedures for

diagnosis, but the interpretation of chest x-ray images is subject to significant

diagnosis variability for important clinical decisions. A radiologist reads about

20,000 images a year, roughly 50-100 per day, and the number is increasing.

Each year, the US produces 600 billion images, and 31% of American radiolo-

gists have experienced at least one malpractice claim, often missed diagnoses

[18]. The shortage of radiologists and burnout of physicians creates an ur-

gent demand for immediate solutions. Building automatic or semi-automatic

approaches to medical imaging diagnosis becomes an unavoidable next step.

The recent development of artificial intelligence, especially deep learn-

ing, offers great potential to improve medical imaging diagnosis [19]. It also

sneaks into the radiology reading rooms to build a new paradigm for precision

diagnosis [1, 20, 21]. Pioneering work on chest X-rays mainly focused on two

problems: disease classification and localization. The recent release of large-

scale datasets, such as NIH Chest X-ray [20], CheXpert [22], and MIMIC-CXR
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[23], have enabled many studies using deep learning for automated chest X-ray

diagnosis, such as thorax disease classification [1, 24, 25, 26] and localization

[20, 27, 28].

In practice, radiologists use pattern recognition on medical images to

make a diagnostic decision [29]. The knowledge of radiologists can be cap-

tured by Radiomics, which has demonstrated the effectiveness of image-based

biomarkers for cancer staging and prognostication. Formally, radiomics ex-

tracts quantitative data from medical images to represent tumor phenotypes,

such as spatial heterogeneity of a tumor and spatial response variations. It

plays an important role in precision medicine to support evidence-based clinical

decision-making. For example, radiomics can generate the detailed quantifi-

cation of tumor phenotype [30] and acts as a radiographic imaging phenotype

which is associated with tumor stage, metabolism, and gene or protein expres-

sion profiles [31, 32].

While radiomics offer the potential for more precise and accurate clin-

ical predictions, it is surprising that radiomics has not been implemented in

the layers of the neural networks, nor to the best of our knowledge in the

deep learning workflow for X-ray analysis [33, 34]. To bridge this gap, in

this chapter, we propose ChexRadiNet, a new framework that incorporates

domain-specific knowledge (radiomics) into deep learning algorithms as soft

constraints, and then learns end-to-end to automatically detect thorax dis-

eases and generate bounding boxes on chest X-rays. Compared with previous

studies, our proposed model does not need pre-annotated bounding boxes for
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training and can achieve state-of-the-art performance for thorax disease lo-

calization. Therefore, it provides a way to introduce prior information about

anticipated explanations, a technique that is widely used in the “Rationale

model” [35].

For ensuring ChexRadiNet is robust and generalizable, three public

benchmarking datasets were used for this purpose: NIH Chest X-ray [20],

CheXpert [22], and MIMIC-CXR [23]. We demonstrate that our model out-

performs baseline methods for both thorax disease classification and localiza-

tion.

3.2 Method

Figure 3.1 shows our proposed ChexRadiNet, which consists of two

branches. The first branch predicts whether the pathology is present or not in

the image. The second branch localizes its regions using the radiomic features

extracted from the first branch. ChexRadiNet utilizes a multi-task, closed-

loop strategy to learn and use radiomic features as soft constraints. Formally,

we are learning a two-part latent-variable model of the form Ez∼p(z|x)p(y|x, z),

where the latent z is a radiomic-based mask over the image x with the prob-

ability p(z|x). p(y|x, z) is a masked version of the classification framework.

Therefore, we consider the training process as a weakly-supervised learning.

In this section, we first illustrate the architecture of ChexRadiNet and then

present the training process.
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Figure 3.1: Model overview. The model contains three major parts. Blue
arrows represents the feedforward multi-label classification part. The below
black arrows represents the mask generation and radiomic features extraction
part. Red arrows means the radiomic features regularization and backward
part.

3.2.1 Model architecture

3.2.1.1 Branch I: Multi-label classification

In this branch, we label each image with a 14-dim vector y = [y1, . . . , yk, . . . , yK ],

yk ∈ 0, 1, K = 14 for each image. yk indicates the presence with respect to the

according pathology in the image while a zero vector represents the status of

“Normal” (no pathology is found in the scope of any of 14 disease categories

as listed).

We use the residual neural network (ResNet) architecture [36], given

its dominant performance in ILSVRC competitions and the triplet attention

mechanism (see Section 3.2.1.3). However, our framework can be applied to

other CNNs. ResNet-18 and ResNet-50 are used in this paper. After removing

the final classification layer and global pooling layer, an input image with shape

h×w× c produces a feature tensor with shape h′ ×w′ × c′ where h, w, and c
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are the height, width, and number of channels of the input image, respectively

while h′ = h/32, w′ = w/32, c′ = 2048. The output of this network encodes

the images into a set of abstracted feature maps. Then through an application

of two convolutional layers (each followed by batch normalization and ReLU

activation), the number of channels is modified to K, where K is the number of

possible disease types. A perchannel probability for each disease class is then

derived by a fully-connected layer with a sigmoid activation function; this is

denoted p(k|I), where the probability is that whether the image belongs to

class k and I denotes the image. Since we intend to build K binary classifiers,

we will exemplify just one class k. Note that kth binary classifiers will use

the kth-channel features to do prediction. Since all images have their labels,

the loss function for class k can be expressed as minimizing the binary-cross

entropy as Lk = −yk log p(k|I)−(1−yk) log(1−p(k|I)), where yk is the ground

truth label of the k class. To enable end-to-end training across all classes, we

sum up the class-wise losses to define the total loss as LI =
∑

k Lk.

3.2.1.2 Branch II: Mask generation

In this branch, we generate bounding boxes (B-Box, or masks) based

on the classification result of Branch I to get the most indicative areas using

the class activation mappings (CAMs) [37]. The heatmap produced from the

model indicates the approximate spatial location of one particular thoracic

disease class each time. Due to the simplicity of intensity distributions in these

resulting heatmaps, applying an ad-hoc thresholding-based B-Box generation
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method for this task is found to be sufficient. Followed by the work of Wang

et al. [20], the intensities in heatmaps are first normalized to [0, 255] and then

thresholded by {60, 180} individually. Finally, B-Boxes are generated to cover

the isolated regions in the resulting binary maps.

Radiomic features extraction. With the generated B-Boxes and

original images, we extracted radiomic features to regularize the model. Quan-

titative radiomics can be categorized into the following subgroups:

• First-order statistics features describe the distribution of individual pixel

values without concerns for spatial relationships. They are histogram-based

properties using mean, median, maximum, and minimum values of the pixel

intensities on the image, as well as their asymmetry, flatness, uniformity,

and entropy.

• Shape features describe the shape of the region of interest (ROI) and its

geometric properties (e.g., volume, maximum diameter along with different

orthogonal directions, maximum surface, tumor compactness, and spheric-

ity).

• A Gray Level Co-occurrence Matrix (GLCM) features describe the second-

order joint probability function of an image region constrained by the mask.

The matrix P (i, j|δ, θ) represents the number of times the combination of

levels i and j occurs in two pixels in the image, that are separated by a

distance of δ pixels along angle θ.

• A Gray Level Size Zone (GLSZM) features quantify gray level zones in an
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image. A gray level zone is defined as the number of connected pixels that

share the same gray level intensity.

• A Gray Level Run Length Matrix (GLRLM) features quantify gray level

runs, which are defined as the length in number of pixels, of consecutive

pixels that have the same gray level value.

• A Neighboring Gray Tone Difference Matrix (NGTDM) features quantify

the difference between a gray value and the average gray value of its neigh-

bors within distance δ. The sum of absolute differences for gray level i is

stored in the matrix.

• A Gray Level Dependence Matrix (GLDM) features quantify gray level de-

pendencies in an image. A gray level dependency is defined as the number

of connected pixels within distance δ that are dependent on the center pixel.

All above features can be extracted either directly from the images or

after applying different filters or transforms (e.g., wavelet transform). In our

design, we utilize the Pyradiomics tool to extract radiomic features (https:

//pyradiomics.readthedocs.io/).

Finally, we use the pairwise distance between radiomic features and

image features as regularization. Therefore, the adjustable loss function is

LII = LI + ∥IF −RF∥p, where IF and RF are the image features and radiomic

features, respectively, and ∥ · ∥ denotes the norm and p represents the norm

degree, e.g., p = 1 and p = 2 represent the Taxicab norm and Euclidean

norm, respectively. In this paper, we set p to 2. Please note that although the
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original shapes of IF and RF are not equal, we easily adapted one-layer MLP

to project them into the same dimension space.

3.2.1.3 Triplet Attention

To boost the quality of masks, we integrate the triplet-attention mech-

anism [38]. Triplet Attention mechanism requires few learnable parameters

and could capture important features by taking cross-dimension interaction

into account [38]. In other words, it includes three sub-branches to respec-

tively capture the dependency between spatial dimensions Height (H), Width

(W ), and the Channel (C) dimension. For the first branch, in measuring

the interactions between dimension H and dimension C, it first performs

a Z-pool operation by concatenating the result of average pooling and max

pooling across dimension W . This operation can be summarized as χ∗
1 =

z-pool(χ′) = [MaxPoolw(χ′);AvgPoolw(χ′)] where χ′ ∈ RW×H×C is a 90 de-

gree anti-clockwise rotation along the H axis from the output of the previous

convolutional layer χ ∈ RC×H×W and χ∗
1 ∈ R2×H×C is the output of a Z-Pool

operation. χ∗
1 then passed through a standard 2D convolutional layer followed

by sigmoid activation σ to get attention weights for χ∗
1. It would finally ro-

tate back to match the original shape of χ after applying the attention weights.

These steps can be represented by the following: y1 = r(χ′σ(CNN1(χ
∗
1))) where

r is the rotation operation to retain the original shape of input. Similarly, y2,

y3 are obtained from the last two branches by measuring the interactions be-

tween dimensions W and C and between dimensions W and H, respectively.
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Note that the last branch is similar to the spatial attention in CBAM[39], and

it requires no rotation. The refined input y is represented by averaging outputs

from three branches: y = 1
3
(y1 + y2 + y3).

3.2.2 Training Strategy of ChexRadiNet

ChexRadiNet adopts an end-to-end multi-task training scheme. Each

epoch consists of two tasks. In the first task (Branch I), we use the whole image

to fine-tune the ResNet + Triplet Attention network pre-trained on ImageNet.

