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Abstract 

Cache Management Policy in gem5 

Qiyang Ding, M.S.E 

The University of Texas at Austin, 2023 

Supervisor:  Calvin Lin 

The rapid development of computing platforms has widened the gap between 

the computing system and memory system, placing more pressure on cache, which is 

an integral part of the memory system. Despite numerous studies on cache 

management policies to optimize resource usage, some of them cannot keep up with 

the fast-paced trends in computing devices. Many of the state-of-the-art cache 

replacement policies and prefetchers in our research group are based on simulators 

with simple hardware abstraction for easy development and prototyping, but they do 

not support more realistic environments, such as cache coherence and heterogeneous 

systems. This thesis aims to experimentally transplant several cache management 

policies to more advanced simulators and provide initial experience in dealing with 

the challenges encountered in the process. 
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Chapter 1: Introduction 

The field of computer architecture has witnessed a significant evolution from 

single-core systems to multi-core systems, and now towards heterogeneous systems, 

such as CPU-GPU, CPU-accelerators, and big-Little systems. Despite the 

advancements in CPU performance over the past few decades, the memory system 

has not improved as quickly, leading to an increasing gap between computing and 

memory speed. To address the issue of data loading and storing, various techniques 

such as efficient cache replacement policies, accurate hardware prefetchers, and 3D-

stack caches have been developed. However, with the emergence of heterogeneous 

systems, these memory techniques face new challenges and need to adapt to handle 

increasingly complex scenarios within the system. 

There exist two major challenges in the vicinity of computing devices: cache 

coherence and cache partition. Cache coherence pertains to the pattern of data sharing 

between different devices. In homogeneous platforms, all devices follow the same 

rules for sharing data, while in heterogeneous platforms, devices have different 

requirements for data sharing patterns. On the other hand, cache partition refers to the 

pattern of resource sharing between different devices. For instance, in the current 

ARM platform, big cores and little cores perform different tasks based on the 

scheduling of operating systems [1]. The cache resources for each core differ, with 

some requiring more cache resources to achieve better performance. Big cores 

generally have more cache requests due to their out-of-order execution and large 

instruction issue window. However, with less effective cache partition techniques, big 

cores may use up all the cache resources, leaving little cores with limited cache 

resources and hampering their performance and quality of service. 

Cache partition is a continuously evolving field, and another trend is the 

change in cache subsystem architecture. With the increase in cache sizes, the 

assumption of a uniform cache architecture has a detrimental impact on performance. 

This is particularly evident in large L3 or LLC caches that cannot be placed on a 

specific die area. A uniform cache architecture assumes that all cache access latencies 

are the same, resulting in the worst-case access latency being the average for the 

entire cache. To address this issue, such caches are usually split into different banks to 
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cater to different requests. Research on wire delay and cache access latency shows 

that making the cache architecture non-uniform (NUCA cache) results in better 

average cache access time than using the worst-case access time for the entire cache 

[2]. 

Advanced architecture simulators are required to simulate cache coherence, 

cache partitioning, and NUCA cache as these components significantly increase the 

memory system's complexity. Simulating NUCA cache also necessitates the 

simulation of the internal network connecting cache banks. In this thesis, we aim to 

re-implement some state-of-the-art methods from simple simulators to gem5, an 

architecture simulator that supports advanced features such as cache coherence and 

cache banks for NUCA cache [3]. gem5 also enables full-system simulation, allowing 

the Linux kernel to boot on top of the simulator, resulting in more realistic simulation 

outcomes. Nevertheless, with the simulator's increased complexity, cache replacement 

policies and cache partitioning techniques face new challenges that were not 

considered during their design in simpler environments. 

1.1.MOTIVATION 

Cutting-edge cache replacement policies such as Hawkeye and Mockingjay 

have been developed using architecture simulators like Champsim [4]. However, 

these simulators lack support for cache coherence and realistic memory behavior, 

thereby hindering the development of more effective cache subsystem techniques. 

Although significant progress has been made on cache replacement policies and 

prefetchers using Champsim in our research group, these methods may perform better 

in more complex systems. To enable further research in this area, an advanced 

architecture simulator is needed that is suitable for integration with heterogeneous 

systems and can address issues related to cache coherence and NUCA cache. 

gem5 is an advanced architecture simulator that satisfies the aforementioned 

requirements. It is a highly abstracted simulator that enables full-system simulation, 

and its interfaces support the integration of customized accelerators, making it 

convenient for heterogeneous simulation. Furthermore, gem5 provides GPU models 

and is capable of integrating with current cache designs used in the industry [5]. 
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However, the transplantation of cache-related techniques from other simulators to 

gem5 poses numerous new challenges. Nevertheless, this endeavor offers an 

opportunity to enhance the robustness and performance of these techniques in more 

realistic environments. 

1.2.PROBLEM AND CHALLENGE 

One of the most significant challenges in re-implementing cache replacement 

policies and cache partition techniques in gem5 is addressing the differences between 

gem5 and other simulators. One issue is that, in Champsim or Macsim cache 

replacement policy interfaces, much of the required information can be directly 

retrieved, while gem5 does not provide a direct view, making it difficult to obtain the 

necessary information for these methods. gem5's high level of abstraction also poses a 

challenge in obtaining ideal information for these techniques, and the simulator's full-

system simulation may encounter infrastructure issues such as hanging in the Linux 

kernel boot program or crashing with strange segmentation faults, which makes 

debugging extremely difficult. 

Additionally, cache replacement policies and cache partition techniques must 

deal with more cases in the cache subsystem, such as atomic memory access and 

cache coherence requests, which require handling. Cache partition techniques may 

change a large portion of codes in cache design and add potential bugs that could 

disrupt the entire cache behavior.  

When re-implementing the cache management policies in gem5, the third 

challenge is how to improve them for their cache replacement policies and cache 

partition algorithm. This is mainly in future work, but in this thesis, we will propose 

some basic ideas that can make these methods more suitable in gem5's memory 

system and potentially provide better performance. 

1.3.CONTRIBUTION 

This thesis makes the following contributions: 

 We reimplement Hawkeye and Mockingjay cache replacement policy into 

gem5 and make necessary changes to fit them into gem5 memory system. 



 14 

 We reimplement Flock, an unreleased cache management policy for 

heterogeneous multi-core systems, in gem5 . 

 We explain how and what we learned when moving simulation infrastructure 

from Macsim and Champsim to gem5 and propose some new ideas on these 

methods. 

