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ABSTRACT

CAPACITY PLANNING FOR HETEROGENEOUS PATIENT
POPULATIONS IN PRIMARY CARE AND SPECIALTY NETWORKS

MAY 2023

PRASHANT MECKONI

B.E., K.J. SOMAIYA COLLEGE OF ENGINEERING, UNIVERSITY OF MUMBAI

P.G.D.I.E., NATIONAL INSTITUTE OF INDUSTRIAL ENGINEERING, MUMBAI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hari Balasubramanian

Access to primary care has a direct impact on morbidity and mortality, and is strongly

influenced by indirect waiting time: the delay between the requested and allotted appointment

day. We present a new modeling framework to describe the heterogeneous appointment

seeking patterns of a primary care patient panel. Specifically, we define a patient-level

stochastic process parameterized to reflect the diversity of primary care visit rates in the

United States which includes realistic features such as recurring appointments (with detailed

time-stamps related to each appointment), cancellations and no-shows. We then model

the superposition of the stochastic processes of the panel of patients, using a simulation

framework over a long time horizon to quantify: (a) the distribution of daily appointments

from a capacity planning point of view, and (b) the distribution of delays for different patient

classes in a closed loop queueing system.

From the capacity planning viewpoint, we estimate the distribution of daily appointments,

and show that the variability of the distribution can be significantly reduced by heuristics

that intelligently use patient flexibility regarding the day of the appointment. From the
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viewpoint of delays, we demonstrate that in a first-come, first-served system, patients who

need the most frequent appointments suffer the greatest delays, motivating the need to

reserve slots for high-visit patient classes. Our simulation model of recurring visits for the

fixed panel also shows that primary care practices can operate at lower capacity than the

mean demand with relatively low delays, since the fixed patient panel works in a closed

loop. These insights are not possible using analytical queueing networks and aggregate level

single-period models that have been used so far in the panel size literature.

To further understand the inequity in delay, we model the primary care appointment

system as a Discrete Time Markov Chain (DTMC). While our primary care access models

discussed above focus on day-level delay (more meaningful in practice), we show the

equivalence between slot-level delay and day-level delay in the DTMC. We derive an

analytical expression for delay in terms of the patient’s probability of daily visit. We show

that conditions for monotone mapping of the probability of visit to delay are intractable

and give numerical results that support monotonicity.

In our last chapter, we expand our scope beyond primary care to include specialty care

networks. Using patient-level longitudinal data from the Medical Expenditure Panel Survey

(MEPS), we model the sequence of appointments with multiple specialty types and the

time intervals between such appointments as a Markov Renewal Process (MRP). We use

comorbidity count to model patient heterogeneity class and extract the MRP parameters

for each class. Next, we adapt the steady state results for a MRP to provide an analytical

expression of the expected fill-rate of the appointment requests by specialty and patient class.

Our analytical results demonstrate that patients with higher comorbidity count typically have

a lower fill-rate—because of shorter lead time between appointments—thereby necessitating

either overtime or reserved slots to ensure timely access. We further simulate appointment

seeking patterns of a nationally representative panel of patients in the specialty network

and estimate the distribution of daily appointment requests for each specialty. Similar to

the primary care case, we show that heuristics that leverage patient flexibility regarding the

day of the appointment can reduce variability in appointment requests for each specialty.
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INTRODUCTION

One of the four overarching goals of the Healthy People 2030 (Office of Disease Prevention

and Health Promotion, n.d.-b) is to “eliminate health disparities, achieve health equity, and

attain health literacy to improve the health and well-being of all”. It follows from a similar

goal of Healthy People 2020—“Achieve health equity, eliminate disparities, and improve

health for all groups” (Office of Disease Prevention and Health Promotion, n.d.-a). Objective

AHS-04 of Healthy People 2030 — ‘Reduce the proportion of persons who are unable to

obtain or delayed in obtaining necessary medical care’ is specifically intended to eliminate

or at least reduce barriers to healthcare. It has a target to reduce this proportion from 4.1%

in 2017 to 3.3% in 2030 (Office of Disease Prevention and Health Promotion, n.d.-c).

While these delays appear to be small in proportion, they have a compounding impact

in terms of both health outcomes and costs, generally due to disease progression. Effect of

such delays in healthcare are immediately visible from long waiting queues in emergency

rooms, and it is essential to know their reasons in order to eliminate delays, or at least

reduce them. Patients suffering from multiple chronic conditions benefit from continuity of

the healthcare provider, since only 44% patients report that different doctors they see are

“coordinated at all times”, while 30% patients report “Not coordinated at all or only some

of the time” (O’Malley & Cunningham, 2009). Cook et al., 2020 have quantified the benefit

of continuity and access in primary care. Primary care providers who had improved access

to primary care provider had improved the continuity, reduced discontinuity, and decreased

emergency room events, whereas those providers with worsening access had decreased

provider continuity and increased emergency room events. Many practitioners of Operations

Research believe that despite challenges in stakeholders’ beliefs, policy and legislation, and

operational economic framework accessibility can be addressed using Operations Research

methods (Linda V. Green, 2008).

In this dissertation, we:

1



1. analyze capacity planning for multi-class primary care appointment scheduling by

appointment scheduling heuristics,

2. demonstrate interventions for reducing inequity in delay in getting appointments,

3. fundamentally analyze primary care appointment delays for patients with most health-

care needs,

4. provide understanding on specialty network outpatient referral patterns for a heteroge-

neous patient population,

5. estimate distribution of the appointment demand distribution and the best capacity

using patient flexibility.

Throughout the dissertation we use data from the Medical Expenditure Panel Survey

conducted by the Agency for Healthcare Research and Quality. This survey follows households

for two years in order to understand medical care usage and expenses for families and

individuals. This dissertation uses nationally representative population for analysis using

the data from the survey.

The dissertation outline consists of three chapters.

In chapter 1, we use heterogeneous patient panel for primary care to analyze appointment

scheduling heuristics, and to provide understanding and interventions in inequity in access

to healthcare as measured by delay in appointment availability. We model the heterogeneous

panel behavior. We first compare performance of simple online appointment scheduling

heuristics with offline know-it-all optimization models, to reduce daily appointment variance.

We then determine the patterns in delay in appointments based on patient health and show

its sensitivity with daily appointment capacity. We provide simple intervention to reduce

inequity in delay.

In chapter 2, we model our simulation as a Markov chain to determine analytical reasons

behind the differential delay seen in chapter three. The appointment calendar, when used as

a random variable can represent the state of the system in a Markov chain. This modeling

allows us to use properties of the Markov chain to understand the system behavior better.

We are particularly interested in understanding the expected delay in appointments for

the different classes of patients. Computational complexities for analyzing Markov chains

restrict our model size and structure, yet it allows us to generalize the results for larger

2



model sizes. The intractability of the analytical model justifies the use of simulation models

from chapter 1.

In chapter 3, we model appointments to a outpatient multi-specialty network for a

nationally representative heterogeneous population based on their comorbidity count. We

provide a data-driven approach to parameterize the outpatient visits as a Markov renewal

process (MRP). We analytically derive expected fill-rate analysis based on patient class

and referral specialty from the stochastic process. This fill-rate analysis can give specialty

providers and estimate on the last-minute appointment requests from different patient-classes

and referral specialties. We use the MRP to simulate a regional population’s appointment

demand and the corresponding aggregate capacity needed when a scheduling heuristic is

used.
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CHAPTER 1

MODELING RECURRING APPOINTMENTS FOR
HETEROGENEOUS PATIENT PANELS IN PRIMARY CARE

1.1 Introduction

Patients consider their Primary Care Provider (PCP) as a source of first-contact care, as a

coordinator of referrals to specialists, and as a healthcare provider who knows about all their

medical problems (Grumbach et al., 1999; O’Malley & Cunningham, 2009). The availability

of primary care providers is directly linked to reduced mortality rate and improved health

outcomes (Macinko, Starfield, & Shi, 2007; Starfield, Shi, & Macinko, 2005). Yet timely

access to primary care still remains a concern. Rust et al., 2008 analyzed the 2005 National

Health Interview Survey and found that 33% of the patients visiting the emergency room

“couldn’t get an appointment soon enough”. Cheung, Wiler, Lowe, and Ginde, 2012 expanded

the same survey data from 1999 to 2009 by including ten times as many individuals, to

show that among patients who needed the emergency room, 60.9% patients with Medicaid

and 26.6% patients with private insurance could not get an appointment with their medical

provider soon enough.

The relationship between a PCP and her patients can last for years, sometimes even

decades. This relationship is formalized by the idea of a panel which refers to the patients

to whom the PCP provides holistic care on an ongoing basis. The primary care panel

sizing problem has been an active area of research in the operations research literature.

Specifically, research related to optimal primary care panel size has studied the balance

between timely access for patients and practice sustenance. Larger panels will improve the

providers’ utilization, reduce staff idle time thus improving revenue and profitability but

come at the cost of increased delays, staff burnout and reduced patient satisfaction. Smaller

panels will result in the converse.
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In this paper, we provide a new discrete-time stochastic modeling framework to study

the panel size problem in primary care. The framework considers several realistic features of

primary care delivery, including: (1) widely differing/heterogeneous visit patterns among

patients, (2) recurring primary care appointments, (3) granular details of the appointment

scheduling process. We elaborate of these features next.

Visit Heterogeneity: Our model of visit heterogeneity follows a common pattern

observed in the United States and in other countries. Specifically, while the majority of the

population is relatively healthy and needs little or no primary care visits, a small fraction

requires frequent visits in short intervals. This pattern mirrors the distribution of medical

expenditures observed in the United States (Emily M. Mitchell, 2019, 2020, 2021). As an

example, in 2018 the top 1% spenders accounted for 21% of overall healthcare expenditure,

while the bottom 50% accounted for only 3% of healthcare expenditure (Emily M. Mitchell,

2021). The most frequent users of primary care are typically also patients with the highest

costs. They generally have two or more chronic conditions, which may also be called multiple

chronic conditions (MCC) or multimorbodity. Ozen and Balasubramanian, 2013 showed,

using data from the Mayo Clinic, that the mean number of appointments increases with

the increase in the chronic condition count. The CDC estimates for 2018 show that only

48.2% of US adults have no chronic conditions, while 27.2% have MCC (Boersma, Black, &

Ward, 2020). One study based in Scotland’s primary care shows the strong mortality link for

patients with multiple chronic conditions that have missed appointments, especially when

mental health conditions are also considered (McQueenie, Ellis, McConnachie, Wilson, &

Williamson, 2019). The authors conclude “existing primary healthcare appointment systems

are ineffective” for such patients.

Recurring Visits: A key feature of our framework is that we model recurring PCP

appointments for each panel patient. Our focus on recurring appointments is motivated

by patient level longitudinal data in the Medical Expenditure Panel Survey (MEPS). For

example, fig. 1.1 shows actual recurring PCP appointment dates for three sample patients

who had eight PCP visits in a two-year period (2010-2011). Recurring PCP appointments

are very common in primary care panel patients, yet they have not played a role in existing
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Figure 1.1: Primary care visits for three patients, each of who had recurring visits over a
2-year period, 2010-2011. Data from the Medical Expenditure Panel Survey.

panel size models. In our modeling framework, each panel patient follows a stochastic process

that includes repeated visits at a rate specific to that patient.

Details of the Appointment Scheduling Process: Models used in the panel size

literature have thus far assumed simplified appointment behaviors for analytical tractability.

In contrast, out patient-level stochastic process for recurring appointments includes the

following realistic features:

∙ Time points such as the day on which appointment request originated, the precise day

for which it was requested, and the day it was actually scheduled.

∙ Follow-up requests for the next appointment that originate when the current ap-

pointment concludes as well as appointments that originate independently of prior

appointments.

∙ Flexibility in the days that a patient desires an appointment. We model this feature

based on the fact that patients who make a request well in advance, i.e., longer lead

times, typically have greater flexibility regarding the days on which they can schedule

an appointment.

∙ Reserved slots for specific patient classes, intended to mitigate the higher than average

delays experienced by them.
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∙ Cancellations that occur as a function of the appointment lead times. Specifically,

appointments have a higher probability of being cancelled if they had longer lead times.

We also include cancellations that occur on the day prior to the appointment day, and

these serve as no-shows in our model.

In modeling how recurring appointments arising from a diverse patient panel are booked

in the physician’s calendar, we infer broader patterns from two different perspectives:

(1) capacity planning, from the perspective of primary care providers, and (2) differences in

the distribution of delays among panel patients.

In the capacity planning perspective, the practice controls day to day variability of

appointments booked using heuristics that take advantage of patient flexibility regarding

the day the appointment is scheduled. We benchmark the performance of the heuristics

to a globally optimal integer program. We identify a simple allocation heuristic in the

patient’s flexibility window that significantly reduces the day to day variability in booked

slots, thereby reducing the probability of both idle time and overtime.

In the second perspective, which focuses on quantifying delays, our modeling framework

is a discrete time closed-loop queuing system where the calling population are the patients

in the panel. In this model, we demonstrate the impact of appointment lead time—the

difference between the requested day and the day the request originated—on patient delays.

Specifically, we show the negative impact of a first-come, first-serve advance booking system,

commonly used in practice, on the patients who have the greatest need for PCP appointments.

We also demonstrate the impact of reserving appointments for high-need patients.

To the best of our knowledge, such realistic and practical details of the appointment

scheduling process have not been studied in the panel size literature before. Panel size

models have largely focused on aggregate models such as single period newsvendor like

frameworks or 𝑀/𝐷/1/𝐾/𝐾 and 𝑀/𝑀/1/𝐾/𝐾 analytical queueing frameworks. In these

models analytical insights are possible only because appointment behaviors are significantly

simplified. While our detailed modeling framework is not analytically tractable and requires

simulation instead, we nevertheless generate new insights not possible in prior single period

and Markovian queueing models. Since we model the longitudinal appointment behavior of
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each panel patient to infer broader system level patterns, our model has the flavor of an

agent based simulation that includes heuristics, optimization and the principles of queueing.

Furthermore, our test cases are based on nationally representative patterns observed in the

MEPS survey that are representative of the US demographic.

The rest of the paper is organized as follows. In section 1.2 we provide a literature review

on similar work related to primary care panel size modeling. In section 1.3, we describe

panel heterogeneity and the patient-level stochastic process for recurring appointments. In

section 1.4, we present a method for estimating the distribution of daily appointments and

describe easy heuristics for appointment allocation that minimize the variability of this

distribution. In section 1.5, we describe for appointment systems simulated with a strict

limit on provider capacity and expected delays. In section 1.6, we expand on the modeling

of no-shows and cancellations. In section 1.7, we describe the experimental setup and in

section 1.8 we report results of our computational experiments. In section 1.9 we briefly

discuss our conclusions.

1.2 Literature Review

Literature most relevant to our study lies at the intersection of panel size models and

appointment scheduling in outpatient care. Appointment scheduling is a vast and still-

growing area of research, which has necessitated comprehensive reviews such as Cayirli and

Veral, 2003, Gupta and Denton, 2008, and Ahmadi-Javid, Jalali, and Klassen, 2017. Of

relevance to our study is the difference between the direct waiting time, which is more of an

inconvenience from spending time in the waiting room on the day (maximum direct waits in

outpatient care rarely exceed an hour) of the appointment, and the indirect waiting time,

which is the delay between the requested appointment and the actual appointment. Gupta

and Denton, 2008 emphasize that indirect waiting time—measured typically in days or

weeks or months—is arguably more critical in primary care since it will have a significant

outcome on patient health and safety. Examples include delayed detection of conditions

such as diabetes, high blood pressure, and certain cancers which lead to increases in disease

severity and complications in treatment. In our study indirect wait time and its variation

among panel patients is an important outcome measure.

8



Within the appointment scheduling literature, primary care panel size models, represent

a smaller and more focused subset of this literature, and we restrict our focus on these

studies in our review. The earliest studies on panel size use a deterministic framework. Some

studies like those by Murray, Davies, and Boushon, 2007 provide deterministic approach to

an optimal panel size that is simple and yet powerful for quick estimates. The authors take

the number of visits that can be provided per year and divide it by expected annual visits per

patient to obtain the panel size. The procedure is simple enough for primary care providers

to do it on their own, without requiring any help from experts or consultants. However,

this method overlooks the stochastic nature of visits that often results in demand-supply

mismatch due to the impact of variability.

Linda V Green, Savin, and Murray, 2007 use a stochastic demand model to study the

link between panel sizes and timely access to the primary care provider. They use a proxy

measure called overflow frequency for timely access. Overflow frequency is the probability

that the physician’s daily demand exceeds available daily capacity. High values of overflow

frequencies are likely to result in longer delays for patients. The authors assume that each

patient in the panel of 𝑁 patients has a probability 𝑝 of requesting an appointment on

any given day. If patient appointment requests are independent of one another, panel

demand follows a binomial distribution with parameters 𝑁 and 𝑝. If the daily capacity

of the physician is known, then the probability of overflow can be easily calculated using

the complement of the CDF of the binomial distribution. By varying the panel size, the

probability parameter (estimated from historical data) and capacity, the feasibility of panel

sizes can be tested. This is an example of a single period model of panel size.

Queuing models are able to extend this model of arrivals (patient demand per unit time

for appointments) and services (number of patients seen per unit time) to model backlogs

(queue lengths) or waiting times in infinitely many time periods. Linda V Green and Savin,

2008 use M/D/1/K and as M/M/1/K queuing models with no-shows dependent on the

patient’s backlog at the time of appointment booking, to show the expected backlog as a

function of the patient panel size. Zander, 2017 extends the queue to the M/D/1/K/N

model by limiting the panel size and restricting new appointments to patients not already

in the appointment queue to compare the backlog for various panel sizes. Liu and Ziya,
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2014 show a way to determine the optimal panel size by examining appointment no-shows

with a Poisson arrival process. They formulate reward maximization problems to come up

with best panel size for different no-show probabilities under various appointment capacities.

Overbooking is used as a policy to improve utilization in the presence of no-shows.

Zacharias and Armony, 2016 propose a queueing based analytical framework to study

the interplay between panel size and appointment capacity. They study the problem at

two different time-scales: they characterize the patient appointment arrival with binomial

distribution as a GI/D/1 queue with balking and the in-clinic queue as GI/GI/1 with

no-shows. The combination of these two queues is then used to maximize a net-profit

based reward in order using the decision variables of appointment capacity and arrival

rate dependent on panel size. The authors use many settings including advanced access to

determine the optimal panel size.

We now turn to studies that explicitly model heterogeneous panels, which are sometimes

referred to as case mix models. A central argument in these papers is that the homoge-

neous patient panels (each patient visiting at the same rate) are not realistic. Ozen and

Balasubramanian, 2013 and Balasubramanian, Banerjee, Denton, Naessens, and Stahl, 2010

are two early examples heterogeneous panel size models. Both investigate heterogeneity in

the context of at multi-physician practices to balance workloads of physicians. In both these

studies, age, gender and the number of simultaneous chronic conditions (comorbidities) were

used as predictors of appointment request rates. Additionally, since the models considered

multi-physician practices, the question of how best to redesign panels optimally—through

stochastic optimization and heuristic methods—was central to both papers. By redesigning

panels, that is by changing patient-physician assignments in a group practice, each physi-

cian’s panel demand can be brought in balance with the physician’s available capacity and

this in turn can minimize imbalances in timely access across physicians.

More recently, Harrington, Rubin, and Bai, 2021 balance workload from patient panels on

existing providers in group practices and uses new hires to take up extra patient workload such

that the cost of reallocating patients to different physicians in reduced. They provide evidence

of linear relationship between the overflow frequency as used in Ozen and Balasubramanian,

2013 with physician utilization, which allows modeling the problem as a mixed integer
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(a) Current Models

Panel Size
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Visit Prob
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(b) Proposed Models

Figure 1.2: Differences in existing models in the panel size literature. Section 1.2 considers
the average or homogeneous patient parameters that represent the entire panel, which are
typical in queueing models. Section 1.2 groups similar patients together, uses different
parameters for different patient groups and sometimes considers multiple providers with
different capacities.

programming problem. Patient panels are partitioned in clusters and represent age, gender

and annual visits to the PCP. They also use the number of chronic conditions to represent

patient clusters.

Zander, Nickel, and Vanberkel, 2021 describes a model to decide if new patients can to

be admitted to the patient panel handled by single or multi-physician practice by minimizing

the absolute difference between the physician workload and the demand for care in number

of visits. The authors use combinations of gender, age, and number of annual visits to

represent heterogeneity in the panel and allow decision at that level. A novelty of the model

is that patients progress to different classes with time. Deterministic scenarios use the
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expected visits or its standard deviation and are modeled using mixed integer programming.

Stochastic scenarios generate the demand for visits and progression to different classes are

modeled using simulations. This demand is used in the mixed integer programming model

for decision to admit new patients. The authors use patient visit data from a group practice

in Germany to provide numerical analysis.

We also note that while heterogeneity has primarily been used to model differences in

visit rates Gupta and Wang, 2008; J. Wang and Fung, 2015; W.-Y. Wang and Gupta, 2011

use patient preferences to represent heterogeneity in the patient panel.