During this process, we feed the generated masks into the radiomics extraction

block to get radiomic features. In the second task (Branch II), we use radiomic

features as regularization to further fine-tune the whole model. In each epoch,

we use the model with the highest AUC on the validation set for testing.

3.3 Experiments

3.3.1 Datasets

Datasets Patients Chest X-rays

NIH Chest X-ray 30,805 112,120
CheXpert 65,240 224,316
MIMIC-CXR 227,827 377,110

Table 3.1: Descriptions of the datasets.

For the abnormality classification task, we evaluated the ChexRadiNet

framework using the NIH Chest X-ray [20], CheXpert [22], and MIMIC-CXR

[23] datasets (Table 3.1). The Chest X-ray dataset contains 112,120 X-ray
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images collected from 30,805 patients. The disease labels were extracted from

radiological reports with Natural Language Processing tools [40]. There are 15

classes, one for “No findings” and 14 diseases: Atelectasis, Cardiomegaly, Con-

solidation, Edema, Effusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass,

Nodule, Pleural thickening, Pneumonia, and Pneumothorax. The disease la-

bels are expected to have above 90% accuracy. In addition, the Chest X-ray

dataset includes 984 bounding boxes for 8 types of chest diseases annotated

for 880 images by radiologists.

CheXpert dataset is another large-scale public chest X-ray dataset cur-

rently available, which contains 224,316 X-ray scans of 65,240 patients. This

dataset was labeled for the presence of 14 observations, including 12 common

thoracic pathologies. Each observation can be assigned to either positive (1),

negative (0), or uncertain (-1). To simplify the task, we choose to ignore

all the uncertain samples. In addition, to compare with previous literature,

we follow the same evaluation protocol over 5 observations: Atelectasis, Car-

diomegaly, Consolidation, Edema, and Pleural Effusion. MIMIC-CXR is also

a large-scale CXR dataset, which contains 377,110 chest X-rays associated

with 227,827 imaging studies. Images are provided with 13 labels. Similar to

CheXpert, each label can be assigned to either positive (1), negative (0), or

uncertain (-1).
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3.3.2 Evaluation metrics and experimental settings

For the abnormality detection task, we randomly split each dataset

into training (70%), validation (10%), and test (20%) sets. Note that there

is no patient overlap between the sets. We use AUC scores, the area under

the ROC curve, to measure the disease identification accuracy. A higher AUC

score indicates better performance.

For the abnormality localization task, following the work of Li et al [27],

we only consider 8 diseases for the evaluation of mask generation because only

eight types of diseases are provided with bounding boxes in the NIH Chest

X-ray dataset. We use intersection over union (IoU) to evaluate the predicted

disease regions against the ground truth bounding boxes.

We use ResNet-50 as the backbone model. We set the batch size as 256

and train the model for 20 epochs. The model is optimized using the stochastic

gradient descent (SGD) optimizer with a learning rate of 0.1 and decay the

learning rate by 0.1 every 5 epochs of training. We trained our model on AWS

with 16 Nvidia K80 GPUs. The model is implemented in PyTorch.

3.3.3 Results

3.3.3.1 Disease classification

Table 3.2 shows the AUC of each class and a mean AUC across the

14 chest diseases. We used ResNet-50 pre-trained on ImageNet as the back-

bone. Our ChexRadiNet outperforms other models in terms of mean AUC.

For every single class, our proposed framework is better than all other models
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except with DensNet-121 for Fibrosis, Hernia, Mass, Nodule, Pneumonia, and

Pneumothorax. Possible reasons can be that Rajpurkar et al’s backbone is

much deeper than our ResNet-50 [1], which enables it to capture more dis-

criminative features than our ResNet-50. In addition, “Mass” and “Nodule”

parts are small and hard to detect. For “Fibrosis” and “Hernia”, they are

not annotated with bounding boxes and diffuse, and thus we cannot apply the

weakly-supervised learning with radiomic features.

Table 3.2: AUC results on the NIH Chest X-ray dataset.
Method Atelectasis Cardiomegaly Consolidation Edema Effusion

Wang et al., 2017[20] 0.716 0.807 0.708 0.835 0.784
Wang et al., 2018[21] 0.732 0.844 0.701 0.829 0.793
Yao et al., 2018[25] 0.772 0.904 0.788 0.882 0.859
Rajpurkar et al., 2017[1] 0.821 0.905 0.794 0.893 0.883
Kumar et al., 2017[41] 0.762 0.913 0.784 0.888 0.864
ChexRadiNet 0.831 0.934 0.817 0.906 0.892

Method Emphysema Fibrosis Hernia Infiltration Mass

Wang et al., 2017[20] 0.815 0.769 0.767 0.609 0.706
Wang et al., 2018[21] 0.865 0.796 0.876 0.666 0.725
Yao et al., 2018[25] 0.829 0.767 0.914 0.695 0.792
Rajpurkar et al., 2017[1] 0.926 0.804 0.939 0.720 0.862
Kumar et al., 2017[41] 0.898 0.756 0.802 0.692 0.750
ChexRadiNet 0.925 0.798 0.882 0.734 0.846

Method Nodule Pleural Thickening Pneumonia Pneumothorax Mean

Wang et al., 2017[20] 0.671 0.708 0.633 0.806 0.738
Wang et al., 2018[21] 0.685 0.735 0.720 0.847 0.772
Yao et al., 2018[25] 0.717 0.765 0.713 0.841 0.803
Rajpurkar et al., 2017[1] 0.777 0.814 0.763 0.893 0.842
Kumar et al., 2017[41] 0.666 0.774 0.715 0.859 0.795
ChexRadiNet 0.748 0.867 0.737 0.889 0.843

3.3.3.2 Disease localization

We compare our disease localization accuracy under varying IoU to

other state-of-the-art models, shown in Table 3.3. Our model predicts well
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not only for easy tasks but also for hard tasks like localizing “Mass” and

“Nodule”, where the disease localization is within a small area. When the

IoU is set to 0.1, our model outperforms other models in terms of Atelectasis,

Cardiomegaly, Effusion, and Pneumothorax. As the IoU threshold increases,

our framework is superior to other models in terms of better accuracy and

maintains great performance. For instance, when IoU is set to 0.3, our result

for “Cardiomegaly” is 0.73 while the reference model is only 0.46. We get more

than 0.15 accuracy improvement for Effusion, Infiltration, Mass, Pneumonia,

and Pneumothorax. When IoU is set to 0.5, our result for “Cardiomegaly” is

still as high as 0.59 while the reference model drops to barely 0.18.

Following Li et al.[27], we prefer a higher IoU threshold, i.e., IoU = 0.7,

for disease localization because we expect high-accuracy disease localization

application in clinical use. To this end, the method we proposed is superior

to the baseline by a large margin.

Please note that for some diseases, e.g., Pneumonia and Infiltration, the

localization of disease can appear in multiple places while only one bounding

box is provided for each image. Thus, it is reasonable that our model doesn’t

align well with the ground truth when the threshold is as small as 0.1, especially

for Pneumonia and infiltration. Overall, our model outperforms the reference

models for all IoU thresholds except for T(IoU)=0.1 (probably because ground

truth has missing annotation while ours does not).
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Table 3.3: Disease localization under varying IoU on the NIH Chest X-ray
dataset. Please note that since our model doesn’t use any ground truth bound-
ing box information, to fairly evaluate the performance of our model, we only
consider the previous methods’ results under the same setting, therefore, for
the case T(IoU)=0.1, we have two baselines, but for the rest cases, we only
have one baseline.
T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1 Wang et al.,
2017 [20]

0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569

Li et al.,
2018 [27]

0.63 0.89 0.78 0.91 0.70 0.29 0.31 0.44 0.619

ChexRadiNet 0.72 0.96 0.81 0.88 0.67 0.33 0.59 0.47 0.679

0.2 Wang et al.,
2017 [20]

0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371

ChexRadiNet 0.49 0.84 0.62 0.54 0.46 0.21 0.43 0.39 0.498

0.3 Wang et al.,
2017 [20]

0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221

ChexRadiNet 0.28 0.73 0.54 0.43 0.38 0.15 0.35 0.32 0.398

0.4 Wang et al.,
2017 [20]

0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115

ChexRadiNet 0.17 0.65 0.42 0.32 0.29 0.09 0.21 0.19 0.293

0.5 Wang et al.,
2017 [20]

0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061

ChexRadiNet 0.11 0.59 0.29 0.15 0.12 0.07 0.14 0.08 0.194

0.6 Wang et al.,
2017 [20]

0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029

ChexRadiNet 0.06 0.37 0.09 0.06 0.08 0.04 0.05 0.05 0.100

0.7 Wang et al.,
2017 [20]

0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011

ChexRadiNet 0.02 0.21 0.04 0.02 0.07 0.01 0.03 0.04 0.055

27



3.4 Discussion

3.4.1 Ablation study

We conducted an ablation study to demonstrate the performance of

radiomics on NIH Chest X-ray (Table 3.4), CheXpert (Table 3.5), and MIMIC-

CXR (Table 3.6). We tried ResNet50+Triplet Attention without radiomic

features. Table 3.4 shows that AUC will drop significantly when not using

radiomic features. We observe the same trend in the other two datasets. This

demonstrates that it is beneficial to include radiomic features.

We also report results of ChesxRadiNet using ResNet-18, a relevant

small network, as a backbone. Table 3.7 shows the results with and without

using the radiomic features in three datasets. We observe the AUCs drop

significantly when not using radiomic features in all cases. This suggests that

the generalizability of our proposed method in smaller networks. In addition,

the ResNet-18 version still performs better than other models in Table 3.2

except Rajpurkar et al[1]. It indicates the superior of our proposed method

for using radiomic features.

3.4.2 Qualitative analysis

Figure 3.2 shows the attention map of our model against the ground

truth bounding boxes. The visualization provides better explainability of our

model. In Figure 3.2 we visualized our results for Cardiomegaly, Mass, and

Pneumonia.

