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Over the past few years, significant progress has been made in QA systems 

due to the availability of annotated datasets on a large scale and the impressive 

advancements in large-scale pre-trained language models. Despite these successes, 

the black-box nature of end-to-end trained QA systems makes them hard to interpret 

and control. When these systems encounter inputs that deviate from their training 

data distribution or are subjected to adversarial perturbations, their performance 

tends to deteriorate by a large margin. Furthermore, they may occasionally produce 

unanticipated results, potentially leading to confusion among users. Additionally, 

this deficiency i n r obustness a nd i nterpretability p oses c hallenges when deploying 

such models in real-world scenarios.

In this dissertation, we aim to build robust QA systems by explicitly decom-

posing various QA tasks into distinct sub-modules, each responsible for a particular 

aspect of the overall QA process. Through this decomposition, we seek to achieve 

improved performance in terms of both the system’s ability to handle diverse and 

challenging inputs (robustness) and its capacity to provide transparent and explain-

able reasoning (interpretability).
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To address the aforementioned limitations, in this dissertation, we aim to

build robust QA models by explicitly decomposing different QA tasks into different

sub-modules. We argue that utilizing these sub-modules can substantially improve

the robustness and interpretability of different QA systems. In the first half of this

dissertation, we introduce three sub-modules to mitigate the dataset artifacts that

models learn from datasets. These sub-modules also enable us to examine and exert

explicit control over the intermediate outputs. In the first work, to address question

answering that requires multi-hop reasoning, we propose a chain extractor, which

extracts the reasoning chains necessary for models to derive the final answer. The

reasoning chains not only prevent the model from exploiting reasoning shortcuts but

also provide an explanation of how the answer is derived. In the second work, we

incorporate an alignment layer between the question and the context before generat-

ing the answer. This alignment layer can help us interpret the models’ behavior and

improve the robustness of adversarial settings. In the third work, we add an answer

verifier after QA models generate the answer. This verifier can boost QA models’

prediction confidence across several different domains and help us spot cases where

QA models predict the right answer for the wrong reason by utilizing the external

NLI datasets and models.

In the second half of this dissertation, we tackle the problem of complex

fact-checking in the real world by treating it as a modularized QA task. We first

decompose a complex claim into several yes-no subquestions whose answer directly

contributes to the veracity of the claim. Then, each sub-question is fed into a com-

mercial search engine to retrieve relevant documents. Additionally, we extract the

relevant snippets in the retrieved documents and use a GPT3-based summarizer to

generate the core evidence for checking the claim. We show that the decompositions

can play an important role in both evidence retrieval and veracity composition of
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an explainable fact-checking system. Also, we show the GPT3-based evidence sum-

marizer generates faithful summaries of documents most of the time indicating it

can be used as an effective part of the pipeline. Moreover, we annotate a dataset

– ClaimDecomp, containing 1,200 complex claims and the decompositions. We

believe that this dataset can further promote building explainable fact-checking

systems and analyzing complex claims in the real world.
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Chapter 1

Introduction

Question answering (QA) is one of the core tasks of natural language pro-

cessing (NLP) due to its wide-ranging applications, including but not limited to

virtual assistants, customer support, and educational platforms. In recent years,

advancements in deep learning techniques (Seo et al., 2017; Peters et al., 2018; De-

vlin et al., 2019; Liu et al., 2019; Raffel et al., 2020a; Brown et al., 2020; Wei et al.,

2021; Ouyang et al., 2022) and the availability of large-scale annotated datasets (Ra-

jpurkar et al., 2016b; Yang et al., 2018; Joshi et al., 2017a; Kwiatkowski et al., 2019;

Reddy et al., 2019; Clark et al., 2020) have led to huge progress in QA systems. For

example, Chung et al. (2022) showed that a 5-shot Flan-PaLM model outperforms

the average human rater on 57 MMLU (Hendrycks et al., 2020) tasks while also

approaching the performance of the average human expert.

Despite the great successes, even the SOTA QA models like GPT3 (Brown

et al., 2020) are still not generally robust – when testing on challenging settings like

adversarially perturbed datasets (Jia and Liang, 2017; Wallace et al., 2019; Gardner

et al., 2020; Bartolo et al., 2020), they sometimes fail to generate the right answer

and their performance tends to decrease by a notable margin (Liang et al., 2022).

Also, they sometimes produce unreliable outputs that may mislead users. Figure 1.1

and Figure 1.2 show two examples of unreliable outputs from Google and New Bing

Search (powered by GPT-3.5).

Over the past few years, prior work has tackled the problem in various
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dFirst	commercial	
CPU	!=	First	CPU
d

This	is	dangerous…

Figure 1.1: Example of cases where the answers returned by the QA system is
not reliable. In the first example, the model ignores “commercial”; in the second
example, the content returned may even cause trouble.

ways, including data augmentation and adversarial training (Wang and Bansal,

2018; Khashabi et al., 2020; Liu et al., 2020), generative QA (Lewis and Fan, 2018),

debiasing the training data (Utama et al., 2020; Swayamdipta et al., 2020; Gardner

et al., 2021), and adding regularizers (Yeh and Chen, 2019; Zhou et al., 2020). We

take a different angle: modularizing different QA tasks and constructing a pipelined

QA system by assembling sub-modules. There are two main advantages by using

sub-modules. First, the sub-modules can be learned through external resources such

as external models, data, and knowledge. Second, by checking the intermediate

output from the sub-modules, we can better understand and gauge the QA models’

behavior, e.g., why a particular prediction is made and how can we potentially avoid

bad predictions. The proposed framework is illustrated in Figure 1.3.

In Chapter 3, we propose a reasoning chain extractor as a sub-module to

tackle questions which require multi-hop reasoning. The reasoning chain extractor

can extract a discrete reasoning chain over the text, which consists of a series of

sentences leading to the answer. Critically, we do not rely on gold annotated chains

or “supporting facts”: at training time, we derive pseudogold reasoning chains using
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Figure 1.2: Example of output returned by the New Bing Search where the model
simply misunderstands the question and returns an answer about “Silicon Valley
Bank” instead of Silicon Valley. This example is taken on 03/23/2023.

heuristics based on named entity recognition and coreference resolution. Nor do we

rely on these annotations at test time, as our model learns to extract chains from

raw text alone. Our analysis shows properties of chains that are crucial for high

performance: in particular, modeling extraction sequentially is important, as is

dealing with each candidate sentence in a context-aware way. Furthermore, human

evaluation shows that our extracted chains allow humans to give answers with high

confidence, indicating that these are a strong intermediate abstraction for this task.

In Chapter 4, we model question answering as an alignment problem. We

decompose both the question and context into smaller units based on off-the-shelf

semantic representations (here, semantic roles), and align the question to a subgraph

of the context in order to find the answer. We formulate our model as a structured

SVM, with alignment scores computed via BERT, and we can train end-to-end

despite using beam search for approximate inference. Our use of explicit alignments

allows us to explore a set of constraints with which we can prohibit certain types of

bad model behavior arising in cross-domain settings. Furthermore, by investigating

differences in scores across different potential answers, we can seek to understand
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Decompose QA tasks into sub-modules

Learn sub-modules via external resources

Construct a pipelined QA system by assembling sub-modules

Incorporate 
external data

Module1 Module2 Module3 …

Module1
Incorporate 
external modelModule2

Incorporate 
external knowledgeModule3

Module1 Module2 Module3Input
Intermediate 

output1
Intermediate

 output2 Output

Figure 1.3: Illustration of the proposed framework where we first decompose a QA
task into sub-modules; each sub-module is learned through external resources and
then assembled to construct a pipelined QA system.

what particular aspects of the input lead the model to choose the answer without

relying on post-hoc explanation techniques.

In Chapter 5, we explore the use of natural language inference (NLI) as a

verifier to check QA models’ predictions. We leverage large pre-trained models and

recent prior datasets to construct powerful question conversion and decontextual-

ization modules, which can reformulate QA instances as premise-hypothesis pairs

with very high reliability. Then, by combining standard NLI datasets with NLI

examples automatically derived from QA training data, we can train NLI models

to evaluate QA systems’ proposed answers. We show that our approach improves

the confidence estimation of a QA model across different domains. Careful manual

analysis over the predictions of our NLI model shows that it can further identify

cases where the QA model produces the right answer for the wrong reason.

In Chapter 6, we tackle the problem of complex fact-checking in the real-

world by treating it as a modularized QA task. Specifically, we present ClaimDe-
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comp, a dataset of decompositions for 1,200 claims. Given a claim and its verifica-

tion paragraph written by fact-checkers, our trained annotators write subquestions

covering both explicit propositions of the original claim and its implicit facets, such

as additional political context that changes our view of the claim’s veracity. We

study whether state-of-the-art pretrained models can learn to generate such sub-

questions. Our experiments show that these models generate reasonable questions,

but predicting implied subquestions based only on the claim (without consulting

other evidence) remains challenging. Nevertheless, we show that predicted subques-

tions can help identify relevant evidence to fact-check the full claim and derive the

veracity through their answers, suggesting that claim decomposition can be a useful

piece of a fact-checking pipeline

In Chapter 7, we extend Chapter 6 by retrieving the raw evidence using our

decomposed sub-questions in the wild and building the full pipeline for real-world

fact-checking. To simulate the realistic fact-checking scenario, we conduct our ex-

periments where the retriever can only search documents available prior to the state-

ment of the claim, following the real-world use case that fact-checkers would face.

Our whole pipeline includes five components: claim decomposition, raw document

retrieval, fine-grained evidence retrieval, evidence aggregation (using GPT-3), and

veracity judgment. We conduct experiments on ClaimDecomp, the dataset we cre-

ated in Chapter 6, and show that the aggregated evidence produced by our pipeline

not only improves the performance of veracity judgment over the no-evidence base-

line but also can be used as evidence to help human fact-checkers to make their

decisions. Finally, we show that the veracity classification performance of our sys-

tem is bottlenecked by web retrieval, and building a human-machine-in-the-loop

fact-checking system is a promising future direction.
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Chapter 2

Background and Related Work

This chapter presents the related work and background supporting this dis-

sertation. We first introduce a line of work that explore the brittleness of the

recent QA systems, then we discuss previous literature that focuses on improving

the robustness of QA systems for different aspects. Additionaly, we discuss modular

QA systems, which decompose the end-to-end trained QA models into several sub-

modules. These sub-modules often provides better robustness and interpretability.

2.1 Brittleness in QA systems

As machine learning became the dominant strategy for building QA systems

in recent decades, the behavior of such systems heavily relies on training data (Jia,

2020). When the systems are tested on out-of-distribution data, they are often

unreliable and generate undesired outputs. A growing body of research has focused

on exploring the brittleness in QA systems under various conditions.

Perturbation-based attacks One natural way to test models’ robustness is to

slightly perturb samples from the training distribution. These perturbations include

character-level alterations, such as typos (Belinkov and Bisk, 2018; Ebrahimi et al.,

2018a; Piktus et al., 2019). Typos present a significant practical challenge, as they

frequently occur in natural text but typically do not hinder human comprehension.

Other perturbations involve word substitution with synonyms or neighboring words

26



in vector space (Alzantot et al., 2018; Iyyer et al., 2018; Jia et al., 2019; Jin et al.,

2020). For instance, Ribeiro et al. (2018) showed that by simply replacing “?”

with “??” in examples from the SQuAD development set led to 202 more errors

by a state-of-the-art model at that time, this alone increased the overall error rate

by 3%. Further, entity-level perturbations have been explored (Balasubramanian

et al., 2020; Yan et al., 2022). For instance, Yan et al. (2022) showed that current

pre-trained language models sometimes solve entity-related questions based on the

learned knowledge rather than the context. Replacing the entities with unseen

ones causes a drop in the model performance. Also, there are researches exploring

sentence-level perturbation (Jia and Liang, 2017; Wallace et al., 2019; Gardner et al.,

2020). For example, Wallace et al. (2019) showed that by injecting specific trigger

strings, the model can always output offensive content regardless of the question.

Recently, large-pre-trained language models such as GPT-3 (Brown et al.,

2020; Ouyang et al., 2022) have brought great progress in language understanding

and established SOTA performance on a wide range of NLP benchmarks. However,

they are still not robust against those perturbations as demonstrated by Liang et al.

(2022).1

Natural distribution shifts Another line of work focuses on addressing how nat-

ural distribution shifts affect QA models’ performance. Unlike perturbation-based

attacks which sometimes generate unreal or deliberately adversarial/hard examples,

natural distribution shifts better represent the real-world scenario when deploying

QA models. There are two common types of natural distribution shifts: domain

generalization and subpopulation shift (Koh et al., 2021). For domain generaliza-

1See the HELM leaderboard for the performance of various models in robustness setting: https:
//crfm.stanford.edu/helm/latest/?group=core_scenarios
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tion, the test distribution comes from related but distinct domains of the training

distribution. For subpopulation shifts, the test distributions are subpopulations of

the training distribution.

Fisch et al. (2019) adapted and unified 18 distinct question-answering

datasets into the same format to benchmark the cross-domain generalization abil-

ity of QA models. Among them, six datasets were made available for training, six

datasets were made available for development, and the rest were hidden for final

evaluation. Kiela et al. (2021); Ma et al. (2021); Zhang and Choi (2021); Thrush

et al. (2022) proposed to collect test samples in a dynamic way, which can be viewed

as a stress test for models’ robustness under subpopulation shift. Koh et al. (2021);

Sagawa et al. (2022) proposed WILDS and its extension, a curated benchmark of

10 datasets reflecting a diverse range of distribution shifts that naturally arise in

real-world applications.

2.2 Addressing Brittleness in QA systems

Data Augmentation Data augmentation is a simple but effective way to achieve

stronger generalization. Wang and Bansal (2018); Liu et al. (2020); Khashabi et al.

(2020); Gardner et al. (2020) demonstrate that by adding automatically perturbed

examples during training, models are more robust against perturbation-based at-

tacks and domain shifts while keeping the same performance for in-domain data.

Furthermore, Dua et al. (2021); Bartolo et al. (2021); Lee et al. (2020) showed that

generating synthetic adversarial question-answer pairs not only improved the model

robustness against adversarial attack but also improved model generalization across

various domains.
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Modular QA systems Another line of research to build robust QA systems fo-

cuses on decomposing the model into sub-modules so that the whole model is less

likely to be biased by the training data distribution. (Hu et al., 2019; Kamath

et al., 2020; Wang et al., 2020b; Zhang et al., 2021) introduced an extra answer

verification layeras a final step for question answering models. The answer verifiers

substantially improve the cross-domain generalization of models under a selective

question-answering setting where models only choose to answer top-k percent of

questions it most confident with. Talmor and Berant (2018); Min et al. (2019b);

Perez et al. (2020) showed that by decomposing the complex questions into simple

ones, QA models are more robust against reasoning shortcuts in multi-hop reason-

ing. (Wolfson et al., 2020) further introduces a Question Decomposition Meaning

Representation (QDMR) to explicitly model this process. The work we presented

in this dissertation generally falls into this vein where we add sub-modules to differ-

ent QA tasks to mitigate the biases model learned and enforce explicit control over

models’ behavior.
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Chapter 3

Multihop Reasoning via Reasonning Chains

This chapter is based on Chen et al. (2019a).1

3.1 Introduction

As high performance has been achieved in simple question answering settings

(Rajpurkar et al., 2016b), work in this area has increasingly gravitated towards ques-

tions that require more complex reasoning to solve. Multi-hop question answering

datasets explicitly require aggregating clues from different parts of some given doc-

uments (Dua et al., 2019; Welbl et al., 2018; Yang et al., 2018; Jansen et al., 2018;

Khashabi et al., 2018a). Earlier question answering datasets contain some questions

of this form (Richardson et al., 2013; Lai et al., 2017), but typically exhibit a limited

range of multi-hop phenomena. Designers of multi-hop datasets aim to test a range

of reasoning types (Yang et al., 2018) and, ideally, systems should have to behave

in a very specific way in order to do well. However, Chen and Durrett (2019) and

Min et al. (2019a) show that models achieving high performance may not actually

be performing the expected kinds of reasoning. Partially this is due to the difficulty

of evaluating intermediate model components such as attention (Jain and Wallace,

2019), but it also suggests that models may need inductive bias if they are to solve

1Jifan Chen, Shih-ting Lin, Greg Durrett. Multi-hop Question Answering via Reasoning Chains.
2019. arXiv preprint arXiv:1910.02610.
Jifan Chen initialized the research project, conducted experiments, analyzed data and wrote the
paper.

30



Figure 3.1: A multi-hop example chosen from the HotpotQA development set. Sev-
eral documents are given as context to answer a question. We show two possible
“reasoning chains” that leverage connections (shared entities or coreference rela-
tions) between sentences to arrive at the answer. The first chain is most appropri-
ate, while the second requires a less well-supported inferential leap.

this problem “correctly.”

In this chapter, we propose a step in this direction, with a two-stage model

that identifies intermediate reasoning chains and then separately determines the

answer. A reasoning chain is a sequence of sentences that logically connect the

question to a fact relevant (or partially relevant) to giving a reasonably supported

answer. Figure 3.1 shows an example of what such chains look like. Extracting

chains gives us a discrete intermediate output of the reasoning process, which can

help us gauge our model’s behavior beyond just final task accuracy. Formally, our

extractor model scores sequences of sentences and produces an n-best list of chains

via beam search.

To find the right answer, we need to maintain uncertainty over this chain

set, since the correct one may not immediately be evident, and for certain types of

questions, information across multiple chains may even be relevant. Sifting through

the retrieved information to actually identify the answer requires deeper, more ex-

pensive computation. We employ a second-stage answer module, a BERT-based QA
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system (Devlin et al., 2019), which can be run cheaply given the pruned context.

Our approach resembles past models for coarse-to-fine question answering (Choi

et al., 2017; Min et al., 2018; Wang et al., 2019), but explores the context in a

sequential fashion and is trained to produce more principled reasoning chains.

To train our model, we heuristically label examples with reasoning chains.

We use a search procedure leveraging coreference and named entity recognition

(NER) to find a path from the start sentence to an end sentence through a graph of

related sentences. Constructing this graph requires running an NER system at train

time, but does not rely on the answer or answer candidates (Kundu et al., 2018).

Our system also does not require these annotations at test time, operating instead

from raw text.

Our chain identification is effective and flexible: we can use it to derive su-

pervision on two existing datasets. On HotpotQA (Yang et al., 2018), we found

that these derived chains are essentially as effective as the ground-truth supporting

fact provided by the dataset. In terms of final question answering accuracy, on the

WikiHop dataset (Welbl et al., 2018), our approach achieves state-of-the-art perfor-

mance by a substantial margin among the published systems, and on HotpotQA,

we achieve strong results and outperform several recent published systems.

Our contributions are as follows: (1) We present a method for extracting

oracle reasoning chains for multi-hop reasoning tasks. These chains generalize across

multiple datasets and are comparable to human-annotated chains. (2) We present

a model that learns from these chains at train time and at test time can produce a

list of chains. Those chains could be used to gauge the behaviors of our model. (3)

Results on two large datasets show strong performance of our chain extraction and

show that the extracted chains are intrinsically a good representation of evidence

for question answering.
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3.2 Question Answering via Chain Extraction

We describe our notion of chain extraction in more detail. A reasoning chain

is a sequence of sentences that logically connect the question to a fact relevant to

determining the answer. Two adjacent sentences in a reasoning chain should be

intuitively related: they should exhibit a shared entity or event, temporal structure,

or some other kind of textual relation that would allow a human reader to connect

the information they contain.

Figure 3.1 shows an example of possible reasoning chains of an real example.

In this case, we need to find information about the actor who played Corliss Archer

in Kiss and Tell. These question entities may appear in multiple places in the text,

and it is generally difficult to know which entity mentions might eventually lead to

text containing the answer. If we arrive at s4 and find the new entity Shirley Temple,

we then need to determine what government position she held, which in this case can

be found by two additional steps. Other reasoning chains could theoretically lead to

this answer, such as the second chain: Shirley Temple starred in the sequel to Kiss

and Tell, which might lead us to infer that Shirley Temple also plays Corliss Archer

in Kiss and Tell. Although less justified, we also view this as a valid reasoning chain.

However, in general, there are also “connected” sequences of sentences that don’t

imply the answer; for example, they are connected by an entity which is not related

to the question.

In determining this chain, we largely used information about entity corefer-

ence to connect the relevant pieces: either cross-document coreference about Shirley

Temple or resolution of various pronouns. Another relevant cue is that subsequent

information about Shirley Temple in Document 1 occurs later in the discourse, which

in this case reflects temporal structure. However, solving coreference or temporal

relation extraction in general is neither necessary nor sufficient to do chain extrac-
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tion. Therefore, we design our system so that it does not rely on coreference at test

time, but can instead directly extract reasoning chains based on what it has learned

at training time.

Having established this notion of a reasoning chain, we have three questions

to answer. First, how can we automatically select pseudo-ground-truth reasoning

chains? Second, how do we model the chain extraction process? Third, how do we

take one or more extracted chains and turn them into a final answer? We answer

these three questions in the next section.

3.3 Learning to Extract Chains

3.3.1 Heuristic oracle chain construction

Following the intuition in Figure 3.1, we assume that there are two relevant

connections between sentences that can form reasoning chains. First, the presence of

a shared entity often implies some kind of connection. This is not always a sufficient

clue, since common entities like United States may occur in otherwise unrelated

sentences; however, because this oracle is only used at train time, it does not need

to be 100% reliable for the model to learn a chain extraction procedure. Second, we

assume that any two sentences in the same paragraph are connected; this is often

true on the basis of coreference or other kinds of bridging anaphora.

