
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

August 2023

Emerging Trustworthiness Issues in Distributed Learning Systems Emerging Trustworthiness Issues in Distributed Learning Systems

Hamid Mozaffari
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Recommended Citation Recommended Citation
Mozaffari, Hamid, "Emerging Trustworthiness Issues in Distributed Learning Systems" (2023). Doctoral
Dissertations. 2834.
https://doi.org/10.7275/35000092 https://scholarworks.umass.edu/dissertations_2/2834

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/35000092
https://scholarworks.umass.edu/dissertations_2/2834?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2834&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

EMERGING TRUSTWORTHINESS ISSUES IN
DISTRIBUTED LEARNING SYSTEMS

A Dissertation Presented

by

HAMID MOZAFFARI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2023

Manning College of Information and Computer Sciences

© Copyright by Hamid Mozaffari 2023

All Rights Reserved

EMERGING TRUSTWORTHINESS ISSUES IN
DISTRIBUTED LEARNING SYSTEMS

A Dissertation Presented

by

HAMID MOZAFFARI

Approved as to style and content by:

Amir Houmansadr, Chair

Daniel Sheldon, Member

Yair Zick, Member

Hossein Pishro-Nik, Outside Member

Ramesh K. Sitaraman, Associate Dean for
Educational Programs and Teaching
Manning College of Information and Computer
Sciences

DEDICATION

To the intricate dance of neurotransmitters, with a focus on the leading role played by

dopamine in our lives.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my PhD

advisor, Dr. Amir Houmansadr, for his continuous guidance, encouragement, and

mentorship throughout this journey. His expertise and dedication have been invaluable

in shaping this research, and I am grateful for his support. I would also like to extend

my appreciation to my committee members, Dr. Daniel Sheldon, Dr. Yair Zick, and

Dr. Hossein Pishro-Nik, for their insightful feedback on the work presented in this

thesis. Their comments and suggestions have contributed significantly to the quality

of this dissertation.

I am incredibly grateful for the friendships that have been made throughout this

journey. To Anahita, Alireza, Hamed, Arian, Soha, Pegah, Sadegh, AliBana, Virat,

Milad, Shahrzad, Hadi, Amirhossein, and many others who have become my family

away from home, thank you for the laughter, support, and camaraderie that made

this experience all the more enjoyable and memorable.

Lastly, I would like to dedicate this work to my family, who has been a constant

source of love and support throughout my life. To my Dad, Mom, and Amir, I cannot

thank you enough for your unwavering belief in me and for always being there to

provide encouragement and advice. Your love and support have been the pillars that

have held me up during this journey, and I am eternally grateful for everything you

have done for me.

v

ABSTRACT

EMERGING TRUSTWORTHINESS ISSUES IN
DISTRIBUTED LEARNING SYSTEMS

MAY 2023

HAMID MOZAFFARI

B.Sc., K. N. TOOSI UNIVERSITY OF TECHNOLOGY

M.Sc., AMIRKABIR UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Amir Houmansadr

A distributed learning system allocates learning processes onto several workstations

to enable faster learning algorithms. Federated Learning (FL) is an increasingly popular

type of distributed learning which allows mutually untrusted clients to collaboratively

train a common machine learning model without sharing their private/proprietary

training data with each other. In this dissertation, we aim to address emerging

trustworthiness issues in distributed learning systems, particularly in the field of FL.

First, we tackle the issue of robustness in FL and demonstrate its susceptibility by

presenting a comprehensive analysis of the various poisoning attacks and defensive

aggregation rules proposed in the literature and connecting them under a common

framework. To address this issue, we propose Federated Rank Learning (FRL) which

reduces the space of client updates from a continuous space of float numbers in

vi

standard FL to a discrete space of integer values, limiting the adversary’s options for

poisoning attacks.

Next, we address the privacy concerns in FL, including access privacy and data

privacy. An adversarial server in FL gets information about the data distribution of a

target client by monitoring either I) local updates that the target submits throughout

the FL training or II) the access pattern of the target, which can be privacy sensitive

in many real-world scenarios. To preserve access privacy, we design Heterogeneous

Private Information Retrieval (HPIR), which allows clients to fetch their specific model

parameters from untrusted servers without leaking any information. We believe that

HPIR will enable new application scenarios for private distributed learning systems,

as well as improve the usability of some of the known applications of PIR. To preserve

data privacy, we show that local rankings leak less information about private training

data. We conduct a comprehensive investigation on the privacy of rankings in FRL

to measure data leakage compared to weight parameter updates in standard FL in

presence of the state-of-the-art white-box membership inference attack.

Finally, we address the issue of fairness in FL where a single model cannot represent

all clients equally due to heterogeneity in their data distributions. To alleviate this

issue, we propose Equal and Equitable Federated Learning (E2FL). E2FL produces

fair federated learning models by preserving both equity and equality among the

participating clients based on learning on parameter rankings where multiple global

models are learned so that each group of clients can benefit from their personalized

model.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

CHAPTER

1. INTRODUCTION . 1

1.1 Trustworthiness of distributed learning systems . 2

1.1.1 Robustness . 3
1.1.2 Privacy . 4
1.1.3 Fairness . 5

1.2 Contributions . 5

1.2.1 Robustness: Fake vs. compromised clients in federated
learning . 6

1.2.2 Robustness: Robust federated learning by training on
parameter ranks . 7

1.2.3 Private access: Heterogeneous Private Information Retrieval 9
1.2.4 Privacy analysis of federated rank learning . 11
1.2.5 Fair federated learning by training on parameter ranks 11

2. FAKE OR COMPROMISED?
MAKING SENSE OF MALICIOUS CLIENTS IN
FEDERATED LEARNING . 13

2.1 Background . 15

2.1.1 Diffusion models . 15

viii

2.2 Types of Byzantine-robust aggregation rules . 15

2.2.1 Non-robust AGR . 16

2.2.1.1 FedAVG . 16

2.2.2 Robust AGRs agnostic to FL poisoning . 17

2.2.2.1 Median . 17
2.2.2.2 Norm-Bounding . 17

2.2.3 Robust AGRs that adapt to FL poisoning . 18

2.2.3.1 Multi-Krum . 18
2.2.3.2 Trimmed-Mean . 18

2.3 Types of poisoning adversaries . 18

2.3.1 Adversary with fake clients . 19
2.3.2 Adversary with compromised clients . 20

2.3.2.1 FedAVG . 21
2.3.2.2 Mutli-Krum . 21
2.3.2.3 Trimmed-Mean and Median . 21
2.3.2.4 Norm-Bounding . 22

2.3.3 Our hybrid adversary model . 22
2.3.4 Comparing the costs of different attacks . 24

2.4 Experiment setup . 25

2.4.1 Datasets and hyperparameters . 26
2.4.2 Evaluation metric . 26
2.4.3 Generating synthetic data using DDPM . 27

2.5 Empirical results . 30

2.5.1 Attacking agnostic robust AGRs . 30
2.5.2 Attacking adaptive robust AGRs . 34
2.5.3 Data poisoning with label flipped data samples 37

2.6 Conclusions . 39

3. ROBUST FEDERATED LEARNING VIA LEARNING ON
PARAMETER RANKS . 40

3.1 Related works . 42

ix

3.2 Preliminaries . 43

3.2.1 Edge-popup algorithm . 43

3.3 Our proposal: Federated Rank Learning . 45

3.3.1 Server: Initialization (only for round t = 1) 46
3.3.2 Clients: Calculating the ranks (for each round t) 48
3.3.3 Server: Majority vote (for each round t) . 49
3.3.4 Additional details of FRL’s optimization . 49

3.4 Robustness of FRL to poisoning . 52

3.4.1 Theoretical analysis of FRL’s robustness . 54

3.5 Communication efficiency of FRL . 56
3.6 Subnetwork connectivity in FRL . 59

3.6.1 Quantifying the number of possibilities that the subnetwork
becomes disconnected . 59

3.6.2 What does happen if the subnetwork becomes disconnected? 61
3.6.3 FRL against an adversary who wants to make the subnetwork

disconnected . 64

3.7 Experimental setup . 65

3.7.1 Datasets and their distribution . 65
3.7.2 Hyperparameters . 65
3.7.3 Model architectures . 67
3.7.4 Baseline FL algorithms . 67

3.8 Empirical evaluation . 69

3.8.1 Analyses of robustness to poisoning . 69
3.8.2 Communication cost analysis . 72
3.8.3 Comparison with näıve extension of edge-popup algorithm to

FL . 73
3.8.4 FRL for text classification . 75
3.8.5 FRL against targeted poisoning . 76

3.8.5.1 Existing FL backdoor attacks . 77
3.8.5.2 Evaluation setup . 78
3.8.5.3 Evaluation results . 79

3.8.6 FRL with larger number of clients . 81
3.8.7 Ablation study . 82

x

3.8.7.1 FRL under different heterogeneous data distribution
methods . 82

3.8.7.2 FRL under different weight initializations 84
3.8.7.3 FRL with varying sizes of subnetworks 86
3.8.7.4 FRL with larger networks . 87
3.8.7.5 FRL with different hyperparameters 88

3.9 Conclusions . 91

4. HETEROGENEOUS PRIVATE INFORMATION
RETRIEVAL . 92

4.1 Background . 94
4.2 Related Works . 96
4.3 Preliminaries . 98

4.3.1 Preliminaries on secret sharing . 98
4.3.2 Key secret sharing designs . 99
4.3.3 Key PIR Designs . 101

4.4 Introducing Heterogeneous PIR . 102

4.4.1 Other potential applications scenarios . 103

4.4.1.1 Privacy from content delivery networks (CDN) 103
4.4.1.2 Private P2P file sharing . 104
4.4.1.3 Query privacy in cache networks 105

4.5 Our PIR-tailored secret sharing algorithm. 106

4.5.1 The differences between secret sharing and PIR-tailored secret
sharing . 107

4.5.2 Algorithm details . 108
4.5.3 Security analysis . 109

4.5.3.1 Security proof . 110
4.5.3.2 Chinese remainder theorem (CRT) 114
4.5.3.3 Multivariable chinese remainder theorem 114

4.6 Sketch of our HPIR protocol . 114
4.7 Our HPIR algorithm (basic version) . 116

4.7.1 Client generates r polynomials . 116
4.7.2 Client generates queries . 117
4.7.3 The servers respond . 118
4.7.4 Reconstructing the records by the client . 118

xi

4.7.5 Communication overhead . 119
4.7.6 Security . 119

4.8 Our HPIR algorithm (complete version) . 119

4.8.1 Communication costs . 123
4.8.2 Security . 124
4.8.3 Overhead comparison to prior work . 125

4.8.3.1 Communication cost . 125
4.8.3.2 Computation Cost . 126

4.9 Implementation . 126
4.10 Conclusions . 132

5. PRIVACY ANALYSIS OF FEDERATED RANK
LEARNING . 133

5.1 Background . 134

5.1.1 Membership inference attack (MIA) . 134
5.1.2 Central differential privacy in FL (CDPFL) 134
5.1.3 Local differential privacy in FL (LDPFL) . 135

5.2 Privacy analysis setup . 137

5.2.1 Membership inference attacks (MIA) . 137
5.2.2 FL setting . 137
5.2.3 Evaluation metrics . 138

5.3 Privacy analysis of FRL vs. FedAvg . 138

5.3.1 Measuring privacy leakage: Local attacker 139

5.3.1.1 Impact of observed epochs . 139
5.3.1.2 Impact of the training size . 141

5.3.2 Measuring privacy leakage: Global attacker 142

5.4 Differential Privacy and FRL . 143

5.4.1 Sensitivity of local rankings . 144
5.4.2 Borda Count Aggregation . 145
5.4.3 Private Borda Count Aggregation . 146
5.4.4 Differential Private FRL (DP-FRL) . 147

5.5 FRL against FL with differential privacy . 147

xii

5.6 Conclusion . 148

6. FAIR FEDERATED LEARNING BY TRAINING ON
RANKS . 150

6.1 Fairness using two lenses: Equity and Equality . 152
6.2 Our design: Equal and Equitable Federated Learning 154

6.2.1 E2FL: Design . 156

6.2.1.1 Server: Initialization phase (only for round t = 1) 156
6.2.1.2 Clients: Calculating the ranks (for each round t) 157
6.2.1.3 Server: Majority Vote (for each round t) 158

6.3 E2FL when group IDs are unknown . 159

6.3.1 Server-side: Rank clustering . 160
6.3.2 Client-side: Lowest loss . 161
6.3.3 Client-side: Entropy of the output . 162

6.4 Experiments . 164

6.4.1 Equality vs Equity via E2FL . 164
6.4.2 E2FL when group IDs are unknown. 167
6.4.3 Fair FL when each client has training data of multiple

groups . 169
6.4.4 Our group inference approaches . 171

6.5 Conclusions . 173

7. CONCLUSION . 174

7.1 Summary . 174
7.2 Future work . 175

7.2.1 FRL with different rank aggregation methods 175
7.2.2 Extending FRL with existing ideas in FL algorithms 176
7.2.3 FL personalization with rankings . 178

BIBLIOGRAPHY . 180

xiii

LIST OF TABLES

Table Page

2.1 Attack impact (Iθ) and maximum test accuracy (AM
θ) of the

Trimmed-Mean for training on CIFAR10 distributed over 1000
initial clients in the presence of different adversaries. We specify
the number of benign, compromised, and injected fake clients
present for each attack. The malicious rate column shows the ratio
of the clients (both compromised and fake) under the control of the
adversary to the total FL clients participating in FL training. We
rank the attacks in terms of their impact on the global model
accuracy, to better illustrate the spectrum of attacks. 35

2.2 Attack impact (Iθ) and maximum test accuracy (AM
θ) of the

Multi-Krum for training on CIFAR10 distributed over 1000 initial
clients in the presence of different adversaries. 36

2.3 Attack impact (Iθ) and maximum test accuracy (AM
θ) of the

Trimmed-Mean for training on FEMNIST distributed over 3400
initial clients in the presence of different adversaries. 37

2.4 Attack impact (Iθ) and maximum test accuracy (AM
θ) of the

Multi-Krum for training on FEMNIST distributed over 3400 initial
clients in the presence of different adversaries. 38

2.5 Data Poisoning attack against FL learning on FEMNIST. The new
samples with flipped labels are generated using DDPM and the
0.5% compromised clients’ data. 38

3.1 In our experiments, we use the following, state-of-the-art model
architectures from [143, 164, 42]. 68

3.2 Comparing the robustness of various FL algorithms: FRL and
Sparse-FRL (SFRL) (in bold) outperform the state-of-the-art
robust AGRs and SignSGD against the strongest of untargeted
poisoning attacks. 70

xiv

3.3 Comparing the accuracy and communication cost of FedAvg, SignSGD,
TopK, FRL and Sparse-FRL (SFRL) with different percentages of
sparsity (in bold). Parentheses in the accuracy column show
standard deviation of the accuracy. 72

3.4 Comparing the robustness of EFL, a näıve edge-popup based FL
(Algorithm 4), with robustness of FRL. 74

3.5 Test accuracies of FRL and FedAvg on IMDB dataset [124] with the
BiLSTM from Table 3.1. 76

3.6 Comparing the robustness of FedAvg and FRL algorithms for large
number of FL clients. 82

3.7 Comparing the performance of FRL and FedAvg in cross-device FL
setting using two non-iid data distribution methods. We distribute
data among 1000 clients with two methods described briefly below;
please check Section 3.8.7.1 for more details. 83

3.8 Comparing the performance of FRL with different random weight
initialization algorithms with the performance of vanilla FedAvg for
cross-device setting. Using Singed Kaiming Constant (UK) as
weight initialization gives the best performance for all the datasets.
. 84

3.9 FRL with larger networks for CIFAR10 and Tiny-ImageNet
distributed over 1000 FL clients. 87

3.10 FRL performance is robust to a wide range of hyperparameters. FRL
performs well on CIFAR10 (distributed non-iid among 1000 clients
using Dirichlet distribution) even under different hyperparameters.
We use the values in bold in our experiments. FedAvg and TopK
are non-robust under any combination of hyperparameters. 89

3.11 The effect of other settings on performance of FRL trained on
CIFAR10 distributed over 1000 clients using Dirichlet distribution.
The bold shows the value we used in our experiments. 90

4.1 List of PIR notations . 94

4.2 List of notations used in secret sharing schemes . 99

4.3 Communication cost comparison (bits) . 125

4.4 Computation cost comparison . 126

xv

5.1 Dataset sizes in the experiments of FRL and FedAVG. 138

5.2 Final test accuracies of different FL algorithms. 138

5.3 The accuracy and TPR of the passive local attacker in the federated
setting when the attacker uses various training epochs. 140

5.4 Attack accuracy and TPR for various sizes of the attacker’s training
dataset. 141

5.5 The accuracy and TPR of the passive global attacker in the federated
setting when the attacker uses various training epochs. 142

5.6 Comparison of utility and privacy leakage for Federated Learning
algorithms - FedAvg, FedAvg with Norm-bounding, LDPFL,
CDPFL, and FRL, on CIFAR100 with ResNet18 model
architecture. 148

6.1 Comparison of equality, equity, and communication cost among various
variants of FLs on FairMNISTRotate with 1000 clients. The
algorithms are ranked based on the respective metric in each
column. 166

6.2 Comparison of utility, equality, and communication cost among
different FL algorithms on FEMNIST using 3400 clients. We also
show the average accuracies for the worst and best 10% of the
clients. 168

6.3 Distribution of training and test samples for male and female groups
on the Adult dataset. 169

6.4 Comparison of fairness between E2FL and other baselines on the Adult
dataset. 170

6.5 Accuracy of group inference in rank clustering approach on
FairMNISTRotate with 1000 clients based on local rankings
learned after two local epochs. Results of the accuracy of
prediction are presented for rankings of individual layers with
varying numbers of parameters. 171

6.6 Comparison of utility, equality, and equity of E2FL with rank
clustering on FEMNIST using 3400 clients. 171

xvi

LIST OF FIGURES

Figure Page

1.1 One round of Federated Learning (FL), including server initialization,
client local training, and server aggregation. 2

1.2 Heterogeneous private information retrieval in federated learning with
multiple global models. 10

2.1 Spectrum of the adversarial models that vary in the number of
compromised clients and the number of fake clients injected into
the FL system. (1) A scenario of fake clients may occur when FL
applications are running on insecure FL platforms, or if we learn an
FL model on Facebook or Twitter users, which can have a large
number of fake accounts. In this scenario, the adversary can easily
introduce fake clients, such as spam bots, into the FL ecosystem;
these fake clients do not have any real data and can manipulate the
updates they send to the central server. (2) A scenario of hybrid
attack may occur when IoT devices participating in FL training,
such as CCTV cameras or WiFi routers. An adversary can buy
zombies from botnets for compromised and fake clients (more
details in Section 2.3.4). (3) A scenario of compromised clients
may occur in FL applications such as Google’s Gboard, Apple’s
Siri, and Webank. In this scenario, the adversary may use
sophisticated techniques such as social engineering, malware
injection, or exploiting software vulnerabilities to compromise a
small percentage of clients. 14

2.2 Our novel hybrid attack pipeline: The adversary of hybrid attack lies
in the middle of the spectrum of FL poisoning adversaries. The
hybrid attack adversary compromises a few real FL clients, trains a
denoising diffusion probability model (DDPM) on their real data,
and generates new synthetic data to solve an optimization to
generate malicious updates to mount strong model poisoning
attacks against the target robust aggregation rules. Finally, the
adversary shares the malicious update with the FL server via the
compromised clients as well as (cheap to inject) fake clients. 23

xvii

2.3 Number of samples for each label when the attacker compromised 0.1%
(1 client), 0.3% (3 clients), and 0.5% (5 clients) in our data
distribution (fixed through all the experiments) for learning
CIFAR10 distributed over 1000 clients. 27

2.4 Airplanes generated by DDPM using different percentages of
compromised client’s data in our hybrid attack. 29

2.5 Attack impact (Iθ) of the Norm-Bounding and Median aggregation
rules in the presence of different adversaries. For hybrid attacks,
we explore the impact of different numbers of compromised clients,
specifically 0.5% (5 clients), 0.3% (3 clients), and 0.1% (1 client) in
CIFAR10 experiments and 0.5% (17 clients), 0.3% (11 clients), and
0.1% (4 clients) in FEMNIST experiments. 31

2.6 Local update norms throughout the FL training on CIFAR10 with
1000 benign clients and 112 fake clients (i.e., the adversary controls
10% of total clients). In this figure, we can see that after FL round
1500, the malicious updates have a more considerable impact on
the aggregation compared to benign updates because they have
larger updates after norm bounding. 34

3.1 The space of client updates. Green circles represent benign updates
and red triangles represent malicious updates. To defend against
poisoning, existing robust AGRs filter the updates by creating a
safe space (continuous ∈ Rd). On the other hand, FRL limits the
choices of clients by enforcing a discrete space of updates (a
permutation of integers ∈ [1, d]). θbg (green square) demonstrates
the aggregated model for benign users, and θmg (red square)
demonstrates the aggregated model considering malicious updates.
Black objects are updates that are ruled out by the server. 41

3.2 A single FRL round with three clients and supernetwork of 6 edges. 47

3.3 Upper bound on the failure probability of Vote(.) function in FRL.
α is the percentages of malicious clients and p is the probability
that a benign client puts a good edge in its top k ranks. 56

3.4 Upload (U) and download (D) Communication cost analysis. The
download cost (D) of all SFRLs would be the same as FRL.
Download communication cost of SignSGD would be the same as
FedAvg too. 58

3.5 Edge-popup (EP) training steps. 62

xviii

3.6 Backdoor examples for different categories of targeted poisoning
attacks on CIFAR10. 77

3.7 FL backdoor poisoning attacks on CIFAR10 distributed over 1000
clients with Dirichlet (β = 1.0) for presence pf adversary in 1000
FL rounds. 80

3.8 Comparing performance of FRL for different subnetwork sizes. k
(x-axis) shows the % of weights that each client is including in its
subnetwork, test accuracy (y-axis) shows the mean of accuracies for
all the clients on their test data. The chosen clients in each round
send all the ranks to the server. FRL with subnetworks of
∈ [40%, 70%] result in better performances. 86

3.9 Comparing the CIFAR10 test accuracy and losses of FRL for different
number of local epochs. 90

4.1 Illustrating how a heterogeneous PIR scheme can enable private
content delivery by CDNs. 104

4.2 Total computation time (s) (i.e., server and client running times) vs.
database sizes (GB) of protocol (complete version) in retrieving one
record with different element sizes. w = 512 provides the least
overhead. 127

4.3 Server processing time (for a degree of heterogeneity of q/1) 128

4.4 Client processing time vs. Database size . 130

4.5 The upload and download overheads for our HPIR (complete version).
We download a 10.95MB file from a 2GB database 131

5.1 Normalized Kendall tau distance of rankings in federated rank learning
(FRL) for the last layer with 2560 ranks over multiple FL
rounds. 145

6.1 An example showing two different FL systems with two goals: equality
(on left) and equity (on right). 153

6.2 A single E2FL round with six clients from three groups and a network
of 6 edges. Note that all the operations in E2FL training are
performed in a layer-wise manner. 157

6.3 FairMNISTRotate: a new dataset to investigate equality and equity in
FL application. 165

xix

6.4 Accuracy of client-side group inference approaches in E2FL on
FairMNISTRotate during the first 300 global epochs. 172

xx

CHAPTER 1

INTRODUCTION

The accuracy of machine learning models is directly proportional to the amount

of training data utilized. With the exponential growth of available data, there has

been a proliferation of new applications of machine learning models, including but

not limited to next word prediction [126], autonomous driving [105], and medical

diagnosis systems [96]. To enhance the efficiency of the learning process, distributed

learning systems have been developed that allocate the learning process across multiple

workstations. These systems distribute the data among the workstations for parallel

learning.

In real-world settings, data is often dispersed across different organizations or

clients, making it necessary to preserve privacy restrictions. To address this, Federated

Learning (FL) has emerged as a prominent research topic in recent years. FL is a

distributed learning paradigm that enables mutually untrusted clients, such as Android

devices, to collaboratively train a shared model, known as the global model, without

explicitly sharing their local training data. Figure 1.1 illustrates one round of FL

training, where the FL server (e.g., a Google server) repeatedly collects model updates

computed by the clients using their local private data. In each round of FL training,

first, the FL server broadcasts the global model to the clients (Figure 1.1- 1). Then

the clients begin to train a local model based on their local private data starting from

the global model (Figure 1.1- 2). After local training, in Figure 1.1- 3 , the server

collects clients’ updates, aggregates them using an aggregation rule (AGR), and finally

1

uses the aggregated updates to tune the jointly trained model (i.e., global model for

next round).

Figure 1.1. One round of Federated Learning (FL), including server initialization,
client local training, and server aggregation.

The shift from centralized architectures to distributed systems has introduced

new trustworthiness challenges. This thesis aims to explore these emerging issues in

distributed learning systems, and FL in particular, and design mechanisms to mitigate

them. To achieve this, I built privacy-preserving, robust, and fair mechanisms on top

of distributed learning systems, and FL in particular, to enhance their trustworthiness.

1.1 Trustworthiness of distributed learning systems

In this section, I identify the emerging trustworthiness challenges in distributed

learning systems in real-world settings. For a distributed learning system to be

trusted, it must meet the following criteria: I) robustness against adversarial inputs,

II) preservation of the privacy of training data, and III) fairness to all participants.

2

1.1.1 Robustness

The threat of poisoning is a significant obstacle to the real-world adoption of FL

in critical tasks [90, 114, 149]. This is the first focus of my work. Federated Learning

algorithms, including FedAvg [126] and FedProx [115], operate on mutually untrusted

clients and servers, making them susceptible to poisoning attacks [90, 149, 28]. A

poisoning adversary can either own or control a few FL clients, known as malicious

clients, and instruct them to share malicious updates with the central server, reducing

the performance of the global model. There are three forms of poisoning attacks in FL:

targeted attacks [23, 157] aim to reduce the utility of the global FL model on specific

test inputs of the adversary’s choice; untargeted attacks [16, 63, 148] aim to reduce the

utility of the global model on arbitrary test inputs; and backdoor attacks [15, 159, 165]

aim to reduce the utility on test inputs containing a specific signal called the trigger.

In my research, I focus on the more severe threat of untargeted poisoning [149], which

affects the majority of FL clients.

Fake or compromised? A fork in the literature Based on how the adversary

introduces malicious clients in the FL ecosystem, existing works on FL poisoning

can be categorized into two major lines of work: 1) a small percentage (<1%) of

“actual” clients are compromised by an adversary, e.g., by taking control of some

compromised mobile devices; 2) a large percentage (>10%) of fake clients are created

and injected into the FL ecosystem, e.g., by creating Sybil accounts or using botnets.

The former category (compromised clients), exemplified by works such as [16, 148],

targets sophisticated, large-scale applications such as Gboard and Siri that have

deployed proper protections against Sybil attacks and botnets. However, these attacks

require compromising actual FL devices, which is costly in practice.

On the other hand, the latter category (fake clients), exemplified by works such

as [35], assumes that the adversary can introduce large numbers of fake clients, such as

spam bots, into the FL ecosystem. Such fake clients cannot be injected in sophisticated

3

applications such as Gboard and Siri as thoroughly discussed by [149]; however, many

FL applications are built on third-party code/software, and hence, vulnerable to such

fake clients.

These two major lines of study are significantly different in terms of their assump-

tions about the adversary, threat model, and the practical settings they represent.

This stark disconnect between the threat model assumptions in current works leads to

confusion about the applicability of a given threat model to the FL setting of interest.

1.1.2 Privacy

In FL, data is located at different clients (e.g., organizations or application users)

who train a common model on their private data while preserving their privacy

restrictions. FL aims to preserve privacy by sharing the trained models instead of the

actual data. There are two aspects of privacy for FL users:

Data Privacy: Membership inference attacks are the most fundamental form of

privacy leakage in FL training. In these attacks, the adversary can determine whether

a specific data sample was used in the private training dataset of a particular user

based on the model updates the target user provides throughout the FL learning

process. It is essential that the trusted distributed learning framework assures the

participating clients that their private data is safe by training a local model on top of

them.

Access Privacy: In some FL frameworks, the user must ask the server to retrieve

personal data. For example, LotteryFL [109] proposes using a personalized subnetwork

training in a large neural network, so each FL client needs only the parameters

of a subnetwork. In this scenario, each client must retrieve a specific subset of

data parameters related to their customized subnetwork instead of retrieving all

parameters. Another example would be the recent line of research [70, 125] where

it proposes learning multiple global models because, due to heterogeneity in clients’

4

data distributions, a single model cannot represent all clients equally. To address

this issue, multiple global models can be learned, and each client asks for the specific

global model that represents its local data better so that each group of clients benefits

from their personalized model. Another aspect of privacy is information leakage about

the access pattern of the target user. The adversary can determine the client data

distribution by monitoring the target’s access pattern. Private access to models in a

distributed learning system is a crucial aspect of trustworthiness, as clients do not

want to leak any information about what they are seeking.

1.1.3 Fairness

The study of algorithmic fairness in FL algorithms is a relatively under-researched

area. In FL, the performance of the global model varies across the network due

to heterogeneity in the data each client possesses. This concern is referred to as

representation disparity [78] and results in unfair performance gaps for participating

clients, i.e., a tail user whose data distribution differs from the majority of the clients

does not receive similar performance guarantees. The majority of existing research

in this area [116, 174, 131, 170, 113, 152] defines FL fairness as providing similar

accuracy across FL clients. Specifically, Li et al. [116] proposed a formal definition for

fairness in FL: a model is more fair when its performance distribution across clients

is more uniform, i.e., when std{Fk(w)}k∈[K] is smaller where std{.} is the standard

deviation and Fk(.) denotes the local objective function of client k ∈ [K].

