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ABSTRACT

SINGULAR INTEGRATION BY INTERPOLATION FOR 
INTEGRAL EQUATIONS

MAY 2023

IOANNIS G. KYRIAKOU

B.Sc., DEMOCRITUS UNIVERSITY OF THRACE, XANTHI, GREECE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marinos N. Vouvakis

Maxwell’s equations and the laws of Electromagnetics (EM) govern a plethora of 

electrical, optical phenomena with applications on wireless, cellular, communications, 

medical and computer hardware technologies to name a few. A major contributor to 

the technological progress in these areas has been due to the development of simulation 

and design tools that enable engineers and scientists to model, analyze and predict 

the EM interactions in their systems of interest. At the core of such tools is the field 

of Computational Electromagnetics (CEM), which studies the solution of Maxwell’s 

equations with the aid of computers. The advances in these applications technologies, 

in return, demand increasingly more efficient and accurate CEM methods.

Among the many CEM methodologies that are currently in broad use, the Bound-ary 

Element Method (BEM) or surface Method of Moments (MoM), is perhaps the
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most popular in solving electrically large or electrically small multi-layered struc-

tures. In BEM, the surfaces of conductors and dielectrics are discretized to triangular

or quadrilateral elements and the equivalent currents on them are convolved with

the appropriate Green’s function at all observations on the mesh to produce a fully

populated impedance matrix to be solved with an appropriate excitation. The relia-

bility, accuracy and speed of BEM, among others, critically depends on the method

used to perform the singular four-dimensional convolution integrals between source

and observation surface currents through a Green’s function, that exhibits a singu-

larity when observation and source elements touch or overlap. Large literature has

been devoted in addressing this important issue, and methods involving using sin-

gularity subtraction, cancellation or even full 4D integral evaluations. Each of these

approaches offer certain advantages, but they tend to require thousands of (often

complicated) function evaluations for a single impedance matrix singular integration,

it is noted that a typical problem may involve tens or hundreds of millions of such

singular integrations.

In this dissertation, an unconventional approach of calculating all weakly singular

and near weakly singular integrals, encountered in the BEM solution of the Elec-

tric Field Integral Equation (EFIE), as well as near singular integrals encountered in

the BEM solution of the Magnetic Field Integral Equation (MFIE) in flat triangular

meshes, is presented. Instead of specialized integration rules such as singularity sub-

traction or cancellation, universal look-up-tables and multi-dimensional interpolation

are used.

Firstly, frequency independent integral expressions, equivalent to the original

EFIE-BEM, MFIE-BEM element matrix expressions are derived, in order to facilitate

the construction of said universal look-up-tables of integrals. The domain of these

functions is discretized by hp refinement, i.e., the size, h and approximation order, p,

of the interpolation elements of the entire interpolation domain can be varied inde-
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pendently. Because of the high-dimensional nature of the interpolation domain, from

three dimensional to six dimensional, the interpolation over each element is performed

with either sparse grids or low-rank tensor train approximations. The integrals are

pre-computed into the tables using a state-of-the-art singularity subtraction method

at maximum accuracy. Consequently, during run-time, these tables are loaded and

any arbitrary singular integral is recovered by multi-dimensional interpolation.

The method is compared to a state-of-the-art singularity subtraction technique

for the lowest order Rao-Wilton-Glisson (RWG) basis functions in various PEC flat

triangular meshes. For EFIE common triangle, weakly singular, in accuracy, while

offering over 150× speed-ups. Similarly for EFIE common edge, near weakly singular,

interactions it shows about 50× speed-ups but at a somewhat lower, yet acceptable,

accuracy. The tensor decomposition approach improves the accuracy to the level of

the state-of-the-art and offers about 20× speed-ups, while it also has a controllable

accuracy and speed. Lastly, for MFIE common edge, near hyper singular, interactions

accuracy is improved by 1 − 2 decimal digits, while offering 20× speed-ups. For a

typical BEM run using the single level fast multiple method (FMM) accelerator, the

end-to-end set-up time speed improvement with the proposed approach is 15 − 20%.
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CHAPTER 1

INTRODUCTION

1.1 Background
This research in this dissertation broadly falls under the discipline of compu-

tational modeling of full-wave electromagnetic interactions in arbitrary (shape and

topology) structures embedded in an unbounded homogeneous medium such as free

space. Such computational electromagnetics (CEM) modeling tools [1–3] aim to rig-

orously solve, via numerical methods, some form of Maxwell equations [4,5] and their

associated boundary conditions [5–7] to produce rather accurate approximations of

various electrical or/and optical quantities or properties. Such tools are generally used

in the design and virtual prototyping of many devices, components sub-systems and

systems in the broader areas of integrated circuits and packaging [8], signal and power

integrity [8], antennas and propagation [9], microwave [5,6], millimeter wave [10,11],

terahertz [12] or even photonic [13] regimes.

Many effective and reliable CEM methodologies have been proposed over the

years, that can be loosely grouped as: differential equations (DE) methods [14, 15]

and integral equation (IE) methods [3, 16]. In the former, the differential (or inte-

gral) form of Maxwell equations is numerically solved for the electric or/and mag-

netic vector field responses, subject to the appropriate EM boundary conditions and

some excitation. Whereas in the latter case, an integral equation (equation having

the unknown quantity in the integrand) of the vector current or charge density is

first analytically derived from Maxwell’s equations through the use of an appropri-

ate Green’s function [3], and then it is discretized and numerically solved, subject
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to some known excitation. DE methods are better suited for intricate and heteroge-

neous structures that produce somewhat spatially localized/confined field responses,

whereas IE methods tend to excel at structures that produce fields that propagate

outwards to infinity, such as scattering shown in 1.1 and radiation, example shown

in 1.2. The most prominent DE CEM methods widely used in commercial tools are

the finite element method (FEM) [14] and its variants [17, 18] and the finite differ-

ence time-domain (FDTD) [15] and its variants [19,20]. Among IE methods, surface

integral equations [21] based on the electric field integral equation (EFIE) [3,21] and

combined field integral equation (CFIE) [3, 21] for perfect electric conducting struc-

tures, and the Poggio, Miller, Chang, Harrington, Wu and Tsai (PMCHWT) [22–24]

formulation for dielectric structures, and their variants, are the most popular methods

and have been used in commercial tools.

Surface IE (SIE) methods employ unknowns only on surfaces (interfaces between

materials and/or background medium) of three-dimensional structures, essentially

achieving a form of dimension reduction, that leads to significantly less unknowns

than DE methods. However, this benefit comes with intricate inner workings that

are present in all (SIE) methods. Those are: (a) different SIE formulations are neces-

sary depending on the type of interface, i.e. PEC to background medium, dielectric

to dielectric, dielectric to background medium, etc. (b) Special treatments are nec-

essary to solve for topologically non-simple structures e.g., non-manifold structures,

non-simply connected objects, etc. (c) Special care must be taken in evaluating the

singular and oscillatory integrals encountered in the numerical solution of SIEs. All

IE methods for EM, particularly at moderate and high frequencies require an accu-

rate integration of oscillatory integrals something that is usually the topic of fast IE

methods [25]. This work focuses on the singular aspect of those integrations, that

are particularly critical for the accuracy and efficiency of SIEs, where the singularity
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Figure 1.1. The electromagnetic scattering problem illustration a) Original problem
b) External equivalent problem proposing random sources within the scatterer’s re-
gion c) Internal equivalent problem featuring random sources in a controlled domain
outside the scatterer’s region, [26]

Figure 1.2. A planar ultra-wideband modular antenna (PUMA) array, [27]

is stronger than that encountered in volume IEs (VIE), due to the dimensionality

reduction of the integration domain.

1.2 Problem Statement
The aim of this dissertation research is to develop methodologies and algorithms

for the fast, error-controllable, and reliable computation of large collections of singular

interactions encountered in the numerical solution of discrete integral equations (IE)

3



[21], through the Boundary Element Method (BEM) [28], aka Method of Moments

(MoM) [3], or other similar discretization/solution techniques.

All discrete IE methods explicitly or implicitly form a dense matrix, that in turn

is solved with a numerical linear algebra solution method to produce a solution vector

that corresponds to the unknown source density distribution, e.g. current or charge

density, on (or in) the physical structure to be investigated. For most EM discrete IE

problems, each matrix entry represents the pair-wise interaction between two elemen-

tary vector current densities situated at two distinct regions on the physical structure.

These elementary vector current densities, termed vector basis functions, have finite

support, i.e., the current density is non-zero only in a relatively small region of the

physical structure. The support regions in most cases are defined by a few elements

in a mesh, where a mesh is an approximate discrete covering of the physical struc-

ture and is used to define those basis function supports. In most cases, IE methods

rely on simplicial surface meshes, where flat triangular patches of arbitrary shape

are used. Each of these pair-wise current density interactions entails in computing a

few two-dimensional convolutions between the vectorial basis function pair through

a global and singular kernel that corresponds to the Green’s function (point source

response) [3,16] of the underlying integral formulation. The focus of this work will be

on the homogeneous unbounded medium Helmholtz equation Green’s function and

its derivative, as they arise in most widely used IE formulations in EM radiation and

scattering.

Most of those pair-wise current density interactions can be computed in a relatively

straightforward manner, using numerical cubatures [29, 30] of Gaussian type defined

on triangles [30]. In practice, because these evaluations are far too many, O(N2),

where N is the number of basis functions, advanced grouping-based approaches em-

ploy approximate representations of the Green’s function to speed-up evaluations and

reduce complexity. The most popular approaches of this kind are the fast multipole

4



method (FMM) [25, 31, 32] that leads to time-complexity O(N1.5) and its multilevel

counterpart, the multilevel FMM (MLFMM) [33–35] with O(N logN) complexity.

Despite the presence of the Green’s function singularity (typically one over distance

or distance square), these methods are possible precisely because the interaction in-

tegral is regular, i.e. the basis functions are non-singular, and their regions of support

is not overlapping, to trigger the Green’s function singularity. Nevertheless, those

interactions alone are not sufficient to produce the correct result of discrete IE. In

fact, those non-singular interactions alone are not sufficient to produce a unique solu-

tion. The remaining interactions, those involving singular convolution-type integrals

are far fewer, but ever important. Those are the interactions that correspond to ba-

sis function pairs that have overlapping or/and touching support regions, and their

computation is the subject of this dissertation.

4D evaluation  
v4D evaluation w/o transform  

291

N
o.

 S
ig

ni
fic

an
t D

ig
its

Total No. of Sample Points

4D evaluation  
v4D evaluation w/o transform  

2000 4000 6000 8000 10000 12000

3

2

1

4

5

6

7
Accuracy Comparison, Self Term, Vector PotentialAccuracy Comparison, Self Term, Vector Potential

N
o.

 S
ig

ni
fic

an
t D

ig
its

 (A
cc

ur
ac

y)

No. of Samples (Computational Cost)
Figure 1.3. Accuracy vs number of samples for the integration of a self term vector
potential integral via various methods, [36].

5



1.3 Importance and Broader Impacts
As will be outlined in this section, the problem of numerically evaluating a large

collection of singular interactions encountered in discrete integral equation (IE) so-

lution methods directly affects for the efficiency, accuracy, and reliability of those

methods. At the same time, it has broad impacts across various methods in CEM

and other computational science disciplines.

Although the total number of singular interactions is O(N), which is far smaller

than the non-singular ones (near-field and far-field), the computation/approximation

of a single singular interaction is vastly more time-consuming that a non-singular one.

The singular nature of the integrand necessitates advanced numerical treatments,

outlined in the next section, that require large numbers of floating-point operations

(FLOP) per integral evaluation. A case in point is the Figure 1.3 adopted from

[36], that shows the total number of function evaluations required to reach a certain

degree of accuracy for a single overlapping singular integral (a few such integrals are

necessary to form a singular interaction). To give a perspective, a typical non-singular

evaluation requires less than 50 function evaluations for 4 − 5 digits of accuracy,

whereas the state-of-the-art method of [36] in Figure 1.3 for a singular integral case,

requires upwards of 1000. The situation is further exacerbated by the fact that each

of those 1000 function evaluation requires a significantly larger number of FLOPs

than that of the non-singular case.

Despite that fact, in full MoM the O(N2) complexity of the non-singular interac-

tions ends up dominating the computational time in most problems. However, the

evaluation of singular interactions can become an important chunk of the computation

for fast integral equation methods such as MLFMM. Because of their many benefits,

those methods have become the de-facto computational engine for IE-based commer-

cial and academic CEM tools, such as Dassault Systèmes CST Studio Suite, Altair

Engineering FEKO, Cadence AWR Axiem or Keysight Momentum. For example,

6



the MLFMM reduces the set-up time complexity of far (non-singular) interactions to

O(N logN), and because the O(N) singular terms have significantly higher cost per

term, they can become the dominant set-up time bottleneck.

Speed assessments of discrete IE methods are highly dependent on the degree of

requested accuracy, and the degree of simulation reliability. The higher the requested

accuracy and the more trustworthy a simulation must be, the longer the run time be-

comes. However, the degree of overall accuracy and reliability is most closely linked

to the singular interaction evaluation precision [36–46]. Singular interactions produce

significantly larger (in magnitude) matrix entries than non-singular ones, thus even

small evaluation relative errors can produce large absolute errors for these terms.

Moreover, because singular interactions, among others, reside on the diagonal entries

of the matrix they tend to dominate the matrix condition number and solution accu-

racy. In fact, any matrix arising from the discretization of fist-kind Fredholm IE [47]

would be singular (spectral condition number of infinity) if only those singular inter-

actions were omitted. Same is true for second kind Fredholm IEs [48], however for

them the principal value [49] of those singular interactions can be evaluated analyt-

ically in a straightforward manner. It must be highlighted that sensitivity to errors

in the evaluation of singular interactions is most pronounced on near-field simulation

quantities such as current density, near-fields, input reactance, resonant frequencies,

etc. Far-field quantities such as radiation pattern of radar cross-section are relatively

stable to those errors and perturbations.

This proposed methodology can be used to enhance the performance a rather

broad range of discrete IE methods in diverse scientific computing disciplines. How-

ever, it will only be presented in the context of high-frequency frequency-domain EM

modeling of impenetrable perfect electric conducting (PEC) structures discretized

by faceted, simplicial (triangular) meshes. The methodology likely would be effec-

tive in the evaluation of large collections of singular interactions of any discrete IE
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formulation that involves convolutions with translation-invariant kernels, when their

evaluation by integration is slow, but the integral and domains can be parametrized

with a reasonably small number of variables. The range of applicability spans, but is

not limited to, the evaluation of singular interactions in discrete IEs for:

• Different modeling domains, such as time-domain IEs [50] and frequency domain

IEs [3, 16]

• Different frequency regimes, i.e., high-frequency [3], static [51] and quasi-static

[52].