We derive heuristic reasoning chains by searching over a graph which is

constructed based on these factors. Each sentence si is represented as a node i in

the graph. We run an off-the-shelf named entity recognition system to extract all

entities for each sentence. If sentence i and sentence j contain a shared entity, we

add an edge between node i and j. We then also add an edge between all pairs of
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sentence within the same paragraph.2

Starting from the question node, we do an exhaustive search to find all

possible chains that could lead to the answer. This process yields a set of possible

chains with different lengths; two examples are shown in Figure 3.1. We use two

different criteria to select heuristic oracles:

• Shortest Path: We simply take the shortest chain from the chain set as our

oracle.

• Question Overlap: We compute the ROUGE-1 F1 score for each chain’s sen-

tences with respect to the question and take the chain with the highest score.

This encourages selection of more complete answer chains which address all of

the question’s parts without finding shortcuts.

3.3.2 Chain extraction model

Our chain extractor takes the input documents and questions as input and

returns a variable-length sequence of sentence pointers as output. The processing

flow of our chain extractor can be divided into two main parts: sentence encoding

and chain prediction as shown in Figure 3.2.

Sentence Encoding Given a document containing n paragraphs and a question,

we first concatenate the question with each paragraph and then encode them using

the pre-trained BERT encoder (Devlin et al., 2019). We denote the encoded ith

paragraph as pi. We also encode the question by itself with BERT, denoting as

2We do not explicitly run a coreference system here since current coreference systems often
introduce spurious arcs. Moreover, cross-document links can nearly always be found by exact
string match, and since we add all within-paragraph links, exactly determining the coreference
status of every mention is not needed.
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Figure 3.2: The BERT-Para variant of our proposed chain extractor. Left side: we
encode each document paragraph jointly with the question and use pooling to form
sentence representations. Right side: we use a pointer network extracts a sequence
of sentences.

q. To compute the representation of a sentence, we extract it from the encoded

paragraph. Suppose sentence k in the document is the jth sentence of paragraph

i. Then sk = SpanExtractor(pi, s
START
j , sEND

j ). For simplicity, we choose max-

pooling as our span extractor, though other choices are possible. We name this

scheme of sentence representation as BERT-Para. This paragraph-factored model is

much more efficient and scalable than attempting to run BERT on the full context,

as full contexts can be thousands of words long. We also explore an even more

factored version where each sentence is concatenated with the question and encoded

independently, which we denote as BERT-Sent. Finally, instead of using BERT as

the sentence encoder, we can use a bidirectional attention layer between the passage

and question (Seo et al., 2017) as a baseline; we call this model BiDAF-Para.

Chain Prediction We treat all the encoded sentence representations as a bag

of sentences and adopt an LSTM-based pointer network (Vinyals et al., 2015) to

extract the reasoning chain, shown on the right side of Figure 3.2. At the first time

step, we initialize the hidden state h0 in the pointer network using the max-pooled

representation of the question q, and feed a special token SOS as the first input.
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Let c1, . . . , cl denote the indices of sentences to include in the reasoning

chain. At time step t, we compute the probability of sentence i being chosen as

P (ct = i|c1, . . . , ct−1, s) = softmax(α)[i], where αi = W[ht−1; sct−1 ;ht−1 ⊙ sct−1 ],

and W is a weight matrix to be learned.

Training the Chain Extractor During training, the loss for time step t is

the negative log likelihood of the target sentence c∗t for that time step: losst =

− log(P (c∗t |c∗1, . . . , c∗t−1s)). We also explored training with reinforcement learning

to optimize downstream prediction accuracy. For the two datasets we considered,

pre-training with our oracle and fine-tuning with policy gradient did not lead to an

improvement. Pure oracle chain extraction appears strong enough for the model to

learn the needed associations across chain timesteps, but this may not be true on

other datasets.

At evaluation time, we use beam search to explore a set of possible chains,

which results in a set of chains c1, c2, ..., ck, with each chain containing different

number of sentences.

3.3.3 Answer prediction

Since different beams may contain different plausible reasoning chains as

shown in Figure 3.1, we consider the sentences in the top k beams predicted by our

chain extractor as input to our answer prediction model. Different datasets may

require different modifications of the basic BERT model as well as different types of

reasoning, so we present the answer prediction module in the following section.
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Model Oracle Avg Length Answer Found Supp F1 Answer F1

Oracle Shortest 1.6 93.6 58.5 -
Oracle Q-Overlap 1.9 93.6 63.9 -
Oracle Supp Facts 2.4 100.0 100.0 75.4

BERT-Para Q-Overlap 2.0 76.3 64.5 66.0
BERT-Para Shortest 1.5 74.1 56.8 65.5
BERT-Sent Shortest 1.7 72.5 53.1 60.2
BiDAF-Para Shortest 1.4 62.0 52.4 58.1

BERT-Para (top 5) Q-Overlap 3.2 88.1 65.6 70.3

Table 3.1: The characteristics of different chains generated by different models un-
der different supervision on the HotpotQA dev set: for different models and chain
oracles, we report the average chain length, fraction of chains containing the answer,
F1 with respect to the annotated supporting facts, and F1 on the final QA task.
Here we only pick the 1-best chain in the beam.

3.4 Experimental Setup

3.4.1 Datasets

WikiHop Welbl et al. (2018) introduced this English dataset specially designed

for text understanding across multiple documents. The dataset consists of around

40k questions, answers, and passages. Questions in this dataset are multiple-choice

with around 10 choices on average.

HotpotQA Yang et al. (2018) proposed a new dataset with 113k EnglishWikipedia-

based question-answer pairs. Similar to WikiHop, questions require finding and

reasoning over multiple supporting documents to answer. Different from WikiHop,

models should choose answers by selecting variable-length spans from these docu-

ments. Sentences relevant to finding the answer are annotated as “supporting facts”

in the dataset.
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3.4.2 Implementation Details

Oracle chain extraction We use the off-the-shelf NER system from AllenNLP (Gard-

ner et al., 2018). We treat any entity that appears explicitly more than 5 times across

sentences as a common entity,3 and ignore it when we build the graph. Because these

documents are only short snippets from Wikipedia, this criterion is loose enough to

keep most useful mentions.

Chain extractor We use the uncased BERT tokenizer to tokenize both question

and paragraphs. We use the pretrained bert-base-uncased model and fine-tune it

using Adam with a fixed learning rate of 5e-6. At test time, we produce our chains

using beam search with beam size 5.

Answer prediction We concatenate the question and the combined chains from

previous step in the top k beams in the standard way as described in the original

BERT paper (Devlin et al., 2019) and encode it using the pre-trained BERT model.

We denote its [CLS] token as [CLS]p.

WikiHop is a multiple-choice dataset. Since we need to choose an answer

from a candidate list, we encode each candidate with BERT. The [CLS] token for

candidate i is denoted as [CLS]Ci
. We then compute the score of a candidate Ci

being choose as the dot product between [CLS]p and [CLS]Ci
.

HotpotQA is a span-based question answering task, where finding the an-

swer requires predicting the start and end of a span in the context. We compute

distributions over these positions via two learned weight matrices Wstart and Wend.

Each position in the concatenated sequence except the [CLS] token is multiplied by

3These mentions are often extremely common entities like U.S., which are likely to introduce
spurious edges rather than good ones.
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the corresponding weight matrix and softmaxed. Since we also need to predict the

question type on HotpotQA (to handle yes/no questions vs. span extraction ones),

we predict the type by taking the dot product of [CLS]p with a trainable matrix

Wtype. We use bert-large-uncased instead of bert-base-uncased in the answer

prediction module. We use the same optimizer and learning rate as chain extractor.

3.5 Results

In this section we aim to answer two main questions. First, which of our pro-

posed chain extraction techniques is most effective, and how do they compare? Sec-

ond, how does our approach compare to state-of-the-art models on these datasets?

Finally, can we evaluate our extracted chains intrinsically: how important is or-

dered chain extraction and how well do our chains align with human intuition about

question answering?

3.5.1 Comparison of Chain Extraction Methods

We first study the characteristics of our extracted chains with several ex-

periments focused on HotpotQA. We choose this dataset since it provides human-

annotated supporting facts so we can directly compare these against our model.

Several statistics are shown in Table 3.1. For different combinations of our model

and which choice of chain oracle we use, we calculate several statistics, as described

in the caption. We have the following observations:

Using more context helps chain extractors to find relevant sentences.

Comparing BERT-Para and BERT-Sent, we find that with all other parts fixed and

only by encoding more context, we improve the answer prediction performance by

around 5%. This may indicate that BERT can capture cross sentence relations
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such as coreference and find more supporting evidence as a result. The comparison

with BiDAF-Para vs. BERT-Sent also indicates this. Despite finding many fewer

answer candidates (62% instead of 72%), BiDAF-Para only achieves around 2%

lower performance. One possible explanation to this is that without context, the

BERT extraction model may pick up “distractor” sentences related to the question

but which do not actually lead to the answer, potentially confusing the answer

prediction module.

The one-best chain often contains the answer. This demonstrates the ef-

fectiveness of our chain extractor: the BERT-Para model with just 2 extracted

sentences can locate the answer 76% of the time. We further analyze the quality

of these chains in the following sections. Note that this is nearly the same amount

of evidence as in the human-labeled supporting facts (2.4 sentences on average);

the difference can be explained by cases where the model can jump directly to the

answer (Chen and Durrett, 2019).

Q-Overlap helps recover more supporting evidence. The main difference

between our Shortest oracle and the Q-Overlap oracle is that Q-Overlap contains

additional relevant sentences besides the one containing the answer. As a result,

models trained with Q-Overlap should also yield a higher F1 score for finding the

supporting facts, which is supported by the results (64 vs. 56).

Performance can be improved by taking a union across multiple chains

In the last row, we show a version of BERT-Para where the top 5 chains in the

beam have been unioned together and truncated to 5 sentences. These top 5 chains

contain permutations of roughly the same sentences, so this does not greatly increase

the average length. However, this greatly increases answer recall and downstream
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F1. One reason is that this maintains uncertainty over the correct reasoning chain

and can seamlessly handle question types involving comparison of multiple entities,

which are difficult to address with a single reasoning chain of the sort presented in

Figure 3.1.

3.5.2 Results compared to other systems

We evaluate our best system from the prior section (BERT-Para with top-5

chains) on the blind test sets of our two datasets. Performance is shown in Table 3.2.

On WikiHop, our model significantly outperforms past published models, although

these models do not use BERT. For HotpotQA, we use RoBERTa (Liu et al., 2019)

weights as the pretrained model instead of BERT, which gives a performance gain.

Our model achieves strong performance compared to past models, including outper-

forming some models which use the human-labeled supporting facts 4

3.5.3 Evaluation of chains

Ordered extraction outperforms unordered extraction One question we

can ask is how important ordered chain extraction is versus just selecting “chain-

like” sentences in an unordered fashion. We compare our BERT-Para model with a

variant of our model where, instead of using a pointer network to predict a chain, we

make an independent classification decision for each sentence to determine whether

it is relevant to the question or not. We then pick top k sentences with the highest

relevance score and feed these to our BERT model. We call this model unordered

extraction. Both are trained with the shortest-path oracle.5 To make a fair com-

4This indicates that our heuristically-extracted chains can stand in effectively for this super-
vision, which suggests that our approach can generalize to settings where this annotation is not
available.

5We do not use the question overlap oracle since the questions in WikiHop are synthetic like
“place of birth gregorio di cecco”, which is uninformative for the Q-overlap method.
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WikiHop dev test

GCN (De Cao et al., 2018) 64.8 67.6
BAG (Cao et al., 2019) 66.5 69.0
CFC (Zhong et al., 2019) 66.4 70.6

JDReader (Tu et al., 2019b) 68.1 70.9
DynSAN (Zhuang and Wang, 2019) 70.1 71.4

BERT-Para (top 5) 72.2 76.5

HotpotQA EM F1 Supp?

DecompRC (Min et al., 2019b) 55.20 69.63 N
QFE (Nishida et al., 2019) 53.86 68.06 Y
DFGN (Qiu et al., 2019) 56.31 69.69 Y
HGN (Fang et al., 2019) 66.07 79.36 Y
SAE (Tu et al., 2019a) 66.92 79.62 Y

RoBERTa-Para (top 5) 61.20 74.11 N

Table 3.2: The blind test set performance achieved by our model on WikiHop and
HotpotQA. On HotpotQA, all published works except DecompRC use the annotated
supporting facts as extra supervision, which makes them not directly comparable to
our model.

parison, we pick the same number of sentences ranked by prediction probability as

the (top-5) chain extractor.

QA performance on those datasets is shown in Table 3.3. We also train

and test our model on a hard subset of HotpotQA pointed out by (Chen and Dur-

rett, 2019). We see that the sequential model is more powerful than the

unordered model. On all datasets, our chain extractor leads to higher QA per-

formance than the unordered extractor. This holds true on HotpotQA-Hard, where

multi-hop reasoning is more strongly required. Even for a very powerful pre-trained

model like BERT, an explicitly sequential interaction between sentences is appar-

ently still useful for recovering related evidences. A more powerful sequential decoder

may further help with the those ”hard” examples. On WikiHop, the improvement

yield by our chain extractor is more marginal. One reason is that correlations have
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Dataset WikiHop HotpotQA HotpotQA-Hard

Acc %ans F1 SP F1 %ans F1 SP F1 %ans

Chain Extraction 72.4 72.7 69.7 63.7 90.3 56.0 59.2 78.7
Unordered Extraction 72.1 72.3 68.3 63.4 90.1 54.3 59.4 78.3

Table 3.3: The downstream QA performance of the chains generated by different
models on different datasets. The performance is evaluated by accuracy and F1
score respectively in WikiHop and HotpotQA dataset.

quite confident somewhat confident not confident

shortest oracle 34 / 77.7 7 / 68.6 9 / 70.6
extracted chain 37 / 81.1 7 / 64.2 6 / 50.0

annotated supporting facts 33 / 78.8 12 / 60.0 5 / 88.0

Table 3.4: The human evaluation on different evidence sets. For each row, 50
responses are bucketed based on the Turkers’ confidence ratings, and numbers denote
the answer F1 within that bucket.

been noted between the question and answer options (Chen and Durrett, 2019), so

that the quality of the extracted evidence contributes less to the models’ downstream

performance.

Chain extraction is near the performance limit on HotpotQA Given our

two-stage procedure, one thing we can ask is: with a “perfect” chain extractor, how

well would our question answering model do? We compare the performance of the

answer prediction trained with our extracted chains against that trained with the

human-annotated supporting facts. As we can see in Table 3.1, BERT achieves

75.4% F1 on the annotated supporting facts, which is only 5% higher than the

result achieved by our BERT-Para (top 5) extractor. A better oracle or stronger

chain extractor could help close this gap, but it is already fairly small considering

the headroom on the task overall. It also shows there exist other challenges to

address in the question answering piece, complementary to the proposed model, like

decomposing the question into different pieces (Min et al., 2019b) to further improve
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Beam 3
S1: The Laleli Mosque is an 18th-century Ottoman 
imperial mosque located in Laleli, Fatih, Istanbul, 
Turkey.  
S2:  The Esma Sultan Mansion located at Bosphorus 
in Ortaköy neighborhood of Istanbul, Turkey and 
named after its original owner Esma Sultan. 

Beam 1
S1: Kiss and Tell is a film starring then 17-year-old 
Shirley Temple as Corliss Archer . 
S2: Shirley Temple Black was an American actress, 
singer,  businesswoman, and diplomat …
S3: As an adult , she was named US ambassador to 
Ghana and also served as Chief of Protocol of the 
United States .

Question: What government position was held by the 
woman who portrayed Corliss Archer in the film Kiss 
and Tell ? 
Answer: Chief of Protocol

Beam 2
S1: Kiss and Tell is a film starring then 17-year-old 
Shirley Temple as Corliss Archer . 
S3: As an adult , she was named US ambassador to 
Ghana and also served as Chief of Protocol of the 
United States .

Question: Are the Laleli Mosque and Esma Sultan 
Mansion located in the same neighborhood?
Answer: No

Beam 1
S1: The Laleli Mosque is an 18th-century Ottoman 
imperial mosque located in Laleli, Fatih, Istanbul, 
Turkey. 

Beam 2
S1: The Esma Sultan Mansion located at Bosphorus 
in Ortaköy neighborhood of Istanbul, Turkey and 
named after its original owner Esma Sultan.

Question: 2014 S/ S is the debut album of a South 
Korean boy group that was formed by who?
Answer: YG Entertainment

Beam 1
S1: Winner ( Hangul : �� ), often stylized as 
WINNER, is a South Korean boy group formed in 
2013 by YG Entertainment and debuted in 2014.

Beam 2
S1: History ( Korean : ���� ) was a South 
Korean boy group formed by LOEN Entertainment 
in 2013 .

Beam 5
S1: 2014 S/S is the debut album of South Korean 
group WINNER .  
S2:  Winner ( Hangul : �� ), often stylized as 
WINNER, is a South Korean boy group formed in 
2013 by YG Entertainment and debuted in 2014.

(a) (b) (c)

Figure 3.3: Examples of different chains picked up by our model on the development
set of HotpotQA. The first shows a standard success case, the second shows success
on a less common question type, and the third shows a failure case.

the multi-hop QA performance.

Human evaluation We perform a human evaluation to compare the quality of

our extracted chains with our oracle as well as the annotated supporting facts. We

randomly pick 50 questions in HotpotQA and ask three Turkers to answer each

question based on those different evidences and rate their confidence in their an-

swer. We pick the Turkers’ answer which has the highest word overlap with the

actual answer (to control for Turkers who have simply misunderstood the question)

and assess their confidence in it. The statistics are shown in Table 3.4. Human

performance on the three sets is quite similar – they have similar confidence in their

answers, and their answers achieve similar F1 score. Although sometimes the short-

est oracle may directly jump to the answer and the extracted chains may contain

distractors, humans still seem to be able to reason effectively and give confidence in

their answers on these short chains. Since the difference between supporting facts

and our oracle on overall question answering performance is marginal, this is further
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evidence that the human-annotated supporting facts may not be needed.

We also dig into the chains picked up by our chain extractor to better un-

derstand what is captured by our model. Those examples are shown in Figure 3.3.

Seen from example (a), the model picks a perfect chain by first picking the sen-

tence containing “Kiss and Tell” and “Corliss Archer”, then finds the next sentence

through “Shirley Temple”. At the last step, it even finds a sentence via coreference.

This demonstrates that although we do not explicitly model the entity links, the

model still manages to learn to jump through entities in each hop.

Example (b) shows how our system can deal with comparison-style yes/no

questions. There are two entities, namely, “Laleli Mosque” and “Esma Sultan Man-

sion” in the question, each of which must be pursued. The chain extractor proposes

first a single-sentence chain about the first entity, then a single-sentence chain about

the second entity. When unioned together, our answer predictor can leverage both

of these together.

Example (c) shows that the extraction model picks a sentence containing

the answer but without justification, it directly jumps to the answer by the lexical

overlap of the two sentences and the shared entity “South Korean”. The chain picked

in the second beam is a distractor. There are also different distractors that contains

in other hypotheses, which we do not put in the example. The fifth hypothesis

contains the correct chain. This example shows that if the same entity appears

multiple time in the document, the chain extractor may be distracted and pick

unrelated distractors.

3.6 Related Work

Text-based multi-hop reasoning Memory Network based models (Weston et al.,

2015; Sukhbaatar et al., 2015; Kumar et al., 2016; Dhingra et al., 2016; Shen et al.,
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2017) try to solve multi-hop questions sequentially by using a memory cell which is

designed to gather information iteratively from different parts of the passage. How-

ever, these models do not form a discrete representation of reasoning. More recent

work including Entity-GCN (De Cao et al., 2018), MHQA-GRN (Song et al., 2018),

and BAG (Cao et al., 2019), form this problem as a search over entity graph, and

adapt graph convolution network (Kipf and Welling, 2017) to do reasoning. Such

models need to construct an entity graph both at training and test time, while we

only need such entities during training.

Coarse-to-fine question answering (Choi et al., 2017) combine a coarse, fast

model for selecting relevant sentences and a more expensive RNN for producing

the answer from those sentences. (Wang et al., 2019) apply distant supervision to

generate labels and uses them to train a neural sentence extractor. Another line

of work proposes to use the answer prediction score as supervision to the sentence

extractor (Wang et al., 2018b; Indurthi et al., 2018; Min et al., 2018). A recent

line of works on open-domain multi-hop QA (Feldman and El-Yaniv, 2019; Das

et al., 2019; Qi et al., 2019; Godbole et al., 2019) also adopt the idea of forming

queries in an iterative way to select the most relevant documents regarding the

question. Our model differs from those works in that it operates in a more fine-

grained way: it actually shows how the answer is derived rather than just retrieving

relevant documents. This represents a step towards building explainable models

that represent the reasoning process more explicitly (Trivedi et al., 2019; Jiang

et al., 2019).
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3.7 Chapter Summary

In this chapter, we learn to extract reasoning chains to answer multi-hop

reasoning questions. Experimental results show that the chains are as effective as

human annotations, and achieve strong performance on two large datasets. However,

as remarked in past work (Chen and Durrett, 2019; Min et al., 2019a), there are

several aspects of HotpotQA and WikiHop which make them require multi-hop

reasoning less strongly than they otherwise might. As more challenging QA datasets

are built based on lessons learned from these, we feel that reasoning in a more

explicit way and properties of chain-like representations will be critical. This chapter

represents the first step towards this goal of improving QA systems in such settings.
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Chapter 4

Question Answering through Sub-part Alignment

This chapter is based on Chen and Durrett (2021).1

4.1 Introduction

As mentioned in Chapter 2, current text-based question answering models

learned end-to-end often rely on spurious patterns between the question and context

rather than learning the desired behavior. In this chapter, we explore a model for

text-based question answering through sub-part alignment. The core idea behind

our method is that if every aspect of the question is well supported by the answer

context, then the answer produced should be trustable (Lewis and Fan, 2018); if

not, we suspect that the model is making an incorrect prediction. The sub-parts

we use are predicates and arguments from Semantic Role Labeling (Palmer et al.,

2005), which we found to be a good semantic representation for the types of ques-

tions we studied. We then view the question answering procedure as a constrained

graph alignment problem (Sachan and Xing, 2016), where the nodes represent the

predicates and arguments and the edges are formed by relations between them (e.g.

predicate-argument relations and coreference relations). Our goal is to align each

1Jifan Chen and Greg Durrett. 2021. Robust Question Answering Through Sub-part Alignment.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1251–1263, Online. Association
for Computational Linguistics.
Jifan Chen initialized the research project, conducted experiments, analyzed data and wrote the
paper.
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  What day was Super Bowl 50 played on?