Cardiomegaly is considered to be present if the cardiothoracic rate is
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Table 3.4: Comparison of AUC on the NIH Chest X-ray dataset.
Method Atelectasis Cardiomegaly Consolidation Edema Effusion
w/o radiomics 0.751 0.850 0.777 0.867 0.833
ChexRadiNet 0.831 0.934 0.817 0.906 0.892

Method Emphysema Fibrosis Hernia Infiltration Mass
w/o radiomics 0.783 0.733 0.804 0.670 0.694
ChexRadiNet 0.925 0.798 0.882 0.734 0.846

Method Nodule Pleural Thickening Pneumonia Pneumothorax Mean
w/o radiomics 0.643 0.699 0.700 0.792 0.757
ChexRadiNet 0.748 0.867 0.737 0.889 0.842

Table 3.5: Comparison of AUC on the CheXpert dataset.
Method Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion Mean

w/o radiomics 0.781 0.813 0.893 0.918 0.921 0.865
ChexRadiNet 0.831 0.848 0.920 0.930 0.921 0.890

larger than 50% (cardiothoracic Ratio equals “Maximum horizontal cardiac

width” over “Maximum horizontal thoracic width”), which means an enlarged

heart. The 2nd image in the 1st row as well as the 2nd image in the 2nd

row in Figure 3.2 shows that our model successfully detects cardiomegaly, an

enlarged heart, perfectly, and aligns with the yellow bounding box well.

A lung mass is an abnormal spot in the lungs that is more than 3 cen-

timeters. Our results (4th images in the 1st and 2nd rows), although focusing

on larger areas, can capture some clues of lung mass.

Note that in the chest X-ray 14 dataset, only one bounding box is

annotated for one disease image. Though some patients are diagnosed with

several diseases, only the most important disease is annotated on the radiology

image. This means that ground truth has missing annotations (shown by
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Table 3.6: Comparison of AUC on the MIMIC-CXR dataset.
Method Atelectasis Cardiomegaly Consolidation Edema Enlarged Card.
w/o radiomics 0.841 0.824 0.859 0.906 0.748
ChexRadiNet 0.851 0.831 0.866 0.900 0.767

Method Fracture Lung Lesion Lung Opacity Pleural Effusion Pneumonia
w/o radiomics 0.713 0.782 0.775 0.923 0.753
ChexRadiNet 0.735 0.814 0.810 0.933 0.831

Method Pneumothorax Pleural Other Support Devices Mean
w/o radiomics 0.909 0.850 0.931 0.832
ChexRadiNet 0.919 0.909 0.937 0.854

Table 3.7: Comparison of mean AUC on three datasets using ResNet-18 as a
backbone.

NIH Chest X-ray CheXpert MIMIC-CXR

w/o radiomics 0.749 0.854 0.822
ChesxRadiNet (ResNet-18) 0.810 0.883 0.837

Pneumonia). Pneumonia inflames the air sacs in one or both lungs. For

Pneumonia detection, radiologists will look for white spots in the lungs. For

the 6th image in the 2nd row, both lungs are infected and white spots are shown

in both lungs. However, the bounding box of the 6th image only annotates the

right lung while our model successfully localizes Pneumonia for both lungs.

Overall, our results show that the predicted disease localizations have

a great alignment with the ground truth and can even serve as a supplement

to the ground truth.

3.5 Conclusions

In this chapter, we propose a framework that jointly learns radiomic

features and predicts 14 thoracic diseases. We evaluated our model on three
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Figure 3.2: Visualization of the disease localization on the test images with
ChexRadiNet and ground truth bounding boxes. The attention maps are
generated from the final output tensor and overlapped on the original radiology
images. The left image in each pair is the chest X-ray image and the right one
is the generated attention map and the ground truth (in the yellow box).

publicly available corpora. We showed that both our disease identification and

localization outperform state-of-the-art models in the quantitative and qualita-

tive analysis. Our proposed framework has two main limitations. First, chest

X-rays are very different from natural images, but we rely on deep learning

models (ResNet) that work better on natural images. Second, the robustness

of radiomic features relies on the accuracy of bounding boxes, in our work, the

bounding boxes are generated by heatmaps. It is not guaranteed that the gen-

erated heatmaps are always good and accurate. Our future work will continue

to solve these two limitations. Automatically generating correct bounding

boxes can be a milestone to push the agenda for AI-driven medical imaging

diagnosis. It can abruptly increase the annotated medical images at a much

31



lower cost so that better CNN models can be trained, therefore better diagno-

sis models can be obtained. Bounding boxes can increase the interpretability

of AI solutions by locating the abnormalities as the visual evidence in medical

images, which can build trust between doctors and patients.
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Chapter 4

Knowledge-Augmented Contrastive Learning

for Abnormality Classification and

Localization in Chest X-rays with Radiomics

using a Feedback Loop

4.1 Introduction

The chest X-ray is one of the most common radiological examinations

for detecting cardiothoracic and pulmonary abnormalities. Due to the demand

for accelerating chest X-ray analysis and interpretation along with the overall

shortage of radiologists, there has been a surging interest in building auto-

mated systems of chest X-ray abnormality classification and localization [1].

While the class (i.e., outcomes) labels are important, the localization anno-

tations, or the tightly-bound local regions of images that are most indicative

of the pathology, often provide richer information for clinical decision making

(either automated or human-based).

Automatic robust image analysis of chest X-rays currently faces many

challenges. First, recognizing abnormalities in chest X-rays often requires ex-

pert radiologists. This process is therefore time-consuming and expensive to

generate annotations for chest X-ray data, in particular the localized bound-

ing box region labeling. Second, unlike natural images, chest X-rays have very
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subtle and similar image features. The most indicative features are also very

localized. Therefore, chest X-rays are sensitive to distortion and not amend-

able to typical image data augmentations such as random cropping or color

jittering. Moreover, in addition to high inter-class variance of abnormalities

seen in chest X-rays (i.e., feature differences between different diseases), chest

X-rays also have large intra-class variance (i.e., differences in presentation

among individuals of the same diseases). The appearance of certain diseases

in X-rays are often vague, can overlap with other diagnoses, and can mimic

many other benign abnormalities. Last but not least, the class distribution of

chest X-rays is also highly imbalanced for available datasets.

Recently, contrastive learning has emerged as the front-runner for self-

supervised learning, demonstrating superior ability to handle unlabelled data.

Popular frameworks include MoCo [42, 43], SimCLR [13, 44], PIRL [45] and

BYOL [46]. They all have achieved prevailing success in natural image machine

learning tasks, such as image classification and object detection. Further,

contrastive learning appears to be robust for semi-supervised learning when

only few labeled data are available [44]. Recent works also found contrastive

learning to be robust to data imbalance [47, 48].

Contrastive learning may offer a promising avenue for learning from the

mostly unlabeled chest X-rays, but leveraging it for this task is not straightfor-

ward. One most important technical barrier is that most contrastive learning

frameworks [42, 43, 13, 44, 46] critically depend on maximizing the similarity

between two “views”, i.e., an anchor and its positive sample, often being
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generated by applying random data augmentations to the same image. This

data augmentation strategy, however, does not easily translate to chest X-rays.

In addition, the simultaneous demand for both classification and localization-

aware features further complicates the issue. Fortunately, classical chest X-ray

analysis has introduced radiomic features [49] as an auxiliary knowledge

augmentation. The radiomic features can be considered as a strong prior,

and therefore can potentially be utilized to guide learning of deep feature ex-

tractors. However, the extraction of reliable radiomic features via Pyradiomic1

tool [17] heavily depends on the pathology localization – hence we will run into

an intriguing “chicken-and-egg” problem, when trying to incorporate radiomic

features into contrastive learning, whose goal includes learning the localization

from unlabeled data.

This chapter presents an innovative holistic framework of Knowledge-

Augmented Contrastive Learning, which seamlessly integrates radiomic

features as the other contrastive knowledge-augmentation for the chest X-ray

image. As the main difference from existing frameworks, the two “views” that

we contrast now are from two different domain knowledge characterizing the

same patient: the chest X-ray image and the radiomic features. Notably, the

radiomic features have to be extracted from the learned pathology localiza-

tions, which are not readily available. As these features will be dynamically

updated, forming a “feedback loop” during training in which both modali-

ties’ learning mutually reinforce each other. The key enabling technique to

1https://pyradiomic.readthedocs.io/
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link this feedback loop is a novel module we designed, called Bootstrap Your

Own Positive Samples (BYOP). For an unannotated X-ray image, we uti-

lize Grad-CAM [50] to generate the input heatmap from the image modality

backbone, which yields the estimated bounding box after thresholding; and we

then extract the radiomic features within this estimated bounding box, which

becomes the alternative view to contrast with the image view. The usage of

radiomic features also adds to the model interpretability. Our contributions

are outlined as follows:

• A brand-new framework dedicated to improving abnormality identifica-

tion and localization in (mostly unannotated) chest X-rays by knowledge-

augmented contrastive learning, which highlights exploiting radiomic fea-

tures as the auxiliary knowledge augmentation to contrast with the images,

given the inability to perform classical image data augmentation.

• An innovative technique called BYOP to enable the effective generation

of radiomic features, which is necessary as the true bounding boxes are

often absent. BYOP leverages an interpretable learning technique to supply

estimated bounding boxes dynamically during training.

• Excellent experimental results achieved on the NIH Chest X-ray benchmark

[7], using very few annotations. Besides improving the disease classification

AUC from 82.8% to 83.8%, our framework significantly boosts the localiza-

tion results, by an average of 2% over different IoU thresholds, compared

to reported baselines. Figure 4.1 provides a visualization example showing
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Figure 4.1: Visualization of heatmaps of chest X-rays with ground-truth
bounding box annotations (yellow) and its prediction (red) for localize Car-
diomegaly in one test chest X-ray image. The visualization is generated by
rendering the final output tensor as heatmaps and overlaying it on the original
images. The left image is the original chest X-ray image, the middle is the
visualization result by CheXNet [1] and the right is our model’s attempt. Best
viewed in color.

our localization results to be more robust and accurate than the previous

results from CheXNet [1],

4.2 Method

The Framework. Our goal is to learn an image representation yi

which can then be used for disease classification and localization. Our frame-

work uses two neural networks to learn: the image and radiomics networks.

The image network consists of an encoder fi (ResNet-18) and a projector gi

(two-layer MLPs with ReLU). The radiomics network has a similar architec-
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Figure 4.2: Overview of our proposed framework. During training, given a
set of images, very few images have annotations, our framework provides two
views: the image and the radiomic features (generated by the BYOP module,
the detail view is shown in Figure 4.3). From the image view v, we output a
representation yi = fi(v) and a projection zi = gi(yi) via an image encoder fi
and image projection head gi, respectively. Similarly, from the radiomic view
v′, we output yr = fr(v

′) and the radiomic projection zr = gr(yr) via a ra-
diomic encoder fr and radiomic projection head gr, respectively. We maximize
agreement between zi and zr via a contrastive loss (NT-Xnet). In addition,
we minimize the classification errors from representation yi via a focal loss.
During testing, only the image encoder is kept and applied to the new X-rays.

ture as the image network, but uses another three-layer MLPs for radiomic

encoder fr and a different set of weights for the projector gr. The proposed

architecture is summarized in Figure 4.2.