• Different types of IEs, such as surface IEs (SIE) [21], volume IEs (VIE) [53]

• Different kinds of IE, such as the Fredholm IE of first kind [47], including the

electric field integral equation (EFIE) [3,16,21] for impenetrable (PEC) objects

and the PMCHWT [22–24] penetrable objects, as well as second kind IEs [48]

such as the magnetic field IE (MFIE) [3, 21] for PEC objects and the Muller

formulation for penetrable objects, and combinations thereof, e.g., the combined

field IE (CFIE) [3, 21, 54].

• Vector and scalar IEs and their combinations such as current-charge formula-

tions [55, 56].

• Different discretization schemes such as BEM or MoM [3, 16], collocation [57],

and Nystrom [58].

• Different types and orders of basis functions, including composite ones such

as loop-charge [59] or loop-star [56]. However, the method is best suitable for

the lowest order simplicial meshes functions, as opposed to quadrilateral and

higher-order basis functions, and partition of unity or Generalized BEM [60,61].
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• Different Green’s functions such as layered media [62], periodic [63], cavity and

WG [64] Green’s functions. It is expected that performance would depend on

the parametrization, thus Green’s functions for complicated configurations may

inhibit performance.

• Hybrid formulations between differential equation methods and IE methods

such as finite element boundary integral FEBI [65] or finite differences and

integral equations [66].

• Different disciplines where boundary value problems can be cast in form of IEs,

such as mechanics, acoustics, quantum mechanics, etc.

As it will become clear in the following sections, the proposed method is not

strictly speaking an singular integration technique. It can be considered as an un-

supervised machine learning [67] methodology, that after completing an one-time

training, it attempts to infer the singular integral results, without ever resorting to

any integration but rather multidimensional interpolation. As such, the methodology

would be applicable to any case where large collections of slow-to-evaluate integrals

are necessary, and that could be well outside the area of boundary value problems and

IEs. Example could include integral transforms, statistical inference, data-science, fi-

nance, etc.

1.4 Literature Review
Despite the broad reach of the proposed approach, this research will focus on

the task of fast, error-controllable, and reliable computation of large collections of

singular interactions encountered in the numerical solution of discrete IEs by the

BEM or MoM. In this context, several methods have been proposed and widely used

in commercial tools some of which are outlined in the following paragraphs.
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1.4.1 Singularity Subtraction

The singularity subtraction/extraction technique is based on the power series rep-

resentation of the Green’s function and decomposition of the inner double integrals

into two parts, [68]. The first part involves the even, non-smooth, singular terms

of the power series representation, which are to be evaluated analytically. Hence,

separating the singular terms of the first part from the second part, the latter can

be made sufficiently smooth for Gaussian quadrature evaluation. Finally, the double

outer integrals are also computed by numerical integration. This method is generally

accurate, but poses a challenge when higher order basis functions are employed. To

this end, in [37] the authors present a method of singularity subtraction, where the

basis function and their surface divergences can be expressed as a linear combina-

tion of the polynomial shape functions on a triangle. In [69] the authors develop an

accurate singularity subtraction technique with a focus on MFIE, while in [70] the

authors perform an additional singularity extraction on the outer integral as well.

1.4.2 Singularity Cancellation

In the singularity cancellation technique the integral is treated by use of an op-

timal change of variables, such that all derivatives of the Green’s function expo-

nentially tend to zero for large values, [44, 45] and therefore can be compute via

a numerical scheme. Cancellation methods are more recent and unlike subtraction

methods are generally independent of basis function kind or order, integration do-

main shape or curvature and can achieve up to machine precision accuracy; although

less efficient for low to medium accuracy levels, [71]. In [46] the authors present an

extension of singularity cancellation, the direct evaluation method (DEM); which by

a series of coordinate transformations and integration reordering, reduces the quadru-

ple hyper-singular integrals to smooth double integrals, to be evaluated by numerical

quadratures; ultimately leading to improved efficiency and up to machine precision
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accuracy. The method was expanded and generalized to the fully numerical methods

(DIRECTFN) [72] to handle coincident, edge adjacent and vertex adjacent singular

integrals on planar and curvilinear elements. In [39] the author presents a cancella-

tion method for the near singular integrals of the gradient of the Green’s functions

(MFIE) using higher order basis functions, over curvilinear triangular elements with

controllable accuracy, suitable for even highly skewed triangles. In [73] the author’s

expand on the Taylor-Duffy method, which considers a specific kernel and linear poly-

nomial and reduces the singular four dimensional integral to a non-singular integral

of smaller dimension.

1.4.3 Full 4D Evaluation

The full 4D integral evaluation is based on the application of the divergence theo-

rem on both the inner and the outer double integrals, followed by variable transforms

to smoothen the integrands, significantly improving the accuracy as well as the gen-

erality of the method with regards to kernels, basis, testing functions and quality of

triangle shape. The method is robust and can be readily used with Gauss-Legendre or

double exponential quadrature rules for reasonable to arbitrarily high precision, [43].

The approach was then extended beyond well-shaped and touching triangles in [36].

In [71] the authors briefly describe a trend in singular integration akin to [36,43], but

state that it is still underdeveloped; thus they propose a singularity subtraction and

singularity cancellation hybrid.

1.5 Research Opportunity
Despite the individual merits and drawbacks of each of the outlined methods,

the general trend is that singular integrations are getting faster but more involved.

After many years of research, perhaps the task of performing a singular interaction

integration in MoM is reaching the point of diminishing returns. The fundamental
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premise of this research is that to extract farther computational efficiencies in this

problem, one must recast the singular integration problem at a higher, coarser-gain

computational level. That is, instead of seeking to improve the evaluation efficiency

of a single integral, we should strive to improve the evaluation efficiency of a large

collection of integrals all together. Conceptually, this is akin to what MLFMM does,

i.e., instead of accelerating a single far-field interaction computation, computational

efficiencies are sought among grouped interactions.

1.6 Proposed Approach
Strictly speaking, the proposed method is not a singular integration technique of

the likes presented in section 1.4. It can be considered as an unsupervised machine

learning [67] methodology for evaluating collections of singular integrals. To the best

of the author’s knowledge, this is a first of its kind for this type of application.

The approach relies on two steps. The first step is the one-time training stage

that makes use of some of the conventional singular integration approaches outlined

in Section 1.4. The result of this stage is a universal library of moderate storage

footprint, that is to be used during the second step that takes place every time a

new MoM matrix setup is invoked (online stage). This universal library is frequency

independent and must be capable of capturing every possible singular interaction

arrangement, for flat triangles, and any background medium. There are a lot of

nuances the go into the generation of this library as will be described in the following

chapters, but the most important aspect is maintaining extremely high accuracy

and low storage footprint; speed of evaluation is not a major concern because the

library is generated only once (off-line stage). The key ingredient in the training

stage is to identify suitable high-dimensional parametrizations of the singular integral

interactions that are general and lead to a highly accurate, low footprint library. In

this work multiple libraries are generated to account for the various singular integral
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interactions encountered in EFIE, MFIE, CFIE and PMCHWT formulations. Those

are:

• EFIE common triangle interactions i.e., when source and receiver triangles co-

incide (fully overlap), and the Green’s function has one over distance behavior.

Strictly speaking, integrals in this interaction are weakly singular as the Ja-

cobian cancels out the singularity, however numerically even these interactions

can hinder efficiency and speed.

• EFIE common edge interactions i.e., when source and receiver triangles are

touching only along an edge, and the Green’s function has one over distance be-

havior. Again, this is a weakly singular integral that nonetheless is problematic

to evaluate numerically.

• MFIE common edge interactions i.e., when source and receiver triangles touch-

ing only along an edge, and the Green’s function has one over distance square

behavior.

During the online evaluation, any singular integral in the MoM matrix belonging

to one of these three categories is evaluated by interpolating the pre-evaluated interac-

tion integrals in the corresponding library. Advanced multidimensional interpolation

methods such as sparse grids [74–76], tensor Tucker decompositions [77,78] and tensor

train (TT) decompositions [78] are used to infer the values of any integral expediently

and accurately from the limited values stored in the universal library. In other words,

the singular integration problem is converted into a multidimensional interpolation

problem, justifying the name Singular Integration By Interpolation (SIBI). Due to

the relatively lower complexity of interpolation, as opposed to that of state-of-the-art

singularity subtraction, [37], especially in conjunction with the efficient aforemen-

tioned algorithms, the proposed approach was found to be orders of magnitude more

accurate and faster than said state-of-the-art in the cases presented herein.
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1.7 Contributions
The proposed approach offers an unconventional route towards the singular in-

tegration problem in integral equations. Consequently, it has contributed to the

problem in the following terms:

• The problem is recast from an integration problem into an interpolation prob-

lem. Consequently, it offers a new perspective/paradigm to the problem and

paves the way towards new methodologies. Namely resolving the-curse-dimensionality,

which as is discussed in section 4 and is also evident in 5, is the main issue of

the proposed method.

• The proposed approach does not replace, but rather can be paired with any

state-of-the-art method towards the library construction of the off-line stage.

In fact, our research showed that a library of integrals with a higher accuracy

positively affected the smoothness of the tabulated functions themselves across

the configuration domain. Hence, a machine precision level of accuracy library

would likely yield an impressive impact on the mesh performance of the proposed

approach.

• The method is general and reliable in terms of kernel, singularity, element shape

and quality, whereas most methods in the literature have a narrower application

spectrum and are specifically engineered towards that.

• The computation of singular interaction integrals is one of the most complex

algorithms to implement in software; an interpolation code on the other hand

favors simplicity. Although a singular integration engine is required for the

tabulation process (off-line stage) the code itself is not.

• The tables could be specifically engineered to particular applications for optimal

performance. For example in planar multilayer geometries, the subtended angle
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between elements is eliminated a a degree of freedom, which would alleviate the

curse-of-dimensionality improve the performance.

1.8 Thesis Outline
The remaining chapters of this thesis are organized as follows:

In chapter 2 the off-line stage is explained, in which said universal integral libraries

are built. Keep in mind that during the offline stage computation time is of lit-

tle importance; thus the integral calculation for the libraries is purposefully done

as accurately as possible, with no regards to computation time. Consequently, the

recovery of integrals of any arbitrarily shaped triangle pair during the online stage

is much faster than the state-of-the-art, [79]! The first part of the approach begins

with the parameterization of the geometry of the integration domain, i.e., the source

and receiver triangle pair; meaning the BEM element matrices integral expressions

are seen as functions of the wavenumber and the triangle pair, the latter of which is

consequently substituted with an equivalent series of angles and lengths. In the case

of EFIE, equivalent smoother integral expressions based on the scalar nodal shape

functions, as opposed to vectorial RWGs, are derived. The next step is the derivation

of frequency independent integral expressions for the BEM element matrices, which

facilitates the building of universal integral libraries. Following is the introduction

and study of the space of these functions, the “configuration” domain, which is trans-

formed from a 3D prism/ 6D hyper-prism (common triangle/edge case) to a 3D/

6D rectangle/hyper-rectangle, by means of a Duffy-like [80] transformation, in order

to enable high dimensional interpolation schemes, necessary for the common edge

case (6D interpolation). There is a different domain for the common triangle and

common edge case. Sampling the transformed domain, i.e., computing by use of a

state-of-the-art method said frequency independent expressions for various common

triangle, edge geometries creates a universal library of integrals and completes the
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off-line stage. In this work, a high accuracy (1662 quadrature points) third order

singularity subtraction rule is used, [37]. The second part, the online stage, is ex-

plained in chapter 3 and begins with the analysis of the sparse grid interpolation,

which involves the grid construction using Smolyak’s algorithm and the interpolation

utilizing hierarchical basis functions and the barycentric formula. The grid is actually

required to be constructed for the off-line stage as well, to indicate the locations of the

samples in the domain. Due to the higher dimensionality of the interpolation in the

common edge case the performance of the proposed approach deteriorates, therefore

an alternate implementation is sought out, [81]. Namely, the tensor decomposition

approach utilizes a higher order full tensor product grid rather than a sparse one to

increase accuracy and deploys a tensor decomposition to compensate for the loss of

computational speed, explained in chapter 4. In chapter 5 the proposed approach is

compared to the state-of-the-art technique, which was used for the off-line stage, in

terms of accuracy and efficiency (memory, computational cost). Results are presented

for the collection of singular interactions within the BEM matrix of PEC flat trian-

gular meshes as well as the Radar Cross Section (RCS) and surface currents given by

the BEM solution of a sphere scattering problem.
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CHAPTER 2

SINGULAR INTEGRATION BY INTERPOLATION

In this chapter the main principles of the proposed Singular Integration by Inter-

polation (SIBI) are explained. The BEM element matrix expressions for the electric

and magnetic field integral equations (EFIE, MFIE) are manipulated such that fre-

quency and material independent but geometrical parametric tabulation of the sin-

gular integrals is feasible. Namely, equivalent integral expressions are derived, that

are sufficiently smooth and are defined in an appropriate ’parametrization domain’

such that they be suitable for efficient high-dimensional interpolation,

2.1 BEM Element Matrix Definitions
The conventional integral expressions that lead to the assembly of the impedance

matrix element entries of the BEM for the Electric Field Integral Equation (EFIE)

and Magnetic Field Integral Equation (MFIE) in BEM (aka MoM) for perfect electric

conducting (PEC) structures embedded in unbounded and homogeneous background

media are [3, 82]:

Z (e) L
mn =

�
T

αααt
m(r) ·

�
T ′
αααn(r′) e

−jk|r−r′|

4π|r − r′|
dr′2dr2

− 1
k2

�
T

∇Γ ·αααt
m(r)

�
T ′
∇′

Γ ·αααn(r′) e
−jk|r−r′|

4π|r − r′|
dr′2dr2, m, n = 1, 2, 3 (2.1)

Z (e) K
mn = 1

2

�
T

αααt
m(r) · n̂nn×αααn(r)dr2

+
�

T

−
�

T ′
∇′ e

−jk|r−r′|

4π|r − r′|
·

(
αααt

m(r) ×αααn(r′)
)
dr′2dr2, m, n = 1, 2, 3 (2.2)
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where T and T ′ is a pair of observation and source flat elements (triangles in this

dissertation), r and r′ are the observation and source coordinates, αααt
m(r) and αααn(r′)

are the divergence conforming current test and trial vector basis function [82] (Rao-

Wilton-Glisson (RWG) in this disseratation), n̂nn the unit vector normal to the obser-

vation triangle surface and k the wavenumber. The Z(e)
mn in (2.1) and (2.2) signify that

these are the element matrices, i.e., interaction between a single source and observa-

tion pair, and are not fully assembled into the full impedance matrix as one matrix

entry would involve the summation of multiple such interactions doe to the fact that

each trial and test function is defined on two mesh elements (triangles). It is noted

that although (2.1) and (2.2) are presented in this dissertation in the context of EFIE

and MFIE for perfect electric conducting (PEC) structures, the same integral kernels

L and K and convolution integrals are present in IEs for dielectric structures e.g.