The game was played on February 7, 2016 …

Super Bowl 50 was an American football game to determine the champion …

Adversarial sentence

Sentence with correct answer

Question

The Champ Bowl was played on the day of August 18, 1991

Figure 4.1: A typical example on adversarial SQuAD. By breaking the question and
context down into smaller units, we can expose the incorrect entity match and use
explicit constraints to fix it. The solid lines denote edges from SRL and coreference,
and the dotted lines denote the possible alignments between the arguments (desired
in red, actual in black).

node in the question to a counterpart in the context, respecting some loose con-

straints, and in the end the context node aligned to the wh-span should ideally

contain the answer. Then we can use a standard QA model to extract the answer.

Figure 4.1 shows an adversarial example of SQuAD (Jia and Liang, 2017)

where a standard BERT QA model predicts the wrong answer August 18, 1991. In

order to choose the adversarial answer, our model must explicitly align Super Bowl

50 to Champ Bowl. Even if the model still makes this mistake, this error is now

exposed directly, making it easier to interpret and subsequently patch.

In our alignment model, each pair of aligned nodes is scored using BERT

(Devlin et al., 2019). These alignment scores are then plugged into a beam search

inference procedure to perform the constrained graph alignment. This structured

alignment model can be trained as a structured support vector machine (SSVM) to

minimize alignment error with heuristically-derived oracle alignments. The align-

ment scores are computed in a black-box way, so these individual decisions aren’t

easily explainable (Jain and Wallace, 2019); however, the score of an answer is di-

rectly a sum of the score of each aligned piece, making this structured prediction
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phase of the model faithful by construction (Jain et al., 2020). Critically, this al-

lows us to understand what parts of the alignment are responsible for a prediction,

and if needed, constrain the behavior of the alignment to correct certain types of

errors. We view this interpretability and extensibility with constraints as one of the

principal advantages of our model.

We train our model on the SQuAD-1.1 dataset (Rajpurkar et al., 2016b)

and evaluate on SQuAD Adversarial (Jia and Liang, 2017), Universal Triggers on

SQuAD (Wallace et al., 2019), and several out-of-domain datasets fromMRQA (Fisch

et al., 2019). Our framework allows us to incorporate natural constraints on align-

ment scores to improve zero-shot performance under these distribution shifts, as

well as explore coverage-accuracy tradeoffs in these settings. Finally, our model’s

alignments serve as “explanations” for its prediction, allowing us to ask why certain

predictions are made over others and examine scores for hypothetical other answers

the model could give.

5. on the first page of the chapter[s] with previously published material,

please include a footnote giving the full citation of the published version[s] of [those]

chapter[s] (even if they are cited elsewhere in the paper) as well as a brief statement

about your personal contribution to [them]. The contribution statement might

include, for example, information about your contribution to designing research,

performing research, contributing new reagents or analytic tools, analyzing data,

writing the dissertation or other area-specific classification of research activities.

In the following sections, we describe the details of the proposed approach

and the experiments.
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was

Super Bowl 50

determine

An American 
football game

the champion of 
the NFL

The game

played

on February 
7, 2016 

Super Bowl 50

played

what day

Question:  What day was Super Bowl 50 played on?             

Context: Super Bowl 50 was an American football game to determine the 
champion of the National Football League (NFL) for the 2015 season … 
The game was played on February 7, 2016 …

coref

nested 
structure

ARG0ARG1

ARG0

ARG1ARG-TMP

ARG1

ARG-TMP

Figure 4.2: Example of our question-passage graph. Edges come from SRL, coref-
erence (Super Bowl 50—the game), and postprocessing of predicates nested inside
arguments (was—determine). The oracle alignment (Section 4.3.4) is shown with
dotted lines. Blue nodes are predicates and orange ones are arguments.

4.2 QA as Graph Alignment

Our approach critically relies on the ability to decompose questions and

answers into a graph over text spans. Our model can in principle work for a range

of syntactic and semantic structures, including dependency parsing, SRL (Palmer

et al., 2005), and AMR (Banarescu et al., 2013). We use SRL in this work and

augment it with coreference links, due to the high performance and flexibility of

current SRL systems (Peters et al., 2018). Throughout this work, we use the BERT-

based SRL system from Shi and Lin (2019) and the SpanBERT-based coreference

system from Joshi et al. (2020).

An example graph we construct is shown in Figure 4.2. Both the question

and context are represented as graphs where the nodes consist of predicates and

arguments. Edges are undirected and connect each predicate and its corresponding
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arguments. Since SRL only captures the predicate-argument relations within one

sentence, we add coreference edges as well: if two arguments are in the same coref-

erence cluster, we add an edge between them. Finally, in certain cases involving

verbal or clausal arguments, there might exist nested structures where an argument

to one predicate contains a separate predicate-argument structure. In this case, we

remove the larger argument and add an edge directly between the two predicates.

This is shown by the edge from was to determine (labeled as nested structure) in

Figure 4.2). Breaking down such large arguments helps avoid ambiguity during

alignment.

Aligning questions and contexts has proven useful for question answering in

previous work (Sachan et al., 2015; Sachan and Xing, 2016; Khashabi et al., 2018b).

Our framework differs from theirs in that it incorporates a much stronger alignment

model (BERT), allowing us to relax the alignment constraints and build a more

flexible, higher-coverage model.

Alignment Constraints Once we have the constructed graph, we can align each

node in the question to its counterpart in the context graph. In this work, we control

the alignment behavior by placing explicit constraints on this process. We place a

locality constraint on the alignment: adjacent pairs of question nodes must align

no more than k nodes apart in the context. k = 1 means we are aligning the

question to a connected sub-graph in the context, k = ∞ means we can align to a

node anywhere in a connected component in the context graph. In our experiments,

we set k = 3. In section 4.5, we will discuss more constraints. Altogether, these

constraints define a set A of possible alignments.
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4.3 Graph Alignment Model

4.3.1 Model

Let T represent the text of the context and question concatenated together.

Assume a decomposed question graph Q with nodes q1, q2, . . . , qm represented by

vectors q1,q2, . . . ,qm, and a decomposed context C with nodes c1, . . . , cn repre-

sented by vectors c1, . . . , cn. Let a = (a1, . . . , am) be an alignment of question

nodes to context nodes, where ai ∈ {1, . . . , n} indicates the alignment of the ith

question node. Each question node is aligned to exactly one context node, and

multiple question nodes can align to the same context node.

We frame question answering as a maximization of an alignment scoring

function over possible alignments: maxa∈A f(a,Q,C,T). In this work, we sim-

ply choose f to be the sum over the scores of all alignment pairs f(a,Q,C,T) =∑n
i=1 S(qi, cai ,T), where S(q, c,T) denotes the alignment score between a question

node q and a context node c. This function relies on BERT (Devlin et al., 2019) to

compute embeddings of the question and context nodes and will be described more

precisely in what follows. We will train this model as a structured support vector

machine (SSVM), described in Section 4.3.2.

Scoring Our alignment scoring process is shown in Figure 4.3. We first concate-

nate the question text with the document text into T and then encode them using

the pre-trained BERT encoder. We then compute a representation for each node

in the question and context using a span extractor, which in our case is the self-

attentive pooling layer of Lee et al. (2017). The node representation in the question

can be computed in the same way. Then the score of a node pair is computed as a

dot product S(q, c,T) = q · c.
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Figure 4.3: Alignment scoring. Here the alignment score is computed by the dot
product between span representations of question and context nodes. The final
alignment score (not shown) is the sum of these edge scores.

Answer Extraction Our model so far produces an alignment between question

nodes and context nodes. We assume that one question node contains a wh-word

and this node aligns to the context node containing the answer.2 Ideally, we can use

this aligned node to extract the actual answer. However, in practice, the aligned

context node may only contain part of the answer and in some cases answering

the question only based the aligned context node can be ambiguous. We therefore

use the sentence containing the wh-aligned context node as the “new” context and

use a standard BERT QA model to extract the actual answer post-hoc. In the

experiments, we also show the performance of our model by only use the aligned

context node without the sentence, which is only slightly worse.

4.3.2 Training

We train our model as an instance of a structured support vector machine

(SSVM). Ignoring the regularization term, this objective can be viewed as a sum

over the training data of a structured hinge loss with the following formulation:

2We discuss what to do with other questions in Section 4.4.1.
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N∑
i=1

max(0,max
a∈A

[f(a,Qi,Ci,Ti) + Ham(a,a∗i )]

− f(a∗i ,Qi,Ci,Ti)])

where a denotes the predicted alignment, a∗i is the oracle alignment for the ith

training example, and Ham is the Hamming loss between these two. To get the

predicted alignment a during training, we need to run loss-augmented inference as

we will discuss in the next section. When computing the alignment for node j, if

aj ̸= a∗j , we add 1 to the alignment score to account for the loss term in the above

equation. Intuitively, this objective requires the score of the gold prediction to be

larger than any other hypothesis a by a margin of Ham(a,a∗).

When training our system, we first do several iterations of local training

where we treat each alignment decision as an independent prediction, imposing

no constraints, and optimize log loss over this set of independent decisions. The

local training helps the global training converge more quickly and achieve better

performance.

4.3.3 Inference

Since our alignment constraints do not strongly restrict the space of possible

alignments (e.g., by enforcing a one-to-one alignment with a connected subgraph),

searching over all valid alignments is intractable. We therefore use beam search to

find the approximate highest-scoring alignment: (1) Initialize the beam with top b

highest aligned node pairs, where b is the beam size. (2) For each hypothesis (partial

alignment) in the beam, compute a set of reachable nodes based on the currently

aligned pairs under the locality constraint. (3) Extend the current hypothesis by

adding each of these possible alignments in turn and accumulating its score. Beam

search continues until all the nodes in the question are aligned.
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An example of one step of beam hypothesis expansion with locality con-

straint k = 2 is shown in Figure 4.4. In this state, the two played nodes are already

aligned. In any valid alignment, the neighbors of the played question node must be

aligned within 2 nodes of the played context node to respect the locality constraint.

We therefore only consider aligning to the game, on Feb 7, 2016 and Super Bowl

50. The alignment scores between these reachable nodes and the remaining nodes

in the question are computed and used to extend the beam hypotheses.

Note that this inference procedure allows us to easily incorporate other con-

straints as well. For instance, we could require a “hard” match on entity nodes,

meaning that two nodes containing entities can only align if they share entities.

With this constraint, as shown in the figure, Super Bowl 50 can never be aligned to

on February 7, 2016. We discuss such constraints more in Section 4.5.

4.3.4 Oracle Construction

Training assumes the existence of gold alignments a∗, which must be con-

structed via an oracle given the ground truth answer. This process involves running

inference based on heuristically computed alignment scores Soracle, where Soracle(q, c)

is computed by the Jaccard similarity between a question node q and a context node

c. Instead of initializing the beam with the b best alignment pairs, we first align the

wh-argument in the question with the node(s) containing the answer in the context

and then initialize the beam with those alignment pairs.

If the Jaccard similarity between a question node and all other context nodes

is zero, we set these as unaligned nodes. During training, our approach can gracefully

handle unaligned nodes by treating these as latent variables in structured SVM: the

gold “target” is then highest scoring set of alignments consistent with the gold

supervision. This involves running a second decoding step on each example to
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Figure 4.4: An example of constraints during beam search. The blue node played is
already aligned. The orange nodes denote all the valid context nodes that can be
aligned to for both Super Bowl 50 and what day in the next step of inference given
the locality constraint with k = 2.

impute the values of these latent variables for the gold alignment.

4.4 Experiments: Adversarial and Cross-domain Robustness

Our focus in this work is primarily robustness, interpretability, and con-

trollability of our model. We focus on adapting to challenging settings in order to

“stress test” our approach.

4.4.1 Experimental Settings

For all experiments, we train our model only on the English SQuAD-1.1

dataset (Rajpurkar et al., 2016b) and examine how well it can generalize to adver-

sarial and out-of-domain settings with minimal modification, using no fine-tuning

on new data and no data augmentation that would capture useful transformations.

We evaluate on the addSent and addOneSent proposed by Jia and Liang (2017),

and the Universal Triggers on SQuAD (Wallace et al., 2019). We also test the

performance of our SQuAD-trained models in zero-shot adaptation to new English

domains, namely Natural Questions (Kwiatkowski et al., 2019), NewsQA (Trischler

et al., 2017), BioASQ (Tsatsaronis et al., 2015) and TextbookQA (Kembhavi et al.,
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SQuAD normal SQuAD addSent NQ NewsQA BioASQ TBQA

ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1

Sub-part Alignment 84.7 84.5 49.5 50.5 65.8 61.5 49.3 48.1 63.5 53.4 35.1 38.4

− global train+inf 85.8 85.2 45.0 46.8 65.9 62.3 48.9 47.1 62.5 52.1 31.9 34.6
− ans from full sent 84.7 81.8 49.5 46.7 65.8 57.8 49.3 45.0 63.5 51.1 35.1 37.5

BERT QA − 87.8 − 39.2 − 59.4 − 48.5 − 52.4 − 25.3

Table 4.1: The performance and ablations of our proposed model on the develop-
ment sets of SQuAD, adversarial SQuAD, and four out-of-domain datasets. Our
Sub-part Alignment model uses both global training and inference as discussed in
Section 4.3.2-4.3.3. − global train+inf denotes the locally trained and evaluated
model. − ans from full sent denotes extracting the answer using only the wh-
aligned node. ans in wh denotes the percentage of answers found in the span
aligned to the wh-span, and F1 denotes the standard QA performance measure.
Here for addSent, we only consider the adversarial examples. Note also that this
evaluation is only on wh-questions.

2017), taken from the MRQA shared task (Fisch et al., 2019). Our motivation here

was to focus on text from a variety of domains where transferred SQuAD models

may at least behave credibly. We excluded, for example, HotpotQA (Yang et al.,

2018) and DROP (Dua et al., 2019), since these are so far out-of-domain from the

perspective of SQuAD that we do not see them as a realistic cross-domain target.

We compare primarily against a standard BERT QA system (Devlin et al.,

2019). We also investigate a local version of our model, where we only try to align

each node in the question to its oracle, without any global training (− global

train + inf), which can still perform reasonably because BERT embeds the whole

question and context. When comparing variants of our proposed model, we only

consider the questions that have a valid SRL parse and have a wh word (results

in Table 4.1, Table 4.2, and Figure 4.5). When comparing with prior systems, for

questions that do not have a valid SRL parse or wh word, we back off to the standard

BERT QA system (results in Table 4.3).

We set the beam size b = 20 for the constrained alignment. We use BERT-base-uncased
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for all of our experiments, and fine-tune the model using Adam (Kingma and Ba,

2014) with learning rate set to 2e-5. Our preprocessing uses a SpanBERT-based

coreference system (Joshi et al., 2020) and a BERT-based SRL system (Shi and Lin,

2019). We limit the length of the context to 512 tokens. For our global model,

we initialize the weights using a locally trained model and then fine-tune using the

SSVM loss. We find the initialization helps the model converge much faster and it

achieves better performance than learning from scratch. When doing inference, we

set the locality constraint k = 3.

4.4.2 Results on Challenging Settings

The results3 on the normal SQuAD development set and other challenging

sets are shown in Table 4.1.

Our model is not as good as BERT QA on normal SQuAD but out-

performs it in challenging settings. Compared to the BERT QA model, our

model is fitting a different data distribution (learning a constrained structure) which

makes the task harder. This kind of training scheme does cause some performance

drop on normal SQuAD, but we can see that it consistently improves the F1 on the

adversarial (on SQuAD addSent, a 11.3 F1 improvement over BERT QA) and cross-

domain datasets except NewsQA (where it is 0.4 F1 worse). This demonstrates that

learning the alignment helps improve the robustness of our model.

Global training and inference improve performance in adversarial set-

tings, despite having no effect in-domain. Normal SQuAD is a relatively easy

3Here we omit SQuAD addOneSent for simplicity, since the performance on it has the same trend
as SQuAD addSent. Refer to the original paper (Chen and Durrett, 2021) for the results on SQuAD

addOneSent.
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dataset and the answer for most questions can be found by simple lexical matching

between the question and context. From the ablation of − global train+inf, we

can see that more than 80% of answers can be located by matching the wh-argument.

We also observe a similar pattern on Natural Questions.4 However, as there are very

strong distractors in SQuAD addSent, the wh-argument matching is unreliable. In

such situations, the constraints imposed by other argument alignments in the ques-

tion are useful to correct the wrong wh-alignment through global inference. We see

that the global training plus inference is consistently better than the local version

on all other datasets.

Using the strict wh answer extraction still gives strong performance

From the ablation of − ans from full sent, we observe that our “strictest” system

that extracts the answer only using the wh-aligned node is only worse by 3-4 points

of F1 on most datasets. Using the full sentence gives the system more context and

maximal flexibility, and allows it to go beyond the argument spans introduced by

SRL. We believe that better semantic representations tailored for question answer-

ing (Lamm et al., 2020) will help further improvement in this regard.

4.4.3 Results on Universal Triggers

The results on subsets of the universal triggers dataset are shown in Ta-

ble 4.2. We see that every trigger results in a bigger performance drop on BERT

QA than our model. Our model is much more stable, especially on who and where

question types, in which case the performance only drops by around 2%. Several fac-

tors may contribute to the stability: (1) The triggers are ungrammatical and their

4For the MRQA task, only the paragraph containing the short answer of NQ is provided as
context, which eliminates many distractors. In such cases, those NQ questions have a similar
distribution as those in SQuAD-1.1, and similarly make no use of the global alignment.
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Sub-part Alignment BERT
Type Normal Trigger∆ Normal Trigger∆

who 84.7 82.7 2.0 87.1 78.5 8.6
why 75.1 71.3 3.8 76.5 59.7 16.8
when 88.4 82.8 5.6 90.3 80.9 9.4
where 83.6 81.4 2.2 84.1 75.8 8.3

Table 4.2: The performance of our model on the Universal Triggers on SQuAD
dataset (Wallace et al., 2019). Compared with BERT, our model sees smaller per-
formance drops on all triggers.

Normal addSent addOneSent

overall adv ∆ overall adv ∆

R.M-Reader (Hu et al., 2018) 86.6 58.5 − 31.1 67.0 − 19.6
KAR (Wang and Jiang, 2018) 83.5 60.1 − 23.4 72.3 − 11.2

BERT + Adv (Yang et al., 2019b) 92.4 63.5 − 28.9 72.5 − 19.9

Our BERT 87.8 61.8 39.2 27.0 70.4 52.6 18.4
Sub-part Alignment* 84.7 65.8 47.1 18.9 72.8 60.1 11.9

Table 4.3: Performance of our systems compared to the literature on both addSent

and addOneSent. Here, overall denotes the performance on the full adversarial set,
adv denotes the performance on the adversarial samples alone. ∆ represents the
gap between the normal SQuAD and the overall performance on adversarial set.

arguments often contain seemingly random words, which are likely to get lower

alignment scores. (2) Because our model is structured and trained to align all parts

of the question, adversarial attacks on span-based question answering models may

not fool our model as effectively as they do BERT.

4.4.4 Comparison to Existing Systems

In Table 4.3, we compare our best model (not using constraints from Sec-

tion 4.5) with existing adversarial QA models in the literature. We note that the

performance of our model on SQuAD-1.1 data is relatively lower compared to those

methods, yet we achieve the best overall performance; we trade some in-distribution
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performance to improve the model’s robustness. We also see that our model achieves

the smallest normal vs. adversarial gap on addSent and addOneSent, which demon-

strates that our constrained alignment process can enhance the robustness of the

model compared to prior methods like adversarial training (Yang et al., 2019b) or

explicit knowledge integration (Wang and Jiang, 2018).

4.5 Generalizing by Alignment Constraints

One advantage of our explicit alignments is that we can understand and

inspect the model’s behavior more deeply. This structure also allows us to add

constraints to our model to prohibit certain behaviors, which can be used to adapt

our model to adversarial settings.

In this section, we explore how two types of constraints enable us to reject

examples the model is less confident about. Hard constraints can enable us to reject

questions where the model finds no admissible answers. Soft constraints allow us to

set a confidence threshold for when to return our answer. We focus on evaluating

our model’s accuracy at various coverage points, the so-called selective question

answering setting (Kamath et al., 2020).