1.2 Contributions

This dissertation addresses the emerging trustworthiness challenges in distributed

learning systems, with a focus on FL. In this section, I outline my contributions to

each aspect of trustworthiness in these systems.

5

My first contribution focuses on the robustness of FL. I propose a comprehensive

framework for understanding the various poisoning attacks and defensive aggregation

rules (AGRs) in the FL literature. I present a spectrum of adversarial models, rather

than focusing on the extremes of small percentages of compromised clients or large

percentages of fake clients. My framework aims to bridge the gap between existing

works and provide practitioners and researchers with a clear understanding of the

various threat models that need to be considered when designing FL systems. Moreover,

I propose the federated rank learning (FRL) approach, where clients are asked to rank

edges in a randomly initialized network. My results demonstrate that training on

ranks reduces the adversary’s choices to poison the global model.

Next, I investigate the issue of access privacy in FL. To preserve access privacy, I

design the heterogeneous private information retrieval (HPIR) mechanism, allowing

clients to fetch their specific model parameters from untrusted servers without leaking

any information. I also investigate the privacy leakage of local rankings in FRL by

mounting membership inference attacks on them.

The final aspect I investigate is the fairness of the globally trained model in FL.

Due to heterogeneity in clients’ data distributions, a single model cannot represent all

clients equally. To address this challenge, I propose to learn multiple global models,

so that each group of clients benefits from their personalized model. I design a fair

FL based on learning on parameter ranks, ensuring that the global model performs

similarly across different clients.

Specifically, I make the following contributions for each aspect of trustworthiness

in distributed systems:

1.2.1 Robustness: Fake vs. compromised clients in federated learning

The field of FL security is plagued with confusion due to the proliferation of

research that makes different assumptions about the capabilities of adversaries and

6

the threat models they operate under. My work aims to clarify this confusion by

presenting a comprehensive analysis of the various poisoning attacks and defensive

aggregation rules (AGRs) proposed in the literature, and connecting them under a

common framework. To connect existing threat models, I present a hybrid threat

model, which lies in the middle of the spectrum of adversaries, where the adversary

compromises a few clients, trains a denoising diffusion probability model (DDPM) with

their compromised samples, and generates new synthetic data to solve an optimization

for a better attack against different robust aggregation rules. By presenting the

spectrum of FL adversaries, I aim to provide practitioners and researchers with a clear

understanding of the different types of threats they need to consider when designing

FL systems, and identify areas where further research is needed. My work is vital in

providing a clear and concise overview of the current state of the art in FL security

and helping advance the field.

1.2.2 Robustness: Robust federated learning by training on parameter

ranks

I argue that the key factor to the success of poisoning attacks against existing

FL systems is the large space of model updates available to the clients, allowing

malicious clients to search for the most poisonous model updates, e.g., by solving an

optimization problem.

Federated Rank Learning (FRL): I present FRL, a novel FL algorithm that

concurrently achieves the two goals of robustness against poisoning attacks and

communication efficiency. FRL uses a novel learning paradigm called supermasks

training [176, 143] to create edge rankings, which, as we will show, allows FRL to reduce

communication costs while achieving significantly stronger robustness. Specifically,

in FRL, clients collaborate to find a subnetwork within a randomly initialized neural

network which we call the supernetwork (this is in contrast to conventional FL where

7

clients collaborate to train a neural network). The goal of training in FRL is to

collaboratively rank the supernetwork’s edges based on the importance of each edge

and find a global ranking. The global ranking can be converted to a supermask, which

is a binary mask of 1’s and 0’s, that is superimposed on the random neural network

(the supernetwork) to obtain the final subnetwork. For example, in our experiments,

the final subnetwork is constructed using the top 50% of all edges. The subnetwork is

then used for downstream tasks, e.g., image classification, hence it is equivalent to

the global model in conventional FL. Note that in entire FRL training, weights of the

supernetwork do not change.

More specifically, each FRL client computes the importance of the edges of the

supernetwork based on their local data. The importance of the edges is represented

as a ranking vector. Each FRL client will use the edge popup algorithm [143] and

their data to compute their local rankings (the edge popup algorithm aims at learning

which edges in a supernetwork are more important over the other edges by minimizing

the loss of the subnetwork on their local data). Each client then will send their local

edge ranking to the server. Finally, the FRL server uses a novel voting mechanism to

aggregate client rankings into a global ranking vector, which represents which edges

of the random neural network (the supernetwork) will form the global subnetwork.

Intuitions on FRL’s robustness: In traditional FL algorithms, clients send

large-dimension model updates ∈ Rd (real numbers) to the server, providing malicious

clients significant flexibility in fabricating malicious updates. By contrast, FRL clients

merely share the rankings of the edges of the supernetwork, i.e., integers ∈ [1, d],

where d is the size of the supernetwork. This allows the FRL server to use a voting

mechanism to aggregate client updates (i.e., ranks), therefore, providing high resistance

to adversarial ranks submitted by poisoning clients, since each client can only cast

a single vote! Therefore, as we will show both theoretically and empirically, FRL

provides robustness by design and reduces the impact of untargeted poisoning attacks.

8

Furthermore, unlike most existing robust FL frameworks, FRL does not require any

knowledge about the percentages of malicious clients.

Intuitions on FRL’s communication efficiency: In FRL, the clients and

the server communicate just the rankings of the edges in the supernetwork, i.e., a

permutation of indices in [1, d]. Ranking vectors are generally significantly smaller

than the global model. This, as we will show, significantly reduces the upload and

download communication in FRL compared to Federated Averaging (FedAvg) [126],

where clients communicate model parameters, each of 32/64 bits.

1.2.3 Private access: Heterogeneous Private Information Retrieval

Private information retrieval (PIR) is a technique to provide query privacy to

users when fetching sensitive records from untrusted databases. That is, PIR enables

users to query and retrieve specific records from untrusted database(s) in a way

that the serving databases can not identify the records retrieved. PIR algorithms

have been suggested to be used in various application scenarios involving untrusted

database servers [136, 130, 75, 83, 76, 36, 29, 141, 111], from retrieving Tor relay

information [130] to privacy-preserving querying of location services [69] to registering

Internet domains [136].

For example, a hospital company (say, hospital.com) wants to learn multiple models

on the training data of different patients.These models are representing different

diseases or different groups for each disease. It also wants to leverage a CDN provider

(say, Akamai) for hosting its models. The hospital will need to give Akamai access

to the contents of its communications (e.g., by providing Akamai with hospital’s

TLS private keys); while this is necessary to enable Akamai serve hospital’s patients,

unfortunately, this exposes the private information of hospital’s patients to Akamai.

Now Akamai server can get more information about the each patient training data

distribution by models that they are asking to retrieve. A potential solution is using

9

a two-server PIR protocol, in which one PIR server is a CDN edge server (e.g., an

Akamai server), and the other one is hospital’s origin server. However, one of the main

reasons that content publishers (e.g., hospital) use CDNs is to refrain from processing

large volumes of traffic on their own servers. Therefore, for the presented two-server

PIR model to be practical, it needs to impose much lower computation/communication

overheads on hospital’s origin servers, compared to the overheads imposed on the

CDN (Akamai) edge servers. Figure 1.2 shows two steps for retrieving the global

model using HPIR, and submitting the model update for each client.

Figure 1.2. Heterogeneous private information retrieval in federated learning with
multiple global models.

Existing multi-server PIR protocols are homogeneous! The existing body of

work on multi-server PIR considers a setting in which the non-colluding PIR servers

have similar computation and communication constraints. We call such traditional

multi-server PIR protocols homogeneous.

Introducing heterogeneous multi-server PIR. In this thesis, we introduce a

new class of multi-server PIR, which we call heterogeneous PIR (HPIR). An HPIR

10

protocol is a multi-server PIR protocol with asymmetric computation and commu-

nication constraints on its servers, i.e., some of its servers handle higher computa-

tion/communication overheads than the others. We argue that HPIR algorithms

enable new applications for PIR, as well as improve the utility of some of the existing

applications of PIR; this is because HPIR allows the participation of low-resource

entities in running private services.

1.2.4 Privacy analysis of federated rank learning

There are different types of privacy leakages via sharing the trained local model. I

focus on membership inference attack because it is the most fundamental measurement

of privacy leakage. Although there is a large number of research works studying the

privacy leakage of FL with different types of membership inference attacks, there is no

investigation on the information leakage of rankings trained in federate rank learning.

I investigate the privacy leakage of ranking in an FL trained on parameter ranks. My

results show that local rankings of FRL leak less information about the training data

compared to weight parameters in standard FL. This holds true across all scenarios,

from observing the local models (when the FL server is adversary) and aggregated

global model (when the FL clients are adversary) for initial to end and small distance

FL rounds to large-distance FL rounds.

1.2.5 Fair federated learning by training on parameter ranks

A trustworthy system must not only ensure security and privacy preservation but

also promote fairness. Existing fairness definitions and algorithms in centralized ML

cannot be directly extended to FL due to: (I) FL being a multi-party framework that

introduces unique notions of algorithmic bias, and (II) the distinct nature of data

bias and minority groups in FL. To address the well-known accuracy unfairness/bias

among collaborating users, I propose a ranking-based FL approach similar to FRL.

11

In this work, FL fairness is examined from two perspectives: a) Equality, which

aims to provide similar performances for all individual clients, and b) Equity, which

strives to offer comparable performances across all groups of clients (i.e., majority

and minority groups), where a group is defined as a set of clients with similar data

distributions.

Due to the heterogeneity in clients’ data distributions, a single model cannot

adequately represent all clients. A trade-off exists between training one global model

and multiple global models. If one global model is trained, all clients can benefit from

each other’s knowledge, but the model will be biased towards the majority population.

Conversely, training multiple models (e.g., as in IFCA [70], HypCluster [125], and

MOCHA [153]) improves fairness but each global model loses knowledge from excluded

clients. To strike a balance, I present Equal and Equitable Federated Learning (E2FL)

as a novel FL algorithm that achieves both equality and equity. In E2FL, multiple

global models are trained, but in each round, these models are combined into one

global model to leverage the knowledge from all client groups.

The key insight in E2FL involves converting the problem of model weight optimiza-

tion (in standard FL) into the problem of ranking model edges (as in FRL). In E2FL,

each client computes the importance of randomized neural network edges using their

local data, which is represented by a ranking vector. The E2FL server then employs

a majority voting mechanism to aggregate the collected local rankings into multiple

global rankings based on the group index they belong to. Finally, the E2FL server

combines all group rankings into one global ranking for the next round of training.

Applying majority vote on group rankings rather than local rankings aids E2FL in

enforcing equity, as each group has equal influence on the global model. To ensure

equality in E2FL, clients use their group’s global ranking, rather than the overall

global ranking, for downstream tasks, as it better represents the client and its group

members.

12

CHAPTER 2

FAKE OR COMPROMISED?
MAKING SENSE OF MALICIOUS CLIENTS IN

FEDERATED LEARNING

FL is susceptible to poisoning by malicious clients who aim to hamper the accuracy

of the global model by contributing malicious updates during FL’s training process. The

literature on FL poisoning and defensive AGRs is vast, with tens of new papers being

published every month. However, this proliferation of research has created confusion

for practitioners and researchers alike, as each paper makes different assumptions

about the threat model and the capabilities of the adversary.

Presenting a spectrum of adversaries: As opposed to considering two (extreme)

threat models, i.e., compromised and fake (defined in Section 1.1.1), in this chapter,

we fill the gap between these two threat models and present a spectrum of threat

models, as sketched in Figure 2.1. We believe that this is essential to truly understand

the poisoning threat to various types of FL deployments in the real world. We provide

a comprehensive analysis of the different types of poisoning attacks and defensive

AGRs that have been proposed in the literature, and we show how these different

works can be connected by a common framework.

The two ends of the spectrum consist of just compromised and just fake clients.

However, in the middle, there exist adversaries who compromise a few real users and

use their data to mount a larger scale attack using large percentages of fake clients.

We call this a hybrid threat model. Given the quick and broad adoption of FL in

various applications, we believe that the hybrid threat model will be representative

of a very large percentage of FL applications in future. Under the hybrid threat, we

13

1 Fake 2 Hybrid 3 Compromising

Injected Fake ClientBenign Client Compromised Client

Adversarial

Models

LowImpact
 HighHigh High

LowCost
 Low High

Example
 Gboard, Siri, Webank

IoT devices participating

in FL training e.g., CCTV

cameras, WiFi routers

FL applications

running on insecure

FL platforms, Facebook

or Twitter

Figure 2.1. Spectrum of the adversarial models that vary in the number of com-
promised clients and the number of fake clients injected into the FL system. (1) A
scenario of fake clients may occur when FL applications are running on insecure FL
platforms, or if we learn an FL model on Facebook or Twitter users, which can have a
large number of fake accounts. In this scenario, the adversary can easily introduce
fake clients, such as spam bots, into the FL ecosystem; these fake clients do not have
any real data and can manipulate the updates they send to the central server. (2) A
scenario of hybrid attack may occur when IoT devices participating in FL training,
such as CCTV cameras or WiFi routers. An adversary can buy zombies from botnets
for compromised and fake clients (more details in Section 2.3.4). (3) A scenario of
compromised clients may occur in FL applications such as Google’s Gboard, Apple’s
Siri, and Webank. In this scenario, the adversary may use sophisticated techniques
such as social engineering, malware injection, or exploiting software vulnerabilities to
compromise a small percentage of clients.

propose a novel model poisoning attack, called hybrid attack, that first leverages the

data of compromised clients to generate more data using state-of-the-art denoising

diffusion probabilistic models (DDPM). Then it uses existing state-of-the-art model

poisoning attacks to fabricate poisoned model updates for both compromised and fake

clients to share with the server.

14

2.1 Background

2.1.1 Diffusion models

The denoising diffusion probabilistic model (DDPM) [85, 135, 99, 43, 93, 154, 40,

142, 146, 84, 158, 88] is a generative model that aims to learn the underlying structure

of a complex data distribution from a small number of noisy observations. DDPM is

based on the idea of diffusion, which is a process of iteratively exchanging information

between the data points in order to reveal their underlying structure.

To learn the structure of the data distribution, DDPM uses a diffusion process to

transform the given input data into a latent representation. This latent representation

is obtained through a series of diffusive steps, which are defined by a diffusion operator.

At each diffusive step, the data points are transformed by exchanging information

with their neighbors in the data space. This process is repeated until the latent

representation converges to a stable state, which captures the underlying structure of

the data. Once the latent representation is obtained, it can be used to generate new

samples that are similar to the original input data.

One key advantage of DDPM is that it is able to learn the structure of the data

distribution from a small number of observations, even in the presence of noise. This

makes it particularly useful for applications where the data is limited or noisy, such as

in the case of compromised clients in federated learning. By using DDPM to generate

new samples from a small number of compromised clients, an adversary is able to craft

a malicious update for FL poisoning that is representative of the data distribution of

the benign clients.

2.2 Types of Byzantine-robust aggregation rules

In order to make FL robust against malicious clients, the literature has designed

various robust aggregation rules (AGR) [27, 128, 169, 132, 38], which aim to remove or

attenuate the updates that are more likely to be malicious according to some criterion.

15

The existing AGRs for federated learning can be categorized into three categories:

non-robust AGRs, AGRs agnostic to poisoning attacks, and AGRs that adapt to or

are aware of the poisoning attacks in FL ecosystem.

Overall, the choice of aggregation rule in federated learning depends on the specific

requirements of the system and the level of protection against model poisoning attacks

that is desired. non-robust aggregation rules are simple and easy to implement but

may not provide sufficient protection against attacks, while agnostic and adaptive

aggregation rules offer greater protection but may be more complex to implement and

may require additional information about the number of malicious updates.

2.2.1 Non-robust AGR

Non-robust aggregation rules, such as federated averaging (FedAvg) [103, 126],

do not consider the presence of malicious clients in the federated learning ecosystem.

Therefore, such AGRs simply aggregate the model updates received from all clients

by computing a non-robust function of the updates. While these approaches are

generally simpler and easy to implement, they are vulnerable to model and data

poisoning attacks [149, 148, 63, 132]. Examples of such non-robust AGRs include

FedAvg [103, 126], SCAFFOLD [92], and MIME [91].

2.2.1.1 FedAVG

In non-adversarial FL settings, i.e., without any malicious clients, the dimension-

wise Average (FedAvg) [103, 126] is an effective AGR. In fact, due to its efficiency,

Average is the only AGR implemented by FL applications in practice [123, 140].

However, even if there is a single malicious client, it can destroy the global model by

sharing very large local model updates [27].

16

2.2.2 Robust AGRs agnostic to FL poisoning

Robust AGRs, such as Median and Norm-Bounding, are robust in that they aim

to reduce the impact of malicious clients’ updates. But, they are agnostic in that they

do not have any knowledge of the specifics of the attacks, e.g., they do not know the

number of malicious updates in each round. These rules use techniques from robust

statistics, such as outlier removal or clipping the norms of updates, to exclude or

mitigate the impact of malicious updates during the aggregation process. While this

can provide some protection against model poisoning attacks, it may not be sufficient

if the number of malicious updates is large or if the malicious updates are able to

evade detection.

2.2.2.1 Median

Median is a well-known robust statistic that is less sensitive to outlier values. To

compute the coordinate-wise Median [169] of updates, for each of the coordinates of

the update, we compute the median of all values from all client updates. Median AGR

is particularly useful in situations where there may be a small number of malicious

or outlier clients that provide model updates that are significantly different from the

others. By using Median, these outlier model updates will not have as much influence

on the global model as they would with non-robust AGRs, such as FedAvg.

2.2.2.2 Norm-Bounding

This AGR [157] bounds the L2 norm of all submitted client updates to a fixed

threshold τ , with the intuition that the effective poisoned updates should have high

norms. For a threshold τ and an update ▽, if the norm, ||▽||2 > τ , ▽ is scaled by

τ
||▽||2 , otherwise, the update is not changed. The final aggregate is an average of all

the updates, scaled or otherwise.

17

2.2.3 Robust AGRs that adapt to FL poisoning

Adaptive aggregation rules have the advantage of knowing the number of malicious

updates in each round for aggregation. These rules use this information to adapt their

aggregation process in order to mitigate the impact of malicious updates on the final

model. While this can be an effective way to protect against model poisoning attacks,

it requires a way to accurately estimate the number of malicious updates, which can

be a challenging task.

2.2.3.1 Multi-Krum

Blanchard et al. [27] proposed Multi-Krum AGR as a modification to their own

Krum AGR. Multi-Krum selects an update using Krum and adds it to a selection set,

S. Multi-Krum repeats this for the remaining updates (which remain after removing

the update that Krum selects) until S has c updates such that n− c > 2m+ 2, where

n is the number of selected clients and m is the number of compromised clients in a

given round. Finally, Multi-Krum averages the updates in S.

2.2.3.2 Trimmed-Mean

Yin et al. [169] proposed Trimmed-Mean that aggregates each dimension of input

updates separately. It sorts the values of the jth-dimension of all updates. Then it

removes m (i.e., the number of compromised clients) of the largest and smallest values

of that dimension, and computes the average of the rest of the values as its aggregate

for the dimension j.

2.3 Types of poisoning adversaries

A poisoning attack is either data or model poisoning attack: in data poisoning,

adversary can poison only the data on malicious client device, while in model poisoning,

the adversary can directly manipulate/poison the model updates of the malicious

clients. In this work, we focus on model poisoning as it is strictly stronger than data

18

poisoning [149, 148]; hence here onward, poisoning in any context refers to model

poisoning, unless stated otherwise.

In this section, we provide the attack algorithms for the spectrum of adversaries

who mount attacks of varying costs and impacts. The spectrum consists of adversaries

who inject cheap, fake clients with no knowledge about the benign data distribution

to powerful adversaries who can compromise actual clients in FL settings and use

their data for crafting malicious updates. We also detail our novel, hybrid attack that

lies in the middle of this spectrum.

2.3.1 Adversary with fake clients

In federated learning (FL) systems, an attacker can inject fake clients in order

to send arbitrary fake local model updates to the cloud server. This type of attack

is more affordable and easier to perform than compromising genuine clients, as the

attacker does not need to bypass anti-malware software or evade anomaly detection on

the clients’ devices. Instead, the attacker can emulate fake clients using open-source

projects or free software such as android emulators, which can be run on a single

machine to emulate multiple instances, i.e., multiple FL clients, significantly reducing

the attack cost. Fake clients also offer the advantage of being fully controlled by the

attacker, as android emulators can grant root access to the devices. These factors

make model poisoning attacks using fake clients a realistic threat in FL systems.

Cao et. al proposed MPAF [35], a method of attacking FL systems through the

injection of fake clients. In MPAF, the attacker selects a randomly initialized model

as the base model (θ′), whose test accuracy is near random guessing, and crafts fake

local model updates to force the global model to mimic the base model. This is done

by subtracting the current global model parameters (θt for FL round t) from the base

model parameters and scaling up the fake local model updates by a factor λ to amplify

their impact. Equation 2.1 shows the malicious updates of the fake clients.

19

θtm∈[M] = λ(θ′ − θt) (2.1)

where θm∈[M] are the malicious model updates for M injected fake clients, and θ′ is

the randomly initialized base model.

To perform MPAF, the attacker must have minimum knowledge of the FL system,

meaning that they only have access to the global models received during training.

Despite this limited information, MPAF is able to effectively manipulate the global

model by driving it towards the base model in each FL round. This is done through

the calculation of fake local model updates (θm∈[M]), which are then aggregated by the

cloud server along with genuine local model updates from genuine clients. The attacker

can choose a large λ to ensure that the attack is effective even after aggregation.

In this work, we refer to this attack as the Fake attack. This attack is characterized

by the minimal knowledge and ability required on the part of the adversary who

controls the fake clients. Specifically, the Fake attack is the simplest attack of this

kind in FL and represents one end of the spectrum of attacks based on the attack

impact and cost.

2.3.2 Adversary with compromised clients

To evaluate robustness of various FL algorithms, we use state-of-the-art model

poisoning attacks from [148]. The attack proposes a general FL poisoning framework

and then tailors it to specific FL settings. It first computes an average θb,t = favg(θ
t
c∈[C])

of the benign updates, θtc∈[C], available to the adversary in FL round t. Then it

perturbs θb,t in a dynamic, data-dependent malicious direction ω to compute the final

poisoned update θt,mc∈[C] = θb,t + γω. The attack, called DYN-OPT, finds the largest γ

that successfully circumvents the target AGR. DYN-OPT is much stronger than its

predecessors, because it finds the largest γ and uses a dataset tailored ω. Below, we

20

detail DYN-OPT attacks against the AGRs from Section 2.2 that we consider in this

work.

2.3.2.1 FedAVG

DYN-OPT attack against FedAVG is quite straightforward and uses a random

direction ω and a very large γ value to compute poisoned update θt,mc∈[C].

2.3.2.2 Mutli-Krum

As described in Section 2.2.3.1, Multi-Krum uses Krum iteratively to construct

a selection set S and computes the average of the updates in the selection set as its

aggregate. Hence, DYN-OPT aims to maximize the perturbation γω used to compute

the poisoned update θt,mc∈[C], while ensuring that Multi-Krum selects all of its poisoned

updates in S. Note that this strategy minimizes the number of benign updates in S

and maximizing γω increases the poisoning impact of malicious updates on the final

aggregate. The optimization problem we solve to mount DYN-OPT on Multi-Krum is

given in (2.2).

argmax
γ

|{θt,mc∈[C] ∈ fmkrum

(
θt,mc∈[C] ∪ θti∈[C+1,n]

)
}| (2.2)

s.t. θt,mc∈[C] = θb,t + γω

2.3.2.3 Trimmed-Mean and Median

For Trimmed-Mean and Median AGRs, DYN-OPT solves the optimization given

in (2.3). Following [148], we fix the perturbation ω and keep all the poisoned updates

the same. The objective here is to maximize the L2-norm of the distance between

the reference benign update θb,t and the aggregate, fagr(.), computed using fagr ∈

{ftrmean, fmedian} on the set of benign and malicious updates.

21

argmax
γ

∥θb,t − fagr

(
θt,mc∈[C] ∪ θti∈[C+1,n]

)
∥2 (2.3)

s.t. θt,mc∈[C] = θb,t + γω

2.3.2.4 Norm-Bounding

We formulate DYN-OPT attack against Norm-Bounding AGR using the original

framework proposed in [148]. More specifically, to circumvent Norm-Bounding, the

norm of the poisoned update should be less than the threshold norm, τ , used by

Norm-Bounding AGR. Hence, to compute poisoned update θt,mc∈[C] using DYN-OPT, we

can scale the norm of the original poisoned update, θb,t + γω, to τ . The final poisoned

update would be θt,mc∈[C] = Scale(θb,t + γω, τ), where Scale(u, τ) = u ·min(1, τ
∥u∥2).

2.3.3 Our hybrid adversary model

Compromising real clients in FL in order to launch a model poisoning attack can

be a challenging task for an attacker. This is because genuine clients participating in

FL are typically owned and controlled by different entities (e.g., individual users in

cross-device FL and hospitals in cross-silo FL), and the attacker should get access to

and take control of these clients in order to manipulate the updates they send to the

server.

One way an attacker might try to do this is by using malware or phishing attacks

to compromise the clients. However, successfully executing these types of attacks

requires a certain level of skill and resources, and the attacker would need to be able

to bypass any security measures that the clients have in place. Additionally, the cost

of compromising a large number of genuine clients can be high, as the attacker would

need to pay for access to undetected zombie devices or other resources. This may

make it infeasible for the attacker to compromise a large fraction of genuine clients,

which is typically necessary for a model poisoning attack to be successful.

22

1 Compromising a few clients

Server

Global
Model

2 Generate diffusion-generated samples

3 Injecting fake clients with new samples (offline)

Server

Global
Model

Generated
Samples

Diffusion Model

Generated
Samples

4 Crafting malicious updates

for FL round t (online)

AGR

Figure 2.2. Our novel hybrid attack pipeline: The adversary of hybrid attack lies in
the middle of the spectrum of FL poisoning adversaries. The hybrid attack adversary
compromises a few real FL clients, trains a denoising diffusion probability model
(DDPM) on their real data, and generates new synthetic data to solve an optimization
to generate malicious updates to mount strong model poisoning attacks against the
target robust aggregation rules. Finally, the adversary shares the malicious update
with the FL server via the compromised clients as well as (cheap to inject) fake clients.

Another factor that makes it difficult to compromise real clients in FL is the

decentralized nature of the system. In FL, the clients are typically distributed across

a wide geographical area and may have different levels of security and defenses in

place. This can make it difficult for the attacker to gain access to and take control of

a large number of clients simultaneously.

Overall, the combination of the technical challenges and the high cost of com-

promising genuine clients in FL makes it a difficult task for an attacker to launch a

successful model poisoning attack using just the compromised clients.

23

Instead, we propose to use both fake and compromised clients to mount a hybrid

attack. Figure 2.2 demonstrates the pipeline of our hybrid attack: The hybrid adversary

first compromises a few real clients, and then uses their data to generate synthetic

data by using a DDPM (Section 2.1.1). Next, the adversary uses this synthetic data

to emulate FL clients and uses the model poisoning attacks (Section 2.3.2) to craft

strong malicious updates. The injected fake clients and compromised clients submit

the generated malicious update if the server selects them in that FL round for their

local updates.

2.3.4 Comparing the costs of different attacks

In this section, we discuss the cost of the three types of attacks discussed above:

fake, hybrid, and compromised. We assume that the cost of compromising a client is

c and cost of creating a fake client is f ; depending on the scenario, c and f can vary

widely, but generally the cost of a fake client is much lower than that of a compromised

client, i.e., f ≪ c. Furthermore, we assume αf fake clients in the fake attack, βc

compromised clients in the compromised attack, and αh fake and βh compromised

clients in the hybrid attack.

If the number of malicious clients in the three attacks are the same, i.e., αf =

αh + βc = βc, the cost of each of the attacks is as follows: f · αf for the fake attack,

f · αh + c · βh for the hybrid attack, and c · βc for the compromised attack. Next,

note that in our hybrid attack, we use very few compromised clients to launch a very

large number of fake clients, i.e., αh ≫ βh, which also implies that the number of fake

clients in our hybrid attack is very close to that in fake attack, i.e., αh ≈ αf . Hence,

the order of the cost of the three attacks is: costf < costh ≪ costc, with costf and

costh being very close.

Let’s consider a concrete scenario involving IoT devices, e.g., CCTV traffic cameras

or WiFi routers. The goal of the adversary is to mount a model poisoning attack

24

against an IoT application, e.g., predicting traffic at a certain location. The application

stores and uses images from traffic cameras, and trains a global image classification

model using FL. With a high probability, these IoT devices are also a part of some

botnet, and the cost of owning such zombie devices in a botnet can be as low as

$1. However, all the IoT devices need not have the target application, e.g., many

CCTV cameras may not have required software/hardware updates. For concreteness,

consider that 1% of the devices have the target application. Furthermore, note that

generally the botnet owners do not know what all applications are running on the

zombie devices.

Hence, in case of the compromised attack requiring m malicious clients, where the

zombie IoT devices must have the application, adversary will have to buy 100m devices

to ensure that m of them have the target application and discard 99m devices. While,

in the case of our hybrid attack, the adversary just needs to ensure that m′ ≪ m

devices have the application (and therefore, required data) and should buy 100m′

devices. Then they can install the target application on m−m′ devices and populate

them with synthetic data. In the case of fake attack, adversary simply has to buy

m devices. If the cost of buying a zombie device is c, the costs of compromised,

hybrid and fake attacks are 100mc≫ 100m′c > mc; the first inequality holds because

m≫ m′.