Finally, we discuss two papers that consider recurring visits. Vanberkel, Litvak, Puterman,

and Tyldesley, 2018 makes the case for recurring visits to Oncology practices to determine

the patient panel size using analytical network queuing models for both stationary and

non-stationary cases. Patient arrivals are segregated by their introduction to the practice as

new patients, recurring visit by health status, and inactive patients who may discontinue

visits. The authors provide analysis for new practices trying to start a new practice by

allowing new patients, and for existing practices that try to balance new patients with

existing patients. Bavafa, Savin, and Terwiesch, 2019 provide analyses on optimal revisit

interval, patient preference and flexibility towards using e-visits towards need based partial

replacement of office based visits, panel sizing, physician capacity and their revenue model,

and the related health outcome. In their model, the authors build expressions based on

revisit interval that reflect the average cost of a patient’s visits to their physician, the

expected revenue of a physician under fee-for-service and capitation schemes, and the impact

of e-visits on the costs and revenues. They analyze conditions including panel size and visit

intervals under which the physician and the patients can aim for their own optimal rewards.

They use patient health status to represent heterogeneity as “healthy” and “sick” in patient

panels.

In summary, we observe (broadly speaking) two classes of models of panel size in the

literature: queueing models and single period models that balance each physician’s demand

with capacity. The models can be both homogeneous, presenting only an analysis of average

behavior, as well as heterogeneous, allowing for differences in patient visit rates and involving

multiple providers (see Figure 1.2 for a visual summary). While both classes of models have
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provided high-level insights on the link between panel size and capacity planning, neither

approach considers the precise dynamics of how patients seek primary care appointments.

In queuing models, appointment requests are aggregated as arrival rates and patients join

a queue until their service begins. However, in practice appointments are often booked in

advance, and the lead time (how far ahead the appointment was requested), which queueing

models and other aggregate models do not consider, plays an important role in both capacity

planning as well as delay distributions. In contrast to prior papers, we simulate the stochastic

progression of recurring appointments (including time points such as appointment origin,

day of request, day scheduled) for every panel patient in time. Thus, our model has a flavor

of an agent-based simulation coupled with optimization and queuing dynamics, which allows

us to quantify aggregate patterns related to capacity planning and delay distributions. In

our results we demonstrate insights that would not have been possible using queueing and

single period models.

1.3 Heterogeneous Panel Model

We consider a panel of 𝑁 patients associated with a primary care physician. This

panel is represented as a set 𝐻. We partition the panel into disjoint classes indicated by

subscript 𝑗. Each partition 𝐻𝑗 represents the set of patients with similar healthcare needs.

We use the number of annual visits to the healthcare provider as a surrogate measure of

these healthcare needs. A patient of class 𝑗 needs 𝑁𝑗 primary care appointments each year.

Each patient 𝑘 ∈ 𝐻𝑗 has the same probability 𝑝𝑗 of requesting an appointment on any

given day, where 𝑝𝑗 = 𝑁𝑗/𝐷, assuming 𝐷 workdays in a year. Thus, each patient class

is homogeneous, while the panel is heterogeneous. The number of patients in class 𝐻𝑗 is

𝑛𝑗 = |𝐻𝑗 |,
∑︀

𝑗 𝑛𝑗 = |𝐻| = 𝑁 and 𝐻𝑗 ∩ 𝐻𝑗′ = ∅ for all 𝑗 ̸= 𝑗′.

For all evaluations in this paper, we use the panel composition as shown in table 1.1.

Our panels consist of 20 classes of patients. They are based on total annual visits observed

per individual in the 2011 Medical Expenditure Panel Survey. Since MEPS is a nationally

representative survey, the primary care visit patterns observed can be reliably assumed to

follow the US demographic. The 𝑝𝑗 values in the table are calculated based on annual visits

and assuming 250 workdays in a year. This distribution of annual visits for individuals
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in a nationally representative sample of 2000 individuals was first discussed in Rossi and

Balasubramanian, 2018. Analysis of the nationally representative samples in other years of

the survey also reveals identical patterns. While we test various panel sizes in this paper,

for each panel size value, we retain the proportions of individuals in each class. The panel

composition in table 1.1 shows a great deal of variation in visits: 56.5% of patients need

one or less visits per year, while less than 3.2% of patients need 12 visits or more per year.

There are 15 individuals who need 20 or more visits in a year; for the purposes of our study,

we combine them into a single group.

For each patient in the heterogeneous panel of size 𝑁 , our model explicitly considers

the longitudinal pattern of seeking PCP appointments. To describe this behavior for each

patient, we establish the following notation. Suppose the (𝑖 − 1)th PCP appointment for

patient 𝑘 was on day 𝑎(𝑘,𝑖−1). Let 𝑟(𝑘,𝑖) be the requested day for appointment number 𝑖

for patient 𝑘 ∈ 𝐻𝑗 , and suppose that the request for this appointment originated on 𝑜(𝑘,𝑖),

where 𝑎(𝑘,𝑖−1) ≤ 𝑜(𝑘,𝑖) < 𝑟(𝑘,𝑖).

Further, we assume that the probability for the request for next appointment is made on

some day later than the previous appointment is 𝑝𝑏. So, with probability (1−𝑝𝑏), the request

for the next appointment is made immediately after the prior appointment is completed, i.e.

𝑜(𝑘,𝑖) = 𝑎(𝑘,𝑖−1). This occurs in many situations where a follow-up appointment is scheduled

in the PCP office after the consultation is complete. With probability 𝑝𝑏, the request the

request arises on any day leading up to 𝑟(𝑘,𝑖), i.e. 𝑎(𝑘,𝑖−1) < 𝑜(𝑘,𝑖) < 𝑟(𝑘,𝑖). The precise day

on which the request originates is assumed to follow a discrete uniform distribution with

each day from 𝑎(𝑘,𝑖−1) + 1 to 𝑟(𝑘,𝑖) − 1 having an equal probability. This case reflects the

situation where the patient does not anticipate a follow-up after seeing the PCP on 𝑎(𝑘,𝑖−1)

but later on day 𝑜(𝑘,𝑖) experiences symptoms that lead to the request on 𝑟(𝑘,𝑖). Due to the

lack of data, we have assumed the value of 𝑝𝑏 as 0.5. Note that in our model, 𝑜(𝑘,𝑖) < 𝑟(𝑘,𝑖):

the origin of the request is always less than the day of the request. Same day appointments

are not explicitly considered since the granularity of our model is one day. However, our

model does allow patients to request an appointment the very next day; these requests are

reasonable proxy for same-day requests.

In our model, we first generate the day of the next request using eq. (1.1).
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Table 1.1: Distribution of patients by frequency of visits in a year

MEPS Data Input for Simulation

Annual Number of Probability of Number of Proportion Class
visits patients visit on a day patients of panel̂︀𝑗 ̂︁𝑛𝑗 𝑝(𝑗) = ̂︀𝑗

250 𝑛𝑗
𝑛𝑗∑︁

𝑗

𝑛𝐽

𝑗

0 687 — — — —
1 442 0.002a 1129b 0.565 1
2 271 0.008 271 0.136 2
3 173 0.012 173 0.087 3
4 111 0.016 111 0.056 4
5 68 0.02 68 0.034 5
6 51 0.024 51 0.026 6
7 39 0.028 39 0.02 7
8 36 0.032 36 0.018 8
9 22 0.036 22 0.011 9

10 22 0.04 22 0.011 10
11 15 0.044 15 0.008 11
12 15 0.048 15 0.008 12
13 10 0.052 10 0.005 13
14 4 0.056 4 0.002 14
15 7 0.06 7 0.004 15
16 3 0.064 3 0.002 16
17 5 0.068 5 0.003 17
18 3 0.072 3 0.002 18
19 1 0.076 1 0.001 19
20+ 15 0.08 15 0.008 20

Total 2000 2000 1
a Daily visit probability 𝑝1 = 0.002 = 0.5

250 to accommodate merging of
patients having 0 and 1 annual visits.
b Class 1 merges patients having 0 and 1 annual visits.
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𝑟(𝑘,𝑖) := 𝑎(𝑘,𝑖−1) + 𝑋𝑗 , 𝑘 ∈ 𝐻𝑗 . (1.1)

where 𝑋𝑗 follows a Geometric distribution with parameter 𝑝𝑗 and E[𝑋𝑗 ] = 1/𝑝𝑗 . While any

distribution could be used for 𝑋𝑗 , we chose the Geometric based on the histograms (see

Appendix section 1.10) for intervals between successive PCP appointments for individuals

surveyed in the Medical Expenditure Panel Survey (MEPS). Next, the origin day for 𝑖th

request of patient 𝑘 is determined using eq. (1.2).

𝑜(𝑘,𝑖) := 𝑎(𝑘,𝑖−1) + 𝑋𝑏𝑋𝑢(𝑘,𝑖) , (1.2)

where 𝑋𝑏 ∼ Bern(𝑝𝑏),

and 𝑋𝑢(𝑘,𝑖) ∼ Unif
{︁

0, 𝑟(𝑘,𝑖) − 𝑎(𝑘,𝑖−1) − 1
}︁

.

There is an important nuance related to 𝑜(𝑘,𝑖). When 𝑜(𝑘,𝑖) > 𝑎(𝑘,𝑖−1), the origin and

request days are future scheduled events in the simulation event calendar; the practice

remains unaware of when the next appointment request originates until the simulation moves

to 𝑜(𝑘,𝑖).

Finally, the 𝑖th appointment which originated on 𝑜(𝑘,𝑖) is scheduled on 𝑎(𝑘,𝑖) which may or

not be the same as the 𝑟(𝑘,𝑖). The exact day that the appointment is scheduled depends on

whether whether the model is (a) uncapacitated with patients having some flexibility around

the requested date (discussed in section 1.4) or (b) has capacity constraints with patients

having to experience delays (discussed in section 1.5). Some of the relevant timepoints are

indicated in fig. 1.3.

While we have described the patient-level stochastic process for recurring appointments,

this process needs to be reconciled to a time horizon. Suppose there are 𝑇 days in the time

horizon, where 𝑇 is very large, in the scale of years, since the panel is expected to stay with

the PCP for many years. Let 𝑡 = 1, 2, . . . , 𝑇 denote a day in the horizon. The simulation

is initialized by randomly generating the first appointment request 𝑟(𝑘,1) from eq. (1.1) by

assuming 𝑎(𝑘,0) = 0 (i.e. a dummy appointment day 0) for all patients. We count the number

of appointments on day 𝑡 as 𝐴𝑡 as shown in eq. (1.3)
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Day 32

Day: 30 31 32 33 34 35 36 37 38 39 4032
a(k,i−1) o(k,i) r(k,i)

Day 34

Day: 30 31 32 33 34 35 36 37 38 39 4034
o(k,i) r(k,i)

Figure 1.3: Relevant time-points in patient-level stochastic process related to the scheduling
of the next appointment. The first panel shows that at 𝑎(𝑘,𝑖−1) = 32, the request and origin
dates, 𝑟(𝑘,𝑖−1) = 36 and 𝑜(𝑘,𝑖−1) = 34, are generated in the simulation event calendar. The
practice is not aware at this time that a request will arise from the patient on day 34. On Day
34, the practice receives the patient’s request, and determines where the next appointment
should be scheduled. The blue arrows indicate that days on which the next appointment
can be scheduled.

𝐴𝑡 :=
∑︁
𝑘∈𝐻

1𝑎(𝑘,𝑖)=𝑡 (1.3)

1.4 Capacity planning

Given the patient-level, heterogeneous appointment request process described in the

previous section, we now develop a methodology to estimate the distribution of daily

appointment slots such that all appointment requests arising from the panel during the time

horizon are satisfied without delay. Since we are interested in quantifying the daily demand

distribution, we assume in this section that there is no constraint on the PCP capacity.

The purpose of estimating the demand distribution is to allow the PCP to adequately plan

their daily capacity using newsvendor-like models that balance the probability of the PCP

going idle (under-utilization) with the probability of overtime (i.e. the PCP working beyond

their designated capacity level). Included in our modeling framework are heuristics and an

optimization model that allow a PCP to reduce their day to day variation in appointment

slots by optimally using patient flexibility related to the day the appointment is scheduled.

One simple technique to estimate the distribution of daily appointment slots is to assume

that each patient appointment request to be satisfied on the day it was requested—that is,
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𝑎(𝑘,𝑖) = 𝑟(𝑘,𝑖). With 𝐴𝑡, 𝑡 = 1, 2, . . . , 𝑇 calculated assuming 𝑎(𝑘,𝑖) = 𝑟(𝑘,𝑖), we can obtain the

distribution of daily appointment slots used in each day of the time horizon.

The downside of such an approach is that it exposes the primary care physician to

significant day to day variability, similar to the kind of variability seen in urgent care

centers and emergency rooms. A more practical and realistic scenario, given that patients

requests are typically non-urgent, is that a patient has some flexibility with regard to the

requested appointment date. Specifically, the patient is satisfied so long as the appointment

is scheduled in a time window centered around the request date. Let 𝛿(𝑘,𝑖) be the flexibility

(in days) associated with request 𝑟(𝑘,𝑖). The appointment can then be scheduled on a day

given by eq. (1.4).

𝑟(𝑘,𝑖) − 𝛿(𝑘,𝑖) ≤ 𝑎(𝑘,𝑖) ≤ 𝑟(𝑘,𝑖) + 𝛿(𝑘,𝑖)

𝑙(𝑘,𝑖) ≤ 𝑎(𝑘,𝑖) ≤ 𝑢(𝑘,𝑖)

(1.4)

where we use 𝑙(𝑘,𝑖) := 𝑟(𝑘,𝑖) − 𝛿(𝑘,𝑖) and 𝑢(𝑘,𝑖) := 𝑟(𝑘,𝑖) + 𝛿(𝑘,𝑖) for the lower and upper limits

for 𝑎(𝑘,𝑖).

The introduction of flexibility gives the practice a method reduce the day to day variability.

While there is no limit on how many daily PCP slots are available, patient flexibility allows

the practice to spread the appointment slots more evenly in the time-horizon, thereby reducing

variability. The flexibility 𝛿(𝑘,𝑖) can take many forms, but the the most realistic scenario

would be to base the flexibility on the urgency of the appointment requested. This urgency

is reflected by the number of days in advance that the appointment is requested – i.e. the

appointment lead time. Thus, 𝛿(𝑘,𝑖) ∝ 𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖): the shorter the lead time, the higher

the urgency and the smaller the flexibility 𝛿(𝑘,𝑖).

While the above relationship certainly holds in practice, precise data on how patient

flexibility changes in relation to lead time is typically not collected by practices. Flexibility

is often informally expressed in a patient’s conversations with the scheduler at the time the

appointment is booked, and are difficult to capture quantitatively. In the absence of such

data, in our model we assume 𝛿(𝑘,𝑖) follows eq. (1.5).
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𝛿(𝑘,𝑖) := min
(︂⌊︂

𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖) − 1
5

⌋︂
, 7
)︂

(1.5)

Equation (1.5) implies that flexibility increases by a day for each week (5 working days

per week) of lead time, and the maximum flexibility is capped at 7 working days. For

example, if the difference between the requested and origin dates is 12 (i.e. if the request was

made two weeks and two days in advance), the patient will have a flexibility of 2 days, while

those appointments requested within 5 days are urgent requests with no flexibility. We note

that other (less or more restrictive) flexibility-lead time relationships can be incorporated

into the model.

1.4.1 Heuristics for Assigning Appointment Requests

The introduction of flexibility in appointment dates implies that the scheduler has to

decide at 𝑜(𝑘,𝑖), i.e. the day the request originated, where in the window
[︁
𝑙(𝑘,𝑖), 𝑢(𝑘,𝑖)

]︁
the

request must be scheduled. Since the PCP is interested in reducing the day-to-day variability

in daily appointment slots, the best strategy is to schedule the requested appointment on

that day which has the lowest total booked slots. Since multiple days in the window can

have the same number of booked slots, the scheduled can choose the earliest such day in[︁
𝑙(𝑘,𝑖), 𝑢(𝑘,𝑖)

]︁
with the lowest slots booked. We call this the First Minimum heuristic. We

consider this heuristic assuming we want to allocate most of the appointments as early as

possible (to reduce potential under-utilization), while balancing the number of appointments

on all days.

The first-minimum heuristic is illustrated in fig. 1.4 where a patient makes an appointment

request (fig. 1.4a), the scheduler allocates a slot to that request (fig. 1.4b). After that,

another patient makes an appointment request (fig. 1.4c) which is allotted a slot by the

scheduler (fig. 1.4d).

In addition, to First Minimum, two other simple heuristics that can be used by schedulers

are described below.

Last Minimum The day with the minimum number of appointments in the interval[︁
𝑙(𝑘,𝑖), 𝑢(𝑘,𝑖)

]︁
is allotted. Ties are broken by selecting the latest of such days. We

consider this assuming we want to keep open earlier slots for frequently visiting
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53 4424 35

3533 40393634 3837Day

Day 34 :

Slots Allotted

𝑎(1,3) 𝑟(1,4)

𝑢(1,4)𝑙(1,4)

(a) At the end of the third appointment of Patient-1 on day 34 shown by 𝑎(1,3), she requests for
a next (fourth) appointment on day 37 denoted by 𝑟(1,4). She has a flexibility 𝛿 of 2 days, so
her lower limit for the appointment is on day 35 denoted by 𝑙(1,4) and her upper limit is on day
39 denoted by 𝑢(1,4).

53 4434 35

3533 40393634 3837Day

Day 34 :

Slots Allotted

𝑎(1,3) 𝑟(1,4)

𝑢(1,4)𝑙(1,4)

𝑎(1,4)

(b) The scheduler looks up for the minimum slots allotted for other appointments on each of the
days from day 35 to day 39. She finds that day 36 has the minimum number of slots allotted so
far (two slots). This is the only day which has two slots. She allocates the request 𝑟(1,4) = 37
on day 𝑎(1,4) = 36. There are now three slots allotted on day 36.
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53 4434 35

3533 40393634 3837Day

Day 34 :

Slots Allotted

𝑎(2,2) 𝑟(2,3)

𝑢(2,3)𝑙(2,3)

(c) Patient-2 completes her second appointment 𝑎(2,2) on day 34 after Patient-1. She makes a
request for her third appointment 𝑟(2,3) for day 38. Patient-2 also has flexibility 𝛿 of 2 days.
Her lower limit 𝑙(2,3) for the appointment is on day 36 and the upper limit 𝑢(2,3) is on day 40.

53 4444 35

3533 40393634 3837Day

Day 34 :

Slots Allotted

𝑎(2,2) 𝑟(2,3)

𝑢(2,3)𝑙(2,3)

𝑎(2,3)

(d) The scheduler looks up for minimum slots allotted for appointments on each of the days
from 36 to day 40. She finds that day 36 and day 38 have the minimum number of slots allotted
so far (three slots). She selects the earliest day of the candidate days for breaking the tie. She
allocates the request 𝑟(2,3) = 38 on day 𝑎(2,3) = 36.

Figure 1.4: Simulation illustrated using the first-minimum heuristic.
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patients that have less flexibility, while balancing the number of appointments on all

days.

Uniform Random Any day in the interval
[︁
𝑙(𝑘,𝑖), 𝑢(𝑘,𝑖)

]︁
is chosen with a same (uniform)

probability. We consider this heuristic to see if random allocation can work better.

For each of the heuristics, we can obtain 𝐴𝑡, 𝑡 = 1, 2, . . . , 𝑇 , which gives the distribution

of daily appointments, as well as 𝜇sim = max𝑡 𝐴𝑡, the minimum capacity needed to satisfy

every request without delay.

1.4.2 Offline Optimization: A Mixed Integer Programming Approach for As-

signing Appointment Requests

We also introduce an offline optimization approach that assumes perfect information

about each patient’s appointment request dates 𝑟(𝑘,𝑖) in the time horizon (generated using

a particular heuristic) and the flexibility 𝛿(𝑘,𝑖) associated with each request date. Instead

of minimizing the maximum assigned slots in a window corresponding a particular patient

request (which First Minimum and Last Minimum achieve), the integer program determines

the globally optimal assignment of requests in the entire time horizon, 𝑡 = 1, 2, . . . , 𝑇 with

the objective of minimizing the maximum slots assigned to each day in the horizon. Such a

minimax approach helps reduce day to day variability of scheduled slots in the entire horizon.

While the integer programs perfect information assumption is unrealistic, its principal role in

this study is to provide a benchmark on the performance of each heuristic. The optimization

formulation is provided below.

minimize 𝜇opt (1.6a)

subject to
∑︁
(𝑘,𝑖)

𝑎(𝑘,𝑖),𝑡 ≤ 𝜇opt ∀𝑡, (1.6b)

𝑢(𝑘,𝑖)∑︁
𝑡=𝑙(𝑘,𝑖)

𝑎(𝑘,𝑖),𝑡 = 1 ∀(𝑘, 𝑖), (1.6c)

𝜇opt ≥ 0, (1.6d)

𝑎(𝑘,𝑖) ∈ {0, 1} ∀(𝑘, 𝑖) (1.6e)
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The binary decision variable 𝑎(𝑘,𝑖),𝑡 determines the day 𝑡 within the interval
[︁
𝑙(𝑘,𝑖), 𝑢(𝑘,𝑖)

]︁
on which the appointment related to request 𝑟(𝑘,𝑖) is allotted, as shown in eq. (1.4). Each

appointment request is allotted exactly once as shown in eq. (1.6c). The sum of all

appointments for each day 𝑡 is restricted by the capacity 𝜇opt, as shown in eq. (1.6b). The

integer program seeks to minimize 𝜇opt.

We can determine the daily sum of allotted appointments using eq. (1.7) from the

appointments allotted in the optimal solution.

