University of Massachusetts Amherst

ScholarWorks@UMass Amherst

College of Education Working Papers and Reports Series

College of Education

2023

Theories and Practices of Emotion, Movement, and Embodiment in Mathematical Learning

Will Lee

Sai Gattupalli

Follow this and additional works at: https://scholarworks.umass.edu/education_working_papers

Part of the Science and Mathematics Education Commons

Theories and Practices of Emotion, Movement, and Embodiment in Mathematical Learning

Research Advisor: Professor Ivon Arroyo Consultation: Professor Jeanne Brunner

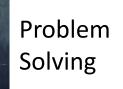
- Physical movements, emotion, and embodiment are fundamental to mathematical learning.
- Problem: Lack of study in collaborative embodiment.
- Identified applications of embodiment using virtual reality. An exploratory analysis of a set of videos for an embodied mathematical game was conducted.
- 1. Show embodiment specifically emotion, bodily movement, and gestures – are linked together during mathematical learning.
- 2. Demonstrate tools and methods to identify indicators of embodiment.
- Abrahamson et al. (2020) discussed that movement and gestures are fundamental in learning, understanding, and generalizing mathematical concepts - also known as Action-Cognition Transduction.
- Gestures enabled students to perform better in reasoning and proofing.

Memory and Cognition

• Multi-party gestures led to higher learning gains than individual gesturing.

Moveme and Gesture

Ab


ctiv

Obje

orie

Learn number line through walking collaboratively


while

number line v having fun!

Learn

Will Lee williamlee@umass.edu Sai Gattupalli <u>sgattupalli@umass.edu</u>

Exploratory Analysis^{*}

*Explored DeepLabCut, YOLO, and finally analyzed using OpenPose

UMassAmherst

College of Education

Immersion not only increases the sense of presence, but also enhance students' engagement, sense of agency, and learnings.

- Planey et al. (2022): used gestures りん spontaneously to assist each other in identifying star and constellations. Participants communicated, shared knowledge, and established common ground all through gestures.
- Chatain et al. (2022): learned derivative through direct manipulation of curves and points. Their findings identified that considering design options are important to facilitate learnings.
- Johnson-Glenberg et al. (2021): Levels of embodiment, degree of agency, and engagement are important in virtual reality.
- Without agency, engaging activities, or emotional support, learning will be bland, sad, and boring.
- Learning in mathematics is multimodal physical movement, emotion, utterances and occurs both individually and collaboratively.
- Future
- 1. Correlate physical movements with log data such as mastery.
- 2. Apply language models to generate hints and emotional support dynamically.
- 3. Create machine learning models for automatic recognitions.

ns pplication