Constraints on Entity Matches By examining addSent and addOneSent, we

find the model is typically fooled when the nodes containing entities in the question

align to “adversarial” entity nodes. An intuitive constraint we can place on the

alignment is that we require a hard entity match—for each argument in the question,

if it contains entities, it can only align to nodes in the context sharing exact the

same entities.
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Constraints on Alignment Scores The hard entity constraint is quite inflexible

and does not generalize well, for example to questions that do not contain a entity.

However, the alignment scores we get during inference time are good indicators

of how well a specific node pair is aligned. For a correct alignment, every pair

should get a reasonable alignment score. However, if an alignment is incorrect, there

should exist some bad alignment pairs which have lower scores than the others. We

can reject those samples by finding bad alignment pairs, which both improves the

precision of our model and also serves as a kind of explanation as to why our model

makes its predictions.

We propose to use a simple heuristic to identify the bad alignment pairs. We

first find the max score Smax over all possible alignment pairs for a sample, then for

each alignment pair (qi, cj) of the prediction, we calculate the worst alignment gap

(WAG) g = min(q,c)∈a(Smax − S(q, c)). If g is beyond some threshold, it indicates

that alignment pair is not reliable.5

Comparison to BERT Desai and Durrett (2020) show that pre-trained trans-

formers like BERT are well-calibrated on a range of tasks. Since we are rejecting

the unreliable predictions to improve the precision of our model, we reject the same

number of examples for the baseline using the posterior probability of the BERT

QA predictions. To be specific, we rank the predictions of all examples by the sum

of start and end posterior probabilities and compute the F1 score on the top k

predictions.

5The reason we look at differences from the max alignment is to calibrate the scores based on
what “typical” scores look like for that instance. We find that these are on different scales across
different instances, so the gap is more useful than an absolute threshold.
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Figure 4.5: The F1-coverage curve of our model compared with BERT QA. If our
model can choose to answer only the k percentage of examples it’s most confident
about (the coverage), what F1 does it achieve? For our model, the confidence is
represented by our “worst alignment gap” (WAG) metric. Smaller WAG indicates
higher confidence. For BERT, the confidence is represented by the posterior proba-
bility.

4.5.1 Results on Constrained Alignment

On Adversarial SQuAD, the confidence scores of a normal BERT QA

model do not align with its performance. From Figure 4.5, we find that the

highest-confidence answers from BERT (i.e., in low coverage settings) are very in-

accurate. One possible explanation of this phenomenon is that BERT overfits to

the pattern of lexical overlap, and is actually most confident on adversarial exam-

ples highly similar to the input. In general, BERT’s confidence is not an effective

heuristic for increasing accuracy.

Hard entity constraints improve the precision but are not flexible. Fig-

ure 4.5 also shows that by adding a hard entity constraint, we achieve a 71.4 F1 score

which is an 8.6 improvement over the unconstrained model at a cost of only 60%

of samples being covered. Under the hard entity constraint, the model is not able
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Question: Who led the North American Huguenot colonial expedition?

Oracle alignment: Barred by the government from settling in New 
France, Huguenots led by Jessé de Forest, sailed to North America in 1624

Adversarial alignment:Jeff Dean led the South British Acadian colonial 
expedition.

Question: Where did Super Bowl 50 take place?

Oracle alignment:Super Bowl 50 was …, The game was played on 
February 7, 2016, at Levi's Stadium in the San Francisco Bay Area

Adversarial alignment: Champ Bowl 40 took place in Chicago.

22.6 29.3 16.9

32.3 35.5 13.0

14.0

10.4

28.5

19.1

25.6

19.1

16.4

36.6

(c) (d)

Question:  Who translated and printed Luther’s 95 These?

Oracle alignment: … friends of Luther translated the 95 Theses from Latin into 
German and printed and widely copied them.

Adversarial alignment: Jeff Dean translated and printed Vandross's 98 These.

20.924.2 23.1 26.5

26.824.9 25.5 20.4
Question:  Who created an engine using high pressure steam in 1801?

Oracle alignment: Around 1800 Richard Trevithick and, separately, 
Oliver Evans in 1801 introduced engines using high-pressure steam;

Adversarial alignment: Jeff Dean created an engine using low pressure steam 
in 1790.

24.521.0 23.1 22.721.2 25.3

27.324.8 22.9 19.724.5 23.8

(a) (b)

Figure 4.6: Examples of alignment of our model on addOneSent: both the correct
alignment and also adversarial alignment are shown. The numbers are the actual
alignment scores of the model’s output. Dashed arrows denote the least reliable
alignments and bolder arrows denote the alignment that contribute more to the
model’s prediction.

to align to the nodes in the adversarial sentence, but the performance is still lower

than what it achieves on normal SQuAD. We examine some of the error cases and

find that for a certain number of samples, there is no path from the node satisfying

the constraint to the node containing the answer (e.g. they hold a more complex

discourse relation while we only consider coreference as cross-sentence relation). In

such cases, our method cannot find the answer.

A smaller worst alignment gap indicates better performance. As opposed

to BERT, our alignment score is well calibrated on those adversarial examples. This

substantiates our claim that those learned alignment scores are good indicators of

how trustful alignment pairs are. Also, we see that when the coverage is the same as

the entity constraint, the performance under the alignment score constraint is even

better. The alignment constraints are simultaneously more flexible than the hard

constraint and also more effective.
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4.5.2 Case Study on Alignment Scores

In this section, we give several examples of the alignment and demonstrate

how those scores can act as an explanation to the model’s behavior. Those examples

are shown in Figure 4.6.

As shown by the dashed arrows, all adversarial alignments contain at least

one alignment with significantly lower alignment score. The model is overconfident

towards the other alignments with a high lexical overlap as shown by the bold arrows.

These overconfident alignments also show that the predicate alignment learned on

SQuAD-1.1 is not reliable. To further improve the quality of predicate alignment,

either a more powerful training set or a new predicate alignment module is needed.

Crucially, with these scores, it is easy for us to interpret our model’s behavior.

For instance, in example (a), the very confident predicate alignment forces Luther’s

95 Theses to have no choice but align to Jeff Dean, which is unrelated. Because

we have alignments over the sub-parts of a question, we can inspect our model’s

behavior in a way that the normal BERT QA model does not allow. We believe

that this type of debuggability provides a path forward for building stronger QA

systems in high-stakes settings.

4.6 Related Work

Adversarial Attacks in NLP. Adversarial attacks in NLP may take the form of

adding sentences like adversarial SQuAD (Jia and Liang, 2017), universal adversarial

triggers (Wallace et al., 2019), or sentence perturbations: Ribeiro et al. (2018)

propose deriving transformation rules, Ebrahimi et al. (2018b) use character-level

flips, and Iyyer et al. (2018) use controlled paraphrase generation. The highly

structured nature of our approach makes it more robust to such attacks and provides

hooks to constrain the system to improve performance further.

67



Neural module networks. Neural module networks are a class of models that

decompose a task into several sub-tasks, addressed by independent neural modules,

which make the model more robust and interpretable (Andreas et al., 2016; Hu et al.,

2017; Cirik et al., 2018; Hudson and Manning, 2018; Jiang and Bansal, 2019). Like

these, our model is trained end-to-end, but our approach uses structured prediction

and a static network structure rather than dynamically assembling a network on the

fly. Our approach could be further improved by devising additional modules with

distinct parameters, particularly if these are trained on other datasets to integrate

additional semantic constraints.

Unanswerable questions Our approach rejects some questions as unanswerable.

This is similar to the idea of unanswerable questions in SQuAD 2.0 (Rajpurkar

et al., 2018), which have been studied in other systems (Hu et al., 2019). However,

techniques to reject these questions differ substantially from ours – many SQuAD

2.0 questions require not only a correct alignment between the question and context

but also need to model the relationship between arguments, which is beyond the

scope of this work and could be a promising future work. Also, the setting we

consider here is more challenging, as we do not assume access to such questions at

training time.

Graph-based QA Khashabi et al. (2018b) propose to answer questions through

a similar graph alignment using a wide range of semantic abstractions of the text.

Our model differs in two ways: (1) Our alignment model is trained end-to-end while

their system mainly uses off-the-shelf natural language modules. (2) Our alignment

is formed as node pair alignment rather than finding an optimal sub-graph, which is

a much more constrained and less flexible formalism. Sachan et al. (2015); Sachan

and Xing (2016) propose to use a latent alignment structure most similar to ours.
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However, our model supports a more flexible alignment procedure than theirs does,

and can generalize to handle a wider range of questions and datasets.

Past work has also decomposed complex questions to answer them more

effectively (Talmor and Berant, 2018; Min et al., 2019b; Perez et al., 2020). Wolfson

et al. (2020) further introduce a Question Decomposition Meaning Representation

(QDMR) to explicitly model this process. However, the questions they answer,

such as those from HotpotQA (Yang et al., 2018), are fundamentally designed to be

multi-part and so are easily decomposed, whereas the questions we consider are not.

Our model theoretically could be extended to leverage these question decomposition

forms as well.

4.7 Chapter Summary

In this chapter, we presented a model for question answering through sub-

part alignment. By structuring our model around explicit alignment scoring, we

show that our approach can generalize better to other domains. Having alignments

also makes it possible to filter out bad model predictions (through score constraints)

and interpret the model’s behavior (by inspecting the scores).
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Chapter 5

Verify QA Systems’ Predictions via NLI Models

This chapter is based on Chen et al. (2021).1

5.1 Introduction

Recent question answering systems perform well on benchmark datasets (Seo

et al., 2017; Devlin et al., 2019; Guu et al., 2020), but these models often lack the

ability to verify whether an answer is correct or not; they can correctly reject some

unanswerable questions (Rajpurkar et al., 2018; Kwiatkowski et al., 2019; Asai and

Choi, 2021), but are not always well-calibrated to spot spurious answers under

distribution shifts (Jia and Liang, 2017; Kamath et al., 2020). Natural language

inference (NLI) (Dagan et al., 2005; Bowman et al., 2015) suggests one way to

address this shortcoming: logical entailment provides a more rigorous notion for

when a hypothesis statement is entailed by a premise statement. By viewing the

answer sentence in context as the premise, paired with the question and its proposed

answer as a hypothesis (see Figure 5.1), we can use NLI systems to verify that the

answer proposed by a QA model satisfies the entailment criterion (Harabagiu and

Hickl, 2006; Richardson et al., 2013).

1Jifan Chen, Eunsol Choi, and Greg Durrett. 2021. Can NLI Models Verify QA Systems’
Predictions?. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
3841–3854, Punta Cana, Dominican Republic. Association for Computational Linguistics.
Jifan Chen initialized the research project, conducted experiments, analyzed data and wrote the
paper.
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Context: The first season of the fantasy comedy television series The Good 
Place, created by Michael Schur, aired … The series focuses on Eleanor 
Shellstrop (Kristen Bell) , a woman who wakes up in the afterlife and is 
introduced by Michael (Ted Danson) to a Heaven-like utopia he designed …

Question: Who plays the bad guy in the Good Place?
Answer: Ted Danson

Premise: The series The Good Place focuses on Eleanor Shellstrop (Kristen 
Bell) , a woman who wakes up in the afterlife and is introduced by Michael 
(Ted Danson) to a Heaven-like utopia he designed.

Hypothesis: Ted Danson plays the bad guy in The Good Place.

Decontextualization of the answer sentence

Question conversion to a declarative statement

NLI Model Answer is correct, but information about Michael 
being the bad guy is missing in the premise

Not entailed, answer rejected

Figure 5.1: An example from the Natural Questions dataset demonstrating how to
convert a (question, context, answer) triplet to a (premise, hypothesis) pair. The
underlined text denotes the sentence containing the answer Ted Danson, which is
then decontextualized by replacing The series with The series The Good Place.
Although Ted Danson is the right answer, an NLI model determines that the hy-
pothesis is not entailed by the premise due to missing information.

Prior work has paved the way for this application of NLI. Pieces of our

pipeline like converting a question to a declarative sentence (Wang et al., 2018a;

Demszky et al., 2018) and reformulating an answer sentence to stand on its own

(Choi et al., 2021) have been explored. Moreover, an abundance of NLI datasets

(Bowman et al., 2015; Williams et al., 2018b) and related fact verification datasets (Thorne

et al., 2018) provide ample resources to train reliable models. We draw on these

tools to enable NLI models to verify the answers from QA systems, and critically
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investigate the benefits and pitfalls of such a formulation.

Mapping QA to NLI enables us to exploit both NLI and QA datasets for

answer verification, but as Figure 5.1 shows, it relies on a pipeline for mapping a

(question, answer, context) triplet to a (premise, hypothesis) NLI pair. We imple-

ment a strong pipeline here: we extract a concise yet sufficient premise through

decontextualization (Choi et al., 2021), which rewrites a single sentence from a

document such that it can retain the semantics when presented alone without the

document. We improve a prior question conversion model (Demszky et al., 2018)

with a stronger pre-trained seq2seq model, namely T5 (Raffel et al., 2020b). Our

experimental results show that both steps are critical for mapping QA to NLI. Fur-

thermore, our error analysis shows that these two steps of the process are quite

reliable and only account for a small fraction of the NLI verification model’s errors.

Our evaluation focuses on two factors. First, can NLI models be used to

boost QA models’ confidence in their decisions? Second, how does the entail-

ment criterion of NLI, which is defined somewhat coarsely by crowd annotators

(Williams et al., 2018b), transfer to QA? We train a QA model on Natural Ques-

tions (Kwiatkowski et al., 2019, NQ) and test whether using an NLI model helps it

better generalize to four out-of-domain datasets from the MRQA shared task (Fisch

et al., 2019). We show that by using the question converter, the decontextualiza-

tion model, and the automatically generated NLI pairs from QA datasets, our NLI

model improves the prediction confidence over the base QA model across

five different datasets.2 For example, in the selective QA setting (Kamath et al.,

2020), our approach improves the F1 score of the base QA model from 81.6 to 87.1

when giving answers on the 20% of questions it is most confident about. Our pipeline

2The converted NLI datasets, the question converter, the decontextualizer, and the NLI model
are available at https://github.com/jifan-chen/QA-Verification-Via-NLI
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further identifies the cases where there exists an information mismatch between the

premise and the hypothesis. We find that existing QA datasets encourage models

to return answers when the context does not actually contain sufficient information,

suggesting that fully verifying the answers is a challenging endeavor.

In the following sections, we describe the background and implementation

of the proposed approach.

5.2 Using NLI as a QA Verifier

5.2.1 Background and Motivation

Using entailment for QA is an old idea; our high-level approach resembles

the approach discussed in Harabagiu and Hickl (2006). Yet, the execution of this

idea differs substantially as we exploit modern neural systems and newly proposed

annotated data for passage and question reformulation. Richardson et al. (2013)

explore a similar pipeline, but find that it works quite poorly, possibly due to the low

performance of entailment systems at the time (Stern and Dagan, 2011). We believe

that a combination of recent advances in natural language generation (Demszky

et al., 2018; Choi et al., 2021) and strong models for NLI (Liu et al., 2019) equip us

to re-evaluate this approach.

Moreover, the focus of other recent work in this space has been on trans-

forming QA datasets into NLI datasets, which is a different end. Demszky et al.

(2018) and Mishra et al. (2021) argue that QA datasets feature more diverse reason-

ing and can lead to stronger NLI models, particularly those better suited to strong

contexts, but less attention has been paid to whether this agrees with classic defi-

nitions of entailment (Dagan et al., 2005) or short-context NLI settings (Williams

et al., 2018b).

Our work particularly aims to shed light on information sufficiency in
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question answering. Other work in this space has focused on validating answers to

unanswerable questions (Rajpurkar et al., 2018; Kwiatkowski et al., 2019), but such

questions may be nonsensical in context; these efforts do not address whether all

aspects of a question have been covered. Methods to handle adversarial SQuAD ex-

amples (Jia and Liang, 2017) attempt to do this (Chen and Durrett, 2021), but these

are again geared towards detecting specific kinds of mismatches between examples

and contexts, like a changed modifier of a noun phrase. Kamath et al. (2020) frame

their selective question answering techniques in terms of spotting out-of-domain

questions that the model is likely to get wrong rather than more general confidence

estimation. What is missing in these threads of literature is a formal criterion like

entailment: when is an answer truly sufficient and when are we confident that it

addresses the question?

5.2.2 Our Approach

Our pipeline consists of an answer candidate generator, a question converter,

and a decontextualizer, which form the inputs to the final entailment model.

Answer Generation In this work, we focus our attention on extractive QA (Her-

mann et al., 2015; Rajpurkar et al., 2016a), for which we can get an answer candi-

date by running a pre-trained QA model.3 We use the Bert-joint model proposed

by Alberti et al. (2019b) for its simplicity and relatively high performance.

Question Conversion Given a question q and an answer candidate a, our goal is

to convert the (q, a) pair to a declarative answer sentence d which can be treated as

the hypothesis in an NLI system (Demszky et al., 2018; Khot et al., 2018). While

3Our approach could be adapted to multiple choice QA, in which case this step could be omitted.
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rule-based approaches have long been employed for this purpose (Cucerzan and

Agichtein, 2005), the work of Demszky et al. (2018) showed a benefit from more

sophisticated neural modeling of the distribution P (d | q, a). We fine-tune a seq2seq

model, T5-3B (Raffel et al., 2020b), using the (a, q, d) pairs annotated by Demszky

et al. (2018).

While the conversion is trivial on many examples (e.g., replacing the wh-word

with the answer and inverting the wh-movement), we see improvement on challeng-

ing examples like the following NQ question: the first vice president of India who

became the president later was? The rule-based system from Demszky et al. (2018)

just replaces who with the answer Venkaiah Naidu. Our neural model successfully

appends the answer to end of the question and gets the correct hypothesis.

Decontextualization Ideally, the full context containing the answer candidate

could be treated as the premise to make the entailment decision. But the full context

often contains many irrelevant sentences and is much longer than the premises in

single-sentence NLI datasets (Williams et al., 2018b; Bowman et al., 2015). This

length has several drawbacks. First, it makes transferring models from the existing

datasets challenging. Second, performing inference over longer forms of text requires

a multitude of additional reasoning skills like coreference resolution, event detection,

and abduction (Mishra et al., 2021). Finally, the presence of extraneous information

makes it harder to evaluate the entailment model’s judgments for correctness; in the

extreme, we might have to judge whether a fact about an entity is true based on its

entire Wikipedia article, which is impractical.

We tackle this problem by decontextualizing the sentence containing the

answer from the full context to make it stand alone. Recent work (Choi et al., 2021)

proposed a sentence decontextualization task in which a sentence together with its
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context are taken and the sentence is rewritten to be interpretable out of context if

feasible, while preserving its meaning. This procedure can involve name completion

(e.g., Stewart → Kristen Stewart), noun phrase/pronoun swap, bridging anaphora

resolution, and more.

More formally, given a sentence Sa containing the answer and its correspond-

ing context C, decontextualization learns a model P (Sd | Sa, C), where Sd is the

decontextualized form of Sa. We train a decontextualizer by fine-tuning the T5-

3B model to decode Sd from a concatenation of (Sa, C) pair, following the original

work. More details about the models we discuss here can be found in the original

paper (Chen et al., 2021).

5.3 Experimental Settings

Our experiments seek to validate the utility of NLI for verifying answers

primarily under distribution shifts, following recent work on selective question

answering (Kamath et al., 2020). We transfer an NQ-trained QA model to a range

of datasets and evaluate whether NLI improves answer confidence.

Datasets We use five English-language span-extractive QA datasets: Natural

Questions (Kwiatkowski et al., 2019, NQ), TriviaQA (Joshi et al., 2017b), BioASQ (Tsat-

saronis et al., 2015), Adversarial SQuAD (Jia and Liang, 2017, SQuAD-adv), and

SQuAD 2.0 (Rajpurkar et al., 2018). For TriviaQA and BioASQ, we use processed

versions from MRQA (Fisch et al., 2019). These datasets cover a wide range of do-

mains including biology (BioASQ), trivia questions (TriviaQA), real user questions

(NQ), and human-synthetic challenging sets (SQuAD2.0 and SQuAD-adv). For NQ,

we filter out the examples in which the questions are narrative statements rather

than questions by the rule-based system proposed by Demszky et al. (2018). We
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also exclude the examples based on tables because they are not compatible with the

task formulation of NLI.4

Base QA Model We train our base QA model (Alberti et al., 2019b) with the

NQ dataset. To study robustness across different datasets, we fix the base QA model

and investigate its capacity to transfer. We chose NQ for its high quality and the

diverse topics it covers.

Base NLI Model We use the RoBERTa-based NLI model trained using Multi-

Genre Natural Language Inference (Williams et al., 2018b, MNLI) from AllenNLP (Gard-

ner et al., 2018) for its broad coverage and high accuracy.

QA-enhanced NLI Model As there might exist different reasoning patterns in

the QA datasets which are not covered by the MNLI model (Mishra et al., 2021),

we study whether NLI pairs generated from QA datasets can be used jointly with

the MNLI data to improve the performance of an NLI model. To do so, we run the

QA instances in the NQ training set through our QA-to-NLI conversion pipeline,

resulting in a dataset we call NQ-NLI, containing (premise, hypothesis) pairs from

NQ with binary labels. As answer candidates, we use the predictions of the base

QA model. If the predicted answer is correct, we label the (premise, hypothesis)

as positive (entailed), otherwise negative (not entailed). To combine NQ-NLI with

MNLI, we treat the examples in MNLI labeled with “entailment” as positive and

the others as negative. We take the same number of examples as of NQ-NLI from

4After filtering, we have 191,022/4,855 examples for the training and development sets respec-
tively. For comparison, the original NQ contains 307,373/7,842 examples for training and develop-
ment.
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Question Where was Dyrrachium 
located? (Answerable)

What naval base fell to the 
Normans? (Unanswerable)

QA Prediction Adriatic Dyrrachium

Hypothesis Dyrrachium was located in 
Adriatic.