𝑎*
𝑡 =

∑︁
𝑘

∑︁
𝑖

𝑎(𝑘,𝑖),𝑡 ∀𝑡 (1.7)

Recall that the integer program uses the 𝑟(𝑘,𝑖) and 𝛿(𝑘,𝑖) values specific to each heuristic

(𝑟(𝑘,𝑖) values can differ from one heuristic to another because the allocation dates of the

previous appointment need not be identical). Thus, we simulate the heuristic over the entire

time horizon, and record the 𝑟(𝑘,𝑖) and 𝛿(𝑘,𝑖) values for all appointments. These are used

as inputs to the integer program (as perfect information known a priori) to determine the

global minimum daily count of appointments.

In summary, we have illustrated a methodology by which to estimate the total daily

appointment distribution as well as the minimum daily appointments needed in a horizon

by a heterogeneous panel. Our approach incorporates a commonly observed feature in

primary care practice: the presence of patient flexibility that depends on the urgency of the

appointment. The use of patient flexibility by heuristics that are easily to implement when

the request arises allow a practice to generate estimate the daily distribution of appointments.

We also demonstrate how each heuristic can be bench-marked with mixed integer program

that provides a globally optimal solution by assuming perfect information.

1.5 Quantifying Delays Specific to Each Patient Class

In this section, we look at the panel size problem the perspective of delays experienced

by each patient. Unlike the previous section which used an uncapacitated model to infer

distribution of daily appointments, we now assume that the provider has a strict daily limit
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on the capacity; and in the absence of available capacity for a given day, patient requests

are scheduled at the next available day, creating delays or, more precisely, indirect wait

times. The main purpose of this section to illustrate that in a heterogeneous panel in which

appointments are secured in a first-come, first-served manner, delays are concentrated among

individuals with the greatest need for PCP appointments, and that these patients require

reserved slots.

In the panel size literature, such appointment systems are frequently analyzed with

traditional queuing approaches, for example, as 𝑀/𝐷/1/𝐾 or 𝑀/𝑀/1/𝐾 models. Such

models assume a single aggregated arrival rate 𝜆 and provide outputs as the expected waiting

time for the average patient. Recurring appointment behavior of individuals within a closed

population (the panel) is not explicitly considered. While such aggregate results can be used

for simple back-of-the-envelope analyses, they do not accurately reflect the the appointment

behaviors and wait times experienced individual patients of groups of patients in the panel.

In what follows, we assume a strict limit 𝜇 on the daily PCP appointments that can

be allotted. Delays arise due to unavailability of vacant appointment slots on certain days

when 𝐴𝑡 = 𝜇. As seen earlier, a patient 𝑘 requests her appointment number 𝑖 on day 𝑜(𝑘,𝑖)

where 𝑜𝑘,𝑖 ≥ 𝑎𝑘,𝑖−1. When there are no vacant slots on the requested day 𝑟(𝑘,𝑖), the scheduler

searches for the subsequent day with a vacant slot and allots the appointment 𝑎(𝑘,𝑖) on that

day. This can be expressed as eq. (1.8), where the scheduler allocates the 𝑖th appointment

for patient 𝑘 on the earliest day which has a vacant slot on or after day 𝑟(𝑘,𝑖).

𝑎(𝑘,𝑖) := arg min
𝑡

{𝐴𝑡|𝐴𝑡 < 𝜇, 𝑡 ≥ 𝑟(𝑘,𝑖)} (1.8)

𝐴𝑎(𝑘,𝑖) := 𝐴𝑎(𝑘,𝑖) + 1

The patient experiences an absolute delay that can be measured using eq. (1.9)

𝑑(𝑘,𝑖) := 𝑎(𝑘,𝑖) − 𝑟(𝑘,𝑖) (1.9)

When the appointment allotted is for the same day same as the requested appointment the

delay is zero since 𝑎(𝑘,𝑖) = 𝑟(𝑘,𝑖).
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Figure 1.5: Sample illustration of allocation of appointments for requests originating on day
34 and then on day 38 for a patient 𝑘. On day 32, at the end of appointment, the patient’s
next request and its origin day are randomly generated as day 36 and day 34 respectively.
The patient and the practice remain unaware of the request until day 34. On day 34, the
patient requests for an appointment on day 36. As there are no appointment slots available,
she is allotted an appointment for day 38. On day 38, after the appointment, the patients
next request and its origin are randomly generated. Since the origin day is also day 38, the
patient will request the next appointment for day 44 and will be allotted an appointment for
day 45. The delay for appointment 𝑖 is 2 days and the delay for appointment 𝑖 + 1 is 1 day.

We are also interested in the expected delay which is E
[︁
𝑑(𝑘,𝑖)

]︁
= E

[︁
𝑎(𝑘,𝑖) − 𝑟(𝑘,𝑖)

]︁
=

E
[︁
𝑎(𝑘,𝑖)

]︁
− E

[︁
𝑟(𝑘,𝑖)

]︁
. Since the previous appointment 𝑎(𝑘,𝑖−1) is known, we can treat it as a

constant. We have the solution for E
[︁
𝑟(𝑘,𝑖)

]︁
from eq. (1.10), but we do not have the solution

for E
[︁
𝑎(𝑘,𝑖)

]︁
from eq. (1.11).

E
[︁
𝑟(𝑘,𝑖)

]︁
= 𝑎(𝑘,𝑖−1) + E[𝑋𝑗 ]

= 𝑎(𝑘,𝑖−1) + 1
𝑝𝑗

(1.10)

E
[︁
𝑎(𝑘,𝑖)

]︁
= E

[︂
arg min

𝑡
{𝐴𝑡|𝐴𝑡 < 𝜇, 𝑡 ≥ 𝑟(𝑘,𝑖)}

]︂
(1.11)

Since an analytical solution for the expected delay is not possible, we simulate the ap-

pointment system over a sufficiently long time horizon to obtain the steady state distribution

of waiting times for each class of patients.
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We begin by initializing daily appointments allotted as 𝐴𝑡 = 0 for each day in the

simulation 𝑡. The first request and corresponding origin are determined by assuming that

everyone had the previous appointment on day 0, that is 𝑎(𝑘,0) = 0 ∀𝑘. We use the eq. (1.1),

eq. (1.2) to determine the appointment request 𝑟(𝑘,𝑖) and the origin day 𝑜(𝑘,𝑖) respectively.

A vacant slot is available on day 𝑡 when 𝐴𝑡 < 𝜇. If the vacant slot is available, then it is

allotted corresponding to the patient’s request, else we search for a vacant slot on the next

day. Thus the patient 𝑘 is allotted their 𝑖th request for appointment using eq. (1.8) and the

number of allotted slots is increased for that day.

We determine E
[︁
𝑑(𝑘,𝑖)

]︁
→ 𝑑𝑗 , using the strong law of large numbers applied to our

simulation output. The mean delay for the 𝑗th class of patients can be estimated using

eq. (1.12) which is sum of delays for each appointment for each patient in class 𝑗 divided by

the number of appointments for each patient that class.

𝑑𝑗 =

∑︁
𝑘

∑︁
𝑖

𝑑(𝑘,𝑖)1𝐻𝑗 (𝑘)∑︁
𝑘

∑︁
𝑖

1𝐻𝑗 (𝑘)
(1.12)

1.5.1 Conjecture – Delays increase with increase in 𝑝𝑗 values

In a multi-class first-come, first-serve queueing system, for example an 𝑀/𝑀/1 or 𝑀/𝐷/1

system, all classes will have identical mean delay values in steady state. Differences in delays

arise only when some classes are prioritized over others. In the closed population recurring

appointment queueing system that we consider in this paper, appointments are also allotted

on a first-come-first-serve basis. Thus, in the absence of explicit prioritization, the mean

delays in principle should also be identical across the different patient classes represented by

the 𝑝𝑗 values.

However, this is not true. Indeed, we conjecture that 𝑝1 < 𝑝2 < . . . < 𝑝𝐽 implies

𝑑1 < 𝑑2 < . . . < 𝑑𝐽 where 𝐽 represents the total number of disjoint classes in the panel 𝐻.

In other words, patients in the panel who have higher need for PCP appointments will have

a higher mean delay. This is because requests for a particular day in the horizon are likely

to arise earlier from patients who have lower 𝑝𝑗 values, i.e. patients have a longer interval

between appointments. In a first-come, first-serve system, these requests are fulfilled early,
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increasing the chance that a patient needing requesting an appointment at a short-notice

(shorter interval between appointments) will not be satisfied on the requested day. Thus, a

first-come, first-serve system unwittingly ends up prioritizing patients who need fewer PCP

appointments.

Queuing models are not able to capture this effect is because they work at an aggregate

level. The time stamps relevant to a queueing model involve the arrival time, start of service

time and completion time. Delay is measured as the difference between start of service and

arrival time. In our model we include the following time stamps relevant to a patient’s

stochastic process: previous appointment day 𝑎(𝑘,𝑖−1), origin of request 𝑜(𝑘,𝑖), request day

𝑟(𝑘,𝑖) and the day the appointment is scheduled 𝑎(𝑘,𝑖). Traditional single server queueing

models keep track of 𝑟(𝑘,𝑖) as the arrival time but they are “blind” to, or have no memory

of time stamps 𝑎(𝑘,𝑖−1) and 𝑜(𝑘,𝑖). This in turn implies they have no memory of the lead

time, 𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖) prior to the booking of an appointment. In a first-come, first-serve system,

appointments requested with longer lead times are less likely to experience delays and more

likely to be booked on time.

We can formalize this idea by obtaining an expression for the lead time, i.e. the expected

number of days before which a patient requests an appointment using eq. (1.13).

E
[︁
𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖)

]︁
= E

[︁
𝑟(𝑘,𝑖)

]︁
− E

[︁
𝑜(𝑘,𝑖)

]︁
= 𝑎(𝑘,𝑖−1) + E [𝑋𝑗 ] − 𝑎(𝑘,𝑖−1) − E

[︁
𝑋𝑏𝑋𝑢(𝑘,𝑖)

]︁
= E [𝑋𝑗 ] − E [𝑋𝑏] · E

[︁
𝑋𝑢(𝑘,𝑖)

]︁
= 1

𝑝𝑗
− 𝑝𝑏

(︃
𝑎(𝑘,𝑖−1) + E[𝑟(𝑘,𝑖)] − 1

2

)︃

= 1
𝑝𝑗

− 𝑝𝑏

2
(︁
𝑎(𝑘,𝑖−1) + 𝑎(𝑘,𝑖−1) + E [𝑋𝑗 ] − 1

)︁
= 1

𝑝𝑗
− 𝑝𝑏

2

(︃
2𝑎(𝑘,𝑖−1) + 1

𝑝𝑗
− 1

)︃

E
[︁
𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖)

]︁
= 1

𝑝𝑗

(︂
1 − 𝑝𝑏

2

)︂
− 𝑝𝑏

(︁
𝑎(𝑘,𝑖−1) − 2

)︁
(1.13)

It can be easily shown from Equation (1.13) that when we have two patients 𝑘 and 𝑘′

of different classes 𝑗 and 𝑗′ complete their previous appointments 𝑖 and 𝑖′ on same day, if
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𝑝𝑗 < 𝑝𝑗′ , then E
[︁
𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖)

]︁
> E

[︁
𝑟(𝑘′,𝑖′) − 𝑜(𝑘′,𝑖′)

]︁
. The patients with higher 𝑝𝑗 will be

asking the scheduler for their requested appointments earlier than patients with lower 𝑝𝑗 .

From eqs. (1.10) and (1.13), we say that patients with a lower 𝑝𝑗 are expected to have

their next appointment requests further in the future and are also expected to schedule

them much earlier than the patients with higher 𝑝𝑗 . This in turn implies that a first-come,

first-serve policy will tend to benefit patients with lower 𝑝𝑗 values and adversely impact

timely access for patients with higher 𝑝𝑗 values.

Our conjecture can be viewed as an extension of conflict between the pre-scheduled

versus same-day appointments, which has been discussed before in the literature. A calendar

that is packed with pre-scheduled appointments booked in advance risks timely access for

same-day patients who need appointments at a short notice (typically within a few hours).

Our model in this paper extends that principle to patients (typically those with multiple

chronic conditions) who need recurring appointments in short intervals, whose timely access

might be compromised by appointments booked well in advance by patients whose intervals

between appointments are longer. To avoid this problem, reservations are needed for the

short-interval patients, i.e. patients with lower 𝑝𝑗 values. We turn to this next.

1.5.2 Slot Reservations for the Patients with the Highest Needs

Our slot reservations work in the following manner. We first determine which classes of

frequently visiting patients should have access to reserve slots. We use a set 𝑉 of patient

classes for which 𝑣 < 𝜇 appointment slots are reserved. A patient 𝑘 ∈ 𝐻𝑗 ∈ 𝑉 will have

access to 𝜇 appointment slots and another patient 𝑘′ ∈ 𝐻𝑗′ /∈ 𝑉 will have access to 𝜇 − 𝑣

appointment slots. This concept is used when allocating slots using eq. (1.8) and is modified

in eq. (1.14).

𝑎(𝑘,𝑖) :=

⎧⎪⎪⎨⎪⎪⎩
arg min

𝑡
{𝐴𝑡|𝐴𝑡 < 𝜇, 𝑡 ≥ 𝑟(𝑘,𝑖)} if 𝑘 ∈ 𝐻𝑗 ∈ 𝑉

arg min
𝑡

{𝐴𝑡|𝐴𝑡 < 𝜇 − 𝑣, 𝑡 ≥ 𝑟(𝑘,𝑖)} if 𝑘 ∈ 𝐻𝑗 /∈ 𝑉

(1.14)

This method implies that patients in classes represented by 𝑉 will have at least 𝑣 and

at the most 𝜇 slots available to them. When the demand is more than 𝑣 slots, then such

28



patients can be allotted regular slots as everyone, if they are vacant. For other patients, the

appointment slot availability remains capped at 𝜇 − 𝑣. These patients cannot access the

reserved slots even when there is no demand for the reserved slots. While the simulation

described here aggregates the reserved slots for the classes in 𝑉 , the simulation model allows

additional sets of classes to have specific slots reserved for them, thus allowing higher control

on the reserved slots.

1.6 Modeling Cancellations and No-Shows

We model cancellations to quantify their impact on both capacity planning as well as

delays. Essentially our models (whether intended for capacity planning or delays), can

switch cancellations on or off.

Recall that the 𝑖th appointment of patient 𝑘 is scheduled on day 𝑎(𝑘,𝑖). The patient can

cancel the appointment on any day between 𝑜(𝑘,𝑖) (the day the appointment was made)

and 𝑎(𝑘,𝑖). The probability that a patient will cancel the appointment depends on the time

interval between when the appointment originated 𝑜(𝑘,𝑖) and the actual appointment date

𝑎(𝑘,𝑖). The longer the interval the more likely the probability of cancellation. In particular,

we use the expression provided in by Linda V Green and Savin, 2008 to determine the

probability that the patient will cancel the appointment:

𝛾(𝑎(𝑘,𝑖) − 𝑜(𝑘,𝑖)) := 𝛾max − (𝛾max − 𝛾0) 𝑒−(𝑎(𝑘,𝑖)−𝑜(𝑘,𝑖))/𝐶 (1.15)

In eq. (1.15), 𝐶 is the no-show sensitivity parameter, 𝛾0 ≥ 0 is the minimum observed no-show

rate, and 𝛾max ∈ (𝛾0, 1] is the maximum observed no-show rate. These rates can inferred

for each practice. Thus, based on eq. (1.15), the cancellation probability lies somewhere

between the default 𝛾0 and the maximum 𝛾max. The larger the difference 𝑎(𝑘,𝑖) − 𝑜(𝑘,𝑖) the

more likely it is lie closer to 𝛾max.

Equation (1.15) yield a probability that is used to generate a Bernoulli random variable

𝑋𝛾 . When 𝑋𝛾 = 0, the appointment is not cancelled, and when 𝑋𝛾 = 1 the appointment is

cancelled. In the latter case, a second random variable 𝑋Δ from a triangular distribution is

used to determine the precise day between 𝑜(𝑘,𝑖) and 𝑎(𝑘,𝑖) on which the patient chooses to
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cancel: 𝑋Δ ∼ Tri
[︁
𝑜(𝑘,𝑖) + 1, 𝑎(𝑘,𝑖), 𝑎(𝑘,𝑖)

]︁
. This gives a random day between the day after the

origin day and day of the appointment, with the mode taken as the day of the appointment.

This distribution reflects the reality that patients may realize they are not going to be

able to make it for the appointment as the days progress towards the appointment day.

Cancellations that happen on the day of the appointment, 𝑎(𝑘,𝑖), are treated as no-shows

and the appointment slot goes unused. For cancellations done earlier than the day of

appointment, the vacated slot is made available for new appointment requests, if any. When

a patient cancels an appointment, her new appointment day and origin day are generated as

if she had been seen for an appointment on the cancellation day.

More formally we have:

𝑐(𝑘,𝑖) := 𝑋𝛾round (𝑋Δ) (1.16)

where 𝑋𝛾 ∼ Bern
(︁
𝛾
(︁
𝑎(𝑘,𝑖) − 𝑜(𝑘,𝑖)

)︁)︁
and 𝑋Δ ∼ Tri

[︁
𝑜(𝑘,𝑖) + 1, 𝑎(𝑘,𝑖), 𝑎(𝑘,𝑖)

]︁
.

The round(·) operator is used to convert the continuous values to discrete values. If

𝑐(𝑘,𝑖) = 0 then the appointment will not be canceled. We have a no-show when 𝑐(𝑘,𝑖) = 𝑎(𝑘,𝑖).

When 𝑐(𝑘,𝑖) ̸= 0, we will cancel the appointment on day 𝑐(𝑘,𝑖) and determine a new 𝑖th

appointment request and origin in a way similar to eq. (1.1) and eq. (1.2) by assuming

a pseudo appointment 𝑎′
(𝑘,𝑖) has taken place on the day of cancellation. This is shown in

eq. (1.17).

𝑎′
(𝑘,𝑖) := 𝑐(𝑘,𝑖) (1.17)

𝑟(𝑘,𝑖) := 𝑎′
(𝑘,𝑖) + 𝑋𝑗

𝑜(𝑘,𝑖) := 𝑎′
(𝑘,𝑖) + 𝑋𝑏𝑋𝑢(𝑘,𝑖)

The allotted appointments on that day is also reduced, as shown in eq. (1.18).

𝐴𝑐(𝑘,𝑖) := 𝐴𝑐(𝑘,𝑖) − 1 (1.18)
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The parameters used for modeling cancellation are taken from Linda V Green and Savin,

2008 and are summarized in table 1.2

Table 1.2: Cancellation parameters

Parameter Value

𝛾0 0.01
𝛾max 0.31

𝐶 50

1.7 Experimental Setup

Now that we have described our two models—one for capacity planning, the other for

quantifying delays—as well our method for modeling cancellations which applies to both, we

are now in a position to our experimental setup. Table 1.3 summarizes the parameters of the

distributions used in the simulation of the heterogeneous panel. Table 1.4 shows parameters

for capacity planning while table 1.5 shows the parameters used in the simulation for delay

estimation.

In both cases, we use the panel sizes of 1800, 2000 and 2200, since they fall in the range

of commonly observed panel sizes in the US. The case-mix of each panel reflects the PCP

visit behavior shown in table 1.1. Thus, whatever the panel size, we have 20 classes of

patients based on their expected annual visits.

For the delay model, we use a daily capacity of 𝜇 ∈ {⌈𝜆⌉, ⌈𝜆 − 2⌉, ⌈𝜆 − 4⌉}, where

𝜆 =
∑︀

𝑗 𝑛𝑗𝑝𝑗 is the daily arrival rate for a panel of size 𝑁 =
∑︀

𝑗 𝑛𝑗 . Note that in closed

Table 1.3: Heterogeneous panel parameters

Random Variable Distribution Parameter

𝑋𝑗 Geometric 𝑝(𝑗) from table 1.1
𝑋𝑏 Bernoulli 𝑝𝑏 = 0.5
𝑋𝑢 Discrete Uniform Unif

{︁
0, 𝑟(𝑘,𝑖) − 𝑎(𝑘,𝑖−1) − 1

}︁
𝑋𝛾 Bernoulli 𝛾

(︁
𝑎(𝑘,𝑖) − 𝑜(𝑘,𝑖)

)︁
𝑋Δ Triangular Tri

[︁
𝑜(𝑘,𝑖) + 1, 𝑎(𝑘,𝑖), 𝑎(𝑘,𝑖)

]︁
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Table 1.4: Capacity Planning parameters

Parameter Values Combinations

Panel Size 𝑁 ∈ {1800, 2000, 2200} 3
Cancellation Policy ∈ {No, Yes} 2

Simulation Days = 1250 (5 years) 1
Simulation Repetitions = 100 100

Total simulations for each heuristic 600

Table 1.5: Simulation parameters for Delay estimation

Parameter Values Combinations

Panel Size 𝑁 ∈ {1800, 2000, 2200} 3
Capacity 𝜇 ∈ {⌈𝜆⌉, ⌈𝜆 − 2⌉, ⌈𝜆 − 4⌉} 3

Reservation Slots 𝑣 ∈ {0, 1} 2
Reservation Class 𝑉 = {18, 19, 20} 1

Cancellation Policy ∈ {No, Yes} 2
Simulation Days ∈ 2500 (10 years) 1

Simulation Repetitions = 10 10

Total simulations 360

population queuing models can be stable (i.e. reach steady state) even when the arrival rate

𝜆 exceeds the service rate 𝜇.