2.4 Experiment setup

In this section, we first introduce the evaluation datasets, the model architectures,

and the hyperparameter settings. Next, we define our evaluation metrics, and finally,

we explain how we generate new data samples using DDPM.

25

2.4.1 Datasets and hyperparameters

In this work, we conduct experiments on two datasets, CIFAR10 [104] and FEM-

NIST [33, 46], in order to evaluate the performance of different Byzantine robust

aggregation under different threat models.

CIFAR10 dataset is a widely used image classification dataset consisting of 60,000

32x32 color images in 10 classes, with 6,000 images per class. There are 50,000 training

images and 10,000 test images. For this dataset, we use VGG9 architecture. For local

training in each FL round, each client uses 5 epochs. Each client uses SGD with

learning rate of 0.01, momentum of 0.9, weight decay of 1e-4, and batch size of 8.

FEMNIST is a character recognition classification task with 3,400 clients, 62 classes

(52 for upper and lower case letters and 10 for digits), and 671,585 gray-scale images.

Each client has data of their own handwritten digits or letters. For this dataset, we

use LeNet architecture. For local training in each FL round, each client uses 2 epochs.

Each client uses SGD with learning rate of 0.01, momentum of 0.9, weight decay of

1e-4, and batch size of 10.

Data distribution: Most real-world FL settings have heterogeneous client data,

hence following previous works [145, 86], we distribute CIFAR10 datasets among 1,000

clients in non-iid fashion using Dirichlet distribution with parameter β = 0.5. Note

that, increasing β results in more iid datasets. FEMNIST is naturally distributed

non-iid among 3,400 clients.

2.4.2 Evaluation metric

We run all the experiments for 2000 global rounds of FL for CIFAR10, and 1000

global rounds for FEMNIST, while selecting 25 clients in each round randomly. At

the end of each FL round, we calculate the test accuracy of the global model on the

test data, and update the maximum test accuracy. We run each experiment with

26

5 different random seeds, and we report the median and standard deviation of the

maximum test accuracies in our experiments.

Attack impact metric (Iθ): We define attack impact, Iθ = Aθ − AM
θ , as the

reduction of the accuracy of the global model when the attack is launched. Aθ denotes

the maximum accuracy that the global model achieves overall FL training rounds

without the presence of any malicious clients. AM
θ for an attack shows the maximum

accuracy of the model under a given attack. In our Tables, we report both the

maximum test accuracies and Attack Impacts.

2.4.3 Generating synthetic data using DDPM

In Section 2.3.3, we explained the pipeline of our hybrid attack, which takes control

of a few real clients and generates new synthetic data. In this section, we explain

the details of this process for images of CIFAR10 and FEMNIST. To generate new

samples, we use the following steps (similar to steps provided in Figure 2.2):

0 1 2 3 4 5 6 7 8 9
Labels

0

10

20

30

40

Nu
m

be
r o

f s
am

pl
es

0.1% compromised 0.3% compromised 0.5% compromised

Figure 2.3. Number of samples for each label when the attacker compromised 0.1%
(1 client), 0.3% (3 clients), and 0.5% (5 clients) in our data distribution (fixed through
all the experiments) for learning CIFAR10 distributed over 1000 clients.

27

Collecting the data of compromised clients. We collect all the data samples of

0.1%, 0.3% and 0.5% of first clients in both CIFAR10 and FEMNIST learning. For

CIFAR10, we distribute the data in a non-iid fashion using Dirichlet distribution with

parameter β = 0.5. We saved the data assignment of the dataset and used this fixed

distribution throughout our experiments. For CIFAR10, we collect the data samples of

the first 1 (0.1%), 3 (0.3%), and 5 (0.5%) of the clients. Figure 2.3 shows the number

of samples for each label (label 0 represents airplane images, label 1 represents car

images, etc.) for our data collection. As we can see from this figure, when the attacker

has only compromised 0.1% of clients, it does not have access to any data samples of

labels 3, 6, and 9. This means it cannot produce any new samples for these labels. For

compromising 0.3%, the adversary does not have access to any samples from label 9.

For FEMNIST, we also used the same generated data assignment (produce non-iid),

and we collected the data samples of the first 4 (0.1%), 7 (0.3%), and 11 (0.5%) of

the clients.

Generating new samples using DDPM We use the code provided in [5] to

generate new samples for the hybrid attacks. This code implemented the denoising

diffusion probabilistic model (DDPM) [85] in PyTorch. It is a transcribed code from

the official Tensorflow version [4]. It uses denoising score matching to estimate the

gradient of the data distribution, followed by Langevin sampling to sample from the

true distribution. After collecting the data samples of compromised clients, we ran

the DDPM on these images for each label separately to generate new samples. To

train the diffusion model, we used a batch size of 8, learning rate of 0.00008, and 250

sampling size. To generate samples for CIFAR10, we used 2000 diffusion steps, and

for FEMNIST we used 1000 diffusion steps.

Figure 2.4 shows some DDPM-generated samples when the adversary has com-

promised 1 (0.1%), 3 (0.3%), and 5 (0.5%) of the clients in learning of CIFAR10

distributed over 1000 clients. Figure 2.3 shows the number of samples for each label.

28

(a) 0.1% (1 client) compro-
mised

(b) 0.3% (3 clients) compro-
mised

(c) 0.5% (5 clients) compro-
mised

Figure 2.4. Airplanes generated by DDPM using different percentages of compromised
client’s data in our hybrid attack.

From this Figure, we can see the adversary has access to 1, 6, and 10 images of

airplanes by compromising 0.1%, 0.3%, and 0.5% of the clients, respectively. In

Figure 2.4(a), we can see that the DDPM model memorized the only image it has,

and it just tried to add randomness to it because it has access to only one image of an

airplane. Moreover, in Figure 2.4(b) and Figure 2.4(c), we can see that the model can

generate better samples as it has access to more images from the true distribution.

Data assignment for the injected fake clients. In all the hybrid attacks

experiments, we first create a large dataset of all synthetic images from all the labels.

We create this dataset by generating 5 samples per label multiplied by the number of

injected fake clients. Then we distributed this dataset over the fake clients in a non-iid

fashion using Dirichlet distribution with parameter β = 0.5 for both CIFAR10 and

FEMNIST experiments. Next, for launching the model poisoning attacks provided in

Section 2.3.2, the adversary chooses 25 random fake clients for its optimization and

creates its malicious updates. This process happens in each FL round based on the

global parameters θt.

29

2.5 Empirical results

In this section, we conduct experiments to evaluate the performance of different

Byzantine robust aggregation rules under different adversaries, using the FEMNIST [33,

46] and CIFAR10 [104] datasets. We consider a range of malicious client percentages,

including 5%, 10%, 20%, and 30%, and report the maximum test accuracy and the

impact of various attacks on the global model. For each attack, we also report the

number of benign, compromised, and injected fake clients present in the FL training

process.

We consider five different attack scenarios, ranging from injecting fake clients with

no knowledge of the true data distribution to a scenario where the adversary can

compromise benign clients and use their data to craft malicious updates. Additionally,

we propose and evaluate three types of hybrid attacks, where the adversary first

compromises a small number of real clients and then uses their data to generate

synthetic samples using a DDPM, followed by injecting fake clients with the new data

samples. We explore the impact of different numbers of compromised clients in these

hybrid attacks, specifically 0.5% (5 clients), 0.3% (3 clients), and 0.1% (1 client) in

CIFAR10 experiments and 0.5% (17 clients), 0.3% (11 clients), and 0.1% (4 clients) in

FEMNIST experiments. We rank the attacks in terms of their impact on the global

model accuracy, to better illustrate the spectrum of attacks.

It is worth noting that we omit the results of the standard aggregation rule, FedAvg,

as it is known to be vulnerable to even a single malicious client [27] and can result in

the global test accuracy approaching random guessing.

2.5.1 Attacking agnostic robust AGRs

In this section, we evaluate the performance of agnostic robust AGRs, specifi-

cally Median and Norm-Bounding, under different threat models. We specifically

30

focus on a spectrum of adversaries who control different percentages of malicious clients.

5 10 15 20 25 30
Clinets under control (%)

10

20

30

40

50

60

At
ta
ck
 im

pa
ct
 (%

)

Fake
Hybrid (comp:0.1%)
Hybrid (comp:0.3%)
Hybrid (comp:0.5%)
Comp

(a) CIFAR10 + Median (No at-
tack acc=76.05%)

5 10 15 20 25 30
Clinets under control (%)

45

50

55

60

65

70

75

At
ta

ck
 im

pa
ct

 (%
)

(b) CIFAR10 + NB (τ = 2.0)
(No attack acc=83.68%)

5 10 15 20 25 30
Clinets under control (%)

10

20

30

40

50

60

70

At
ta

ck
 im

pa
ct

 (%
)

(c) CIFAR10 + NB τ = 0.5 (No
attack acc=78.86%)

5 10 15 20 25 30
Clients under control (%)

0
5

10
15
20
25
30

At
ta

ck
 im

pa
ct

 (%
)

(d) FEMNIST + Median (No at-
tack acc=84.29%)

5 10 15 20 25 30
Clinets under control (%)

0

10

20

30

At
ta

ck
 im

pa
ct

 (%
)

(e) FEMNIST + NB τ = 2.0 (No
attack acc=87.49%)

5 10 15 20 25 30
Clinets under control (%)

0

5

10

15

20

25

30

At
ta

ck
 im

pa
ct

 (%
)

(f) FEMNIST + NB τ = 0.5 (No
attack acc=86.35%)

Figure 2.5. Attack impact (Iθ) of the Norm-Bounding and Median aggregation rules
in the presence of different adversaries. For hybrid attacks, we explore the impact of
different numbers of compromised clients, specifically 0.5% (5 clients), 0.3% (3 clients),
and 0.1% (1 client) in CIFAR10 experiments and 0.5% (17 clients), 0.3% (11 clients),
and 0.1% (4 clients) in FEMNIST experiments.

Median AGR. We present the results of our experiments when the server applies

Median as the aggregation rule in Figure 2.5 (a) and (d) for CIFAR10 and FEMNIST

experiments. Our results demonstrate that the most powerful adversary, who has

compromised real clients, has the greatest impact on the global model. For example,

on CIFAR10 with Median as the AGR, an attack launched by 10% (20%) of malicious

clients reduces the model’s accuracy to 33.10% (10.61%). This implies that the attacker

first compromised 100 (200) clients out of the total clients participating in the FL and

launched the attack discussed in Section 2.3.2 to craft its malicious update.

31

On the other hand, fake clients, who do not have any knowledge about the benign

clients’ data distribution, have the least impact on the global model. For example, on

CIFAR10 with Median as the AGR, an attack launched by 10% (20%) of malicious

clients reduces the accuracy of the global model to 49.04% (32.78%). To achieve this,

the adversary needs to inject 112 (251) fake clients into the training of the FL.

Hybrid attacks, which lie in the middle of the spectrum, show that if the hybrid

adversary has access to more data (more compromised clients), it can impose more

significant damage to the global model’s accuracy. For example, on CIFAR10 with

Median as the AGR, a hybrid attack with 20% malicious clients, where the adversary

has compromised 1, 3, and 5 clients and generated new instances and injected 249,

247, and 244 new fake clients can decrease the accuracy of the FL model to 13.29%,

11.71%, and 11.49% respectively. We make similar observations for the FEMNIST

dataset as well.

Norm-Bounding AGR. We report the experimental results of our experiments when

the server applies Norm-Bounding with a threshold τ as the aggregation rule in Fig-

ure 2.5 (b), (c), (e), and (f) for CIFAR10 and FEMNIST datasets with two thresholds

τ = 0.5 and τ = 2.0. Our results show that the Norm-Bounding aggregation rule has

similar impacts on the global model’s accuracy as the Median AGR, when faced with

different types of attacks. For example, on CIFAR10 with τ = 0.5, when the adversary

controls 10% of clients, the fake adversary can inject 112 fake clients and reduce the

accuracy to 52.52%; the hybrid attack who compromised 1 client and injected 110

clients reduces the accuracy to 49.46%; the hybrid attacker who compromised 3 clients

and injected 108 fake clients reduces the accuracy to 46.22%; the hybrid attacker who

compromised 5 clients and injected 106 clients reduces the accuracy to 44.79%; and

at the end of the spectrum, a powerful adversary who compromised 100 clients can

32

reduce the accuracy to 41.73%.

Larger upper bounds in Norm-Bounding results in more damage to the

global model. In our experiments, we consider two thresholds for Norm-Bounding

τ = 0.5 and τ = 2.0. Our results show that for a larger threshold bound (τ), the

adversary has a larger space to craft its malicious updates and have a more significant

impact on the FL global model. For instance, on FEMNIST, the compromising

adversary with 30% malicious ratio causes the accuracy dropped by 34.58% when

τ = 2.0 while the accuracy drop for the same setting and τ = 0.5 is about 29.92%.

Therefore, with larger norm thresholds for the Norm-Bounding aggregation rule,

the attackers have more impact on the global model. Alternatively, If the server

wants to use a smaller threshold, then the model will result in lower accuracy when

there is no malicious client. For instance, on CIFAR10, with no malicious clients,

Norm-Bounding with threshold τ = 0.5 results in 78.86% while τ = 2.0 results in

83.68%; 10% compromised clients will result in losing of 37.13% and 73.68% for τ = 0.5

and τ = 2.0 respectively. Therefore, there is a trade-off for choosing a proper threshold

for bounding the local updates based on the assumption of the number of malicious

clients in FL training.

Why can fake clients cause a significant attack impact for Norm-Bounding

AGR? Figure 2.6 shows the L2 norm of the updates (for malicious and benign

updates for 10% of malicious ratio in fake attack) before and after bounding the

updates to τ = 0.5 for learning CIFAR10 throughout 2000 FL rounds. From this

figure, we can see that when the global model starts to converge, the L2 norm of

the local updates from benign updates becomes smaller than the threshold. For the

updates that have norms smaller than the threshold, no change will be applied to

them. However, on the other hand, the malicious updates are always greater than the

threshold, so they are scaled down to have an L2 norm of τ . In this figure, we can see

33

0 500 1000 1500 2000
FL round

100

101

L2
 n

or
m

 o
f l

oc
al

 u
pd

at
e

benign (before)
malicious (before)

benign (after)
malicious (after)

Figure 2.6. Local update norms throughout the FL training on CIFAR10 with 1000
benign clients and 112 fake clients (i.e., the adversary controls 10% of total clients).
In this figure, we can see that after FL round 1500, the malicious updates have a more
considerable impact on the aggregation compared to benign updates because they
have larger updates after norm bounding.

that after FL round 1500, the malicious updates have a more considerable impact on

the aggregation because they have larger updates.

2.5.2 Attacking adaptive robust AGRs

In this section, we conduct experiments to evaluate the robustness of adaptive

Byzantine aggregation rules, specifically Trimmed-Mean [169] and Multi-Krum [27],

against a spectrum of adversaries who control varying percentages of malicious clients.

In adaptive aggregation rules, we assume that the server has knowledge of the exact

percentage of malicious clients in each FL round.

We report the performance of the Trimmed-Mean aggregation rule against different

attacks in Table 2.1 and Table 2.3 for FL models trained on the CIFAR10 and

FEMNIST datasets, respectively, in the presence of 5%, 10%, 20%, and 30% of

malicious clients. Similarly, Table 2.2 and Table 2.4 show the attack impacts of

34

Table 2.1. Attack impact (Iθ) and maximum test accuracy (AM
θ) of the Trimmed-

Mean for training on CIFAR10 distributed over 1000 initial clients in the presence of
different adversaries. We specify the number of benign, compromised, and injected
fake clients present for each attack. The malicious rate column shows the ratio of the
clients (both compromised and fake) under the control of the adversary to the total
FL clients participating in FL training. We rank the attacks in terms of their impact
on the global model accuracy, to better illustrate the spectrum of attacks.

AGR Attack Type
Mal
Rate

Num of
Benign
Clients

Num of
Com-
pro-
mised
Clients

Num of
Injected
Fake
Clients

Accuracy (AM
θ) Attack Impact (Iθ)

Trimmed-
Mean
(No
attack
acc =
83.66%)

Fake

5% 1000 0 53 59.95 (± 0.617) 23.71 (± 0.617) 5
10% 1000 0 112 43.88 (± 0.334) 39.78 (± 0.334) 5
20% 1000 0 251 32.49 (± 0.451) 51.17 (± 0.451) 5
30% 1000 0 429 25.56 (± 0.238) 58.10 (± 0.238) 5

Hybrid
comp: 0.1%

5% 999 1 52 50.19 (± 2.791) 33.47 (± 2.791) 4
10% 999 1 110 29.42 (± 1.481) 54.24 (± 1.481) 4
20% 999 1 249 20.61 (± 5.277) 63.05 (± 5.277) 4
30% 999 1 428 10.00 (± 1.188) 73.66 (± 1.188) 4

Hybrid
comp: 0.3%

5% 997 3 50 47.78 (± 0.928) 35.88 (± 0.928) 3
10% 997 3 108 28.56 (± 1.071) 55.10 (± 1.071) 3
20% 997 3 247 20.50 (± 5.415) 63.16 (± 5.415) 3
30% 997 3 425 10.01 (± 0.209) 73.65 (± 0.209) 3

Hybrid
comp: 0.5%

5% 995 5 48 41.90 (± 3.438) 41.76 (± 3.438) 1
10% 995 5 106 27.89 (± 0.909) 55.77 (± 0.909) 2
20% 995 5 244 20.31 (± 5.151) 63.35 (± 5.151) 2
30% 995 5 422 10.00 (± 0.180) 73.66 (± 0.180) 2

Comp

5% 950 50 0 44.25 (± 1.195) 39.41 (± 1.195) 2
10% 900 100 0 27.33 (± 0.346) 55.83 (± 0.346) 1
20% 800 200 0 10.00 (± 4.130) 73.66 (± 4.130) 1
30% 700 300 0 10.00 (± 0.000)) 73.66 (± 0.000) 1

different attacks when the server uses Multi-Krum as the aggregation rule for the

CIFAR10 and FEMNIST datasets, respectively.

Our results indicate that adversaries who can compromise clients and use their data

for attacks have the most significant impact on FL global models. For instance, on the

CIFAR10 dataset, an adversary who has compromised 10% (20%) of clients reduces

the accuracy of FL by 55.83% (73.66%) and 49.29% (60.37%) with Trimmed-Mean

and Multi-Krum, respectively. On the other hand, adversaries who can only inject

fake clients into the FL training with no knowledge of the true data distribution have

the lowest impact on global model accuracy. For instance, on the CIFAR10 dataset, an

35

Table 2.2. Attack impact (Iθ) and maximum test accuracy (AM
θ) of the Multi-Krum

for training on CIFAR10 distributed over 1000 initial clients in the presence of different
adversaries.

AGR Attack Type
Mal
Rate

Num of
Benign
Clients

Num of
Com-
pro-
mised
Clients

Num of
Injected
Fake
Clients

Accuracy (AM
θ) Attack Impact (Iθ)

Multi-
Krum
(No
attack
acc =
83.44%)

Fake

5% 1000 0 53 82.70 (± 0.291) 0.74 (± 0.291) 5
10% 1000 0 112 82.12 (± 0.227) 1.32 (± 0.227) 5
20% 1000 0 251 79.89 (± 0.226) 3.55 (± 0.226) 5
30% 1000 0 429 75.29 (± 0.256) 8.15 (± 0.256) 5

Hybrid
comp: 0.1%

5% 999 1 52 70.12 (± 0.895) 13.32 (± 0.895) 4
10% 999 1 110 48.24 (± 2.371) 35.20 (± 2.371) 4
20% 999 1 249 24.71 (± 0.257) 58.73 (± 0.257) 4
30% 999 1 428 20.22 (± 0.539) 63.22 (± 0.539) 4

Hybrid
comp: 0.3%

5% 997 3 50 62.65 (± 0.725) 20.79 (± 0.725) 3
10% 997 3 108 36.70 (± 2.188) 46.74 (± 2.188) 3
20% 997 3 247 23.79 (± 1.788) 59.65 (± 1.788) 3
30% 997 3 425 19.90 (± 2.234) 63.54 (± 2.234) 3

Hybrid
comp: 0.5%

5% 995 5 48 62.47 (± 0.914) 20.97 (± 0.914) 2
10% 995 5 106 35.65 (± 0.956) 47.79 (± 0.956) 2
20% 995 5 244 23.10 (± 1.433) 60.34 (± 1.433) 2
30% 995 5 422 19.86 (± 0.619) 63.58 (± 0.619) 2

Comp

5% 950 50 0 62.04 (± 1.307) 21.40 (± 1.307) 1
10% 900 100 0 34.15 (± 0.660) 49.29 (± 0.660) 1
20% 800 200 0 23.07 (± 0.528) 60.37 (± 0.528) 1
30% 700 300 0 19.31 (± 0.786) 64.13 (± 0.786) 1

adversary who can inject 10% (20%) of clients reduces the accuracy of FL by 39.78%

(51.17%) and 1.32% (3.55%) with Trimmed-Mean and Multi-Krum, respectively.

Our experiments also show that the hybrid attack, which compromises only a few

clients and use their data to produce more data samples for the fake clients, lies in the

middle of the spectrum. The more clients are compromised, the more damage is done

to the global accuracy. For instance, on the CIFARA10 training, a hybrid attacker

who compromised 1 client, i.e., 0.1% of total clients, and can inject 110 clients (in

total 10% malicious ratio) can reduce the accuracy of the FL model by 54.24% and

35.2% for Trimmed-Mean and Multi-Krum respectively. While if the hybrid attacker

compromised more clients (5 clients) and injected 106 clients (in total 10% malicious

ratio), it can reduce the FL global accuracy by 55.77% and 47.79% for Trimmed-Mean

and Multi-Krum, respectively.

36

Table 2.3. Attack impact (Iθ) and maximum test accuracy (AM
θ) of the Trimmed-

Mean for training on FEMNIST distributed over 3400 initial clients in the presence of
different adversaries.

AGR Attack Type
Mal
Rate

Num of
Benign
Clients

Num of
Com-
pro-
mised
Clients

Num of
Injected
Fake
Clients

Accuracy (AM
θ) Attack Impact (Iθ)

Trimmed-
Mean
(No
attack
acc =
87.52%)

Fake

5% 3400 0 179 84.90 (± 0.108) 2.62 (± 0.108) 5
10% 3400 0 378 82.64 (± 0.135) 4.88 (± 0.135) 5
20% 3400 0 850 78.04 (± 0.198) 9.48 (± 0.198) 5
30% 3400 0 1458 73.11 (± 0.384) 14.41 (± 0.384) 5

Hybrid
comp: 0.1%

5% 3396 4 175 84.04 (± 0.223) 3.48 (± 0.223) 4
10% 3396 4 374 80.44 (± 0.672) 7.08 (± 0.672) 4
20% 3396 4 845 72.09 (± 1.114) 15.43 (± 1.114) 4
30% 3396 4 1452 58.28 (± 0.699) 29.24 (± 0.699) 4

Hybrid
comp: 0.3%

5% 3389 11 168 83.95 (± 0.151) 3.57 (± 0.151) 3
10% 3389 11 366 79.38 (± 0.313) 8.14 (± 0.313) 2
20% 3389 11 837 70.48 (± 0.815) 17.07 (± 0.815) 3
30% 3389 11 1442 57.15 (± 1.953) 30.37 (± 1.953) 3

Hybrid
comp: 0.5%

5% 3383 17 162 83.73 (± 0.248) 3.79 (± 0.248) 2
10% 3383 17 359 79.75 (± 0.659) 7.77 (± 0.659) 3
20% 3383 17 829 70.33 (± 2.009) 17.19 (± 2.009) 2
30% 3383 17 1433 54.20 (± 2.420) 33.32 (± 2.420) 2

Comp

5% 3230 170 0 83.51 (± 0.183) 4.01 (± 0.183) 1
10% 3060 340 0 78.71 (± 0.498) 8.81 (± 0.498) 1
20% 2720 680 0 68.13 (± 2.040) 19.39 (± 2.040) 1
30% 2380 1020 0 40.35 (± 2.275) 47.17 (± 2.275) 1

Additionally, we also noticed that the Trimmed-Mean and Norm-Bounding (with

τ = 0.5) are more vulnerable to injected fake clients with no knowledge about the

true distribution of the training datasets. On the other hand, Multi-Krum can easily

detect them and exclude them from aggregation. For instance, on CIFAR10, 10% of

injected fake clients can reduce the accuracy of the model by 26.34% and 39.78% with

Norm-Bounding and Trimmed-Mean as the aggregation rule, respectively. On the

other hand, Multi-Krum only loses 1.32% with the presence of this number of injected

fake clients.

2.5.3 Data poisoning with label flipped data samples

In this study, we evaluate the effectiveness of a data poisoning attack in which

the adversary only injects poisoned data (by label flipping) into the benign client’s

datasets. We used the FedAvg algorithm and reported the results in terms of the

37

Table 2.4. Attack impact (Iθ) and maximum test accuracy (AM
θ) of the Multi-Krum

for training on FEMNIST distributed over 3400 initial clients in the presence of
different adversaries.

AGR Attack Type
Mal
Rate

Num of
Benign
Clients

Num of
Com-
pro-
mised
Clients

Num of
Injected
Fake
Clients

Accuracy (AM
θ) Attack Impact (Iθ)

Multi-
Krum
(No
attack
acc =
87.45%)

Fake

5% 3400 0 179 87.25 (± 0.064) 0.20 (± 0.064) 5
10% 3400 0 378 87.11 (± 0.066) 0.34 (± 0.066) 5
20% 3400 0 850 86.58 (± 0.178) 0.87 (± 0.178) 5
30% 3400 0 1458 85.60 (± 0.174) 1.85 (± 0.174) 5

Hybrid
comp: 0.1%

5% 3396 4 175 86.02 (± 0.176) 1.43 (± 0.176) 3
10% 3396 4 374 82.82 (± 0.352) 4.63 (± 0.352) 4
20% 3396 4 845 75.88 (± 0.635) 11.57 (± 0.635) 4
30% 3396 4 1452 62.23 (± 1.825) 25.22 (± 1.825) 3

Hybrid
comp: 0.3%

5% 3389 11 168 86.26 (± 0.106) 1.19 (± 0.106) 4
10% 3389 11 366 81.58 (± 0.223) 5.87 (± 0.223) 1
20% 3389 11 837 73.97 (± 0.582) 13.48 (± 0.582) 3
30% 3389 11 1442 62.35 (± 0.859) 25.10 (± 0.859) 4

Hybrid
comp: 0.5%

5% 3383 17 162 85.87 (± 0.126) 1.98 (± 0.126) 2
10% 3383 17 359 82.03 (± 0.376) 5.42 (± 0.376) 3
20% 3383 17 829 71.71 (± 2.148) 15.74 (± 2.148) 2
30% 3383 17 1433 61.94 (± 1.990) 25.51 (± 1.990) 2

Comp

5% 3230 170 0 85.46 (± 0.113) 1.99 (± 0.113) 1
10% 3060 340 0 81.73 (± 0.390) 5.72 (± 0.390) 2
20% 2720 680 0 69.39 (± 1.597) 18.06(± 1.597) 1
30% 2380 1020 0 47.83 (± 10.627) 39.62 (± 10.627) 1

maximum accuracy (AM
θ) and attack impact (Iθ) in Table 2.5. The table shows

the performance of the FedAvg algorithm in the presence of different percentages of

poisoned datasets among the FL clients.

Table 2.5. Data Poisoning attack against FL learning on FEMNIST. The new samples
with flipped labels are generated using DDPM and the 0.5% compromised clients’
data.

AGR
Mal
Rate

Num of
Benign
Clients

Num of
Com-
pro-
mised
Clients

Accuracy (AM
θ)

Attack
Im-
pact
(Iθ)

Avg
(acc
=
87.51%)

5% 3213 170 87.37 (± 0.100) 0.14 (± 0.100)
10% 3044 339 87.15 (± 0.100) 0.36 (± 0.100)
20% 2706 677 87.02 (± 0.096) 0.49 (± 0.096)
30% 2368 1015 86.83 (± 0.103) 0.68 (± 0.103)

For these experiments, we used a dataset of 3400 clients in FEMNIST learning, and

the attacker generated poisoned data samples from the datasets of 17 compromised

38

clients (equivalent to 0.5% of the total clients). These 17 compromised clients were

excluded from the FL learning process. The label flipping attack [149] used in this

experiment involved changing each data sample label from ℓ to L− 1− ℓ, where ℓ is

the true label and L is the number of classes.

Our results indicate that injecting label-flipped data samples generated by the

DDPM has a smaller impact on the global model’s accuracy compared to model

poisoning attacks. For example, on the FEMNIST dataset, when the attacker injects

synthetic data samples to 20% of the benign clients, using data samples from 17

compromised clients, it reduces the global accuracy by only 0.49%.

2.6 Conclusions

In conclusion, we present a comprehensive study of the poisoning threats to FL by

considering a spectrum of adversaries and robust AGRs. We discussed the importance

of considering a spectrum of adversarial models, rather than focusing on the extremes,

as it provides a more realistic understanding of the poisoning threat to various types

of FL applications. We identify a hybrid threat model where an adversary first

compromises a few real clients and use their data to generate more data samples for

the fake clients to mount a large-scale attack. For such a hybrid threat, we propose a

novel hybrid attack that leverages the denoising diffusion probabilistic model (DDPM)

to generate new samples from a small number of compromised clients.