The naval base Dyrrachium 
fell to the Normans.

Premise

Dyrrachium — one of the 
most important naval bases 
of the Adriatic — fell again 
to Byzantine hands.

Dyrrachium — one of the 
most important naval bases 
of the Adriatic — fell again 
to Byzantine hands.

NLI Prediction Entail Not Entail

Figure 5.2: Two examples from SQuAD2.0. The MNLI model successfully accepts
the correct answer for the answerable question (left) and rejects a candidate answer
for the unanswerable one (right).

MNLI and shuffle them to get a mixed dataset which we call NQ-NLI+MNLI.

We use these dataset names to indicate NLI models trained on these datasets.

The basic statistics for each dataset after processing with our pipeline can

be found in the original paper (Chen et al., 2021).

5.4 Improving Selective Question Answering with NLI

In this section, we explore to what extent either off-the-shelf or QA-augmented

NLI models work as verifiers across a range of QA datasets.

5.4.1 Rejecting Unanswerable Questions

We start by testing how well a pre-trained MNLI model, with an accu-

racy of 90.2% on held-out MNLI examples, can identify unanswerable questions

in SQuAD2.0. We run our pre-trained QA model on the unanswerable questions

to produce answer candidates, then convert them to the NLI pairs through our
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pipeline, including question conversion and decontextualization. We run the entail-

ment model trained on MNLI to see how frequently it is able to reject the answer

by predicting either “neutral” or “contradiction”. For questions with annotated an-

swers, we also generate the NLI pairs with the gold answer and see if the entailment

model trained on MNLI can accept the answer.

The MNLI model successfully rejects 78.5% of the unanswerable exam-

ples and accepts 82.5% of the answerable examples. Two examples taken from

SQuAD2.0 are shown in Figure 5.2. We can see the MNLI model is quite sensitive

to the information mismatch between the hypothesis and the premise. In the case

where there is no information about Normans in the premise, it rejects the answer.

Without seeing any data from SQuAD2.0, MNLI can already act as a strong verifier

in the unanswerable setting where it is hard for a QA model to generalize (Rajpurkar

et al., 2018).

5.4.2 Selective Question Answering

To analyze the effectiveness of the NLI models in a more systematic way, we

test whether they can improve model performance in a “selective” QA setting (Ka-

math et al., 2020). That is, if our model can choose to answer only the k

percentage of examples it is most confident about (the coverage), what

F1 can it achieve? We first rank the examples by the confidence score of a model;

for our base QA models, this score is the posterior probability of the answer span,

and for our NLI-augmented models, it is the posterior probability associated with

the “entailment” class. We then compute F1 scores at different coverage values.
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F1

Coverage
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1

10% 20% 30% 40% 50%

QA QA Ensemble
NQ-NLI + QA NQ-NLI + MNLI + QA
Selective-QA Mishra et al. (2021) + QA

Figure 5.3: Average “selective” QA performance of our models combining the pos-
terior from the NQ-NLI and the QA models over five datasets. The x-axis denotes
the top k% of examples the model is answering, ranked by the confidence score. The
y-axis denotes the F1 score.

5.4.2.1 Comparison Systems

NLI model variants We train separate NLI models with MNLI, NQ-NLI, NQ-

NLI+MNLI introduced in Section 5.3, as well as with the NLI version of the

FEVER (Thorne et al., 2018) dataset, which is retrieved by Nie et al. (2019). As

suggested by Mishra et al. (2021), an NLI model could benefit from training with

premises of different length; therefore, we train an NLI model without the decon-

textualization phase of our pipeline on the combined data from both NQ-NLI and

MNLI. We call this model Mishra et al. (2021) since it follows their procedure.

All of the models are initialized using RoBERTa-large (Liu et al., 2019) and trained

using the same configurations.

NLI+QA We explore combining complementary strengths of the NLI posteriors

and the base QA posteriors. We take the posterior probability of the two models as
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NQ-NLI NQ-NLI + MNLI
Fever-NLI Mishra et al. (2021)

Figure 5.4: Average “selective” QA performance of our NLI models alone (not
including QA posteriors) trained on NQ-NLI over five datasets. The x-axis denotes
the top k% of examples the model is answering, ranked by the confidence score. The
y-axis denotes the F1 score.

features and learn a binary classifier y = logistic(w1pQA +w2pNLI) as the combined

entailment model and tune the model on 100 held-out NQ examples. +QA denotes

this combination with any of our NLI models.

QA-Ensemble To compare withNLI+QA, we train another identical QAmodel,

Bert-joint, using the same configurations and ensemble the two QA models using

the same way as NLI+QA.

Selective QA Kamath et al. (2020) train a calibrator to make models better able

to selectively answer questions in new domains. The calibrator is a binary classifier

with seven features: passage length, the length of the predicted answer, and the top

five softmax probabilities output by the QA model. We use the same configuration

as (Kamath et al., 2020) and train the calibrator on the same data as our NQ-NLI
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Premise Hypothesis
N/A N/A

Decontextualized Converted
Decontextualized Original

Sentence Converted
Sentence Original

Full-context Converted
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MNLI
MNLI-DO
MNLI-SC
MNLI-SO
MNLI-FC

Full PipelineF1

Coverage

Figure 5.5: Average “selective” QA performance of the MNLI model on five QA
datasets. Converted vs. original denotes using the converted question or the origi-
nal question concatenated with the answer as the hypothesis. Sentence vs. decon-
textualized vs. full-context denotes using the sentence containing the answer, its
decontextualized form, or the full context as the premise.

model.

5.4.2.2 Results and Analysis

Figure 5.3 shows the macro-averaged results over the five QA datasets.

Please refer to the original paper (Chen et al., 2021) for per dataset breakdown.

Our NQ-NLI+QA system, which combines the QA models’ posteriors

with an NQ-NLI-trained system, already shows improvement over using the base

QA posteriors. Surprisingly, additionally training the NLI model on MNLI (NQ-

NLI+MNLI+QA) gives even stronger results. The NLI models appear to be

complementary to the QA model, improving performance even on out-of-domain
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(a) NQ (b) BioASQ (c) SQuAD 2.0

Figure 5.6: “Selective” QA performance of the MNLI model on three out of five
QA datasets we used. Here, we omit TriviaQA and SQuAD-adv since they exhibit
similar behavior as BioASQ and SQuAD2.0, respectively. The legends share the
same semantics as Figure 5.5. The x-axis denotes coverage and the y-axis denotes
the F1 score.

data. We also see that our our NQ-NLI+MNLI+QA outperforms Mishra et

al. (2021)+QA by a large margin. By inspecting the performance breakdown,

we see the gap is mainly on SQuAD2.0 and SQuAD-adv. This is because these

datasets often introduce subtle mismatches by slight modification of the question or

context; even if the NLI model is able to overcome other biases, these are challenging

contrastive examples from the standpoint of the NLI model. This observation also

indicates that to better utilize the complementary strength of MNLI, the proposed

decontextualization phase in our pipeline is quite important.

Selective QA shows similar performance to using the posterior from QA

model, which is the most important feature for the calibrator.

Combining NLI model with the base QA models’ posteriors is necessary for

this strong performance. Figure 5.4 shows the low performance achieved by the NLI

models alone, indicating that NLI models trained exclusively on NLI dataset

(FEVER-NLI, MNLI) cannot be used by themselves as effective verifiers

for QA. This also indicates a possible domain or task mismatch between FEVER,

MNLI, and the other QA datasets.
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NQ-NLI helps bridge the gap between the QA datasets and MNLI.

In Figure 5.4, both NQ-NLI and NQ-NLI+MNLI achieve similar performance to

the original QA model. We also find that training using both NQ-NLI and MNLI

achieves slightly better performance than training using NQ-NLI alone. This sug-

gests that we are not simply training a QA model of a different form by using the

NQ-NLI data; rather, the NQ-NLI pairs are compatible with the MNLI pairs, and

the MNLI examples are useful for the model.

5.5 Effectiveness of the Proposed Pipeline

We present an ablation study on our pipeline to see how each component

contributes to the final performance. For simplicity, we use the off-the-shelf MNLI

model since it does not involve training using the data generated through the

pipeline. Figure 5.5 shows the average results across five datasets and Figure 5.6

presents individual performance on three datasets.

We see that both the question converter and the decontextualizer

contribute to the performance of the MNLI model. In both figures, removing

either module harms the performance for all datasets. On NQ and BioASQ, using

the full context is better than the decontextualized sentence, which hints that there

are cases where the full context provides necessary information. We have a more

comprehensive analysis in Section 5.6.2.

Moreover, we see that MNLI outperforms the base QA posteriors on SQuAD2.0

and SQuAD-adv. Figure 5.6(a) also shows that the largest gap between the QA and

NLI model is on NQ, which is unsurprising since the QA model is trained on NQ.

These results show how the improvement in the last section is achieved: the comple-

mentary strengths of MNLI and NQ datasets lead to the best overall performance.
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5.6 Understanding the Behavior of NQ-NLI

We perform manual analysis on 300 examples drawn from NQ, TriviaQA,

and SQuAD2.0 datasets where NQ-NLI+MNLI model produced an error. We

classify errors into one of 7 classes, described in Section 5.6.1 and 5.6.2. All of

the authors of this work conducted the annotation. The annotations agree with a

Fleiss’ kappa value of 0.78, with disagreements usually being between closely related

categories among our 7 error classes, e.g., annotation error vs. span shifting, wrong

context vs. insufficient context, as we will see later. The breakdown of the errors in

each dataset is shown in Table 5.1.

5.6.1 Errors from the Pipeline

We see that across the three different datasets, the number of errors at-

tributed to our pipeline approach is below 10%. This demonstrates that the ques-

tion converter and the decontextualization model are quite effective to convert a

(question, answer, context) triplet to a (premise, hypothesis) NLI pair. For the

question converter, errors mainly happen in two scenarios as shown in Figure 5.7.

(1) The question converter gives an answer of the wrong type to a question. For

example, the question asks “How old...”, but the answer returned is “Mike Pence”

which does not fit the question. The question converter puts Mike Pence back into

the question and yields an unrelated statement. Adding a presupposition checking

stage to the question converter could further improve its performance (Kim et al.,

2021). (2) The question is long and syntactically complex; the question converter

just copies a long question without answer replacement.

For the decontextualization model, errors usually happen when the model

fails to recall one of the required modifications. As shown in the example in Fig-

ure 5.7, the model fails to replace The work with its full entity name The Art of
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Decontext Error (NLI Prediction: Not Entail)

Question: Who was the author of The Art of War?

Predicted Answer / Gold Answer: Sun Tzu / Sun Tzu

Hypothesis: Sun Tzu was the author of the art of war.

Premise: The work, which is attributed to the ancient 
Chinese military strategist Sun Tzu ( “Master Sun”, also 
spelled Sunzi), is composed of 13 chapters.

Full Context: The Art of War is an ancient Chinese military 
treatise dating from the Spring and Autumn period in 5th 
century BC. The work, which is attributed to the ancient 
Chinese military strategist Sun Tzu …

Question Conversion Error

Question: How old is the vice president of the United States?

Hypothesis: Mike Pence is the vice president of the United 
States.

Question: Theodore Roosevelt formed the Progressive Party 
when he lost the Republican nomination to William Howard 
Taft. What was the party also known as?

Hypothesis: Theodore Roosevelt formed the Progressive 
Party when he lost the Republican nomination to William 
Howard Taft.

Figure 5.7: Pipeline error examples from the NQ development set: the underlined
text span denotes the answer predicted by the QA model.

War.

5.6.2 Errors from the NLI Model

Most of the errors are attributed to the entailment model. We investigate

these cases closely and ask ourselves if these really are errors. We categorize them

into the following categories.

Entailment These errors are truly mistakes by the entailment model: in our view,

the pair of sentences should exhibit a different relationship than what was predicted.

Wrong Context The QA model gets the right answer for the wrong reason. The

example in Figure 5.8 shows that John Von Neumann is the annotated answer but

it is not entailed by the premise because no information about CPU is provided.

Although the answer is correct, we argue it is better for the model to reject this
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case. This again demonstrates one of the key advantages of using an NLI model as a

verifier for QA models: it can identify cases of information mismatch like this where

the model didn’t retrieve suitable context to show to the user of the QA system.

Insufficient Context (out of scope for decontextualization) The premise

lacks essential information that could be found in the full context, typically later in

the context. In Figure 5.8, the answer Roxette is in the first sentence. However, we

do not know that she wrote the song It Must Have Been Love until we go further

in the context. The need to add future information is beyond the scope of the

decontextualization (Choi et al., 2021).

Span Shifting The predicted answer of the QA model overlaps with the gold

answer and it is acceptable as a correct answer. For example, a question asks What

Missouri town calls itself the Live Music Show Capital? Both Branson and Branson,

Missouri can be accepted as the right answer.

Annotation Error Introduced by the incomplete or wrong annotations – some

acceptable answers are missing or the annotated answer is wrong.

From Table 5.1, we see that “wrong context” cases consist of 25% and 40% of the

errors for NQ and TriviaQA, respectively, while they rarely happen on SQuAD2.0.

This is because the supporting snippets for NQ and TriviaQA are retrieved from

Wikipedia and web documents, so the information contained may not be sufficient

to support the question. For SQuAD2.0, the supporting document is given to the

annotators, so no such errors happen.

This observation indicates that the NLI model can be particularly useful in

the open-domain setting where it can reject answers that are not well supported. In
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NQ TQA SQuAD2.0

Question Conversion 3 0 0 2 2 0

Decontext 0 4 0 0 0 7

Entailment 12 39 2 14 12 56

Wrong Context 0 23 0 42 0 2

Insufficient Context 0 11 0 16 0 4

Span Shifting 3 0 13 0 7 0

Annotation 5 0 11 0 10 0

Total 23 77 26 74 31 69

Table 5.1: Error breakdown of our NQ-NLI+MNLI verifier on NQ, TQA (Trivi-
aQA), and SQuAD2.0. Here, yellow and purple denote the false positive and false
negative counts respectively. False positive: NLI predicts entailment while the an-
swer predicted is wrong. False negative: NLI predicts non-entailment while the
answer predicted is right.

particular, we believe that this raises a question about answers in TriviaQA. The

supporting evidence for the answer is often insufficient to validate all aspects of

the question. What should a QA model do in this case: make an educated

guess based on partial evidence, or reject the answer outright? This

choice is application-specific, but our approach can help system designers make

these decisions explicit.

Around 10% to 15% of errors happens due to insufficient context. Such

errors could be potentially fixed in future work by learning a question-conditioned

decontextualizer which aims to gather all information related to the question.

5.7 Related Work

NLI for Downstream Tasks Welleck et al. (2019) proposed a dialogue-based

NLI dataset and the NLI model trained over it improved the consistency of a dialogue

system; Pasunuru et al. (2017); Li et al. (2018); Falke et al. (2019) used NLI

models to detect factual errors in abstractive summaries. For question answering,
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Entailment Error (NLI Prediction: Not Entail) 
Question: What were the results of the development of Florida's railroads? 
Predicted / Gold Answer: towns grew and farmland was cultivated / towns grew and farmland was cultivated 
Hypothesis: The results of the development of Florida's railroads were that towns grew and farmland was cultivated. 
Premise: Henry Flagler built a railroad along the east coast of Florida and eventually to Key West; towns grew and 
farmland was cultivated along the rail line.

Wrong Context Error (NLI Prediction: Not Entail) 
Question: Who developed the central processing unit (cpu)? 
Predicted Answer / Gold Answer: Jonh von Neumann / Jonh von Neumann 
Hypothesis: John von Neumann developed the central processing unit (cpu). 
Premise: On June 30, 1945, before ENIAC was made, mathematician John von Neumann distributed the paper 
entitled First Draft of a Report on the EDVAC.
Insufficient Context Error (NLI Prediction: Not Entail) 
Question: Who sang It Must Have Been Love? 
Predicted Answer / Gold Answer: Roxette / Roxette 
Hypothesis: Roxette sang it must have been love. 
Premise: Roxette are a Swedish pop rock duo, consisting of Marie Fredriksson and Per Gessle. 
Full Context: Roxette are a Swedish pop rock duo, consisting of Marie Fredriksson and Per Gessle … She went on to 
achieve nineteen UK Top 40 hits and several US Hot 100 hits, including four US number-ones with “The Look,”  
“Listen to Your Heart,” “It Must Have Been Love,”… 

Entailment Error (NLI Prediction: Entail) 
Question: who is darrell brother in The Walking Dead? 
Predicted / Gold Answer: Daryl / Merle Dixon 
Hypothesis: Daryl is darrell brother in the walking dead. 
Premise: The character Merle Dixon was first introduced in the first season of The Walking Dead as a Southern 
redneck hunter who has a younger brother, Daryl

Figure 5.8: Examples taken from the development sets of NQ and TriviaQA, grouped
by different types of errors the entailment model makes. The underlined text span
denotes the answer predicted by the QA model. The yellow box denotes a false
positive example and the purple box denotes false negative examples.

Harabagiu and Hickl (2006) showed that textual entailment can be used to enhance

the accuracy of the open-domain QA systems; Trivedi et al. (2019) used a pretrained

NLI model to select relevant sentences for multi-hop question answering; Yin et al.

(2020) tested whether NLI models generalize to QA setting in a few-shot learning

scenario.

Our work is most relevant to Mishra et al. (2021); they also learn an NLI

model using examples generated from QA datasets. Our work differs from theirs

in a few chief ways. First, we improve the conversion pipeline significantly with

decontextualization and a better question converter. Second, we use this framework
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to improve QA performance by using NLI as a verifier, which is only possible because

the decontextualization allows us to focus on a single sentence. We also study

whether the converted dataset is compatible with other off-the-shelf NLI datasets.

By contrast, Mishra et al. (2021) use their converted NLI dataset to aid other tasks

such as fact-checking. Finally, the contrast we establish here allows us to conduct

a thorough human analysis over the converted NLI data and show how the task

specifications of NLI and QA are different (Section 5.6.2).

Robust Question Answering Modern QA systems often give incorrect answers

in challenging settings that require generalization (Rajpurkar et al., 2018; Chen and

Durrett, 2019; Wallace et al., 2019; Gardner et al., 2020; Kaushik et al., 2019).

Models focusing on robustness and generalizability have been proposed in recent

years: Wang and Bansal (2018); Khashabi et al. (2020); Liu et al. (2020) use

perturbation based methods and adversarial training; Lewis and Fan (2018) propose

generative QA to prevent the model from overfitting to simple patterns; Yeh and

Chen (2019); Zhou et al. (2020) use advanced regularizers; Clark et al. (2019)

debias the training set through ensemble-based training; and Chen and Durrett

(2021) incorporate an explicit graph alignment procedure.

Another line of work to make models more robust is by introducing answer

verification (Hu et al., 2019; Kamath et al., 2020; Wang et al., 2020b; Zhang et al.,

2021) as a final step for question answering models. Our work is in the same vein,

but has certain advantages from using an NLI model. First, the answer verification

process is more explicit so that one is able to spot where the error emerges. Second,

we can incorporate NLI datasets from other domains into the training of our verifier,

reducing reliance on in-domain labeled QA data.
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5.8 Chapter Summary

This chapter presents a strong pipeline for converting QA examples into NLI

examples, to verify the answer with NLI predictions. The answer to the question

posed in the title is yes (NLI models can validate these examples), with two caveats.

First, it is helpful to create QA-specific data for the NLI model. Second, the in-

formation that is sufficient for a question to be fully answered may not align with

annotations in the QA dataset. We encourage further explorations of the interplay

between these tasks and careful analysis of the predictions of QA models.
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Chapter 6

Generating Literal and Implied Subquestions to
Fact-check Complex Claims

This chapter is based on Chen et al. (2022).1

6.1 Introduction

Fact-checking process can be decomposed to four stages (Vlachos and Riedel,

2014a): (1) extract statements to be fact-checked; (2) construct appropriate ques-

tions; (3) obtain the answers from relevant sources; (4) reach a verdict using these

answers. In this Chapter, we study fact-checking as modularized question answering.

Despite a flurry of recent research on automated fact-checking Wang (2017);

Rashkin et al. (2017); Volkova et al. (2017); Ferreira and Vlachos (2016); Popat et al.

(2017); Tschiatschek et al. (2018), we remain far from building reliable fact-checking

systems Nakov et al. (2021). This challenge motivated us to build more explainable

models so the explanations can at least help a user interpret the results Atanasova

et al. (2020). However, such purely extractive explanations do not necessarily help

users interpret a model’s reasoning process. An ideal explanation should do what

a human-written fact-check does: systematically dissect different parts of the claim

1Jifan Chen, Aniruddh Sriram, Eunsol Choi, and Greg Durrett. 2022. Generating Literal and
Implied Subquestions to Fact-check Complex Claims. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pages 3495–3516, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.
Jifan Chen initialized the research project, conducted experiments, analyzed data and wrote the
paper.
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Joe Biden stated on August 31, 2020 in a speech: "When I was vice 
president, violent crime fell 15% in this country. ... The murder rate 
now is up 26% across the nation this year under Donald Trump." 