Finally, to illustrate the benefit of reserved slots, we reserve a single slot each day (𝑣 = 1)

for patients in classes 18, 19 and 20—that is three patient classes that have the greatest

annual visits. As a result, for patients in these classes there are 𝜇 slots available each day,

while for all remaining classes, there are 𝜇 − 1 slots.

1.8 Results

1.8.1 Capacity Planning

We first start with results relevant to capacity planning. Figure 1.6 shows the histograms

of daily scheduled appointments for three panel sizes (1800, 2000 and 2200) and the three

different heuristics (First Minimum, Last Minimum, and Uniform Random), assuming patient

flexibility. For illustration purposes, over each histogram we superimpose the histogram of

the no-flexibility case. In the no-flexibility case, appointments are scheduled on the requested
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day and there are no decisions to be made. Therefore the no-flexibility histogram is identical

in all cases. The mean, standard deviation, 20th and 80th percentiles are shown for each

pair of overlapping histograms and in each of the nine figures in the panel. We note the

following key conclusions from the histograms:

∙ The First Minimum and Last Minimum heuristics lead to tighter, less variable his-

tograms compared to the no-flexibility case. The first minimum heuristic in particular

leads to the least variable histograms. For example, under the first minimum heuristic

when the panel size is 2000, the standard deviation of the daily slot distribution is

1.78 while daily slot distribution under the no-flexibility case has a standard deviation

of 4.34. A comparison of the 20th and 80th percentiles further confirms the differences

in variability between the two cases.

∙ The tighter histograms that the First Minimum heuristic produces imply less day to

day variability for the PCP. Less variability implies that the PCP has fewer extremes

of under and over utilization. Such extremes occur commonly in the no-flexibility

case. The last minimum heuristic also performs well in this regard, but the standard

deviations are slightly higher. These results illustrate that the natural flexibility that

patients have around non-urgent appointments can be intelligently utilized via the

first and last minimum heuristics to reduce day to day variability.

∙ In contrast to the above, if the scheduler decides to allocate a patient’s request on

a random day in the flexibility window around each appointment, the daily slot

histograms are virtually identical to the no-flexibility case. Thus, if the natural

flexibility around non-urgent PCP appointments is not utilized optimally, the PCP

can experience more days where the utilization is low (excessive idle time) as days

where the daily appointment demand is high (excessive overtime).

∙ The mean daily slots under the three different heuristics show subtle differences. The

mean daily slots under the Last Minimum heuristic is slightly smaller because the

scheduler first identifies days in the flexibility window that have the smallest number

of slots booked, and in the case of a tie always chooses the last of these minimum
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slot days. This results in slightly longer intervals between appointments. When this

policy is followed consistently, the longer inter-appointment intervals lead to a slight

reduction in the mean daily slots booked. This is the reason why the histograms for

the Last Minimum heuristic exhibits a slight left shift compared to the no-flexibility

histogram.
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Figure 1.6: Comparison of the daily appointment distributions for the three heuristics and
the base case of no-flexibility under different panel sizes. Note the significant decrease in
variability under the First Minimum and Last Minimum heuristics compared to no-flexibility
and Uniform Random allocation.

Next, we quantify how the heuristics compare to the globally optimal integer program.

We borrow the phrase “Value of Perfect Information” from stochastic programming, to

demonstrate our findings. Since the optimal integer program described in section 1.4.2

requires us to know all the requested appointments and the flexibility windows a priori, we

can consider perfect information is available for determining the optimal solution. Recall
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that in the integer program we are interested in minimizing the maximum value of daily slots

booked in the 1250-day horizon. In contrast, the heuristics operate with partial information,

and are used repeatedly as the schedule evolves. Each time an appointment is booked, the

scheduler minimizes the maximum slots in the flexibility window of that appointment by

using the First or Last Minimum heuristics. In the case of Uniform Random, the scheduler

picks an arbitrary day in the window. Thus the heuristics work ‘locally’ or ‘myopically’ until

the appointments are booked in the 1250-day horizon. For each heuristic ℎ𝑢𝑟, the maximum

number of slots in the horizon (𝜇ℎ𝑢𝑟
𝑖 ) in replication 𝑖 can be compared with the globally

optimal integer program value, (𝜇𝑜𝑝𝑡
𝑖 ). Specifically, we can estimate the EVPI by averaging

the difference in the maximum daily slots between heuristic ℎ𝑢𝑟 and the globally optimal

integer program across the 100 replications:

EVPI = 1
100

100∑︁
𝑖=1

(𝜇ℎ𝑢𝑟
𝑖 − 𝜇𝑜𝑝𝑡

𝑖 ) (1.19)

Table 1.6 shows the EVPI results both each heuristic for three panel sizes, with and without

cancellation. On average, the First Minimum heuristic has a maximum daily slot value

that between 2-3 slots higher than the integer program when no cancellations are included

while the Last Minimum heuristic performs slightly worse. In the cancellation case, the

Last Minimum shows shows slightly better performance compared to the First Minimum

and is within 1-2 slots of the integer program optimal value. In contrast, the Uniform

Random heuristic has a maximum daily slots value that is between 9-12 slots higher than the

integer program under no cancellations; and between 8-10 slots higher when cancellations are

included. These differences are directly attributable to the less variable daily distributions

produced by the First and Last Minimum heuristics and to the highly variable distribution

produced by the Uniform Random heuristic. Higher variability leads to higher maximum

values of daily slot booked in the horizon. These results demonstrate that the First and

Last Minimum heuristics perform reasonably well compared to the integer program despite

having only partial information.
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Cancellation Panel Expected Value of Perfect Information

Policy Size First Minimum Last Minimum Uniform Random

No 1800 2.21 2.67 9.79
2000 2.06 2.73 10.44
2200 2.56 3.66 11.32

Yes 1800 1.91 1.55 8.71
2000 1.54 1.24 8.36
2200 2.24 1.66 9.16

Table 1.6: The Value of perfect information in terms of appointment slots is determined
using mean of differences of Simulated Capacity and Optimal Capacity from eq. (1.19)

1.8.2 Delays

Figure 1.7 shows how the mean delay varies as a function of the lead time 𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖),

i.e. the number of days in advance the appointment was requested. The results are for a

panel size of 2000, under three different capacities, 𝜇 ∈ {⌈𝜆⌉, ⌈𝜆 − 2⌉, ⌈𝜆 − 4⌉}, with and

without cancellations. The results reveal how delays are high for those patients who need

appointments with short lead times, this trend gets more pronounced as the daily PCP

capacity drops. Cancellations cut down the mean delays by more than 50% under all three

capacity settings.

When 𝜇 = ⌈𝜆⌉ for panel size of 2000, we have 𝜆 = 19.3 and 𝜇 = 20 and yields a utilization

of 0.96. Such a utilization is considered quite high in queueing theory. Yet if patients request

appointments with a less time of 8 days or more, they are likely to experience minimal

indirect delays. When 𝜇 = ⌈𝜆 − 2⌉, appointments with a lead time of longer than 12 days

have virtually no wait time; if cancellations are present, appointments with lead time greater

than 8 days experience minimal waits. Thus the 𝜇 = ⌈𝜆 − 2⌉ case with cancellations is very

similar to the 𝜇 = ⌈𝜆⌉ without cancellations. These results suggest that while panel sizes

where 𝜇 is close to even slightly less than 𝜆 are feasible in practice; however, to ensure timely

access for short-lead time appointments, some overtime would be necessary.

The 𝜇 = ⌈𝜆 − 2⌉ and 𝜇 = ⌈𝜆 − 4⌉ cases can also be interpreted as appointment systems

in which physician-patient consultation times (i.e. appointment durations) are longer than

the 𝜇 = ⌈𝜆⌉ case. Thus, we can conclude from fig. 1.7 that an increase in delays due an
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increase in the average physician-patient consultation time is mitigated by the presence

of cancellations. This is because cancellations create gaps in the schedule which benefit

patients with short lead time requests, thereby reducing their indirect delays. The lowest

lead times are typically observed in patients with the greatest frequency of annual visits, i.e.

the highest 𝑝𝑗 values. Thus these patients experience the highest mean delays.
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Figure 1.7: The delay is measured against the number of days before the appointment
requested day that the appointment was scheduled. The 𝑋-axis is a measure of 𝑟(𝑘,𝑖) − 𝑜(𝑘,𝑖).
When patients request for an appointment in the near future, they may face more delays
than patients who request for appointment in the future. This is for a panel of 2000 patients
with no-flexibility policy.

Figure 1.8 shows the mean delays (𝑌 -axis) for each of the 20 patient classes (𝑋-axis)

in our simulation for three different panel sizes (1800, 2000 and 2200), with and without

cancellation; with and without reservation, and under three different daily capacity values

(𝜇 ∈ {⌈𝜆⌉, ⌈𝜆 − 2⌉, ⌈𝜆 − 4⌉}). Each figure also shows the mean delay across all patient classes

(i.e. across entire panel) under the no reservation case and with reservations. Note that

mean delays for the panel are shown both in writing and with horizontal lines. We can make

the following inferences from the figure:

∙ The mean delay for all patient classes is less than 1 day in all three panel sizes (1800,

2000 and 2200) when no cancellations are present and when 𝜇 ∈ {⌈𝜆⌉} (top row figures).
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This suggests that even when arrival rate is very close to the demand, patients can

experience reasonably low indirect delays. As a comparison, the mean wait time per

patient in an 𝑀/𝐷/1 model for panel size 2000 (𝜆 = 19.36, 𝜇 = 20) is 0.73 days, while

our simulation estimates a mean wait time across all patient classes in the panel as

0.33 days (shown by the horizontal line).

∙ The results also show that the mean delay for the panel is an inadequate measure

since it hides the significant differences in delays experienced by the various patient

classes. In particular, mean delays increase with the rise in patient class number (recall

that the patient class number based on the expected annual visits) when there are no

reservations. The curves show slight oscillations towards the end, since the number

of data points to estimate delays for patients in classes 15 and higher can be small,

despite 10 replications of the 10-year simulation run. However, the basic rising trend

is quite clear from the figure. Thus we can conclude that in a capacitated queueing

system with first-come, first-serve appointment reservations, patients with greater

needs who need more frequent visits with their primary care physician will experience

longer delays. This empirically verifies our conjecture from section 1.5 under a wide

range of experimental parameters.

∙ The presence of cancellations decreases the mean delays in all classes, since it creates

empty slots in the near future which in turn benefits patients who need appointments

at a short notice. Additionally, as expected, the magnitude of the mean delays increases

significantly with a reduction in the daily capacity. The impact of these increases is

felt by patients who need more frequent visits.

∙ Reserving slots for higher patient classes (18, 19 and 20) decreases the mean delay for

those classes significantly. However, this comes at the expense of increased mean delays

for all other patient classes. In particular, the higher patient classes among those

without access to the reserved slots experience the greatest increases in comparison to

the no reservation case. Since the reservation benefits a small minority of patients, the

mean delay for the panel as a whole (i.e. mean across all patient classes) rises with

reservations.
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Further perspective on the impact of capacity constraints on a heterogeneous closed loop

queueing system can be obtained from Table 1.7. We use panel size of 2000 in this table for

illustration purposes. The expected annual visits for each patient class under infinite capacity

(the unconstrained or uncapacitated case: 𝜇 = ∞) is contrasted with expected annual visits

under 𝜇 ∈ {20, 18, 16}. In the unconstrained case, the expected annual visits are more or

less equal to what we expect for the respective class. For example, in the unconstrained

case expected annual visits in patient class 13 is 13.144. However, in the constrained cases

without cancellation, we see that the expected annual visits for the patient classes start to

decrease in relation to the unconstrained case. The higher the patient class, the greater

the reduction. For example, patients in class 15 have an expected annual visit value of 8.9

when 𝜇 = 16 while in the ideal, unconstrained case, it is 15.021. This reduction of about 6

annual visits is because the delays are higher for class 15 patients, resulting in longer time

between appointments, and therefore fewer annual visits. Such missed visits often manifest

in loss of continuity and increased expenses as patients see other providers in urgent care,

and emergency/inpatient care. All of these pose higher chance of medical complications

and burdens for patients with high needs. The table also shows that cancellations minimize

the discrepancy between the unconstrained and reduced capacity cases: patients of class 15

experience 10.72 visits under 𝜇 = 16 when cancellations are present. Thus, while delays are

a valid outcome measure, it is also important to look into the consequences of fewer primary

care visits.

1.9 Conclusion and Implications for Practice

In summary, we have introduced a granular patient-level stochastic process for scheduling

appointments with a primary care physician who manages a panel of patients. Our modeling

framework introduces key factors noticed in practice such as heterogeneity in appointment

request rates, recurring appointments, and cancellations. We use the framework to study

two types of questions: (1) capacity planning for PCPs assuming patients have flexibility

in appointment dates, as a function of lead time to appointment; and (2) quantifying the

differences in delays for various patient classes, and the impact of reservations to alleviate

these differences. In our computational experiments, we parameterize heterogeneity and
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Figure 1.8: Mean delay increases with the patient class for all scenarios. We can note the
sharp reduction in delay when reservation policy is applied for patient classes 18, 19, and
20. This mean delay is over all appointments as experienced on the day of the origin of the
appointment. To allow stability of the simulation, only those appointments that originate
after 2 years of the start of the simulation and before 2 years of the end of simulation have
been considered. The mean delay for the full panel is shown as horizontal lines to compare
it with delay for different patient classes.
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Table 1.7: Mean annual visits for the patient classes, under different physician capacity
limits for a panel of 2000 patients.

Class
Expected
An-
nual
Visits

Without Cancellation With Cancellation

Capacity 𝜇 Capacity 𝜇
∞ ⌈𝜆⌉ = 20 ⌈𝜆⌉ − 2 = 18 ⌈𝜆⌉ − 4 = 16 ∞ ⌈𝜆⌉ = 20 ⌈𝜆⌉ − 2 = 18 ⌈𝜆⌉ − 4 = 16

1 0.5 0.508 0.506 0.504 0.503 0.421 0.419 0.420 0.420
2 2 1.994 1.995 1.983 1.950 1.755 1.762 1.761 1.735
3 3 3.010 2.995 2.954 2.846 2.714 2.695 2.693 2.614
4 4 4.009 3.983 3.889 3.688 3.652 3.657 3.626 3.492
5 5 4.996 5.016 4.821 4.444 4.599 4.583 4.561 4.341
6 6 6.030 5.979 5.722 5.158 5.616 5.593 5.492 5.161
7 7 7.051 6.913 6.527 5.787 6.600 6.505 6.406 5.959
8 8 8.003 7.927 7.418 6.355 7.519 7.459 7.357 6.712
9 9 8.897 8.722 8.169 6.890 8.479 8.573 8.253 7.349

10 10 9.960 9.848 9.009 7.281 9.487 9.452 9.228 8.087
11 11 11.018 10.837 9.651 7.661 10.589 10.420 10.130 8.660
12 12 11.881 11.801 10.437 8.077 11.607 11.437 11.018 9.257
13 13 13.144 12.689 11.137 8.360 12.484 12.560 11.975 9.758
14 14 14.323 13.980 11.609 8.568 13.603 13.160 12.685 10.173
15 15 15.021 14.294 12.413 8.904 14.369 14.390 13.567 10.720
16 16 16.063 15.193 12.800 9.083 15.293 15.063 14.613 11.203
17 17 17.226 16.258 13.462 9.416 16.394 16.056 15.264 11.682
18 18 17.853 17.463 13.950 9.457 17.143 17.020 15.910 12.097
19 19 19.470 18.060 14.250 9.580 18.150 18.660 16.210 11.890
20 20 20.165 18.975 14.946 9.799 19.365 19.083 17.681 12.714

2000 19.346 19.408 19.144 18.003 16.020 17.796 17.707 17.365 15.877

Panel 𝜆 Mean Daily Arrivals

recurring visits based on primary care visit patterns available in the nationally representative

Medical Expenditure Panel Survey.

Our study reveals a number of insights for primary care practice. On the capacity

planning side, we demonstrate that the use of heuristics such as First Minimum and Last

Minimum when patients have flexibility in their appointment day reduces day to day

variability from the provider’s perspective, thus minimizing both idle time and overtime

simultaneously. Furthermore, the heuristics compare well to an integer program that assumes

prior knowledge and creates a globally optimal schedule. One important practical benefit

of the heuristics is that a scheduler can easily implement them when the patient’s call

arrives by looking at the physician’s calendar. The reduction in variation in daily workload

by intelligent appointment allocation can be summarized as daily workload balancing by

considering flexibility. This will help the provider reduce both—the overtime and idle time.

The nature of flexibility is such that same-week visits have no flexibility. These immediate

visits emulate advanced access and are implicitly part of the appointment system. Our
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model also provides a distribution of the daily workload. We can use this distribution to

design the optimal capacity for a nationally representative panel with flexibility by using a

newsvendor model that balances idle time and overtime.

On the patient delay side, we demonstrate that while appointments are scheduled on a

first-come, first-serve basis, they end up inadvertently penalizing patients who are sicker and

need more frequent visits. Traditional analytical queuing models (M/M/1/K and M/D/1/K)

used in the literature miss this effect entirely because the stochastic processes underlying

them do not consider the lead time to appointments—that is, the time between the day the

patient desires an appointment (appointment origin day) and the day the patient makes

the call to the practice (appointment origin day). While we have considered one mitigation

method by reserving appointments, service providers can use overtime for such patients

that need immediate visits. Such overtime can help increase the capacity on-demand, and

improve access for patients with immediate needs.

Our study has limitations which provide pathways for future investigation. While we

use the geometric distribution to choose the next appointment request, the simulation can

work with any distribution. We assume a nationally representative panel (United States)

based on primary care visit rates, but if the healthcare needs of a local population are better

known, the local population’s distribution can be used. Additionally, sampling methods like

the bootstrap methods are apt in such simulations thus allowing better modeling of regional

/ local populations than relying on the national level statistics.

The flexibility criteria used in capacity planning is currently based on our best judgment,

since there are no studies that describe patient flexibility or tolerance for appointment delay.

Future research could try to elicit the true nature of flexibility through data collected by the

scheduler or online systems. We have assumed that appointments with short lead time have

less flexibility. This assumption is appropriate but needs verification in practice.

Our model assumes each patient requests an appointment slot of the same size—typically

a 20-min primary care slot. In practice, certain patients, particularly those with complex

needs, might require two consecutive slots (i.e. a longer 40-min appointment). While we don

not model this behavior in this study, it can be easily included in our modeling framework.

A further extension to this could be allowing the stochastic nature of actual appointment
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duration, which allows more precise estimation of the direct wait time, physician idle time

and overtime.

Finally, while we have shown the impact of delay on patients of different classes, we have

not been able to directly provide evidence on the implications of such delays on the health

outcomes. Retrospective analysis of clinical and EHR data from large health systems may

help quantify these implications.

1.10 APPENDIX Geometric distribution for appointment requests

In our patient-level stochastic process for recurring appointments, we assume that the

time between current appointment and the next appointment request day follows a geometric

distribution, with a parameter 𝑝𝑗 . In fig. 1.9, we show histograms of time between successive

PCP appointments for two patient classes: patients who visit twice a year, and patients who

visit 15 times a year. This data from 2-year patient histories of PCP visits available in the

Medical Expenditure Panel Survey (MEPS). Figure 1.9 also illustrates the fit of geometric

distribution assuming 250 workdays in a year (primary care offices tend work 5 days per

week, and do not work on holidays) and 365 workdays in a year. We use a bin width of

one week (7 days) in the histograms. Figure 1.9a represents patients who visit twice a year

suggests that geometric distribution is a reasonable fit, while it appears less so for patients

who visit 15 times a year as seen from fig. 1.9b.

It is important, however, to note that the data on time between PCP visits includes

delays, while in our stochastic process models the time between the current PCP appointment

and desired/requested day of the next appointment, and therefore does not include delays.

The MEPS data does not provide information on when the appointment was desired and

when it was actually scheduled; if delays occurred, they are included in the interval between

PCP appointments. This could explain why the height of the first bin (i.e. intervals of less

than a week between appointments) is shorter than than the second (intervals longer than a

week but less than two weeks): it is harder to get next appointments on a short notice, due

to capacity constraints, which results in longer realized intervals between appointments.
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(a) Patients with two visits per year (b) Patients with fifteen visits per year

Figure 1.9: Histogram of interval in days between successive primary care appointments.

For model simplicity and for the purposes of this paper, we assume a geometric distribution

for all patient classes in our panel. However, our stochastic process can accommodate any

distribution for time between the next appointment request and current appointment.

In summary, the time interval between patient’s successive appointments follows a

Geometric distribution with the probability parameter 𝑝𝑗 . Thus 𝑝𝑗 as the probability for

requesting an appointment on any day for each patient 𝑘 ∈ 𝐻𝑗 .