 We evaluate the performance of the Hawkeye and Mockingjay cache 

replacement policies in gem5 and compare them with their counterparts in 

Champsim. 

1.4.ORGANIZATION OF THESIS 

The subsequent sections of this thesis will be structured as follows: Chapter 2 

will discuss the related works in cache replacement policy, cache partition, and non-

uniform cache architecture. Chapters 3, 4, and 5 will focus on the cache replacement 

policy, cache partition, and their combinations in this thesis, respectively. Chapter 6 

and Chapter 7 will provide a detailed explanation of the memory system of gem5 and 

the modifications made to all the components to obtain a more realistic simulation 

result. Chapter 8 will present the results obtained from the experiments. Finally, 

Chapters 9 and 10 will discuss the future work and conclusion of this thesis. 
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Chapter 2: Related Work 

 This thesis presents research on cache replacement policies, cache partition 

techniques, and uniform/non-uniform cache architectures. The following section will 

outline different related works in these three areas. 

2.1.CACHE REPLACEMENT POLICY 

The upper bound of cache replacement policy is Belady’s MIN algorithm that 

needs the future information to make the best cache line arrangement [6]. However, in 

run-time environment, it’s impossible to know the future cache access. Therefore, 

there are many works on practical cache replacement algorithms and here we only 

focus on ones that are helpful for this thesis. 

Cache replacement policies can be classified into two categories: memory-less 

policies and prediction-based policies. LRU is the most popular memory-less cache 

replacement policy, and it remains popular today [7]. Jaleel et al. proposed SRRIP and 

DRRIP to utilize the behavior between LRU and Most Recently Used (MRU) to 

achieve thrash-resistant property [8]. Memory-less replacement policies are simple, 

but they target specific access patterns and cannot deal with the complexity achieved 

by Belady’s MIN policy. 

Prediction-based cache replacement policies predict whether or not to cache a 

particular line. SHiP and SDBP are two prediction-based policies that correlate load 

instructions with either the first one or the one causing reuse, respectively [9, 10]. 

Hawkeye simulates Belady’s MIN behavior based on past history and classifies cache 

lines into two categories [11]. Mockingjay uses a different approach to mimic 

Belady’s MIN policy by predicting the reuse distance of each cache line and selecting 

those that will be accessed in the near future [12]. There is also a perception predictor 

for cache replacement policy that trains the learner for different cache access patterns 

[13]. 
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2.2.CACHE PARTITION 

Qureshi and Patt published the Utility-Based Cache Partition (UCP), which 

provides an effective way to partition the cache based on the LRU replacement policy 

[14]. It also uses set dueling to significantly limit the hardware budget in the partition 

monitor. Zhan et al. optimize locality and utility by being aware of thread behavior 

[15]. They use the BIP replacement policy and set the insertion position based on the 

partition size. Kaseridis et al. propose an advanced partition method that partitions 

cache-friendly cache lines more effectively and distinguishes the thrashing access 

pattern of the application [16]. Other methods attempt to partition the sets instead of 

ways but require redesigning the cache architecture compared to the common one 

[17]. 

2.3.NON-UNIFORM CACHE ARCHITECTURE 

Kim et al. were the first to propose the concept of a non-uniform cache 

architecture, which demonstrated that wire delay has a significant impact on cache 

access latency, especially with larger cache sizes [2]. They also demonstrated that 

separating a large cache into banks and using different access latencies for each bank 

improves cache performance. Hardavellas et al. subsequently published a new data 

placement approach in a distributed shared cache, allocating cache banks to the 

nearest cores to achieve better cache access performance [18]. They also addressed 

coherence problems within the NUCA cache using page and TLB support. Kandemir 

et al. designed a NUCA cache architecture suitable for data migration to improve 

performance [19]. There are also software-controlled NUCA cache designs. Jigsaw is 

one such design that partitions the cache based on the operating system and colors the 

cache banks through page and TLB support [20]. It solves interference and scalability 

problems in shared caches. Authors then scaled Jigsaw to fit into large distributed 

caches that use a more aggressive algorithm to color the optimal cache bank 

allocations for each thread [21]. They also design a hardware monitor that 

outperforms the utility monitor in UCP and can approximate the hit curve greatly. 

Schwedock and Beckmann improved Jigsaw to make it suitable for datacenters by 

addressing security and tail-latency problems [22]. In scientific computing, NUCA 
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cache is also popular since many applications require larger cache sizes to increase 

execution speed effectively. TD-NUCA is a method that targets optimizing NUCA 

performance for clusters at runtime [23]. 

  



 18 

Chapter 3: Cache Replacement Policy 

3.1.OVERVIEW 

This thesis considers three cache replacement policies, namely Least Recently 

Used (LRU), Hawkeye, and Mockingjay. LRU is the most common cache 

replacement policy in current cache designs, as it can effectively utilize temporal 

locality. Hawkeye and Mockingjay, on the other hand, are methods that mimic 

Belady’s MIN policy to obtain a better choice of victim in the cache. All these three 

methods are based on a homogeneous system. Hawkeye and Mockingjay both target 

the Last Level Cache (LLC) to improve performance since LLC has larger cache sizes 

and a cache replacement policy requiring much hardware budget will not significantly 

be a great portion of cache design. 

3.2.LEAST RECENTLY USED (LRU) 

The Least Recently Used (LRU) cache replacement policy is widely used in 

modern CPU cache designs as it is simple yet effective [7]. It takes advantage of 

temporal locality by only evicting the least recently used cache lines when the cache 

set is full. Additionally, it has a low hardware budget as it only requires a few bits per 

cache line to determine its priority within the set. As a result, the LRU policy is 

commonly used in the L1 and L2 cache levels, which are located closest to the CPU 

and depend heavily on frequently accessed data to improve performance. 

3.3.HAWKEYE 

The Least Recently Used (LRU) cache replacement policy is simple and 

widely adopted in current cache designs, but it struggles with increasingly complex 

access patterns. A new, smarter method for cache replacement is needed. Belady’s 

MIN algorithm offers the upper bound of cache replacement performance, but it 

requires future information that is impossible to predict in online cases [6]. One 

solution to this problem is the Hawkeye cache replacement policy, which simulates 

local Belady’s MIN behavior and uses this information to make decisions on cache 

replacement state [11]. 
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Figure 1: Hawkeye Structure 

Hawkeye has three major components: OPTgen, PC-based Binary Classifier, 

and Re-reference Interval Prediction (RRIP). OPTgen simulates Belady’s MIN 

behavior and provides caching results under this policy. The PC-based Binary 

Classifier uses the information from OPTgen to classify cache lines into two 

categories: Cache-friendly and Cache-averse. Cache-friendly cache lines are those 

that are better to be cached, while cache-averse cache lines are those that will not be 

used in the near future and have the highest priority to be evicted. RRIP maintains the 

status of each cache line and builds the priority rank of all cache lines in one set. 