PMCHWT [22–24].

Because the fist term in (2.2) is not singular it is advisable to be integrated

separately either analytical or conventional Gauss quadratures. The second term of

(2.2) and is zero when the source and observation elements are the same (overlap)

and the elements/patches are flat, thus does pose a challenge. However, when the

source and observation elements touch at an edge or a node, and the triangles are not

coplanar, it leads to a near-singular integration that is particularly problematic. For

those cases we will only focus on this singular integral defined as:

Z (e) Kpv
mn =

�
T

−
�

T ′
∇′ e

−jk|r−r′|

4π|r − r′|
·

(
αααt

m(r) ×αααn(r′)
)
dr′2dr2 (2.3)

The aim of this dissertation is to numerically evaluate these integrals accurately,

reliably and efficiently for all the cases in a mesh when the source and observation

elements T and T’ are overlapping or touching at an edge.
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For the sake of brevity, evaluation of (2.1) and (2.2) will be presented only for RWG

basis functions as they are the most versitile and popular option. The various vector

conventions for the definition of RWG basis functions are shown in Fig. 2.1. Using

those vectors each RWG basis can be written in terms of the barycentric coordinate

ζ gradients as:

www0 = ζ1∇ζ2 − ζ2∇ζ1 (2.4)

www1 = ζ0∇ζ2 − ζ2∇ζ0 (2.5)

www2 = ζ0∇ζ1 − ζ1∇ζ0 (2.6)

∇ζj = ĥhhjℓj

2A = ĥhhj

hj

(2.7)

ααα0 = n̂nn×www0 = 1
2A (ζ1ℓℓℓ2 − ζ2ℓℓℓ1) (2.8)

ααα1 = n̂nn×www1 = 1
2A (ζ2ℓℓℓ0 − ζ0ℓℓℓ2) (2.9)

ααα2 = n̂nn×www2 = 1
2A (ζ0ℓℓℓ1 − ζ1ℓℓℓ0) (2.10)

where A is the triangle area, ζ the barycentric coordinates and ĥhh, ℓℓℓ are the height, edge

vectors of the triangle. It is noted that (2.5)-(2.7), are the tangentially continuous

’edge’ element used in finite elements and are related with RWGs thought the fist

part of equations (2.8)-(2.10).

2.1.1 Scalar Element Integral Terms

Although the proposed approach can be directly formulated using (2.1) and (2.3), it

was found that for the case of the L operator of the EFIE to express the singular

integral element matrix in terms of integrals over scalar basis functions (see appendix

A). These expressions were found to be smoother than their equivalent, vectorial

RWG ones and thus are desirable for the proposed method. In the case of EFIE the

BEM element matrix integrals in (2.1), can easily be expressed as integrals where

the basis functions are scalar rather than vectorial. These expressions were found
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n0

n1

n2x

Figure 2.1. Various vector quantities and orientations used for the definition of the
RWG basis functions in this dissertation.

to be smoother than their equivalent, vectorial RWG and thus are desirable for the

proposed method. Substituting the basis functions αααt,ααα and using ζ0 + ζ1 + ζ2 = 1

we get:

Z (e) L
mn = 1

4A2

2∑
p=0
p ̸=m

2∑
q=0
q ̸=n

cpqIpq − dmn

k2

2∑
p=0

2∑
q=0

Ipq

where cpq, dmn are constants dependent on the heights and lengths of the triangles

T, T ′, which are given in the Appendix and

Ipq =
�

T

ζp(r)
�

T ′
ζq(r′) e

−jk|r−r′|

4π|r − r′|
dr′2dr2 (2.11)

where ζp(r), ζq(r′) are the barycentric coordinates of the triangles T, T ′ respectively.

2.2 Integral Parametrization
The key difference of the proposed approach to conventional singular integration

approaches is that we seek to create a (behavioral) model of ZKpv in (2.3) and I in
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(2.11). That is we seek to create a function of ZKpv and I in terms of some geo-

metrical parameters that represent an element matrix interaction between source and

observation triangles. Because those integrals also involve the wavenumber (material

and frequency) they can be expressed in terms of k, T and T ′ as:

Ipq(k, T, T ′) =
�

T

ζp(r)
�

T ′
ζq(r′) e

−jk|r−r′|

4π|r − r′|
dr′2dr2 (2.12)

Z (e) Kpv
mn (k, T, T ′) =

�
T

−
�

T ′
∇′ e

−jk|r−r′|

4π|r − r′|
·

(
αααt

m(r) ×αααn(r′)
)
dr′2dr2 (2.13)

where T and T ′ are some parallelizations that represent geometry of the observa-

tion and source triangles, respectively. The proposed approach deals with two of

the most common and important of source-observation triangle interactions; when

the triangles coincide, termed common triangle interaction or share an edge, termed

common edge interaction. The geometries of these interactions are shown in Fig. 2.2.

It is noted that the third singular case, that of common vertex, is not considered

herein, primely because the parametrization has high dimension, and conventional

approaches, even carefully designed Gaussian quadrature, perform reasonably well.

The common triangle case in Fig. 2.2a the integral I can be parametrized as:

Ipq(k, T, T ′) ≡ Ipq(k, T ) ≡ Ipq(k, ℓ, ϕ1, ϕ2) (2.14)

where ell is the length of any triangle edge and ϕ1 and ϕ2 are the two angles

incident on that edge. The integrals in the common edge case (∂T ′ ∪ ∂T ̸= 0),

similarly can be parametrized in terms of the wavenumber k, the angle ϕ5 between

the common edge triangle pair, the length of the common edge ℓ and the four angles

formed by the common edge and the four other triangle edges denoted as ϕ1, ϕ2, ϕ3
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Figure 2.2. Geometry parametrization for the a) common triangle and b) common
edge singular cases.

and ϕ4, as shown in Fig. 2.2b. In the common edge case the parametrization is

written as:

Ipq(k, T, T ′) ≡ Ipq(k, ℓ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (2.15)

Z (e) Kpv
mn (k, T, T ′) ≡ Z (e) Kpv

mn (k, ℓ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (2.16)

for the EFIE and MFIE, respectively.

2.3 Wavenumber Independent Parametrization
The other key enabler to the proposed approach is the existence of a wavenumber

independent parametrization for the integrals in (2.12-2.13). Hence, the following

derivations assume non-dispersive media. Although the approach can be expanded

to such media as an extra parameter at the expense of an extra parametrization

dimension, it will not be covered in this dissertation. The frequency independent

integrals are derived below for the cases of EFIE common triangle, EFIE common

edge and MFIE common edge.
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2.3.1 EFIE common triangle

The key principle in this derivation is to transform all the quantities involved in (2.11)

in terms of angles, that is, lengths and areas must be expressed in electrical lengths

and electrial areas respectively. This can be achieved by applying the following change

of variables to the (2.12) :

x̃ = kx, ỹ = ky, z̃ = kz, ⇒ r̃ = kr, r̃′ = kr′ (2.17)

The integral can be rewritten as:

Ipq(k, ℓ, ϕ1, ϕ2) =
�

T̃

ζp(r̃)
�

T̃

ζq(r̃′)k e−j|r̃−r̃′|

4π|r̃ − r̃′|
1
k2dr̃

′2 1
k2dr̃

2

= k−3Ĩpq(ϕ0, ϕ1, ϕ2) (2.18)

where ϕ0 = kℓ is the electrical length of one of the edges of the scaled parametrized

common triangle T̃ , as shown in Fig. 2.3a; r̃, r̃′ are the observation and source

coordinates and ζp(r̃), ζq(r̃′) are the barycentric coordinates of T̃ and the integral Ĩpq

is given as:

Ĩpq(ϕ0, ϕ1, ϕ2) =
�

T̃

ζp(r̃)
�

T̃

ζq(r̃′) e−j|r̃−r̃′|

4π|r̃ − r̃′|
dr̃′2dr̃2 (2.19)

This integral is evaluated over the scaled common triangle T̃ , and is independent of

the wavenumber (frequency) and is related to the original integral through:

Ipq(k, ℓ, ϕ1, ϕ2) = k−3Ĩpq(ϕ0, ϕ1, ϕ2) (2.20)
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Figure 2.3. Scaled geometry parametrization for the a) common triangle and b)
common edge singular cases.

2.3.2 EFIE common edge

The process for the common edge case is identical to the common triangle. The

wavenumber (frequency) independent integral is given as:

Ĩpq(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) =
�

T̃

ζp(r̃)
�

T̃ ′
ζq(r̃′) e−j|r̃−r̃′|

4π|r̃ − r̃′|
dr̃′2dr̃2 (2.21)

This integral is evaluated over the scaled common edge triangle pair T̃ , T̃ ′, shown in

Fig. 2.3b and is related to the original integral through:

Ipq(k, ℓ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = k−3Ĩpq(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (2.22)

2.3.3 MFIE common edge

The same change of variables in (2.17), is applied to (2.13) for the MFIE common

edge case. The wavenumber independent integral is given by:

Z̃ (e) Kpv
mn (ϕ0, ϕ1, · · · , ϕ5) =

�
T̃

−
�

T̃ ′
∇̃′ e

−j|r̃−r̃′|

4π|r̃ − r̃′|
·

(
αααt

m(r̃) ×αααn(r̃′)
)
dr̃′2dr̃2 (2.23)
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Where −
�

denotes the evaluation in the Cauchy integral sense, [49]. The above expres-

sion is associated with the original integral through:

Z (e) Kpv
mn (k, ℓ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = Z̃ (e) Kpv

mn (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (2.24)

The frequency (and/or materials) independent integrals in (2.19,2.21,2.23) are func-

tions only of angles and electrical lengths in the geometry of the triangles as shown in

Fig. 2.3 and thus can be tabulated in a universal library of integrals once-and-for-all.

The original integrals in (2.12-2.13) can be retrieved from the frequency independent

ones in the library at any time, using the (2.20,2.22,2.24).

It was found that a slightly different normalization for the EFIE cases may be more

beneficial, as it leads to smoother models, the normalizations are:

Ĩn

pq(ϕ0, ϕ1, ϕ2) = Ĩpq(ϕ0, ϕ1, ϕ2)
Ã1.5

s

(2.25)

Ĩn

pq(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = Ĩpq(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)
Ã0.75

s Ã0.75
r

(2.26)

where the superscript "n" indicates normalized integral model, and Ãs, Ãr: are the ar-

eas of source, receiver triangles T̃ ′ and T̃ respectively. We note that Ãs = k2AsandÃr =

k2Ar, thus:

A0.75
s A0.75

r

Ã0.75
s Ã0.75

r

= k−3
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Finally the EFIE integrals Ĩpq in (2.19,2.21) are replaced with Ĩn

pq, can be written in

terms of the normalized ones as:

Ipq(k, ℓ, ϕ1, ϕ2) = A1.5
s Ĩn

pq(ϕ0, ϕ1, ϕ2) (2.27)

Ipq(k, ℓ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = A0.75
s A0.75

r Ĩn

pq(ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) (2.28)

2.4 Parametrization Domain
The angle ϕ1, ϕ2 and ϕ3 in the common triangle case and ϕ1 − ϕ6 in the common

edge cases define a three-dimensional and six-dimensional parametrization domains

respectively. Because of geometrical restrictions, those domains are prisms and hyper-

prisms respectively, as the following on the ϕ variables apply:

ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 > 0◦ (2.29)

ϕ5 ≤ 180◦ (2.30)

ϕ1 + ϕ2 < 180◦ (2.31)

ϕ3 + ϕ4 < 180◦ (2.32)

In theory ϕ0, the electrical length of a triangle’s edge, can be infinitely large; however

in practice, due to approximation reasons, it is usually bounded to electrical lengths

of half-wavelength thus the bound for ϕ0 < 180◦.

The parametrization domain for the common triangle case is shown in Fig. 2.4a, where

each point in the domain corresponds to a scaled common triangle geometry. Fig.

2.4b suggests that further symmetries can be leveraged to reduce the parametrization

volume, thus lowering universal table memory and the computation effort at the

interpolation stage.
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Figure 2.4. The “parametrization” domain for the common triangle case. a) Each
point inside the parametrization domain corresponds to a particular scaled common
triangle geometry. b) Symmetries in the parametrization domain, each scaled common
triangle geometry can be mapped to three points.

2.4.1 Smoothness of Integral Models I (2.25, 2.26) and Z (2.23)

As eluted in the introduction, we will attempt to construct a model for those

integrals by sampling i.e. evaluating the singular integrals once and for all, at various

carefully chosen situations i.e. geometrical configurations. Prior to sampling the in-
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tegral functions of (2.25,2.26,2.23) it is necessary to the have a rough idea about the

degree of smoothness of the underlying integral models we attempt to sample (tabu-

late) and then interpolate. They would guide us in choosing a sampling strategy and

interpolation method. Fig. 2.5 plots the distribution of the magnitude (in logarithmic

scale) of the scaled and normalized integral Ĩn

pq for the EFIE common triangle case.

The distribution is plotted along a 2D slice of the parameter domain that represent

all possible triangles with triangle edge length one tenth of a wavelength or ϕ0 = 36◦.