Claim	Decomposition:	focus	of	this	work

Claim

Q1: Did the crime rate fall by 15% during 
Joe Biden's presidency?
Q2: Did the murder rate in 2020 increase 
by 26% from 2019?
Q3: Is Biden comparing crime rates from 
the same time interval in his statement?
Q4: Is violent crime rate and murder rate 
directly comparable?
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d }
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(Proof-of-concept:	from	justification	doc)

Figure 6.1: An example claim decomposition: the top two subquestions follow ex-
plicitly from the claim and the bottom two represent implicit reasoning needed to
verify the claim. We can use the decomposed questions to retrieve relevant evidence
(Section 6.6), and aggregate the decisions of the sub-questions to derive the final
veracity of the claim (Section 6.5.3).

and evaluate their veracity.

We take a step towards explainable fact-checking with a new approach and

accompanying dataset, ClaimDecomp, of decomposed claims from PolitiFact. An-

notators are presented with a claim and the justification paragraph written by expert

fact-checkers, from which they annotate a set of yes-no subquestions that give rise to

the justification. These subquestions involve checking both the explicit and implicit

aspects of the claim (Figure 6.1).

Such a decomposition can play an important role in an interpretable fact

verification system. First, the subquestions provide a comprehensive explanation

of how the decision is made: in Figure 6.1, although the individual statistics men-

tioned by Biden are correct, they are from different time intervals and not directly
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Question Answer Question Source

Were the stock purchases improper insider trading? No

Does the executive order Biden signed require all federal vehicles to be electric? Unknown

Did Nancy Pelosi buy 1.25 million Tesla stock the day before Joe Biden signed an 
order about electric vehicles? Unknown

Claim: A Facebook post stated on January 31, 2021: “Nancy Pelosi bought $1.25 million in Tesla stock the day before Joe Biden 
signed an order “for all federal vehicles” to be electric.”
Justification: An image shared on Facebook claims that Nancy Pelosi bought $1.25 million in Tesla stock the day before Biden 
signed an order for all federal vehicles to be electric, implying that she sought to profit from inside information about new 
government policies. The House speaker did report transactions involving Tesla stock, but the post misrepresented the purchases 
and Biden’s policies to create the false impression that the transactions represented improper insider trading in Tesla shares.

Claim Justification

Claim Justification

Claim Justification

Annotation:

Figure 6.2: An example of our annotation process. The annotators are instructed
to write a set of subquestions, give binary answers to them, and attribute them to
a source. If the answer cannot be decided from the justification paragraph, “Un-
known” is also an option. The question is either based on the claim or justification,
and the annotators also select the relevant parts (color-coded in the figure) on which
the question is based.

comparable, which yields the final judgment of the claim as “half-true”. We can es-

timate the veracity of a claim using the decisions of the subquestions (Section 6.5.3).

Second, we show that decomposed subquestions allow us to retrieve more relevant

paragraphs from the verification document than using the claim alone (Section 6.6),

since some of the subquestions tackle implicit aspects of a claim. We do not build

a full pipeline for fact verification in this chapter, as there are other significant

challenges this poses, including information which is not available online or which

needs to be parsed out of statistical tables Singh et al. (2021a). Instead, we focus

on showing how these decomposed questions can fit into a fact-checking pipeline

through a series of proof-of-concept experiments.

Equipped with ClaimDecomp dataset, we train a model to generate decom-

positions of complex political claims. We experiment with pre-trained sequence-to-

sequence models Raffel et al. (2020b), generating either a sequence of questions or a

single question using nucleus sampling (Holtzman et al., 2020) over multiple rounds.

This model can recover 58% of the subquestions, including some implicit subques-
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# unique # tokens avg. # subquestions Answer % Source %
Split claims per claim in single annotation Yes No Unknown Justification Claim

Train 800 33.4 2.7 48.9 45.3 5.8 83.6 16.4
Validation 200 33.8 2.7 48.3 44.8 6.9 79.0 21.0
Validation-sub 50 33.7 2.9 45.2 47.8 7.0 90.4 9.6
Test 200 33.2 2.7 45.8 43.1 11.1 92.1 7.9

Table 6.1: Statistics of the ClaimDecomp dataset. Each claim is annotated by
two annotators, yielding a total of 6,555 subquestions. The second column blocks
(Answer % and Source %) report the statistics at the subquestion level; Source %
denotes the percentage of subquestions based on the text from the justification or
the claim.

tions. To summarize, we show that decomposing complex claims into subquestions

can be learned with our dataset, and reasoning with such subquestions can lead

improve evidence retrieval and judging the veracity of the whole claim.

In the following sections, we elaborate on the motivation, task setup, and

experiments.

6.2 Motivation and Task

Facing the complexities of real-world political claims, simply giving a final

veracity to a claim often fails to be persuasive (Guo et al., 2022). To make the

judgment of an automatic fact-checking system understandable, most previous work

has focused on generating justifications for models’ decisions. Popat et al. (2018);

Shu et al. (2019); Lu and Li (2020) used attention weights of the models to highlight

the most relevant parts of the evidence, but these only deal with explicit propositions

of a claim. Ahmadi et al. (2019); Gad-Elrab et al. (2019) used logic-based systems to

generate justifications, yet the systems are often based on existing knowledge graphs

and are hard to adapt to complex real-world claims. Atanasova et al. (2020) treated

the justification generation as a summarization problem in which they generate a

justification paragraph according to some relevant evidence. Even so, it is hard to
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know which parts of the claim are true and which are not, and how the generated

paragraph relates to the veracity.

What is missing in the literature is a better intermediate representation of

the claim: with more complex claims, explaining the veracity of a whole claim at

once becomes more challenging. Therefore, we focus on decomposing the claim

into a minimal yet comprehensive set of yes-no subquestions, whose answers

can be aggregated into an inherently explainable decision. As the decisions to the

subquestions are explicit, it is easier for one to spot the discrepancies between the

veracity and the intermediate decisions.

Claims and Justifications Our decomposition process is inspired by fact check-

ing documents written by professional fact checkers. In the data we use from Politi-

Fact, each claim is paired with a justification paragraph (see Figure 6.2) which

contains the most important factors on which the veracity made by the fact-checkers

is based. Understanding what questions are answered in this paragraph will be the

core task our annotators will undertake to create our dataset. However, we frame the

claim decomposition task (in the next section) without regard to this justification

document, as it is not available at test time.

Claim Decomposition Task We define the task of complex claim decomposition.

Given a claim c and the context o of the claim (speaker, date, venue of the claim),

the goal is to generate a set of N yes-no subquestions q = {q1, q2, ...qN}. The set

of subquestions should have the following properties:

• Comprehensiveness: The questions should cover as many aspects of the

claim as possible: the questions should be sufficient for someone to judge the

veracity of the claim.
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• Conciseness: The question set should be as minimal as is practical and not

contain repeated questions asking about minor, correlated variants seeking the

same information.

An individual subquestion should also exhibit:

• Relevance: The answer to subquestion should help a reader determine the

veracity of the claim. Knowing an answer to a subquestion should change the

reader’s belief about the veracity of the original claim (Section 6.5.3).

• Fluency / Clarity: Each subquestion should be clear, fluent, and grammat-

ically correct (Section 6.3).

We do not require subquestions to stand alone (Choi et al., 2021); they are instead

interpreted with respect to the claim and its context.

Evaluation Metric We set the model to generate the target number of subques-

tions, which matches the number of subquestions in the reference, guaranteeing a

concise subquestion set. Thus, we focus on measuring the other properties with

reference-based evaluation. Specifically, given an annotated set of subquestions and

an automatically predicted set of subquestions, we assess recall: how many subques-

tions in the reference set are covered by the generated question set? A subquestion

in the reference set is considered as being recalled if it is semantically equivalent

to one of the generated subquestions by models.2 Our notion of equivalence is nu-

anced and contextual: for example, the following two subquestions are considered

2There are cases where one generated question covers several reference questions, e.g., treating
the whole claim as a question, in which case we only consider one of the reference questions to be
recalled.
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semantically equivalent: “Is voting in person more secure than voting by mail?” and

“Is there a greater risk of voting fraud with mail-in ballots?”. We manually judge

the question equivalence, as our experiments with automatic evaluation metrics did

not yield reliable results (details in the original paper (Chen et al., 2022)).

6.3 Dataset Collection

Claim / Verification Document Collection We collect political claims and

corresponding verification articles from PolitiFact.3 Each article contains one justi-

fication paragraph (see Figure 6.2) which states the most important factors on which

the veracity made by the fact-checkers is based. Understanding what questions are

answered in this paragraph will be the core annotation task. Each claim is classified

as one of six labels: pants on fire (most false), false, barely true, half-true, mostly

true, and true. We collect the claims from top 50 PolitiFact pages for each label,

resulting in a total of 6,859 claims.

A claim like “Approximately 60,000 Canadians currently live undocumented

in the USA.” hinges on checking a single statistic and is less likely to contain infor-

mation beyond the surface form. Therefore, we mainly focus on studying complex

claims in this chapter. To focus on complex claims, we filter claims with 3 or fewer

verbs. We also filter out claims that do not have an associated justification para-

graph. After the filtering, we get a subset consisting 1,494 complex claims.

Decomposition Annotation Process Given a claim paired with the justifica-

tion written by the professional fact-checker on PolitiFact, we ask our annotators

to reverse engineer the fact-checking process: generate yes-no questions which are

3https://www.politifact.com/
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all qs more qs fewer qs

% of unmatched Qs 18.4 26.1 8.5

Table 6.2: Inter-annotator agreement assessed by the percentage of questions for
which the semantics cannot be matched to the other annotator’s set. We name the
question set containing more questions as more qs and the other one as less qs.
all qs is the average of more qs and less qs.

answered in the justification. As shown in Figure 6.2, for each question, the annota-

tors also (1) give the answer; (2) select the relevant text in the justification or claim

that is used for the generation (if any). The annotators are instructed to cover as

many of the assertions made in the claim as possible without being overly specific

in their questions.

This process gives rise to both literal questions, which follow directly from

the claim, and implied questions, which are not necessarily as easy to predict from

the claim itself. These are not attributes labeled by the annotators, but instead

labels the authors assign post-hoc (described in Section 6.5).

We recruit 8 workers with experience in literature or politics from the free-

lancing platform Upwork to conduct the annotation. The original paper (Chen et al.,

2022) includes details about the hiring process, workflow, as well as instructions and

the UI.

Dataset statistics and inter-annotator agreement Table 6.1 shows the statis-

tics of our dataset. We collect two sets of annotations per claim to improve sub-

question coverage. We collect a total of 6,555 subquestions for 1,200 claims. Most

of the questions arise from the justification and most of the questions can be an-

swered by the justification. In addition, we randomly sample 50 claims from the

validation set for our human evaluation in the rest of this chapter. We name this
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set Validation-sub.

Comparing sets of subquestions from different annotators is nontrivial: two

annotators may choose different phrasings of individual questions and even different

decompositions of the same claim that end up targeting the same pieces of infor-

mation. Thus, we (the authors) manually compare two sets of annotations to judge

inter-annotator agreement: given two sets of subquestions on the same claim, the

task is to identify questions for which the semantics are not expressed by the other

question set. If no questions are selected, it means that the two annotators show

strong agreement on what should be captured in subquestions. Example annotations

are shown in the original paper (Chen et al., 2022).

We randomly sample 50 claims from our dataset and three of the authors

conduct the annotation. The authors agree on this comparison task reasonably,

with a Fleiss’ Kappa (Fleiss, 1971) value of 0.52. The comparison results are shown

in Table 6.2. On average, the semantics of 18.4% questions are not expressed by

the other set. This demonstrates the comprehensiveness of our set of questions:

only a small fraction is not captured by the other set, indicating that independent

annotators are not easily coming up with distinct sets of questions. Because most

questions are covered in the other set, we view the agreement as high. A simple

heuristic to improve comprehensiveness further is to prefer the annotator who an-

notated more questions. If we consider the fraction of unmatched questions in the

fewer qs, we see this drops to 8.5%.4 Through this manual examination, we also

found that annotated questions are overall concise, fluent, clear, and grammatical.

4Merging two annotations results in many duplicate questions and deduplicating these with-
out another round of adjudication is cognitively intensive. We opted not to do this due to the
effectiveness of simply taking the larger set of questions.
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Figure 6.3: Illustration of our two question generators. qg-multiple generates all
questions as a sequence while qg-nucleus generates one question at a time through
multiple samples.

Model R-all R-literal R-implied

qg-multiple 0.58 0.74 0.18
qg-nucleus 0.43 0.59 0.11
qg-multiple-justify 0.81 0.95 0.50
qg-nucleus-justify 0.52 0.72 0.18

Table 6.3: Human evaluation results on the Validation-sub set (N=146). R-all
denotes the recall for all questions; R-literal and R-implied denotes the recall for
the literal questions and the implied questions respectively.

6.4 Automatic Claim Decomposition

The goal is to generate a subquestion set q from the input claim c, the

context o, and the target number of subquestions k.

Models We fine-tune a T5-3B (Raffel et al., 2020b) model to automate the ques-

tion generation process under two settings: qg-multiple and qg-nucleus as

shown in Figure 6.3. Both generation methods generate the same number of sub-

questions, equal to the number of subquestions generated by an annotator.

qg-multiple We learn a model P (q | c, o) to place a distribution over sets of

subquestions given the claim and output. The annotated questions are concatenated

by their annotation order to construct the output.
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Question Type # Questions R1-P R2-P RL-P

Literal 2.15 0.56 0.30 0.47
Implied 1.02 0.28 0.09 0.22

Table 6.4: Number of questions of each type per claim and their lexical overlap with
the claim measured by ROUGE-1, ROUGE-2, and ROUGE-L precision (how many
n-grams in the question are also in the claim).

Domain 

knowledge


(38.8%)


Claim: “When President Obama was elected, the market crashed … Trump was up 9%, President Obama was down 
14.8% and President Bush was down almost 4%. There is an instant reaction on Wall Street.”

Question: Did Obama cause the stock market crash when he was elected? (Domain	knowledge	of	whether	the	
stock	market	is	correlated	with	the	election.	)

  Context 


(37.6%) 
Claim: With voting by mail, “you get thousands and thousands of people … signing ballots all over the place.”

Question: Is there a greater risk of voting fraud with mail-in ballots? (Need	to	know	the	background	that	the	claim	
is	about	the	potential	risks	of	mail-in	ballots.)


Implicit 
meaning

(16.5%)


Claim: Nancy Pelosi bought $1.25 million in Tesla stock the day before Joe Biden signed an order “for all federal 
vehicles” to be electric.

Question: Were the stock purchases improper insider trading? (The	claim	implies	this	purchase	is	insider	trading.)

Statistical 
rigor


(7.1%)


Claim: “No other country witnesses the number of gun deaths that we do here in the U.S., and it’s not even close.”

Question: Is the United States the country with the the highest percentage of gun deaths? (Highest	number	of	gun	
deaths	does	not	entail	highest	percentage	of	gun	deaths.)


Figure 6.4: Four types of reasoning needed to address subquestions with their pro-
portion (left column) and examples (right column). It shows that a high proportion
of the questions need either domain knowledge or related context.

qg-nucleus We learn a model P (q | c, o) to place a distribution over single sub-

questions given the claim and output. For training, each annotated subquestion is

paired with the claim to form a distinct input-output pair. At inference, we use

nucleus sampling to generate questions. See the original paper (Chen et al., 2022)

for training details.

We also train these generators in an oracle setting where the justification

paragraph is appended to the claim to understand how well the question generator

does with more information. We denote the two oracle models as qg-multiple-

verify and qg-nucleus-verify respectively.
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Results All models are trained on the training portion of our dataset and eval-

uated on the Validation-sub set. One of the authors evaluated the recall of each

annotated subquestion in the generated subquestion set. The results are shown in

Table 6.3. We observe that most of the literal questions can be generated

while only a few of the implied questions can be recovered. Generating mul-

tiple questions as a single sequence (qg-multiple) is more effective than sampling

multiple questions (qg-nucleus). Many questions generated from qg-nucleus are

often slightly different but share the same semantics. We see that more than 70%

of the literal questions and 18% of the implied questions can be generated by the

best qg-multiple model. By examining the generated implied questions, we find

that most of them belong to the domain knowledge category in Section 6.5.

Some questions could be better generated if related evidence were retrieved

first, especially for questions of the context category (Section 6.5). The qg-

multiple-justify model can recover most of the literal questions and half of the

implied questions. Although this is an oracle setting, it shows that when given

proper information about the claim, the T5 model can achieve much better perfor-

mance.

Qualitative Analysis While our annotated subquestion sets cover most relevant

aspects of the claim, we find some generated questions are good subquestions that

are missing in our annotated set, though less important. For example, for our

introduction example shown in Figure 6.1, the qg-nucleus model generates the

question “Is Trump responsible for the increased murder rate?” Using the question

generation model in collaboration with humans might be a promising direction for

more comprehensive claim decomposition. See the original paper (Chen et al., 2022)

for more examples.
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6.5 Analyzing Decomposition Annotations

In this section, we study the characteristics of the annotated questions. We

aim to answer: (1) How many of the questions address implicit facets of the claim,

and what are the characteristics of these? (2) How do our questions differ from

previous work on question generation for fact checking (Fan et al., 2020)? (3) Can

we aggregate subquestion judgments for the final claim judgment?

6.5.1 Subquestion Type Analysis

We (the authors) manually categorize 285 subquestions from 100 claims in

the development set into two disjoint sets: literal and implied, where literal questions

are derived from the surface information of the claim – whether a question can be

posed by only given the claim, and implied questions are those that need extra

knowledge in order to pose.

Table 6.4 shows basic statistics about these sets, including the average num-

ber of subquestions for each claim and lexical overlap between subquestions and the

base claims, evaluated with ROUGE precision, as one subquestion can be a subse-

quence of the original claim. On average, each claim contains one implied question

which represents the deeper meaning of the claim. These implied questions overlap

less with the claim.

We further manually categorize the implied questions into the following four

categories, reflecting what kind of knowledge is needed to pose them (examples in

Figure 6.4). Two authors conduct the analysis over 50 examples and the annotations

agree with a Cohen’s Kappa (Cohen, 1960) score of 0.74.

Domain knowledge The subquestion seeks domain-specific knowledge, for ex-

ample asking about further steps of a legal or political process.
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Claim: The group With Honor stated on September 10, 2018 in a TV ad: Kentucky Rep. Andy Barr “would let shady 
payday lenders take advantage of our troops” and that he took “$36,550 from payday lenders.”

CLAIMDECOMP Fan et al. (2020)
1

2
1

2

What are Payday lenders?

What's the maximum amount you can get from payday lenders?

What percentage of US troops use a payday lender?

helpful background but not precisely about claim

useful context but not directly about claim

3
useful context but not directly about claim

Has Barr received $36,550 from payday lenders?

3

4

Did Barr vote for legislation that would weaken restrictions 
for payday lenders?
Are there any protections for service members using payday 
lending services?
Has Barr's voting record directly affected protection for 
veterans against payday lenders?

Figure 6.5: Comparison between our decomposed questions with QABriefs (Fan
et al., 2020). In general, our decomposed questions are more comprehensive and
relevant to the original claim.

Context The subquestion involves knowing that broader context is relevant, such

as whether something is broadly common or the background of the claim (political

affiliation of the politician, history of the events stated in the claim, etc).

Implicit meaning The subquestion involves unpacking the implicit meaning of

the claim, specifically anchored to what the speaker’s intent was.

Statistical rigor The subquestion involves checking over-claimed or over-generalized

statistics (e.g., the highest raw count is not the highest per capita).

Most of the implied subquestions require either domain knowledge or con-

text about the claim, reflecting the challenges behind automatically generating such

questions.

6.5.2 Comparison to QABriefs

Our work is closely related to the QABriefs dataset (Fan et al., 2020), where

they also ask annotators to write questions to reconstruct the process taken by

professional fact-checkers provided the claim and its verification document.

While sharing similar motivation, we use a significantly different annotation

process than theirs, resulting in qualitatively different sets of questions as shown in
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mean std # examples

QABriefs (Fan et al., 2020) 2.88 1.20 210
Ours 3.60 1.19 210

p-value ≤ 0.0001
mean diff 0.72
95% CI 0.48 - 0.97

Table 6.5: Results from user study on helpfulness (rated 1-5) of a set of generated
subquestions for claim verification. We conduct a t-test over the collected scores.

Macro-F1 Micro-F1 MAE

Question aggregation 0.30 0.29 1.05
Question aggregation* 0.46 0.45 0.73
Random (label dist) 0.16 0.18 1.68
Most frequent 0.06 0.23 1.31

Table 6.6: Claim classification performance of our question aggregation baseline
vs. several baselines on the development set. MAE denotes mean absolute error.

Figure 6.5. We notice: (1) Their questions are less comprehensive, often missing

important aspects of the claim. (2) Their questions are broader and less focused

on the claim. We instructed annotators to provide the source of the annotated

subquestions from either claim or verification document. For example, questions

like “What are Payday lenders?” in the figure will not appear in our dataset as the

justification paragraph does not address such question. (Fan et al., 2020) dissuaded

annotators from providing binary questions; instead, they gather answers to their

subquestions after the questions are collected. We focus on binary questions whose

verification could help verification of the full claim. See the original paper (Chen

et al., 2022) for more examples of the comparison.

User Study To better quantify the difference, we also conduct a user study in

which we ask an annotator to rate how useful a set of questions (without answers) are

to determine the veracity of a claim. On 42 claims annotated by both approaches,
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annotators score sets of subquestions on a Likert scale from 1 to 5, where 1 denotes

that knowing the answers to the questions does not help at all and 5 denotes that

they can accurately judge the claim once they know the answer. We recruit anno-

tators from MTurk. We collect 5-way annotation for each example and conduct the

t-test over the results. The details can be found in the original paper (Chen et al.,

2022).