The OPTgen module comprises two primary components, namely the history 

sampler and the occupancy vector. The history sampler stores the history of cache 

sets, while the occupancy vector records the cache state under Belady’s MIN 

algorithm. An 8x history is necessary to reduce the error of OPTgen’s prediction, but 

this requires a substantial hardware budget. One possible solution to this problem is to 

increase the granularity of sampling history. For instance, by sampling history once 

per four cache accesses, the sampling history can only be twice the number of cache 

ways for a single set. 

Another challenge is the difficulty of sampling all the cache sets. In the case of 

Hawkeye, it is typically implemented on the Last Level Cache (LLC), which is 

always at least 16 Mbyte in today's chip and includes more than ten thousand sets. To 

overcome this challenge, the authors proposed a set dueling technique to randomly 

select some sets while still maintaining accuracy for the entire cache. In practice, only 



 20 

64 sampled sets are required to depict the state of the entire cache, significantly 

reducing the hardware budget of OPTgen. 

The history sampler is designed as an 8-way set associative cache, with each 

entry including a 2-byte address tag, a 2-byte hashed PC, and a 1-byte timestamp. The 

first 2-byte address tag indicates whether the sample line is accessed or not, the 

second 2-byte hashed PC records the last PC that accesses this cache line, and the 

final 1-byte timestamp is used to index the occupancy vector with the last access 

location. 

The occupancy vector is a critical component that aids in making decisions 

under Belady's MIN policy. It is designed as a circular buffer, and each new access 

sets the most recent location to 0. If the access is the first time (no hit in the history 

sampler), no changes are required in the occupancy vector. However, if it is not the 

first time, OPTgen retrieves the old location of the same address accessed in the 

occupancy vector. If the values in the region from the last access location to the most 

recent one are greater than the cache capacity, it indicates that under Belady’s MIN 

policy, the requested block will not be present in the cache. Therefore, the output of 

OPTgen to the classifier will be a cache-miss case. 

Conversely, if there are no values greater than the cache capacity, the output 

will be a cache-hit case, and these values will increase by 1, representing caching in 

Belady's MIN behavior. In this way, the occupancy vector helps optimize cache 

performance by enabling accurate predictions of whether a requested block will exist 

in the cache or not. 

The second component in Hawkeye is the PC-based Binary Classifier, which 

plays a vital role in classifying cache lines into two categories. This component is 

implemented as a lookup table that includes a saturation counter in each entry. 

Whenever OPTgen produces an output, the classifier updates its entries by either 

increasing or decreasing the counter. Specifically, when OPTgen identifies a cache 

line access as a cache-hit case, the entries indexed by the last hashed PC are 

incremented. On the contrary, when OPTgen recognizes a cache line as a cache-miss, 

the entries indexed by the last hashed PC are decremented. Based on the value of the 

most significant bit in the saturation counter, the incoming cache line is categorized as 
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either cache-friendly (1) or cache-averse (0). By effectively distinguishing between 

these two categories, the PC-based Binary Classifier helps optimize cache 

performance and improve overall system efficiency. 

The third component in Hawkeye is RRIP, which is implemented inside the 

cache tag and plays a critical role in determining which cache lines to evict. When a 

cache line is classified as cache-averse, it is always assigned the highest value of 

RRIP, which indicates that it has the highest priority to be evicted. In contrast, cache-

friendly cache lines initially have an RRIP value of 0, indicating the lowest priority to 

be evicted. Among the cache-friendly cache lines, the victim is chosen following the 

LRU manner. As new cache-friendly lines are inserted, the RRIP values of existing 

lines will be incremented by 1, getting closer to be evicted. 

3.4.MOCKINGJAY 

Mockingjay is a cache replacement policy that mimics Belady's MIN policy, 

but with an ETA-based method, in contrast to Hawkeye's classification method [12]. 

The key advantage of the ETA-based method is that it is more resistant to errors. 

Wrong predictions of reuse distance only affect the order of that cache line within the 

timeline of the cache, whereas incorrect classifications could affect the global order in 

the cache replacement process. For instance, Hawkeye might mistakenly identify a 

cache-friendly cache line as such, leading to a false positive that remains in the cache 

set for a long time until all other cache-averse lines are evicted.  

 

Figure 2: Mockingjay Structure 
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The estimate time of arrival (ETA)-based method is a cache replacement 

policy that predicts the time of cache access and uses this information to arrange the 

cache order, keeping more useful cache lines inside the cache. Mockingjay uses this 

method to achieve performance that is closest to Belady's MIN policy. 

There are three components in Mockingjay: Sampled cache, Reuse distance 

predictor, and ETR counter. The Sampled cache is the same as what Hawkeye has and 

provides the necessary history to calculate the reuse distance of a particular cache 

line. The Reuse distance predictor determines the next access time of an incoming 

cache line. Finally, the ETR counter arranges the order of each cache line in one set 

for eviction. 

Sampled cache used in Mockingjay is similar to the one in Hawkeye, but with 

a different indexing policy. It combines bits from set id and address tag to index the 

set in the sampled cache. In their design, sampled cache is 5-way set-associative 

cache with 512 sets and the number of sampled sets is 32. Therefore, 5-bit will be 

chosen from set id to form choices of 32 sample sets and the other 4-bit will be 

chosen from address tag so that totally 90 history samples can be recorded for one 

sampled set. Even if it needs 8x address history, which means that 16-way set-

associative cache needs 128 access history, some accesses are repeated and 90 entries 

are enough to record all the accesses. Unlike Hawkeye, the entry in the sampled cache 

includes a 10-bit address tag, an 11-bit hashed PC, and an 8-bit timestamp. 

The Reuse Distance Predictor is the most significant component in 

Mockingjay, as it is responsible for predicting the next access time of incoming cache 

line requests. The predictor consists of a lookup table that is indexed by a hashed PC, 

with each entry representing the reuse distance for the cache request. The predictor 

performs two functions: predict and train. 