Overall, this work highlights the need for FL practitioners to consider a spectrum of

adversaries and defending servers to truly understand the poisoning threat to various

types of FL applications. Our proposed hybrid attack and the evaluation methodology

provide valuable insights for FL practitioners to design and evaluate FL systems under

realistic threat models.

39

CHAPTER 3

ROBUST FEDERATED LEARNING VIA LEARNING ON
PARAMETER RANKS

In Chapter 2, a thorough investigation of untargeted poisoning attacks within the

context of Federated Learning (FL) was conducted. Our findings demonstrated that

the most potent attack in FL arises when genuine clients are compromised, leading to

the creation of malicious updates based on their data. In this section, we introduce a

novel federated learning algorithm designed to mitigate the impact of such attacks on

FL systems.

High-level intuition of FL untargeted poisoning: Figure 3.1 shows how the

poisoning adversary searches for malicious updates in the space of possible updates to

maximize the distance between benign and malicious aggregates. When the server’s

AGR is not robust, e.g., dimension-wise average [126], there is no limitation on

the adversary’s choices, so they can maximize their goal using a malicious update

arbitrarily far from benign updates; (Figure 3.1-a)). Therefore, even a single malicious

client can jeopardize the accuracy of the global model trained using FedAvg [27].

Current robust AGRs, such as Multi-krum [27] or Trimmed-mean [169] limit the space

of acceptable updates, i.e., the safe zone shown in Figure 3.1-b). These robust AGRs

only consider the updates that are in the safe zone and thereby reduce the adversary’s

choices.

In this chapter, we present Federated Rank Learning (FRL), a novel FL algorithm

that concurrently achieves the two goals of robustness against poisoning attacks and

communication efficiency. FRL uses a novel learning paradigm called supermasks

40

a) FedAVG

(Non-robust)

b) FL with Filtering (Shrink

the space of acceptable

updates, e.g., tream-mean)

c) FRL

(Sparsify the space

of acceptable updates)

Safe Space
All Space

Sparsified Space

Continuous Space
 Continuous Space
 Discrete Space

Figure 3.1. The space of client updates. Green circles represent benign updates and
red triangles represent malicious updates. To defend against poisoning, existing robust
AGRs filter the updates by creating a safe space (continuous ∈ Rd). On the other
hand, FRL limits the choices of clients by enforcing a discrete space of updates (a
permutation of integers ∈ [1, d]). θbg (green square) demonstrates the aggregated model
for benign users, and θmg (red square) demonstrates the aggregated model considering
malicious updates. Black objects are updates that are ruled out by the server.

training [176, 143] to create edge rankings, which, as we will show, allows FRL to reduce

communication costs while achieving significantly stronger robustness. Specifically,

in FRL, clients collaborate to find a subnetwork within a randomly initialized neural

network which we call the supernetwork (this is in contrast to conventional FL where

clients collaborate to train a neural network). The goal of training in FRL is to

collaboratively rank the supernetwork’s edges based on the importance of each edge

and find a global ranking. The global ranking can be converted to a supermask, which

is a binary mask of 1’s and 0’s, that is superimposed on the random neural network

(the supernetwork) to obtain the final subnetwork. For example, in our experiments,

the final subnetwork is constructed using the top 50% of all edges. The subnetwork is

then used for downstream tasks, e.g., image classification, hence it is equivalent to

the global model in conventional FL. Note that in entire FRL training, weights of the

supernetwork do not change.

More specifically, each FRL client computes the importance of the edges of the

supernetwork based on their local data. The importance of the edges is represented

as a ranking vector. Each FRL client will use the edge popup algorithm [143] and

their data to compute their local rankings (the edge popup algorithm aims at learning

41

which edges in a supernetwork are more important over the other edges by minimizing

the loss of the subnetwork on their local data). Each client then will send their local

edge ranking to the server. Finally, the FRL server uses a novel voting mechanism to

aggregate client rankings into a global ranking vector, which represents which edges

of the random neural network (the supernetwork) will form the global subnetwork.

Continuous versus discrete space of updates: Figure 3.1-c) shows how our

proposed defense (FRL, which is introduced next) limits the poisoning adversary’s

choices of malicious updates by making the space of acceptable updates discrete. To

the best of our knowledge, most of previous Byzantine robust FL algorithms use

a continuous space of updates (∈ Rd), as their frameworks are built on exchanging

trained (32-bit) weight parameters. On the other hand, in our approach, the clients

send their updates in the form of edge rankings, i.e., a permutation of integers ∈ [1, d]

where d is the size of the network layer; more useful edges have higher ranks. In

Figure 3.1-c), the black dots show the discrete space of acceptable client updates.

For example, a network with 4 edges can have 4! possible permutations of edge

rankings starting from [1,2,3,4] to [4,3,2,1]. On the other hand, in FL algorithms

with a continuous space of updates (with or without a safe zone), the adversary’s

choices are 4 weight parameters (each of 32 bits). Note that, sparsification of the

space of acceptable updates is different from sparsification of model updates used in

compression methods, e.g., TopK [13]), RandomK [156] and Sketched-SGD [87]. In

these methods, the FL client sends only a fraction of model updates instead of all of

them, but each parameter still has a continuous space.

3.1 Related works

Supermask learning: Modern neural networks have a very large number of pa-

rameters. These networks are generally overparameterized [50, 53, 109, 110], i.e., they

have more parameters than they need to perform a particular task, e.g., classification.

42

The lottery ticket hypothesis [65] states that a fully-trained neural network, i.e., su-

pernetwork, contains sparse subnetworks, i.e., subsets of all neurons in supernetwork,

which can be trained from scratch (i.e., by training same initialized weights of the

subnetwork) and achieve performances close to the fully trained supernetwork. The

lottery ticket hypothesis allows for massive reductions in the sizes of neural networks.

Ramanujan et al. [143] offer a complementary conjecture that an overparameterized

neural network with randomly initialized weights contains subnetworks which perform

as good as the fully trained network.

Communication cost of FL: In many real-world FL applications, it is essen-

tial to minimize the communication between FL server and clients. Especially in

cross-device FL, the clients (e.g., mobile phones and wearable devices) have limited

resources and communication can be a major bottleneck. There are two major types

of communication reduction methods: (1) Quantization methods reduce the resolution

of (i.e., number of bits used to represent) each dimension of a client update. For

instance, SignSGD [22] uses the sign (1 bit) of each dimension of model updates. (2)

Sparsification methods propose to use only a subset of all the update dimensions. For

instance, in TopK [13], only the largest K% update dimensions are sent to the server

in each FL round. We note that, communication reduction methods primarily focus

on and succeed at reducing upload communication (client → server), but they use the

entire model in download communication (server → client).

3.2 Preliminaries

3.2.1 Edge-popup algorithm

The edge-popup (EP) algorithm [143] is an optimization to find supermasks within a

large, randomly initialized neural network, i.e., called supernetwork, with performances

close to the fully trained supernetwork. EP algorithm does not train the weights (θw)

of the network, instead only decides the set of edges to keep and removes (pops) the

43

rest of the edges. Specifically, EP algorithm assigns a positive score to each of the

edges in the supernetwork (θs). On forward pass, it selects top k% edges with highest

scores, where k is the percentage of the total number of edges in the supernetwork

that will remain in the final subnetwork. On the backward pass, it updates the scores

with the straight-through gradient estimator [21].

Algorithm 1 presents EP algorithm. Suppose in a fully connected neural network,

there are L layers and layer ℓ ∈ [1, L] has nℓ neurons, denoted by V ℓ = {V ℓ
1 , ..., V

ℓ
nℓ
}. If

Iv and Zv denote the input and output for neuron v respectively, then the input of the

node v is the weighted sum of all nodes in previous layer, i.e., Iv =
∑

u∈V ℓ−1 WuvZu.

Here, Wuv is the weight of the edge connecting u to v. Edge-popup algorithm tries to

find subnetwork E, so the input for neuron v would be: Iv =
∑

(u,v)∈E WuvZu.

Updating scores. Consider an edge Euv that connects two neurons u and v, Wuv

be the weight of Euv, and suv be the score assigned to the edge Euv by Edge-popup

algorithm. Then the edge-popup algorithm removes edge Euv from the supermask if

its score suv is not high enough. Each iteration of supermask training updates the

scores of all edges such that, if having an edge Euv in subnetwork reduces loss (e.g.,

cross-entropy loss) over training data, the score suv increases.

Algorithm 1 Edge-popup (EP) algorithm
1: Input: number of local epochs E, training data D, initial weights θw and scores θs, subnetwork

size k%, learning rate η
2: for e ∈ [E] do
3: B ← Split D in B batches
4: for batch b ∈ [B] do
5: EP Forward (θw, θs, k, b)
6: θs = θs − η∇ℓ(θs; b)
7: end for
8: end for
9: return θs

10: function EP forward(θw, θs, k, b)
11: m← sort(θs)
12: t← int((1− k) ∗ len(m))
13: θp = θw ⊙m, where m[: t] = 0; m[t :] = 1
14: return θp(b)
15: end function

44

The algorithm selects top k% edges (i.e., finds a subnetwork with sparsity of k%)

with highest scores, so Iv reduces to Iv =
∑

u∈V ℓ−1 WuvZuh(suv) where h(.) returns 1

if the edge exists in top-k% highest score edges and 0 otherwise. Because of existence

of h(.), which is not differentiable, it is impossible to compute the gradient of loss with

respect to suv. Recall that, the Edge-popup algorithm use straight-through gradient

estimator [21] to compute gradients. In this approach, h(.) will be treated as the

identity in the backward pass meaning that the upstream gradient (i.e., ∂L
∂Iv

) goes

straight-through h(.). Now using chain rule, we can derive ∂L
∂Iv

∂Iv
∂suv

= ∂L
∂Iv

WuvZu where

L is the loss to minimize. Then we can SGD with step size η to update scores as

suv ←− suv − η ∂L
∂Iv

ZuWuv.

3.3 Our proposal: Federated Rank Learning

In this section, we provide the design of our federated rank learning (FRL) algo-

rithm (Algorithm 2). FRL clients collaborate (without sharing their data) to find

a subnetwork within a randomly initialized, untrained supernetwork, with scores θs

and weights θw. In each round, FRL first finds a unanimous (global) ranking of the

supernetwork edges and then uses the subnetwork of the top ranked edges as the

global model.

The objective of FRL is to find a global ranking Rg and convert it to a global

binary mask, m, such that resulting subnetwork, θw ⊙m, minimizes the average loss

of all clients. FRL optimization can be formalized as follows:

min
Rg

F (θw, Rg) = min
Rg

N∑
i=1

λiLi(θ
w ⊙m) (3.1)

s.t. m[Rg < k] = 0 and m[Rg ≥ k] = 1

where N is the total number of FRL clients, Li is the loss function for the ith client,

λi is the importance, e.g., weight, of the ith client; we use λi =
1
N
, i.e., all clients

45

Algorithm 2 Federated Ranking Learning (FRL)
1: Input: number of rounds T , number of local epochs E, number of users per round n, seed seed,

learning rate η, subnetwork size k%
2: Server: Initialization
3: θs, θw ← Initialize random scores and weights using seed
4: R1

g ← ArgSort(θs) ▷ Sort the initial scores and obtain initial rankings
5: for t ∈ [1, T] do
6: U ← set of n randomly selected clients out of N total clients
7: for u in U do
8: Clients: Calculating the ranks
9: θs, θw ← Initialize scores and weights using seed
10: θs[Rt

g]← sort(θs) ▷ sort the scores based on the global ranking
11: S ← Edge-PopUp(E,Dtr

u , θw, θs, k, η) ▷ Client u uses Algorithm1 to train a supermask
on its local training data

12: Rt
u ← ArgSort(S) ▷ Ranking of the client

13: end for
14: Server: Majority Vote

15: Rt+1
g ← Vote(Rt

{u∈U}) ▷ Majority vote aggregation
16: end for
17: function Vote(R{u∈U}):
18: V ← Sum(ArgSort(R{u∈U})), A← Sum(V)
19: return ArgSort(A)
20: end function

have the same weight. m is the final binary mask, where edges with top k ranks

(layer-wise) get ’1’ while others get ’0’. We use m to compute final global model by

superimposing m on θ, i.e., the we use the subnetwork θ⊙m as the final global model.

In Section 3.6, we show that probability of encountering a disconnected subnetwork is

very negligibly small, and also demonstrate what happens if the subnetwork becomes

disconnected for a small sparsity k. In Figure 3.2, we demonstrate a single FRL round

using a supernetwork with six edges ei∈[0,5] and three clients Cj∈[1,3] who aim to find a

subnetwork of size k=50% of the original supernetwork. In Section 3.3.4, we show

how FRL minimizes its objective and is independent of the downstream task.

3.3.1 Server: Initialization (only for round t = 1)

In the first round, the FRL server chooses a random seed Seed to generate initial

random weights θw and scores θs for the global supernetwork θ; note that, θw, θs, and

Seed remain constant during the entire FRL training. Next, the FRL server shares

46

Figure 3.2. A single FRL round with three clients and supernetwork of 6 edges.

Seed with FRL clients, who can then locally reconstruct the initial weights θw and

scores θs using Seed. Figure 3.2- 1 depicts this step.

Recall that, the goal of FRL training is to find the most important edges in θw

without changing the weights. Unless specified otherwise, both server and clients

use the Signed Kaiming Constant algorithm [143] to generate random weights and

the Kaiming Uniform algorithm [80] to generate random scores. However, in Sec-

tion 3.8.7.2, we also explore the impacts of different weight initialization algorithms

on the performance of FRL. We use the same seed to initialize weights and scores.

47

At the beginning, the FRL server finds the global rankings of the initial random

scores (Algorithm 2 line 4), i.e., R1
g = ArgSort(θs). We define rankings of a vector

as the indices of elements of vector when the vector is sorted from low to high, which

is computed using ArgSort function.

3.3.2 Clients: Calculating the ranks (for each round t)

In the tth round, FRL server randomly selects n clients among total N clients, and

shares the global rankings Rt
g with them. Each of the selected n clients locally recon-

structs the weights θw’s and scores θs’s using seed (Algorithm 2 line 9). Then, each

FRL client reorders the random scores based on the global rankings, Rt
g (Algorithm 2

line 10); we depict this in Figure 3.2- 2a .

Next, each of the n clients uses reordered θs and finds a subnetwork within θw

using Algorithm 1; to find a subnetwork, they use their local data and E local epochs

(Algorithm 2 line 11). Note that, each iteration of Algorithm 1 updates the scores

S starting from θs. Then client u computes their local rankings Rt
u using the final

updated scores (S) and Argsort(.), and sends Rt
u to the server. Figure 3.2- 2a shows

how each of the selected n clients reorders the random scores using global rankings.

For instance, the initial global rankings for this round are Rt
g = [2, 3, 0, 5, 1, 4], meaning

that edge e4 should get the highest score (s4 = 1.2), and edge e2 should get the lowest

score (s2 = 0.2).

Figure 3.2- 2b shows, for each client, the scores and rankings they obtained

after finding their local subnetwork. For example, rankings of client C1 are Rt
1 =

[4, 0, 2, 3, 5, 1], i.e., e4 is the least important and e1 is the most important edge for C1.

Considering desired subnetwork size to be 50%, C1 uses edges {3,5,1} in their final

subnetwork.

48

3.3.3 Server: Majority vote (for each round t)

The server receives all the local rankings of the selected n clients, i.e., Rt
{u∈U}.

Then, it performs a majority vote over all the local rankings using Vote(.) function.

Note that, for client u, the index i represents the importance of the edge Rt
u[i] for

Cu. For instance, in Figure 3.2- 2b , rankings of C1 are Rt
1 = [4, 0, 2, 3, 5, 1], hence the

edge e4 at index=0 is the least important edge for C1, while the edge e1 at index=5

is the most important edge. Consequently, Vote(.) function assigns reputation=0

to edge e4, reputation=1 to e0, reputation=2 to e2, and so on. In other words, for

rankings Rt
u of Cu and edge ei, Vote(.) computes the reputation of ei as its index in

Rt
u. Finally, Vote(.) computes the total reputation of ei as the sum of reputations

from each of the local rankings. In Figure 3.2- 2b , reputations of e0 are 1 in Rt
1, 1 in

Rt
2, and 0 in Rt

3, hence, the total reputation of e0 is 2. We depict this in Figure 3.2- 3 ;

here, the final total reputations for edges e{i∈[0,5]} are A = [2, 12, 3, 11, 8, 9]. Finally,

the server computes global rankings Rt+1
g to use for round t+ 1 by sorting the final

total reputations of all edges, i.e., Rt+1
g = Argsort(A).

Note that, all FRL operations that involve sorting, reordering, and voting are

performed in a layer-wise manner. For instance, the server computes global rankings

Rt
g in round t for each layer separately, and consequently, the clients selected in round

t reorder their local randomly generated scores θs for each layer separately.

3.3.4 Additional details of FRL’s optimization

Ramanujan et al. [143] proved that when edge (a, b) replaces (c, b) in layer ℓ and

the rest of the subnetwork remains fixed then the loss of the supermask learning

decreases (provided the loss is sufficiently smooth). Motivated by their proof, we

show that when these two edges are swapped in FRL, the loss decreases for FRL

optimization too.

49

Theorem 1: when edge (a, b) replaces (c, b) in layer ℓ and the rest of the subnetwork

remains fixed then the loss of the FRL optimization will decrease (provided the loss is

sufficiently smooth).

proof. Recall the optimization problem of FRL is as follow:

min
Rg

F (θw, Rg) = min
Rg

N∑
i=1

λiLi(θ
w ⊙m) (3.2)

s.t. m[Rg < k] = 0 and m[Rg ≥ k] = 1

where λi shows the importance of the ith client in empirical risk minimization which

λi =
1
N

gives same importance to all the participating clients. m is the final mask

that contains the edges of top k ranks, and Li is the loss function for the ith client.

θw ⊙m shows the subnetwork inside the random θw that all clients unanimously vote

for. In this optimization, the FRL clients try to minimize F by finding the best global

ranking Rg.

We now wish to show F (θw, Rt+1
g) < F (θw, Rt

g) when in FRL round t+1, the edge

(a, b) replaces (c, b) in layer ℓ and the rest of the subnetwork remains fixed. Suppose

global rank of edge (a, b) was Rt
g[(a, b)] and global rank of edge (c, b) was Rt

g[(c, b)] in

round t, so we have:

Rt
g[(a, b)] < Rt

g[(c, b)] (3.3)

Rt+1
g [(a, b)] > Rt+1

g [(c, b)] (3.4)

where the order of all the remaining global ranks remains fixed, and only these two

edges are swapped in global ranking. Now let st,iab shows the score of weight wab in

round t and ith client and st+1,i
ab shows the updated score of it after local training. As

in our majority vote, we are calculating the sum of the reputation of edges we will

have:

50

N∑
i=1

st,iab <
N∑
i=1

st,icb (3.5)

N∑
i=1

st+1,i
ab >

N∑
i=1

st+1,i
cb (3.6)

We also know that Edge-popup algorithm updates the scores in the ith client as

follow:

st+1,i
ab = st,iab − η

∂L

∂Ia
ZaWab (3.7)

Based on (3.5), and (3.6), we can say:

N∑
i=1

st,iab −
N∑
i=1

st,icb <
N∑
i=1

st+1,i
ab −

N∑
i=1

st+1,i
cb (3.8)

And based on (3.7), we also know that:

N∑
i=1

(
st+1,i
ab − st,iab

)
=

N∑
i=1

(
−η∂L

i

∂I ia
Zi

aWab

)
(3.9)

N∑
i=1

(
st+1,i
cb − st,icb

)
=

N∑
i=1

(
−η∂L

i

∂I ic
Zi

cWcb

)
(3.10)

Based on (3.8), (3.9) and (3.10), we can say:

N∑
i=1

(
∂Li

∂I ic
Zi

cWcb

)
>

N∑
i=1

(
∂Li

∂I ia
Zi

aWab

)
(3.11)

So based on (3.11), and what [143] proved for each supermask training we can

show (3.12). We assume that loss is smooth and the input to the nodes that their

edges are swapped are close before and after the swap.

51

N∑
i=1

(
Li(θ

w ⊙mt+1)
)
<

N∑
i=1

(
Li(θ

w ⊙mt)
)

(3.12)

that means:

F (θw, Rt+1
g) < F (θw, Rt

g) (3.13)

3.4 Robustness of FRL to poisoning

FRL and FL are distributed learning algorithms with mutually untrusting clients.

Hence, a poisoning adversary may own or compromise some of FRL (FL) clients,

called malicious clients, and mount a targeted or untargeted poisoning attack.

As discussed in Chapter 2, we mainly focus on the more severe untargeted attacks

and show that FRL is significantly more robust by design to such poisoning attacks.

However, for completeness we also evaluate robustness of FRL against targeted attacks

in Section 3.8.5.

Intuition behind robustness of FRL: Existing FL algorithms, including robust

algorithms, are shown to be vulnerable to various poisoning attacks [149]. One of

the key reasons behind the susceptibility of existing algorithms is that their model

updates can have a large continuous space of values. For instance, to manipulate

vanilla FedAvg, malicious clients send very large updates [27], and to manipulate Multi-

krum and Trimmed-mean, [63, 148] propose to perturb a benign update in a specific

malicious direction. On the other hand, in FRL, clients must send a permutation

of indices ∈ [1, nℓ] for each layer. Hence, FRL significantly reduces the space of the

possible malicious updates that an adversary can craft. Majority voting in FRL further

reduces the chances of successful attack. Intuitively, this makes FRL design robust to

poisoning attacks. Below, we make this intuition more concrete.

The worst-case untargeted poisoning attack on FRL: Here, the poisoning

adversary aims to reduce the accuracy of the final global FRL subnetwork on most test

52

inputs. To achieve this, the adversary should replace the high ranked edges with low

ranked edges in the final subnetwork. For the worst-case analysis of FRL, we assume

a very strong adversary (i.e., threat model): 1) each of the malicious clients has some

data from benign distribution; 2) malicious clients know the entire FRL algorithm and

its parameters; 3) malicious clients can collude. Under this threat model we design a

worst case attack on FRL (Algorithm 3), which executes as follows: First, malicious

clients compute rankings on their benign data and use Vote(.) algorithm to compute

an aggregate rankings. Finally, each of the malicious clients uses the reverse of the

aggregate rankings to share with the FRL server in given round. The adversary should

invert the rankings layer-wise as the FRL server will aggregate the local rankings per

layer too, and it is not possible to mount a model-wise attack.

Algorithm 3 FRL Poisoning
1: Input: number of malicious clients M , number of malicious local epochs E′, seed seed, global

ranking Rt
g, learning rate η, subnetwork size k%

2: function Maliciousupdate(M, seed, Rt
g, E

′, η, k):
3: for mu ∈ [M] do

4: Malicious Client Executes:
5: θs, θw ← Initialize random scores and weights using seed
6: θs[Rt

g]← sort(θs)
7: S ← Edge-PopUp(E′, Dtr

u , θw, θs, k, η)
8: Rt

mu ← ArgSort(S) ▷ Ranking of the malicious client
9: end for
10: Aggregation:

11: Rt
m ← Vote(Rt

{mu∈[M]}) ▷ Majority vote aggregation

12: return Reverse(Rt
m) ▷ reverse the ranking

13: end function

Now we justify why the attack in Algorithm 3 is the worst case attack on FRL for

the strong threat model. Note that, FRL aggregation, i.e., Vote(.), computes the

reputations using clients’ rankings and sums the reputations of each network edge.

Therefore, the strongest poisoning attack would want to reduce the reputation of good

edges. This can be achieved following the aforementioned procedure of Algorithm 3

to reverse the rankings computed using benign data.

53

3.4.1 Theoretical analysis of FRL’s robustness

In this section, we prove an upper bound on the failure probability of robustness of

FRL, i.e., the probability that a good edge will be removed from the final subnetwork

when malicious clients mount the worst case attack.

Following the work of [22], we make two assumptions in order to facilitate a

concrete robustness analysis of FRL: a) each malicious client has access only to its

own data, and b) we consider a simpler Vote(.) function, where the FRL server puts

an edge ei in the final subnetwork if more than half of the clients have ei (a good edge)

in their local subnetworks. In other words, the rankings that each client sends to the

server is just a bit mask showing that each edge should or should not be in the final

subnetwork. The server makes a majority vote on the bit masks, and if an edge has

more than half votes, it will be in the global subnetwork. Our Vote(.) mechanism

has more strict robustness criterion, as it uses more nuanced reputations of edges

instead of bit masks. Hence, the upper bound on failure probability in this section

also applies to the FRL vote(.) function.

Assume that edge ei is a good edge, i.e., having ei in the final subnetwork improves

the performance of the final subnetwork. Let Z be the random variable that represents

the number of clients who vote for the edge ei to be in the final subnetwork, i.e.,

the number of clients whose local subnetwork of size k% of the entire supernetwork

(Algorithm 2 line 11) contains ei. Therefore, Z ∈ [0, n] where n is the number of

clients being processed in a given FRL round.

Let G and B be the random variable that represent the number of benign and

malicious clients that vote for edge ei, respectively; the malicious clients inadvertently

exclude the good edge ei in their local subnetwork based on their benign training data.

There are total of αn malicious clients, where α is the fraction of malicious clients

that B of them decides that ei is a bad edge and should not be removed. Each of

the malicious clients computes the subnetwork on its own benign training data, so

54

B of them do not conclude that ei is a good edge. Hence, Z = G + B. We can

say that G and B have binomial distribution , i.e., G ∼ binomial([(1 − α)n, p] and

B ∼ binomial([αn, 1− p] where p is the probability that a benign client has this edge

in their local subnetwork and α is the fraction of malicious clients. Note that the

probability that our voting in simplified FRL fails is P [failure] = P [Z <= n
2
], i.e.,

when more than half of the clients vote against ei, i.e., they do not include ei in their

local subnetworks. We can find the mean and variance of Z as follows:

E[Z] = (1− α)np+ αn(1− p) (3.14)

V ar[Z] = (1− α)np(1− p) + αnp(1− p) = np(1− p) (3.15)

[34] provides an inequality where for a random variable X with mean µ and variance

σ2 we have P [µ−X >= λ] <= 1

1+λ2

σ2

. Using this inequality, we can write:

P [Z <=
n

2
] = P [E[Z]− Z >= E[Z]− n/2] <=

1

1 + (E[z]−n/2)2

var[Z]

(3.16)

because 1 + x2 >= 2x, we have:

P [Z <=
n

2
] <= 1/2

√
V ar[Z]

(E[Z]− n/2)2
(3.17)

= 1/2

√
np(1− p)

(np− αnp+ αn− αnp− n/2)2

= 1/2

√
np(1− p)

(n(p+ α(1− 2p)− 1/2))2

What this means is that the probability that the simplified Vote(.) fails is

upper bounded as in (3.17). We show the effect of the different values of α and

p in Figure 3.3. We can see from Figure 3.3, if the benign clients can train better

supermasks (better chance that a good edge ended in their subnetwork), the probability

55

that the attackers succeed is lower (more robustness). Vote(.) in FRL (Section 3.3.3)

is more sophisticated and puts more constraints on the malicious clients, hence the

about upper bound also applies to FRL.

0.6 0.7 0.8 0.9 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0
V
ot
e
F
ai
lu
re

P
ro
b
U
pp
er
b
ou
nd

α = 10

α = 20

α = 30

α = 40

Figure 3.3. Upper bound on the failure probability of Vote(.) function in FRL. α
is the percentages of malicious clients and p is the probability that a benign client
puts a good edge in its top k ranks.

3.5 Communication efficiency of FRL

In FL, and especially in the cross-device setting, clients have limited communication

bandwidth. Hence, FL algorithms must be communication efficient. We discuss here

the communication cost of FRL algorithm. In the first round, the FRL server only

sends one seed of 32 bits to all the FRL clients, so they can construct the random

weights (θw) and scores (θs). In a round t, each of selected FRL clients receives

the global rankings Rt
g and sends back their local rankings Rt

u. The rankings are a

permutation of the indices of the edges in each layer, i.e., of [0, nℓ − 1]∀ℓ ∈ [L] where

L is the number of layers and nℓ is the number of parameters in ℓth layer.

56

We use the naive approach to communicate layer-wise rankings, where each FRL

client exchanges a total of
∑

ℓ∈[L] nℓ × log(nℓ) bits. Because, for the layer ℓ, the client

receives and sends nℓ ranks where each one is encoded with log(nℓ) bits. On the other

hand, a client exchanges
∑

ℓ∈[L] nℓ × 32 bits in FedAvg, when 32 bits are used to

represent each of nℓ weights in layer ℓ. In Section 3.8.2, we measure the performance

and communication cost of FRL with other existing FL compressors SignSGD [22]

and TopK [11, 13].

Sparse-FRL: Here, we propose Sparse-FRL, a simple extension of FRL to further

reduce the communication cost. In Sparse-FRL, a client sends only the most important

ranks of their local rankings to the server for aggregation. For instance, in Figure 3.2,

client C1 sends Rt
1 = [4, 0, 2, 3, 5, 1] in case of FRL. But in sparse-FRL, with sparsity

set to 50%, client C1 sends just the top 3 rankings, i.e., sends R′t
1 = [3, 5, 1]. For each

client, the sparse-FRL server assumes 0 reputation for all of the edges not included in

the client’s rankings, i.e., in Figure 3.2, sparse-FRL server will assign reputation=0 for

edges e4, e0, and e2. Then the server uses Vote(.) to compute total reputations of all

edges and then sort them to obtain the final aggregate global rankings, i.e., Rt+1
g , to

use for subsequent rounds. We observe in out experiments, that sparse-FRL performs

very close to FRL, even with sparsity as low as 10%, while also significantly reducing

the communication cost.