44



CHAPTER 2

A DISCRETE TIME MARKOV CHAIN FOR MODELING
MULTI-CLASS PATIENT APPOINTMENT SCHEDULING SYSTEM

2.1 Introduction

As mentioned earlier in chapter 1 the patient panel for a primary care provider is not

homogeneous. Addressing the heterogeneity in the panel allows us to see the system behavior

for the various patient classes. One of the behaviors that we have seen in chapter 1 resulting

from a heterogeneous panel was the increase in delay for each class. The appointment

scheduling system, at its most stripped down version, consists of (i) an appointment calendar

broken down to slot level to record slots allotted for each resource, and (ii) a scheduling

method to allocate appointments when the requested slot in unavailable. The appointment

calendar is a record and the scheduling method is the process. The resource in context

of this dissertation is the physician. The resources may be extended by including the

examination-room, the equipment, supporting staff etcetera. The appointment scheduling

system is not restricted to healthcare. It can be used for various professions and services

including appointments for personal grooming, travel booking, and entertainment. Any more

discussion on other applicable areas of appointment scheduling systems would be simply

digressing from the chapter.

2.1.1 Appointment Calendar

The appointment calendar for a single physician can be imagined as a sequence of

slots lined up one after another as shown in fig. 2.1. Chapter 1 did not have any limit

to the calendar horizon. Here we restrict the calendar horizon to an arbitrary size more

than the panel size. This restriction is introduced for tractability as we shall see again in

section 2.2.2. In fig. 2.1 the calendar horizon is 32 slots. All slots are assumed to have equal

time duration. All patients are assumed to respect the allotted appointments. There is no

45



Day 3 Day 4 Day 5

Slot 62 63 64Slot 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Day

Figure 2.1: A sample sequence of appointment slots in an appointment calendar is shown.
Each day is assumed to have ten slots for this illustration. The slots may be allotted to
patients or may be vacant.

tardiness. No appointment will overshoot it’s time to encroach on the subsequent slot. As

the day progresses, there is a “current” slot that keeps moving as the appointment gets

over. All appointments before such a current slot are in the past. They do not affect the

appointments of the future.

2.1.2 Appointment process

At the end of the current appointment, the patient makes a request for her next

appointment, based on her needs, to the scheduler. The scheduler allocates an appointment

to the patient based on predefined rules. This patient visit the doctor again on her allotted

appointment slot. The subsequent appointment becomes the current appointment.

2.1.3 Appointment Scheduling as a Markov Chain

Instead of labeling the slots with absolute indices, we can label them relative to the

current appointment slot. As each appointment is completed, and we move to the next

appointment there is progression in the appointment calendar with relative index as shown

in fig. 2.2. The current appointment slot has index 0. The arbitrary calendar horizon is 32.

The appointment calendar shifts to the future, but the relative indices remain. At the end of

each appointment, the current appointment goes in the past and the subsequent appointment

becomes the current appointment. At the same time, a new vacant appointment slot, labeled

with index 31, is introduced. The appointment calendar, thus, changes at discrete time steps

which is the time interval of each slot. And the calendar changes depending on the slots

already allotted to patients and any newly allotted slot to the patient who has just finished

her appointment. The change in the appointment calendar only depend on its current state.

The past states of the appointment calendar do not matter.
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Day 3 Day 4 Day 5

Slot (absolute):

Slot:

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Slot: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Slot: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Slot: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 2.2: A sample sequence of appointment slots in an appointment calendar is shown.
Each day is assumed to have ten slots for this illustration. The slots may be allotted to
patients or may be vacant.

This behavior of the appointment calendar resembles the memory-less property of a

Markov chain. We can model the appointment calendar indexed with relative labels as the

state of the Markov chain. The state changes at discrete steps equal to the slot duration.

When the current appointment slot is occupied, the transition in state of the appointment

calendar is stochastic, since the request for next appointment is random and the allocation

depends on the vacant slots. When the current appointment slot is not occupied, the

appointment calendar simply shifts each slot to the lower index.

We shall see the Markov chain representation of the appointment scheduling system

further in section 2.2 in order to analyze its properties.

2.2 Methodology

We consider a panel of 𝑛 patients associated with a primary care physician. This panel

is represented as a set 𝐻. We partition the panel such that each partition 𝐻𝑗 represents

the set of patients with similar healthcare. The number of partitions is 𝐽 . We consider

patients with similar healthcare require similar number of visits to their healthcare provider.

The number of patients in class 𝐻𝑗 is 𝑛𝑗 = |𝐻𝑗 |,
∑︀

𝑗 𝑛𝑗 = |𝐻| = 𝑁 and 𝐻𝑗 ∩ 𝐻𝑗′ = ∅ for

all 𝑗 ̸= 𝑗′. Each patient 𝑘 ∈ 𝐻𝑗 has the same probability of requesting an appointment slot

given as 𝑝𝑗 . The vector of the probability parameters is 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝐽) and the vector

of the number of patients is 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝐽).
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In modeling the probability of a patient requesting an appointment slot, we assume that,

in a primary care setting, successive requests for appointments are independent of each

other.

A patient 𝑘 requests her appointment for a slot 𝑟(𝑘,𝑖) at the end of the previous ap-

pointment 𝑎(𝑘,𝑖−1). If that slot has already been allotted to some other patient, then the

appointment is allotted on a subsequent available slot 𝑎(𝑘,𝑖). The patient experiences an

absolute delay that can be measured as 𝑑(𝑘,𝑖) = 𝑎(𝑘,𝑖) −𝑟(𝑘,𝑖). When the appointment allotted

is for the same slot same as the requested appointment the delay is zero since 𝑎(𝑘,𝑖) = 𝑟(𝑘,𝑖).

The request for the next appointment is a random variable 𝑋𝑗 having the geometric

distribution for first success with the probability parameter 𝑝𝑗 .

𝑟(𝑘,𝑖) = 𝑎(𝑘,𝑖−1) + 𝑋𝑗 where 𝑋𝑗 ∼ Geo(𝑝𝑗). (2.1)

The allotted appointment slot 𝑎(𝑘,𝑖) is the earliest vacant slot including and after the

corresponding requested appointment slot 𝑟(𝑘,𝑖). The rationale for using the geometric

distribution is the same as provided in section 1.10

2.2.1 Equivalence Between the Probabilities of Visit per Slot and Visit per

Day

Consider the similarity between the description of the model in this chapter with the

model in chapter 1. Let ̂︀𝑝𝑗 be the probability of requesting a slot on any day for a patient

in class 𝑗. The value of ̂︀𝑝𝑗 is calculated using the law of large numbers as ̂︀𝑝𝑗 = 𝑗/250,

assuming 250 annual working days. Let 𝜆𝑠 represent the random variable for the number

of appointment requests for slot 𝑠 and let ̂︀𝜆𝑑 represent the random variable for number of

appointment requests for day 𝑑. We get the expected number of appointment requests per

slot as E [𝜆𝑠] =
∑︀

𝑗 𝑛𝑗𝑝𝑗 . Similarly, we get the number of appointment requests per day as

E
[︁̂︀𝜆𝑑

]︁
=
∑︀

𝑗 𝑛𝑗 ̂︀𝑝𝑗 . If the capacity in terms of slots per day is 𝜇, and all slots in a day have

equal preference for patients, we show how the probability parameter at a slot level may be

derived from the probability parameter at a day level from eq. (2.2).
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𝑝𝑗 = 1
𝜇
̂︀𝑝𝑗 = 𝑗

250𝜇
(2.2)

The expected demand for appointments are related by eq. (2.3).

E [𝜆𝑠] =
∑︁

𝑗

𝑛𝑗𝑝𝑗 =
∑︁

𝑗

𝑛𝑗
1
𝜇
̂︀𝑝𝑗 = 1

𝜇

∑︁
𝑗

𝑛𝑗 ̂︀𝑝𝑗

E [𝜆𝑠] = 1
𝜇
E
[︁̂︀𝜆𝑑

]︁
(2.3)

Similar to what we have seen in table 1.7 where the expected arrivals exceed capacity

when E
[︁̂︀𝜆𝑑

]︁
> 𝜇, here we have expected demand exceeding supply when E [𝜆𝑠] > 1.

2.2.2 Markov Chain Behavior

Continuing from section 2.1.3, we can model the appointment system as a Markov chain.

The appointment calendar represents the state of the system. A new appointment allotted

to a patient’s request is dependent on the current state of appointment calendar. The

previous states of the appointment calendar do not matter which allow for the memory-less

behavior of the appointment calendar. This calendar is a sequence of slots, with the first

slot representing the current appointment. We can represent the appointment calendar

as a Markov chain transitioning from one state of the appointment calendar to another

state. Each patient in a panel is assigned an appointment slots on the calendar. The

appointment calendar horizon 𝑇 is limited to an arbitrary length satisfying 𝑁 < 𝑇 < ∞, to

allow tractability for analysis.

The appointment calendar itself is a vector of size 𝑇 with each element representing

the slots. An element representing the patient 𝑘 allotted to that slot has value 𝑘 while a

vacant slot is represented by a zero. The sequence of random variables ̂︀𝑌𝑡 representing the

appointment calendar during the absolute slot 𝑡 is a Markov chain. The first element of

the vector is the current slot 𝑡 and the last element is the slot 𝑡 + 𝑇 − 1 in the future. The

number of possible states is
𝑇 !

(𝑇 − 𝑁)! .

The state changes from ̂︀𝑌𝑡 to ̂︀𝑌𝑡+1 when the appointment slot labeled with the absolute

index 𝑡 is over and the next slot with absolute index 𝑡 + 1 starts.
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As an example we try to identify the number of states when the panel size is 𝑁 = 6

and horizon 𝑇 = 10. This makes the number of vacant slots is 𝑇 − 𝑁 = 4. The number of

possible states is 10!/4! = 151, 200.

We can reduce the state space by representing each patient 𝑘 ∈ 𝐻𝑗 by its class 𝑗. The

interchange of patients to their classes in the appointment calendar is possible because each

class is considered homogeneous within itself. This appointment calendar may be represented

with the random variable 𝑌𝑡. The current appointment slot of 𝑌𝑡 is the absolute slot indexed

by 𝑡. This is also the first element in the vector.

The number of possible states now reduces to

𝑇 !(︁
(𝑇 − 𝑁)!

∏︀
𝑗 𝑛𝑗 !

)︁ .

For example, our panel 𝑁 = 6, is split as three classes with 3, 2, 1 patients in each class

and horizon 𝑇 = 10. The number of possible states is 10!/ (4! 3! 2! 1!) = 12, 600. The number

of states has reduced by 91.6%.

Let 𝑆 represent the set of all possible states and 𝑆𝑗 represent set of all states with current

appointment allotted to a patient of class 𝑗. We also have 𝑆0 represent the set of all states

with current appointment slot vacant. Here, 𝑆0 ⊂ 𝑆 and 𝑆𝑗 ⊂ 𝑆. The state changes from

𝑌𝑡 = s to 𝑌𝑡+1 = s′ at the end of the slot 𝑡 and vectors s, s′ ∈ 𝑆 are two possible states of

the appointment calendar.

2.2.3 Transition Probability

The patient at the current slot is the key to determine the transition probabilities.

When the current slot is unoccupied, there is no patient to request a new appointment.

The appointment calendar vector “left-shifts” and the newly introduced last slot in the

appointment calendar stays unoccupied. There are no other transitions possible. This

left-shift operation on the vector is defined using an operator left shift(·). When the

current slot is occupied, the appointment calendar vector “left-shifts” and the patient can

be allotted only one of those slots that were previously vacant 𝑇 − 𝑁 slots plus the last

newly introduced slot. The number of possible slots that can be allotted to the patient is
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𝑈 = 𝑇 − 𝑁 + 1. We use the index 𝑢 to denote the possible allotted slot, that is 1 ≤ 𝑢 ≤ 𝑈

and 𝑎1 < 𝑎2 < · · · < 𝑎(𝑇 −𝑁) < 𝑎(𝑇 −𝑁+1). When the allotted slot is not the last slot, that is

𝑎𝑢 < 𝑇 , the patient would have requested for an appointment either for the vacant slot 𝑡+𝑎𝑢,

or for any of the occupied slots in {𝑡+𝑎𝑢 −1, 𝑡+𝑎𝑢 −2, . . . , 𝑡+𝑎(𝑢−1) +1}. For the requested

slot 𝑡 + 𝑟𝑢 associated to the allotted slot 𝑡 + 𝑎𝑢, we use 𝑎0 = 0, to get 𝑎(𝑢−1) + 1 ≤ 𝑟𝑢 ≤ 𝑎𝑢.

For the last allotted slot 𝑎𝑈 = 𝑇 , it is possible that the requested slot 𝑡 + 𝑟𝑈 can be any slot

in the future even beyond the calendar horizon making 𝑟𝑈 ≥ 𝑎(𝑈−1) +1. In the above context

of the allotted slot 𝑎𝑢, for a patient of class 𝑗, the transition probability when we move from

the state of appointment calendar s to another state s′ is the probability of requesting any

of the slots 𝑟𝑢 If the requested appointment after the current appointment for a patient of

class 𝑗 is a random variable 𝑋𝑗 = 𝑟𝑢, we get elements of the transition probability matrix P

of using:

𝑝ss′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr
(︁
𝑎(𝑢−1) < 𝑋𝑗 ≤ 𝑎𝑢

)︁
if s ∈ 𝑆𝑗 , 𝑎𝑢 < 𝑇, s′ = left shift(s) + 𝑗e𝑢

Pr
(︁
𝑋𝑗 > 𝑎(𝑢−1)

)︁
if s ∈ 𝑆𝑗 , 𝑎𝑢 = 𝑇, s′ = left shift(s) + 𝑗e𝑢

1 if s ∈ 𝑆0, s′ = left shift(s)

0 otherwise

(2.4)

Here e𝑢 is the standard basis vector indicating position of the allotted appointment 𝑎𝑢. The

left shift(·) operator shifts the vector by one element to the left, with the last element

introduced as zero. As long as the probability parameter 𝑝𝑗 associated with 𝑋𝑗 is in the

open interval (0, 1), the Markov chain is ergodic. We can derive the stationary probability

distribution vector Π𝑆 associated with the transition probability matrix P. Each element 𝜋s

of the vector corresponds to the steady state probability of state s.

2.2.4 Delay

Now, we can determine the delay experienced by the patient by using the transitions

between the states of the appointment calendar. We again consider the case of s ∈ 𝑆𝑗 for

transition from state s to s′ associated with 𝑎𝑢. The expected delay for such transitions

when 𝑝ss′ ̸= 0 is the conditional delay E[𝑑(𝑌𝑡 = s)|𝑌𝑡+1 = s′]
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𝑑ss′ = E
[︀
𝑑 (𝑌𝑡 = s) |𝑌𝑡+1 = s′]︀ =

∑︀
𝑎(𝑢−1)<𝑖≤𝑎𝑢

(𝑎𝑢 − 𝑖) Pr (𝑋𝑗 = 𝑖)∑︀
𝑎(𝑢−1)<𝑖≤𝑎𝑢

Pr (𝑋𝑗 = 𝑖)

=
∑︀

𝑎(𝑢−1)<𝑖≤𝑎𝑢
(𝑎𝑢 − 𝑖) Pr (𝑋𝑗 = 𝑖)

𝑝ss′

Thus we can generate the expected delay associated to the transitions as a matrix D from

its elements:

𝑑ss′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑︁
𝑎(𝑢−1)<𝑖≤𝑎𝑢

(𝑎𝑢 − 𝑖) Pr(𝑋𝑗 = 𝑖)

𝑝ss′ if s ∈ 𝑆𝑗 and 𝑝ss′ ̸= 0

0 otherwise

The expected delay 𝑑s of a particular state s of the appointment calendar is the sum of the

delays of transition to each of the states s′ ∈ 𝑆 times the transition probability 𝑝ss′ .

𝑑s = E [𝑑 (𝑌𝑡 = s)] =
∑︁
s′∈𝑆

𝑑ss′ · 𝑝ss′ =
𝑇 −𝑛+1∑︁

𝑢=1

⎛⎝ ∑︁
𝑎(𝑢−1)<𝑖≤𝑎𝑢

(𝑎𝑢 − 𝑖) Pr(𝑋𝑗 = 𝑖)

⎞⎠

It is clear from this equation that the expected delay from a state is only concerned with

the (1) probability parameter 𝑝𝑗 associated with 𝑋𝑗 and (2) position of the vacant slots. So

two different states s, s̄ ∈ 𝑆𝑗 that have equivalent vacant slots will have the same expected

delay. From here we can get the delay associated with a class 𝑗 by enumerating all the

possible vacant slots that can be requested. The expected delay associated with class 𝑗 is

𝑑𝑗 = E [𝑑|(𝑌𝑡 ∈ 𝑆𝑗)] =
∑︀

s∈𝑆𝑗
𝜋s𝑑s∑︀

s∈𝑆𝑗
𝜋s

Here, the values of different 𝜋s are dependent on the probability parameters and number

of patients for all classes (𝑝𝑗 , 𝑛𝑗)∀𝑗. The summation over all the states in 𝑆𝑗 effectively

determines all possible combinations of available slots. When all the available slots for

the next appointment are stacked as early as possible then 𝑎1 = 1, 𝑎2 = 2, . . . , 𝑎𝑇 −𝑛 =

𝑇 − 𝑛, and 𝑎𝑇 −𝑛+1 = 𝑇 . Similarly, when all the available slots for the next appointment

are stacked as late as possible then 𝑎1 = 𝑛, 𝑎2 = 𝑛 + 1, . . . , 𝑎𝑇 −𝑛 = 𝑇 − 1, and 𝑎𝑇 −𝑛+1 =

𝑇 . We can enumerate vectors of availability of next slot as a set 𝐴, where each vector
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a = [𝑎1 𝑎2 . . . 𝑎𝑇 −𝑛 𝑎𝑇 −𝑛+1] ∈ 𝐴. Since many states in 𝑆 can be associated to each of the

next availability vector a, we can construct a logical membership matrix A𝑗 with rows

representing each availability vector a ∈ 𝐴 and the columns representing each state s ∈ 𝑆𝑗 .

The elements of this matrix A𝑗 with row a and column s are 1 when s ∈ 𝑆𝑗 is associated

to a, and 0 otherwise. We can now determine the steady state probability of availability

Π𝐴𝑗 = A𝑗 × Π𝑆 . Let 𝜋a𝑗 represent the element in Π𝐴𝑗 associated with the availability vector

a. From the geometric distribution, Pr(𝑋𝑗 = 𝑖) = (1 − 𝑝𝑗)𝑖−1𝑝𝑗 . Thus, we can expand the

expression for 𝑑𝑗 as:

𝑑𝑗 =

𝑛∑︁
𝑎1=1

𝑛+1∑︁
𝑎2=𝑎1+1

· · ·
𝑇 −1∑︁

𝑎𝑇 −𝑛=𝑎𝑇 −𝑛−1+1

𝑇∑︁
𝑎𝑇 −𝑛+1=𝑇

⎛⎝𝜋a𝑗

𝑇 −𝑛+1∑︁
𝑢=1

∑︁
𝑎(𝑢−1)<𝑖≤𝑎𝑢

(𝑎𝑢 − 𝑖)(1 − 𝑝𝑗)(𝑖−1)𝑝𝑗

⎞⎠
𝑛∑︁

𝑎1=1

𝑛+1∑︁
𝑎2=𝑎1+1

· · ·
𝑇 −1∑︁

𝑎𝑇 −𝑛=𝑎𝑇 −𝑛−1+1

𝑇∑︁
𝑎𝑇 −𝑛+1=𝑇

𝜋a𝑗

(2.5)

We can now define delay as a function 𝑑 : (0, 1)𝐽 → R𝐽 that maps the probability vector

𝑝 to the delay vector with the parameters n and 𝑇 . The 𝑗th element of the vector 𝑑 is 𝑑𝑗

from eq. (2.5) that is 𝑑 = (𝑑𝑗).

2.3 Results

To prove that delay of patient in class 𝑗 is more than delay of patient in class 𝑗′ we

need to prove that the function 𝑑 is monotone. In order to this we need to show that for a

two class panel, when 𝑝1 < 𝑝2 we get 𝑑1 < 𝑑2. Additionally, for a three class panel, when

𝑝1 < 𝑝2 < 𝑝3 we should expect 𝑑1 < 𝑑2 < 𝑑3 for monotonicity.

2.3.1 Monotone Mapping

The concept of monotone mapping is described in Defn 12.1 Rockafellar and Wets, 1998,

Chapter 12. This method says that a mapping is monotone when

(d𝑎 − d𝑏) · (p𝑎 − p𝑏) ≥ 0∀p𝑎, p𝑏 and d𝑎 = 𝑑(p𝑎), d𝑏 = 𝑑(p𝑏). (2.6)
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Figure 2.3: Feasible space for exploring monotonic behavior.

Figure 2.3 give a visualization of the domain for probabilities we for a two-class panel.

Any point in the shaded area satisfies 0 < 𝑝1 < 𝑝2 < 1. The two sample points pa and pb

give an understanding of the feasible space.

The algebraic analysis of eq. (2.5) using the condition in eq. (2.6) is intractable because

of complexity. The intractability leads us to explore numerical analysis as we shall see in

section 2.3.2.

2.3.2 Numerical Analysis

We use the function defined in eq. (2.5) to generate delays using computations. We begin

with exploring a 10 appointment slots with 6 patients as seenin table 2.1. The 6 patients

are split in two classes with all possible combinations. We initially start with two arbitrary

probabilities of 0.2 and 0.5 for each class and get the delay. Then we use an extremely small

difference in the request probabilities between two classes as 0.499 and 0.5. We find that the

comparison of delays to be consistent.

Next, we try a three class panel with various combinations of the 6 patient panel in the

10 appointment slots as seen in table 2.2. For every selected combination, with different

probabilities, we consistently find the results that point to monotone behavior.
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T 𝑛1 𝑛2 𝑁 𝑝1 𝑝2 𝑑1 𝑑2 Is 𝑑1 < 𝑑2?