During prediction, the predictor first checks if the reuse distance for an 

incoming cache request is greater than the threshold or if it has not been initialized in 

a multi-core environment. If either of these conditions is true, the cache line is 

regarded as a scan line and assigned the maximum distance value. Otherwise, the 

predictor retrieves the reuse distance for the cache request from the entry in the 
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lookup table indexed by the hashed PC. Finally, the predictor right-shifts some bits to 

match the number of bits in the ETR counters to generate the final result. 

 For the training part, there are two cases: sampled cache hit and sampled cache 

miss. When there is a sampled cache hit, the predictor will retrieve the last timestamp 

of the cache line's access and the current timestamp for the entire set. If the counter in 

the predictor has not been initialized before, it will be directly set to the difference of 

the two timestamps. If it has already been set, temporal difference sampling will be 

used to limit the effect of outliers. In the case of a sampled cache miss and one entry 

being evicted from the sampled cache, indicating that the cache request has not been 

touched for a long time, the cache line will be treated as a scan line and set to the 

maximum distance prediction value in the reuse distance predictor. Additionally, the 

predictor will determine whether the cache line should be cached or not. If the reuse 

distance is larger than any other ETR values in the current set or it is larger than the 

threshold, the cache line will not be cached at this level. 

 The last part is estimated time remaining (ETR) counter. It is used to manage 

the priority of each cache lines in the cache set. Lower ETR values means that this 

cache line is predicted to be reused in the nearer future. To lower the space of ETR 

counters, the granularity of aging the ETR counters are 8. This can help limit the 

space of ETR counters into 5-bit compared with the size of reuse distance (8-bit). 

However, the problem occurs when the ETR counter is 0. An out-of-date cache line 

will keep in the lowest priority to be evicted. The solution is to allow the counter to be 

negative and use the absolute value to determine the priority of each cache line.  

 To simplify the work in this thesis, we will not consider prefetcher and leave 

this into future work.  
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Chapter 4: Cache Partition Techniques 

4.1.OVERVIEW 

Various cache partitioning techniques have been proposed in the current 

research, including software-based and hardware-based policies. Software-based 

techniques use operating systems to pre-set cache budgets for each core based on the 

executing application, and can use aggressive algorithms to find optimal cache 

budgets. However, the reconfiguration overhead is high, as it requires communication 

between the operating system kernel and low-level hardware [24]. Hardware-based 

techniques, on the other hand, face the challenge of being aware of the different 

requirements of all applications.  

To address this challenge, the Mixture of Experts method in machine learning 

can be used, where multiple learners work together to divide a problem into 

homogeneous cases [25]. Cache replacement policies also exhibit learning behavior, 

and each policy can provide an overview of the access pattern for the device it 

belongs to. Thus, each policy can be regarded as an expert for that device. Cache 

partitioning techniques can use this information to make decisions on cache budgets 

for each device and manage cache lines inside the cache. 

This thesis describes two cache partitioning techniques, namely the classic 

Utility-based Cache Partition (UCP), published in 2005, which determines cache 

budgets for different cores using the LRU policy, and Flock, an unreleased technique 

designed to address the challenge of cache partitioning in heterogeneous systems [14, 

26]. 

4.2.UCP 

 Utility-Based Cache Partitioning relies on the LRU replacement policy, which 

follows the stack property. This means that an access hitting in an LRU-managed 

cache will also hit in its larger LRU-managed cache. To obtain cache hit information 

under different cache sizes, monitors can be added for cache blocks. An auxiliary 

cache is also added to store the hit count for each entry in the LRU cache set. The 

auxiliary cache stores only the address tag and a counter to measure the hit count for 
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that entry. With the help of the stack property, if the cache size is decreased, it only 

needs to sum the total hit counter values without several least recently used ones, 

based on how much size it wants the cache to be. Algorithms can then be used to 

decide the cache budgets based on this information from the hardware for 

performance under different cache sizes. 

 Another important contribution of Utility-Based Cache Partitioning is set 

dueling, which can significantly reduce the hardware budget required for the utility 

monitor. Set dueling involves sampling some parts of the cache to approximate the 

status of the entire cache. For example, in UCP, monitoring 32 sampled sets is 

sufficient to approximate the results obtained from monitoring all the sets in the 

cache. This method is also used in other cache partitioning techniques, such as 

Hawkeye and Mockingjay, to reduce the hardware budget required for sampling the 

cache access pattern while still obtaining a confident approximation. 

 The partitioning algorithm used in UCP calculates the total cache miss count 

for different partition sizes and selects the one with the lowest miss count. It then 

calculates the increase or decrease in miss count for different applications and chooses 

the partition budget that minimizes the overall miss count, resulting in the best 

possible cache performance. 

4.3.FLOCK 

Flock is an approach to cache partitioning techniques that mainly targets 

heterogeneous multi-core systems, as different devices have their own memory access 

patterns [26]. For instance, in a big-Little multi-core system, the big core may require 

more cache resources than small cores during heavy workloads, while small cores 

may always use some cache lines for small background tasks. In a CPU-GPU system, 

such as in today's mobile SoCs, they are all integrated on the same die and share the 

last-level cache. When a GPU task is running, it always has a streaming access 

pattern, which means that it will not frequently access the cache line it brought in 

again, while the CPU still needs temporal locality to increase its memory operation 

speed. The problem arises when the cache partitioning technique provides too much 

cache budget to the GPU system. 
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The proposed solution aims to enable more efficient cache management 

through a smarter approach that utilizes cache replacement policies. Similar to the 

Mixture of Experts (MoE) approach in machine learning, this technique adopts a 

unique cache replacement policy for each core or device, and combines the decisions 

made by all of them to arrive at final decisions regarding cache lines. It consists of 

three components: the Partition Allocator, the Cache Replacement Policy, and the 

Aging Scheme. 

 

Figure 3: Flock Structure 

The Partition allocator is responsible for determining the cache budget. It 

reads statistics from higher-level caches and lower-level memory systems, including 

access count, hit count, miss count, and average cache access latency for the former, 

and row hit count, row miss count, access count, and average DRAM latency for the 

latter. Additionally, it incorporates a performance model to quantify the current cache 

subsystem's performance. FCP is the current performance model used, and it is 

calculated by 𝐹𝐶𝑃 =  (𝑚𝑟1 −  𝑚𝑟2)  ∗  𝑇ଶ +  (𝑚𝑟2 −  𝑚𝑟3) ∗  𝑇ଷ +  𝑚𝑟3 ∗

 𝑇ௗ௥௔௠, where mr1, mr2, and mr3 denote the miss per instruction in L1, L2, and L3 

cache, respectively [27]. This equation is for 3-level caches, which is the most 
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common type of memory system today. T2 and T3 denote the average access latency 

of L2 cache and L3 cache, respectively, while Tdram is the average access latency of 

DRAM. For different cache partition budgets, the only variables that change are mr3 

and Tdram, as mr1, mr2, and T2 are fixed regardless of L3 cache behavior, assuming 

the cache is non-inclusive and non-exclusive. 