Lower-bound of communication cost of FRL: Since the FRL clients send

and receive layer-wise rankings of indices, i.e., integers ∈ [0, nℓ − 1], for layer ℓ,

there are nℓ! possible permutations for layer ℓ ∈ [L]. If we use the best possible

compression method in FRL, an FRL client needs to send and receive
∑

ℓ∈[L] log(nℓ!)

bits. Therefore, the download and upload bandwidth for each FRL client would

be
∑

ℓ∈[L] log (nℓ ∗ (nℓ − 1) ∗ ... ∗ 2 ∗ 1) =
∑

ℓ∈[L]
∑nℓ

i=1 log(i) bits. Please note that

in our experiment, FRL clients send and receive the rankings without any further

57

0 2000 4000 6000 8000 10000
Number of Parameters

0

10

20

30

40

Co
m

m
un

ici
ca

tio
n

Co
st

 (K
B)

FedAvg (U/D)
FRL (U/D)
FRL-LB (U/D)

SFRL 50% (U)
SFRL 10% (U)
SignSGD (U)

Figure 3.4. Upload (U) and download (D) Communication cost analysis. The
download cost (D) of all SFRLs would be the same as FRL. Download communication
cost of SignSGD would be the same as FedAvg too.

compression, and
∑

ℓ∈[L]
∑nℓ

i=1 log(i) just shows a lower-bound of communication cost

of FRL.

In Figure 3.4, we compare the upload and download communication costs of one

client per FL round for FedAvg, SignSGD, and different variants of FRL for different

number of parameters. U and D are showing upload and download communication cost.

Please note that the download communication cost of all SFRLs would be the same

as FRL, and download communication cost of SignSGD would be similar to FedAvg

too. If we use a compression method to compress the local rankings (for upload)

and global rankings (for download), we can improve communication cost of FRL to

its lower-bound (FRL-LB in Figure 3.4). In this Figure, we can see that SFRL can

provide competitive upload communication cost and lower download communication

cost compared to SignSGD when the clients are sending only 10% of top local rankings

(SFRL 10%).

58

3.6 Subnetwork connectivity in FRL

In FRL, clients collaborate to find a subnetwork within a randomly initialized neural

network called the supernetwork. The goal of training in FRL is to collaboratively

rank the supernetwork’s edges based on the importance of each edge and find a global

ranking. The global ranking can be converted to a supermask, a binary mask of 1’s

and 0’s, superimposed on the random neural network (the supernetwork) to obtain

the final subnetwork.

In this section, we try to answer the following key questions: (a) What is the

probability of a disconnected subnetwork? (b) What does happen if the subnetwork

becomes disconnected? (c) Is FRL robust against an adversary who wants to make

the subnetwork disconnected?

To answer the above questions, we first quantify the cases when the subnetwork is

disconnected. Next, we calculate the probability of a disconnected subnetwork. Then,

we show the implication of a disconnected subnetwork and how Edge-Popup handles

a disconnected subnetwork in its supermask training. Finally, we argue that the

untargeted attack against FRL discussed in Section 3.4 is a weak version of an attack

where the adversary wants to make the subnetwork disconnected. In this section, we

provide examples of fully connected layer networks, but it is straightforward to extend

them to convolution layer networks (see Appendix B.2 of [143]).

3.6.1 Quantifying the number of possibilities that the subnetwork becomes

disconnected

Consider a fully connected (FC) neural network with two layers { FC(ℓ1, ℓ2),

FC(ℓ2, ℓ3) }, where there exist ℓ1 × ℓ2 and ℓ2 × ℓ3 edges in the first and second layers,

respectively. When we are looking for a subnetwork with per-layer sparsity of k

(0 < k < 1) as in FRL, the subnetwork consists of ℓ1 × ℓ2 × k of total ℓ1 × ℓ2 edges

59

of layer one, and ℓ2 × ℓ3 × k of total ℓ2 × ℓ3 edges of layer two. Therefore, the total

number of possible subnetworks in this supernetwork would be:

(
ℓ1ℓ2
ℓ1ℓ2k

)
×
(

ℓ2ℓ3
ℓ2ℓ3k

)
(3.18)

Suppose that VI represents the subset of neurons in the middle neuron layer (with

ℓ2 neurons) that have an incoming edge, and VO represents the subset of the neurons

in the middle layer with an outgoing edge. For a subnetwork to be disconnected, these

two sets should be disjoint (VI ∩VO = ∅). VI has ℓ2× k neurons at minimum, meaning

ℓ2× k neurons cover ℓ2× ℓ1× k edges by receiving maximum possible of edges for each

neuron. On the other hand VI can have min(ℓ2, ℓ1 × ℓ2 × k) neurons at maximum by

just assigning each edge to each neuron. Therefore number of neurons in VI is limited

by ℓ2× k ≤ |VI | ≤ min(ℓ2, ℓ1× ℓ2× k). If we want to calculate the number of possible

disconnected subnetworks, we should (a) first calculate the number of edges from the

first layer and assign them to VI , (b) find the number of free neurons that do not

receive any edges (i.e., ℓ2 − |V1|), and (c) calculate the number of possible edges from

these free neurons to the third layer as follows:

∑
ℓ2k≤v≤min(ℓ2,ℓ1ℓ2k)

(
ℓ1
ℓ1k

)
×
(
ℓ2
v

)
×
(
ℓ2 − v

ℓ2k

)
×
(

ℓ3
ℓ3k

)
(3.19)

where we calculate the number of possible incoming edges to the hidden layer (with

ℓ2 neurons) and possible outgoing edges from this layer without any intersection of

these neurons. Moreover, we can calculate the probability of a disconnected subnetwork

in {FC(ℓ1, ℓ2), FC(ℓ2, ℓ3)} with sparsity k (0 < k < 1) as:

∑
ℓ2k≤v≤min(ℓ2,ℓ1ℓ2k)

(
ℓ1
ℓ1k

)
×

(
ℓ2
v

)
×

(
ℓ2−v
ℓ2k

)
×
(
ℓ3
ℓ3k

)(
ℓ1ℓ2
ℓ1ℓ2k

)
×
(
ℓ2ℓ3
ℓ2ℓ3k

) (3.20)

This probability is very low. For example, for a network of {FC(32, 128), FC(128, 10)},

there is a probability of 10−699 a disconnected subnetwork is initialized with k = 0.1,

60

or with probability of 10−1353 when k = 0.3. The probability becomes zero for value

k > 0.5 as it is impossible to find enough free neurons while assigning all the incoming

edges to the rest of them. It represents the worst-case scenario for a disconnected

subnetwork, where all the edges of the first layer should go to neurons that do not

have any outgoing edge in the second layer. If k > 0.5, then at least one neuron in the

middle has one incoming edge and one outgoing edge, which makes the subnetwork

connected. In all of our experiments, unless specified, we used k = 0.5 for the sparsity

of the subnetwork, which shows the probability of a disconnected subnetwork is close

to zero.

3.6.2 What does happen if the subnetwork becomes disconnected?

Each FRL client uses edge-popup (EP) algorithm (Algorithm 1) to train the scores

of its local model and find a local subnetwork. After local training is finished, the FRL

client ranks the edges from least to most important, and submits its local ranking to

the FRL server for aggregation. Specifically, EP algorithm assigns a positive score

to each of the edges in the supernetwork. On forward pass, it selects the top k%

edges with highest scores, where k is the percentage of the total number of edges in

the supernetwork that will remain in the final subnetwork. On the backward pass, it

updates the scores with the straight-through gradient estimator [21].

It is possible that the subnetwork of top k% scores may become disconnected

(e.g., for very small k) with a very low probability. Even in cases where the forward

pass is entirely disconnected, non-zero gradients are still propagated to all edges of

the network. This is because EP uses the straight-through gradient estimator in the

backward pass, so it behaves as though the network is fully-connected during the

gradient update step. This allows for edges to ”come back” even after they have been

pruned.

61

v

1
For each edge (u,v) with

weight assign score 2 Forward using edges with

top-k% scores

v

3 Backward: update all the scores

with stright through estimator

v

4 Updates subnetwork after updating

the scores using top-k% scores

Figure 3.5. Edge-popup (EP) training steps.

Example: Figure 3.5- 1 depicts an example of a two-layer fully connected neural

network. In this network, we have two layers {FC(3,4) and FC(4,2)}. Equations (3.21)

and (3.22) show the weights (generated by Singed Kaiming Constant [143]) and scores

of the edges for this network. Equation (3.23) shows the rankings of the edges for

each layer for this network.

θw1 =



−0.8165 −0.8165 0.8165

−0.8165 −0.8165 −0.8165

+0.8165 +0.8165 +0.8165

+0.8165 +0.8165 −0.8165


, θw2 =

−0.7071 +0.7071 +0.7071 −0.7071

−0.7071 −0.7071 −0.7071 −0.7071


(3.21)

θs1 =



0.5017 0.4830 0.4821

0.3313 0.2739 0.2558

0.2552 0.1815 0.1781

0.1715 0.1356 0.0554


, θs2 =

0.4216 0.4216 0.4494 0.2490

0.2282 0.2159 0.4512 0.0617

 (3.22)

62

R(θs1) = [11, 10, 0, 9, 8, 7, 6, 5, 5, 3, 2, 1, 0], R(θs2) = [7, 5, 4, 3, 1, 0, 2, 6] (3.23)

Figure 3.5- 2 shows the forward pass in EP when we want to have a subnetwork with

25% of the original supernetwork size (i.e., k = 0.25). As we can see from this figure,

the subnetwork is disconnected since all the edges in the first layer are going to neuron

V1, and there is no output edge from this neuron. Suppose we input I = [1.0, 1.0, 1.0]

to this network, then the output of the first layer would be [−0.8165, 0.0, 0.0, 0.0] and

the output of the second layer would be [0, 0]. For this example the cross-entropy loss

would be 0.6931 for given true label of [0]. Figure 3.5- 3 shows the backward pass of

EP where the EP updates all the scores with the straight-through estimator, not only

the subnetwork edges. Equation 3.24 shows the non-zero gradients of the scores in the

backward pass of EP.

∂L
∂θs1

=



0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

−0.5774 −0.5774 −0.5774

0.0000 0.0000 0.0000


, ∂L
∂θs2

=

−0.2887 0.0000 0.0000 0.0000

0.2887 0.0000 0.0000 0.0000


(3.24)

From Equation 3.24, we can see the EP Algorithm in backward pass brings the

helpful edges back in the subnetwork, e.g., edge V1 − Y2 in this example, which makes

this subnetwork connected. Figure 3.5- 4 depicts the subnetwork after updating the

scores in one round of EP, which shows the subnetwork connected after one round of

applying EP Algorithm.

In the above example, we show that even if the subnetwork of one FRL round

becomes disconnected, the FRL clients can train their rankings by using EP. However,

63

receiving global rankings of a disconnected network is very unlikely in FRL as we use

k = 0.50 in most of our experiments, i.e., the subnetworks are half the size of the

original supernetwork.

3.6.3 FRL against an adversary who wants to make the subnetwork

disconnected

In the above sections, we explain that if k > 0.5, it is impossible that the out-

put subnetwork of FRL becomes disconnected. Nevertheless, the subnetwork may

become disconnected if we choose a smaller sparsity (k) with a very low probability

(Section 3.6.1). One untargeted attack against FRL can be an adversary that aims

to make the global subnetwork disconnected by crafting its malicious rankings in a

particular way that only edges for neurons that have no incoming edges remain in the

top k% edges with the highest scores. In each FRL round, each benign FRL client

trains its local ranking on its benign local data by utilizing the Edge-Popup algorithm

(Algorithm 1) starting from the received global ranking. This attack is ineffective in

the middle of FRL training because if the attacker is successful in poisoning the global

ranking and makes its output subnetwork disconnected, the benign clients in the next

round produce their local rankings by finding a connected local subnetwork. We show

this process in Section 3.6.2, where if the start point is a disconnected subnetwork,

the Edge-Popup algorithm can easily bring the good edges back to the subnetwork

and makes it connected. At the end of the FRL training, the local rankings become

very close to each other (their distance becomes very small), where malicious clients

cannot make the subnetwork disconnected as the majority vote of FRL gives each

local ranking one equal influence, and the benign local rankings are in the majority,

so the adversary cannot make the final global subnetwork disconnected.

The above attack is much weaker compared to the worst-case untargeted poisoning

attack on FRL discussed in Section 3.4. In our attack (Section 3.4), the malicious

64

clients compute rankings on their benign data and use Vote(.) algorithm to compute

an aggregate ranking. Next, each malicious client uses the reverse of the aggregate

rankings to share with the FRL server in a given round. By reversing, the adversary

wants to create more damage than disconnecting the subnetwork because even if the

adversary becomes successful in making the global subnetwork disconnected in one

round, the next round, it is easy for the benign clients to make it connected again by

applying EP on their benign data.

3.7 Experimental setup

3.7.1 Datasets and their distribution

We use MNIST, CIFAR10, and FEMNIST datasets. Most real-world FL settings

have heterogeneous client data, hence following previous works [145, 86], we distribute

MNIST and CIFAR10 datasets among 1,000 clients in non-iid fashion using Dirichlet

distribution with parameter β = 1. Note that, increasing β results in more iid datasets.

FEMNIST is naturally distributed non-iid among 3,400 clients. We further split the

datasets of each client into training (80%) and test (20%).

We run all the experiments for 2000 global rounds of FRL and FL, while selecting

25 clients in each round. At the end of the training, we calculate the test accuracy

of all the clients on the final global model, and we report the mean and standard

deviation of all clients’ test accuracies in our experiments.

We also evaluate the utility of FRL on two significantly more complicated tasks:

image classification on Tiny-ImageNet [3] (Section 3.8.7.4) and text classification on

IMDB reviews [124] (Section 3.8.4).

3.7.2 Hyperparameters

We use the following hyperparameters for each dataset:

65

MNIST is a 10-class class-balanced classification task with 70,000 gray-scale images,

each of size 28 × 28. We experiment with LeNet architecture given in Table 3.1. For

local training in each FRL/FL round, each client uses 2 epochs. For training weights

(experiments with FedAvg, SignSGD, TopK), we use SGD optimizer with learning

rate of 0.01, momentum of 0.9, weight decay of 1e-4, and batch size 8. For training

ranks (experiments with FRL), we use SGD with learning rate of 0.4, momentum 0.9,

weight decay 1e-4, and batch size 8.

CIFAR10 [104] is a 10-class classification task with 60,000 RGB images (50,000 for

training and 10,000 for testing), each of size 32 × 32. We experiment with a VGG-like

architecture given in Table 3.1, which is identical to what [143] used. For local training

in each FRL/FL round, each client uses 5 epochs. For training weights (experiments

with FedAvg, SignSGD, TopK), we use SGD with learning rate of 0.1, momentum of

0.9, weight decay of 1e-4, and batch size of 8. For training ranks (experiments with

FRL), we optimize SGD with learning rate of 0.4, momentum of 0.9, weight decay of

1e-4, and batch size of 8.

FEMNIST [33, 46] is a character recognition classification task with 3,400 clients, 62

classes (52 for upper and lower case letters and 10 for digits), and 671,585 gray-scale

images. Each client has data of their own handwritten digits or letters. We use LeNet

architecture given in Table 3.1. For local training in each FRL/FL round, each client

uses 2 epochs. For training weights (experiments with FedAvg, SignSGD, TopK),

we use SGD with learning rate of 0.15, momentum of 0.9, weight decay of 1e-4, and

batch size of 10. For training ranks (experiments with FRL), we optimize SGD with

learning rate of 0.2, momentum of 0.9, weight decay of 1e-4, and batch size of 10.

Tiny-ImageNet [3] contains 100K, 10k, 10k training, validation and test images

respectively for 200 classes downsized to 64× 64 colored images, so each class has 500

training, and 50 validation and 50 test images. We distribute the training data over

1000 clients in a non-iid fashion using Dirichlet distribution with parameter β = 1.

66

We run FedAvg and FRL for 4000 global rounds, and in each round, the FL server

selects 25 clients randomly. For local training weights (experiments with FedAvg), we

use SGD optimizer with a learning rate of 0.01, momentum 0.9, weight decays of 1e-5,

batch size 8, and local epochs 2. For training ranks (experiment with FRL), we use

SGD with a learning rate of 0.8, momentum of 0.9, weight decay of 1-e5, batch size 8,

and local epochs 1. We optimize the hyperparameters based on the validation data

and report the final accuracy on the test data.

3.7.3 Model architectures

Table 3.1 shows the state-of-the-art model architectures and corresponding datasets

that we use in our experiments. We also show the number of parameters in each of

their layers.

3.7.4 Baseline FL algorithms

We compare the FRL with following FL baselines:

Federated averaging: In non-adversarial FL settings, i.e., without any malicious

clients, the dimension-wise Average (FedAvg) [103, 126] is an effective AGR. In fact,

due to its efficiency, Average is the only AGR implemented by FL applications in

practice [123, 140].

SignSGD: is a quantization method used in distributed learning to compress each

dimension of gradient updates into 1 bit instead of 32 or 64 bits. To achieve this, in

SignSGD [22] the clients only send the sign of their gradient updates to the server,

and the server runs a majority vote on them. SignSGD is designed for distributed

learning where all the clients participate in each round, so all the clients are aware

of the most updated weight parameters of the global model. However, SignSGD

only reduces upload communication (clients→server). But, does not reduce download

communication (server→clients), i.e., to achieve good performance of the global model,

67

Table 3.1. In our experiments, we use the following, state-of-the-art model architec-
tures from [143, 164, 42].

Architecture Layer Name Number of parameters

LeNet [164]
(MNIST and
FEMNIST)

Conv(32) 288
Conv(64) 18432
FC(128) 1605632

FC(10) or FC(62) 1280 or 7936

Conv8 [143]
(CIFAR10)

Conv(64), Conv(64) 38592
Conv(128), Conv(128) 221184
Conv(256), Conv(256) 884736
Conv(512), Conv(512) 3538944

FC(256), FC(256), FC(10) 592384

BiLSTM [42]
(IMDB)

Embedding (dim=300) 7469100
Dropout (p=0.5) -

LSTM (hidden dim=300,
bidirectional=True, num layers=1)

1440000

FC(2) 1200

ResNet18 [164]
(CIFAR10 and
Tint-ImageNet)

Conv(64), [Conv(64), Conv(64)] × 2 149184
[Conv(128), Conv(128)] × 2 524288
[Conv(256), Conv(256)] × 2 2097152
[Conv(512), Conv(512)] × 2 8388608

Avg-Pool -
FC(10) or FC(200) 5120 or 102400

ResNet34 [164]
(CIFAR10 and
Tint-ImageNet)

Conv(64), [Conv(64), Conv(64)] × 3 222912
[Conv(128), Conv(128)] × 4 1114112
[Conv(256), Conv(256)] × 6 6815744
[Conv(512), Conv(512)] × 3 13107200

Avg-Pool -
FC(10) or FC(200) 5120 or 102400

the server sends all the weight parameters (each of 32 bits) to the newly selected clients

in each round. Hence, SignSGD is as inefficient as FedAvg in download communication.

TopK: is a sparsification method used in distributed learning that transmits only

a few dimensions of each model update to the server. In TopK [11, 13], the clients

first sort the absolute values of their local model updates, and send the Top K%

largest model update dimensions to the server for aggregation. TopK suffers from the

same problem as SignSGD: for performance reasons, the server should send the entire

updated model weights to the new selected clients.

Multi-krum: [27] proposed Multi-krum AGR as a modification to their own Krum

AGR. Multi-krum selects an update using Krum and adds it to a selection set, S.

68

Multi-krum repeats this for the remaining updates (which remain after removing the

update that Krum selects) until S has c updates such that n− c > 2m+ 2, where n is

the number of selected clients and m is the number of compromised clients in a given

round. Finally, Multi-krum averages the updates in S.

Trimmed-mean: Yin et al. [169] proposed Trimmed-mean that aggregates each

dimension of input updates separately. It sorts the values of the jth-dimension of all

updates. Then it removes m (i.e., the number of compromised clients) of the largest

and smallest values of that dimension, and computes the average of the rest of the

values as its aggregate for the dimension j.

3.8 Empirical evaluation

In this section, we extensively evaluate the utility, robustness, and communication

cost of our FRL algorithm. This section is organized as follows: In Section 3.8.1 we

investigate the robustness and utility of FRL, followed by Section 3.8.2 in which we

discuss the communication cost of FRL. Next, in Section 3.8.3, we compare FRL

utility and robustness to an extension of edge-popup to FL. Moreover, we also provide

results of FRL for a NLP classification task (Section 3.8.4), FRL against backdoor

attacks (Section 3.8.5), and FRL with larger number of FL clients (Section 3.8.6). We

conclude with Section 3.8.7, where we provide an ablation study on FRL.

3.8.1 Analyses of robustness to poisoning

We compare FRL with state-of-the-art robust aggregation rules (AGRs): Mkrum [27],

and Trimmed-mean [169]. Table 3.2 gives the performances of robust AGRs, SignSGD,

and FRL with different percentages of malicious clients using attacks proposed by

Shejwalkar et al. [148], Bernstein et al. [22], and Algorithm 3 respectively. Here, we

make a rather impractical assumption in favor of the previous robust AGRs: we

69

assume that the server knows the exact % of malicious clients in each FL round. Note

that, FRL does not require this knowledge.

Table 3.2. Comparing the robustness of various FL algorithms: FRL and Sparse-FRL
(SFRL) (in bold) outperform the state-of-the-art robust AGRs and SignSGD against
the strongest of untargeted poisoning attacks.

Dataset AGR No malicious 10% malicious 20% malicious

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.2) 10.0 (10.0) 10.0 (10.0)
Trimmed-mean 98.8 (3.2) 95.1 (7.7) 87.6 (9.5)
Multi-krum 98.8 (3.2) 98.6 (3.3) 97.9 (4.1)
SignSGD 97.2 (4.6) 96.6 (5.0) 96.2 (5.6)
FRL 98.8 (3.1) 98.8 (3.1) 98.7 (3.3)

SFRL Top 50% 98.2 (3.8) 97.04 (4.4) 95.1 (7.8)

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1) 10.0 (10.1)
Trimmed-mean 84.9 (11.0) 56.3 (16.0) 20.5 (13.2)
Multi-krum 84.7 (11.3) 58.8 (15.8) 25.6 (14.4)
SignSGD 79.1 (12.8) 39.7 (15.9) 10.0 (10.1)
FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)

SFRL Top 50% 77.6 (13.0) 41.7 (15.4) 39.7 (15.2)

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.3 (5.8) 6.3 (5.8)
Trimmed-mean 85.2 (11.0) 72.7 (15.7) 56.2 (20.3)
Multi-krum 85.2 (10.9) 80.9 (12.2) 23.7 (12.8)
SignSGD 79.3 (12.4) 76.7 (13.2) 55.1 (14.9)
FRL 84.2 (10.7) 83.0 (10.9) 65.8 (17.8)

SFRL Top 50% 75.2 (12.7) 70.5 (14.4) 60.39 (14.8)

FRL achieves higher robustness than state-of-the-art robust AGRs: We

note from Table 3.2 that, FRL is more robust to the presence of malicious clients who

mount untargeted poisoning attacks, compared to Multi-Krum and Trimmed-mean,

when percentages of malicious clients are 10% and 20%. For instance, on CIFAR10,

10% malicious clients can decrease the accuracy of FL models to 56.3% and 58.8% for

Trimmed-mean and Multi-Krum respectively; 20% malicious clients can decrease the

accuracy of the FL models to 20.5% and 25.6% for Trimmed-mean and Multi-Krum

respectively. On the other hand, FRL performance decreases to 79.0% and 69.5% for

10% and 20% attacking ratio, respectively.

We make similar observations for MNIST and FEMNIST datasets: for FEMNIST,

10% (20%) malicious clients reduce accuracy of the global model from 85.8% to 72.7%

70

(56.2%) for Trimmed-Mean, and to 80.9% (23.7%) for Multi-krum, while FRL accuracy

decreases to 83.0% (65.8%).

FRL is more accurate than SignSGD: First, we note that, in the absence of

malicious clients, FRL is significantly more accurate than SignSGD. For instance,

on CIFAR10 distributed in non-iid fashion among 1000 clients, FRL achieves 85.3%

while SignSGD achieves 79.1% , or on FEMNIST, FRL achieves 84.2% while SignSGD

achieves 79.3%. This is because, FRL clients send more nuanced information via

rankings of their subnetworks compared to SignSGD, where clients just send the signs

of their model updates.

FRL is more robust than SignSGD: Next, we note from Table 3.2 that, FRL

is more robust against untargeted poisoning attacks compared to SignSGD when

percentages of malicious clients are 10% and 20%. For instance, on CIFAR10, 10%

(20%) malicious clients can decrease the accuracy of SignSGD model to 39.8% (10.0%).

On the other hand, FRL performance decreases to 79.0% and 69.5% for 10% and 20%

attacking ratio respectively. We make similar observations for MNIST and FEMNIST

datasets: for FEMNIST, 10% (20%) malicious clients reduce accuracy of the global

model from 85.8% to 76.7% (55.1%) for SignSGD, while FRL accuracy decreases to

83.0% (65.8%).

Sparse-FRL robustness: We evaluate robustness of SFRL Top 50% against 10%

and 20% malicious clients. As we can see from Table 3.2, by sending only top half of

the local rankings, the accuracy goes from 85.3% (FRL) to 77.6% (SFRL). SFRL also

can provide robustness to some extend, but adversary has more influence on the global

ranking since half of the rankings are missing. For instance, on CIFAR10, 10% (20%)

malicious clients can decrease the accuracy of global ranking to 41.7% (39.7%) from

77.6%. Also for FEMNIST, 10% (20%) malicious clients can decrease the accuracy

of global ranking to 70.5% (60.39%) from 75.2%. We can see when malicious clients’

percentages are higher, SFRL can perform better compared to existing robust AGR.

71

FRL versus FedAvg and TopK: We omit the results of non-robust aggregations,

FedAvg and TopK, because even a single malicious client [27] can jeopardize their

performances.

3.8.2 Communication cost analysis

In FRL, both clients and server communicate just the edge ranks instead of weight

parameters. Thus, FRL reduces both upload and download communication cost.

Table 3.3 illustrates the utility, i.e., the mean and standard deviation of all clients’

test accuracies and, communication cost of FRL and state-of-the-art quantization

(i.e., SignSGD [22]) and sparsification (i.e., TopK [13, 11]) communication-reduction

methods.

Table 3.3. Comparing the accuracy and communication cost of FedAvg, SignSGD,
TopK, FRL and Sparse-FRL (SFRL) with different percentages of sparsity (in bold).
Parentheses in the accuracy column show standard deviation of the accuracy.

Algorithm Accuracy Upload/Download (MB)
MNIST + LeNet + 1000 clients

FedAvg 98.8 (3.1) 6.20/ 6.20
FRL 98.8 (3.2) 4.05/ 4.05

SFRL Top 50% 98.2 (3.8) 2.03/ 4.05
SFRL Top 10% 89.5 (9.2) 0.40/ 4.05

SignSGD 97.2 (4.6) 0.19/ 6.20
TopK 50% 98.8 (3.2) 3.29/ 6.20
TopK 10% 98.7 (3.2) 0.81/ 6.20

CIFAR10 + Conv8 + 1000 clients
FedAvg 85.4 (11.2) 20.1/ 20.1
FRL 85.3 (11.3) 13.1/ 13.1

SFRL Top 50% 77.6 (13.0) 6.5/ 13.1
SFRL Top 10% 27.5 (14.4) 1.3/ 13.1

SignSGD 79.1 (13.6) 0.63/ 20.1
TopK 50% 82.1 (11.8) 10.69/ 20.1
TopK 10% 77.8 (13.0) 2.64/ 20.1

FEMNIST + LeNet + 3400 clients
FedAvg 85.8 (10.2) 6.23/ 6.23
FRL 84.2 (10.7) 4.06/ 4.06

SFRL Top 50% 75.2 (12.7) 2.03/ 4.06
SFRL Top 10% 59.2 (15.0) 0.40/ 4.06

SignSGD 79.3 (12.4) 0.19/ 6.23
TopK 50% 85.7 (9.9) 3.31/ 6.23
TopK 10% 85.5 (10.0) 0.81/ 6.23

72

FRL versus SignSGD: SignSGD in FL reduces only the upload communication, but

for efficiency reasons, the server sends all of the weight parameters (each of 32 bits) to

the newly selected clients. Hence, SignSGD has very efficient upload communication,

but very inefficient download communication. For instance, on CIFAR10, for both

upload and download, FRL achieves 13.1MB each while SignSGD achieves 0.63MB

and 20.1MB, respectively.

FRL versus TopK: We compare FRL and TopK where K ∈ {10, 50}%. FRL is more

accurate than Topk for MNIST and CIFAR10: on CIFAR10, FRL accuracy is 85.3%,

while TopK accuracies are 82.1% and 77.8% with K=50% and K=10%, respectively.

Similar to SignSGD, Topk more efficiently reduces upload communication, but has

very high download communication. Therefore, the combined upload and download

communication cost per client per round is 26.2MB for FRL and 30.79MB for TopK

with K=50%; note that, even then TopK performs worse than FRL.

Communication cost reduction due to Sparse-FRL (SFRL): We now evaluate

SFRL explained in Section 3.5. In SFRL with top 50% ranks, clients send the top 50%

of their ranks to the server, which reduces the upload bandwidth consumption by half.