10 5 1 6 0.2 0.5 1.88039917 2.97243372 ì
10 4 2 6 0.2 0.5 2.00419889 3.28110949 ì
10 3 3 6 0.2 0.5 2.11328127 3.52388108 ì
10 2 4 6 0.2 0.5 2.20852708 3.71512407 ì
10 1 5 6 0.2 0.5 0.14803428 0.85195390 ì

10 5 1 6 0.499 0.5 3.99807873 4.00155115 ì
10 4 2 6 0.499 0.5 3.99816068 4.00163317 ì
10 3 3 6 0.499 0.5 3.99824261 4.00171516 ì
10 2 4 6 0.499 0.5 3.99832452 4.00179713 ì
10 1 5 6 0.499 0.5 3.99840641 4.00187907 ì

Table 2.1: Sample delay for two patients for horizon 𝑇 = 6 and panel size 𝑁 = 6 always has
𝑑1 < 𝑑2 when 𝑝1 < 𝑝2.

T 𝑛1 𝑛2 𝑛3 𝑁 𝑝1 𝑝2 𝑝3 𝑑1 𝑑2 𝑑3 Is 𝑑1 < 𝑑2 < 𝑑3?

10 1 1 4 6 0.499 0.5 0.501 3.99871886 4.00221177 4.00567377 ì
10 1 2 3 6 0.499 0.5 0.501 3.99863628 4.0021343 4.00559232 ì
10 1 3 2 6 0.499 0.5 0.501 3.99855362 4.00204864 4.00551047 ì
10 1 4 1 6 0.499 0.5 0.501 3.99846997 4.00196605 4.0054278 ì
10 2 1 3 6 0.499 0.5 0.501 3.99856121 4.00205626 4.00551402 ì
10 2 2 2 6 0.499 0.5 0.501 Out of Memory �
10 2 3 1 6 0.499 0.5 0.501 3.99839453 4.00188704 4.0053501 ì
10 3 1 2 6 0.499 0.5 0.501 3.9984016 4.0018895 4.005354 ì
10 3 2 1 6 0.499 0.5 0.501 3.99831866 4.00180762 4.00527205 ì
10 4 1 1 6 0.499 0.5 0.501 3.99824233 4.00172793 4.00519367 ì

10 1 1 3 5 0.499 0.5 0.501 2.99970856 3.00272972 3.00574434 ì

10 1 4 1 6 0.4 0.5 0.6 3.59364291 3.99232154 4.29491263 ì
10 4 1 1 6 0.4 0.5 0.6 3.55185799 3.94582715 4.24581152 ì
10 1 1 4 6 0.4 0.5 0.6 3.60646184 4.00659329 4.3099646 ì
10 1 2 3 6 0.4 0.5 0.6 3.6022577 4.00192422 4.3050541 ì
10 2 1 3 6 0.4 0.5 0.6 3.58914499 3.98747717 4.2899402 ì
10 2 3 1 6 0.4 0.5 0.6 3.58018182 3.97743229 4.27927329 ì

10 1 4 1 6 0.04 0.05 0.06 0.32873367 0.395557 0.45709815 ì
10 1 4 1 6 0.004 0.005 0.006 0.03541344 0.04397158 0.0524387 ì

Table 2.2: Sample delay for three patients for horizon 10 has 𝑑1 < 𝑑2 < 𝑑3 when 𝑝1 < 𝑝2 < 𝑝3.
Note that one sample gave an out-of-memory error for which we could not conclude any
outcome.
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Figure 2.4: Surface plot for a panel of 𝑁 = 5 patients and horizon 𝑇 = 8 at various values
of p show that the delay 𝑑1 is monotonic. The symmetry in the definition of 𝑑𝑗 would show
similar monotone behavior for 𝑑2.

With these tabulated results, we investigated the monotone behavior for the delay of one

class 𝑑1 in a two class panel. We sampled 10,000 instances of the vector p and determined

the delay 𝑑1 for each sample. Figure 2.4 shows the surface plot for this delay 𝑑1 for different

combinations of patients in each class for a panel size of 5 and horizon of 8. These samples

support the idea that delay for one class has a monotone behavior on its own.

2.4 Conclusion & Discussion

We are unable to prove mathematically that the delay follows a monotone mapping

because of the intractability of the delay function. The complexity of the delay function

restricts the horizon size for the appointment slots and the panel size for numerical analysis.

Within the computationally feasible size of the parameters, we have consistently show that

our hypothesis of lower delay for low probability of requesting a slot and higher delay
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for higher probability of requesting an appointment slot. The results from the simulation

from chapter 1 and the numerical analysis above give more evidence towards inequity in

delay for people with more health care needs.
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CHAPTER 3

CAPACITY PLANNING FOR A SPECIALTY NETWORK OF
OUTPATIENT HEALTH CARE PROVIDERS

3.1 Introduction

In the previous chapters, we have looked at how a panel of patients seeks appointments

with a primary care provider (PCP) and have modeled relevant capacity planning and delay

concerns. Now we consider that a panel of patients seeks appointments in a network of

specialty care providers (including primary care). Our motivation comes from the need for

health systems to plan for capacities not just for primary care, but for a range of other

specialties. Such capacity planning is vital for large health systems such as the Veterans

Affairs and Kaiser Permanente. Patient access in a specialty network often exists in the

form of independent outpatient clinics that serve a region. Administrators and public health

officials may need to address capacity issues for under-served patients.

In fig. 3.1, we can see the outpatient visits for three different patients over a two-year

period. These figures are based on data for patients obtained from the Medical Expenditure

Panel Survey. The patient labeled as ‘A’ goes first to ophthalmology, then to primary care

twice and then twice to ophthalmology. Thus, we observe transitions between specialty

types as well as intervals between visits which can vary. The duration of the appointment is

minuscule when compared with the time-interval—small enough to be considered a point

process. The patient transitions from one specialty to another with some revisits. The visit

referrals to a different specialty or revisits to the same specialty may be from the advice of

the primary care physician or from the specialty provider. A single patient may have their

own unique temporal visit signature, but when every patient in the US is observed, broader

patterns in the visits may emerge. While many patients may request multiple follow-up

appointments with their provider for managing their chronic conditions, new symptoms and

outcomes can necessitate changes in future appointment schedules, which may be influenced
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Time-interval

Figure 3.1: Outpatient visits for three patients, over a two-year period, 2009-2010. Data
from the Medical Expenditure Panel Survey.

by the most recent healthcare visit. In the grand scheme of things, when we try to build

patterns, these individual behaviors become their intrinsic constituent.

The role of the primary care provider as the point of first-contact remains impor-

tant (Grumbach et al., 1999). Referrals to specialty care can add to patients’ and primary

care’s burden of care-coordination (O’Malley & Cunningham, 2009; Patel et al., 2018).

Further, the primary care providers remain unaware if the patient has acted on the referral

by making appointments and showing up, nor do they always receive information from the

specialty provider to help them make better decisions (Mehrotra, Forrest, & Lin, 2011).

Barnett, Song, and Landon, 2012 have shown an increase of referrals from 4.8% in 1999 to

9.3% in 2009. The number of visits by Medicare beneficiaries to specialty care has increased

at much higher rate than the number of visits to primary care(Barnett, Bitton, Souza, &

Landon, 2021). Another study (Ganguli et al., 2020) uses data from a commercial insurer to

show the number of visits to primary care has reduced by 24.2% from 2008 to 2016. Not all

specialist visits require referrals from primary care. The emergence of the PPO & EPO plans

for commercially available medical insurance in the US has made specialty visits accessible

to patients without gatekeepers.

To the best of our knowledge, despite the increase in referrals, the sequences in which pa-

tients consult with primary care and specialists and the time-intervals between appointments

have not been quantified. From the point-of-view of an observer looking at patients moving
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from one node to another in a network of providers, a closed Jackson queuing network

(Jackson, 2004) may provide insights in the waiting time, bottleneck service providers,

and the “flow-rate” at each node. However, such closed queuing networks are difficult to

characterize analytically.

Thus, there is a need for an adequate modeling framework that captures both patient

heterogeneity and the pattern of referral and revisit transitions and time-intervals is observed

in patient-level longitudinal datasets. Patients that use the specialty network, may face

delays with a provider due to capacity bottlenecks, which may affect any other downstream

visits they may have in the future. Therefore, we choose an approach that assumes infinite

capacity for each specialty to analyze the impact of differences in lead time and to reverse-

engineer capacity needs. In queuing theory, this approach is known as offered-load analysis

(Whitt, 2013) and is well suited for capacity estimation.

Analytical queuing models become even more challenging to analyze when multiple

classes of patients (heterogeneity) need to be modeled. Furthermore, appointment systems

are not traditional first-come, first-served queues. As discussed in earlier chapters, queueing

models do not consider the appointment lead time—that is, the time between desired day of

the appointment and the day the request was made. Different patient classes have different

appointment lead times which in turn leads to differences in delays between patient classes.

However, a multi-class Jackson queueing model that uses first-come, first-served queueing

discipline and which ignores lead time considerations results in identical waiting times for

all patient classes.

Patients’ visits to specialties come with their own lead-time for making appointment

requests. This appointment lead-time may be affected by the sense of urgency that the

patient and/or the referring physician may have. One can argue that patients who request

appointments at very short lead-time may have an urgent need for care to treat a new

condition or symptom. When providers cannot service requests, we may see a surge in visits

to emergency rooms, urgent care and unplanned inpatient hospitalization. The delay in

access to appointments specialty care can vary, depending on the urgency of the visit and the

mismatch between the supply and demand for appointments. The rate at which appointments

get filled can give some insight to the which patient subgroups or which referrals are expected
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to experience delays. Since patients’ specialty care visits are not always motivated by formal

referrals, the visit time-interval between different pairs of specialty care will vary.

Buttorff, Ruder, and Bauman, 2017 shows that patients with 5+ chronic conditions are

only 12% of the population, but they consume 41% of all healthcare expenditure, including

ambulatory, inpatient and emergency care. On the other hand, 40% of the population has

no chronic conditions and consume 10% of the healthcare expenditure. Patients with chronic

conditions have different healthcare needs than other patients, and their burden of care-

coordination is much higher. Modeling the average patient may obscure these patients with

multiple chronic conditions. We make a case for considering patient subgroups differentiated

by their healthcare needs.

We propose the use of Markov Renewal Process (MRP) (Çinlar, 1975) to model the

patient transitions between specialties and time-interval between successive appointments.

One of the contributions of this work is the parameterization of an MRP from longitudinal

data to provide a nationally representative model of outpatient referrals and visits in the

specialty network. Our use of a MRP is inspired from R. Hilton, Zheng, Fitzpatrick, and

Serban, 2018.

We answer the following questions with the MRP model:

1. How do specialty transitions and time-intervals differ between different patient subgroups?

2. How does the expected fill-rate for each specialty change over time? How does this

expected fill-rate vary by patient subgroup and referral network?

3. What is the distribution of the appointment requests for each specialty in a given time-

period. How does this distribution change as the appointment allocation schemes utilize

patient flexibility of day of appointment?

Our contributions from this work are (1) framework for modeling MRP for outpatient vis-

its, for a nationally representative population, (2) analysis of lead-time between appointment

requests by patient subgroups, (3) insight into fill-rate by various patient subgroups for each

specialty, (4) analysis of aggregate daily appointment requests capacity and improvement in

capacity with scheduling policy.

The rest of the chapter is organized as follows. In section 3.2, we provide the literature

landscape and identify how our work fits in relation to other research. In section 3.3, we
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give the rationale for the Markovian property in appointment transitions from one specialty

to another, and model it as a MRP for patient subgroups. We then give the analytical

expressions for fill-rate for patient subgroups by the referrals. We simulate the MRP of

the specialty network referrals to discover the distribution of daily appointment requests

and assign appointments to reduce the variance. In section 3.4 we analyze the differences

in MRP and the fill-rate for different patient subgroups. We quantify the distribution of

appointment requests by specialty and the allocation using heuristics. In section 3.5 we give

some insights on the results and implications for future work.

3.2 Literature Review

We now summarize our work in relation to the broader literature. Appointment scheduling

is a very well studied topic. Gupta and Denton, 2008 gives an overview on the appointment

scheduling opportunities in healthcare for primary care, specialty clinics and elective surgery.

They give guidelines for the broad framework in which appointment scheduling models can

be explored. Youn, Geismar, and Pinedo, 2022 gives a literature survey on planning and

scheduling in healthcare. Their literature overview covers capacity planning for hospitals,

outpatient and other networks, and appointment scheduling for different modeling approaches

and constraints, including recurring visits. Majority of the papers focus on a single provider

or a group of providers in a single specialty. Yu, Kulkarni, and Deshpande, 2020 formulate

an MDP for patients that need a series of appointments that are recurring but random

for a specialty provider. They compare different scheduling polices that are tractable

over MDP. Many papers also consider multiple-steps in the visit. Such multi-stage and

multistep scheduling considers the simultaneous scheduling of appointments. Alvarez-

Oh, Balasubramanian, Koker, and Muriel, 2018 provide analysis for a two-step stochastic

scheduling problem of the visit to the nurse followed by visit to the doctor using integer

linear programming. Berg, Erdogan, Lobo, and Pendleton, 2020 propose a constrained

optimization model to reduce the variance of the number of doctors scheduled at each hour

of the working day over the planning horizon, in a specialty clinic setting.

Patients being referred to other specialties may have urgent or non-urgent need for

appointments. Deglise-Hawkinson, Helm, Huschka, Kaufman, and Van Oyen, 2018 provide
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an optimization model that ensures delay within a predefined limit for urgent appointments,

while having a slight increase in delay for non-urgent appointments. They use approximation

measures to linearize the queuing model and use linear optimization that also reduces

overtime.

Clinical research trials may require participants on a recurring appointment schedules are

aligned to the resource availability. Deglise-Hawkinson, Kaufman, Roessler, and Van Oyen,

2020 uses the linear approximation model to determine such a schedule. Among other things,

they aim to reduce the nurse overtime. Lee and Zenios, 2009 examine end-stage kidney

disease that needs recurring appointments to come up with the optimal overbooking policy.

Since a few patients may need unplanned inpatient care and others may get discharged from

such inpatient care, the demand for appointments is not certain, which makes overbooking

helpful. Yu et al., 2020 optimally allocates recurring series of appointments that can be

scheduled in advance for treatments similar to chemotherapy, kidney dialysis. They use

Markov decision process to provide optimal scheduling policies that balances revenue and

costs including staffing, overtime, overbooking and delay. Marynissen and Demeulemeester,

2019 provides a literature review on multi-appointment scheduling problems in hospitals.

Outpatient providers can be represented as a network using their corresponding patient

referrals. An, O’Malley, Rockmore, and Stock, 2018 infer referrals using patient visit and

treatment records. The authors determine various network characteristics related to patient

referrals and compare them across different states. These network characteristics are then

used over a regression model to determine the relationship between the network measures and

health care measures. Patients also use a network of alternatives to inpatient care like home

care, assisted living, chronic care etc. Mohammadi Bidhandi, Patrick, Noghani, and Varshoei,

2019 uses a queueing network method to capacity planning for such facilities. The use

simulated annealing to determine the optimal capacities with performance guarantees. Helm

and Van Oyen, 2014 look beyond the hospital bed capacity to provide optimal scheduling for

elective hospital admissions that use a network of facilities in the hospitals—surgery room,

ICU, testing etc. The transitions between the facilities is stochastic, and resource constraints

force delay due to blocking. They derive analytical expressions for the number of arrivals

and use optimization models to determine the best scheduling based on such arrivals.
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The use of Markov Renewal Process in our paper draws inspiration from the R. P. Hilton,

Zheng, and Serban, 2018. The authors extract and MRP model of patient transitions to

different provider types based on the heterogeneity of the health condition of pediatric

asthma patients. They cluster the patients based on behavior and healthcare utilization

patterns from longitudinal event sequences extracted from a large patient-level database.

This clustering is done to find the reasons of variance in utilization of healthcare. The

authors compare the cluster characteristics over six regions in US.

Though the literature frequently uses the recurring appointments and specialty network

referrals, we do not have a complete picture on the nature of the referrals based on when

the appointment requests are made. Most of the literature does not differentiate between

patient types of subgroups for analysis. Though a few studies look at the urgent and

non-urgent patient, the optimal scheduling policies fail to consider differences in patient

health and behavior. Research that attempts to determine the optimal capacity looks at a

single specialty or facility than the holistic view of all specialties for all the people in the

region. We address these gaps in literature. We use referral and next visit transitions to

determine the appointment fill-rates by lead-time. This is analyzed for patient heterogeneity

based on health condition by the number of comorbodities. We use simulation to determine

the distribution of demand for each type of specialty per 100,000 people. We also determine

the capacity needed when appointments are allocated using the patient flexibility based on

lead-time.

3.3 Methodology

Consider a person who is part of a regional community. The person may request

appointments and visit different health care providers of different specialties as and when

needed. We represent the random variable 𝑋𝑛 as the 𝑛th event that the person has visited a

health care provider. At the end of the visit, the person schedules the next event 𝑋𝑛+1 for a

health care provider visit from the state space 𝑆 of all the specialty providers. It could be

the same specialty, or it could be for a different specialty.

We associate the probability of event 𝑋𝑛 as Pr(𝑋𝑛 = 𝑖). When:
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Pr (𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1, 𝑋𝑛−2, . . . , 𝑋0) = Pr (𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑝𝑖𝑗 ,

the sequence of events hold the memory-less Markovian property. For many office-based and

outpatient visits, the prognosis of health conditions in that visit is provided by the health

care provider which determines the next step to be taken. For chronic conditions, preventive

check-ups and unanticipated flareups may give an indication of the next visit to the specific

type of provider specialty. For people without any chronic conditions, the sequence of visits

may be based on the preventive check-ups, steady rate of incidence of infectious diseases, or

the random nature of individual accidents and injuries that can be treated with outpatient

visits.

Though the Markovian property may hold, the sequence of visits cannot be represented as

a discrete time Markov chain (DTMC). The next visit does not occur at a fixed time-interval

after the previous visit. Instead, the next visit will occur at a random time. We represent

this time with the random variable 𝑇𝑛+1 when the person goes for the next visit 𝑋𝑛+1. The

time-interval between the two events 𝑋𝑛 and 𝑋𝑛+1 is 𝑇𝑛+1 − 𝑇𝑛.

3.3.1 Markov Renewal Process

A stochastic process {(𝑋𝑛, 𝑇𝑛)|𝑛 ≥ 0} with state space 𝑆 is called Markov Renewal

Process (MRP) when:

Pr(𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|(𝑋𝑛 = 𝑖, 𝑇𝑛), (𝑋𝑛−1, 𝑇𝑛−1), . . . (𝑋0, 𝑇0))

= Pr(𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡, 𝑋𝑛+1 = 𝑗|𝑋𝑛) ∀𝑛 ≥ 0, 𝑡 ≥ 0, 𝑖, 𝑗 ∈ 𝑆

In an MRP, the renewal process can change the state within the state space 𝑆 at each

increment and this change of state retains the Markovian property of depending only on

the previous state instead of the entire history. One key difference between the MRP and

the continuous time Markov chain (CTMC) is that the CTMC requires a change in the

state that is 𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖 ⇐⇒ 𝑖 ̸= 𝑗. Further we see that the mean arrival rate in a

CTMC also decides the probability distribution. In contrast, the MRP allows the state to
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change to the same state. Also, we are able to decouple the transition probability from the

time-interval with MRP. Thus we cannot use either DTMC nor CTMC

Within each MRP we have an embedded DTMC where we strictly consider the state

changes and ignore the renewal process. This allows us to partially analyze the MRP using

the properties of the DTMC. The limiting distribution of a DTMC is used in generating

the limiting distribution of an MRP. Let 𝑣𝑖 be the limiting distribution for state 𝑖 for the

embedded DTMC. Let 𝜏𝑖 be the mean sojourn time for state 𝑖 for the MRP. The limiting

distribution of the MRP is the ratio of the time the state of the system is 𝑖 to the sum of all

the times in each state as given in eq. (3.1)

𝜋𝑖 = 𝑣𝑖𝜏𝑖∑︀
𝑘 𝑣𝑘𝜏𝑘

(3.1)

Instead of the distribution of time spent in each state, we will find the distribution of the

time spent in each state transition. That is, the distribution of time spent in a particular

state with the transition to a specific next state. The limiting distribution of the transition

from 𝑖 to 𝑗, 𝜋𝑖𝑗 , is analogous to the limiting distribution of time spent in state 𝑖 given by 𝜋𝑖.

We start from the limiting distribution of state 𝑖 of the embedded Markov chain 𝑣𝑖. Since

the transition probability of moving to state 𝑗 is 𝑝𝑖𝑗 , we will have 𝑣𝑖𝑝𝑖𝑗 as the fraction of

transitions from 𝑖 to 𝑗. The mean time spent in state 𝑖 when moving to state 𝑗 is 𝜏𝑖𝑗 . So the

time spent in the transition to 𝑗 as a fraction of all transitions from 𝑖 is 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗 . The limiting

distribution of this transition from 𝑖 to 𝑗 is the ratio of the time spent in this transition to

the sum of time spent in all transitions.