To obtain the projected statistics, Additional occupancy vectors in Hawkeye 

are used. These vectors can provide hit or miss counts under Belady's MIN policy 

with different cache sizes. However, the original paper computes the projected 

statistics for all partition choices, which can incur too much hardware overhead since 

it requires 16 occupancy vectors if the cache has 16 ways for each set. Therefore, in 

this thesis, to first evaluate the upper bound performance of using occupancy vectors, 

we assume there are 16 occupancy vectors. We also propose that using one or two 

extra occupancy vector is possible and will be described in the next chapter.  

The calculation of Tdram is more complicated since the different miss ratio in 

L3 can affect the performance of DRAM. A linear approximation is used to determine 

the projected DRAM access latency by using the ratio of the row miss rate and row hit 

rate, and also the ratio between the estimated miss count under different cache 

partition sizes and the current miss count as the factor. This is then multiplied with the 

current average DRAM access latency. After obtaining all the variables in the 

equation above, we can then determine the speedup for increasing or decreasing the 

cache partition budget.  

The task of finding the optimal partition budget is challenging since it involves 

solving an NP-hard knapsack problem [28]. Flock addresses this issue by dividing the 

cache partition budget into multiple pieces and assigning each piece to the device that 

can achieve the highest FCP gain. The FCP gain represents the amount of 

improvement that can be achieved in cache performance by allocating additional 

cache budget to a device. The algorithm used by Flock is outlined below: 
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Figure 4: Flock cache partition algorithm 

The cache replacement policy in Flock generates cache replacement results for 

each device based on the partition size provided by the allocator. The theory is to let 

the cache replacement policy make decisions assuming its cache capacity is the 

partition size, which is a flexible way to adapt to dynamic cases with different 

requirements from devices. The candidate cache replacement policies are Hawkeye 

and Mockingjay, and their integration into Flock will be explained in the next chapter. 

The aging scheme in Flock is based on the access ratio of different devices. If 

one core has twice the access as another core, then the cache line aging for that core 

will occur once per two accesses. This balances the aging speed of different cores to 

avoid one device burning out all the cache resources.  
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Chapter 5: Cache Management Policy 

5.1.OVERVIEW 

The cache partition technique is a crucial step in defining the cache budget, 

but its role is limited to this task and does not extend to the allocation of cache lines to 

different devices. This allocation is determined by the enforcement policy, which 

governs the arrangement of cache lines within a set. In the context of Flock, the 

enforcement policy consists of two key components, namely the cache replacement 

policy and the aging scheme, which jointly determine the status of each cache line in 

the set. 

5.2.FLOCK WITH HAWKEYE 

Flock employs the cache replacement policy as its enforcement policy for 

cache partition budget, which is based on the Hawkeye. Hawkeye is responsible for 

providing the necessary information for the partition allocator. In Flock, each device 

sharing the cache has a specific Hawkeye component installed, which acts as an 

expert for that device and does not interfere with other devices. For example, in a big-

little multi-core system, the cache request from the big core is learned by the 

Hawkeye component assigned to that core. The Hawkeye consists of 16 occupancy 

vectors for a 16-way set-associative cache, which offer statistics that aid in miss count 

determination under Belady's MIN policy with varying cache capacities. Moreover, 

the projected cache partition size to the current size ratio can serve as a factor for 

estimating the total miss count for different cache partition sizes. 

However, using 16 occupancy vectors per device incurs significant hardware 

overhead. To reduce this, an alternative approach is to use only one additional 

occupancy vector for all partition sizes. In this scheme, the partition process is 

gradually executed until it reaches the maximum cache budget. Each time the 

partition algorithm runs, it estimates the partition budget increase for one step since 

only one occupancy vector is available. This can be similar to a predecessor-successor 

pair for the current partition size and the next partition size for each core. However, 

this approach lacks support for decreasing the cache partition budget. To address this, 
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adding another occupancy vector to track the next larger partition size and the 

previous smaller partition size may be a potential solution. 

After classification by Hawkeye for each core, cache lines in one set are sorted 

based on their cache-friendliness. The cache-averse cache line will be evicted first 

since it receives the highest priority of eviction. The cache-friendly cache line will be 

aged using Flock's aging scheme. Flock's aging scheme differs from the original 

Hawkeye aging scheme in that it only ages the cache line when a cache-friendly line 

is inserted.  

Flock's enforcement policy relies on its aging scheme for cache line 

management across different devices. While this approach offers much flexibility for 

accommodating diverse requirements, it may not achieve the desired partition 

performance due to its weak enforcement policy. Furthermore, it is worth noting that 

the performance model FCP utilized in Flock may not be suitable for all computing 

models and must be reviewed when there are changes in the memory system or 

CPU/GPU model. 

5.3.FLOCK WITH MOCKINGJAY 

Mockingjay is also being considered as a candidate for the cache replacement 

policy in Flock, due to its higher cache performance than Hawkeye. It is also suitable 

for the partition allocator since it has sampled cache which stores the same 

information for the occupancy vector. However, integrating Mockingjay into Flock 

requires changing both the aging scheme and cache replacement policy. Mockingjay 

is an ETA-based method that uses a timeline to create a relative order for all the cache 

lines it manages and evicts the ones in the farthest future. In Flock, each Mockingjay 

component will provide its timeline prediction, which is the reuse distance of a cache 

line. We will initially keep the same aging scheme and assess whether there is any 

improvement compared to Hawkeye. However, there are potential issues to consider. 