Please note that the download cost of SFRL is the same as FRL since the FRL server

should send all the global rankings to the selected clients in each round. We note from

Table 3.3 that, by sending fewer ranks, SFRL reduces upload communication at a

small cost of performance. For instance, on CIFAR10, SFRL with top 50% reduces the

upload communication by 50% at the cost reducing accuracy from 85.4% to 77.6%.

3.8.3 Comparison with näıve extension of edge-popup algorithm to FL

As discussed in Section 3.3.2, prior works [144] on supermask training and its

following works [164, 42] do not consider rankings, and instead find subnetworks in

randomly initialized networks by just training the scores, in a centralized training

setting. Algorithm 4 shows the näıve extension of [144] to FL, where the clients train

73

and exchange scores (32bits floats). Like FedAvg, these scores are from a continuous

space of float numbers (as opposed to parameter ranks in FRL). At the end of each

FL round, the server averages the local score updates to aggregate them and produces

global scores (different from our majority vote aggregation). It is important to note

that our majority vote aggregation only works on a set of ranking inputs.

Algorithm 4 Edge-popup based FL (EFL)
1: Input: number of rounds T , number of local epochs E, number of users in each round n, seed

seed, learning rate η, subnetwork size k%
2: Server: Initialization
3: θs0, θ

w ← Initialize random scores and weights using seed
4: for t ∈ [1, T] do
5: U ← set of n randomly selected clients out of N total clients
6: for u in U do
7: Clients: Calculating the scores using EP
8: θw ← Initialize weights using seed
9: St

u ← Edge-PopUp(E,Dtr
u , θw, θst−1, k, η) ▷ Client u uses Algorithm1 to train a supermask

starting from global scores θst−1

10: end for
11: Server: Averaging the scores

12: θst+1 ← AVG(St
{u∈U})

13: end for

Exchanging such scores is as vulnerable to poisoning as regular FL because they

are not scale-free and discrete similar to rankings. Table 3.4 compares the performance

of FedAvg, where the clients train weight parameters, EdgePopUPFL, using this näıve

application of Edge-popup where the clients train scores, and FRL, where the clients

are training rankings. If we use scores as the clients’ updates, even one malicious

client can generate its adversarial score update and re-scales it to cancel the effect of

other benign updates. On the other hand, rankings are scale-free, and the adversary

cannot increase its influence by re-scaling the rankings.

Table 3.4. Comparing the robustness of EFL, a näıve edge-popup based FL (Algo-
rithm 4), with robustness of FRL.

Dataset
of clients

AGR
Percentage of Malicious Clients
0% 10% 20%

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1)
EFL 84.2 (11.3) 10.0 (10.1)
FRL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)

74

Furthermore, as discussed in Section 3.3, FRL’s performance does not just come

from using the Edge-popup algorithm, but rather from introducing an efficient protocol

to rank and aggregate them which enables achieving high accuracy and robustness.

Overall, a major novelty of our work is that, to the best of our knowledge, FRL is the

first scalable, distributed training algorithm that trains using parameters rankings to

effectively defend against poisoning attacks. Below is the summary of our contributions

compared to the näıve extension of [144] to FL:

• Transform the continuous, local scores into discrete and scale-free rankings

(Section 3.3.2).

• Develop algorithms to aggregate local rankings to produce global rankings

(Section 3.3.3).

• Map global rankings back to local scores for further local training (Section 3.3.2).

3.8.4 FRL for text classification

So far, following the majority of research on supermasks, we only focused on

vision tasks. However, in this section, we demonstrate the efficacy of FRL on text

classification tasks.

Previous works [66, 42] shows the effectiveness of supermask learning on a text

classification task in a centralized learning paradigm. To the best of our knowledge,

FRL is the first work that trains a distributed model by utilizing supermask learning

to generate rankings. In this section, we show the effectiveness of FRL on a text

classification task when the data is distributed over the FL clients. In particular, we

train a recurrent neural network (RNN), shown in Table 3.1, on the IMDB reviews

dataset [124]. IMDB reviews dataset consists of 25k and 25k reviews for each training

and testing data. We distribute the training data over 25 FL clients identically and

independently (iid), where each client has access to 1k reviews. We also divide the

75

original IMDB test data and use 5k samples for validation and 20k for test. We find

the hyperparameters that perform the best on the validation data, use them to train

the final FL model, and report its accuracy on the test data.

Following the setting of previous work [42] which trains supermask for a text

classification task, we use a BiLSTM network with an embedding layer, a dropout

layer, an LSTM layer (with bidirectional=True), and a linear layer. We import the

pre-trained weights for our embedding layer from [1] and freeze them during back-

propagation To train FRL, we use the SparseModule [2], which freezes the weight

parameters of the LSTM layer and enables us to train a supermask on top of frozen

weight parameters. Using this code [2] allows training supermask on any neural

network layer and producing rankings based on the scores of the supermask.

Table 3.5. Test accuracies of FRL and FedAvg on IMDB dataset [124] with the
BiLSTM from Table 3.1.

Network # of Params FRL FedAvg
BiLSTM 1.44M 88.00 88.46

We train FRL and FedAvg for 300 global FL rounds. In each round, we select

all the FL clients for participation (i.e., N = n = 25). Each client uses SGD with

momentum 0.9 and weight decay 1e-5 to train locally. In FedAvg, each client trains

for E = 2 local epochs with learning rate η = 0.5 and batch size B = 256. In FRL,

each client trains for E = 5, η = 1.0, B = 16, and sparsity of k = 50%. Table 3.5

gives the test accuracies of FRL and FedAvg of BiLSTM from on the IMDB dataset.

FRL achieves similar accuracy (88.0%) as FedAvg (88.46%) on the IMDB reviews

classification task.

3.8.5 FRL against targeted poisoning

So far, we evaluated the robustness of FRL against untargeted attacks. In this

section, we evaluate the robustness against targeted poisoning, and specifically against

76

backdoor poisoning attacks. We consider state-of-the-art backdoor attacks of three

types: semantic [15], artificial [165], and edge-case[159] backdoor attacks. In this

section, we first briefly discuss the three backdoor attack types; next, we discuss our

evaluation setup, and finally, we present the experiment results at the end.

3.8.5.1 Existing FL backdoor attacks

(a) Semantic backdoor (b) Artificial backdoor (c) Edge-Case backdoor

Figure 3.6. Backdoor examples for different categories of targeted poisoning attacks
on CIFAR10.

Backdoor attacks [149] aim to misclassify any input that contains a specific signal

called backdoor trigger, while correctly classifying inputs not containing the trigger.

Based on the type of triggers, there are three kinds of backdoor attacks:

Semantic backdoor attacks [15] aim to misclassify a specific set of inputs that

naturally contain a backdoor trigger. Figure 3.6(a) shows inputs from CIFAR10 data

with the background of black stripes on a yellow wall as the naturally present, semantic

trigger.

Artificial backdoor attacks [15, 165] aim to misclassify any input containing a

manually added trigger. Figure 3.6(b) shows inputs with F shaped white pixels as the

artificial trigger.

77

Edge-Case backdoor attacks [159] aim to misclassify inputs that are from the

tail of the training data distribution. Hence, adversary can compute their model

updates using mislabeled edge-case data and manipulate the global model to learn the

incorrect correlation between data and labels. Figure 3.6(c) shows edge-case inputs

for CIFAR10 distribution which are Southwest airplane images from Internet.

3.8.5.2 Evaluation setup

We compare the performances of the FRL and FedAvg against the above backdoor

attacks. We evaluate the accuracy of the (poisoned) global model on the main (inputs

without trigger) and backdoor (inputs with trigger) tasks. Following [159, 15], for

all the experiments, we start from a pre-trained model with 80.0% test accuracy

and train it for 1,000 more FL rounds when malicious clients are present. We use

N = 1000 clients, distribute CIFAR10 as in Section 3.8, and randomly select n = 25

clients in each round. We report the final test accuracy and the average of backdoor

test accuracies over the 1000 FL rounds when percentages of malicious clients is in

{1, 2, 5, 10}. We assume that each malicious client has some benign data (per the

distribution scheme from Section 3.8) and all the backdoored data. We use the same

hyperparameters discussed in Section 3.8 for training CIFAR10 on Conv8 model.

Model Replacement in FL backdoor Attacks: FL backdoor poisoning attacks

use a strategy called model replacement where the malicious client first finds a malicious

update that contains the backdoor, then it scales the model parameters to cancel the

contributions from the other honest clients. For example, if there are m malicious

clients selected in FL round t, each malicious client u calculates its backdoored update

θtu, and re-scaled it to λθtu where λ = m
n
where n is the number of selected clients

in each FL round. Model replacement strategy requires that the global model is

close to convergence, so the malicious clients can replace the global model with their

backdoored model, which performs well on the main task. Following this strategy, the

78

backdoor accuracy would be very high in FedAvg, even if one of the malicious clients

is chosen in one round. However, in FRL, re-scaling is not possible as the clients are

sending their local rankings where each ranking are a permutation of the indices of

the edges in each layer, i.e., of [0, nℓ − 1]∀ℓ ∈ [L] where L is the number of layers and

nℓ is the number of parameters in ℓth layer. To have a fair comparison with FedAvg,

we did not use a model replacement strategy for FedAvg too.

Semantic backdoors: We choose images with vertically striped walls in the

background (Figure 3.7 (a)) as the backdoors. Of these 12 images with this trigger in

the CIFAR10 dataset, we use 9 of them for training the backdoors while keeping the

other three for testing the backdoor accuracy. The malicious clients want the global

model to predict these images as the bird (class label=2). We measure the backdoor

accuracy on 1000 randomly rotated and cropped versions of the three backdoor images

held out of the adversary’s training.

Artificial backdoors: We add a particular pixel pattern to the top left corner of

the first nine (not bird) images of the CIFAR10 dataset (Figure 3.7 (b)) and change

their labels to bird (label=2). To evaluate these attacks, we pick 256 random (not

bird) images from CIFAR10 and add this pattern to them with the label of class bird.

Edge-Case backdoors: We collect 980 images from public web by searching for

Southwest airplanes (similar to what [159] did) and resize the images to 32 × 32

(Figure 3.7 (c)). We set their target labels as truck (class label=9). We use 784 of

these images for training and keep 196 of them for the evaluation of the backdoor.

3.8.5.3 Evaluation results

Semantic backdoor attacks: Figure 3.7 (a) shows the performance of FedAvg and

FRL on the main task and the backdoor task when different percentages of malicious

clients want to put a semantic backdoor in the global model. This figure shows that

FRL is more robust against semantic backdoor attacks for different percentages of

79

malicious clients. For example, with 2% of malicious clients, training FedAvg results in

84.4% final test accuracy with 82.7% average backdoor accuracy, while training FRL

results in 84.1% and 49.2% accuracy on the main task and backdoor task, respectively.

The existence of a more significant number of malicious clients (e.g., 10%) results in

higher backdoor accuracy for both FedAvg and FRL as the malicious clients have

more influence on the global model to introduce their backdoor; with existence of

10% of malicious clients, training FedAvg and FRL achieves 95.7% and 91.2% average

backdoor accuracy respectively.

0 2 4 6 8 10
Percentage of attackers

0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

FedAvg (Backdoor)
FRL (Backdoor)

FedAvg (Main Task)
FRL (Main Task)

(a) Semantic backdoor results

0 2 4 6 8 10
Percentage of attackers

0

20

40

60

80

Te
st
 A
cc
ur
ac
y

FedAvg (Backdoor)
FRL (Backdoor)

FedAvg (Main Task)
FRL (Main Task)

(b) Edge-Case backdoor results

Figure 3.7. FL backdoor poisoning attacks on CIFAR10 distributed over 1000 clients
with Dirichlet (β = 1.0) for presence pf adversary in 1000 FL rounds.

Artificial backdoor attacks: These attacks are ineffective when the adversary

cannot use model replacement strategy (i.e., cannot re-scale their parameters). In

FRL, malicious clients cannot scale their updates, as they submit a local ranking

(from a discrete space of updates). To be fair, we also did not use re-scaling in our

experiments for FedAvg. We did not report the results for this attack, as the backdoor

accuracy would be 0% for both FRL and FedAvg with no parameter re-scaling. It

means that the global model always predict the right label (not the adversary target

label ”bird”) for the test backdoor images.

80

Edge-Case backdoor attacks: Figure 3.7 (b) shows that FRL is more robust

against Edge-case backdoor attacks for different percentages of malicious clients. For

example, with 2% of malicious clients, training FedAvg results in 83.7% final test

accuracy with 77.3% average backdoor accuracy, while training FRL results in 84.0%

and 64.6% accuracy on the main task and backdoor task, respectively. Similar to

semantic backdoors, a larger number of malicious clients (e.g., 10%) results in higher

backdoor accuracy for both FedAvg and FRL; with 10% of malicious clients, training

FedAvg and FRL achieves 94.0% and 90.3% average backdoor accuracy respectively.

3.8.6 FRL with larger number of clients

In the previous sections, we experiment with federated learning by distributing

different datasets over 1000 clients in a non-iid fashion using Dirichlet distribution

with parameter β = 1. In this section, we compare the performance and robustness of

FedAvg and FRL when we have 1000, 2000, and 5000 FL clients, and we distribute

the CIFAR10 dataset over them using Dirichlet distribution with the same parameter

β = 1. CIFAR10 has only ten classes, and its training data contains 50000 images, so

when we distribute it over these settings, each FL client gets around 50, 25, and 5

training images on average.

Table 3.6 shows the performance of FedAvg and FRL for different numbers of FL

clients (N) and different percentages of malicious clients. For these experiments, we

select n = 25 clients in each round for local training, and we follow the hyperparameters

we discussed in Section 3.8 for training the models. From Table 3.6, we can see that

FedAvg always is vulnerable to untargeted attacks, as the adversary has a large

continuous space to craft its malicious updates, so the test accuracy of the global

model would be a random guess (10%). On the other hand, FRL is robust against

untargeted attack even when benign clients have access to a few training examples.

81

For example, training FRL with 5000 clients achieves 70.8%, 53.3%, 48.9% and 33.8%

test accuracy when we 0%, 10% ,20%, 30% of clients are malicious.

Table 3.6. Comparing the robustness of FedAvg and FRL algorithms for large number
of FL clients.

Dataset
of clients

AGR
Percentage of Malicious Clients
0% 10% 20% 30%

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 10.0
FRL 85.3 79.0 69.5 40.2

CIFAR10 + Conv8
2000 clients

FedAvg 79.5 10.0
FRL 79.7 75.7 66.9 38.6

CIFAR10 + Conv8
5000 clients

FedAvg 68.3 10.0
FRL 70.7 53.3 48.9 33.8

3.8.7 Ablation study

In this section, we perform an extensive ablation study to understand performances

of FRL under various settings. Specifically, we evaluate the performances of FRL

while varying non-iid data distributions methods (Section 3.8.7.1), weight initialization

algorithms (Section 3.8.7.2), sparsity (Section 3.8.7.3), and size of supernetwork

(Section 3.8.7.4). We conclude with results of FRL with different hyperparameters

(Section 3.8.7.5).

3.8.7.1 FRL under different heterogeneous data distribution methods

So far, we evaluated all of our experiments when the data is distributed non-iid

using Dirichlet distribution with parameter β = 1. In this method of non-iid data

distribution, all clients will get at least a few samples from each data class with

non-zero probabilities that Dirichlet distribution generates. However, this non-iid

data distribution need not represent all the practical FL settings. In fact, there may

exist non-iid distributions that make training FL models more difficult. Therefore in

this section, we consider a more difficult setting where the data distribution is more

non-iid.

82

Assigning only two classes to each client: We experiment with the more

extreme non-iid distribution considered by McMahan et al. [126]. More specifically,

to distribute of MNIST and CIFAR10 data among 1000 clients, we sort all the (i.e.,

combined train and test) MNIST and CIFAR10 data according to their classes and

then we partition them into 2000 shards. Hence, each shards of training MNIST has

30 images and each CIFAR10 shard has 25 images of a single class. Then we assign

two random shards to each client resulting in each client having data from at most

two classes. Therefore, in CIFAR10 experiments, each client has 50 training images,

and 10 test images, and in MNIST experiments, each client has 60 training images

and 10 test images. We only use this assignment in Section 3.8.7.1.

Table 3.7. Comparing the performance of FRL and FedAvg in cross-device FL setting
using two non-iid data distribution methods. We distribute data among 1000 clients
with two methods described briefly below; please check Section 3.8.7.1 for more details.

Dataset Type of Non-IID Metric
Algorithm

FedAvg FRL

MNIST
LeNet
N=1000

Dirichlet
Distribution β = 1

Mean 98.8 98.8
STD 3.1 3.1
Min 75.0 75.0
Max 100 100

Randomly 2 classes
assigned to each client

Mean 98.4 98.3
STD 4.3 4.1
Min 70.0 80.0
Max 100 100

CIFAR10
Conv8
N=1000

Dirichlet
Distribution β = 1

Mean 85.4 85.3
STD 11.2 11.3
Min 33.3 33.3
Max 100 100

Randomly 2 classes
(assigned to each client)

Mean 70.6 70.9
STD 21.9 19.2
Min 0 10.0
Max 100 100

Table 3.7 shows the performances of FRL and FedAvg using different methods of

non-iid assignment. We distribute the data between 1000 clients using: (I) Dirichlet

distribution with β = 1 similar to [145, 86] and (II) the method described above

from [126]. In Table 3.7, we note that FRL achieves similar performances as FedAvg

for different heterogeneous data distribution methods. For instance, on CIFAR10,

83

Table 3.8. Comparing the performance of FRL with different random weight initializa-
tion algorithms with the performance of vanilla FedAvg for cross-device setting. Using
Singed Kaiming Constant (UK) as weight initialization gives the best performance for
all the datasets.

Dataset
Metric

Algorithm
FedAvg FRL

Winit ∼ - XN NK UK

MNIST
LeNet
N=1000

Mean 98.8 96.6 98.7 98.8
STD 3.1 5.2 3.2 3.1
Min 75.0 57.1 75.0 75.0
Max 100 100 100 100

CIFAR10
Conv8
N=1000

Mean 85.4 63.6 82.0 85.3
STD 11.2 15.6 11.9 11.3
Min 33.3 0 0 33.3
Max 100 100 100 100

FEMNIST
LeNet
N=3400

Mean 85.8 69.2 82.9 84.2
STD 10.2 14.2 11.1 10.7
Min 10.0 0 14.3 7.1
Max 100 100 100 100

FedAvg and FRL achieves similar performances of 85.4% and 85.3% respectively when

data is distributed according to (I). Similarly, when data is distributed according to

(II), FedAvg and FRL achieve similar performances of 70.6% and 70.9%, respectively.

We make similar observations for MNIST as well: FedAvg achieves 98.8% and

98.4% for the two methods of data distribution respectively, while FRL achieves 98.8%

and 98.3% accuracy.

3.8.7.2 FRL under different weight initializations

In FRL, the weight parameters are randomly initialized at the start and remain

fixed throughout the training. An appropriate initialization is instrumental to the

success of FRL, since the FRL clients are sending the local rankings of these edges;

more important edges get higher ranks. They generate these rankings by feeding the

subnetwork of top rank edges and calculating the gradient of the loss with respect to

the scores, so distribution of these random weights has a high impact on the calculated

loss. We use three different distribution for initializing the weight parameters as

follows:

84

Glorot Normal [71] where we denote by XN . Previous work [176] used this

initialization to demonstrate that subnetworks of randomly weighted neural networks

can achieve impressive performance.

Kaiming Normal [80] where we denote by Nk defined as NK = N
(
0,
√

2/nℓ−1

)
where N shows normal distribution. nℓ shows the number of parameters in the ℓth

layer.

Singed Kaiming Constant [143] where all the weights are a constant σ but they

are assigned {+,−} randomly. This constant, σ, is the standard deviation of Kaiming

Constant. We show this initialization with UK as we are sampling from {−σ,+σ}

where σ =
(√

2/nℓ−1

)
.

Table 3.8 shows the results of running FRL for three datasets under the three

aforementioned initialization algorithms. We compare FRL with FedAvg and report

the mean, standard deviation, minimum, and maximum of the accuracies for the

clients’ accuracies in FRL and FedAvg at the end of training. As we can see under

three different random initialization, using Signed Kaiming Constant (UK) results in

better performance. We note from Table 3.8 that FRL with Signed Kaiming Constant

(UK) initialization achieves performance very close to the performance of FedAVg.

Note that, since the FRL clients update scores in each round, unlike initialization

of weights, initialization of scores does not have significant impact on the final global

subnetwork search. Therefore, we do not explore different randomized initialization

algorithms for scores and simply use Kaiming Uniform initialization for scores.

Ramanujan et al. [143] also considered these three initialization to find the best

subnetwork in centralized machine learning setting. They also showed that using

Singed Kaiming Constant gives the best supermasks. Our results align with their

conclusions, hence we use Singed Kaiming Constant to initialize the weights and

Kaiming Uniform to initialize the scores of the global supernetwork.

85

3.8.7.3 FRL with varying sizes of subnetworks

In FRL, each client uses Edge-popup (Algorithm 1) and their local data to find a

local ranking by finding a subnetwork within a randomly initialized global network,

which we call supernetwork. Edge-popup algorithm uses parameter k which represents

the % of all the edges in a supernetwork which will remain in the final subnetwork. For

instance, k = 50% denotes that each client finds a subnetwork within a supernetwork

that has half the number of edges as in the supernetwork.

20 40 60 80
k %

96.5

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y
(%

)

FedAvg FRL

(a) MNIST

20 40 60 80
k %

20

40

60

80
Te

st
 A

cc
ur

ac
y

(%
)

FedAvg FRL

(b) CIFAR10

20 40 60 80
k %

72.5

75.0

77.5

80.0

82.5

85.0

Te
st

 A
cc

ur
ac

y
(%

)

FedAvg FRL

(c) FEMNIST

Figure 3.8. Comparing performance of FRL for different subnetwork sizes. k (x-axis)
shows the % of weights that each client is including in its subnetwork, test accuracy
(y-axis) shows the mean of accuracies for all the clients on their test data. The chosen
clients in each round send all the ranks to the server. FRL with subnetworks of
∈ [40%, 70%] result in better performances.

Figure 3.8 illustrates how the performance of FRL varies with the sizes of lo-

cal subnetworks that the clients share with the server. In other words, when

we vary the sparsity k% of edge popup algorithm during local subnetwork search

k ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90]%. Interestingly we note that, FRL performs the

worst when clients use all (k=100%) or none (k=0%) of the edges. This is because, it

is difficult to find a subnetwork with small number of edges. While using all of the

edge essentially results in using a random neural network. As we can see FRL with

k ∈ [40, 70]%, gives the best performances for all the three datasets. Hence, we set

k=50% by default in our experiments.

86

3.8.7.4 FRL with larger networks

We already discussed the performance of the FRL for MNIST, CIFAR10, and

FEMNIST datasets using moderately large neural networks with number of parameters

ranging from 1.62M to 5.27M. In this section, we conduct experiments to demonstrate

the effectiveness of FRL for very large networks: ResNet18 and ResNet34, with number

of parameters 11.11M and 21.26M, respectively. Along with CIFAR10, we conduct

experiments using a larger and significantly more challenging Tiny-ImageNet dataset.

Table 3.1 shows the network architectures we use for these experiments. We have a

batch normalization layer in these networks after each convolution layer. Following

the setting of [143, 164, 42], we set the batch normalization to the non-affine mode,

i.e., the scale and bias terms are set to γ = 1 and β = 0. We use the hyperparameters

described in Section 3.7.2 for all the models.

Table 3.9. FRL with larger networks for CIFAR10 and Tiny-ImageNet distributed
over 1000 FL clients.

Dataset Network # of Params FRL Acc (%) FedAvg Acc (%)

CIFAR10
N = 1000

Conv8 5.27M 85.3 85.4

ResNet18 11.11M 89.3 89.9

ResNet34 21.26M 90.2 91.4

Tiny-ImageNet
N = 1000

ResNet18 11.26M 31.0 30.8

ResNet34 21.36M 30.9 30.8

Tiny-ImageNet Table 3.9 shows the performance of FRL and FedAvg on Tiny-

ImageNet for different network sizes, where ResNet18 and ResNet34 have 11.26 and

21.36 millions parameters respectively. From this table, we can see that FRL can

achieve similar accuracy as FedAvg; for example, by using ResNet18, FRL achieves

31.0% test accuracy while FedAvg achieves 30.8% test accuracy.

CIFAR10. In Table 3.9, we show the final test accuracy of different models, Conv8

with 5.27M parameters, ResNet18 with 11.11M parameters, and ResNet34 with 21.26M

parameters. We can see that FRL can achieve similar test accuracies as FedAvg for

87

different model sizes. For example, For ResNet18, FRL achieves 89.3% test accuracy

while FedAvg achieves 89.9% test accuracy.

3.8.7.5 FRL with different hyperparameters

Note that, we independently tune the hyperparameters for FRL and other base-

lines. More specifically, we tune batch size, local epochs, and learning rate for the

non-adversarial (no malicious clients) setting and use them throughout our experi-

ments. However, we show that FRL, unlike other robust aggregations, defends against

malicious clients for a wide range of the hyperparameters: Table 3.10 shows the mean

and standard deviations of accuracy of FRL and various baseline robust FL algorithms

on CIFAR10 (distributed over 1000 users using Dirichlet distribution [129]) for wide

ranges of the hyperparameters when there are 10% malicious clients. This experiment

shows that hyperparameter tuning, a major challenge in real-world FL systems [97],

is relatively easy for FRL.

88

Table 3.10. FRL performance is robust to a wide range of hyperparameters. FRL
performs well on CIFAR10 (distributed non-iid among 1000 clients using Dirichlet
distribution) even under different hyperparameters. We use the values in bold
in our experiments. FedAvg and TopK are non-robust under any combination of
hyperparameters.

Method hyperparameter value
Test Accuracy
with 10% malicious

FRL

batch size
6 78.4 (12.6)
8 79.0 (12.4)
16 76.4 (13.6)

local epochs
2 79.8 (12.2)
5 79.0 (12.4)
10 78.2 (12.6)

learning rate

0.1 73.5 (13.4)
0.2 82.4 (12.1)
0.3 83.11 (11.8)
0.4 79.0 (12.4)
0.5 77.5 (13.1)

FedAvg - - 10.0 (10.1)

TopK - - 10.0 (10.1)

Trimmed-mean

batch size
6 55.5 (14.5)
8 56.3 (16.0)
16 37.7 (15.6)

local epochs
2 41.0 (15.4)
5 56.3 (16.0)
10 21.0 (9.9)

learning rate

0.01 34.0 (15.5)
0.05 38.3 (15.3)
0.1 56.3 (16.0)
0.15 10.0 (10.0)
0.2 10.0 (10.0)

Multi-Krum

batch size
6 19.0 (12.5)
8 58.8 (15.8)
16 36.7 (14.8)

local epochs
2 46.1 (15.9)
5 58.8 (15.8)
10 24.3 (11.7)

learning rate

0.01 15.3 (11.7)
0.05 50.0 (16.2)
0.1 58.8 (15.8)
0.15 15.4 (11.9)
0.2 10.0 (10.0)

SignSGD

batch size
6 33.1 (15.6)
8 39.7 (15.9)
16 10.2 (10.1)

local epochs
2 10.2 (10.5)
5 39.7 (15.9)
10 41.5 (16.0)

learning rate

0.01 44.2 (15.8)
0.05 41.9 (15.5)
0.1 39.7 (15.9)
0.15 35.8 (15.3)
0.2 10.2 (10.1)

89

0 250 500 750 1000 1250 1500 1750 2000
Epoch

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

FRL (E=2) FRL (E=5) FRL (E=10)

(a) CIFAR10 (Test Accuracy)

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Te
st

 L
os

s

FRL (E=2) FRL (E=5) FRL (E=10)

(b) CIFAR10 (Test Loss)

Figure 3.9. Comparing the CIFAR10 test accuracy and losses of FRL for different
number of local epochs.

Figure 3.9 shows the learning curves of FRL for different numbers of local epochs

for the CIFAR10 experiment; for CIFAR10, all our experiments use 1000 clients with

local data distributed in non-iid fashion using Dirichlet distribution [129]. We note

that using five local epochs gives the best results. Table 3.11 shows the effect of other

settings including different number of participants (n), local epochs (E), and non-iid

degree (β) on performance of FRL trained on CIFAR10. The bold values are the

once we finally use in our experiments.

Table 3.11. The effect of other settings on performance of FRL trained on CIFAR10
distributed over 1000 clients using Dirichlet distribution. The bold shows the value
we used in our experiments.

Method hyperparameter value Test Accuracy
(10% malicious)

FRL

Number of
participants (n)

15 84.8 (11.3)

25 85.3 (11.3)

50 84.9 (11.2)

local epochs (E)

2 82.2 (12.0)

5 85.3 (11.3)

10 83.5 (11.9)

Non-iid degree (β)

1 85.3 (11.3)

10 85.6 (11.1)

100 85.6 (10.9)

90

3.9 Conclusions

We designed a novel collaborative learning algorithm, called Federated Rank

Learning (FRL), to address the issues of robustness to poisoning and communication

efficiency in existing FL algorithms. We argue that a core reason for the susceptibility

of existing FL algorithms to poisoning is the large continuous space of values in their

model updates. Hence, in FRL, we use ranks of edges of a randomly initialized neural

network contributed by collaborating clients to find a global ranking and then use a

subnetwork based only on the top edges. Use of rankings in a fixed range restricts the

space available to poisoning adversaries to craft malicious updates, and also allows

FRL to reduce the communication cost.

We show, both theoretically and empirically, that ranking based collaborative learn-

ing can effectively mitigate the robustness issue as well as reduce the communication

costs involved.