Table 6.5 reports the user study results. Our questions achieve a significantly

higher relevance score compared to questions from QABriefs. This indicates that

we can potentially derive the veracity of the claim from our decomposed questions

since they are binary and highly relevant to the claim.

6.5.3 Deriving the Veracity of Claims from Decomposed Questions

Is the veracity of a claim sum of its parts? We estimate whether answers to

subquestions can be used to determine the veracity of the claim.

We predict a veracity score v̂ = 1
N

∑N
i=1 1[ai = 1] equal to the fraction of

subquestions with yes answers. We can map this to the discrete 6-label scale by

associating the labels pants on fire, false, barely true, half true, mostly true, and

true with the intervals [0, 16), [
1
6 ,

2
6), [

2
6 ,

3
6), [

3
6 ,

4
6), [

4
6 ,

5
6), [

5
6 , 1], respectively. We call

this method question aggregation. We use the 50 claims and the corresponding

questions from the Validation-sub set for evaluation. We also establish the upper

bound (question aggregation*) for this heuristic by having one of the authors

remove unrelated questions. On average, 0.3 questions are removed per claim.

Table 6.6 compares our heuristics with simple baselines (random assignment

and most frequent class assignment). Our heuristic easily outperforms the baselines,

with the predicted label on average is only shifted by one label, e.g., mostly true

vs. true. This demonstrates the potential of building a more complex model to
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aggregate subquestion-answer sets.

Our simple aggregation suffers in the following cases: (1) The subquestions

are not equal in importance. The first example in Figure 6.4 contains two yes

subquestions and two no subquestions, and our aggregation yields half-true label,

differing from gold label barely-true. (2) Not all questions are relevant. As indicated

by question aggregation*, we are able to achieve better performance after remov-

ing unrelated questions. (3) In few cases, the answer to a question could inversely

correlate with the veracity of a claim. For example, the claim states ”Person X

implied Y” and the question asks ”Did person X not imply Y?” We think all of the

cases can be potentially fixed by stronger models. For example, a question salience

model can mitigate (1) and (2), and promotes researches about understanding core

arguments of a complex claim. We leave this as future work.

6.6 Evidence Retrieval with Decomposition

Lastly, we explore using claim decomposition for retrieving evidence para-

graphs to verify claims. Retrieval from the web to check claims is an extremely hard

problem (Singh et al., 2021a). We instead explore a simplified proof-of-concept set-

ting: retrieving relevant paragraphs from the full justification document. These

articles are lengthy, containing an average of 12 paragraphs, and with distractors

due to entity and concept overlap with the claims.

We aim to show two advantages of using the decomposed questions: (1) The

implied questions contain information helpful to retrieve evidence beyond the lexical

information of the claim. (2) We can convert the subquestions to statements and

treat them as hypotheses to apply the off-the-shelf NLI models to retrieve evidence

that entails such hypotheses (Chen et al., 2021).
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per subquestion per example (claim)

avg # of paras 12.4 12.4
% of context 87.6 68.8
% of support 5.4 12.0
% of refute 8.0 19.2
Fleiss Kappa 0.42 0.42

Table 6.7: Evidence paragraph retrieval data statistics on Validation-sub dataset
(50 claims).
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Figure 6.6: Illustration of evidence paragraph retrieval process. The notations cor-
responds to our descriptions in Section 6.6. K is a hyperparameter controlling the
number of passages to retrieve.

Evidence Paragraph Collection We first collect human annotation to identify

relevant evidence paragraphs. Given the full PolitiFact verification article consisting

of m paragraphs p = (p1, . . . , pm) and a subquestion, annotators find paragraphs

relevant to the subquestion. As this requires careful document-level reading, we

hire three undergraduate linguistics students as annotators. We use the 50 claims

from the Validation-sub set and present the annotators with the subquestions and

the articles. For each subquestion, for each paragraph in the article, we ask the

annotators to choose whether it served as context to the subquestion or whether it

supports/refutes the subquestion. The statistics and inter-annotator agreement is

shown in Table 6.7. Out of 12.4 paragraphs on average, 3-4 paragraphs were directly

relevant to the claim and the rest of paragraphs mostly provide context.
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Model Decomposed claim Original
predicted gold claim

MNLI 41.0 48.8 35.2
NQ-NLI 38.8 34.5 40.9
DocNLI 44.7 59.6 36.9
BM25 36.2 47.5 39.2

Table 6.8: Evidence retrieval performance (F1 score) with the decomposed claims
(from predicted and annotated (gold) subquestions) and the original claim on the
Validation-sub set. A random baseline achieves 24.9 F1 and human annotators
achieve 69.0 F1.

Experimental Setup We experiment with three off-the-shelf RoBERTa-based (Liu

et al., 2019) NLI models trained on three different datasets: MNLI (Williams et al.,

2018a), NQ-NLI (Chen et al., 2021), and DocNLI (Yin et al., 2021). We compare

the performance of NLI models with random, BM25, and human baselines.

We first convert the corresponding subquestions q = q1, ..., qN of claim c to

a set of statements h = h1, ..., hn using GPT-3 (Brown et al., 2020).5 We find that

with only 10 examples as demonstration, GPT-3 can perform the conversion quite

well (with an error rate less than 5%). For more information about the prompt see

the original paper (Chen et al., 2022) for details.

To retrieve the evidence that supports the statements, we treat the state-

ments as hypotheses and the paragraphs in the article as premises. We feed them

into an NLI model to compute the score associated with the “entailment” class for

every premise and hypothesis pair. Here, the score for paragraph pi and hypothesis

hj is defined as the output probability sij = P (Entailment | pi, hj). We then select

as evidence the top k paragraphs by score across all subquestions: for paragraph

pi, we define p′i = max({sij | 1 ≤ j ≤ N}), which denotes for each hypothesis

5We release the automatically converted statements and the negations for all of the subquestions
in the published dataset.

110



from 1 to N that the jth hypothesis hj achieves the highest score with pi. Then

esup = {pi | i ∈ Top-K({p′1, ..., p′M})}. We set k to be the number of the paragraphs

that are annotated with either support or refute. Figure 6.6 describes this approach.

To retrieve the evidence that refutes the statements, we follow the same

process, but with the negated hypotheses set h generated by GPT3. (Note that our

NLI models trained on NQ-NLI and DocNLI only have two classes, entailed and not

entailed, and not entailed is not a sufficient basis for retrieval.) The final evidence

set is obtained by merging the evidence from the support and refute set. This is

achieved by removing duplicates then taking Top-K paragraphs according to the

scores.

BM25 baseline model uses retrieval score instead of NLI score. The

random baseline randomly assign support, refute, neutral labels to paragraphs

based on the paragraph label distribution in Table 6.7. Human performance is

computed by selecting one of the three annotators and comparing their annotations

with the other two (we randomly pick one annotator if they do not agree), taking the

average over all three annotators. This is not directly comparable to the annotations

for the other techniques as the gold labels are slightly different.

Results The results are shown in Table 6.8. We see that the decomposed

questions are effective to retrieve the evidence. By aggregating evidence

from the subquestions, both BM25 and the NLI models can do better than using

the claim alone, except for the case of using DocNLI, and BM25 with the predicted

decomposition. The best model with gold annotations (59.6) is close to human

performance (69.0) in this limited setting, indicating that the detailed and implied

information in decomposed questions can help gathering evidence beyond the surface

level of the claim.
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DocNLI outperforms BM25 on both the annotated decomposition

and the predicted decomposition. This demonstrates the potential of using

the NLI models to aid the evidence retrieval in the wild, although they must be

combined with decomposition to yield good results.

6.7 Related Work

Fact-checking Vlachos and Riedel (2014b) proposed to decompose the fact-

checking process into three components: identifying check-worthy claims, retrieving

evidence, and producing verdicts. Various datasets have been proposed, includ-

ing human-generated claims based on Wikepedia (Thorne et al., 2018; Chen et al.,

2019b; Jiang et al., 2020; Schuster et al., 2021; Aly et al., 2021b), real-world political

claims (Wang, 2017; Alhindi et al., 2018; Augenstein et al., 2019; Ostrowski et al.,

2021; Gupta and Srikumar, 2021), and science claims (Wadden et al., 2020; Saakyan

et al., 2021). Our dataset focuses on real-world political claims, particularly more

complex claims than past work which necessitate the use of decompositions.

Our implied subquestions go beyond what is mentioned in the claim, asking

the intention and political agenda of the speaker. Gabriel et al. (2022) study such

implications by gathering expected readers’ reactions and writers’ intentions towards

news headlines, including fake news headlines.

To produce verdicts of the claims, other work generates explanations for

models’ predictions. Popat et al. (2017, 2018); Shu et al. (2019); Yang et al.

(2019a); Lu and Li (2020) presented attention-based explanations; Gad-Elrab et al.

(2019); Ahmadi et al. (2019) used logic-based systems, and Atanasova et al. (2020);

Kotonya and Toni (2020) modeled the explanation generation as a summarization

task. Combining answers to the decomposed questions in our work can form an

explicit explanation of the answer.
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Question Generation Our work also relates to question generation (QG) (Du

et al., 2017), which has been applied to augment data for QA models (Duan et al.,

2017; Sachan and Xing, 2018; Alberti et al., 2019a), evaluate factual consistency

of summaries (Wang et al., 2020a; Durmus et al., 2020; Kamoi et al., 2022), iden-

tify semantic relations (He et al., 2015; Klein et al., 2020; Pyatkin et al., 2020),

and identify useful missing information in a given context (clarification) (Rao and

Daumé III, 2018; Shwartz et al., 2020; Majumder et al., 2021). Our work is most

similar to QABriefs (Fan et al., 2020), but differs from theirs in two ways: (1) We

generate yes-no questions directly related to checking the veracity of the claim. (2)

Our questions are more comprehensive and relevant to the claim.

6.8 Chapter Summary

We present a dataset containing more than 1,000 real-world complex political

claims with their decompositions in question form. With the decompositions, we

are able to check the explicit and implicit arguments made in the claims. We

also show the decompositions can play an important role in both evidence retrieval

and veracity composition of an explainable fact-checking system. We believe that

this dataset can further promote building explainable fact-checking systems and

analyzing complex claims.
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Chapter 7

Fact Verification with Evidence Retrieved in the Wild

This chapter is based on Chen et al. (2023).1

7.1 Introduction

To combat the rise of misinformation, the NLP community studied providing

automated tools to assist with fact-checking. In Chapter 6, we used human-written

fact-checking articles as a retrieval corpus to retrieve evidence, which is not useful

to build a real fact-checking system. Additionally, many prior work studies fact-

checking have focused on crowd-sourced claims (Thorne et al., 2018; Jiang et al.,

2020; Schuster et al., 2021; Aly et al., 2021a), which do not accurately represent the

complexities of actual claims that fact-checkers deal with. Other work that does

tackle real-world claims either relies on access to a document set that contains the

“gold” evidence (Ferreira and Vlachos, 2016; Alhindi et al., 2018; Hanselowski et al.,

2019; Atanasova et al., 2020) or conducts unconstrained retrieval (Augenstein et al.,

2019), which may retrieve articles written by fact-checkers. This assumption fails

to account for the challenges in retrieving the raw evidence in the wild.

We simulate realistic fact-checking scenarios, handle complex political claims,

and study a retrieval setting that aligns with the fact-checker’s workflow. We re-

1Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, and Eunsol Choi. 2023. Complex
Claim Verification with Evidence Retrieved in the Wild. arXiv preprint arXiv:2305.11859.
Jifan Chen initialized the research project, conducted experiments, analyzed data and wrote the
paper.
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Claim: When San 
Francisco banned 
plastic grocery bags, 
“you saw the number 
of instances of people 
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Figure 7.1: Overview of our pipeline: a claim is first decomposed into several yes/no
questions (section 7.3.1), then we pipe the questions through two stages of retrieval
(section 7.3.2 and section 7.3.3) to select the most relevant paragraphs. Finally,
we generate a claim-focused summarization (section 7.3.4) and feed it to a veracity
classifier to get the final veracity label (section 7.3.5).

trieves evidences from the Web, restricted to document authored before the time of

the claim and not documents sourced from fact-checking websites themselves. To

handle this challenging setting, we propose a pipeline that builds upon the strength

of large-scale language models and findings from prior studies. Following the ap-

proach of Chapter 6, we first decompose a claim into a series of sub-questions,

targeting both explicit and implicit aspects of the claim. Each sub-question is fed

into a commercial search engine to retrieve relevant documents, with restrictions de-

scribed above to avoid “cheating.” Then, we perform a second stage of fine-grained

retrieval to isolate the most relevant portions of the documents.

Then, identifying relevant information from lengthy documents becomes a

key challenge: information from prior to a claim is often only obliquely related

to that claim and needs significant reshaping or processing. To achieve this, we

employ state-of-the-art language models (Brown et al., 2020; Ouyang et al., 2022) to

generate claim-focused summaries. These summaries can both serve as explanations

for users of the system as well as input to a classifier to determine the final veracity

based on these summaries.

Evaluating individual components of our pipeline is challenging due to the
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absence of gold annotations at each stage. Instead, we evaluate the downstream

veracity classification performance. Since the veracity judgement is inherently sub-

jective (Lim, 2018) the classification performance alone may not fully represent the

system’s effectiveness. Therefore, we conduct a human study to evaluate the com-

prehensiveness and faithfulness of the claim-focused summaries generated in the

final step of our pipeline.

We apply our pipeline to ClaimDecomp proposed in Chapter 6, a dataset

containing 1,200 real-world complex political claims with veracity labels from pro-

fessional fact-checkers. Performance on veracity classification show that: (1) our

constrained retrieval setting is indeed much harder than “unrestricted” retrieval set-

tings; (2) introducing evidence retrieved from the web leads to performance gains

compared to automatic fact-checking without evidence, though there remains a sig-

nificant gap between an oracle classifier performance based on human-written justi-

fications; (3) the sub-questions are crucial for obtaining high-quality raw documents

from the web compared to using the original claim alone.

Our human study further indicates that: (1) claim-focused summaries gen-

erated through are faithful most of the time and are helpful for both machine and

humans to fact-check a claim; (2) the retrieved evidence is often relevant to some

aspects of the claim, but can rarely cover all of its aspects, suggesting that finding

the correct raw evidence in the wild is the core challenge in building automatic

fact-checking systems. We hope our work will spark NLP research in assisting fact-

checkers in realistic scenarios.

7.2 Background

Many of the widely used fact verification benchmarks, such as FEVER (Thorne

et al., 2018), HoVer (Jiang et al., 2020), and VitaminC (Schuster et al., 2021), fo-
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cus on crowd-sourced claims derived from Wikipedia. For example, claims in the

FEVER dataset typically require checking a single aspect like “Oliver Reed was a

film actor.” These claims are checkable by retrieving evidence from Wikipedia and

can be annotated by crowdworkers at scale, but they do not reflect the complexities

of real-world political claims.

Earlier studies (Vlachos and Riedel, 2014b; Wang, 2017; Pérez-Rosas et al.,

2018) on fact-checking political claims typically considered claim alone as an input

to an automated system. By not having evidence, the judgment about the claim is

necessarily based on surface-level linguistic patterns and cannot account for subtle

factual errors. Research that does incorporate evidence either assumes access to jus-

tifications provided by fact-checkers (Vlachos and Riedel, 2014b; Alhindi et al., 2018;

Hanselowski et al., 2019; Atanasova et al., 2020) or evidences from unconstrained

retrieval (Popat et al., 2017, 2018; Augenstein et al., 2019), which frequently yields

evidence sets containing information from fact-checking websites themselves. Fan

et al. (2020) explore generating questions to assist humans in retrieving evidence

from the web, but they only evaluate their system with a human in the loop, who

can aggressively filter irrelevant retrieval results.

To our knowledge, we present first automatic fact-checking with a realistic

retrieval pipeline using evidence that would be available to fact-checkers at the time

a claim was made. As a result, this setting is very challenging and many claims are

not checkable. We therefore emphasize the evidence that our system returns as a

way of assisting human fact-checkers; we believe this realistic task setting and our

corresponding evaluation should be reused in future work.

Need for these tools Our work further shifts the focus away from the evaluation

on classification accuracy alone. Accuracy on truth labels provided by PolitiFact is a
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proxy metric we use to evaluate our systems. However, fact-checking experts argue

that the task is too subjective and complex to be automatable in the near term

(Graves, 2018; Nakov et al., 2021). Part of this arises from the fact that information

needed to check claims is not always available on the public Internet (Singh et al.,

2021b). Closed-book systems like GPT-4 cannot access this information at all, and

even systems like WebGPT (Nakano et al., 2022) struggle to access all the requisite

information. Returning information on a best-effort basis and providing detailed

evidence to enable a human to assist in the judgment can help overcome issues with

returning judgments from error-prone AI systems (Bansal et al., 2021).

7.3 Methodology

Our pipeline (Figure 7.1) consists of five parts, namely claim decomposition,

raw document retrieval, fine-grained retrieval, claim-focused summarization, and

veracity classification. We describe each part below.

7.3.1 Subquestion Decomposition

Given a real-world complex claim, we first decompose it into a set of yes/no

questions of which the answers are essential to fact-check the claim, as it has

been shown in Chapter 6 that the decomposition is both helpful to retrieve rele-

vant evidence and make a judgment about the final veracity. We pick four input-

decomposition pairs from the human annotations of Chapter 6 to form a few-shot

prompt and feed it to OpenAI’s text-davinci-003 which is a GPT3 (Brown et al.,

2020) model from the Instruct series (Ouyang et al., 2022), to generate the sub-

questions. As fact-checking often requires checking multiple aspects of a claim, we

generate a set of unique questions by multiple rounds of sampling until we generate

10 different questions. An example of the decomposition is shown in Figure 7.2.
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7.3.2 First-stage Retrieval

For each question generated in the previous step, we feed it to a commercial

search engine API to collect the top 20 documents. We filter the documents from

fact-checking websites, after which we pick the top 10 documents from the remaining

documents. In this chapter, we use the Bing Search API.2

Date Indexing To simulate realistic fact-checking scenarios, that is, an automatic

fact-checking system should be able to verify a claim as soon as it has been made.

This indicates that the system can only access documents that are available before

the claim is made. Additionally, we investigate the extent to which the evidence

leaks if we conduct free retrieval without timestamps. Therefore, we conduct two

rounds of web retrieval with and without the timestamp of a claim.

Content Extraction We extract the actual content from the page URLs retrieved

by the Bing Search API using two tools: html2text3 and readability-lxml.4

It should be noted that some URLs are protected5 and cannot be scraped. The

statistics of the retrieved documents can be found in Table 7.1. We combine the

two sets of documents as the corpus for our experiments.

7.3.3 Second-stage Retrieval

Most of the documents collected from the previous step contain only small

snippets relevant to the claim, if they are relevant at all. Thus, we conduct a second-

stage retrieval to pick the most relevant text spans regarding the claim. Specifically,

2/www.microsoft.com/en-us/bing/apis/bing-web-search-api
3https://github.com/Alir3z4/html2text/
4https://github.com/buriy/python-readability
5Paywall, PDFs, and anti-scraping measures.
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Claim:	James	Quintero	stated	on	October	10,	2016	in	a	
panel	discussion	at	SXSW	Eco:	When	San	Francisco	banned	
plastic	grocery	bags,	“you	saw	the	number	of	instances	of	
people	going	to	the	ER	with	things	like	salmonella	and	
other	related	illnesses”	spike.

text-davinci-003

Q1:	Did	San	Francisco	ban	plastic	grocery	bags	in	the	past?
Q2:	Did	the	number	of	people	going	to	the	ER	for	salmonella	
and	other	related	illnesses	increase	after	the	plastic	bag	ban	
in	San	Francisco?
Q3:	Was	the	plastic	bag	ban	directly	caused	the	increase	of	
the	number	of	people	going	to	the	ER	for	salmonella	and	
other	related	illnesses	in	San	Fransisco?

…

Figure 7.2: A demonstration of our claim decomposition process. We decompose
each claim into 10 unique questions. We only show three questions for simplicity.

Q2:	Did	the	number	of	people	going	to	the	ER	for	salmonella	
and	other	related	illnesses	increase	after	the	plastic	bag	ban	
in	San	Francisco?

Bing Search

Did	bag	ban	cause	disease?	
Evidence	is	shaky	…

This	declaration	relied	on	a	
study	that	has	numerous	
questions	about	its	
methodology	and	conclusions.	
We	rate	this	Mostly	False.

	—	Austin	American-statesman	
(Nov.	25,	2016)

Plastic	Bag	Ban	Responsible	
For	Spike	In	E.	Coli	Infections,	
Study	Says	…	

a	46	percent	increase	in	
deaths	from	foodborne	illness	
in	the	three	months	after	the	
bag	ban	went	into	effect	in	
2007	…

	—	HuffPost	(Feb.	7,	2013)

…

Figure 7.3: Two documents returned by searching Q2 (generated in the previous
stage) through the search engine. Here we see the right page is created one month
after the claim and it cites the article written by PolitiFact, which leaks core infor-
mation thus problematic to use as raw evidence.
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# retrieved # scraped # words

w/ timestamp 66.7 45.0 1,561
w/o timestamp 70.4 47.8 1,660
combined 122.5 82.8 1,623

Table 7.1: The statistics for the retrieved documents obtained through the first-stage
retrieval, averaged over all instances. Approximately one-third of the documents are
protected and cannot be scraped. Furthermore, there is not much overlap between
the two separate retrievals.

we segment the documents into text spans containing k words with a stride of 1
2k

words. In our experiments, k is set to 30. Following Chapter 6, we employ BM-25 to

retrieve the top-10 highest-scored text spans, expanding these spans with a ± 150-

word context. If two text spans overlap, they are merged to form a larger span. This

process typically yields large text segments from more than five distinct documents.