The primary innovation of our method lies in how we select positive and

negative examples, which will be expanded below in Section 4.2.1 and Section

4.2.2. We also formulate the semi-supervised loss for our problem when a small

amount of annotated data is available in Section 4.2.3. The entire framework

can be trained from end to end, and the representation yi will be used for
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downstream disease classification and localization tasks.

4.2.1 Finding Positive and Negative Samples: Data-Driven Learn-
ing Meets Domain Expertise

The reasons to use contrastive learning as our framework are three-

fold. First, contrastive learning leverages unlabeled data and we have few

disease localization (bounding boxes) annotations available. Second, empiri-

cal findings [47, 48] prove that contrastive learning is robust in classification

tasks with class-imbalanced datasets. In clinical settings, most medical image

datasets suffer an extreme class-imbalance problem [51]. Third, contrastive

learning naturally fits “multi-view” concepts. In our case, we are still com-

paring two different views of the same subject, but unlike classic contrastive

learning where two views are from the same domain space, our views for pos-

itive sampling are from different domain knowledge ([52] proved that views

from multi-domain knowledge should also align), while our negative sampling

is from the same domain knowledge. In the subsequent section, we will describe

our unique positive and negative sampling methodologies in more detail.

Positive Sampling. To obtain a positive pair of views, we randomly select

an image labeled with a given disease and generate two views for it. The first

view will be its image features and another view will be its radiomic features.

We decided to leverage radiomic features for the second view as traditional im-

age augmentation strategies cannot be leveraged here. Furthermore, radiomic

features have labels, are naturally more interpretable than the image features
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extracted from deep learning-based image encoders.

Obtaining the radiomic features for our dataset is a “chicken-and-egg”

problem. Radiomic features are highly sensitive and dependent on

local regions for which we do not have local bounding box annotations.

Meanwhile, we need to make the image features similar to the radiomic features

to learn from radiomic features to better learn localization of the abnormalities.

This process means that bounding boxes generation is dependent on

radiomic features which forms a loop cycle. To address this issue, we design

the Bootstrap Your Own Positive Samples (BYOP) method using such a

feedback module. For more details, see Section 4.2.2.

Negative Sampling. The original images are used for views of the negative

samples because the same domain is supposed to be more similar and thus

harder for the model to distinguish between the positive and negative sam-

ples, leading to a more robust model [53]. Besides, the image features focuses

on local regions highlighted by the attention map rather than the whole image.

To identify harder negative samples, we go one step further, by not only se-

lecting any random image, but “hard similar” images. Here, we first get prior

knowledge from the pre-constructed disease hierarchy relationship for image

negative sampling, shown in Figure 4.4, defined by [2]. The pre-constructed

disease hierarchy relationship is initialed with 21 nodes. In this hierarchy, each

disease (green) belongs to a body part (grey). We therefore only treat normal

chest X-rays or images within the same body part but with a different disease

as negative examples. We call these negative examples “hard similar” images
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Figure 4.3: Overview of our BYOP module. For the unannotated images,
we leverage Grad-CAM to generate heatmaps and apply an ad-hoc threshold
to generate the bounding boxes. For the annotated images, we directly use
the ground-truth bounding boxes. Then with the combination of generated
bounding boxes and ground-truth bounding boxes, we use the Pyradiomic
tool as the radiomic extractor to extract the radiomic features. Note that the
generated radiomic features are the combination of the accurate and ‘pseudo’
radiomic features for annotated and unannotated images, respectively.

in this study. As an example, if our “anchor” image is labeled as “Pneu-

monia/Lung” , our “hard similar” images should include “Atelectasis/Lung”,

“Edema/Lung”, or “Normal” but not “Bone Fractures”.

4.2.2 Bootstrap Your Own Positive Samples (BYOP) with Ra-
diomics in the Feedback Loop

The core component of our cross-modal contrastive learning is the Boot-

strap Your Own Positive Samples (BYOP) module. BYOP leverages a feed-

back loop to learn region localization from generated radiomic features as the

positive sample for the image features. The architecture of BYOP is shown

in Figure 4.3. The BYOP contains two components, bounding box generation

and radiomic features extraction.
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Bounding Boxes Generation. We feed the fourth layer of the image en-

coder fi (i.e., ResNet-18) to the Gradient-weighted Class Activate Mapping

(Grad-CAM) [50] to extract attention maps and apply an ad-hoc threshold to

generate bounding boxes from the attention maps.

Radiomic Features Extraction. The radiomic features are composed of

the following categories:

• First-Order statistics features measure the distribution of voxel intensities

within the bounding boxes. The features include energy (the measurement

of the magnitude of voxel values), entropy (the measurement of uncertainty

in the image values), and max/mean/median gray level intensity within the

region of interest (ROI), etc.

• Shape-based features include features like Mesh Surface, Pixel Surface, Perime-

ter, and etc.

• Gray-level features include a gray-level features include a Gray Level Co-

occurance Matrix (GLCM) features, a Gray Level Size Zone (GLSZM) fea-

tures, a Gray Level Run Length Matrix (GLRLM) features, a Neighboring

Gray Tone Difference Matrix (NGTDM) features, and a Gray Level Depen-

dence Matrix (GLDM) features.

Given the original images and generated bounding boxes, we used the Pyra-

diomic tool to extract radiomic features [17].
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4.2.3 Semi-Supervised Loss Function

Our framework is mixed with supervised classification and unsuper-

vised contrastive learning. For the localization task, we use the knowledge-

augmented contrastive loss for unsupervised contrastive learning. For the clas-

sification task, we could have used standard cross-entropy loss, but considering

that the chest X-ray dataset is highly imbalanced, we instead find focal loss

more helpful [54]. We briefly review the two loss functions below.

Unsupervised Knowledge-Augmented Contrastive Loss. Our cross-

modal contrastive loss function extends the normalized temperature-scaled

cross-entropy loss (NT-Xent). We randomly sample a minibatch of N examples

and define the contrastive prediction task on pairs of augmented examples

derived from the minibatch. Let vbd be the image in the minibatch with

disease d and body part b, and sim(u, v) be the cosine similarity. The loss

function ℓvbd for a positive pair of example (vbd, v
′
bd) is defined as

ℓvbd = − log
exp (sim (zi(vbd), zr(v

′
bd)) /τ)∑

1[k=b,l ̸=d] exp (sim (zi(vbd), zi(vkd)) /τ)

where 1[k=b,l ̸=d] ∈ {0, 1} is an indicator function evaluating to 1 iff k = b and

l ̸= d. τ is the temperature parameter. The final unsupervised contrastive loss

Lcl is computed across all disease-positive images in the minibatch.

Supervised Focal Loss. We feed the output of the image encoder fi to a

simple linear classifier. The supervised classification focal loss is defined as

Lfl =

{
−α (1 − y′)γ log y′, y = 1
−(1 − α)y′γ log (1 − y′) , y = 0
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Figure 4.4: Disease hierarchy relationship predefined based on domain exper-
tise, reprinted from [2].

α allows us to give different importance to positive and negative examples. γ

is used to distinguish easy and hard samples and force the model to learn more

from difficult examples.

Eventually, we treat it as multi-task learning (one task is supervised

disease classification and one is unsupervised contrastive learning) and the

total loss is defined as

L = λ× Lcl + (1 − λ) × Lfl

4.3 Experiments

Dataset and Protocol Setting. We evaluated our framework using

the NIH Chest X-ray dataset [7]. It contains 112,120 X-ray images collected

from 30,805 patients. As other large chest X-ray datasets, this dataset is also
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Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

Wang et. al.[7] 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
Wang et. al.[21] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
Yao et. al.[25] 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
Rajpurkar et. al.[1] 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
Kumar et. al.[55] 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
Liu et. al.[56] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyyed et. al.[57] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821

Our model 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90 0.838

Table 4.1: Comparison with the baseline models for AUC of each class and
average AUC. For each column, red values denote the best results.

extremely class imbalanced: the healthy cases (84,321 front-view images) are

far more than cases with diseases (24,624 front-view images), and different

disease occurrence frequencies vary dramatically. The disease labels were ex-

tracted from radiology reports with a rule-based tool [40]. There are 9 classes,

specifically one for “No findings” and 8 for diseases (Atelectasis, Cardiomegaly,

Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax). The

disease labels are expected to have above 90% accuracy. In addition, the

dataset includes 984 bounding boxes for 8 types of chest diseases annotated

for 880 images by radiologists. We separate the images with provided bound-

ing boxes from the entire dataset. Hence, we have two sets of images called

“annotated” (880 images) and “unannotated” (111,240 images).

In our experiment, we follow the same protocol of [7], to shuffle the

unannotated dataset into three subsets: 70% for training, 10% for validation,

and 20% for testing. For the annotated dataset, we randomly split the dataset

into two subsets: 20% for training and 80% for testing. Note that there is no

patient overlap between all the sets.
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Evaluation Metrics. For the disease classification task, we use Area

under the Receiver Operating Characteristic curve (AUC) to measure the per-

formance of our model. For the disease localization task, we evaluate the

detected regions against annotated ground truth bounding boxes, using inter-

section over union ratio (IoU). The localization results are only calculated on

the test set of the annotated dataset. The localization is defined as correct

only if IoU > T(IoU), where T(*) is the threshold.

Implementation Details. We use the ResNet-18 model as the image

encoder. We initialize the image encoder with the weights from the pre-trained

ImageNet model except for the last fully-connected layer. We set the batch

size as 64 and train the model for 30 epochs. We optimize the model by the

Adam method and decay the learning rate by 0.1 from 0.001 every 5 epochs.

Furthermore, we use linear warmup for the first 10 epochs only for the disease

classification task, which helps the model converge faster to generate stable

heatmaps. We train our model on AWS with one Nvidia Tesla V100 GPU.

The model is implemented in PyTorch.