It is emphasized that each point on this graph corresponds to a particular common

triangle geometry. For example the point (30, 120) corresponds to a triangle that has

an edge of electrical length 36◦ and two adjacent angles of 30◦ and 120◦. Notice the

plane of symmetry along the ϕ1 = ϕ2 line; that is because triangles such as (30, 120)

and (120, 30) are identical and thus their singular integral interaction are same. This

symmetry will later on prove essential in building low footprint libraries for the tab-

ulated models. The magnitude of the normalized integral is close to zero along the

edges of the plot and close to its maximum along the hypotenuse, where the triangles

are highly skewed and appear to be sliver triangles. Not surprisingly, the integrals

of these poor mesh-quality triangles will prove to be very challenging to compute

accurately. Nonetheless the function is generally very smooth, which is important so

that the sampling of the domain need not be very fine, helping with computational

efficiency and library footprint. Similarly, in Fig. 2.6 the magnitude distribution of

the EFIE common edge Ĩn

pq from (2.26) is plotted along the same parameter space cut

plane, i.e., fixing the electrical length of the common edge to ϕ0 = 36◦, the subtended

angle to ϕ5 = 90◦ and the adjacent to the common edge angles of the source triangle

to ϕ3 = ϕ4 = 45◦, while varying the adjacent to the common edge angles of the

receiver triangle ϕ1, ϕ2. Each point on this plot corresponds to a particular common

edge triangle pair, where only the shape of the observation triangle changes. Again

the function is generally smooth across the distribution, but becomes less smooth at
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Figure 2.5. Smoothness of the tabulated integral function Ĩn

pq, (2.25) for the EFIE
common triangle case; slice along ϕ0 = 36◦ (edge h = λ/10). The plot shows the
magnitude of normalized and scaled integral in logarithmic color-scale, showing that
is quite smooth and can be interpolated with relative ease.

the edges. Moreover, there is again a symmetry plane along the line of ϕ1 = ϕ2. It

is interesting to note that the distribution for Z (e) Kpv
mn (MFIE) from (2.23), which is

shown in Fig. 2.7 goes to zero on the symmetry plane.

2.4.2 Geometrical Symmetries

As seen in Fig. 2.4b, a common triangle, geometrical configuration can be rep-

resented by multiple points in the parametrized domain. Thus for each 3 × 3 scalar

integral Ĩn or vector Z̃(e) Kpv element matrix not all 9 entries (integrals) need be

stored, leading to a significant reduction of library footprint and by extension mem-

ory and computation time savings. As it will be detailed below, for common triangle

EFIE case, and the common edge EFIE and MFIE 2, 5, 4 integrals are tabulated,

respectively, reducing the size of the library by 22.2%, 55.5%, 44.4% respectively. To

demonstrate that, consider the node and edge numbering in Fig. 2.8 and the various

equivalent parameter permutations, as shown in Fig. 2.9. Using these conventions

the element matrices for EFIE common triangle can be written as:
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Figure 2.6. Smoothness of the tabulated integral function Ĩn

pq, (2.26) for the EFIE
common edge case; a) slice along ϕ0 = 36◦, ϕ3 = 45◦, ϕ4 = 45◦, ϕ5 = 90◦ b) slice along
ϕ1 = 60◦, ϕ2 = 60◦, ϕ3 = 45◦, ϕ4 = 45◦. The plot shows the magnitude of normalized
and scaled integral in logarithmic color-scale, showing that is quite smooth and can
be interpolated with relative ease.
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Figure 2.7. Smoothness plot of the tabulated integral function Z (e) Kpv
mn , (2.23) for

the MFIE common edge case; a) slice along ϕ0 = 36◦, ϕ3 = 45◦, ϕ4 = 45◦, ϕ5 = 90◦

b) slice along ϕ1 = 60◦, ϕ2 = 30◦, ϕ3 = 45◦, ϕ4 = 60◦. The plot shows the magnitude
of scaled integral in logarithmic color-scale, showing that is quite smooth and can be
interpolated with relative ease.
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Ĩn

CT =


Ĩn

0′0(ϕ̃̃ϕ̃ϕ1) Ĩn
0′1(ϕ̃̃ϕ̃ϕ1) Ĩn

0′2(ϕ̃̃ϕ̃ϕ1)

Ĩn
1′0(ϕ̃̃ϕ̃ϕ1) Ĩn

1′1(ϕ̃̃ϕ̃ϕ1) Ĩn
1′2(ϕ̃̃ϕ̃ϕ1)

Ĩn
2′0(ϕ̃̃ϕ̃ϕ1) Ĩn

2′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ1)

 =


Ĩn

2′2(ϕ̃̃ϕ̃ϕ3) Ĩn
2′1(ϕ̃̃ϕ̃ϕ3) Ĩn

2′1(ϕ̃̃ϕ̃ϕ2)

Ĩn
2′1(ϕ̃̃ϕ̃ϕ3) Ĩn

2′2(ϕ̃̃ϕ̃ϕ4) Ĩn
2′1(ϕ̃̃ϕ̃ϕ1)

Ĩn
2′1(ϕ̃̃ϕ̃ϕ2) Ĩn

2′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ1)

 (2.33)

Where for the common edge edge EFIE the symmetires lead to

Ĩn

CE =


Ĩn

0′1(ϕ̃̃ϕ̃ϕ2) Ĩn
0′1(ϕ̃̃ϕ̃ϕ1) Ĩn

0′2(ϕ̃̃ϕ̃ϕ1)

Ĩn
2′1(ϕ̃̃ϕ̃ϕ2) Ĩn

1′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ2)

Ĩn
1′1(ϕ̃̃ϕ̃ϕ2) Ĩn

2′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ1)

 =


Ĩn

0′1(ϕ̃̃ϕ̃ϕ2) Ĩn
0′1(ϕ̃̃ϕ̃ϕ1) Ĩn

0′2(ϕ̃̃ϕ̃ϕ1)

Ĩn
2′1(ϕ̃̃ϕ̃ϕ2) Ĩn

1′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ2)

Ĩn
1′1(ϕ̃̃ϕ̃ϕ2) Ĩn

2′1(ϕ̃̃ϕ̃ϕ1) Ĩn
2′2(ϕ̃̃ϕ̃ϕ1)

 (2.34)

And for the common edge MFIE case

Z̃(e) Kpv =


Z̃0′0(ϕ̃̃ϕ̃ϕ1) 0 Z̃0′2(ϕ̃̃ϕ̃ϕ1)

Z̃1′0(ϕ̃̃ϕ̃ϕ1) Z̃1′1(ϕ̃̃ϕ̃ϕ1) 0

Z̃2′0(ϕ̃̃ϕ̃ϕ1) Z̃2′1(ϕ̃̃ϕ̃ϕ1) Z̃2′2(ϕ̃̃ϕ̃ϕ1)

 =


Z̃0′0(ϕ̃̃ϕ̃ϕ1) 0 Z̃0′2(ϕ̃̃ϕ̃ϕ1)

−Z̃0′0(ϕ̃̃ϕ̃ϕ2) Z̃0′2(ϕ̃̃ϕ̃ϕ2) 0

Z̃2′0(ϕ̃̃ϕ̃ϕ1) Z̃2′1(ϕ̃̃ϕ̃ϕ1) −Z̃2′1(ϕ̃̃ϕ̃ϕ2)

(2.35)

The subscripts of the integrals denote the source, observation triangle edges respec-

tively, while the subscript of the interpolant ϕ̃̃ϕ̃ϕ denotes a particular parametrization

of the triangle as shown in Fig. 2.9. The relations shown above were verified by use

of an in-house BEM code deploying Gaussian quadrature, [30] for regular integra-

tion and singularity subtraction integration, [37]. Reference results were provided by

Professor D. R. Wilton for the validation of the singular integration, as well as radar

cross section (RCS) results provided by the analytical Mie series, [4]. The geometrical

symmetries of the integration domain (the triangle pairs) translate to symmetries in

the BEM element matrices according to the operator. The relationships given above

speak exactly to that. In the case of the MFIE K operator there are some negative
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Figure 2.9. Equivalent parametrization orderings that are used to identify symme-
tries in the element matrices. a) Common triangle case. b) Common edge case.

symmetries because of the inner product. Notice that one particular entry was found

to always be equal to zero.

2.4.3 Parameter Domain Transformation

Transforming the parametrization domain from a prism to a cube or a six-dimensional

(6D) hyper prism into a 6D hyper-cube it becomes more convenient to sample and

perform interpolation by emplying the tensor product properties of such domains.

For the sake of consistency the domain was transformed in the common triangle case
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Table 2.1. Interpolants of Figure 2.9. The superscript s denotes the source triangle
and r the receiver.

interpolant ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

ϕ̃1ϕ1ϕ1 kℓ1 n̂1n0n2 n̂0n2n1 - - -
CT ϕ̃2ϕ2ϕ2 kℓ2 n̂0n2n1 n̂2n1n0 - - -

ϕ̃3ϕ3ϕ3 kℓ2 n̂2n1n0 n̂0n2n1 - - -
ϕ̃4ϕ4ϕ4 kℓ0 n̂2n1n0 n̂1n0n2 - - -

CE ϕ̃1ϕ1ϕ1 kℓ0 n̂r
2n

r
0n

r
1 n̂r

2n
r
1n

r
0 n̂s

0n
s
1n

s
2 n̂s

0n
s
2n

s
1 180◦ − n̂r,ns

ϕ̃2ϕ2ϕ2 kℓ0 n̂r
2n

r
1n

r
0 n̂r

2n
r
0n

r
1 n̂s

0n
s
2n

s
1 n̂s

0n
s
1n

s
2 180◦ − n̂r,ns

as well, as is shown in Fig. 2.10. Essentially the domain is rotated 90◦ around the

ϕ0 axis and the origin is expanded from a point to a line via a Duffy-like transforma-

tion, [80]. In doing so a very fine sampling rate is achieved near the origin region and

the adjacent edges, as is explained in detail in the next section.

The forward transformation is given by:

ϕ̃0 = ϕ0 (2.36)

ϕ̃1 =
√

2
2 (ϕ1 + ϕ2) (2.37)

ϕ̃2 = 180
√

2
2

(ϕ2 − ϕ1)
(ϕ2 + ϕ1)

(2.38)

ϕ̃3 =
√

2
2 (ϕ3 + ϕ4) (2.39)

ϕ̃4 = 180
√

2
2

(ϕ4 − ϕ3)
(ϕ4 + ϕ3)

(2.40)

ϕ̃5 = ϕ5 (2.41)

whereas the inverse transformation is:
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Figure 2.10. Transformation of the parametrization domain to a rectangular (or
hyper-rectangular) one. This transformation is more convenient because it enables
the use of tensor-product, sparse grid and low-rank tensor interpolation schemes.

ϕ0 = ϕ̃0 (2.42)

ϕ1 =
√

2
2 ϕ̃1 − ϕ̃1ϕ̃2

1
180 (2.43)

ϕ2 =
√

2
2 ϕ̃1 + ϕ̃1ϕ̃2

1
180 (2.44)

ϕ3 =
√

2
2 ϕ̃3 − ϕ̃3ϕ̃4

1
180 (2.45)

ϕ4 =
√

2
2 ϕ̃3 + ϕ̃3ϕ̃4

1
180 (2.46)

ϕ5 = ϕ̃5 (2.47)

It is noted that for the common triangle case the forward or inverse transformation

make use of the first three equation pairs i.e., (2.36-2.38) and (2.42-2.44) respectively.

2.4.4 Parametrization Domain Discretization

The process of sampling the “parametrization” domain and building a universal

library of integrals, begins with hp-refinement of the transformed “parametrization”

domain into elements, where h pertains to the variable size of the elements and p

denotes the variable interpolation order among the elements. It is noted that the

hp-refinement process can be automated like in the cases of adaptive finite element

method (FEM). However, since in this case the underlying function is fixed, a non-
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adaptive, ad-hoc, hp-refinement approach was employed. This semi-automated trial-

and-error process ended up being one of the most time-consuming steps in this work.

The hp-refinement for the EFIE common triangle case is shown in Fig. 2.11; on the

right it shows a top view of the refinement along the first two axes as well as the

interpolation orders assigned to each element; on the left it shows the refinement in

the last axis. Each element is a 3D cube, for example the first element is : [0.36, 2] ×

[2, 33] × [−125.865,−95]. The smoothness plots provide information into how the

refinement should be; for example in Fig. 2.5 the function seems less smooth at

the edges or the region close to the origin and should be sampled more finely at

those regions, hence there are more elements along the top edge. Moreover, the

transformation itself contributes to this sampling scheme; for example the 6 elements

on the bottom of Fig. 2.11 all correspond to the small region close to the origin

in the “parametrization” domain (original or non-transformed), which is shown in

Fig. 2.12. If the sample locations on these elements were to be inverse-transformed

and plotted on the “parametrization” domain the not so smooth region close to the

origin would prove to be very finely sampled. The hp refinement presented herein

was obtained through an iterative trial-and-error process. Namely at each iteration,

a finer refinement was used to build a new library, which was then tested on a set of

realistic example meshes (see the error histograms of Chapter 5) and the average and

maximum relative error on each element was observed. Similarly, the hp-refinement

for the EFIE common edge case is shown in Fig. 2.13, where each subfigure shows

the top view of the refinement in a different pair of axes. Each element is a 6D

hyper-cube, for example the first element is : [0.36, 120]× [5, 32]× [−120.2082,−75]×

[5, 32]× [−120.2082,−75]× [5, 40]. Likewise, the refinement for MFIE is shown in Fig.

2.14. A noteworthy point is the definition of the parametrization domain boundary,

marked with red in all figures and defined by the angle limits given in (2.29-2.32).

The parametrization domain does not extend to 0 and 180 degrees, meaning there are
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Figure 2.11. Domain hp-refinement (discretization) for the EFIE common triangle
case. The orders for a delayed sparse grids range from p = 6 to 10.

no elements very close to the boundary. That is because in this region the function

varies rapidly, as a result of the triangles being so highly skewed (alternatively they

have very poor triangle quality) that the hp refinement would have to be so fine as

to ultimately become very inefficient. If a mesh contains interactions that lie in this

region, it would be preferable to use an alternative singular integration technique; and

provide a warning that the mesh contains poorly shaped triangles that do not have

good approximation properties. Moreover, notice how in the case of EFIE common

edge, Fig. 2.13 the angle ϕ5 goes up to 180◦; this limit however, is not strict and in the

case of MFIE, shown in Fig. 2.14 it is extended to 190◦ to improve the interpolation

error for common edge interactions with ϕ5 ∈ [170, 180].