𝜋𝑖𝑗 = 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑙 𝑣𝑘𝑝𝑘𝑙𝜏𝑘𝑙

(3.2)

The relation of 𝜋𝑖𝑗 with 𝜋𝑖 can be explained as follows. We can consider the sojourn

time of state 𝑖 as the mean of the time spent in each of the transitions as seen in eq. (3.3).

𝜏𝑖 =
∑︁

𝑗

𝑝𝑖𝑗𝜏𝑖𝑗 . (3.3)
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Rewriting eq. (3.1) with eq. (3.3), we get eq. (3.4).

𝜋𝑖 =
𝑣𝑖
∑︀

𝑗 𝑝𝑖𝑗𝜏𝑖𝑗∑︀
𝑘 𝑣𝑘

∑︀
𝑙 𝑝𝑘𝑙𝜏𝑘𝑙

(3.4)

=
∑︀

𝑗 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑙 𝑣𝑘𝑝𝑘𝑙𝜏𝑘𝑙

𝜋𝑖 =
∑︁

𝑗

(︂
𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑘𝑝𝑘𝑙𝜏𝑘𝑙

)︂
(3.5)

We can rewrite eq. (3.5) using eq. (3.2) to get eq. (3.6).

𝜋𝑖 =
∑︁

𝑗

𝜋𝑖𝑗 (3.6)

In this work, we are more concerned with the transitions from every state 𝑖 to a specific

state 𝑗 as we shall see later. This requires us to know 𝜋𝑖𝑗 ∀𝑖 to help us find
∑︀

𝑖 𝜋𝑖𝑗 .

It could be argued that state space of the MRP could be the transitions themselves.

For an original state space of size 𝑛, we have 𝑛2 different original transitions. If we define

the new state space made with original transitions, we would have 𝑛2 new states and 𝑛4

new transitions. This increases the complexity by having to define multiple improbable

transitions in the new MRP. Example, transition probabilities from state 𝑖𝑗 to 𝑘𝑙 is zero

when 𝑗 ̸= 𝑘. The use of transitions of the original state space reduces the complexity.

3.3.2 Modeling health care visits as a Markov Renewal Process

The Medical Expenditure Panel Survey (MEPS) provides longitudinal data on outpatient

and office-based visits at the day level with the provider specialty associated with the

visit. In MEPS, the visits are called as events, and also include visits over telephone in

addition to in-person visits. The IPUMS MEPS combines multi-year MEPS survey to

provide participants’ static information into a single consistent database by using standard

variable names and standard coding across different surveys (Blewett, Drew, Griffin, &

Williams, 2019). We use both these datasets since IPUMS sources data from MEPS and is

expected to be consistent with it when joining data. As the survey can change each year, we

identify the relevant survey years using some filters that we describe next. The day of visit is

available from the survey year 1999 to the survey year 2012. Survey year 2013 onward only
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provides the month and removes the day-level granularity. The provider specialty associated

with the visit is available from survey year 2002 till most recently released data (survey

year 2020 at the time of writing). The survey questions related to chronic conditions are

available from survey year 2007 till most recently released data. The relevant survey years

is the intersection of the above years for which relevant data is available—survey year 2007

to survey year 2012. Since we are interested in the longitudinal data, the survey panels that

start in survey year 2007 and end in survey year 2012 are panels 12, 13, 14, 15, and 16.

Along with the outpatient and office-based visits, MEPS also provides medical-conditions

data for each survey participant and the longitudinal weights for the survey panels. We do

not consider visits to the emergency department, in-patient, and nurses and technicians,

that is available in MEPS, as the rationale of the Markovian property gets difficult.

A flowchart on generating the parameters of the Markov renewal process to model health

care visits is given in fig. 3.2.

The individual event files and longitudinal data files are downloaded from MEPS and the

medical-conditions information taken from IPUMS. The relevant features from the csv files

are retained and stacked over multiple survey panels to get data consistent across multiple

survey periods. Within the event files, the visit dates are generated. Missing dates are

cleaned by uniform random dates.

MEPS intends to represent all civilian non-institutionalized people in US. It assigns

appropriate weights to the survey participants equivalent to their representation of the

national population. The sum of all the weights corresponds to the national population

estimate for that time period. The longitudinal files provide these weights to the participants

to correctly represent the national population in the two-year longitudinal survey. Since

the national population estimates change every year, using the weights as-is over multiple

periods can add bias. We normalize the national population for multiple time periods to

reduce bias. We convert the weights from whole numbers to fraction of the total. Each

survey participant then has a fractional representation of the national population, thus

allowing data over multiple years to be aggregated. Lumley, 2004 describes how stratified

samples in complex surveys can be handed in R language.
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The medical-conditions are a list of chronic conditions that the survey participants have

been diagnosed anytime. We determine the comorbidity count for each survey participant

from the following conditions:

1. Heart Condition

2. Coronary Heart Disease

3. Heart Attack

4. Stroke

5. High Cholesterol

6. Emphysema

7. Diabetes

8. Cancer

9. Arthritis

10. Asthma

11. ADHD

12. Hypertension

13. Angina Pectoris

Since people are generally healthy, not everyone in the survey can be expected to have an

outpatient visit. To represent the entire population in the MRP, we add two HOME events—

one on the day prior to the start of the panel survey, and the other on the day after the end

of the survey. We use database joins to merge the three data-tables—longitudinal fractional

weights, the comorbidity count, and the visits. The HOME events ensures that data remains

consistent and nationally representative after full outer database joins. This is because every

individual in the survey will have a HOME event, even if they did not have any outpatient visit.

We assign a patient class based on the comorbidity count for each survey participant. The

sequence of visits for each participant is determined. All sequences start and end at HOME

with a two-year horizon. This allows the embedded Markov chain to be irreducible, since

every sequence that ends with the HOME state can be regenerated as start of a new sequence.

The time-interval between successive events is computed to reflect five weekdays per week

instead of seven calendar days per week. This manipulation is essential to remove the effect

of longer time-intervals because of weekends. The visit to a particular specialty represents
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Comorbidity Count Distribution Class Distribution

0 49.783% A 70.54%1 20.753%

2 11.222% B 18.72%3 7.499%

4 4.527%

C 10.74%

5 2.759%
6 1.646%
7 0.970%
8 0.488%
9 0.238%

10 0.097%
11 0.015%
12 0.002%

Table 3.1: Distribution of population by comorbidity count and formulation of classes.

the state of the participant. The transition probabilities of moving from every state to every

other state is estimated using law of large numbers. Separate transition probabilities are

computed for each patient class. The mean time-interval between every pair of states is

calculated with similar grouping by the patient class. The fractional weights are used in

each of these computations, so that each survey participant is represented appropriately.

We thus generate separate MRP parameters for each class of patient. We expect each

patient class to be homogeneous within itself and will have heterogeneity when compared to

other patient classes. Though the appointment bookings are at the same set of specialty

providers, the MRP for each class doesn’t interact with any other MRP.

The table 3.1 shows the distribution of the population by the comorbidity count. We

can see the trend of most people are healthy and fewer people have more comorbidity count.

We have split the population roughly by 70-20-10 percent in three classes A, B and C. The

class A has most healthy people while the class C has people with comorbidity count of 4 or

more.

The MEPS data set includes 35 different medical specialties. We combined all the events

labeled as “Don’t Know” / “Not Ascertained” / “Refused” in the “Other Dr Specialty”.

These weighted events made up 10% of all the events. Further, we combined all the least
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Figure 3.2: Flowchart showing approach to extract Markov Renewal Process parameters from
the Medical Expenditure Panel Survey (MEPS) using the office-based visits and outpatient
visits, longitudinal weights and medical conditions files.
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occurring 6% of the events to “Other Dr Specialty”, thus making it nearly 16% of the

events. We combined the “Family Practice”, “General Practice”, “Internal Medicine” and

“Pediatrician” as “Primary Care” to become the largest specialty by events of nearly 43%.

We have only considered the events where the participant had a visit or a call to a doctor

of medicine and ignored events related to nurses and technicians. Thus, the number of

specialties considered is 16 with the addition of the HOME state making the number of states

as 17. Table 3.2 shows the distribution of events considered in the model.

There are 17 × 17 = 289 different state transitions. In order to determine the parametric

continuous probability distribution for time-interval between states, we examine the his-

togram. Since it is not possible to examine the histogram of all 289 states, we randomly

sampled two state transitions from the top ten most frequently occurring transitions. Their

histogram is shown in fig. 3.3. We determined the weighted mean of the time-intervals and

found the exponential distribution aligns with the observed data.

The memory-less property of the exponential distribution helps in analysis as we shall

see.

3.3.3 Fill-rate for Daily Appointment Requests for a Specialty by Lead-Time

for a Homogeneous Population

In an MRP, the limiting distribution of a specialty gives us the expected fraction of the

population in a state at anytime. The state of the system is the specialty visit that has been

completed. So if a patient leaves for another state, another patient is expected to arrive in

that state to replace the previous person. In our model, we assume that patients will request

for the next specialty appointment immediately after the previous appointment. We shall

try to get insight in the pattern by which appointments are requested for a particular day.

If 𝑝 is the probability of requesting for an appointment for a person, (1 − 𝑝) is the

probability of not requesting the appointment by that person. When we consider 𝑛 people,

the distribution of the number of people requesting an appointment follows a binomial

distribution. The expected number of people requesting for the appointment is 𝑛𝑝.

The distribution of time-interval between state transitions is exponential. The time-

interval allows us to fix the requested date of appointment and determine the probability of
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Specialty in Data Specialty in Model Distribution

Family Practice

Primary Care 42.85%General Practice
Internal Medicine

Pediatrician

OB/GYN OB/GYN 6.54%
Ophthalmology Ophthalmology 5.87%

Orthopedics Orthopedics 5.17%
Psychiatry Psychiatry 4.35%
Cardiology Cardiology 3.36%

Dermatology Dermatology 2.96%
Oncology Oncology 2.42%

Neurology Neurology 1.79%
Gastroenterology Gastroenterology 1.78%

Otorhinolaryngology Otorhinolaryngology 1.67%
Urology Urology 1.62%

General Surgery General Surgery 1.30%
Immunology Immunology 1.19%
Nephrology Nephrology 1.16%

Other Dr Specialty

Other Dr Specialty 15.96%

Endocrinology
Pulmonary

Rheumatology
Physical Medicine/Rehab

Radiology
Osteopathy

Plastic Surgery
Hematology

Anesthesiology
Geriatrics

Proctology
Thoracic Surgery

Hospital Residence
Pathology

Nuclear Medicine

Nurse / Technician [Ignore]
Home [Add]

TOTAL 100%

Table 3.2: Office-based and Outpatient Medical Specialty events as available in data and as
used in the model.
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From: Other Dr Specialty
To: Primary Care
Mean: 63.6 days

From: Psychiatry
To: Psychiatry

Mean: 20.3 days

From: Ophthalmology
To: Primary Care
Mean: 32.6 days

From: Ophthalmology
To: Primary Care
Mean: 76.8 days

From: OB/GYN
To: OB/GYN

Mean: 22.1 days

From: Oncology
To: Oncology

Mean: 9.2 days

Sample: 1 Sample: 2

C
lass: A

C
lass: B

C
lass: C
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Figure 3.3: Histograms are shown for two sample state transitions for each of the three
classes. The red line shows the parameterized exponential distribution function.
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requesting an appointment at a time 𝑡 days before the event. Consider 𝑋𝑛 = 𝑖, 𝑋𝑛+1 = 𝑗

and 𝑇𝑛+1 − 𝑇𝑛 = 𝑡. We define Pr (𝑇𝑛+1 − 𝑇𝑛 = 𝑡|𝑋𝑛+1 = 𝑗, 𝑋𝑛 = 𝑖) = 𝑓𝑖𝑗(𝑡). This is the

probability distribution function for the time-interval for the transition from 𝑖 to 𝑗. The

corresponding probability density function is Pr (𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋𝑛+1 = 𝑗, 𝑋𝑛 = 𝑖) = 𝐹𝑖𝑗(𝑡).

With population 𝑁 , the number of people moving from state 𝑖 to state 𝑗 is 𝑁𝜋𝑖𝑗 . Since 𝜋𝑖

is the limiting distribution, the number of people expected to be in state 𝑖 at any time stays

the same, and the number of people expected to transition also remains same. The expected

number of people going out of state 𝑖 will equal the expected number of people coming in

state 𝑖. From eqs. (3.2) and (3.6), we know 𝜋𝑖𝑗 is also constant.

Thus, using the binomial distribution, we get the expected number of people requesting

appointment at a time 𝑡 days before the event as 𝑁𝜋𝑖𝑗𝑓𝑖𝑗(𝑡). We can derive the expected

number of people requesting appointment in specialty 𝑗 at least 𝑡 days before the event by

eq. (3.7)

̂︁𝑔𝑖𝑗(𝑡) =
∫︁ ∞

𝑡
𝑁𝜋𝑖𝑗𝑓𝑖𝑗(𝑢)𝑑𝑢 (3.7)

= 𝑁𝜋𝑖𝑗

∫︁ ∞

𝑡
𝑓𝑖𝑗(𝑢)𝑑𝑢

̂︁𝑔𝑖𝑗(𝑡) = 𝑁𝜋𝑖𝑗(1 − 𝐹𝑖𝑗(𝑡)) (3.8)

If we consider all the patients from every state 𝑖 requesting appointments for a specific

state 𝑗 at least 𝑡 days before, we get

̂︀𝑔𝑗(𝑡) =
∑︁

𝑖

̂︁𝑔𝑖𝑗(𝑡) (3.9)

using eqs. (3.8) and (3.9) we get eq. (3.10) as shown:

̂︀𝑔𝑗(𝑡) =
∑︁

𝑖

𝑁𝜋𝑖𝑗(1 − 𝐹𝑖𝑗(𝑡))

̂︀𝑔𝑗(𝑡) = 𝑁
∑︁

𝑖

𝜋𝑖𝑗(1 − 𝐹𝑖𝑗(𝑡)) (3.10)
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We know the value of 𝜋𝑖𝑗 from eq. (3.2). The random variable for the time-interval follows

exponential distribution with a mean time-interval of 𝜏𝑖𝑗 . Thus, eq. (3.10) becomes

̂︀𝑔𝑗(𝑡) = 𝑁
∑︁

𝑖

𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑗 𝑣𝑘𝑝𝑘𝑗𝜏𝑘𝑗

(1 − (1 − 𝑒−𝑡/𝜏𝑖𝑗 ))

̂︀𝑔𝑗(𝑡) = 𝑁

∑︀
𝑖 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗𝑒−𝑡/𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑗 𝑣𝑘𝑝𝑘𝑗𝜏𝑘𝑗

(3.11)

We can arrive at a per-capita based appointment requests as from eq. (3.11)

𝑔𝑗(𝑡) =
̂︀𝑔𝑗(𝑡)
𝑁

=
∑︀

𝑖 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗𝑒−𝑡/𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑗 𝑣𝑘𝑝𝑘𝑗𝜏𝑘𝑗

(3.12)

The eq. (3.12) is of the form

𝑔𝑗(𝑡) =
∑︁

𝑖

𝑎𝑖𝑒
−𝑏𝑖𝑡 where 0 ≤ 𝑎𝑖 ≤ 1, 𝑏𝑖 ≥ 0, 𝑡 ≥ 0. (3.13)

The cumulative number of appointment requests expected at the time of the appointment

(that it, when 𝑡 = 0) is given in eq. (3.14). So,

̂︀𝑔𝑗(0)
𝑁

= 𝑔𝑗(0) =
∑︀

𝑖 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗𝑒0/𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑙 𝑣𝑘𝑝𝑘𝑙𝜏𝑘𝑙

𝑔𝑗(0) =
∑︀

𝑖 𝑣𝑖𝑝𝑖𝑗𝜏𝑖𝑗∑︀
𝑘

∑︀
𝑙 𝑣𝑘𝑝𝑘𝑙𝜏𝑘𝑙

(3.14)

The 𝑔𝑗(𝑡) expression in eq. (3.11) is for a homogeneous population where one single MRP

represents the community. We can extend our analysis for a heterogeneous population where

a separate MRP for each class models the behavior of that class.

3.3.4 Fill-rate for Daily Appointment Requests for a Specialty by Lead-Time

for a Heterogeneous Population

If the population can be stratified as mutually exclusive classes, we can represent each class

with a separate MRP. The MRP for each class is independent of the other class. They do not

interact with each other. The number of appointments booked at each specialty is the sum

of the appointments booked by each class. Let the various classes by denoted by subscript 𝑐.
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The distribution of population a class can be denoted as 𝑑𝑐 where
∑︀

𝑐 𝑑𝑐 = 1. Heterogeneous

class notations can be extended from the previous homogeneous class notations.

∙ The transition probability from specialty 𝑖 to 𝑗 for class 𝑐 can be represented as 𝑝𝑐𝑖𝑗 .

∙ The mean time-interval between specialties (which is also the parameter of the expo-

nential distribution) is given by 𝜏𝑐𝑖𝑗 .

∙ The sojourn time in specialty 𝑖 is given by 𝜏𝑐𝑖.

∙ The steady state distribution for the embedded Markov chain is 𝑣𝑐𝑖.

∙ The limiting distribution for the MRP in specialty 𝑖 is 𝜋𝑐𝑖, the components of which,

are 𝜋𝑐𝑖𝑗 .

∙ The expected number of people in specialty 𝑖 requesting appointment at least 𝑡 days

before, for specialty 𝑗 is 𝑔𝑐𝑖𝑗(𝑡).

∙ The expected number of people requesting appointment at least 𝑡 days before, for

specialty 𝑗 is 𝑔𝑐𝑗(𝑡).

∙ The expected number of people requesting appointment at least 𝑡 days before, for

specialty 𝑗 from all classes is 𝑔𝑗(𝑡).

We then get the appointments requested in class 𝑐 for specialty 𝑗 before 𝑡 days is given

by eq. (3.15).

̂︁𝑔𝑐𝑗(𝑡) = 𝑁𝑑𝑐

∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙

𝑔𝑐𝑗(𝑡) =
̂︁𝑔𝑐𝑗(𝑡)

𝑁
= 𝑑𝑐

∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙

(3.15)

The total appointments requested at least 𝑡 days before, for specialty 𝑗, from every class 𝑐

and every specialty 𝑖 is given by eq. (3.16).

𝑔𝑗(𝑡) =
∑︁

𝑐

𝑔𝑐𝑗(𝑡)

𝑔𝑗(𝑡) =
∑︁

𝑐

𝑑𝑐

∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙

(3.16)
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3.3.5 Simulating the Specialty Network Referrals for Patient Visits

We simulate the specialty network referral for patient visits to understand the distribution

of appointment requests for each patient class and specialty. We use the MRP parameters

of each class in the simulation.

To initialize the simulation, we first stratify the population to represent the class using

table 3.1. The individuals in each class are assigned specialties such that their distribution

resembles the limiting distribution of the corresponding MRP. This initial assignment of

the simulation— assumes that every individual has completed the appointment on day 0

and the request for the next visit has to be randomly generated.

The next specialty visit, though random, is selected based on the current visit. Though

not always required, referrals are frequently given to patients to consult a specialty doctor.

Since the population is nationally representative, there is a composition of visits with

referrals and visits without referrals. To request the next visit, we randomly select the next

specialty using a probability distribution given by the transition probabilities. Using the

next specialty we generate a random time-interval from the exponential distribution with the

parameter as the mean time-interval between the current specialty and the next specialty.

This time-interval gives the realization of the next appointment request day.

We consider a regional population where individuals are part of a set 𝐻. This set is

partitioned to different classes each represented by the subscript 𝑐. So:

𝐻𝑐 ∩ 𝐻𝑐′ = ∅, ∀𝑐, 𝑐′ : 𝑐 ̸= 𝑐′,⋃︁
𝑐

𝐻𝑐 = 𝐻.

The set is partitioned to resemble the distribution of the population in that class, that

is |𝐻𝑐| ∝ 𝑑𝑐. An individual person in class 𝑐 is 𝑞𝑐 ∈ 𝐻𝑐. We know the parameters of the

MRP of each class. The transition probability for moving from specialty 𝑖 to specialty

𝑗 for class 𝑐 is 𝑝𝑐𝑖𝑗 . The mean time-interval of moving from specialty 𝑖 to specialty 𝑗

for class 𝑐 is 𝜏𝑐𝑖𝑗 . The 𝑛th visit of patient 𝑞𝑐 is the random variable 𝑋(𝑞𝑐,𝑛), and the day

of the visit with random variable 𝑇(𝑞𝑐,𝑛). We generate the next specialty 𝑋(𝑞𝑐,𝑛+1) using

random sampling from a probability distribution based on the transition probabilities
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of Pr
(︁
𝑋(𝑞𝑐,𝑛+1) = 𝑗|𝑋(𝑞𝑐,𝑛) = 𝑖

)︁
= 𝑝𝑐𝑖𝑗 . We generate a random time-interval with this

parameterized exponential distribution to get 𝑡𝑐𝑖𝑗 ∼ Exp [1/𝜏cij].

It is important to note that here we are merely generating requests for appointments. We

need to allot the requested appointments, which we shall see below. The realizations of the

random variables 𝑋(𝑞𝑐,𝑛) and 𝑇(𝑞𝑐,𝑛) are 𝑠(𝑞𝑐,𝑛) and 𝑟(𝑞𝑐,𝑛) respectively. The corresponding

appointment is allotted on day 𝑎(𝑞𝑐,𝑛).