91

CHAPTER 4

HETEROGENEOUS PRIVATE INFORMATION
RETRIEVAL

Another aspect of trustworthiness in distributed learning systems that we investi-

gate is access privacy. In this chapter, we design a general approach for preserving

access privacy, that one of its application could be in distributed learning systems.

Private information retrieval (PIR) is a technique to provide query privacy to

users when fetching sensitive records from untrusted databases. There are two major

types of PIR protocols. The first type is computational PIR (CPIR) [44, 107, 9,

8, 30, 32, 57, 98, 120, 155, 14] in which the security of the protocol relies on the

computational difficulty of solving a mathematical problem in polynomial time by

the servers, e.g., factorization of large numbers. Most of the CPIR protocols are

designed to be run by a single database server, and therefore to minimize privacy

leakage they perform their heavy computations on the whole database (even if a single

entry has been queried). Consequently, existing CPIR protocols suffer from very high

computation overheads. The second major class of PIR is information-theoretic PIR

(ITPIR) [51, 82, 20, 45, 67, 72, 19, 54]. ITPIR protocols provide information-theoretic

security, however, existing designs need to be run on more than one database servers,

and they need to assume that the servers do not collude. Existing ITPIR protocols

impose lower computation overheads compared to CPIR algorithms, but at the price

of requiring the non-collusion assumption for the servers. Therefore, (multi-server)

ITPIR protocols are best fit to scenarios involving multiple (potentially competing)

data owners who collaborate to run a service privately, therefore colluding is not in

92

their best interest, e.g., [111, 130, 29]. Our work focuses on this class of PIR, i.e.,

multi-server PIR protocols.

Existing multi-server PIR protocols are homogeneous! The existing body of

work on multi-server PIR considers a setting in which the non-colluding PIR servers

have similar computation and communication constraints. We call such traditional

multi-server PIR protocols homogeneous. Homogeneous PIR algorithms have been

deployed in a wide range of homogeneous applications; this includes registering Internet

domains [136], retrieving information of Tor relays [130], private media delivery [75],

privacy-preserving e-commerce applications [83], private query in open-access eprint

repositories [76], messaging applications [29], private online notification [141], and

private file-sharing applications [111]. For instance, in PIR-Tor [130] the servers

participating in the protocol are Tor directory servers with similar resources, in DP5 [29]

the servers are messaging servers with similar settings, and in rPIR [111] the servers

are p2p file-sharing seeds with similar resources. In all of these settings, the proposed

multi-server PIR protocols impose symmetric computation and communication loads

on all of the servers involved in the multi-server PIR protocol.

Introducing heterogeneous multi-server PIR. In this work, we introduce a

new class of multi-server PIR, which we call heterogeneous PIR (HPIR). An HPIR

protocol is a multi-server PIR protocol with asymmetric computation and commu-

nication constraints on its servers, i.e., some of its servers handle higher computa-

tion/communication overheads than the others. We argue that HPIR algorithms

enable new applications for PIR, as well as improve the utility of some of the existing

applications of PIR; this is because HPIR allows the participation of low-resource

entities in running private services.

93

Table 4.1. List of PIR notations

ℓ Number of servers
t Privacy threshold (max number of colluding servers)
k Number of server’s responses
D Database matrix
r Number of rows in the database
s Number of elements in each record of the database
w Element size (bits)
N Total size of the database (bits)

4.1 Background

Private information retrieval (PIR) is a technique to provide query privacy to

users when fetching sensitive records from untrusted databases. The existing body of

work on multi-server PIR considers a setting in which the non-colluding PIR servers

have similar computation and communication constraints. We call such traditional

multi-server PIR protocols homogeneous. In this thesis, we present a new class of

multi-server PIR protocols, which we call heterogeneous PIR (HPIR). In HPIR, the

computation and communication overheads imposed on the PIR servers are non-

uniform, i.e., some servers handle higher computation/communication burdens than

others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR

applications. What enables us to enforce such heterogeneity is a unique PIR-tailored

secret sharing algorithm that we leverage in building our PIR protocol.

In this section, we introduce the main concepts of PIR. Table 4.1 shows the

notations we use for PIR protocols.

Database as a Matrix In a PIR protocol, one or multiple servers, called PIR

servers, host a database D, which can be represented as an r-by-s matrix over a finite

field F. The goal of a client (querier) is to retrieve one row of D, called a data record,

through some interactions with the PIR servers in a way that the PIR servers do not

learn which record of D was retrieved by the client.

94

D =



D1,1 D1,2 . . . D1,s

D2,1 D2,2 . . . D2,s

...
...

. . .
...

Dr,1 Dr,2 . . . Dr,s


(4.1)

Non-private Information Retrieval Suppose that the client aims at retrieving

the jth record of the database. She will create a unit vector e⃗j of size r where all the

bits are set to zero except the jth position being set to one:

e⃗j =

[
0 0 . . . 1 . . . 0 0

]
(4.2)

If the client did not care about privacy, she would send e⃗j to the server(s), and

the server(s) could generate the client’s response by multiplying the vector into the

database matrix D:

e⃗j.D =

[
Dj,1 Dj,2 . . . Dj,s

]
(4.3)

Private Information Retrieval A PIR technique allows the client to obtain this

response without revealing e⃗j to the server(s). Existing PIR techniques use two main

approaches to obfuscate e⃗j: (a) Homomorphic encryption: In such protocols [155,

107, 9, 8, 14], the client encrypts e⃗j element by element before being sent to the

servers. During the data recovery phase, the client will extract her intended record by

decrypting the components of e⃗j × D. (b) Secret Sharing: In other PIR protocols [72,

82, 81, 54, 111], the client will use secret sharing to generate different vector shares for

e⃗j, and she will send the shares to the PIR servers. Most of the existing single-server,

CPIR protocols use homomorphic encryption, and most of the existing multi-server,

ITPIR protocols use secret sharing.

95

4.2 Related Works

Information-Theoretic PIR (ITPIR) protocols ITPIR protocols require more

than one server, and there is an assumption that these servers are not colluding.

These protocols have two main advantages, first they are fast since they do not use

complicated cryptography operations. Second, the query is information-theoretic

private i.e. the adversary can not learn anything about the queries even though

she has unlimited computation power. This kind of PIR requires low computational

resources compared to the CPIR protocols.

Chor ITPIR Chor et al. [45] introduced a very basic ITPIR which uses exclusive

OR as the main operation. One advantage of XOR is that it can cancel the effect

of repeated elements, so the client makes her queries in a way that all the records

have an even number of repeats, so at the end, she can cancel their effects. In this

protocol the client create ℓ queries that ℓ− 1 of them are totally random and the last

one is the result of XOR of the first ℓ− 1 vectors and e⃗j. Then it will send them to

PIR servers, each server multiplies these vectors to the database in GF(2). This dot

production in GF(2) is simple XOR, which ”1” in position jth of e⃗j means XOR this

record, and ”0” means do not XOR this record. At the end, each server sends back

the result of the XOR to the client, and the client XOR all the responses.

Although this scheme is the first ITPIR protocol, it is still widely cited and

proposed for different applications. This amount of citations comes from the fact that

this scheme is very fast compared to all other PIR protocols.

Robustness Most of the PIR protocols use ”Honest-but-Curious” adversarial model.

This model assumed that all the servers are honest, it means they always respond a

correct answer, but they try to infer which record has been fetched. One of the main

issues with ITPIR is that how the client should deal with servers that do not respond

at all or send an incorrect answer that makes the client’s result incorrect. A t-private

ℓ-server PIR is a private information retrieval protocol which information-theoretically

96

protects the privacy of the client’s queries when less than t+1 servers collude. Beimel

et al. [20] explore the situation in which some servers cannot respond, but the client

still can retrieve the data. They define a t-private k-out-of-ℓ PIR as a PIR in which

the client only needs k answers out of ℓ servers to recover her record, and if up to t

servers collude then the client still has privacy. They also examine what happens if

v servers reply incorrect answers, and how many correct answers the client needs to

recover the record successfully. They defined t-private v-byzantine-robust k-out-of-ℓ

PIR as a PIR that can handle a v number of byzantine servers which sends incorrect

answers to corrupt the client’s result.

PIR using secret sharing [18] and [17] show that secret sharing and secret

conversion can be used to construct a private information retrieval. Li et al. [111]

propose four different multi-query ITPIR protocols based on ramp secret sharing

schemes [106, 166], and they call them ramp secret sharing-based PIR (rPIR). [81]

proposes new techniques that increase efficiency of multi-server ITPIR protocols based

on ramp secret sharing. This paper shows ramp secret sharing can help in encoding

the data similar to encoding the query. They encode each record of the database into

multi shares of a secret, and the client can recover the record by sending multi queries

for these shares.

Computational PIR (CPIR) protocols Most of CPIR protocols use a single

server which is computationally bounded for retrieving data. It means the security of

these protocols is based on a very difficult mathematical problem, and if the adversary

finds a solution for the problem, or if she has enough time and computation resources,

some data will be leaked.

Stern et al. CPIR Stern et al. [155] propose a CPIR protocol that its algorithm is

based on additively homomorphic cryptosystem which has these functions: (i) Gen:

function of generating public and private keys pk, sk and system parameters , (ii)

Enc: Encryption function with public key ,and (iii) Dec: Decryption function. The

97

important point in this scheme is that the cryptosystem is non-deterministic i.e. the

Enc is a randomize function that encrypts the same input to different output each

time. Dec function will cancel the effect of the random variable that was used in Enc

function. The most famous non-deterministic cryptosystem that is used for CPIR is

Paillier [138].

XPIR [8] proposes a new CPIR based on this protocol by looking at each record of

the database as a polynomial (the elements of the databases are encoded as coefficients

of the polynomial). However, the bandwidth consumption is not very good, so

SealPIR [14] introduce a way to compress the queries in this system.

Kushilevitz and Ostrovsky CPIR One of the merits of CPIR is that the client can

run the protocol recursively to reduce the bandwidth consumption. This idea was used

by Kushilevitz and Ostrovsky [107] in their scheme for improving the communication

cost. First, they split the database into several virtual blocks, and each one of these

blocks contains some of the real blocks, then the client sends her query for a specific

virtual block, then server will calculate the result of that query on the database and

will look at the result as a new database, the next query will be applied to this

temporary database, and this process continues until one vector of size s will be sent

to the client, and client can recover her requested index out of this result.

Aguilar-Mechor et al. CPIR Aguilar-Mechor et al. [9] propose a lattice-based

PIR, and their security is based on the differential hidden lattice problem which is

an NP problem. Olumofin and Goldberg [137] show that this design is an order of

magnitude faster than trivial download which downloads the entire database.

4.3 Preliminaries

4.3.1 Preliminaries on secret sharing

The goal of secret sharing is to split a secret into multiple shares (e.g., by a trusted

dealer) such that the secret can be reconstructed by combining some of the shares.

98

The dealer distributes these shares among multiple shareholders who participate in

the protocol. A (t+ 1, ℓ) threshold secret sharing scheme distributes a secret among ℓ

shareholders in a way that any coalition of up to t shareholders can not learn anything

about the secret, while a coalition of more than t shareholders will fully reconstruct

the secret. A scheme is called multi-secret sharing [167, 41, 139] if it shares multiple

secrets in each round of the protocol.

Notations: Table 4.2 lists the notations we use for secret sharing algorithms.

Table 4.2. List of notations used in secret sharing schemes

ℓ Number of participants
t Privacy threshold
ρ Large prime number
q Number of secrets

S = {s1, s2, . . . , sq} Secrets

4.3.2 Key secret sharing designs

We introduce two secret sharing schemes that have been the bases of state-of-the-

art PIR protocols. Our secret sharing algorithm, introduced later, is built upon these

schemes.

Shamir Secret Sharing: Shamir’s scheme [147] is a (t+ 1, ℓ)-threshold scheme, in

which the shares are the points of a polynomial function. Specifically, a secret s is

shared as follows:

I The dealer chooses a random polynomial function f(x) ∈r Fρ of degree t, where

f(0) = s is the secret.

II The dealer chooses ℓ x-coordinates {x1, . . . , xℓ} uniformly at random, where

xi ∈r Fρ for 1 ≤ i ≤ ℓ.

III The dealer sends (xi, f(xi)) to the ith shareholder.

99

Any coalition of k > t shareholders can recover the secret s from their shares by using

Lagrange polynomial interpolation. Therefore, given k > t shares (x1, y1), (x2, y2), . . . , (xk, yk)

the shared secret is reconstructed as

s =
k∑

m=1

ym(
k∏

n=1,n̸=m

xn(xn − xm)
−1) mod(ρ) (4.4)

On the other hand, for a coalition of k ≤ t shareholders, any s ∈ Fρ has the same

probability of being the secret.

Ramp Variant of Shamir Secret Sharing: While a Shamir (t+ 1, ℓ) threshold

scheme shares only one secret using a t-degree polynomial, a (t+ 1, q, ℓ)-ramp secret

sharing [26] uses a (t + q − 1)-degree polynomial to share q secrets simultaneously

with the privacy level of t. That is, the dealer shares q secrets {s1, . . . , sq} from Fρ

among ℓ participants in a way that any coalition of t + q or more participants can

retrieve all of the q secrets, but any set of participants up to t cannot learn anything

about the secrets. However, for t < k < t+ q participants, the joint distribution of

the secrets is not uniform, therefore it leaks information about the secrets. The dealer

takes the following steps to share q secrets {s1, . . . , sq}:

I Chooses {yq+1, . . . , yq+t} randomly from Fρ

II Finds a polynomial f(x) with degree at most t+ q− 1 that contains the following

points:

(1, s1), . . . , (q, sq), (q + 1, yq+1), . . . , (q + t, yq+t)

III Sends secret share (xi, f(xi)) to the ith shareholder for 1 ≤ i ≤ ℓ (xis are random

numbers from Fρ).

To retrieve the secrets, any k ≥ t+ q shares can give away the secrets using Lagrange

interpolation:

100

sj =
k∑

m=1

ym(
k∏

n=1,n ̸=m

(j − xn)(xm − xn)
−1) mod(ρ) 1 ≤ j ≤ q (4.5)

4.3.3 Key PIR Designs

Here we overview the two key multi-server PIR designs that are the most relevant

to our work.

Goldberg ITPIR using Shamir Secret Sharing Goldberg’s PIR [72] is an ITPIR

scheme. The client uses Shamir’s secret sharing [147] to split the unit vector e⃗j into ℓ

shares (each a vector of size r), where the shares are sent to ℓ servers. Each server will

send back the multiplication of its received share into the database matrix D. Finally,

the client will interpolate the query responses component-wise at x = 0 to extract her

interested row of the database.

Henry et al. ITPIR using Ramp Variant of Shamir Secret Sharing Henry et

al. [82] modify Goldberg’s PIR [72] by replacing Shamir’s (t+ 1, ℓ)-threshold secret

sharing with a (t+ 1, q, ℓ)-ramp secret sharing [26]. This enables a client to encode q

secrets in a (t+ q − 1) degree polynomial, as opposed to only one secret in a t degree

polynomial in [72]; therefore, the protocol is able to query multiple queries from the

PIR servers at any round of the PIR protocol. To query the q records, the client will

receive (t+ q) responses from the PIR servers.

Note that existing multi-server PIR protocols can not be trivially extended to

heterogeneous constructions. One can modify a single-query PIR design like Goldberg’s

PIR [72] to a heterogeneous one by sending more than one query share to some of the

PIR servers; however, this will increase the bandwidth/computation overhead on some

of the servers (who receive multiple shares) without reducing the overhead on any of the

PIR servers. The goal of HPIR is to reduce the overhead on resource-constraint servers

(through increasing the overhead on resourceful servers). Therefore, for our HPIR

protocol, we design a PIR-tailored multi-secret sharing algorithm that enables us to

101

split a query non-uniformly between multiple PIR servers. The goal of PIR-tailored

multi-secret sharing is different from general existing secret sharing schemes. The

main purpose of PIR-tailored secret sharing is splitting query in a PIR design. In

Section 4.5, we will discuss the main differences between a general secret sharing

scheme and PIR-tailored secret sharing.

4.4 Introducing Heterogeneous PIR

There are two main classes of PIR protocols based on the number of servers that

deploy the protocol: single-server PIR, and multi-server PIR. Note that this is a

different classification than computational PIR (CPIR) versus information-theoretic

PIR (ITPIR), but all single-server PIR protocols fall in the category of computational

PIR (CPIR) [44, 107, 9, 8, 30, 32, 57, 98, 120, 155, 14], as proved by Chor et al. [45].

The security of multi-server PIR relies on assuming that the multiple PIR servers do

not collude; this allows multi-server protocols to impose lower computation overheads

than single-server protocols. Consequently, single-server and multi-server protocols

are suited to different application scenarios.

Existing multi-server PIR constructions [82, 20, 45, 67, 72, 168, 19, 54, 51] impose

uniform computation and communication overheads on their (non-colluding) mul-

tiple PIR servers; therefore, we call them homogenous. In this work, we introduce

heterogeneous PIR (HPIR),1 which is a subclass of multi-server PIR protocols. An

HPIR protocol is a multi-server PIR protocol with asymmetric computation and

communication constraints on its servers. That is, some of its servers (called rich

servers) handle higher computation/communication overheads than the others (called

poor servers).

1Note that some previous work use HPIR to refer to hybrid PIR [24], another class of PIR.

102

4.4.1 Other potential applications scenarios

We believe that HPIR protocols will enable new application scenarios for multi-

server PIR, as well as improve the usability of some of the known applications of

PIR. To support this claim, in this section we present several potential applications

scenarios for heterogeneous PIR algorithms.

Note that for some of these applications, one could instead use a single server

PIR, however, existing single-server PIRs are too slow for most of the in-the-wild

applications. Also, note that we only present the intuitions on why HPIR will fit these

application scenarios; integrating HPIR in each of the following scenarios will require

additional engineering effort (e.g., to synchronize the PIR servers), which is out of our

scope.

4.4.1.1 Privacy from content delivery networks (CDN)

Content publishers increasingly use CDNs to improve the security and performance

of their services. However, to do so, they have no choice but revealing their clients’

communications to the CDN operators. For instance, a CDN hosting a banking service

will see the private information of the bank’s clients (as the bank will provide the

CDN with her certificate private keys). We suggest to deploy PIR on CDN servers to

enable private content retrieval by clients.

Existing single-server PIR protocols are too slow to be used in this application

(and most other proposed applications of PIR); we therefore suggest a heterogeneous

2-servers PIR protocol to be used for this application. This is illustrated in Figure 4.1:

the CDN edge servers act as the “rich” servers and the content publisher’s origin

servers act as the “poor” servers. This heterogenous setting is ideal for this application:

The CDN edge servers are often much closer to the clients and are designed to be

capable of handling very large traffic volumes. By contrast, content publisher servers

aim to minimize their communication and computation loads (in fact, this is one of the

103

CDN

Origin Server (bankofamerica.com)
Acting as poor PIR Server

Cache Server
Acting as Rich PIR Server

PI
R

Qu
er

y &
 R

es
po

ns
e

I

PIR Query &

Response II

PIR Client

Figure 4.1. Illustrating how a heterogeneous PIR scheme can enable private content
delivery by CDNs.

key reasons for using CDNs for content hosting). As mentioned before, all existing

multi-server PIR protocols are homogeneous. This scenario demonstrates the

need for heterogeneous PIR protocols that impose non-uniform computation and

communication loads on the multiple PIR servers running the protocol.

Needless to say, we can assume that the PIR servers do not collude in this setting

as collusion is against the best interest of content publishers.

4.4.1.2 Private P2P file sharing

Various popular services such as Spotify, PPTV, and BitTorrent use their clients

for content distribution. Recent work [111] has suggested to use PIR to protect privacy

in such services, particularly for BitTorrent and Spotify. We argue that an HPIR

protocol will significantly improve the usability of PIR for such applications. This

is because in these systems, the peers are located in diverse geographic locations,

and have different computation and communication resources. Therefore, when a

104

heterogeneous PIR is deployed in this setting, a client can obtain larger traffic volumes

from nearby seeding peers compared to distant peers (while protecting privacy through

PIR), therefore improving the overall download experience.

4.4.1.3 Query privacy in cache networks

A multitude of next-generation network architectures like Named Data Networking

(NDN) [173] cache content objects to improve the overall utility of the network. A key

privacy challenge to the design of cache networks like NDN is the privacy of queries

against cache routers. That is, a cache router will learn the content names requested

by a client in order to be able to serve her. We propose to use PIR as a mechanism to

enforce cache privacy in cache networks. Our proposal is to have the cache routers

serve as PIR servers, and store named objects into a PIR database. A client interested

in a particular named object will need to query the cache routers through a PIR

protocol in order to preserve her query privacy. We therefore suggest multi-server PIR

protocols to be used for this application. However, existing multi-server designs rely

on the assumption that PIR servers should not collude. Therefore, the two (or more)

cache routers queried by a client should be under different jurisdictions, i.e., run by

competing Internet entities. For instance, in a 2-server setting, the first PIR server

queried by the client can be the edge router of the client, and the second router can

be a router in a non-peer AS or the content publisher itself (therefore non-colluding

with the edge router).

As can be seen, in this setting, the edge router (e.g., the client’s default gate-

way) can tolerate much higher bandwidth and computation burden than the distant

router/publisher—in fact, the whole purpose of information centric networks is to

reduce transition loads by caching content on local routers. Therefore, the deployed

PIR protocol needs to be heterogenous.

105

4.5 Our PIR-tailored secret sharing algorithm

In this section, we define and design a PIR-tailored secret sharing scheme that we

use in the design of our PIR protocol.

Why a new scheme? Similar to the state-of-the-art multi-server PIR schemes [72,

82, 111], our proposed HPIR scheme uses secret sharing to split the query vector

between PIR servers. To enable heterogeneity, an HPIR protocol needs to use a

multi-secret sharing algorithm, as introduced earlier. This will allow an HPIR protocol

to split PIR computations and communications unevenly between PIR servers. Note

that some prior PIR protocols by Henry et al. [82] and Li et al. [111] have used

multi-secret sharing algorithms. However, a ramp secret sharing algorithm is not

suitable for heterogeneous PIR: in a ramp secret sharing scheme, the number of

required servers increases with the number of shared secrets; therefore, for an HPIR

protocol based on a ramp secret sharing scheme, the number of PIR servers increases

with the degree of heterogeneity. However, most of the practical application scenarios

of HPIR (as introduced in Section 4.4) need to be deployed on two servers, as they

comprise two non-colluding parties (e.g., a content publisher and a CDN provider).

Therefore, we design a PIR-tailored multi-secret sharing algorithm in which the number

of shareholders does not increase with the number of shared secrets. This allows our

HPIR protocol that uses this PIR-tailored secret sharing to be run by as few as only

2 servers, regardless of the degree of heterogeneity.

What is PIR-tailored secret sharing? In A PIR-tailored secret sharing scenario, a

dealer wants to share one or multiple secrets from values of {0, 1} among ℓ shareholders.

The goal of PIR-tailored secret sharing is different from the goal of general secret

sharing schemes. A PIR-tailored secret sharing is not designed to enable recovering the

secrets by the shareholders since all the shareholders are adversary (e.g., PIR servers),

and it is only the dealer that should have access to the secrets. In a PIR-tailored secret

sharing, the dealer wants to get some information from shareholders, so the dealer will

106

break his query into shares, and send them to the shareholders. This scheme will be

used as the core of our PIR, and it does not have an application by itself. Similar to

previous PIR designs based on secret sharing, the client will construct a secret sharing

for each record of the database to share secrets from {0, 1}. For a secret, value 0

shows that the client is not interested in retrieving that record, and value 1 shows he

wants to retrieve that record. Another main difference is that in PIR-tailored secret

sharing schemes, only one of the secrets in each PIR-tailored polynomial can be 1,

and the rest of them are 0.

4.5.1 The differences between secret sharing and PIR-tailored secret

sharing

There are four main differences between general secret sharing schemes and PIR-

tailored secret sharing:

1. In general secret sharing, a dealer shares value(s) from Fρ where ρ is a prime

number. However, In PIR-tailored secret sharing, the dealer is sharing value(s)

from {0, 1}.

2. In a multi-secret sharing algorithm, there is no constraint for dealer for choosing

the values of the secrets. However, In PIR-tailored secret sharing, only one of

the secrets can be 1, and the rest should be 0 (maximum of number of secrets

with value of 1 is one).

3. The x-coordinates for the points used for constructing the secrets sharing poly-

nomial is known to public as X = {1, 2, . . . }, but in PIR-tailored secret sharing

these values are secret, and only known to dealer.

4. The x-coordinates used in generating share for shareholder ith is known to that

specific shareholder, i.e., ith shareholder knows (x′
i,f(x

′
i)), but in PIR-tailored

secret sharing these values (x′
i) are secret, and only known to dealer.

107

4.5.2 Algorithm details

Parameters Suppose the dealer plans to share q secrets, S = {s1, s2, . . . , sq}, among

ℓ participants, M = {m1,m2, . . . ,mℓ}, with a threshold t ≤ ℓ. All the secrets are

from {0, 1}, and only one of the secrets could be 1. At the first step, the dealer

generates q prime numbers P = {p1, p2, . . . , pq} at random. Then, the dealer calculates

n = p1 × p2 × · · · × pq. Note that our shares are about q times of prior works since all

the calculations are in mod(n).

Initial phase: At the start of the protocol, the dealer creates the P and n parameters

and announces value of n publicly.

Sharing Secrets: In each round of the protocol, the dealer shares q secrets with

the shareholders by taking the following steps (we first describe this for q ≤ t, and

then will discuss the modifications for q > t). Our scheme is based on the ramp secret

sharing introduced in Section 4.3.2, so we discuss the modifications with respect to

that scheme. For simplicity, we use X = {1, . . . , t+ 1} as the x-coordinates of the root

points, but they can be chosen randomly from Z∗
n = {x ∈ Zn | gcd(n, x) = 1}. Like

other systems working based on Lagrange interpolation, we have the constraint that

gcd(xi − xj, n) = 1 for xi, xj ∈ X and i ̸= j.

I In contrast to the ramp scheme that uses points (i, si), our scheme uses the points

(i, ri×pi+si) to build our secret sharing polynomial function. ri ∈ Z∗
n are random

numbers that increase the degree of freedom of the secrets. Therefore, the dealer

uses Lagrange polynomial interpolation to find a polynomial f(x) (with a degree

of at most t) that contains these t+ 1 points:

(1, (r1 × p1) + s1 mod(n)), . . . , (q, (rq × pq) + sq mod(n)) . . .

(q + 1, rq+1 mod(n)), . . . , (t+ 1, rt+1 mod(n))

108

II The dealer will send the secret share (f(xi)) to the ith shareholder for 1 ≤ i ≤ ℓ.

(xi ∈ X′s are random numbers from Z∗
n with Lagrange constraint gcd(x′

i−x′
j, n) = 1

for x′
i, x

′
j ∈ X′ and i ̸= j and a constraint that gcd(xi − x′

j) = 1 for xi ∈ X and

x′
j ∈ X′.

Secret reconstruction: To retrieve the secrets, any k ≥ t + 1 shares can give

away the secrets using Lagrange interpolation:

1. The combiner will construct the polynomial f(x) using the k ≥ t+ 1 points of

(x′
j, f(x

′
j)) for x

′
j ∈ X′ with Lagrange polynomial interpolation.

2. The combiner uses f(x) to obtain the secrets. Suppose the combiner wants to

recover the ith secret, si. As (i, (ri × pi) + si mod(n)) is a point of the known

f(x), she can extract si using the pi:

si = f(i) mod(pi)

=
k∑

m=1

f(x′
m)(

k∏
n=1,n̸=m

(i− x′
n)(x

′
m − x′

n)
−1) mod(pi) 1 ≤ j ≤ q

(4.6)

Extension to q > t: The protocol will operate with small changes. f(x) will have a

degree at most q. Therefore, in the first step of the sharing protocol, the dealer will use

the points (1, (r1×p1)+s1 mod(n)), . . . , (q, (rq×pq)+sq mod(n)), (q+1, rq+1 mod(n))

to construct f(x). The dealer releases q − t random points of f(x) publicly to make

the scheme a (t+ 1,ℓ) threshold secret sharing algorithm. The rest of the protocol is

the same.

4.5.3 Security analysis

Degree of freedom of secrets The degree of freedom of shared secrets demonstrates

how many independent variables are used in generating the secret sharing function. A

multi-secret sharing scheme is secure if the q shared secrets {s1, . . . , sq} have a degree

109

of freedom of q or higher when up to t shares are available. Each secret share known

to the adversary reduces the degree of freedom by one, as it provides the adversary

with a new equation for the main polynomial. Therefore, if there are d independent

variables in f(x), the degree of freedom given t secret shares will be d− t.

Increasing the degree of freedom by introducing new random variables

Our PIR-tailored secret sharing scheme shares q secrets using a t degree polynomial.

We add q random variables, ris, to the polynomial points we share, i.e., (1, (r1 ×

p1) + s1 mod(n)), . . . , (q, (rq × pq) + sq mod(n)). Therefore, the adversary’s degree of

freedom to reconstruct the secrets will be t+ q + 1. Assuming that the adversary is

provided with t shares, the degree of freedom will reduce to q + 1, which is still larger

than the number of secrets, q.

The q > t state of the PIR-tailored secret sharing is used as the core of our HPIR

since we want to deploy our HPIR with minimum number of PIR servers (e.g., two

servers with t = 1). Therefore, when q > t, we claim that any coalition with up to q

shares can not learn anything about the secrets. Note that this is unlike the ramp

secret sharing which leaks some information if the number of shares is between t+ 1

and t+ q − 1.