2.4.5 Element Sampling

Each element in the transformed parametrization domain is sampled (amounts to

evaluating the underling singular integral with a slow but high-accuracy quadruple

precision singularity subtraction method) using a grid pattern. The sampling is per-

formed in a reference element that is centered at 0.5×0.5×0.5 in 3D (and 0.56 in 6D)

and is having unit length along each side. This reference element is afine transformed
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Figure 2.12. hp-refinement on the right of Fig. 2.11 inverse-transformed to the
original parametrization domain.

to the actual parametrization domain element location, akin to finite element assem-

bly process [14]. In all cases in this dissertation the sampling has tensor product or

sparse grid form and as such all sampling can be derived from 1D sampling. The

sampling abscissae vector xxx contains the interpolation samples in the 1D case, which

in this work range from 0 to 1. The Gauss-Patterson [74] abscissae were found to be

optimal among a selection of others (uniform, Chebyshev, Clenshaw-Curtis); for an

order of p = 4 they are given as, [74]:

xxx4 = {0.0005, 0.0030, 0.0092, 0.0198, 0.0352, 0.0557, 0.0816, 0.1127, 0.1488, 0.1894,

0.2343, 0.2828, 0.3344, 0.3883, 0.4438, 0.5000, 0.5562, 0.6116, 0.6656, 0.7171,

0.7657, 0.8105, 0.8512, 0.8872, 0.9184, 0.9442, 0.9648, 0.9802, 0.9908, 0.9969,

0.9995}

Therefore, the unit cell for a p = 4 interpolation order element of the common triangle

case, would be given as x4 ⊗ x4 ⊗ x4, as shown in Fig. 2.16a. Remember that to

sample means to compute the singular integrals of one of (2.25,2.26,2.23). Each grid
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Figure 2.13. Parametrization domain hp-refinement for the EFIE common edge
case. The orders for a delayed sparse grids range from p = 6 to 10.

point is scaled by its element’s size to a vector ϕ̃ and then inverse-transformed via

(2.42-2.47) to a vector of angles ϕ, which corresponds to a common triangle/edge ge-

ometry, whose singular integrals can be computed via any state-of-the-art method; in

this manuscript the singularity subtraction of [37] is used. This completes the process

of building a library/look up table of integrals, which are universal (frequency, ma-

terials independent) and is built once-and-for-al. This work employes three different

libraries, one for each case: the EFIE common triangle case and the EFIE, MFIE com-

mon edge cases. Subsequently, these libraries can be loaded and the integrals of any

arbitrary common triangle/edge interactions of a BEM mesh can be computed via in-

terpolating among those finite sample points. It is emphasized that the interpolation
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Figure 2.14. Parametrization domain hp-refinement for the MFIE common edge
case. The orders for a delayed sparse grids range from p = 6 to 10.

is local and is performed on each element once for all its interpolants; such an exam-

ple is shown in Fig. 2.15. Finally, the interpolated frequency independent integrals

of (2.25,2.26,2.23) are mapped back to the original integrals of (2.14,2.15-2.16) using

(2.20,2.22,2.24) respectively. The reference element interpolation/sampling scheme

is crucial to the performance SIBI. The number and location of sample points must

be selected carefully to maximize interpolation accuracy, while minimizing compu-

tation and memory cost. Generally, p refinement (increasing interpolation order)

marginally increases accuracy in exchange for computation cost, while h refinement

increases accuracy somewhat in exchange for memory. It is generally preferable to

prioritize accuracy and computation cost. However, the number of grid points in each
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Figure 2.15. Sampling/Interpolation strategy of SIBI. A particular common triangle
interaction is mapped to four interpolants in the parametized model domain, which
are mapped to various elements in the transformed (hypercube) parametrized domain.
Each element in the parametrized domain has a pre-defined sampling pattern (sparse
grid in this case), where the integrals have been pre-evaluated and tabulated once
and for all. The specific interaction (interpolant) can be interpolated localy within
the element using the values of the pre-evaluated samples.

element quickly becomes very large even in the common triangle case (3D) using ten-

sor product sampling strategies, based on 1D Gauss-Patternson abscissas, as shown

in Fig. 2.16a. Therefore, two more efficient sampling/interpolation methods will be

detailed in the following chapters. Chapter 3 details the sparse grid [74] and delayed

sparse grid [83] sampling/interpolation, followed by more advanced low-rank tensor

interpolation based on tensor Tucker [78] and tensor-trains [78] decompositions, in

Chapter 4.
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Figure 2.16. Sampling pattern of a 3D reference element (2D cut shown) with
Gauss-Patterson abscissae a) tensor product grid b) sparse grid.
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CHAPTER 3

SPARSE GRIDS INTERPOLATION

Although the SIBI relies on a local interpolation i.e. each element in the parametrized

domain is interpolated independently of the others leading to large seving, it requires

a high dimension interpolation within the elements. For the case of common trian-

gle, where the parametrization domain is 3D, the interpolation can be extremely fast

even with rudimentary tensor product 1D interpolation strategies. However, for the

common edge cases, where the parametrization domain is 6D, the reference element

sampling and interpolation scheme plays critical role in accuracy and efficiency. Es-

sentially the challenge has to do with coping with the increasing dimensionality that

exponentially increases the number of samples and interpolation computations within

the transformed element hypercubes.

There are several known approaches that can cope reasonably well with moderate

dimensionality order (less than 10) [REFs], and one of those is Smolyak’s sparse grid

appoach [74].

Sparse grids reference element retains the accuracy of a high order full tensor

product one, while the number of grid points is significantly reduced leading to a

memory cost reduction and more importantly a computation cost reduction (see Fig.

2.16). One of the key characteristics and the main reason that allows sparse grids to

save points lies in the “nested form” of the abscissae. The other key characteristic

is that the sparse grid is built up hierarchically in levels in such a way that multiple

re-use of samples in the previous levels is levereged. This works also explores the use
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of delayed sparse grids that are a modification of the standard sparse grid algorithms

and leads to notisable savings in our application.

3.1 Smolyak’s Grid Construction
A d dimensional sparse grid of order p has p+ 1 levels and is build by adding up all

the sub-grids of each level ℓ. Let i = {i0, i1, . . . , id−1} be a multi-index, then a level

ℓ is the set of multi-indices i such that |i| = i0 + i1 + . . . + id−1 = ℓ. Let also xxx be

the abscissae or 1D interpolation rules, which are vectors of real valued scalars that

dictate the sampling location and usually range from 0 to 1 or −1 to 1. A sub-grid

is then given as the tensor product of the abscissae vectors xxxi0 ⊗ xxxi1 ⊗ . . . ⊗ xxxid−1 .

The Gauss-Patterson abscissae in [0, 1], which were found to have better performance

than other options, such as uniform, Chebyshev, Clenshaw-Curtis are given as, [74]:

xxx0 = {0.5} (3.1)

xxx1 = {0.1127, 0.5, 0.8872} (3.2)

xxx2 = {0.01975, 0.1127, 0.2828, 0.5, 0.7171, 0.8872, 0.9802} (3.3)

xxx3 = {0.0030, 0.01975, 0.0557, 0.1127, 0.1894, 0.2828, 0.3883, 0.5, 0.6116, 0.7171,

0.8105, 0.8872, 0.9442, 0.9802, 0.9969} (3.4)

xxx4 = {0.0005, 0.0030, 0.0092, 0.0198, 0.0352, 0.0557, 0.0816, 0.1127, 0.1488, 0.1894,

0.2343, 0.2828, 0.3344, 0.3883, 0.4438, 0.5000, 0.5562, 0.6116, 0.6656, 0.7171,

0.7657, 0.8105, 0.8512, 0.8872, 0.9184, 0.9442, 0.9648, 0.9802, 0.9908, 0.9969,

0.9995} (3.5)

Notice that abscissae are nested/hierarchical, meaning that abscisse of xxx1 are included

in xxx2 and xxx2 in xxx3 and so forth. Each sub-grid is a tensor product of any of these
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abscissae; for example in the common triangle case, where the reference element is

three dimensional, i.e. d = 3 the very first sub-grid is xxx0 ⊗ xxx0 ⊗ xxx0, which is the

point (0.5, 0.5, 0.5); another example could be xxx0 ⊗ xxx1 ⊗ xxx0, which has the points

(0.5, 0.1127, 0.5), (0.5, 0.5, 0.5), (0.5, 0.8872, 0.5). Notice that the hierarchical/nested

nature of abscissae enables a sigificant reduction in the size of the grids. In Fig. 3.1 a

sparse grid of dimension d = 2 and order p = 3 is constructed from the addition of all

sub-grids up to level ℓ = 3. For level ℓ = 0 = |i| there can only be one multi-index,

i = {0, 0}, but for level ℓ = 1 = |i| the index could be i = {0, 1} or i = {1, 0}

and so forth; diagonal lines connecting i0 = i1 mark the level and its sub-grids. It

is important to note is that the gray points on every sub-grid, which are points that

have already appeared on previous levels, will not be added a second time to the total

grid, but are used in the “hierarchical” basis functions definition (explained later).

3.2 Hierarchical Basis Functions and Barycentric Interpola-

tion Formula
Another key feature of the sparse grid interpolation, other than Smolyak’s grid

construction are the hierarchical interpolation basis functions, which are shown in

Fig. 3.2b and compared to interpolatory basis functions in Fig. 3.2a for the Gauss-

Patterson abscissae and order p = 2 and dimension d = 1. In both cases, there are

as many basis functions as there are abscissae. Each basis function has a value of 1

at its “base node” and 0 at all other “support nodes”. In the case of interpolatory

basis functions, shown in Fig. 3.2a, the basis functions are defined solely using the

abscissae xxx2; while in the case of hierarchical, shown in Fig. 3.2b, they are defined

on three levels using xxx0,xxx1 and xxx2 for levels ℓ = 0, 1, 2 respectively. Therefore on

level ℓ = 0 there is one constant basis function with base node 0.5 and no support

nodes; on level ℓ = 1 there are two basis functions with base nodes 0.1172 and 0.8872

respectively and support nodes 0.5, 0.8872 and 0.1172, 0.5 respectively (and so forth
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Figure 3.1. Smolyak’s sparse grid construction of a 2D, 3rd order sparse grid.
The gray dots mark inactive subgrid points. The horizontal i0 axis represent the
interpolation order along the first e.g., x, dimension, whereas the vertical, i1 axis is
that for the second dimension. A sparse grid (top right figure) is the direct sum of
all active abscissae (shown in blue) in each level (level is considered the sum of each
dimensional order to be same i.e., in this case i0 + i1 = ℓ, where ℓ is the level)

for level ℓ = 2). Notice that in level ℓ = 1 there is no basis function with a base

node 0.5, because that was already accounted for (added) in level ℓ = 0; it is a gray,

“inactive” point in the Smolyak grid construction. Inactive points are defined only

in the hierarchical case and are used as support nodes only for all higher level basis

functions; for example 0.5 will be used as a support node for all levels, in this case

ℓ = 1, 2.
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Figure 3.2. Basis functions of the 2nd barycentric formula with Gauss-Patterson
abscissae a) interpolatory basis b) hierarchical basis.

3.2.1 Barycentric Formula

In this work the hierarchical basis functions are coupled with the 2nd barycentric for-

mula [84], which is a more stable and numerically faster version of common Lagrange

polynomial evaluations. For a reference element sparse grid of order p and dimension

d, let j = {0, 1, 2, . . . , d−1} be a dimension index and i be the multi-index of level ℓ of

Smolyak’s algorithm, ϕ̃ be the interpolant and x̃̃x̃x ∈ [0, 1]d be the abscissae. Then ij is

the multi-index in dimension j and denotes the abscissae, weight vector to be used in

dimension j; for example if ℓ = 1, d = 3, i = {0, 1, 0} then xxxi0 = xxx0,xxxi1 = xxx1,xxxi2 = xxx0.

Finally let kj = {0, 2, 4, . . . ,M ij − 1} be the index of the base node in dimension j,

where M ij is the size of the abscissae vector xxxij . Then the kth basis function, psiik for

the sub-grid is given as, [74]:
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ψi
k(x̃̃x̃x) =

d−1∏
j=0

ψ
ij

kj
(x̃j) (3.6)

ψ
ij

kj
(x̃j) =

fkj
(x̃j)∑M ij −1

m=0 fm(x̃j)
, ψ0 = 1 (3.7)

fm(x̃j) = w
ij
m

x̃j − x
ij
m

, x̃j ∈ [0, 1] (3.8)

Where xi are the Gauss-Patterson abscissae and wi are the Gauss-Patterson weights

given by, [74]:

www0 = {1} (3.9)

www1 = {0.5,−1, 0.5} (3.10)

www2 = {0.23895,−0.65544, 0.91649,−1, 0.91649,−0.65544, 0.23895} (3.11)

www3 = {0.30857,−0.77596, 0.97305,−1, 0.96511,−0.92145, 0.89041,

−0.87948, 0.89041,−0.92145, 0.96511,−1, 0.97305,−0.77596,

0.30857} (3.12)

www4 = {0.42847,−0.96749, 1,−0.80737, 0.5959,−0.42841, 0.30902,−0.2271,

0.17152,−0.13381, 0.10815,−0.09073, 0.07909,−0.07168, 0.06756,

−0.06624, 0.06756,−0.07168, 0.07909,−0.09073, 0.10815,−0.13381,

0.17152,−0.2271, 0.30902,−0.42841, 0.5959,−0.80737, 1,−0.96749,

0.42847} (3.13)

Equation (3.6) represents the Smolyak sparse grid product, whereas (3.8) and (3.8)

are the one dimensional hierarchical basis functions defined though the barycentric

interpolation formula.
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3.3 Sparse Grid Interpolation Formula
Having defined the sparse grids and the hierarchical basis on it, we are ready

to show how an integral I can be interpolated inside a d-dimensional sparse grid

reference element. If a particular interpolant i.e. interaction geometry (mapped to

the reference element) is denoted by ϕ̃ϕϕ, then the integral can be evaluated from the

Gauss-Pattersons sparse grid samples as, [74]:

Ip,d(ϕ̃ϕϕ) = IL(ϕ̃ϕϕ0) +
p∑

ℓ=1

∑
|i|=ℓ

ψi
k(x̃̃x̃x)∆IL(ϕ̃ϕϕk) (3.14)

∆IL(ϕ̃ϕϕk) = IL(ϕ̃ϕϕk) − Ip−1,d(ϕ̃ϕϕk) (3.15)

Where I denotes one of the wavenumber independent integrals of Ĩn
, Z̃ (2.25,2.26,2.23),

IL is a wavenumber independent integral stored in a library, Ip,d is the interpolated

integral result on the d-dimensional, p-order reference element, ϕ̃ϕϕ0(0.5, 0.5, . . . , 0.5) is

the node of level ℓ = 0 and ϕ̃ϕϕ
k is the kth node of the sub-grid i of level ℓ, ∆IL is

the “hierarchical surplus” data. The surplus data for level ℓ = 0 is identical to the

non-surplus data. To compute the surpluses one would use (3.14), with interpolation

order p = 0 and the interpolants would be the active nodes of all subgrids on level

ℓ = 1. The results of the interpolation would be subtracted from the non-surplus

data and form the “hierachical surpluses” of level ℓ = 1. The process continues with

order p = 1 and the active nodes of all subgrids on level ℓ = 2 as the interpolants;

and so on and so forth until the final level is reached and all data has been converted

to “hierarchical surplus” data. Once the surplus data has been computed the non-

surplus data is no longer needed; hence the surplus data can be stored in a new library

replacing the old one and thus significantly improving computational cost, without

compromising memory or accuracy in any way.
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3.4 Delayed Sparse Grids
As mentioned before the size of the interpolation reference element is crucial to

the accuracy and computational cost of sparse grid interpolation. However, even with

the sparse grid construction this size increases exponentially with the dimension of

interpolation, thus its performance is severely deteriorated; a phenomenon known

as the “curse-of-dimensionality”, [75, 76]. Although the curse-of-dimensionality is a

serious problem for virtually all known interpolation methods to moderate dimensions,

for sparse grids, one option to better cope with it is to introduce “delayed” sparse

grids. According to the observation of Novak & Ritter [83] a level ℓ sparse grid

can exactly reconstruct polynomials of total degree 2ℓ + 1, i.e. posses the Gauss

interpolation/integration property. Therefore, it is possible to construct a grid which

follows the same nested construction as sparse grids, but delays the introduction of

higher order abscissae xxx until the Novak & Ritter exactness constraint requires them.