Firstly, different Mockingjay components will give different reuse distance 

predictions, and it cannot be the global timeline order without any offset. Secondly, 

Mockingjay is not aware of the cache capacity since it only predicts the reuse distance 

and arranges them through ETR counters.  
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Therefore, we cannot give a comprehensive evaluation of Flock with 

Mockingjay and leave it as future work.  
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Chapter 6: Simulation Infrastructure 

6.1.SIMULATOR 

In this thesis, we will use gem5 as our experiment simulator [29]. Although 

Hawkeye and Mockingjay were originally implemented on Champsim and Flock was 

implemented on Macsim, both of these simulators are more simplistic and were 

chosen for their development efficiency [4, 30]. However, since our final target is to 

work on non-uniform cache architectures and CPU-GPU system, which are not 

available in these simulators, gem5 is a better choice. gem5 is an open-source 

architecture simulator supported by companies and institutions like AMD Inc., ARM 

Inc., and UC Davis. It supports more advanced features and provides a more realistic 

simulation environment, including Linux kernel full-system simulation and CPU 

models similar to current products. Additionally, it provides a robust simulation 

infrastructure, including debug classification and statistics output [31]. 

6.2.GEM5 

gem5 is one of the most comprehensive simulators for computer architecture 

research. In this thesis, we will focus on gem5's memory system, including cache and 

memory design. All the components in gem5 are highly abstracted and use proper 

interfaces that allow users to create their own components. gem5 offers two cache 

system designs: Classic cache and Ruby memory model. The former has a simpler 

cache architecture but does not simulate multi-bank caches. It only supports MOESI 

cache coherence and cannot be easily modified. In contrast, Ruby memory model 

simulates multi-bank cache with a network within the cache system. It also supports 

more advanced cache coherence protocols and allows users to implement their own. 

Most importantly, multi-bank cache allows us to simulate non-uniform cache 

architecture easily without greatly changing the behavior of the cache system. Due to 

time limitations, this thesis will not use Ruby memory model, but future work will 

move towards it. 
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6.3.CLASSIC MEMORY SYSTEM IN GEM5 

The classic cache model in gem5 can be found in the src/mem/cache directory. 

It consists of a base cache class and a base set-associative cache class. For this thesis, 

we only use the set-associative class and its basic indexing policies (block offset, set, 

and address tag). This cache implementation includes port implementation and can be 

connected to XBar or CPU ports. L1I caches and L1D caches are always connected to 

the CPU Instruction or Data ports. Communication between the CPU and caches 

occurs through these ports and uses packets to transfer necessary information. Packets 

include all the information the memory system needs to know, such as command type, 

request type, address, data, etc. These packets flow through the entire memory system 

until completion. If a response is required, the packet is flipped from request to 

response and sent back. Each cache has MSHRs that temporarily store missing cache 

requests until the response is ready. 

There are two modes in the classic cache model: timing mode and function 

mode. Function mode does not consider any access latency inside the cache, while 

timing mode is more accurate and considers lookup latency, data/tag access latency, 

packet waiting latency, etc.  

Another essential component is the cache tag class, which includes cache 

insertion, cache access, and cache replacement. In this thesis, cache replacement will 

be the most important component, and gem5 provides the necessary interface for the 

cache replacement policy to function correctly. The interface includes four functions: 

invalidation, initialization, insertion, and update. The first one is designed for cache 

coherence, meaning that when there is a cache invalidation request, it will use this 

invalidation function to reset the replacement state for that cache line. The second one 

is for the initialization of all the components needed for this cache replacement policy. 

For example, RRIP values and valid bit will be set to 0 at the start of execution. The 

third and fourth functions are for cache miss handling and cache hit update. The 

former will be called when a missing cache line is replied from the low-level memory 

system, while the latter will be called when an address tag matches any valid cache 

lines. For the third and fourth function, it provides two overloaded interfaces to 
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support advanced cache replacement policies that need to know the request 

information.  

The memory system statistics also include all the necessary behaviors, such as 

cache miss count, cache access count, and average access latency. All the statistics are 

inherited from statistics::Group and include interfaces for Python to directly get and 

dump to files when the simulation ends. The problem here is that since these statistics 

classes are highly abstracted and used for high-level simulation, the values in the 

statistics are not easy to use in the memory systems. For example, Flock needs 

statistics from other levels of cache systems and low-level memory, and these 

statistics are very difficult to transfer to Flock. There are two tricky solutions, which 

will be discussed in the next chapter. 

In the memory system model, there are two base classes: memory interfaces 

and memory controllers. The former is designed for any type of memory, such as 

DRAM or non-volatile memory, while the latter is responsible for sending or 

receiving requests through the memory system and higher cache system.  

Therefore, the entire process for a read or write CPU memory request is as 

follows: the CPU sends the request to its L1 caches through a port connection, and the 

caches first search the cache tags to determine whether the cache line is hit or not. If it 

is a hit, the request is replied to directly; if it is a miss, it is inserted into the MSHR 

and added to the buffer in the port. The port then sends the requests in the buffer to its 

pair. L2 and L3 caches perform the same actions as L1 caches. From the last-level 

cache (LLC) to the memory, since they use the same port interface, the complexity is 

hidden from the cache to the memory, and the memory controller deals with these 

cache packets and converts them to a new memory packet for the actual memory 

design. After the memory resolves the packets and retrieves the data, the memory 

controller replies until it reaches its timing and sends it back to the cache system. 
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Chapter 7: Implementation 

7.1.HAWKEYE 

We have implemented Hawkeye based on the paper and created three new 

classes to support the interface provided by gem5. For invalidation, we now directly 

invalidate the cache line instead of invalidating the same history inside the sampled 

cache. In future work, we will explain how to make Hawkeye support cache 

coherence. The fields we added for each cache line in Hawkeye are the valid field and 

the RRIP counter. During initialization, the former is set to false and the latter to 0. 

The two most important functions in Hawkeye are insertion and update, which 

are called reset and touch in the gem5 replacement policy interface. We have chosen 

to use the interface with packets since Hawkeye needs to know information from the 

CPU. The accepted packet to the reset function is the cache line with PC, context ID, 

and response type. Since the cache miss handling type is response, Hawkeye handles 

these requests. It then sets the corresponding RRIP value and inserts this cache line's 

replacement information into the cache tag. If it hits in the history sampler, it updates 

the corresponding entry in the history sampler and gets the last timestamp and current 

timestamp. Then, the classifier is trained through the last PC index and its cache hit or 

miss under Belady's MIN policy. Finally, this new access is added to the occupancy 

vector. The touch function shows the same behavior, except for the setting of the 

RRIP value. When a cache-friendly line is hit in Hawkeye, the RRIP value is reset, 

while if a cache-averse line is hit, the RRIP value is kept as the maximum one. 