4.3.1 Disease Classification

Table 5.2 shows the AUC of each class and a mean AUC across the 8

chest diseases. Compared to a series of relevant baseline models, our proposed

model achieves better AUC scores for the majority of diseases. The overall

improvement in performance is remarkable when compared to other models

except CheXNet [1]. One possible reason for our lack of improvement can be
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that [1]’s backbone is DenseNet-121, which is much deeper than the ResNet-18

in our model. It thus, able to capture much more discriminative features than

our ResNet-18. Despite the fact, our model still achieves better or comparable

results than CheXNet, which demonstrates that the cross-modal contrastive

learning branch boosts the robustness of the image features without the need

to increase the complexity of the backbone. Specifically, the performance of

our model demonstrates significant improvements for disease abnormalities

with larger associated regions on the image, such as “Ateclectasis”, “Car-

diomegaly”, and “Pneumothorax”. In addition, small objects features like

“Mass” and “Nodule”, are recognized as well as in CheXNet. In summary,

these experimental results show the superiority of our proposed model over

relevant other methodologies.

4.3.2 Disease Localization

We compare our disease localization accuracy to other state-of-the-art

models under different IoU thresholds (Table 4.2). Since disease localization

is not an easy task in chest X-ray images, we did not find as many other

methods as for disease classification task. To our knowledge, we only have

two baseline methods from [7] and [27]. From these comparisons, we find our

model significantly outperforms baselines by an average of 2% over different

IoU thresholds. Importantly, our model is able to perform well not only on

the easier tasks, but also for more difficult ones like localizing “Mass” and

“Nodule”, where the disease localization is within a small area. When the IoU
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T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1 Wang et. al.[7] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569
Li et. al.[27] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.728
Our model 0.72 0.96 0.88 0.93 0.74 0.45 0.65 0.64 0.746

0.2 Wang et. al.[7] 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371
Li et. al.[27] 0.53 0.97 0.76 0.83 0.59 0.29 0.50 0.51 0.622
Our model 0.55 0.89 0.78 0.85 0.62 0.31 0.52 0.54 0.633

0.3 Wang et. al.[7] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221
Li et. al.[27] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.496
Our model 0.39 0.85 0.60 0.67 0.43 0.21 0.40 0.45 0.500

0.4 Wang et. al.[7] 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115
Li et. al.[27] 0.25 0.88 0.37 0.50 0.33 0.11 0.26 0.29 0.374
Our model 0.24 0.81 0.42 0.54 0.34 0.13 0.28 0.32 0.385

0.5 Wang et. al.[7] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061
Li et. al.[27] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.269
Our model 0.16 0.77 0.29 0.35 0.24 0.09 0.15 0.22 0.284

0.6 Wang et. al.[7] 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029
Li et. al.[27] 0.07 0.73 0.15 0.18 0.16 0.03 0.10 0.12 0.193
Our model 0.09 0.74 0.19 0.16 0.18 0.04 0.11 0.14 0.206

0.7 Wang et. al.[7] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011
Li et. al.[27] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.118
Our model 0.05 0.54 0.09 0.11 0.12 0.02 0.07 0.06 0.133

Table 4.2: Disease localization accuracy comparison under different IoU
thresholds. Red numbers denote the best result for each column.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

Base 0.75 0.85 0.83 0.67 0.69 0.64 0.70 0.79 0.740
w. FL 0.78 0.84 0.80 0.68 0.76 0.72 0.72 0.82 0.765
w. BYOP 0.82 0.90 0.85 0.71 0.82 0.75 0.74 0.86 0.806
Full model 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90 0.838

Table 4.3: Ablation studies on focal loss and BYOP module for disease classi-
fication. Red numbers denote the best result for each column.

threshold is set to 0.1, our model outperforms others on all diseases except

for “Cardiomegaly”. As the IoU threshold increases, our framework is supe-

rior to other models in terms of better accuracy and maintains this superior

performance. For instance, when the threshold increases, the IoUs of “Car-

diomegaly” decrease less than the baselines and even outperform the baselines

when IoU threshold is above 0.5.

We prefer a higher IoU threshold, specifically, IoU = 0.7, for disease

localization because we expect high-accuracy disease localization application
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is necessary for clinical applications. To this end, the method we propose is

superior to the baseline by a slight margin.

It is also worth nothing that, for some diseases, such as Pneumonia

and Infiltration, the localization of disease can appear in multiple places while

only one bounding box is provided for each image. Hence, it is reasonable that

our model does not align well with the ground truth when the threshold is as

small as 0.1, especially for Pneumonia and Infiltration. Overall, our model

outperforms the reference models for almost all IoU thresholds.

4.3.3 Ablation Discussion

In this section, we study the contribution of our BYOP module on both

disease classification and localization tasks.

Disease Classification. For this task, note that the use of focal loss

should also boost the model with the class-imbalanced chest X-ray dataset.

Thus, we compare the performance of our base model with only focal loss

(labeled “w. FL”) or with only the BYOP module (labeled “w. BYOP”),

respectively. As shown in Table 4.3, although both focal loss and BYOP im-

prove the model performance, BYOP contributed more strongly. This stronger

contribution is expected since BYOP tends to generate more robust radiomic

features, which further reinforces the image encoder to focus on the image

region that contains the targeted disease.

Disease Localization. Note that our base model is a ResNet-18 im-

age encoder, which is not as powerful as CheXNet [1] with DenseNet-121.
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Figure 4.5: Examples of visualization of localization on the test images. We
plot the results of diseases near thoracic. The attention maps are generated
from the fourth layer of ResNet-18. The ground-truth bounding boxes and
the predicted bounding boxes are shown in yellow and red, respectively. The
left image in each pair is the original chest X-ray image, the middle one is
the localization result of CheXNet [1] and the right one is our localization
result. All examples are positive for corresponding disease labels. Best viewed
in color.
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Thus we compare the performance of our model with CheXNet. As shown

in Figure 4.5, our localization result is superior to the CheXNet. For the ex-

ample of ‘Atelectasis’, ‘Cardiomegaly’, ‘Effusion’, ‘Nodule’, ‘Pneumonia’ and

‘Pneumothorax’, while the baseline model tends to focus on a large area of the

image, our model precisely captures the correct disease location. For harder

localization cases like ‘Mass’ and ‘Nodule’, the baseline model’s focus is in-

correct and does not have any overlap with the ground-truth areas while our

model still predicts perfectly. The results demonstrate that the BYOP module

significantly boosts the model performance.

4.4 Conclusions

In this chapter, we propose a semi-supervised, end-to-end knowledge-

augmented contrastive learning model that can jointly model disease classifica-

tion and localization with limited localization annotation data. Our approach

differs from previous studies in the choice of data augmentation, the use of ra-

diomic features as prior knowledge, and a feedback loop for image and radiomic

features to mutually reinforce each other. Additionally, the project aims to

address current gaps in radiology by making prior knowledge more accessible

to image data analytic and diagnostic assisting tools, with the hope that this

will increase the model’s interpretability. Experimental results demonstrate

that our method outperforms the state-of-the-art algorithms, especially for

the disease localization task, where our method can generate more accurate

bounding boxes. Importantly, we hope the method developed here is inspiring
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for the future research on incorporating different kinds of prior knowledge of

medical images with contrastive learning.
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Chapter 5

Radiomics-Guided Global-Local Transformer

for Weakly Supervised Pathology Localization

in Chest X-Rays

5.1 Introduction

In medicine, radiomics refers to the process of extracting quantitative

and semiquantitative features from medical images, such as radiographs or

computed tomography scans, for improved decision support [58]. These hand-

crafted radiomic features aim to describe a local “region of interest” such as a

tumor with numeric features that assess qualities such as size, shape, texture,

variations in pixel intensity, and relationships between neighboring pixels [59].

Given their advantages, researchers have explored the performance of radiomic

features for chest X-ray analysis. For example, Shi et al. [60] and Saygılı [61]

each extracted a set of radiomic features, which were then used to diagnose

different types of pneumonia. Bai et al. [62] proposed a hybrid model to

encode the combination of radiomic features and clinical information. Ghosh

et al. [63] presented a new handcrafted feature to distinguish between severe

and nonsevere patients. However, all of the above methods rely on accurate

pathology localization annotations to extract radiomic features from a correct

and clinically meaningful region of interest [17]. Such bounding boxes are usu-

53



ally expensive and time-consuming to acquire by humans and, if inaccurate,

will tremendously degrade the reliability of radiomic features. There is thus

an unmet need to automatically localize cardiopulmonary pathologies on chest

X-rays to facilitate extraction of radiomic features.

Throughout the rapid development of deep learning approaches for

medical image analysis, many researchers have made efforts utilizing convolu-

tional neural networks (CNNs) to build automated systems for chest X-ray ab-

normality classification and localization [1, 7, 27, 56, 64, 65, 66, 67, 68, 69, 70].

However, CNN methods bear several limitations when applied to the domain

of chest radiography. First, CNNs do not naturally incorporate contextual

prior information, such as reason for imaging and patient history, or domain

knowledge such as human anatomy and typical disease presentation on imag-

ing. Since radiomic features are designed by humans and semantically describe

local medical image regions, they represent an auxiliary modality of informa-

tion embedded with domain-specific quantitative features that can enhance

automated disease localization and classification. Second, chest X-rays have

more subtle discriminative features compared to natural images, making their

recognition more challenging. Finally, though many have studied the inter-

pretability of deep image classifiers for other data [71, 72, 73, 74, 75, 76], deep

CNNs are often criticized for their lack of human interpretability, thus posing

a major barrier to their adoption by clinicians.

With this in mind, Transformers, which have seen a surge in popular-

ity for a variety of visual recognition tasks, provide a promising alternative
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to CNNs for modeling chest X-rays. The Transformer was first introduced

in the context of natural language processing [77, 78, 79], followed by its

recent success in computer vision [4, 80, 81] and multi-modal learning [82].

The Transformer architecture can be considered a “universal modeling tool”

that can unify the feature extraction and fusion processes from different input

modalities with a single model that does not require domain-specific architec-

ture tweaks. For example, Arkbari et al. [83] demonstrated the ability to learn

powerful multi-modal representations from unlabeled video, audio, and text

data, using a single multimodal Transformer. Nagrani et al. design a bottle-

neck fusion technique that allows audio- and video-derived features to interact

throughout their custom Transformer architecture [84]. And Shvetsova et al.