7.3.4 Claim-Focused Summarization

Since the documents retrieved in the previous step can contain several thou-

sand words, it becomes impractical for both humans and models to make a judgment

based on such extensive content. Consequently, we utilize state-of-the-art LMs,

specifically text-davinci-003, to summarize each retrieved document separately

with respect to the claim.

Enforcing summary instead of judgment During a pilot study, we discov-

ered that even when explicitly instructing the model to generate only a summary,

text-davinci-003 tends to make unfaithful judgments about the document by

producing a verdict such as “therefore, the claim is refuted by the document,” even

when given irrelevant documents.

121



To circumvent this issue, we investigate two types of prompt engineering. For

the zero-shot prompt, we explicitly instruct the model not to make any judgments

about the stance of the given document. For the few-shot prompt, we select four

documents and manually write summaries. For documents that are not relevant to

the claim, we explicitly write “the document is not relevant to checking the claim”

in the prompt. In section 7.5.1, we show that the few-shot prompting makes the

generated summaries more faithful. We also compare against a variant of our system

using a single summary, rather than one per document. We use zero-shot prompting

for this single-zero variant.

7.3.5 Veracity Classification

The final stage of our pipeline involves making a judgment based on the

summaries generated in the previous stage. We train a DeBERTa-large (He et al.,

2020) model to perform 6-way classification. The input to the DeBERTa model is a

concatenation of the claim and the summaries of the retrieved documents, while the

output is one of the six labels from Chapter 6 (true, mostly true, half true, barely

true, false, and pants-on-fire).

7.4 Automatic Claim Verification Evaluation

Our main automatic evaluation is on claim veracity prediction (Wang, 2017),

evaluating our entire pipeline.

7.4.1 Experimental Settings

Data We use the data from Chapter 6 which contains 1,200 complex claims from

PolitiFact. Each claim is labeled with one of the six veracity labels, a justification

paragraph written by expert fact-checkers, and sub-questions annotated by prior
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Temporal Site Acc Soft Acc Ma-F1 MAE

All All 63.5 76.5 62.2 0.49
All Non-FC 40.0 54.5 39.8 0.88

Before All 40.0 57.5 39.8 0.84
Before Non-FC 39.0 52.0 39.6 0.89

Claim only 27.0 36.0 16.1 1.1
Claim + Just (oracle) 51.5 68.0 46.3 0.61

Table 7.2: Final veracity classification performance given different retrieval con-
straints. We report the test set performance by choosing the best model over 5 runs
using different random seeds on the development set. The top block are our full sys-
tem with constraints over what is retrieved. Red indicates using oracle information.

work.

Evaluation Metric Following Chapter 6, we report several evaluation metrics,

including accuracy (Acc), mean absolute error (MAE), Macro-F1, and soft accuracy

(soft Acc). The soft accuracy is calculated by merging True and Mostly True as one

label, and Pants on Fire, False, and Mostly False as another label, while Half True

remains as a separate label.

Since the training set is small, we train the classifier five times with different

random seeds and report the test set performance using the model that achieves the

best performance on the development set over the 5 runs.

7.4.2 Comparison Systems

The default version of our system for our experiments is to use text-davinci-003

generated subquestions to do both site-constrained and time-constrained web re-

trieval. Then use those sub-questions to do the second-stage retrieval and use

zero-shot-003 as the summarization model.
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Variants of our systems based on different constraints. As discussed in

section 7.3.2, we constrain document access based on its timestamps and whether

it comes from fact-checking websites. We experiment with four distinct variants by

combining the two constraints.

Claim-only We concatenate the metadata, including the speaker and the venue

of the claim, with the claim itself, and feed the resulting text into the classifier.

This approach serves as a lower bound for the veracity classification. This follows

the setting used by Wang (2017).

Claim+Just We extend the Claim-only baseline by appending the human-written

justification paragraph6 to the claim. Note this is the oracle setting and sets the

upper bound for the veracity classification.

7.4.3 Comparison: Constrained vs. Unconstrained Search

We first situate our work with respect to baselines and past systems by

varying the retrieval condition. Specifically, we experiment with both temporal

constraints and site constraints: we can allow all pages or just pages occurring

before the date of the claim, and we can additionally constrain the valid sites to

be non-fact-checking (non-FC) sites. The unconstrained “All/All” setting used

in MultiFC (Augenstein et al., 2019)

Table 7.2 reports the performance of our system with baselines. We note

first that adding temporal or site constraints dramatically reduces the

performance. This demonstrates that unconstrained retrieval over the web works

largely because it is able to retrieve fact-checks that were published after the claim

6We remove the sentence containing the label in the justification.
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Evidence Distillation Performance
FSR SSR Summary Acc Soft Acc Macro-F1 MAE

Claim only 27.0 36.0 16.1 1.1
Claim + Justification (oracle) 51.5 68.0 46.3 0.61

Our Best System

B○ subQs subQs multi-zero 39.0 52.0 39.6 0.89

Ablation on first-stage retrieval

1○ Claim 36.5 50.0 36.9 1.03

Ablation on second-stage retrieval

2○ Claim 39.5 53.5 30.8 0.91
3○ Gold subQs 41.0 51.0 41.2 0.95
4○ Justification 40.0 53.5 40.0 0.90

Ablation on summarization

5○ multi-few 37.5 53.0 37.1 0.94
6○ single-zero 42.0 53.0 40.9 0.85
7○ no summary (raw doc) 37.5 51.0 31.9 0.99

Table 7.3: End-to-end factchecking performance. We ablate various stages of the
model (FSR: first-stage retrieval; SSR: second-stage retrieval). Retrieval using sub-
questions is quite helpful at the first stage, but less so at the second stage. Using our
GPT-3 summarization is important (compare to Raw Docs). Red indicates using
oracle information.

was released, which greatly simplify the problem by synthesizing the raw evidence

before it is fed to our system. In fact, this performance is even higher than the claim

+ justification setting, which is already an oracle because it shows an explanation

of the gold fact-checking decision.

Moreover, when adding time constraints, we see a further drop in perfor-

mance, as this eliminates the cases where other sites might reference fact-checking

pages, as illustrated in Figure 7.3. We suggest follow-up work on retrieval focuses

on those constrained settings.

Finally, if we compare the performance of claim-only and other models that

125



use retrieval, we see a notable improvement over all four of our metrics, showing

that retrieving and summarizing evidence is helpful to predict the veracity

label, even in the constrained setting. We will now investigate more deeply

which parts of our pipeline are responsible for this performance.

7.4.4 Ablations

We ablate the first-stage retrieval, second-stage retrieval, the summarization

model, and the classifier to understand how each individual component contributes

to the final performance. The results are shown in Table 7.3.

Referring back to Figure 7.1, we modify the following steps of the pipeline

• First-stage retrieval Rather than retrieving with sub-questions (subQs),

we instead perform our search with the raw claim (Claim).

• Second-stage retrieval Rather than retrieving with sub-questions (subQs),

we instead perform our search with the raw Claim, Gold subQs from Chap-

ter 6, or Justification, which uses oracle information.

• Summ: multi-zero ormulti-few differ in the prompt; single-zero produces

a single summary of all the retrieved documents. no summary means directly

using the unsummarized documents as input to classifier.

We have the following observations:

The decomposed subquestions are effective for retrieving relevant docu-

ments from the web. Comparing B○ and 1○, by changing the input of first-stage

retrieval to the original claim instead of sub-questions, we observe a notable decrease

in classification performance across all evaluation metrics. This can be attributed to
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the fact that the generated sub-questions encompass multiple aspects of the claim,

enabling the search engine to locate relevant information more easily.

Once we have the raw documents from the web, using either questions or

claims does not make a difference in the second-stage retrieval. Systems

2○, 3○, and 4○ yield only slight differences in classifier performance, even in spite

of the fact that 4○ uses the human-written justification for second-stage retrieval.

We believe this is because we expand the retrieved text span by a ±150 words of

context window and feed the context through a summarization model. As a result,

this retrieval step does not need to be all that precise.

Claim-focused summarization is essential for achieving optimal perfor-

mance. System 7○ shows worse performance than B○ across all metrics, suggest-

ing that some summarization step is important. This may result from two primary

factors: (1) The document length exceeds the context window capacity of DeBERTa,

causing crucial information to be truncated. (2) DeBERTa is not sufficiently robust

to discern the most relevant information given an excessive amount of context. Dif-

ferences in the summarization strategy ( 5○ and 6○) did not yield major changes

here but did have an impact on our human evaluation in the next section.

7.5 Human Study of the Claim-focused Summaries

As discussed in section 7.4.4, incorporating the claim-focused summarization

generated by GPT3 substantially improves the performance of the final-stage classi-

fier. Nevertheless, it is widely recognized that large language models sometimes gen-

erate untruthful content (Bommasani et al., 2021; Chowdhery et al., 2022; Ouyang

et al., 2022), which could introduce bias in the final-stage classifier’s decision. Fur-
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thermore, as pointed out by Lim (2018), the accuracy of veracity classification alone

does not entirely reflect the system’s overall effectiveness, as certain labels such as

“false” and “barely-true” may be ambiguous. We believe the true measure of our

system’s utility lies in the full package of summarized evidence it returns rather than

just the label. Therefore, in this section, we carry out two human studies, namely,

comprehensiveness and faithfulness, to better understand the system’s behavior.

7.5.1 Faithfulness Evaluation

We assess the frequency and degree to which the language model generates

untruthful content during query focused summarization. For each document and

summary pair, annotators choose one of four labels below:

• Faithful: the summary accurately represents the meaning and details of the

original document.

• Minor Factual Error: some details are not aligned with the original docu-

ment, but the overall message remains intact.

• Major Factual Error: there are factual errors that result in the summary

misrepresenting the original document.

• Completely Wrong: the language model hallucinates content that com-

pletely alters the meaning of the original document.

Besides selecting a label, we ask annotators to provide a natural language justifica-

tion for their choices.

We randomly pick 50 claims which contain 200 document-summary pairs

from the development set of ClaimDecomp. We mainly compare the two types of

summaries we discussed in section 7.3.4, namely, zero-shot-003 and few-shot-003
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Summ-type F Minor Major NF Avg score

zero-shot-001 65.8% 9.2% 20% 5% 3.45
zero-shot-003 66% 18% 16% 0% 3.50
few-shot-003 82.5% 6.5% 8.5% 2.5% 3.69

Table 7.4: Human evaluation results on the same 200 document-summary pairs
from 50 claims we randomly picked from zero-shot and few-shot summaries based
on text-davinci-003. “F” denotes the summary is factual and “NF” denotes the
summary is completely wrong. Few-shot prompting helps the model make fewer
factual errors.

(both in the “multi-” setting, one summary per document). We also compare the

summaries generated through text-davinci-001 to see how the faithfulness varies

for different models. We recruited annotators from Amazon Mechanical Turk with a

qualification test, which selects workers that get more than three out of five examples

correct and provide reasonable explanations for their choices. Total of 17 workers

participated in a 3-way annotation.

The annotations agree with a Fleiss Kappa score of 0.30. Although the

agreement is not high, we check the justifications given by the annotators and find

that many of the disagreements are because of subjectivity regarding a factual error.

We compute a consensus annotation via majority vote. We also assign nu-

merical scores to each label, where “Faithful”, “Minor”, “Major”, and “Completely

Wrong” correspond to 4, 3, 2, and 1 respectively. We compute the average score for

zero-shot and few-shot summaries according to the aggregated labels7.

Results The results are shown in Table 7.4. We see that few-shot prompting

substantially decreases the chance of hallucinations in the summaries.

7If all annotators disagree, we compute the average score and pick the nearest label
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When combining “Factual” and “Minor”, we see 89% of the summaries are good

enough to be used as evidence for the classifier. Comparing the performance of

zero-shot-001 and zero-shot-003, we find that the weaker model makes more

major factual errors. These two observations indicate that with stronger models

and better prompts, we can expect these summarization models to improve further.

Figure 7.4 shows 3 examples containing unfaithful content. We see that

the “Minor” error does not affect the interpretation of the original document while

“Major” and “Completely Wrong” alters the view.

7.5.2 Comprehensiveness Evaluation

The goal of the comprehensiveness study is to measure the extent to which

the claim-focused summaries are able to address the claim. However, assessing the

extent to which a claim is verified is nontrivial. To do this, we leverage the human-

annotated yes/no sub-questions presented in Chapter 6 as a proxy for evaluating

the quality of our summaries. Specifically, for each sub-question, we ask annotators

to determine whether the question is answerable or not. Sometimes the questions

cannot be directly answered but can be inferred from the content of the summaries,

or the summary at least contains relevant information. In such cases, we ask an-

notators to choose “partially answerable”. If the question is deemed answerable,

we ask the annotator to indicate whether the answer is “Yes” or “No” based on

their best judgment. In addition to the answer, we also ask annotators to give a

justification for their answers.

We recruit annotators from Mechanical Turk following the same protocol of

the faithfulness study. We select 15 workers and conduct a 3-way annotation over

161 questions from the same 50 claims we picked for the human study of faithfulness.

The annotation agrees with a Fleiss Kappa score of 0.32.
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Summ-type Ans Partially Ans UnAns

zero-shot-003 47.8% 22.4% 29.8%
few-shot-003 42.9% 21.1% 36.0%

Table 7.5: Human evaluation results on 161 sub-questions from the same 50 claims
we picked for the human study on faithfulness. “Ans”, “P-Ans”, and “UnAns”
denotes the number of questions that is answerable, partially answerable, and unan-
swerable respectively.

Faithful Minor Major+ Wrong Total

Answerable 4 2 0 6
Partially Ans 6 1 1 8
Unanswerable 18 7 12 36

Total 28 10 12 50

Table 7.6: Claim-level statistics of few-shot-003 by taking faithfulness and com-
prehensiveness into consideration. The claim-level labels are derived from the sub-
parts as defined in section 7.5.3.

Results The results are presented in Table 7.5. We see that zero-shot summaries

yield more answerable questions than few-shot summaries. However, based on the

faithfulness results, we believe this may be because hallucinations in zero-shot sum-

maries make the questions answerable in an unfaithful way: the system imputes

information that seems to help, but which is not supported by the document.

Nevertheless, the few-shot summaries allow us to partially address over 60%

of the gold annotated sub-questions in the PolitiFact justification. We find this

result encouraging: it indicates that even though the system does not have access

to these (often subtle) factors, it can return relevant information to enable a human

annotator to make a judgment about them.
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Claim: Facebook posts stated on September 29, 2021: The White House “created a fake set for (President Joe) Biden to get his booster shot. The entire Biden 
presidency is one giant charade.”

Document Title: President Joe Biden Gets COVID Booster Vaccine Shot - PEOPLE.com

Content:  President Joe Biden received his COVID-19 booster shot .. Biden received his first dose of Pfizer-BioNTech novel coronavirus vaccine in December at 
Delaware 's ChristianaCare Hospital. His second shot was administered there three weeks later. Both shots were televised …  
Summary: On Monday, President Joe Biden received his COVID-19 booster shot on camera, administered by a nurse with the White House Medical Unit. Biden has 
previously received both of his initial doses of the Pfizer-BioNTech novel coronavirus vaccine in December at Delaware's ChristianaCare Hospital.

Minor Error: The summaries says both shots are received in December while the document says the first one was in December and the second one was three weeks 
later. The summary slightly changes the information in the original document.

Claim: Elizabeth Warren stated on November 20, 2019 in a debate: "Today in America — a new study came out — 20 years out, whites who borrowed money, 94% of 
them have paid off their student loan debt; 5% of African Americans have paid it off.”

Document Title: More Evidence Student Borrowers Prepay Their Loans - Forbes

Content: Most borrowers will still fully pay off their loans before they are required to do so … Borrowers pay off almost all loans ( 94 % ) with a final payment larger 
than the scheduled monthly payments they are required to make …

Summary: A new report from the Consumer Financial Protection Bureau found that 94% of borrowers pay off their student loans before the scheduled payoff date, 
typically doing so in five years or less ...

Major Error: The document says borrowers pay off 94% of the loan not 94% of borrowers pay off their loans
Claim: Andrew Giuliani stated on May 18, 2021 in a news conference: "The one good thing about the antibodies if you’ve had it, is it actually is even better than the 
vaccine, and here's why. With the vaccine you can still transmit, with the antibodies you can't transmit.” 
Document Title: COVID-19: Long-term effects - Mayo Clinic

Content: It involves extreme fatigue that worsens with physical or mental activity , but doesn't improve with rest … What should you do if you have post-COVID-19 
syndrome symptoms ? If you 're having symptoms of post-COVID-19 syndrome , talk to your health care provider … 
Summary: The Centers for Disease Control and Prevention states that there is no evidence to suggest that people who have recovered from COVID-19 and have 
antibodies are not able to transmit the virus. 
Completely Wrong: The document is about the long-term effects of COVID-19. However, model is likely utilizing its parameterized knowledge and draws the 
conclusion directly.

Figure 7.4: Three examples from faithful evaluation (Section 7.5.1), showing the
cases of minor error, major error, and completely wrong respectively. Red marks
denote the mismatches between the summary and the document.

7.5.3 Holistic Evaluation

In the previous sections, the comprehensiveness and faithfulness studies are

conducted on the sub-question level and the document level respectively. We in-

vestigate the claim-level statistics in this section. We aim to answer in a holistic

fashion: how many claims can be fully answerable with a set of fully faithful docu-

ments?

We label a claim as answerable if all of its sub-questions are answerable.

Otherwise, a claim is partially answerable if at least one sub-question is partially

answerable. We apply the same principle to compute claim-level faithfulness. Ta-

ble 7.6 shows the results by combining the two factors. We see that addressing every

aspect of complex claims is still challenging: 36 out of 50 claims contain at least one

unanswerable question. For claims that can be fully addressed (all questions are

either answerable or partially answerable), we see only 1 out of 14 contain a major
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factual error in the retrieved documents.

7.6 Chapter Summary

In this chapter, we simulate realistic fact-checking scenarios by building a

fact-checking pipeline that contains five components: claim decomposer, evidence

retriever, evidence synthesizer, and veracity classifier. We show that the decomposed

sub-questions are essential to retrieve good evidence to fact-check the claim and

such evidence substantially improves the veracity classification performance. Also,

through a human study, we show the GPT3-based evidence synthesizer generates

faithful summaries of documents most of the time indicating it can be used as an

effective part of the pipeline. Finally, we show that performance is bottlenecked by

web retrieval and a human-machine-in-the-loop system might help retrieve better

evidence.
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Chapter 8

Future Directions

In this chapter, we discuss a few future directions motivated by existing

works in this dissertation, including building reliable QA models in the context of

foundation models and human-in-the-loop fact-checking.

8.1 Reliable QA systems with LLMs

In this section, we outline future research directions for improving the re-

liability of QA systems based on Large Language Models (LLMs), such as GPT-

3 (Brown et al., 2020). Despite their impressive performance on a wide range of QA

tasks, as discussed in Chapter 1, LLMs still make simple mistakes such as failing to

match correct entities (Figure 1.2) and generate subtle hallucinations in longer an-

swers. Enhancing the reliability of these models is both important and challenging.

Modifying the neural network structure, as demonstrated in Chapter 4, is

impractical for LLMs with hundreds of billions of parameters. Instead, we draw in-

spiration from the answer verifier approach in Chapter 5 and propose using LLMs to

self-critique their own answers. Recent work (Madaan et al., 2023; Paul et al., 2023;

Huang et al., 2022) has shown that LLMs can refine their answers and achieve bet-

ter performance using self-generated feedback or explanations. Nonetheless, several

fundamental questions remain unanswered:

• Are LLMs more effective at critiquing their own answers than generating them

in the first place?
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• How do LLMs compare with humans in generating answer critiques?

• Can LLMs follow human-designed answer critiquing guidelines to generate

explainable critiques?

• What critiquing guidelines are needed for different tasks and do they differ

with different models?

• Can LLM-generated critiques be used to correct answers, create new ”hard”

examples, and further fine-tune LLMs for improved performance?

We aim to address these research questions in our future work, with a focus

on developing more reliable and accurate QA systems that leverage the strengths of

LLMs.

8.2 Human-in-the-loop Fact-checking

Despite the advancements explored in Chapter 6 and Chapter 7, evidence

retrieval remains a challenging task for fact checking political claims due to two main

obstacles: (1) there is no information available on the web and checking those claims

involves direct communications with specific people or entities; (2) the sub-questions

we generated are irrelevant or not properly formed to retrieve good evidence.

To address these challenges, we propose a human-in-the-loop fact-checking

system as illustrated in figure 8.1. This system begins with the automated pipeline

presented in Chapter 7, which provides fact-checkers with summarized documents

and judgments. If the fact-checkers deem these documents unsatisfactory, the system

reveals the sub-questions utilized for evidence retrieval, allowing fact-checkers to

modify or create new questions. The system then employs the revised questions to

retrieve additional documents, generating updated summaries and judgments. This
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Figure 8.1: An overview of the human-in-the-loop fact-checking system where the
human receives the outputs from the system and provides feedback.

iterative process continues until the fact-checkers are satisfied with the retrieved

evidence.

Moreover, the system is able to further learn from the fact-check feedback to

improve itself: for example, we can know what questions are important to retrieve

good evidence and what questions are not according to the fact-checker and the

system can learn from this signal.
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