7.2.MOCKINGJAY 

In gem5, an abstract cache replacement policy interface is provided, which 

both Mockingjay and Hawkeye utilize. However, the main difference between the two 

lies in their distinct internal components and behaviors.  

7.3.FLOCK 

To simplify Flock implementation in gem5, most of its functions are 

implemented through the replacement policy interface. This is because modifying the 
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base cache class behavior will break the abstraction layers and creating a new cache 

child requires numerous changes, potentially leading to problems in simulating cache 

behavior. Therefore, all components are limited to the replacement policy interface. 

One significant issue in Flock design is statistics. In Macsim, CPU and 

DRAM performance counters can be easily obtained, providing a convenient albeit 

unrealistic way to test. However, gem5 is more realistic and highly abstract, and there 

is no direct connection between CPU, DRAM, and caches. There are two solutions: 

connecting LLC with other caches, CPU, and DRAM directly in Python Object or 

transferring information through packets. The former is tricky since it breaks the 

abstraction layers between the system, and it ignores the latency of obtaining 

performance counters. The latter is more realistic but incurs another problem: delayed 

statistics are used to determine partition size. 

To facilitate Flock aging behavior implementation, we add a function called 

access() to the cache replacement policy interface. This function records statistics 

from higher-level caches and lower-level memory before adding its own statistics for 

FCP calculations. Determining which cache statistics are used is a problem. For L1, 

two caches are combined as the total L1 access miss count. We also add cache level 

parameters to caches indicating whether they are L1, L2, L3, or other caches. The 

aging scheme is executed in this function, determined by the ratio counters, aging all 

cache lines belonging to the core if the counter reaches its maximum value. The 

calculation of a new cache partition and aging counter reset is also implemented in 

this function. There are two counters for these functions, and the threshold values are 

self-customized in the code. 

 The insertion and update for Flock are similar to Hawkeye, except for the 

number of components. In Flock, the number of components is based on the number 

of cores or devices input by the user. If there are four cores, then all the components 

in Hawkeye will be four times as much as in one Hawkeye. These components are 

stored in a 1-D vector container and indexed by the core ID (context ID in the packet). 

Occupancy vectors are 16 times as much as the number of cores and indexed by 16 

times the number of cores. For each cache hit or miss for a particular core, its 
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corresponding projected occupancy vectors are updated to match the current partition 

size. 

The FCP performance model can be estimated once all the statistics are ready. 

The current implementation hard-codes the calculation to be done at the L3 cache 

level (LLC) and it is based on the statistics obtained from each packet. This 

performance model estimation is called when the partition algorithm tries to find the 

cache budgets for each core. The update of ratio counter is based on the access 

performance counters in the L3 cache. It will first choose the smallest access count 

and then use that one to set the ratio counter for the other cores. Both partition 

allocation and aging are executed repeatedly based on the number of access counts. 

Cache coherence is also a future work in Flock design, and thus, the 

invalidation function will only invalidate the corresponding line without any further 

action. 

7.4.LESSONS FROM SIMULATION INFRASTRUCTURE 

This thesis focuses on experimental transplantation from simpler simulators 

with user-friendly interfaces to more complex ones. Through this process, we have 

learned several valuable lessons, including: 

 Highly abstracted simulator design is convenient when interfaces are 

explained well, but it will add more overheads when we want to break the 

layers and increase the development or prototype speed. 

 Trace-based simulators like Champsim are easier to debug and can 

accurately reproduce problems, while execution-based simulators like 

gem5 often encounter internal problems like segmentation faults or library 

bugs and may not always be able to reproduce issues. 

 Full-system simulation in gem5 requires a deep understanding of the 

operating system, as the simulator must first boot the OS before executing 

benchmarks. However, the booting process can encounter various bugs 

that may cause the simulation to hang indefinitely. 
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Chapter 8: Evaluation 

 We conducted an evaluation of Hawkeye and Mocking in the gem5 simulator 

using the configurations outlined in Table 1 for single-core and Table 2 for multi-core 

scenarios. Due to time constraints, we selected nine memory-sensitive benchmarks 

from SPEC2006 and employed statistical sampling to approximate performance 

evaluation in gem5, as described in [32]. gem5 supports a fast-forward mode that 

allows for the quick execution of parts of the benchmark, enabling simulation speed to 

be increased. To implement this, we first utilized the KVM version of the CPU, which 

directly executes instructions on the local host CPU. We then sampled three points in 

the benchmark by fast-forwarding 20 billion lines of code for single-core and 40 

billion lines of code for multi-core, warming up 50 million lines of code for single-

core and 100 million lines of code for multi-core, and executing 200 million lines of 

code for single-core and 400 million lines of code for multi-core. Following the fast-

forward phase, gem5 switched the CPU model to the timing model used in the 

experiment. 

L1 Cache 32Kbyte, 8-way associative, tag/data latency 4, 8 
MSHR, Private Cache 

L2 Cache 256Kbyte, 8-way associative, tag/data latency 
14, 32 MSHR, Private Cache 

LLC Cache 2Mbyte, 16-way associative, tag/data latency 44, 
256 MSHR, Shared Cache 

DRAM 3GByte, DDR4-2400 

Table 1: Evaluation configurations for 1-core simulation 

 

8. L1 
Cache 

32Kbyte, 8-way associative, tag/data latency 4, 8 
MSHR, Private Cache 

L2 Cache 256Kbyte, 8-way associative, tag/data latency 
14, 32 MSHR, Private Cache 

LLC Cache 4Mbyte, 16-way associative, tag/data latency 44, 
256 MSHR, Shared Cache 

DRAM 3GByte, DDR4-2400 
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Table 2: Evaluation configurations for 2-core simulation 

8.1.SINGLE-CORE EVALUATION 

In this thesis, most of the experiments were conducted on a 1-core system due 

to time constraints. The results are presented in Figure 5 and Figure 6, with the former 

showing the system performance in terms of instructions per cycle (IPC), while the 

latter indicates the Miss Count Per Kilo-Instructions (MPKI), which represents the 

cache's performance. From the figures, it is evident that the sphinx3, bzip, and tonto 

benchmarks experience significant overhead when using Mockingjay, while tonto 

shows a reduction in MPKI. One possible explanation for this discrepancy is the 

interference of the operating system, which can affect CPU core instructions and 

generate more requests not related to benchmark execution. Conversely, hmmer 

demonstrates the largest reduction in MPKI and the best system performance, which 

is consistent with the statistics in the two figures. 
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Figure 5: IPC Speedup for Hawkeye and Mockingjay (gem5) 

 

Figure 6: MPKI Reduction for Hawkeye and Mockingjay (gem5) 

We also present the system performance of running Hawkeye and Mockingjay 

on Champsim, which uses similar LLC cache configurations but different L1, L2, 

CPU and memory models. 
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Figure 7: IPC Speedup for Hawkeye and Mockingjay (Champsim) 

 Figure 7 shows the IPC speedup for Hawkeye and Mockingjay on Champsim. 