[85] proposed a multi-modal, modality agnostic fusion Transformer to learn to

exchange information between multiple modalities, such as video, audio, and

text, and integrate them into a jointly multi-modal representation to obtain

an embedding that aggregates multi-modal temporal information.

In the context of modeling chest X-rays, we observe the unique poten-

tial for a Transformer-based architecture to naturally and jointly learn from

two “views” of chest X-rays : (1) raw X-ray images that contain rich contrast

details, hence benefiting from the data-driven learning capacity, and (2) ra-

diomics that encode domain-specific quantitative features, thus guiding and

regularizing the learning process with handcrafted local radiomic features.

However, there exists a “chicken-and-egg” problem: extraction of useful ra-

diomic features relies on accurate pathology localization, but the pathology
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localization is often absent and first needs to be learned or separately acquired.

This chapter presents RGT, a Radiomics-Guided Transformer (Fig. 5.1).

RGT consists of two Transformer-based branches, one for the raw chest X-ray

and one for the radiomic features extracted from the corresponding image.

Features extracted from these two “views” of the patient are then deeply

fused with interaction via cross-attention layers [86]. Of note, the radiomic

features need to be extracted from the learned pathology localizations, which

are not readily available. The key enabling technology to resolve this hur-

dle is to construct a feedback loop, called the Bring Your Own Attention

(BYOA) module, which will be expanded in Sec 5.2.2. During training, the

image branch leverages its learned self-attention to estimate pathology loca-

tion, which is then used to extract radiomic features from the original image

for further processing by the radiomics branch. In addition to a supervised

classification loss, we optimize the model with a contrastive loss that rectifies

the image-derived and radiomics-derived “views” of the patient, and such an

end-to-end optimization loop can bootstrap accurate pathology localizations

from image data with no bounding box annotations used for training.

Our contributions are outlined as follows:

• We leverage radiomics as an “auxiliary input modality” that both corre-

lates with the raw image modality and encodes domain-specific quantitative

features. We then propose a novel radiomics-guided cross-attention Trans-

former, RGT, to jointly extract and fuse global image features and local
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radiomic features for disease localization and classification in chest X-rays.

• To resolve the key “chicken-and-egg” problem of extracting radiomic features

without available cardiopulmonary pathology localization, we construct an

innovative optimization loop where the learned image-level attention map is

used to extract local radiomic features. Such an end-to-end loop can boot-

strap accurate cardiopulmonary pathology localization from images without

leveraging human-annotated bounding boxes.

• On the NIH ChestXRay benchmark [7], our approach achieves superior dis-

ease localization and classification results. RGT outperforms prior work in

weakly supervised localization by an average margin of 3.6% over different

intersection-over-union (IoU) thresholds.

5.2 Method

An overview of RGT is illustrated in Fig. 5.2. In the following subsec-

tions, we will first present Cross-Attention Vision Transformer (CrossViT), a

recent two-branch ViT backbone on which RGT is built, and then describe the

methodological innovations required to naturally incorporate domain-specific

quantitative features in the form of radiomics for improved cardiopulmonary

pathology localization and classification.
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RGT

Chest X-ray Image

Localization

Disease classification

Disease distribution

Cardiomegaly

R
adiom

ics
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Figure 5.1: General overview of our Radiomics-Guided Transformer (RGT)
framework for weakly supervised cardiopulmonary disease localization and
classification from chest X-rays. RGT takes a chest X-ray as the input and
produces a heatmap for pathology localization, from which a bounding box is
obtained. Radiomic features are further extracted from the bounded region
and fused with image-derived features to classify the pathology present. The
detailed views of RGT framework and Bring Your Own Attention (BYOA)
module are given in Fig. 5.2 and Fig. 5.3, respectively.
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Figure 5.2: Overview of our proposed model, RGT. The image branch is a
Transformer that processes a chest X-ray, and the radiomics branch is a small
Transformer that processes radiomic features generated by the Bootstrap Your
Own Attention (BYOA) module (Fig. 5.3). The global image representa-
tions and local radiomics representations are then fused by an efficient cross-
attention module operation on each branch’s CLS tokens. Finally, the CLS

tokens Icls (from the image branch) and Rcls (from the radiomics branch) are
used for disease classification. We optimize the classification error with the
Focal Loss [3]. We also leverage a contrastive learning strategy that aims to
rectify the global image view with the local radiomics view. Specifically, RGT
generates an image view zi = gi(Icls) by a projection head gi and radiomic view
zr = gr(Rcls) by projection head gr. We maximize the agreement between zi
and zr via a contrastive loss (NT-Xent).

5.2.1 Preliminary: ViT and Cross-Attention

ViT first converts an image into a sequence of patch tokens by divid-

ing the image into fixed-size patches and linearly projecting each patch into

so-called “tokens”. A special CLS (class) token is prepended to the sequence

of image patches, as in the original BERT [78]. Then, all tokens are passed

through stacked Transformer encoder layers. Finally, the hidden state corre-

sponding to the CLS token is used as the aggregate sequence representation

used for image classification.
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Figure 5.3: Overview of our Bootstrap Your Own Attention (BYOA) module.
For the input chest X-rays, we look at the self-attention of the CLS token of the
Image branch on the heads of the final output of the cross attention module.
Then we apply a threshold of 0.1, meaning we only keep the top 10% of pixels
in the generated attention map, to produce bounding boxes. Then with the
generated bounding boxes, we use the Pyradiomics tool to extract radiomic
features from the region of interest.

A Transformer encoder is composed of a sequence of blocks, where each

block consists of (1) a multi-headed self-attention and (2) a feed-forward neural

network. Layer normalization and residual shortcuts are, respectively, applied

before and after every block. The granularity of the patch size affects the

accuracy and complexity of ViT. Therefore, ViT was observed to reach greater

performance with smaller (more fine-grained) patch sizes, but at the cost of

higher floating-point operations (FLOPS) and memory consumption [86]. To

relieve this problem, CrossViT [86] proposed a dual-branch ViT where each

branch operates at a different patch size, as its own “view” of the image. The

cross-attention module is then used to fuse information between the branches

in order to balance the patch sizes and complexity. Similar to ViT, the final

hidden vector obtained from the CLS tokens from the two branches are then

used for image classification.
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5.2.2 Our Proposed RGT Model

CrossViT supplies a graceful framework to simultaneously process and

fuse two different “views” from the same input data (e.g., different-size image

patches in the original paper) [86]. In RGT, we extend this idea by treating

the raw image itself as one “view” and the radiomic feature extracted from

this image as another “view” (Fig. 5.2). The global image representation and

local radiomics representations are then fused by interacting through cross-

attention. Here, a Transformer serves as the modality-agnostic backbone for

both views.

Specifically, we introduce a dual-branch cross-attention Transformer

where the first (primary) branch operates on the image, while the second

(auxiliary) branch handles the radiomic features. To resolve the “chicken-and-

egg” dilemma in extracting reliable radiomic features without bounding boxes,

we have designed a novel Bootstrap Your Own Attention (BYOA) module,

using a feedback loop to learn pathology localization for radiomic feature ex-

traction. A simple yet effective module is also utilized to fuse information

between the branches. In the subsequent sections, we will describe the two

branches, the BOYA module, and the fusion module.

Image Branch. The primary image branch uses a Progressive-Sampling

ViT (PS-ViT) [87] as its backbone. Unlike the vanilla ViT that splits im-

ages into fixed-size tokens, PS-ViT utilizes an iterative and progressive sam-

pling strategy to locate discriminative regions and avoid over-partitioning ob-

ject structures. We experimentally observed PS-ViT outperforms ViT and
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other variants in our framework because it generates higher-quality and more

structure-aware attention maps, which are crucial for estimating the pathology

localization during training.

Radiomics Branch. The complementary radiomics branch is used

to process and learn deep representations of radiomic features. Handcrafted

features can encompass a wide range of categories, such as first-order (basic

intensity and shaped-based features), second-order (texture features extracted

from various matrices), and more advanced features including those calculated

from Fourier and wavelet transforms. Specifically, the 107 radiomic features

utilized in this work come from the following categories described below:

• First-order statistics measure the distribution of pixel intensities within the

region of interest. Such features include energy (the measurement of the

magnitude of pixel values), entropy (the measurement of uncertainty in the

image values), and max/mean/median gray level intensity. In total, we

extract 18 first-order radiomic features.

• Shape-based features – such as mesh surface, pixel surface, and perimeter –

describe the two-dimensional size and shape of the region of interest. While

RGT can only produce rectangular bounding boxes for radiomics extraction,

shape-based features can still be useful to quantify the size and aspect ratio

of the extracted region. A total of 14 shape features are used in this work.

• Gray-level features describe statistical patterns in the pixel intensity values,

drawn from the Gray Level Co-occurrence Matrix (GLCM), Gray Level Size
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Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM), Neigh-

boring Gray Tone Difference Matrix (NGTDM), and Gray Level Dependence

Matrix (GLDM). In particular, we compute 24 GLCM features, 16 GLSZM

features, 16 GLRLM features, 5 NGTDM features, and 14 GLDM features.

For this branch, we use a vanilla Transformer [88] as the radiomics

encoder. Please note that the only difference is that the positional encoding

module is discarded, since there does not exist any positional relationship

between individual radiomic features.

Bootstrap Your Own Attention (BYOA): A Feedback Loop

Module. Our main roadblock concerns how to generate robust radiomic fea-

tures without pathology localization. On one hand, radiomic features are

highly sensitive to the choice of local region of interest, for which we have no

bounding box annotation. On the other hand, image features would benefit

from the guidance of radiomics that encode important domain-specific quan-

titative features. The learning of image and radiomic features thus mutually

depend on each other, forming a challenging chicken-and-egg problem.

To address this issue, we design BYOA to constitute an end-to-end

feedback loop that can bootstrap accurate pathology localization from image

data without any bounding box annotations (Fig. 5.3). BYOA contains two

components: attention map generation and radiomic feature extraction.