The grid construction follows the same Smolyak’s algorithm, but utilizes a map for

the indices i0, i1, . . . , id−1 that folllows the pattern:

ij regular 0 1 2 3 4 5 6 7 8 9 10
ij delayed 0 1 1 2 2 2 3 3 3 3 3

The table above, shows that when Smolyak’s sparse grid algorithm asks for xxx10, the

delayed sparse grids employ only xxx3, leading to significant savings. This further

reduces the number of total grid points, especially as dimension increases, while

retaining the accuracy, [83]. This also allows for the use of higher order p, whereas

regular Gauss-Patterson sparse grids are restricted to p ≤ 6. The Smolyak’s grid

construction for a delayed sparse grid of dimension d = 2 and order p = 3 is shown in

Fig. 3.3. Notice how some of the higher order sub-grids have been replaced with lower

order ones, thus more points are being re-used and the total number of points (size of

reference element) has overall been reduced. A comparison delayed sparse grid with

the conventional sparse grid is shown in Figure 3.4 for a six dimensional reference
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element of order p = 4. Delayed sparse grids reduce the number of sample points

from 2561 in the conventional sparse grid to 1889, corresponding to approximately

25% sample reduction. Figure 3.5 shows a results comparison, between delayed sparse

grids and regular sparse grids; the details are explained in Chapter 5. The results

show a clearly superior accuracy of the delayed sparse grids versus the regular sparse

grids.

Tensor Products, d = 2, p = 3
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Figure 3.3. Delayed sparse grid construction of a 2D element of order 3.
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Figure 3.4. Comparison of a conventional spares grid with a delayed sparse grid for
a 6D element of 4th order (d = 6, p = 4). The pictures show a two dimensional cut
along the hypercubes. a) sparse grid leads to N = 2561 samples b) delayed sparse
grid leads to N = 1889 samples.
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Figure 3.5. EFIE common triangle case for drone UAV mesh with average length
λ/10 (500MHz). Plots show histograms of the relative error in each entry of the
BEM matrix that involves common triangle integration. The SG-SIBI/DSG-SIBI is
compared with a ’typical’ version of singularity subtraction using (7, 7, 73, 1) rule (see
Chapter 5 text for details) and a ’high accuracy’ (73, 73, 73, 1) rule. a) Sparse Grid
SIBI (SG-SIBI) b) Delayed Sparse Grid SIBI (DSG-SIBI) .
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CHAPTER 4

TENSOR DECOMPOSITION

Another option in alleviating the curse of dimensionality encountered in the in-

terpolation of high-dimensional spaces/domains is use low-rank decomposition of full

tensors i.e., products tensor ( tensor is a generalization of a dense matrix in multi-

ple dimensions), in a similar manner than singular value decomposition (SVD) [REF

trefethen book] does for matrices. In the case of singular integration by interpola-

tion (SIBI), this chapter will detail an approach that leverages tensor decomposi-

tions for the two common edge cases where sampling/interpolation of six dimensional

parametrization elements are performed. The common triangle case, where the inter-

polation is in three dimensions is more straightforward and full tensor interpolation

works very well with reasonable computational effort.

A tensor is a generalization of a dense matrix in more than two dimensions, [77,

85]. A tensor decomposition is a multi-dimensional Singular Value Decomposition

(SVD) that decomposes the original tensor into a product of smaller sized tensors

and/or matrices (termed factors or carriages), that can lead to significant savings, [78].

The size of the factors depends on the tensor numerical ranks, that is controlled by

a prescribed approximation tolerance that plays the role of interpolation order in

polynomial interpolation. In SIBI, the tensor decomposition representation replaces

the full tensor or sparse grid representations of parametrization elements.

This chapter will explore two tensor decomposition approximations, the tensor

Tucker decompositions (TD) and the tensor train (TT) decompositions. The latter

52



approach was found more efficient than the former one, and in most cases better than

the sparse grids of Chapter 3.

4.1 Tensor Tucker Decomposition
The Tucker decomposition (TD) of a 6D tensor consist of a product of seven

factors, one smaller size 6D core tensor and six side matrices (2D tenors). The TD

in this research is not rank-revealing, meaning that the full 6D tensor has to first be

formed, and then decomposted via a series of SVDs. The reconstructed approximation

is given as, [78]:

I(ϕ̃0, ϕ̃1, . . . , ϕ̃5) ≈
∑

α0,...,α5

Gr0×···×r5(α0, . . . , α5)Un0×r0
0 (ϕ̃0, α0) · · · Un5×r5

5 (ϕ̃5, α5)

(4.1)

where I is the reconstructed full tensor of a wavenumber independent integral from

one of eq. (2.26,2.23), G is the 6D core tensor of the decomposition, U0, . . . ,U5

are the side matrices of the decomposition, α0, . . . , α5 summation/auxiliary indices,

r0, . . . , r5 are the compression ranks and n0, . . . , n5 are the full tensor sizes. The

superscript notation in (4.1) denotes the tensor dimensionality and size, i.e., Aa×b×c

denotes a 3D tensor with sizes a in the first dimension, b in the second and c in

the third. The decomposition or the reconstructed approximation using the Tensor

Tucker format is depicted in Fig. 4.1.

The decomposition can be performed only after the full tensor has been computed

and is a very time consuming computation. The grid for each element using full

tensor has a tremendous number of points, as mentioned before and in the previous

chapters, where each grid point entails lengthy singular integrations computed at

maximum available accuracy. However, each element is constructed and decomposed
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Figure 4.1. Tensor Tucker decomposition/reconstruction overview. A large hy-
pecube is decomposed into a product of large 2D arrays and one small hybercube of
the same dimension as the original one. If the dimension (rank) of the core-hypercube
is small, this decomposition can lead to large savings in moderate dimensions.

independently of other elements, hence this computation is fully parallelizable on an

element level, and is again done only once.

Once the TD for all elements have been formed in the off-line stage, the interpo-

lation can be performed in the online stage. The TD interpolation in a parametrized

element for a single interpolant is a series of matrix-matrix/vector multiplications,

which is depicted in Fig. 4.2 given by, [78]:

I(x̃0, x̃1, . . . , x̃5) ≈ (ψ(x̃5)U5) ( · · · ( (ψ(x̃1)U1) ( (ψ(x̃0)U0)G ))))) (4.2)

Note that in Tensor Tucker interpolation the basis functions ψ are nodal, shown in

Fig. 3.2a. In practice, it is possible to compute all interpolants in each parametriza-

tion domain element at once, as an efficient matrix-matrix multiplication.

4.2 Tensor Train Decomposition
In the tensor train singular integration by interpolation (TT-SIBI) the 6D tensor

in common edge cases are decomposed into six factors, four 3D tensors and two matri-

ces via a series of SVDs and/or QR decompositions. The reconstructed approximation

is given by, [78]:

54



Gxx U0

n0 x r0 r 0 x r 1 x r 2 x r 3 x r 4 x r 5

(

(

U5 x

n5 x r5

...(

((((

 ψ(x5)
1 x n5 

x

x

 ψ(x0)
1 x n0 

x

Figure 4.2. Tensor Tucker interpolation overview. The red vectors represent basis
functions evaluated at the location of an interpolant. In the case of the more efficient
vectorized implementations, multiple interpolations are processed at once, and the
red vector become matrices.

I(ϕ̃0, ϕ̃1, . . . , ϕ̃5) ≈
∑

α0,...,α4

Gn0×r0
0 (ϕ̃0, α0)Gr0×n1×r1

1 (α0, ϕ̃1, α1) · · · Gr4×n5
5 (ϕ̃4, α5)

(4.3)

where I is a wavenumber independent integral from one of eq. (2.26,2.23), G0, . . . ,G5

are the 2D, 3D tensors, α0, . . . , α4 summation/auxiliary indices, r0, . . . , r4 are the

compression ranks and n0, . . . , n5 are the full tensor sizes. The same notation for

tensor as in (4.2) is used. The decomposition or the reconstructed approximation

using the TT format is depicted in Fig. 4.3. The frequency independent integral of

an arbitrary common edge interaction is given by tensor interpolation as a series of

matrix-matrix/vector multiplications, which is depicted in Fig. 4.4 and its formula is

given below, [78]. Note that in Tensor Train interpolation the basis functions ψ are

nodal, shown in Fig. 3.2a.

I(x̃0, x̃1, . . . , x̃5) ≈
{[
ψ(x̃4)

[
ψ(x̃3)

[
ψ(x̃2)[ψ(x̃1)[(ψ(x̃0)G0)G1]]G2

]
G3

]
G4

]
G5

}
ψ(x̃5)

(4.4)
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Figure 4.3. Tensor Train decomposition/reconstruction overview. A large hypecube
is decomposed into a product of two 2D arrays and a series (train) of small 3D arrays
(cubes). If the dimension (ranks) of the core-cubes is small, this decomposition can
lead to large savings in high-dimension.
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Figure 4.4. Tensor Train interpolation overview. The red vectors represent basis
functions evaluated at the location of an interpolant. In the case of the more efficient
vectorized implementations, multiple interpolations are processed at once, and the
red vector become matrices.

The hp-refinement of the parametrized domain was found to be different than

that of the sparse grids. This is mainly due to the fact that tensor representations

are more suitable for using anisotropic order interpolations, i.e. tensor product in-

terpolation schemes where the order of interpolation is different among dimensions.

This particular refinement has significantly less elements (169 versus 1250 or 1452

for the sparse grids in the EFIE and MFIE case, respectively) because of the greatly

increased number of points per element. Specifically in this refinement each element

has anisotropic order p = {3, 2, 2, 2, 2, 3}, which leads to 152 · 74 = 5.4 · 105 full grid

points/samples per element, for a total of 169 · 5.4 · 105 = 9.1 · 107 points for the

entire parametrization domain (library), as opposed to 1250 · 2561 = 3.2 · 106 for

56



Interpolation
 order

Transformed “Configuration” Domain
domain

boundary

2

3

4

5

2,3*

*Anisotropic order using p=2 in some directions and p=3 in others

−120.2082 −40 40 120.2082
5

50

96

120.2082

−120.2082 −40 40 120.2082
5

50

96

120.2082

Total (6D) : 13*13 = 169 Elements

3

4

SubTotal (2D) : 13 Elements

Total (6D) : 169*1 = 169 Elements

0

5
5 180

0.36

120

−80 80−80 80

Figure 4.5. Domain hp-partitioning in the EFIE, MFIE common edge case to be
used with a full tensor product grid unit cell and Tensor Decomposition.

the domain partitioning of fig. 2.13 using the regular sparse grid unit cell. Thus

the two partitionings have similar size and setup computation times. Moreover note

that for the tensor decomposition approach each full tensor element must first be

built and stored, ie. every sample computed by a state-of-the-art rule at the highest

available accuracy, before it is decomposed. In this regard the tensor decomposition

approach could potentially offer far greater interpolation accuracy by increasing the

number of elements (h refinement) and interpolation order (p refinement) with little

to no speed compromise; whereas the sparse grids approach performance limits out,

since h refinement was tested and showed little improvement and further p refinement
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Table 4.1. Error, memory and run time for Drone UAV (λ/10, 500MHz) common
edge interactions

Error Memory
Equation Method mean [MB]

Sparse Grid SIBI 3.3 · 10−4 488.5
Tensor Tucker SIBI (core rank {5, 4, 4, 4, 4, 5}) 3.5 · 10−4 85.9
Tensor Tucker SIBI (core rank {6, 6, 6, 6, 6, 6}) 7.5 · 10−5 290.6

Tensor Train SIBI (tol 10−4) 4.4 · 10−5 39.3EFIE Tensor Train SIBI (tol 10−5) 2.5 · 10−5 93.3
Sparse Grid SIBI 3.3 · 10−3 227

Tensor Tucker SIBI (core rank {5, 4, 4, 4, 4, 5}) 5.1 · 10−3 68.7
Tensor Tucker SIBI (core rank {6, 6, 6, 6, 6, 6}) 2.0 · 10−3 484.8

Tensor Train SIBI (tol 10−3) 1.3 · 10−2 29.9
Tensor Train SIBI (tol 10−4) 2.4 · 10−3 76.8MFIE
Tensor Train SIBI (tol 10−5) 7.0 · 10−4 139.5

adversely affects speed. Table 4.1 shows a comparison of the average error of all com-

mon edge interactions in a Drone UAV mesh using sparse grids SIBI, tensor Tucker

SIBI and tensor train SIBI, as well as the memory required by each method. The

results show that the decomposition methods, tensor Tucker SIBI and tensor train

SIBI utilizing increased decomposition tolerances achieve greater accuracy as well as

increased memory cost.
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CHAPTER 5

RESULTS

In this chapter the efficiency and performance of SIBI is evaluated to determine

its competitveness with the conventional methods in the literature. For this purpose,

singular integrations are performed for collections of triangles and triangle pairs that

can be handled by SIBI. The calculations are done using the various versions of

SIBI and their accuracy and efficiency is compared amongst them. The results show

an improvement versus a conventional singular integration method. The singular

interactions handled by SIBI account for a small percentage of the BEM matrix, but

that does not necessarily extend to a small percentage of the assembly time; therefore

the overall impact of SIBI in end-to-end results is investigated solving the scattering

problem of a perfect electric conductor (PEC) sphere.