The tonto benchmark shows almost zero improvement in system performance with 

LRU, Hawkeye, and Mockingjay cache replacement policies. However, for other 

benchmarks except bzip2 with Mockingjay, there is a significant improvement in 

system performance, which does not match the cases running in gem5. Since full-

system simulation is vastly different from trace-based simulation, more interference 

such as cache coherence requests inside the memory system, memory behavior, 

operating system, or cache replacement policy implementation issues may be present. 

Different configurations may also incur large mismatch cases between Champsim and 

gem5 results. This discrepancy will be further analyzed in future work. 
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8.2.MULTI-CORE EVALUATION 

Furthermore, we evaluate the performance of Hawkeye and Mockingjay using 

a 2-core multi-programmed workload in gem5 full-system simulation mode. Two 

benchmarks, SPEC2006 astar and h264ref, are run, and the LLC cache is increased to 

4Mbytes. Figure 8 shows the IPC speedup for Hawkeye and Mockingjay under two 

different cache replacement policies. Core 1 performance shows a significant 

increase, while Core 2 performance is slightly lower than LRU. This difference may 

be due to the PC indexed behavior in Hawkeye and Mockingjay, and operating system 

scheduling also plays a crucial role in determining which core executes the 

benchmark. Additionally, the MPKI reduction in LLC over LRU for Hawkeye, and 

Mockingjay is 89.2% and 87.9%, indicating excellent performance when running two 

benchmarks on a 2-core system. 

 

Figure 8: IPC Speedup for Hawkeye and Mockingjay (gem5, 2-core) 
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Chapter 9: Future Work 

9.1.FLOCK WITH MOCKINGJAY 

The Flock implementation allows for diverse cache replacement policies; 

however, limitations in hardware overhead constrain the range of feasible options. In 

order to acquire anticipated statistical projections for various partition sizes, the 

partition allocator necessitates an occupancy vector. Given that the architecture of 

Mockingjay bears similarities to Hawkeye, it is likely that it will be harmonious with 

the Flock framework. Nevertheless, a key issue that remains unresolved is the 

arrangement of diverse reuse distances stemming from multiple Mockingjay 

predictors. In the preceding chapter, initial ideas were presented, and these will be 

further investigated in subsequent research. 

9.2.CACHE PARTITION IN NUCA 

One of the primary objectives of this research is to identify and implement an 

effective cache management policy that incorporates cache replacement policies and 

cache partition techniques in Non-uniform Cache Architecture (NUCA). Although 

NUCA is widely used in current chip Last Level Cache (LLC) designs, these designs 

typically adopt a static NUCA (S-NUCA) approach. S-NUCA performs similarly to 

uniform cache and utilizes the same indexing policy of offset, set, and tag. The sole 

distinction is that each bank may have differing access latencies. However, S-NUCA 

does not fully exploit the advantages of NUCA cache, such as data replication, data 

migration, and near-core storage. Dynamic NUCA (D-NUCA) presents an alternative 

approach that can fully capitalize on these benefits, but it incurs significant overhead 

and requires support from the Operating System. The architecture design significantly 

impacts the LLC structure, and current hardware-based cache partition techniques do 

not take this into consideration. One of the proposed future ideas is to use Flock in D-

NUCA for shared cache banks between different cores.  
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9.3.CPU-GPU SIMULATION INFRASTRUCTURE 

The availability and usage of CPU-GPU simulators pose a significant 

challenge, as there are only a limited number of GPU simulators currently accessible, 

such as GPGPU-sim. However, integrating these simulators with other CPU 

simulators can prove to be complex and may result in compatibility issues. 

Furthermore, GPGPU-sim is designed based on Nvidia desktop GPUs and is not 

suitable for our use case where the CPU and GPU are on the same die and share the 

LLC cache [3]. The latest version of gem5 now includes a GPU model, which 

presents an opportunity to continue research in this area [5]. However, the GPU 

model in gem5 is not yet mature and may lead to problems during development. 

9.4.CACHE COHERENCE 

The current state-of-the-art cache replacement policies, namely Hawkeye and 

Mockingjay, are designed without considering cache coherence. The 

reimplementation of these policies in gem5 provides a promising approach for 

incorporating cache coherence, given that gem5 offers advanced cache coherence 

simulation support. Although Hawkeye and Mockingjay are mainly designed for the 

LLC and do not consider cache coherence, they need to deal with invalidation 

requests when utilized in L2 or L1 cache. For instance, when Hawkeye encounters an 

invalidation request, it may set certain bits in the sampled cache and label the cache 

line as a shared line. Upon bringing it in again, the cache line can be bypassed or 

given high eviction priority, thereby reducing the cache coherence overhead.   

9.5.OPERATING SYSTEM SUPPORT 

The technique of software-based cache partitioning necessitates the support of 

the operating system to allocate cache budgets for individual cores. However, this 

approach lacks the necessary dynamism to adapt to the changing behavior of various 

applications at run-time. Conversely, Dynamic Non-Uniform Cache Architecture (D-

NUCA) requires operating system assistance to assign cache banks to each core and 

enhance access performance. In this regard, hardware-based cache partitioning can 

exploit operating system hints to more effectively allocate cache budgets to each core, 
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with the operating system capable of providing more comprehensive information than 

real-time cache statistics about the contents of applications. 
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Chapter 10: Conclusion 

 In conclusion, this thesis provides a comprehensive overview of the 

transplantation of cache management policies into new simulators and highlights the 

modifications necessary to achieve this goal, particularly with respect to the gem5 

architecture simulator. Additionally, it presents novel research directions for cache 

management policies, including their implementation in Non-uniform Cache 

Architecture (NUCA) and their integration with cache coherence policies. The 

implementation of these approaches in real-world scenarios poses significant 

challenges. Nevertheless, we are confident that this work and future research in this 

area will lead to more robust and effective solutions for managing the Last Level 

Cache in modern heterogeneous systems. 
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