We initialize the simulation by first generating the steady state distribution of 𝜋(𝑐,𝑖)∀(𝑐, 𝑖)

using eq. (3.1), related to each set 𝐻𝑐. Each individual in class 𝑐 is then assigned an

appointment at day 0 for a specialty 𝑠(𝑞𝑐,0) so that the distribution of individuals in different

specialties resembles the steady state distribution of the MRP for that class.

𝑟(𝑞𝑐,0) := 0 (3.17)

𝑎(𝑞𝑐,0) := 0 (3.18)

The simulation progresses by generating the random sequences of the embedded Markov

chain and the corresponding renewal process.

𝑠(𝑞𝑐,𝑛) := 𝑋(𝑞𝑐,𝑛) and (3.19)

𝑟(𝑞𝑐,𝑛) := 𝑎(𝑞𝑐,𝑛−1) +
⌈︁(︁

𝑇(𝑞𝑐,𝑛) − 𝑇(𝑞𝑐,𝑛−1)|𝑋(𝑞𝑐,𝑛), 𝑋(𝑞𝑐,𝑛−1)
)︁⌉︁

(3.20)

The time-interval is a continuous distribution. Since we are only concerned with the

day of the appointment and not the specific time of the day, we use the ceiling operator to

round up the random time-interval to a positive integer. We allocate the appointment for

the same day it has been requested and denote it using

𝑎(𝑞𝑐,𝑛) := 𝑟(𝑞𝑐,𝑛) (3.21)

At the end of the simulation we determine the number of appointments requested on

each day for all 𝑛 > 0. This is the same as all appointments allotted on each day.
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3.3.6 Heuristics to improve allocation of appointments

We have explored the allocation of appointments using heuristics based on patient

flexibility in section 1.4.1. We use the “First Minimum” heuristic to allocate appointments in

the simulation. We assume each patient has flexibility of appointment allocation based on the

lead-time of request similar to eq. (1.5). Each appointment request has some flexibility 𝛿(𝑞𝑐,𝑛)

within which the appointment allocation may be done. The lead-time of the appointment

request is the number of days difference in the previous appointment and the request for

next appointment, which is 𝑟(𝑞𝑐,𝑛) − 𝑎(𝑞𝑐,𝑛−1). We convert the lead-time to weeks using⌊︁
𝑟(𝑞𝑐,𝑛)−𝑎(𝑞𝑐,𝑛−1)−1

5

⌋︁
. Here we define the flexibility using eq. (3.22), where each week of lead-

time contributes to one day of flexibility. This flexibility is capped to 7 days. Appointments

requested at shorter lead-time tend to have less flexibility because of the urgency of the visit

at short notice, and also because patients’ own schedules are firmed up for the near-future

as compared to the far-future.

𝛿(𝑞𝑐,𝑛) := min
(︂⌊︂

𝑟(𝑞𝑐,𝑛) − 𝑎(𝑞𝑐,𝑛−1) − 1
5

⌋︂
, 7
)︂

(3.22)

The constraints on the appointment allocation is similar to eq. (1.4) as given in

𝑟(𝑞𝑐,𝑛) − 𝛿(𝑞𝑐,𝑛) ≤ 𝑎(𝑞𝑐,𝑛) ≤ 𝑟(𝑞𝑐,𝑛) + 𝛿(𝑞𝑐,𝑛)

𝑙(𝑞𝑐,𝑛) ≤ 𝑎(𝑞𝑐,𝑛) ≤ 𝑢(𝑞𝑐,𝑛)

(3.23)

The first minimum heuristic searches the day on which the least number of appointments

have been allotted within the limits of
[︁
𝑙(𝑞𝑐,𝑛), 𝑢(𝑞𝑐,𝑛)

]︁
. The earliest day is chosen as a

tie-breaker for the appointment allocation.

The simulation uses two patient flexibility parameters. When there is no flexibility

we have 𝛿(𝑞𝑐,𝑛) = 0, so eq. (3.23) reduces to eq. (3.21). The flexibility allows us to use

the heuristic with the constraints of eq. (3.23). The simulation is run for a population of

|𝐻| = 100, 000 individuals for ten years (2500 days). We run 50 different simulations by

controlling the random number seed.
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We use Python with Numpy and Pandas(McKinney, 2010; van der Walt, Colbert, &

Varoquaux, 2011) to run the simulation. The simulations are run in parallel over multiple

processor cores using GNU Parallel(Tange, 2018).

3.4 Results

3.4.1 Markov Renewal Process Parameters

The parameters for the MRP with seventeen states are generated from the MEPS data

for a nationally representative population. We show the MRP parameters for a sample of five

specialties in fig. 3.4, split by the patient-class. We represent the specialties as nodes, and

the transitions as edges in the graph. The edges are labeled with the transition parameters.

The first label shows the transition probability as expressed in percentage. The second label

shows the mean time-interval of the exponential distribution between the specialties.

The juxtaposition of the MRP parameters can help us compare the patient-classes. For

instance, we look at the first row related to transitions from Primary Care to other specialties.

The mean time-interval for nearly all transitions reduces as we go from low morbidity count

to higher morbidity count. Transition mean time-interval Primary Care to Cardiology may

be an exception for class B. The probability of going from Primary Care back to Primary

Care reduces slightly as the comorbidity count increases. This is because patients with more

comorbidities are more likely to be referred to other specialties. The differences observed in

the mean time-interval between successive visits implies that some patient subgroups will

have more appointments on shorter notice than others. We now examine this property in

the next section.

3.4.2 Fill-rate Analysis of Appointment Requests Over Time

Since the daily appointment requests for a particular specialty is a linear combination of

the independent requests from the referring specialties for every class, we can analyze each

set of request and their relation to the overall requests. The expected appointment requests

from different specialties and classes as a fraction of the total appointment requests over time

is somewhat analogous to the order fill-rate concept in supply chain. Since some specialties

will have very small number of referrals as compared to others, we can examine the fraction
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Figure 3.4: Plot shows MRP parameters sampled for five specialties. The nodes of the
graph represent the specialty and the edges show the transition probability expressed as
percentage along with the mean time-interval between specialty visits. Each column in
the figure describes a different patient class. Derived from the Medical Expenditure Panel
Survey.
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of the appointment requests coming from each specialty over time, by normalizing the said

requests. For the sake of depth of analysis, we shall focus on one specialty—Cardiology—to

examine details.

Figure 3.5 shows the pattern of appointment requests coming from a specialty network for

a homogeneous panel. The appointment requests from each specialty referral are normalized

to reach 1 on the day of the appointment. The plot marks the seventh day before the

appointment as a vertical intercept. Here we expect 0.79 of all the appointment requests,

which implies that 21% of the appointment requests for Cardiology are made in the last seven

days. All specialties do not have referrals at the same rate. Patients coming from directly

from HOME, without any relevant specialty referrals have 92% of all of their appointment

requests made before seven days, while only 67% of all the referrals from Neurology have been

made in that period. This imbalance in slower rate of appointment requests from Neurology

may be look insignificant if the appointments referred from Neurology are a very small

fraction of all the Cardiology appointments. But for the patients referred from Neurology, a

third of all appointment requests to Cardiology are expected in the last seven days. The

problem here is that in case of a capacity limit, most of the appointment requests from HOME,

would have been allotted, while many of the appointment requests from Neurology will not

be allotted.

We can analyze the fill-rate further, by looking at the specialty referrals based on the

comorbidity count from fig. 3.6. The patients with different comorbidity counts being

referred from OB/GYN to Cardiology have a wide range in the fraction of appointment

requests made before seven days. The patients in class A and class B have 13% and 19%

of the expected appointment requests in the last seven days respectively, while for class C

35% of the appointment requests are expected in the same period. Similarly, let us look at

referrals from Orthopedics. Class A and Class B have 21% and 17% of the appointment

requests will be made in the last seven days during which 30% of appointment requests for

class C will be made. The referrals from Neurology for Class A are expected to have 48% of

appointment requests in the last seven days. This is higher than the class C (36% pending)

and class B (28% pending). This particular specialty referral shows that it is possible for
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Figure 3.5: The plot shows the normalized appointment requests for Cardiology from patients
coming from different specialties by weekdays before the appointment for a homogeneous
population. The requests are made from different incoming specialties of which some are
highlighted by color, including HOME. We can see the fraction of requests which have been
completed by some incoming specialties is much lower than others.

the patients with no or low comorbidity count to still make appointment requests at a very

short notice.

We take a step back again at the big picture to see the pending appointment requests for

Cardiology only by the comorbidity count in fig. 3.7. The class A and class B patients will

have only 15% and 17% of their appointment requests in the last seven days during which

class C will have 23% of their appointment requests. The implication is that despite being a

10% of the population, the class C patients which have comorbidity count of 4+ will have

most of their requests at shorter notice compared to patients in class A & B. If the capacity

is filled up by class A & B patients, then class C patients will face more delay leading to

inequity in access to healthcare.

We can see the other specialties in table 3.3. The first three columns show the fraction

of expected appointment requests in the last seven days for normalized by each specialty for
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Figure 3.6: The normalized appointment requests for Cardiology by weekdays before the
appointment is shown. The appointment requests are split by various incoming specialties
and the morbidity class. The highlighted specialties show how significant the differences in
fraction of requests completed.
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Figure 3.7: The normalized appointment requests for Cardiology by weekdays before the
appointment is shown. The appointment requests are split by various classes, for all incoming
specialties grouped together. We can see how the patients in class C which have most number
of morbidities have lower fraction of requests made 7 days before the appointment. This
implies a larger fraction of the appointment requests will be done within 7 days of the
appointment than for patients with lower number of car.
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that class. Each column is calculated using below expression with 𝑡 = 7 days:

1 −
∑︀

𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗

(
∑︀

𝑖
𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗)

(
∑︀

𝑘

∑︀
𝑙
𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙) (

∑︀
𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙)

= 1 −
∑︀

𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗

.

The column with heading “Overall” is calculated with 𝑡 = 7 days using:

∑︁
𝑐

𝑑𝑐

(︃
1 −

∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙

)︃

The last three columns show the overall fraction of appointment requests expected in the

last seven days for each specialty when split by the different classes. Each of these columns

is calculated using:

𝑑𝑐

(︃
1 −

∑︀
𝑖 𝑣𝑐𝑖𝑝𝑐𝑖𝑗𝜏𝑐𝑖𝑗𝑒−𝑡/𝜏𝑐𝑖𝑗∑︀

𝑘

∑︀
𝑙 𝑣𝑐𝑘𝑝𝑐𝑘𝑙𝜏𝑐𝑘𝑙

)︃
One example is for OB/GYN. Class C patients have 22.8% of their appointment requests

in the last seven days as compared to class A and B. But they will have only 0.6% of

appointment requests of all the OB/GYN appointment requests.

3.4.3 Appointment distribution and effect of scheduling heuristics

Using the simulations, we determine the daily number of appointments requested for

each specialty, using the no-flexibility parameter as shown in fig. 3.8. We remove the first

500 days and last 500 days to ensure steady state. The number of daily appointments

per 100,000 individuals represents aggregations. We are not reflecting on the number of

physicians since each specialty will have a different number of mean appointments per day.

If we assume the number of appointments per physician, we will have the lower bound of

the physicians needed, as the variability in appointment requests needs to be considered.

This is why we retain the capacity as the number of daily appointments.

We can again consider Cardiology for discussion. The mean of the daily appointments is

26.44 and eightieth percentile is at 31 per 100,000 individuals. This indicates that 80% of

all daily visits can be fulfilled by having a daily appointment capacity of 31. The coefficient

of variation is 21.1%, Similarly for Neurology, the mean of the daily appointments required
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Normalized for the Requests in last seven Split by
Specialty-Class days of appointment Specialty

A B C Specialty Overall = A + B + C

0.148 0.167 0.232 Cardiology 0.205 0.018 0.046 0.141
0.105 0.170 0.259 Dermatology 0.145 0.063 0.044 0.038
0.150 0.205 0.295 Gastroenterology 0.193 0.077 0.063 0.053
0.141 0.225 0.287 General Surgery 0.193 0.073 0.062 0.058
0.028 0.051 0.079 Home 0.032 0.023 0.006 0.003
0.200 0.287 0.339 Immunology 0.238 0.128 0.074 0.036
0.176 0.336 0.414 Nephrology 0.359 0.021 0.116 0.222
0.155 0.214 0.297 Neurology 0.205 0.071 0.070 0.064
0.126 0.167 0.228 OB/GYN 0.134 0.104 0.024 0.006
0.241 0.274 0.364 Oncology 0.299 0.058 0.107 0.134
0.088 0.162 0.248 Ophthalmology 0.134 0.050 0.042 0.042
0.144 0.222 0.295 Orthopedics 0.195 0.075 0.065 0.055
0.147 0.230 0.318 Other Dr Specialty 0.205 0.076 0.063 0.066
0.169 0.238 0.291 Otorhinolaryngology 0.202 0.106 0.056 0.040
0.078 0.117 0.174 Primary Care 0.098 0.051 0.025 0.022
0.202 0.259 0.322 Psychiatry 0.232 0.121 0.076 0.035
0.127 0.209 0.274 Urology 0.195 0.052 0.065 0.078

Table 3.3: The first three columns show the fraction of all appointment requests as expected
within seven days before the appointment by class. We can see the trend in all specialties
where the class with most number of comorbidity also has the highest fraction of appointment
requests made within last seven days. In these seven days before the appointment, the
patients with higher comorbidity count will request disproportionately more visits than
other classes. The last three columns show the fraction of the requests to the specialty that
are expected from each of the three classes within seven days before the appointment.

is at 14.94, while the eightieth percentile is at 18 per 100,000 individuals. The coefficient of

variation is 25%.

Higher variation results in some days being idle, while other days, there are appointment

requests.

To reduce the fluctuations in the appointments allotted, we look at the results when an

appointment scheduling heuristic is applied, as seen in fig. 3.9. For Cardiology, we see the

mean has reduced to 25.39 appointments and the eightieth percentile is at 28 appointments

per day. The coefficient of variation is 12.9%. Similarly, for Neurology, we see the mean of

the daily appointments is 14.48 and the eightieth percentile is at 16 appointments per day.
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Figure 3.8: Distribution of daily appointment requests and allocation for nationally repre-
sentative population of 100,000 individuals in a specialty network.
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Figure 3.9: Comparison of daily appointment requests and allocation for nationally repre-
sentative population of 100,000 individuals in a specialty network with the “First Minimum”
scheduling heuristic applied.

The coefficient of variation is 15.3%. The reduction in coefficient of variation is nearly 10

percentage points in both cases.

3.5 Conclusion

We are able to analyze the behavior of the entire network of specialty providers simulta-

neously instead of focusing on a specific specialty. This can help for planning regional health

systems at a more granular level than aggregating annual demand.

Our data-driven construction of an MRP ensures that it is nationally representative.

We can apply this MRP to regional populations when we don’t have accurate estimates

of patient visits for such regions. Additionally, we can redefine the states of the MRP to
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focus on certain specialties that require detailed analysis, while grouping together other

specialties. We can also reshape the patient classes to focus on a subgroup of patients

relative to everyone else, to better analyze their needs.

Instead of looking at the average patient, we use heterogeneous models to ensure that the

patients with the most healthcare needs, yet extremely low in proportion of the population,

are not overlooked.

The use of MRP for modeling outpatient sequences of visits to specialty network captures

both—time-interval between visits and transitions to other specialties including the specialty

already visited. We get additional insight in the referral patterns, which can determine

how many patients from different specialties and different classes will make requests for

appointment at short notice. This insight can be used for deciding on overtime or reservations

to accommodate the patients with most healthcare needs. While our MRP model only

considers requests, an appointment scheduling model can use the expected arrival patterns

to improve allocation. It can help medical providers to predict and plan their overtime in

advance to manage variations. Using heuristics in appointment scheduling, we show that

variation in demand can be leveled with the help of relatively healthy patients with longer

appointment lead-times. Our simulation follows the patient-level visits, and is flexible to

add additional constraints including appointment cancellations, no-shows, urgent visits. The

simulation also allows the distribution of the lead time for appointment to be arbitrary if

needed.

This approach of modeling will also be useful for specialty referral decisions. One specialty

referring to another specialty notices their patients will need more last minute appointments

that others, they can request the specialty to have some kind of reservation or priority access

for such referrals.

Finally, we feel this model can give planners the big-picture view for all specialties while

highlighting the needs of all patient classes.
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CHAPTER 4

CONCLUSION

4.1 Summary of work and findings

In this dissertation, we have focused on models for appointment scheduling in primary

care and specialty networks. Specifically, we track appointment seeking behavior of individual

patients in our models using stochastic processes with unique features that have not been

considered in the literature. We also provide insights on the allocation of slots and capacity

needs that can satisfactorily address appointment needs. Our models are tested with data

extracted from a nationally representative surveys.

Patient heterogeneity is a key feature in our models. We have used techniques to

stratify the patient population based on their healthcare needs. Market research experts

examine customers’ and consumers’ needs by market segmentation. This segmentation helps

both consumers and providers work with product and service offerings tailored to their

specific needs. While such a similar segmentation based approach may informally exist in

appointment scheduling, we have been able to highlight the need of analyzing appointment

scheduling by looking at different patient subgroups rather than examining the average

patient. Models that use the average patient are more analytically tractable, yet they mask

important differences between patient subgroups that become more evident in our analysis

in both the primary and specialty care setting. In both these settings, we have traced these

differences in access for patient subgroups to the appointment lead time.

In chapter 1, we have developed a model for the appointment scheduling in primary care

for a patient panel that has recurring appointments. We were able to provide analysis on two

fronts: (i) near-optimal heuristics for allocating appointments based on patients’ flexibility,

and (ii) inequity in delay experienced by patients having more healthcare needs. We have

shown that using the “First Minimum” or the “Last Minimum” heuristics for appointment

scheduling results in reduced variance of daily appointments allotted and is closer to the
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optimal appointment schedule. We have also shown that the appointment delay experienced

by primary care patients with more healthcare needs is much higher than patients with lower

healthcare need. This delay can be reduced by introducing reservations for critical patient

subgroups at the expense of increase in delay for other less critical patient subgroups.

In chapter 2, we have modeled the primary care appointment request and allocation

as a discrete time Markov chain. We have derived the expression for the expected delay

faced by patient subgroups based on their probability of appointment request. Although we

cannot prove mathematically that higher probability of visit results in higher delay because

of intractability, we have been able to demonstrate it numerically.

In chapter 3, we have extended our appointment scheduling from a patient panel for

primary care to a population that uses a specialty network of outpatient providers. We

have extracted the Markov Renewal Process (MRP) parameters for outpatient specialty

referrals for various patient subgroups from longitudinal and nationally representative patient

level data. Using the limiting distribution of the MRP, we have used a novel method to

derive specialty provider’s fill-rate of appointment requests by lead-time for all the referring

specialties and patient subgroups. We have shown that the patient subgroups that need most

access to healthcare also require more appointments at a shorter notice than other patient

subgroups. Using simulation, we have determined the distribution of daily appointment

requests for all the specialties for a nationally representative population of 100,000 people.

This distribution gives an estimate of the number of appointments to be serviced. It implies

a lower bound of the appointment capacity required for every specialty. We have used the

“First Minimum” heuristics for allocation based on patient flexibility to further reduce the

variance in the daily appointment allocations.

4.2 Discussions & Future Work

The future work possible from here can be looked at from three aspects (i) empirical

data analysis, (ii) clinical and outcome based research, and (iii) optimal policy analysis.

The effect of delay is well known: delay in access to primary care frequently leads to

urgent care or unplanned emergency room visits (Cheung et al., 2012) and access within

seven days after hospital discharge reduces the rate of readmission (Wiest, Yang, Wilson,
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& Dravid, 2019). Since we now have mathematical evidence of the inequity in access to

healthcare faced by patients with more healthcare needs, we should explore the empirical

evidence for the differences in delay.

To improve the typical appointment scheduling process for primary care and outpatient

specialty providers, we need to collect and analyze data related to every aspect of the

scheduling process. This involves recording patient profile, their preferences for appointment

request, the discussions and negotiations that occur and the final appointment allocations.

This should also involve data related to appointment cancellations, rescheduling, no-shows

and future appointments. Although there are many surveys and studies analyzing patient

no-shows for primary care and for outpatient specialty provider visits, there is limited

knowledge on the health outcome or fallout from no-shows, cancellations and delays.

In our appointment scheduling heuristics we expect the daily workload leveling to help

reduce staff overtime and physician burnout. The distribution of the appointments allotted

still leaves room to explore newsvendor models for the optimal balance between overtime

and idle-time. The optimal online appointment allocation policy can be explored using

Markov decision processes.

Specialty providers can use segmented fill-rates for appointment requests for capacity

planning for their referring specialties. As an example, if an ophthalmologist visit is frequently

recommended to patients with diabetes mellitus, the ophthalmologist can make arrangements

with most frequently referring specialty providers to make such visits easy.

While we have analyzed the outpatient specialty network, we can additionally add

emergency visits and inpatient visits to have integrated analysis for public health planners.

We can further incorporate the population’s progression by age and risks to make the analysis

more complete, at the cost of computational complexity.

The Markov renewal process may be an under-utilized tool in the Operations Research

practitioner’s toolkit. We can use it further for modeling disease progression, machine

breakdown and maintenance, spare part usage, among other things.

Thus, we conclude this dissertation with the hope that our contributions may lead to

improvement in appointment scheduling and capacity planning by considering the diversity

in patient needs and the alignment of physician capacity to such needs.
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