• Attention Map Generation. Similar to the approach in Caron et al. [89],

we extract self-attention of the CLS token from the heads of the last layer.
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RGT produces two CLS tokens from two branches, but the attention maps

only come from the image branch. To generate bounding boxes for radiomic

features extraction, we first apply a threshold on the learned self-attention

maps. This threshold, controlling the percentage of most responsive pixels

kept for further processing, will influence the size of the resulting bound-

ing box and thus the quality of radiomic features. After thresholding the

attention map, image processing steps including a maximum filter and five

consecutive binary dilations are used to “grow” the region of interest and

smooth boundaries. Then, connected-components labeling is performed, af-

ter which we find the “center of mass” of each component. If this center of

mass pixel is in the top decile of intensity values, a bounding box is drawn

around it according to the mean height and width of the known bounding

box annotations for the given disease class of interest. Here, we utilize one

kind of prior knowledge of different diseases, e.g. Cardiomegaly usually oc-

curs in the heart area, and localized Pneumonia usually occurs in the lung

area, and the information of the average bounding boxes of these diseases

could be seen as one kind of free-available prior knowledge, which could im-

prove the accuracy of our model. And as one limitation of our method, for

stable training, our method will generate per-class identically-sized bound-

ing boxes. But during testing, we relaxed the setting of the bounding box

generation.

• Radiomic Features Extraction. Given the original images and generated

bounding boxes, we used Pyradiomics [17] to extract a variety of radiomic
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features, including 18 first-order features, 14 shape-based features, and 73

gray-level features (see Appendix for full list). For feature extraction, we

adopt the default settings of PyRadiomics version 3.0.1, which includes no

spatial resampling, discretization, rescaling, or normalization; this is not

necessary, as input radiographs have already been min-max normalized as

part of model preprocessing. All features are derived from the original image

(no wavelet, Laplacian of Gaussian, or other filters are applied before feature

extraction).

Cross-Attention Fusion Module. To aggregate global image in-

formation with local radiomics information, this fusion step involves the CLS

token of the image branch and patch tokens of the radiomics branch, similarly,

it also involves the CLS token of the radiomics branch and patch tokens of the

image branch. As the CLS token is the aggregate representation of the branch,

this interaction helps include information from multiple scales. Please refer to

Chen et al. [86] for more details about the cross-attention mechanism.

5.2.3 Semi-Supervised Loss Function

In our framework, we aim to make the learned image features from

the CLS token similar to the learned radiomic features in order to localize

pathologies in the chest X-rays. As shown in Fig. 5.2, RGT is trained using

the linear combination of the supervised classification and unsupervised con-

trastive losses. For the supervised classification, considering that the chest

X-ray dataset is usually highly imbalanced, we adopt the Focal Loss [3]. For
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unsupervised contrastive learning, we use the cross-view contrastive loss [13].

Supervised Classification Focal Loss. We feed the output of the

CLS tokens Icls (from the image branch) and Rcls (from the radiomics branch)

to a simple linear classifier. The supervised classification focal loss Lfl is

defined as

Lfl =

{
−α (1 − y′)γ log y′, y = 1
−(1 − α)y′γ log (1 − y′) , y = 0

(5.1)

The hyperparameter α allows us to give different importance to positive and

negative examples, whereas γ is used to distinguish easy and hard samples ,

forcing the model to place more emphasis on difficult examples.

Unsupervised Cross-View Contrastive Loss. Our contrastive loss

extends the normalized temperature scaled cross-entropy loss (NT-Xent). The

difference is that we maximize agreement between two feature views extracted

from different input formats, one from the image and the other from radiomic

features.

Given an anchor chest X-ray in a minibatch, the positive sample will be

its radiomic feature view, and the negative samples will be other chest X-rays

(both image and radiomics views). Since the CLS token can be regarded as the

representation of the input modality, we only need to maximize the agreement

between each modality’s CLS tokens. Suppose Icls,k and Rcls,k are the k−th

image features and radiomic features in the minibatch, respectively, and sim(·)

the cosine similarity. Then the contrastive loss function Lcl is defined as

Lcl = − log
exp(sim(gi(Icls,k), gr(Rcls,k))/τ)∑N
k=1 exp(sim(gi(Icls,k), gr(Rcls,k))/τ)

(5.2)
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where τ is the temperature. The final contrastive loss is summed over all

instances in the minibatch.

Overall, we treat RGT training as a weakly-supervised multi-task learn-

ing problem. In our chest X-ray setting, there exist two types of labels: disease

class labels and pathology bounding box annotations. In our case, we only use

the disease labels for training, even though the ultimate goal is to accurately

localize those pathologies. Here, when we say “weakly-supervised” localiza-

tion, we mean that we are able to localize pathologies only using supervision

from whole-image disease labels. The combined loss function for supervised

disease classification and unsupervised cross-view contrastive learning is as

follows:

L = (1 − λ) × Lcl + λ× Lfl (5.3)

5.3 Experiments

5.3.1 Dataset and Protocol Setting

The NIH ChestXRay dataset [7] consists of 112,120 chest X-rays col-

lected from 30,805 patients, where each image is labeled with one or more of

14 cardiopulmonary diseases. The labels are extracted from the associated

radiology report using an automatic labeler [40] with a reported accuracy of

90%. For a subset of 880 images, the NIH dataset also provides bounding box

localizations associated with eight disease classes: Atelectasis, Cardiomegaly,

Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax. The

remaining six diseases are diffuse in nature, meaning it is not clinically mean-
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ingful to provide a “localization” for these pathologies. Since this study aims

to develop a model for weakly supervised disease localization, we only proceed

with the eight diseases which have ground truth bounding box annotations.

Specifically, we only use the image-level disease labels for these eight focal

diseases to train RGT, binning all other classes into the already provided “No

Findings” category. A significant difference between our method and existing

baseline methods for pathology localization [90, 27] is that our method does

not require any training data related to the bounding box while others use

some percentage of these images for training.

In our experiments, we followed the same protocol as in related studies

[7, 27], randomly partitioning the dataset (excluding images with bounding

box annotations) into three subsets: 70% for training, 10% for validation, and

20% for testing. In order to prevent data leakage across patients, we make

sure that there is no patient overlap between our train, validation, and test

set.

5.3.2 Implementation Details

We build our image branch encoder based on PS-ViT [87], and apply

their default hyperparameters for training. We use a shallower image encoder

than the original PS-ViT, using 6 layers. For the radiomic branch encoder,

since the radiomic features are already informative features, we use a small

standard Transformer (2 layers) to learn representations of the radiomic fea-

tures. We then add one more cross-attention layer to fuse the learned image
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Table 5.1: Weakly supervised pathology localization results on the NIH
ChestXRay dataset as measured by IoU accuracy at a fixed threshold. Please
note that since RGT was solely supervised by disease class labels (not pathol-
ogy localizations), we only compare localization performance with previous
methods following the same setting for fair evaluation.
T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1
Wang et al. [7] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569
ViT 0.58 0.91 0.61 0.77 0.44 0.11 0.75 0.25 0.553
RGT 0.61 0.95 0.65 0.82 0.50 0.13 0.79 0.28 0.591

0.2
Wang et al. [7] 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371
ViT 0.38 0.85 0.39 0.55 0.24 0.01 0.51 0.15 0.385
RGT 0.41 0.91 0.41 0.59 0.26 0.05 0.57 0.19 0.424

0.3
Wang et al. [7] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221
ViT 0.20 0.45 0.19 0.32 0.06 0.00 0.21 0.02 0.181
RGT 0.28 0.79 0.22 0.38 0.12 0.01 0.41 0.05 0.283

0.4
Wang et al. [7] 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115
ViT 0.10 0.21 0.03 0.05 0.02 0.00 0.04 0.00 0.056
RGT 0.17 0.54 0.13 0.18 0.07 0.01 0.26 0.02 0.173

0.5
Wang et al. [7] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061
ViT 0.05 0.15 0.01 0.04 0.02 0.00 0.03 0.00 0.034
RGT 0.08 0.32 0.05 0.09 0.05 0.00 0.12 0.01 0.090

0.6
Wang et al. [7] 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029
ViT 0.01 0.03 0.01 0.01 0.01 0.00 0.01 0.00 0.010
RGT 0.02 0.15 0.03 0.04 0.03 0.00 0.06 0.00 0.041

0.7
Wang et al. [7] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011
ViT 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.001
RGT 0.01 0.04 0.01 0.02 0.01 0.00 0.03 0.00 0.015

features with the learned radiomic features. We set the batch size to 128 and

train the model for 50 epochs. We used a cosine linear-rate scheduler with

a linear warm-up of 5 epochs, an initial learning rate of 0.004, and a weight

decay of 0.05. We downscale the images to 224×224 and normalize based on

the mean and standard deviation of images in the ImageNet training set. We

also augment the training data with random horizontal flipping. During the

evaluation, we resize the image to 256×256 and take the center crop 224×224

as the input.
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Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

ViT RGT ViT RGT ViT RGT ViT RGT

Figure 5.4: Example visualizations of pathology localization when evaluated
on the 880 NIH ChestXRay images with bounding box annotations. The
attention maps are generated from the self-attention maps of the CLS token.
The ground-truth bounding boxes are shown in blue. The left image in each
pair is the localization result of ViT [4], and the right one is our localization
results obtained by RGT. All examples are positive for the corresponding
disease labels. Best viewed in color.