The calculations were done sequentially on MacOS 10.5, Intel(R) Xeon(R) Gold

6140 CPU @2.3GHz, with 190.5GB RAM, [86] and using double precision arithmetic.

The SIBI algorithm calculates all of the interpolants for all common triangle, common

edge interactions (see Table 2.4.2 and Figure 2.9) in the mesh and distributes them

across the parametrized domain elements (see Figure 2.15). The interpolation is

consequently calculated for all interpolants on each element. In the case of sparse

grid SIBI (SG-SIBI) an interpolation matrix is constructed sequentially (although

parallelizable) according to (3.6) - (3.8), which when multiplied by the multi-rhs

(one column per integral function) completes the interpolation for the element. In

the case of tensor train SIBI (TT-SIBI) or tensor Tucker decomposition (TD-SIBI)

the interpolation is done sequentially for all interpolants and all integral functions
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according to (4.2, 4.4). Although similar to the SG-SIBI case the interpolation could

be done altogether for all interpolants and integral functions at once as a matrix-

matrix multiplication for improved computation efficiency. For each interaction, all

the interpolated integral function results (see 2.4.2) are then collected from various

different elements to fill up the BEM element matrix. The code was compiled by

the Intel compiler. The libraries were constructed in element groups in parallel on

a cluster of 10 such computers, although the calculations can be parallelized on an

element level as well. The tensor decomposition was computed sequentially element

after element using a Matlab tensor decomposition toolbox, [77], although it can be

parallelized on an library level (in groups of elements).

5.1 Computational benchmarks
In this section SIBI is compared to the state-of-the-art implementation of the

singularity subtraction technique, [37] in terms of accuracy, computational cost and

memory overhead. The BEM element matrix entries of all common triangle or com-

mon edge interactions (other interactions are assumed to be zero) of two sample

problems (meshes) are computed by the singularity subtraction method and the pro-

posed method (SIBI) and the relative error is reported. The results presented are for

perfect electric conducting (PEC) a drone UAV in free space, of typical discretization

and good quality as well as a smaller BEM mesh of a PEC air intake (cavity) of

typical discretization and poor quality, shown in Figs. 5.1a, 5.2a respectively. The

quality of the meshes is assensed by the triangle quality factor, [87]:

Q = 4A
√

3
ℓ2

1 + ℓ2
2 + ℓ2

3
(5.1)

where A: is the triangle area, ℓ: are the triangle edge lengths. Other definition of

the triangle quality factor exist, but typically produce similar results are (5.1). A
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Figure 5.1. Mesh statistics showing histograms of the triangle quality factor and
edge electrical lengths for frequencies 250MHz, 500MHz, 1GHz.

quality factor of Q = 1 is ideal as it represents an equilateral triangle, that has very

good approximation properites, while a factor of Q → 0 is a sliver-like triangle, that is

undesirable as it has very poor approximation properties. Generally it is held that, if a

triangle has Q < 0.6 it is considered to be of poor quality, [87] and thus it is advisable

to be avoided in FEM or BEM commutations because the approximation properties

are deteriorated, a phenomenon that is not related to integration approximation.

However, in real life scenarios poor quality meshes like this may arise, and thus we

have decided to use this challenging case as a benchmark. Figs. 5.1bb, 5.2b show

histograms of the triangle quality factor of the mesh’s triangles and the edge electrical

length for 250MHz, 500MHz and 1GHz. In Fig. 5.1b about 20% of triangles has

triangle quality factor Q = 0.98 indicating a very good mesh quality.

In this section, the various versions of SIBI are compared to two singularity sub-

tractions rules, as shown for example in figures starting with Fig. 5.3. The first is

a typical singularity subtraction rule of (7, 7, 73, 1). The quadruplets indicate the

number of samples in the inner and outer quadrature rules of the subtracted term,
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Figure 5.2. Mesh statistics showing histograms of the triangle quality factor and
edge electrical lengths for frequencies 4GHz, 8GHz.

followed by the outer quadrature rule of the analytical term and lastly by the order

of singularity subtraction (similar performance has been observed when compared to

second order singularity subtraction). The second rule is a ’high accuracy’ rule with

(73, 73, 73, 1). In these plots red, blue and green lines represent how frequently a par-

ticular error (horizontal axis) occurred in the mesh. This error is the relative error for

all BEM matrix entries that involve singular integration (common triangle or edge,

depending on the case plotted). The reference evaluate is considered a singularity

subtraction method with 2 subtraction terms and quadruple perversion integrations

i.e. (166, 166, 166, 2). These type of plots, are considerably more comprehensive that

the typical ones found in literature, because it gives a picture of the error for all

singular interactions in the mesh, including one with poor quality triangles, typically

presented as tails in those distributions. Vertical dashed lines of lighter hue show the

mean value of each method. In the error histograms for the EFIE common triangle

case, shown in Fig. 5.3 the proposed approach is two orders of magnitude more accu-

rate, while only the maximum error of the higher order singularity subtraction rule
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(73, 73, 73, 1) is a little better than that of the proposed. The case of delayed sparse

grids, shown in Fig. 5.4 further improves the accuracy of the proposed method, by

one to two orders of magnitude.

The performance of the SG-SIBI is significantly degraded in common edge cases,

due to the higher dimensionality of the interpolation problem; as shown in Fig. 5.5a,

5.11a the accuracy of the proposed method is not as good as that of the singularity

subtraction rules, although it is still at an acceptable level of about 3 − 4 decimal

digits in average. The delayed sparse grids SIBI (DSG-SIBI), shown in Fig. 5.6a,

5.12a does not improve the accuracy.

The tensor train SIBI (TT-SIBI) approach outlined in Chapter 4 however, has

imporved accuracy. Results of TT-SIBI are shown in Figs. 5.9a, 5.10a, 5.15a, 5.16a.

For all these cases the TT-SIBI has similar accuracy as singularity subtraction and

in some outperforms it. But it is noted that the tails (worst quality triangles) are

still a bit heavier than singularity subtraction indicating that in these cases TT-SIBI

should be used with some caution. The tensor Tucker decomposition approach shown

in Figs. 5.8, 5.14 shows a similar improvement. In the MFIE case, which can be

seen in Fig. 5.5b, 5.11b, the proposed method outperforms singularity subtraction

regarding accuracy and an improvement of up to one order of magnitude in both

average and maximum error is achieved. This fact is likely attributed to the stronger

singular behavior of the integrands, which makes accurate integration all the more

challenging. Note that in the case of MFIE coplanar common edge interactions yield

a zero element matrix and thus these interactions are filtered out of the error his-

tograms, which is why the number of samples differ from left to right in Fig. 5.5,

5.11. Moreover, the proposed method handles near-coplanar interactions better than

singularity subtraction and is generally about an order of magnitude more accurate.

Delayed sparse grids, shown in Fig. 5.6b, 5.12b, hardly improves accuracy, while
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tensor train, shown in Fig. 5.9b, 5.10b, 5.15b, 5.16b, can improve accuracy up to one

order of magnitude.

In this section we are comparing the computational performance of the various

SIBI implementations with the singularity subtraction methods outlined in the above.

In the Tables 5.1, 5.2 the proposed method is compared in terms of computational and

memory cost; the average and maximum error. “Memory” refers to the loaded library

size of the proposed method given in MB, while “time”, refers to the average run time

to perform one singular integral normalized by the average run time to perform one

far-field (regular) integral evaluated by a 7-point inner, 7-point outer (7, 7) Gauss

quadrature rule. For example t = 2[tF F ] is two times slower than the (7, 7) Gaussian

quadrature rule. This normalization is used to factor out the computer hardware

and performance, thus providing a more universal benchmark metric. Note that on

each column the best entry/method with regards to average error, maximum error,

memory or computation cost is shown in bold. The tables show that in the EFIE

common triangle case, the delayed sparse grids SIBI is the most efficient method. In

comparison to the state-of-the-art, although the maximum error is almost unchanged,

the average error is about 1 − 2 decimal digits improved and the computational cost

improvement is over 200 fold, while the memory cost of 2.2MB is negligible. Note

that the proposed method is about 4 − 6 times faster than even the far-field rule!

Since SIBI’s performance depends on the parametrization dimension, the method is

expected to perform worst for the common edge cases that involve 6D interpolation.

For the both EFIE and MFIE common edge case time and memory cost have increased

significantly, while the accuracy has decreased. However, the proposed approach still

offers an acceptable accuracy of 4 decimal digits in average (about 1 decimal digit

lower than state-of-the-art) at a computational time that is about 47 times faster than

that of the typical singularity subtraction rule. Delayed sparse grids further improve

computational cost, but do not solve the accuracy problem, whereas tensor train SIBI
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(TT-SIBI) significantly improves the accuracy, by about one order of magnitude at

the cost of somewhat slower runs. In addition, the memory cost increases as well with

tolerance, while the accuracy improvement from 10−4 to 10−5 is not too great. The

Tucker decomposition SIBI (TD-SIBI) on the other hand offers marginal accuracy

improvement and slower run times. Thus, in the case of EFIE common edge the most

efficient method appears to be tensor train SIBI with tolerance 10−4, since it offers

accuracy comparable to state-of-the-art singularity subtraction at an improved by

about 20 times fold computational cost. In the case of MFIE common edge however,

despite the higher dimensionality all versions of SIBI (SG-SIBI, DSG-SIBI, TT-SIBI)

improve accuracy by about 1 decimal digit, as well as computational cost by 24 times

fold. It is noted that the accuracy of the singularity subtraction rules has degraded

severely, likely due to the stronger singular behavior of the integrand. Similarly to

EFIE common edge case the delayed sparse grids approach does not improve accuracy,

but it does improve computational cost and memory, while tensor train SIBI improves

accuracy, while still offering better run times that singularity subraction.

To conclude, the optimal SIBI method for each case is as follows:

• DSG-SIBI for EFIE common triangle case, is the the fastest and most accurate

method

• TT-SIBI (tol = 10−4) for EFIE common edge case, is the best middle line

between speed and accuracy; a little slower than SG-SIBI but considerably

more accurate

• DSG-SIBI for MFIE common edge cas, is the fastest and most accurate method
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5.2 Results for Start-to-End BEM computation for a PEC

Sphere
In this section various sizes (0.2λ, 2λ, 12λ) are considered. The geometry was

chosen because the analytical Mie series solution is known, [4]. The proposed SIBI is

integrated with an EFIE, MFIE and combined field IE (CFIE) BEM and compared

with a singularity subtraction of (7, 7, 82, 3). In the proposed approach, the common

triangle cases were computed with delayed sparse grid SIBI, the common edge EFIE

cases with tensor train SIBI of tolerance 10−4, and common edge MFIE with Sparse

Grid SIBI.

Figures 5.17, 5.18 and 5.19 show the radar cross section of the sphere with sizes

0.2λ, 2λ and 12λ respectively. On the left is the result of the analytical solution, Mie

series and on the right is the relative error of the BEM result, with respect to the

analytical solution, using the singularity subtraction BEM and SIBI BEM. The results

show that the BEM result is 2−3 decimal digits accurate, while the conventional and

proposed approach yield about the same accuracy. In the previous sections the results

showed that the proposed approach is almost as accurate, if not more accurate than

the state-of-the-art singularity subtraction and therefore this similarity in results is

to be expected. Keep in mind that the proposed approach cannot deal with all near

field singular interactions yet; one such example is the common vertex case, which

would require 9 − 10D interpolation and therefore poses an even bigger challenge

than common edge (6D interpolation). In Table 5.3 the proposed approach solution

of the sphere problem is compared to the conventional one in terms accuracy, memory

and computation time. In this case time refers to the near field assembly time and

was recorded in seconds, when the problems were run sequentially on the hardware

Intel(R) Xeon(R) Gold 6140 CPU @2.3GHz, with 190.5GB RAM, [86]. It is noted that

the far field were computed with the single level Fast Multipole Method (FMM), [25]

for the problems of sphere size 2λ, 12λ. The memory cost is increased by a small
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amount in the proposed approach, which becomes negligible with increasing problem

size, while the assembly / setup time is improved by about 11 − 20%; this time

improvement surprisingly becomes quite smaller, around 2 − 3% in the CFIE case

however.

In conclusion, SIBI improves the accuracy and speed of singular integration in

the cases of common triangle and common edge interactions. SIBI is general, in that

it can compute the integrals of any kernel and even more for any arbitrarily shaped

triangle or pair of triangles, regardless of the triangle quality factor. It is likely that

SIBI is more accurate than conventional integration for poor quality triangles; keep

in mind that the reference for these integrations was a high accuracy conventional

method. However, the cost of SIBI scales exponentially with the dimensionality of

the parametrized domain, deteriorating its performance.
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Figure 5.3. EFIE common triangle case for Sparse Grid SIBI (SG-SIBI). Plots
show histograms of the relative error in each entry of the BEM matrix that involves
common triangle integration. The SG-SIBI is compared with a ’typical’ version of
singularity subtraction using (7, 7, 73, 1) rule (see text for details) and a ’high accu-
racy’ (73, 73, 73, 1) rule. a) drone UAV mesh with average length λ/10 (500MHz) b)
air intake (cavity) mesh with average length λ/30 (4GHz).
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Figure 5.4. EFIE common triangle case for Delayed Sparse Grid SIBI (DSG-
SIBI). Plots show histograms of the relative error in each entry of the BEM matrix
that involves common triangle integration. The DSG-SIBI is compared with a ’typical’
version of singularity subtraction using (7, 7, 73, 1) rule (see text for details) and a
’high accuracy’ (73, 73, 73, 1) rule. a) drone UAV mesh with average length λ/10
(500MHz) b) air intake (cavity) mesh with average length λ/30 (4GHz).
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Figure 5.5. Common edge case for Sparse Grid SIBI (SG-SIBI) for Drone
UAV problem. Plots show histograms of the relative error in each entry of the BEM
matrix that involves common edge integration. (a) EFIE common edge case. (b)
MFIE common edge case.
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Figure 5.6. Common edge case for Delayed Sparse Grid SIBI (DSG-SIBI) for
Drone UAV problem. Plots show histograms of the relative error in each entry of the
BEM matrix that involves common edge integration. (a) EFIE common edge case.
(b) MFIE common edge case.
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Figure 5.7. Common edge case for Tucker decomposition SIBI (TD-SIBI)
for Drone UAV problem. Decomposition core used is {5, 4, 4, 4, 4, 5}. Plots show
histograms of the relative error in each entry of the BEM matrix that involves common
edge integration. (a) EFIE common edge case. (b) MFIE common edge case.
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Figure 5.8. Common edge case for Tucker decomposition SIBI (TD-SIBI)
for Drone UAV problem. Decomposition core used is {6, 6, 6, 6, 6, 6}. Plots show
histograms of the relative error in each entry of the BEM matrix that involves common
edge integration. (a) EFIE common edge case. (b) MFIE common edge case.
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Figure 5.9. Common edge case for Tensor Train SIBI (TT-SIBI) for Drone UAV
problem. Decomposition tolerance used is 10−4. Plots show histograms of the relative
error in each entry of the BEM matrix that involves common edge integration. (a)
EFIE common edge case. (b) MFIE common edge case.
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Figure 5.10. Common edge case for Tensor Train SIBI (TT-SIBI) for Drone
UAV problem. Decomposition tolerance used is 10−5. Plots show histograms of the
relative error in each entry of the BEM matrix that involves common edge integration.
(a) EFIE common edge case. (b) MFIE common edge case.
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Figure 5.11. Common edge case for Sparse Grid SIBI (SG-SIBI) for Air Intake
(cavity) problem. Plots show histograms of the relative error in each entry of the
BEM matrix that involves common edge integration. (a) EFIE common edge case.
(b) MFIE common edge case.
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(b)