5.3.3 Pathology Localization

The NIH Chest X-ray dataset contains 880 images labeled by radiol-

ogists with bounding box information, which we use to evaluate the perfor-

mance of RGT for pathology localization. Many prior works [27, 90] have

used a fraction of ground truth (GT) bounding boxes for training and evalu-

ated their system on the remaining examples. Unlike these approaches, RGT

uses no bounding box annotations during training, only using the subset of

bounding box-annotated images for evaluation. Table 5.1 presents our evalu-

ation results on all 880 images. We used [7] as our baseline to compare our

localization results since it follows the same experimental setting of weakly

supervised training on only disease labels.
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Table 5.2: Pathology classification results for CNN- and Transformer-based
methods on the NIH ChestXRay dataset, as measured by AUC. For each
column, bold values denote the best results for the given disease class. For
RGT, the average AUC per class is presented, with the standard deviation in
parentheses, across three training runs with different random initializations.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

CNN
Wang et al. [7] 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
Wang et al. [21] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
Yao et al. [25] 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
Rajpurkar et al. [1] 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
Kumar et al. [55] 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
Liu et al. [56] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyyed et al. [57] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821
Han et al. [91] 0.83 0.92 0.87 0.76 0.85 0.76 0.77 0.86 0.828

Transformer
ViT 0.74 0.78 0.81 0.72 0.70 0.66 0.65 0.76 0.728
CrossViT 0.69 0.71 0.72 0.72 0.74 0.79 0.82 0.88 0.759
PS-ViT 0.75 0.81 0.82 0.73 0.79 0.73 0.69 0.81 0.766
RGT (ours) 0.80 0.92 0.78 0.86 0.88 0.88 0.79 0.81 0.839

(±0.02) (±0.00) (±0.01) (±0.01) (±0.02) (±0.00) (±0.01) (±0.02) –

5.3.3.1 Evaluation Metric

For localization, we evaluated our detected regular rectangular regions

against the annotated bounding boxes, using a thresholded IoU accuracy,

following Wang et al. [7]. Our localization results are only calculated for

the 880 images that have ground truth annotation for 8 diseases. To com-

pute IoU accuracy, the localization is defined as “correct” only if the observed

IoU between the predicted and ground truth localization exceeds a fixed IoU

threshold, T(IoU). We evaluated RGT for different thresholds ranging from

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} as shown in Table 5.1.
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5.3.3.2 Comparison with Prior Works

We compared disease localization accuracy under varying IoU with

baselines following the same training setting as RGT (Table 5.1). Unlike

other baselines[27, 90] that use a portion of 880 images for evaluation (be-

cause they need the remaining data for training), we used all 880 annotated

images for evaluation. Therefore, no k-fold cross-validation for localization

was performed. RGT average localization performance across 8 diseases is

considerably higher than the baseline under all IoU thresholds. When the IoU

threshold is set to 0.1, RGT outperforms the baseline [7] in the Cardiomegaly,

Infiltration, Mass, and Pneumonia classes. Even with higher thresholds, our

model is superior to the baseline. For example, when evaluated at T(IoU) =

0.5, our “Cardiomegaly” accuracy is 32%, while the reference model achieves

18%. Similarly, our “Pneumonia” accuracy is 12%, while the reference model

reaches 3% accuracy. Note that some diseases can appear in multiple locations,

but the ground truth might have mentioned only one such location. This can

significantly impact the accuracy at high thresholds.

5.3.3.3 Discussion of Visualization

More importantly, we also include our own trained ViT as an additional

baseline here. The quantitative results above demonstrate that, compared

to the standard ViT, the additional radiomics branch and BYOA module

enable RGT to learn more accurate and fine-grained pathology localizations.

Example visualizations of localization results of both ViT and RGT can be
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seen in Fig. 5.4. We can observe that RGT produces qualtitatively more

accurate localizations than ViT for all diseases, but particularly Atelectasis,

Cardiomegaly, Infiltration, Pneumonia, and Pneumothorax. Visualizations

for most diseases reveal that both models often attend to regions outside the

clinically relevant region of interest. However, RGT consistently attends to a

smaller number of “extraneous” pixels than the standard ViT. Further, RGT

always contains a significant portion of the ground truth localized region, while

the ViT attention map does not – for example, see Nodule, Pneumonia, and

Pneumothorax.

5.3.4 Pathology Classification

Pathology classification for chest X-rays is a multi-label classification

problem. The objective is to assign one or more labels (among 8 cardiopul-

monary diseases: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nod-

ule, Pneumonia, and Pneumothorax) to each input image at inference time.

We compared RGT with related reference approaches, which represent state-

of-the-art disease classifcation performance on the NIH ChestXRay dataset.

For RGT, we report the average AUC of 3 runs to show the robustness of our

model.

5.3.4.1 Evaluation Metric

We used Area under the Receiver Operating Characteristic Curve (AUC)

to estimate the performance of our model [92]. A higher AUC score implies a
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model that is more capable of discriminating between classes. We also provide

mean AUC across all the classes to highlight the overall performance of our

model.

5.3.4.2 Comparison with Prior Works

AUC scores for each disease and mean AUC across eight diseases are

presented in Table 5.2. We not only compared RGT with previous CNN-

based state-of-the-art (SOTA) models, but also several Transformer-based

models. We find that RGT outperformed all baseline approaches with re-

spect to mean AUC across all diseases; specifically, RGT reached 0.839 mean

AUC, outperforming the previous SOTA for disease classification [1] by a mar-

gin of 0.011. When considering classification performance on individual dis-

ease classes, RGT also achieved best performance on four of the eight classes.

Our proposed model outperformed the next-best baseline by a margin 0.13

AUC for Infiltration, 0.09 for Nodule, and 0.02 for Mass. Compared to the

Transformer-based models, the key difference is that we utilize the extracted

radiomic features for disease prediction, improving the classification accuracy

and enriching the model’s interpretability due to the utilization of handcrafted

radiomic features. Please note that Liu et al. [56] used 5-fold cross-validation

in their model evaluation. While the problem settings are very similar, the

evaluation schemes are so different that a direct comparison of this work to

RGT would be inappropriate.
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Figure 5.5: Effect of (A) varying T in attention map generation and (B) varying
λ in Equation (3) on pathology classification for the NIH ChestXRay dataset.

5.3.4.3 Effect of Attention Map Threshold

We investigate the impact of the threshold (T ), used in the process

of attention map generation, on the performance of RGT for disease classi-

fication. Fig. 5.5A summarizes the AUC comparison of RGT for different

values of T . Higher values of T imply smaller bounding boxes from which to

extract radiomic features. During our experiments, we found that RGT per-

forms better on the disease classification task when larger bounding boxes are

generated. Since radiomic features are typically computed for highly localized

– often small – regions of interest, this was originally an unintuitive finding.

There appears to be a tradeoff between bounding box size and the resulting

performance on the disease classification and localization tasks. Specifically,

extracting smaller boxes that are accurately localized and ignore as much

background signal as possible should lead to more robust and useful radiomic
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features. However, attending to smaller regions of the image comes at the

expense of decreasing the “receptive field” of learned global image features,

thus degrading the quality of the classification task. This observation empha-

sizes the difference between disease classification and localization tasks: global

information aids classification while rich local information aids localization.

5.3.4.4 Effect of Contrastive Learning

We also investigated the impact of the unsupervised contrastive loss on

RGT’s disease classification ability. Specifically, we evaluate the performance

of RGT for disease classification by varying λ in equation (3). Fig. 5.5B

summarizes the AUC comparison of RGT for different values of λ. Higher

values of λ implies lower weight to contrastive loss. During our experiments,

we found that RGT performs worse when small weight (1%) is given to the

contrastive loss. RGT’s performance improves when we increase contrastive

loss weight, but after a certain point (λ = 0.7), performance considerably

decreases. This confirms our hypothesis that both contrastive and focal losses

are important, but that care must be taken to properly balance the objectives.

The supervised classification and unsupervised constrastive losses enable RGT

to learn both disease-level and patient-level discriminative visual features.

5.3.5 System Usability Study

We hired two radiologist experts to validate the usefulness of RGT’s

disease localizations; one expert has 3.5 years of experience, while the other
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Atelectasis Infiltration Infiltration Cardiomegaly Mass

Nodule Pneumonia Pneumonia Pneumothorax Pneumothorax

Figure 5.6: System Usability Study. Visualizations of pathology localization
come from 10 randomly selected chest X-rays from the NIH ChestXRay dataset
that do not have ground truth localization annotations. Saliency heat maps
are generated from the self-attention maps of the CLS token from our trained
RGT model. The red and blue represent the pathology localizations provided
by two radiologists, who were instructed to draw a rectangular bounding box
around the most salient image region in 90 seconds.

has 5. For this additional study, we randomly selected 10 images from the NIH

ChestXRay dataset that did not have ground truth bounding box annotations.

We then used RGT to predict the disease classification and localization visu-

alization. Finally, we asked two radiologists to provide their own pathology

localization for each image. Each radiologist was instructed to draw a rect-

angular bounding box around the clinically relevant region of interest within

90 seconds. Results can be seen in Fig. 5.6. Each image contains two human-

annotated bounding boxes (red is Expert 1, and blue is Expert 2) and the

extracted attention map from our RGT.

For disease classification, the two radiologists agreed with RGT’s pre-
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diction for all ten cases. For the localization task, we observe that the inter-

rater consistency between two radiologists is very high, suggesting that they

clearly agreed on the most salient image region. Overall, the radiologists found

the RGT attention maps to significantly overlap with their own localizations,

demonstrating the usefulness of our approach. With the exception of the

“Mass” example, there is a strong agreement between the most responsive

pixels in RGT’s heat map and the radiologists’ annotations.

5.3.6 Limitations and Discussion

There exist two main limitations to this approach. One limitation is

the fact that self-attention provides only a coarse approximation of salient

regions unless trained on extremely large amounts of data (e.g., see DINO

[89]). Without this scale of chest radiography data available, other principled

methods for saliency visualization may provide more fine-grained localizations

for radiomics extraction than the native self-attention of our proposed RGT

architecture. For example, the Anchors approach of Ribeiro et al. [73] or

other input space visualization methods like LIME [72], SHAP [76], and deep

Taylor decomposition [74] could be used in place of our proposed heatmap

generation process. Future work will consider adapting such approaches to

generate more accurate localizations for improved radiomics feature extraction,

and thus better downstream disease classification and localization.

Another limitation of this approach is the fact that fixed-sized bounding

boxes per target disease class are generated during RGT training. This would,
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for example, make it difficult to distinguish the visual presentation of diffuse

vs. localized pneumonia. However, this can be alleviated with finer granularity

in the image-level disease labels used to train RGT; for instance, if “diffuse”

and “localized” pneumonia were distinct class labels, then RGT would be able

to provide visually distinct localizations of the two conditions. Future work

may involve a module that learns the optimal bounding box dimensions for

each disease in an unsupervised manner. Alternatively, the adoption of other

saliency visualization methods instead of RGT’s self-attention – as explained

in the previous paragraph – may resolve this limitation of fixed-size bounding

boxes per disease class.

5.4 Conclusion

In this chapter, we propose a radiomics-guided cross-attention Trans-

former, RGT, that can jointly localize and classify abnormalities in chest X-

rays without supervision from bounding box annotations. Our approach differs

from previous related studies in the choice of a unified Transformer architec-

ture, the use of radiomic features, and a feedback loop for image and radiomic

features to mutually interact during the training process. This work aims to

bring the field of computer-aided diagnosis closer to clinical practice by making

domain-specific quantitative features (in the form of radiomics) more accessi-

ble to automated medical image analysis tools, with the hope that this will

increase the model’s interpretability. Experimental results demonstrate that

our method outperforms state-of-the-art algorithms in this weakly supervised
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setting, particularly for disease localization, where our method can generate

more accurate and clinically useful bounding boxes.
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