Figure 5.12. Common edge case for Delayed Sparse Grid SIBI (DSG-SIBI)
for Air Intake (cavity) problem. Plots show histograms of the relative error in each
entry of the BEM matrix that involves common edge integration. (a) EFIE common
edge case. (b) MFIE common edge case.
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(b)

Figure 5.13. Common edge case for Tucker decomposition SIBI (TD-SIBI)
for Air Intake (cavity) problem. Decomposition core used is {5, 4, 4, 4, 4, 5}. Plots
show histograms of the relative error in each entry of the BEM matrix that involves
common edge integration. (a) EFIE common edge case. (b) MFIE common edge
case.
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(b)

Figure 5.14. Common edge case for Tucker decomposition SIBI (TD-SIBI)
for Air Intake (cavity) problem. Decomposition core used is {6, 6, 6, 6, 6, 6}. Plots
show histograms of the relative error in each entry of the BEM matrix that involves
common edge integration. (a) EFIE common edge case. (b) MFIE common edge
case.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2
3
4
5
6
7
8
9

10

11

12
13
14
15

BEM Element Matrix Entry Relative Error

D
e
n
s
it
y
 o

f 
O

c
c
u
re

n
c
e
s
 [
%

]

Air Intake (cavity) (λ / 30), EFIE CE, TT tol = 10−4
 SIBI

 

 

Proposed

Singularity Subtraction (7,7,73,1)
Singularity Subtraction (73,73,73,1)

(a)

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 1000
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BEM Element Matrix Entry Relative Error

D
en

si
ty

 o
f O

cc
ur

en
ce

s 
[%

]

Air Intake (cavity) (λ / 30), MFIE CE, TT tol = 10−4 SIBI

 

 

samples:22956

Proposed
Singularity Subtraction (7,7,73,1)
Singularity Subtraction (73,73,73,1)

(b)

Figure 5.15. Common edge case for Tensor Train SIBI (TT-SIBI) for Air Intake
(cavity) problem. Decomposition tolerance used is 10−4. Plots show histograms of the
relative error in each entry of the BEM matrix that involves common edge integration.
(a) EFIE common edge case. (b) MFIE common edge case.
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(b)

Figure 5.16. Common edge case for Tensor Train SIBI (TT-SIBI) for Air Intake
(cavity) problem. Decomposition tolerance used is 10−5. Plots show histograms of the
relative error in each entry of the BEM matrix that involves common edge integration.
(a) EFIE common edge case. (b) MFIE common edge case.
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(d)

Figure 5.17. RCS of sphere mesh, size 0.2λ (30MHz) a) Mie series (reference) b)
relative error of EFIE and EFIE-SIBI c) relative error of MFIE and MFIE-SIBI b)
relative error of CFIE and CFIE-SIBI.
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(d)

Figure 5.18. RCS of sphere mesh, size 2λ (300MHz) a) Mie series (reference) b)
relative error of EFIE and EFIE-SIBI c) relative error of MFIE and MFIE-SIBI b)
relative error of CFIE and CFIE-SIBI.
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(d)

Figure 5.19. RCS of sphere mesh, size 12λ (300MHz) a) Mie series (reference) b)
relative error of EFIE and EFIE-SIBI c) relative error of MFIE and MFIE-SIBI b)
relative error of CFIE and CFIE-SIBI.
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Figure 5.20. Current distributon (real part) on PEC sphere when illuminated by
x−polarized plane wave, computed by the analytical Mie series for sizes a) 0.2λ b)
2λ c) 12λ d) BEM matrix condition number of sphere mesh; conventional vs SIBI
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Table 5.3. Error, memory and assembly run time for sphere scattering problem
when singular integrals were computed using SIBI and the singularity subtraction
(7, 7, 166, 3) conventional and proposed methods

Sphere Problem RCS Error Current Error Memory Time
Size Method mean max mean max [MB] [sec]

EFIE 4.3 · 10−3 8.0 · 10−3 9.9 · 10−3 3.7 · 10−2 145 35.3
EFIE - SIBI 4.2 · 10−3 7.8 · 10−3 1.1 · 10−2 5.9 · 10−2 214 31.3

MFIE 5.3 · 10−3 9.2 · 10−3 9.7 · 10−3 2.9 · 10−2 234 79.8
MFIE - SIBI 3.5 · 10−3 7.8 · 10−3 9.7 · 10−3 3.1 · 10−2 472 72.6

CFIE 4.4 · 10−3 7.9 · 10−3 9.7 · 10−3 3.6 · 10−2 267 283.7

0.2λ

CFIE - SIBI 4.4 · 10−3 8.3 · 10−3 9.6 · 10−3 3.6 · 10−2 559 286.9
EFIE 5.4 · 10−3 3.5 · 10−1 1.0 · 10−1 7.4 · 10−1 116 18.4

EFIE - SIBI 5.4 · 10−3 3.3 · 10−1 1.0 · 10−1 7.2 · 10−1 197 13.6
MFIE 2.5 · 10−2 9.4 · 10−1 1.0 · 10−1 7.2 · 10−1 286 79.5

MFIE - SIBI 2.5 · 10−2 9.4 · 10−1 1.0 · 10−1 7.1 · 10−1 365 73.7
CFIE 9.9 · 10−3 4.1 · 10−1 1.0 · 10−1 6.7 · 10−1 173 194.7

2λ

CFIE - SIBI 1.0 · 10−2 4.5 · 10−1 1.0 · 10−1 6.7 · 10−1 478 187.6
EFIE 2.2 · 10−3 2.0 · 10−2 9.6 · 10−2 3.3 8672 1018.9

EFIE - SIBI 2.3 · 10−3 2.0 · 10−2 9.6 · 10−2 3.1 9404 878.9
MFIE 5.8 · 10−2 4.7 · 10−1 1.8 · 10−1 10.7 10401 2006.9

MFIE - SIBI 5.8 · 10−2 4.7 · 10−1 1.8 · 10−1 10.7 11061 1813.2
CFIE 4.8 · 10−3 1.0 · 10−1 8.9 · 10−2 1.3 13811 12718.7

12λ

CFIE - SIBI 4.8 · 10−3 8.5 · 10−2 8.9 · 10−2 1.3 14590 12468.2
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CHAPTER 6

EPILOGUE

Efficient and accurate singular integration encountered in the BEM solution of

integral equations (EFIE, MFIE) is a challenging research topic. Even the most

prominent of techniques, the state-of-the-art, such as singularity subtraction, singu-

larity cancellation and full 4D integral evaluation greatly compromise computational

cost/speed in favor of decent accuracy. This dissertation proposes an unconventional

approach, where construction of universal libraries/look-up tables of integrals pre-

computed to high precision, while disregarding computational cost is sought at an

off-line stage, that is performed once. Subsequently the integral is recovered by means

of multidimensional interpolation, which governs the computational cost as well as

the accuracy of the overall method. This singular integration by interpolation (SIBI)

apporach was combined with advance multidimensional interpolation/sampling steer-

ages such as sparse grids, delayed sparse grids, low-rank tensor train decompositions

to accelerate the 6D integrations encountered in the common edge singular case.

Moreover, all the memory costs due to the loaded libraries reported are generally

not significant. However, the speed and accuracy of SIBI is superior to conventional

approaches for the common triangle and common edge cases. The Tensor Train SIBI

was found to be much more efficient than all other options for the common edge EFIE

case whereas the delayed sparse grids and sparse grids where best for the common

triangle EFIE and common edge MFIE respectively. An interesting observation about

the proposed approach is that using sparse grids the performance is mostly controlled

via the interpolation order, while using the tensor decomposition that control param-
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eter is the decomposition tolerance. Specifically, the interpolation order controls the

full tensor interpolation accuracy (maximum), while the decomposition tolerance con-

trols how close the interpolation accuracy is to said maximum accuracy at the price of

computational cost. Consequently, in future work a higher interpolation order (p = 3

or p = 4) could be used for the full tensor in the tensor decomposition approach,

which could potentially greatly increase the accuracy without significantly affecting

the computational cost; in practice building such a library could take months though.

Additionally in future work, the h refinement of the utilized domain partitioning

for the tensor decomposition approach could be increased to significantly improve

accuracy compromising only memory somewhat, but not the computational cost.

The performance of the proposed approach, using its optimal implementations

(Delayed) Sparse Grids and Tensor Train was also compared to that of the conven-

tional approach to solve the electromagnetic scattering problem of a sphere. In the

former the near field singular interactions were computed by the optimal SIBI im-

plementation and in the latter by a state-of-the-art singularity subtraction. Both

approaches showed similar accuracy and memory cost for the radar cross section with

regards to the analytical Mie series solution, but the proposed approach improved

computation time by about 11 − 20%.

In future work different singular integration rules can be used to construct the

universal libraries. It was found that the smoothness of the integral functions de-

pended on the accuracy of the integration rule. Thus, a rule with up to machine

precision accuracy could yield significant improvement to the performance of SIBI.

The principle of SIBI is general and could be applied to different kernels, therefore

future research in this topic could also involve cases such as lossy media, or used with

second order basis function or used with curvilinear triangles. In addition, research

into interpolation methods that scale slowly with dimension could allow SIBI to be

extended to higher dimensionality cases such as the common vertex case. An efficient
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automatic implementation of iterative hp refinement of the parametrization domain

could improve the performance of SIBI, especially in the case of Tensor Train, where

the decompositions were fairly costly and tedius without the use of an in-house Tensor

Train decomposition code.
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APPENDIX A

VECTOR TO SCALAR INTEGRALS

In the case of EFIE the BEM element matrix integrals in (2.1), can easily be expressed

as integrals where the basis functions are scalar rather than vectorial (see Chapter

2). Substituting the basis functions αααt,ααα and using ζ0 + ζ1 + ζ2 = 1 we get:

Z (e) L
mn = 1

4A2

2∑
p=0
p̸=m

2∑
q=0
q ̸=n

cpqIpq − dmn

k2

2∑
p=0

2∑
q=0

Ipq

where cpq = s(m, p) s(n, q)ℓℓℓf(m,p) · ℓℓℓf(n,q) and

s(m, p) =


(−1)p+1, m = 0

(−1)p/2+1, m = 1

(−1)p, m = 2

(A.1)

f(m, p) =


3|m− p| − 1, m+ p = 1

|m− p| − 1, m+ p ̸= 1
(A.2)

dmn = ĥhhm+1

hm+1
· ℓℓℓm−1

ĥhhn+1

hn+1
· ℓℓℓn−1 − ĥhhm+1

hm+1
· ℓℓℓm−1

ĥhhn−1

hn−1
· ℓℓℓn+1−

ĥhhm−1

hm−1
· ℓℓℓm+1

ĥhhn+1

hn+1
· ℓℓℓn−1 + ĥhhm−1

hm−1
· ℓℓℓm+1

ĥhhn−1

hn−1
· ℓℓℓn+1 (A.3)

and
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Ipq =
�

T

ζp(r)
�

T ′
ζq(r′) e

−jk|r−r′|

4π|r − r′|
dr′2dr2 (A.4)

where ℓℓℓm, ℓℓℓn are the edge vectors, hhhm,hhhn are the height vectors and ζp(r), ζq(r′) are

the barycentric coordinates of the triangles T, T ′ respectively.

For example for m = 0, n = 1 ⇒ p = {�0, 1, 2}, q = {0, �1, 2}

The first term after substituting the basis function ααα0,ααα1 is:

�
T

1
2A(ζ1ℓℓℓ2 − ζ2ℓℓℓ1) ·

�
T ′

1
2A(ζ2ℓℓℓ0 − ζ0ℓℓℓ2)G(r, r′)dr′2dr2 =

�
T

�
T ′

1
4A2 (ζ1ζ2ℓℓℓ2 · ℓℓℓ0 − ζ1ζ0ℓℓℓ2 · ℓℓℓ2 − ζ2ζ2ℓℓℓ1 · ℓℓℓ0 + ζ2ζ0ℓℓℓ1 · ℓℓℓ2)G(r, r′)dr′2dr2 =

1
4A2

( c12︷ ︸︸ ︷
ℓℓℓ2 · ℓℓℓ0 I12

c10︷ ︸︸ ︷
−ℓℓℓ2 · ℓℓℓ2 I10

c22︷ ︸︸ ︷
−ℓℓℓ1 · ℓℓℓ0 I22 +

c20︷ ︸︸ ︷
ℓℓℓ1 · ℓℓℓ2 I20

)

where

G(r, r′) = e−jk|r−r′|

4π|r − r′|

The second term after substituting the basis function ααα0,ααα1 is:

�
T

�
T ′

1
4A2

ĥhh1

h1
· ℓℓℓ2

ĥhh2

h2
· ℓℓℓ0 − ĥhh1

h1
· ℓℓℓ2

ĥhh0

h0
· ℓℓℓ2 − ĥhh2

h2
· ℓℓℓ1

ĥhh2

h2
· ℓℓℓ0 + ĥhh2

h2
· ℓℓℓ1

ĥhh0

h0
· ℓℓℓ2

G(r, r′)dr′2dr2

= dmn

�
T

�
T ′
G(r, r′)dr′2dr2

Then after substituting ζ0 + ζ1 + ζ2 = 1 in both source and test integrals:

dmn

�
T

(ζ0 + ζ1 + ζ2)
�

T ′
(ζ0 + ζ1 + ζ2)G(r, r′)dr′2dr2 = dmn

2∑
p=0

2∑
q=0

Ipq
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