4.5.3.1 Security proof

Theorem 1: In our PIR-tailored secret sharing (when q > t), regardless of the

number of secrets being shared, the participants can not learn anything about the

secrets with up to q shares.

Proof To prove the security of this scheme, we should show that with less than

q + 1 shares, there is no information about the secrets (when q > t). For proving

security, we should prove that the adversary given q shares can not differentiate that

a polynomial with one secret with value of 1 generates these q shares or a polynomial

with all secrets with value 0. By this proof, we can show that in the PIR protocol

110

based on this scheme, the PIR server cannot differentiate that the PIR client wants a

record (si = 1) or not (si = 0).

Suppose that the polynomial f(x) is sharing one secret with value 1 and q − 1

secrets with value 0 (with degree q), and there is another polynomial f ′(x) that is

sharing 0 as the values of secrets with the same degree of q. We can show that both

of these polynomial functions can generate the q shares (x′
j, f(x

′
j)) the adversary has,

i.e., both of them can generate the same q shares (f ′(x′
j) = f(xj) for 1 ≤ j ≤ q).

We assume that at the worst case, the adversary knows the x-coordinates used for

generating secret sharing polynomial X = {x1, . . . , xq+1} and the x-coordinates used

for generating shares (X′ = {x′
1, . . . , x

′
q+1}).

For generating the polynomial f(x) which shares one secret 1, we use the following
points:

(1, (r1 × p1) + 1 mod(n)), . . . , (q, (rq × pq) mod(n)), (q + 1, rq+1 mod(n))

For generating the polynomial f ′(x) which shares 0s, we use the following points:

(1, (r′1 × p1) + 0 mod(n)), . . . , (q, (r′q × pq) mod(n)), (q + 1, r′q+1 mod(n))

Suppose that the adversary has q shares (x′
j, yj) for 1 ≤ j ≤ q, so he has q equations

based on Lagrange interpolation. First we prove that the value of the first secret (s1)

is indistinguishable, and then the same proof can be used for other secrets too. If the

adversary assumes that this secret sharing is sharing value of s1 = 0:

p1r1L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ pqrqLq(x

′
1) + rq+1Lq+1(x

′
1) = y1 mod(n)

p1r1L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ pqrqLq(x

′
2) + rq+1Lq+1(x

′
2) = y2 mod(n)

...

p1r1L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ pqrqLq(x

′
q) + rq+1Lq+1(x

′
q) = yq mod(n)

where {p1, p2, . . . , pq} are q different prime numbers and n = p1p2 . . . pq.

If the adversary assumes that this secret sharing is sharing value of s1 = 1:

111

(p1r1 + 1)L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ pqrqLq(x

′
1) + rq+1Lq+1(x

′
1) = y1 mod(n)

(p1r1 + 1)L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ pqrqLq(x

′
2) + rq+1Lq+1(x

′
2) = y2 mod(n)

...

(p1r1 + 1)L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ pqrqLq(x

′
q) + rq+1Lq+1(x

′
q) = yq mod(n)

where Lm(x
′
j) is the Lagrange function for specific values of X = {x1, x2, . . . , xq+1}:

Lm(x
′
j) =

q+1∏
n=1,n ̸=m

(x′
j − xn)(xm − xn)

−1) mod(n)

If we show that there is at least one solution for both of these set of equations, we

can show that the adversary cannot differentiate that the secret was zero or one. So

for set of unknowns {r1, r2, . . . , rq+1} and {r′1, r′2, . . . , r′q+1} we should show that:

(p1r1 + 1)L1(x
′
1) + p2r2L2(x

′
1) + · · ·+ pqrqLq(x

′
1) + rq+1Lq+1(x

′
1) =

p1r
′
1L1(x

′
1) + p2r

′
2L2(x

′
1) + · · ·+ pqr

′
qLq(x

′
1) + r′q+1Lq+1(x

′
1) mod(n)

(p1r1 + 1)L1(x
′
2) + p2r2L2(x

′
2) + · · ·+ pqrqLq(x

′
2) + rq+1Lq+1(x

′
2) =

p1r
′
1L1(x

′
2) + p2r

′
2L2(x

′
2) + · · ·+ pqr

′
qLq(x

′
2) + r′q+1Lq+1(x

′
2) mod(n)

...

(p1r1 + 1)L1(x
′
q) + p2r2L2(x

′
q) + · · ·+ pqrqLq(x

′
q) + rq+1Lq+1(x

′
q) =

p1r
′
1L1(x

′
q) + p2r

′
2L2(x

′
q) + · · ·+ pqr

′
qLq(x

′
q) + r′q+1Lq+1(x

′
q) mod(n)

We can write:

112

r′1 = r1 + k1

r′2 = r2 + k2

...

r′q = rq + kq

r′q+1 = rq+1 + kq+1

By putting the above solution in the equations we will have:

L1(x
′
1) = p1k1L1(x

′
1) + · · ·+ pqkqLq(x

′
1) + kq+1Lq+1(x

′
1) mod(n)

L1(x
′
2) = p1k1L1(x

′
2) + · · ·+ pqkqLq(x

′
2) + kq+1Lq+1(x

′
2) mod(n)

...

L1(x
′
q) = p1k1L1(x

′
q) + · · ·+ pqkqLq(x

′
q) + kq+1Lq+1(x

′
q) mod(n)

We know that if an equation has an answer in mod(pi), it will have answer in

mod(n) too where n is a multiple of pi. So we can apply mod(pi) on the ith equation

of above system, then we have the following equations:

L1(x
′
1) = p2k2L2(x

′
1) + · · ·+ pqkqLq(x

′
1) + kq+1Lq+1(x

′
1) mod(p1)

L1(x
′
2) = p1k1L1(x

′
2) + · · ·+ pqkqLq(x

′
2) + kq+1Lq+1(x

′
2) mod(p2)

...

L1(x
′
q) = p1k1L1(hx

′
q) + p2k2L2(hq) + · · ·+ kq+1Lq+1(x

′
q) mod(pq)

Therefore, based on Multivariable Chinese Reminder Theorem (Section 4.5.3.3),

since all the pis are co-prime to each other and in each equation we have the piLi(h)s

113

that are co-prime in mod(pj) where j ̸= i (we used X and X′ in Section 4.5.2

that gcd(xi − x′
j, n) = 1 for xi ∈ X and x′

j ∈ X′, there is at least one solution

for {k1, k2, . . . , kq+1}. Therefore the adversary given q shares cannot differentiate what

secret was shared.

4.5.3.2 Chinese remainder theorem (CRT)

Chinese Remainder Theorem is one of the most useful tools in number theory [56].

This theorem shows the existence of solution for following q equations:

x = ai mod(pi) for 1 ≤ i ≤ q

This theorem says that if pis are co-prime to each other, then there is one and

only one value for x mod(n) where n is
∏q

i=1 pi.

4.5.3.3 Multivariable chinese remainder theorem

This theorem [101] says that for a linear systems of equations Ax⃗ = b⃗ mod(P⃗)

(each equation is ai,1x1+ · · ·+ai,nxn = bi mod(pi)) has solutions for all b⃗ if the pi ∈ P⃗

are co-prime to each other and there is at least one element in ith row (all rows) of

the matrix A that is co-prime with pi.

4.6 Sketch of our HPIR protocol

Earlier we motivated the need for heterogeneous multi-server PIR (HPIR). We

design the first HPIR protocol; the core of our HPIR construction is the PIR-tailored

multi-secret sharing algorithm introduced in Section 4.5.

The high-level idea of our HPIR Our HPIR protocol has the same high-level

architecture as Henry et al.’s multi-server PIR [82]. The querying client will act as the

secret sharing dealer, and the PIR servers act as the shareholders. The client will use

the PIR-tailored secret sharing algorithm of Section 4.5 to split queries into shares,

114

which are then sent to the servers. The servers will make some computation using the

query shares and will send the results back to the querying client. Finally, the client

recovers her requested records by combing the responses from the PIR servers. Like

previous information-theoretic PIR systems, we assume that all the PIR servers are

not colluding, so they cannot reconstruct the secret sharing polynomials to recover

the secrets.

Our HPIR protocol is a multi-query protocol, i.e., the client queries multiple (q)

records in each round of the protocol. The client will generate a polynomial fi(x)

for each record of the database. Each polynomial is used to share q secrets with the

possible values of 0 or 1. A value of 1 means that the client is asking for the record

corresponding to the index of that polynomial. To query for q records in a given round

of the protocol, the client will send q + 1 vectors of size r elements to the PIR servers

to retrieve q records of the database.

Note that the key enabler of heterogeneity in our HPIR is the PIR-tailored secret

sharing scheme of Section 4.5. To enforce heterogeneity, the client simply sends a

different fraction of query shares to different servers based on their bandwidth and

computational capabilities. For instance, consider a three-server setting, where the

three servers plan to handle 30%, 10%, and 60% of the communication/computation

overheads, respectively. Then, the client will send 1/10 of her query shares to the first

server, 3/10 of the shares to the second server, and the rest of them to the third server.

The non-ramp property of our PIR-tailored secret sharing scheme enables us to design

multi-query PIR algorithms that can operate using as few as two PIR servers.

Two Versions To better present the technical details of our HPIR protocol, we

present a basic version and a complete version for our HPIR protocol. In our basic

HPIR (Section 4.7), there are q prime numbers involved in generating the queries, so

the communication cost will increase with the number of queries linearly; we address

this in our complete version (Section 4.8) by introducing additional parameters.

115

4.7 Our HPIR algorithm (basic version)

In the following, we present the steps of our HPIR protocol. For clarity of

presentation, we present our protocol for a 2-server PIR setting (composed of a rich

server and a poor server). Please refer to Table 4.1 for the notations.

4.7.1 Client generates r polynomials

Suppose that the client wants to query q records of the database with indices

β = {β1, . . . , βq}; she takes the following steps to generate r polynomials (one for each

row of the database):

1. The client will choose q > 2 different prime numbers P = {p1, p2, . . . , pq} greater

than 2w, where w is the element size in the database. The client will calculate

n = p1 × p2 × · · · × pq, and will send it to the PIR servers (note that all the

calculations in this protocol are in mod(n)).

2. The client will construct r polynomials of degree q based on our PIR-tailored

secret sharing algorithm (see Section 4.5.2). In generating each of the polyno-

mials, the client will choose q + 1 points with random distinct x-coordinates

X = {x1, x2, . . . , xq+1} (used for all the polynomials) and y-coordinates given by

(for 1 ≤ i ≤ r):

yi,j = fi(xj) =

{
(ri,j × pj) + δi,j mod(n) for 1 ≤ j ≤ q

ri,j mod(n) for j = q + 1
(4.7)

where ri,js are random numbers from Z∗
n = {x ∈ Zn | gcd(n, x) = 1}, and the

secrets are:

δij =


1 i = βj

0 o.w.

(4.8)

where β = {β1, . . . , βq} are the indices of the data records being queried by the

client.

116

3. Finally, after choosing these points, the client uses Lagrange interpolation to

find the r polynomials of degree q that contain these points.

Constraints All the members of X are chosen from Z∗
n at random. Like other systems

working based on Lagrange interpolation, we have the constraint that gcd(xi−xj, n) = 1

for xi, xj ∈ X, i ̸= j.

Example: Suppose we have five records in our database (r = 5), and the client

wants to retrieve records with indices β = {1, 3, 4}. Each row of the following

matrix shows the y-coordinates of each of the r = 5 polynomials (ri,j ∈r Z∗
n for

1 ≤ i ≤ r, 1 ≤ j ≤ q + 1):

Y =


(p1 × r1,1) + 1 p2 × r1,2 p3 × r1,3 r1,4

p1 × r2,1 p2 × r2,2 p3 × r2,3 r2,4
p1 × r3,1 (p2 × r3,2) + 1 p3 × r3,3 r3,4
p1 × r4,1 p2 × r4,2 (p3 × r4,3) + 1 r4,4
p1 × r5,1 p2 × r5,2 p3 × r5,3 r5,4

 (4.9)

4.7.2 Client generates queries

Using the r polynomials generated above, the client will generate secret shares for

her q queries. To do so, as described in Section 4.5.2, the client will pick (q+1) random

x-coordinates of X′ = {x′
1, x

′
2, . . . , x

′
q+1} (different from X, with the same constraint),

which are kept secret from the server, to generate the query matrices. Qc is the query

matrix for the rich (resourceful) server with q rows and r columns, and Qr is the query

matrix for the poor (low-resource) server with one row and r columns:

Qc =



F⃗ (x′
1)

F⃗ (x′
2)

...

F⃗ (x′
q)


=



f1(x
′
1) f2(x

′
1) . . . fr(x

′
1)

f1(x
′
2) f2(x

′
2) . . . fr(x

′
2)

...
...

. . .
...

f1(x
′
q) f2(x

′
q) . . . fr(x

′
q)


(4.10)

Qr =

[
F⃗ (x′

q+1)

]
=

[
f1(x

′
q+1) f2(x

′
q+1) . . . fr(x

′
q+1)

]
(4.11)

117

where fi() is the polynomial function corresponding to the record i. The client sends

the query matrices Qr and Qc to the servers.

4.7.3 The servers respond

After receiving the query matrices, each server will calculate the multiplication

of Rc/r = Qc/r × D mod(n), and it will return the results to the client. Note that the

servers do not know the values of rij, X′, X, and the prime numbers (pjs).

4.7.4 Reconstructing the records by the client

Using the responses received from the servers, R = Rc||Rr, the client will construct

s polynomials ϕk(x). Each ϕk is a q-degree polynomial that produces the kth elements

of the q queried records.

Each column k of R contains q + 1 points for a polynomial ϕk(x), i.e., the points

(x′
j,Rj,k) for 1 ≤ j ≤ (q + 1). Each Rj,k (for 1 ≤ j ≤ q + 1 and 1 ≤ k ≤ s) is given by:

Rj,k =
r∑

i=1

fi(x
′
j)×Di,k mod(n)

=
r∑

i=1

(Di,k ×
q+1∑
v=1

(ai,v × x′v−1
j)) mod(n)

=

q+1∑
v=1

(x′v−1
j ×

r∑
i=1

(ai,v ×Di,k)) mod(n)

= ϕk(x
′
j) mod(n)

(4.12)

where ϕk() is a polynomial of degree q, and ai,v is the vth coefficient of the

polynomial fi(x). ϕk has a degree of q, and therefore the client can derive it using

Lagrange interpolation by using the q + 1 points (x′
j,Rj,k) for 1 ≤ j ≤ (q + 1).

Finally, the client retrieves the responses to her q queries using the derived ϕ·(·)

polynomials by feeding the x-coordinates X = {x1, . . . , xq} into ϕk(xj). Specifically,

the client derives the kth element of the jth queried record, Dβj ,k, as:

Dβj ,k = ϕk(xj) mod(pj) for 1 ≤ k ≤ s, 1 ≤ j ≤ q (4.13)

118

4.7.5 Communication overhead

Since the client uses q prime numbers (one for each query), the upload and download

overheads are linear with the number of queries. To retrieve q records, the client

should send q2 × r × w bits to the rich server, and q × r × w bits to the poor server.

The rich server will send back q2 × s × w bits, and the poor server will send back

q × s× w bits.

4.7.6 Security

This PIR protocol is built on our PIR-tailored secret sharing scheme of Section 4.5,

so its security is based on the underlying PIR-tailored secret sharing scheme. Our

HPIR protocol uses r PIR-tailored secret sharing functions (one for each database

record), and retrieves q secrets at each round. To provide information-theoretic

security, the set of q secrets should have a degree of freedom more than q × r. In a

two servers setting, the rich server will know q × r points of these PIR-tailored secret

sharing schemes, so the number of independent variables in the system should be more

than 2 × q × r. There would be (2q + 1) × r + 2q + 2 random variables inside the

system: (q + 1)× r variables of rij, q × r secret values of δij, q + 1 random variables

of X, and q + 1 random variables of X′. If the poor server does not collude with the

rich server, the degree of freedom of secrets will be more than the q × r threshold.

Therefore, our HPIR is information-theoretic secure if at least one of the PIR servers

does not collude with the others.

4.8 Our HPIR algorithm (complete version)

Why extending the design As mentioned above, the basic version of our HPIR

protocol has high communication costs due to using q prime numbers (one for each

query). Our extended protocol uses only two prime numbers P = {p1, p2} for query

construction, therefore reduces communication costs significantly. To preserve its

119

information-theoretic security, we add multiple parameters to its polynomials. To do

so, we make the x-coordinates of the PIR-tailored secret sharing polynomials unique

for each row of the database, and unknown to the servers.

Improving efficiency by introducing unique x-coordinates for each PIR-

tailored secret sharing function Recall from Section 4.7.4 that the constructed

PIR-tailored secret sharing polynomials, ϕk(·)s, are functions of client polynomials fi(x)

and database elements, i.e., ϕk(x) mod(n) =
∑r

i=1 fi(x)× Di,k mod(n) for 1 ≤ k ≤ s.

To be able to extract the kth element of the desired rows (β) using servers’ responses,

the querying client should remove the effect of the undesired records (Di,k(x), for i /∈ β)

in ϕk(x). To do so, the client should construct the polynomials in a way that for any

inputs sample x ∈ X, the functions fi(x) output zero for i /∈ β, and output a non-zero

value for i ∈ β. Recall that each client polynomial fi(x) can be represented as:

fi(x) =

q+1∑
m=1

ym × ℓm(x) mod(n)

ℓm(x) =
∏

1≤v≤q+1,v ̸=m

(x− xv)

(xm − xv)
mod(n)

(4.14)

where (xm, ym)’s are the points used to generate the polynomials. As can be seen

from the above equation, there are two approaches for making each polynomial (fi(x))

zero for i /∈ β. The first approach is making ym zero in (4.14) for input x = xm, so

(xm, 0) is one of the points used for interpolation of all the polynomials (fi(x)) for

i /∈ β. This requires a fix set of x-coordinates X = {x1, . . . , xq+1} be used across all of

the r PIR-tailored secret sharing polynomials. This is what has been done by prior

PIR protocols [82, 111, 72, 54].

The second approach to make fi(x) zero for i /∈ β is to make ℓm(x) in (4.14) zero

by choosing x and xv in a way that x− xv becomes zero. In mod(pj), if pj|(x− xv)

or pj|ym (where | means division), then fi(x) mod(pj) will produce zero. In this

approach, the x-coordinates used for generating functions, xms, can be different from

120

the input x-coordinate, x. This approach enables us to choose different random

x-coordinates for each polynomial. In our complete HPIR protocol, we combine these

two approaches, i.e., we use different x-coordinates and y-coordinates for the PIR-

tailored secret sharing polynomials. Combining these two approaches enables us to use

just two prime numbers in constructing the PIR-tailored secret sharing polynomials,

which reduces the communication overhead as explained below. This is while the

basic version of our protocol (Section 4.7) needs q prime numbers. Specifically, in our

basic protocol, all of the calculations are in mod(n), and n is the multiplication of

q prime numbers, so size of sending and receiving elements linearly depends on the

number of queries. Using just two prime numbers in our PIR-tailored secret sharing

constructions will keep the size of each element in query and response vectors to be

fixed and independent of the number of queries. This will improve the efficiency of

our complete HPIR in upload and download bandwidth consumption by sending and

receiving smaller elements.

Preserving the degree of freedom of secrets using two prime numbers We

add q new random variables r′ij in x-coordinates of each polynomials, then the degree

of freedom of the secrets will be two times of the basic version (Section 4.7). If the

adversarial server removes the effect of half of the prime numbers, the secrets will still

have enough degree of freedom. To do so, the client will create half of the PIR-tailored

secret sharing points using p1 (i.e., (p1 × random+ secret)), and the other half using

p2. Algorithm 4.8.1 summarizes our complete HPIR protocol.

121

Client (querying for block numbers β = {β1, . . . , βq}) :
P1. Choose two prime numbers P = {p1, p2} with more than w bits (pi > 2w).
P2. Calculate n = p1 × p2, and release it to the servers.
P3. Choose q random distinct {α1, . . . , αq} from Z∗

n.
P4. Construct r polynomials of degree q. For generating the ith function, the client will take the
following steps:
P4(a). Construct (q + 1) x-coordinates X = {xi,1, . . . , xi,q+1} as follows for 1 ≤ i ≤ r (r′i,j and
r′ are random numbers from Z∗

n such that gcd(xi,j − xi,k, n) = 1 for a specific i and different j
and ks:

xi,j =


(r′i,j × p1) + αj mod(n) for 1 ≤ j ≤ q, j%2 == 0 (even)

(r′i,j × p2) + αj mod(n) for 1 ≤ j ≤ q, j%2 == 1 (odd)

r′ mod(n) for j = q + 1

P4(b). Construct (q + 1) y-coordinates Y = {yi,1, . . . , yi,q+1} as follows for 1 ≤ i ≤ r (ri,j is a
random number from Z∗

n):

yi,j =


(ri,j × p1) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 0 (even)

(ri,j × p2) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 1 (odd)

ri,j mod(n) for j = q + 1

P4(c). Use Lagrange polynomial interpolation to find fi(x) of degree q that satisfies (xi,j , yi,j)
for 1 ≤ i ≤ r, 1 ≤ j ≤ q + 1.

P5. Choose q random distinct x-coordinates X′ = {x′
1, . . . , x

′
q}.

P6. Send matrix Qc to the rich server (Qc[j][i] = fi(x
′
j) for 1 ≤ i ≤ r, 1 ≤ j ≤ q).

P7. Send the the query matrix Qr (Qr[0][i] = fi(r
′) = ri,j) for 1 ≤ i ≤ r, j = q + 1) to the poor

server.
Each Server:
S1. Multiply the Qc and Qr matrices to the database matrix, and return the results (Rc = Qc ∗ D
and Rr = Qr ∗ D) to the client.
Client:
C1. Construct polynomials ϕk(x) (for 1 ≤ k ≤ s) that satisfy (x′

j , Rc[j][k]) for 1 ≤ j ≤ q and
(r′,Rr[0][k]) using Lagrange polynomial interpolation.
C2. extract the items of queried records (for 1 ≤ j ≤ q, 1 ≤ k ≤ s):

Dβj ,k =

{
ϕk(αj)× fβj

(αj)
−1

mod(p1) j%2 == 0 (even)

ϕk(αi)× fβj
(αj)

−1
mod(p2) j%2 == 1 (odd)

Algorithm 4.8.1. Our HPIR Protocol (Complete Version)

Correctness: In extracting the requested records (step C2 in Algorithm 4.8.1),

when j is an even number (j%2 == 0), the client will use p1, otherwise (j is an odd

number) she will use p2, where j is the index of the query. Below we demonstrate

the correctness of our HPIR protocol (when j is even) by showing that the client can

always reconstruct her queried records using our HPIR protocol.

122

ϕk(αj)×fβj
(αj)

−1 mod(p1) =

(
r∑

i=1

fi(αj)× Di,k)× fβj
(αj)

−1 mod(p1) =

(
r∑

i=1

(

q+1∑
m=1

yi,m ×
q+1∏

v=1,v ̸=m

αj − xi,v

xi,m − xi,v

)× Di,k)× fβj
(αj)

−1 mod(p1) =

fβj
(αj)× Dβj ,k × fβj

(αj)
−1 mod(p1) = Dβj ,k

(4.15)

where Dβj ,k is the kth element of the jth query. As can be seen, the effect of unde-

sired records (i /∈ β) will be cancelled in the calculation of ϕk(αj)× fβj
(αj)

−1 mod(p1)

since fi(αj) will produce zero for them in mod(p1).

4.8.1 Communication costs

To retrieve q records, the client should send 2× q × r × w bits to the rich server,

and 2× r × w to the poor server. The rich server will send back 2× q × s× w bits,

and the poor server will send back 2× s× w bits.

Pseudo-random number generator for coordinates We can further improve the

communication overhead of the poor server by having the client use a pseudo-random

number generator to generate the query vectors of the poor server. For our protocol,

instead of random ri,q+1 for 1 ≤ i ≤ r, client will generate r numbers {g1, g2, . . . , gr}

in mod(n) using a random seed. Now, the client in our basic HPIR will construct the

polynomials as follows:

yi,j =

{
(ri,j × pj) + δi,j mod(n) for 1 ≤ j ≤ q

gi mod(n) for j = q + 1
(4.16)

and in the complete version, client will construct the polynomials as follows:

yi,j =


(ri,j × p1) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 0

(ri,j × p2) + δi,j mod(n) for 1 ≤ j ≤ q, j%2 == 1

gi mod(n) for j = q + 1

(4.17)

123

Therefore, instead of sending r elements to the poor server, she will just send the seed

of the pseudo-random number generator, and the poor server can reproduce these r

numbers {g1, g2, . . . , gr} and construct the query vector. Note that using a PRNG

will change our security from information-theoretic to computational security.

4.8.2 Security

Information-theoretic security If all the PIR servers do not collude, they can not

learn anything about client’s queries. There are (3q + 1)× r + 2q + 1 variables in the

system that are only known to the querying client: (q + 1)× r variables of rij, q × r

variables of r′ij, q × r secrets δij, q variables of αj, q variables of X′, and one variable

r′. Half of the random variables rij and r′ij are obfuscated with p1 and the other half

are obfuscated with p2. Even if the PIR server knows the values of these two prime

numbers, it can only remove half of the variables by calculating the shares in mod(p1)

or mod(p2). The server knows at most q × r points of the polynomials, and it can

remove half of rij and r′ij, which results in a more than q × r degree of freedom for

the secrets.

Robustness against colluding servers If all the PIR servers collude, they can

determine the client’s query since they can factorize n and find the prime numbers

used in the scheme. However, if we use larger prime numbers, the security of the

protocol will reduce to computationally secure against all colluding servers based on

the factorization problem, which is an NP problem. To compromise a client, the

servers first need to factorize n. This trades off between performance and security:

increasing the size of the prime numbers improves the computational security, but

the matrix multiplication will take longer. Therefore, our protocol is information-

theoretically secure if up to t servers collude; with large prime numbers,

our protocol is computationally secure even all the servers collude.

124

Table 4.3. Communication cost comparison (bits)

PIR Protocol
Upload BW for

Each Server

Download BW for

Each Server
Total Upload BW Total Download BW

Minimum Number

of PIR Servers (ℓ)

Goldbergs’s PIR [72] q × r × w q × s× w ℓ× q × r × w ℓ× q × s× w t + 1

Henry et al. PIR [82] r × w s× w ℓ× r × w ℓ× s× w t + q

Homogeneous Version of Our Protocol

(Complete Version) (q + 1 servers, t = q)
2× r × w 2× s× w 2× ℓ× r × w 2× ℓ× s× w q + 1

Homogeneous Version of Our Protocol

(Complete Version) (2 servers, t = 1)
r × (q + 1)× w s× (q + 1)× w 2× (q + 1)× r × w 2× (q + 1)× s× w 2

Heterogeneous version

of Goldberg’s PIR [72]

Rich Server:

Poor Server:

q × r × t× w

q × r × w

q × s× t× w

s× t× w
(ℓ + t)× q × r × w (ℓ + t)× q × s× w t + 1

Heterogeneous version

of Henry et al. PIR [82]

Rich Server:

Poor Server:

r × t× w

r × w

s× t× w

s× w
(ℓ + t)× r × w (ℓ + t)× s× w t + q

Our Heterogeneous Protocol

(Complete Version), t = 1

Rich Server:

Poor Server:

2× q × r × w

2× r × w

2× q × s× w

2× s× w
2× (q + 1)× r × w 2× (q + 1)× s× w 2

Our Heterogeneous Protocol (Complete

Version) Using PRNG, t = 1

Rich Server:

Poor Server:

2× q × r × w

2× w

2× q × s× w

2× s× w
(2× q × r + 1)× w 2× (q + 1)× s× w 2

4.8.3 Overhead comparison to prior work

4.8.3.1 Communication cost

Table 4.3 compares the communication costs of our protocol (Complete Version)

with different protocols and in different settings. We also compare a homogeneous

version of our HPIR protocol with state-of-the-art homogenous protocols (in the

homogenous version of our protocol, we send equal number of shares to the servers).

We compare the protocols for the same volume of retrieved traffic. Therefore, we

amplify Goldberg’s [72] communications by q as it is a single-query protocol.

Also, note that our element size is two times of prior works since our calculations

are in mod(n), where n is a multiplication of two prime numbers. Each prime number

has about w bits, so our elements are about 2× w bits. However, in prior works the

calculations are in mod(p), where p is a w bits prime number.

Homogeneous version of our protocol Compared to Goldberg’s PIR [72], homo-

geneous version of our protocol is slightly higher in upload and download bandwidth

consumption. Comparing to Henry et al. PIR [82], the number of exchanged elements

are the same, but each element of our protocol is two times as their elements. However,

since Henry et al. PIR protocol is based on ramp secret sharing, they need t+ q servers

for their protocol. It means that by increasing the number of queries, they need more

non-colluding servers, while our protocol can be run on as few as two servers.

125

Table 4.4. Computation cost comparison

PIR Protocol Computation Cost for Each Server Total Computation Cost
Minimum Number
of PIR Servers (ℓ)

Goldbergs’s PIR [72] O(q × r2 × s) O(ℓ× q × r2 × s) t+ 1
Henry et al. PIR [82] O(r2 × s) O(ℓ× r2 × s) t+ q

Our Heterogeneous Protocol (Complete Version)
Rich Server:
Poor Server:

O(q × r2 × s)
O(r2 × s)

O((q + 1)× r2 × s) 2

Heterogeneous version of our protocol We also compare the heterogeneous

version of our protocol (complete version) with the heterogeneous versions of Goldberg’s

PIR and Henry et al. PIR. We create a heterogeneous version for these prior works by

making the client send more queries to one of PIR servers (the rich server). However,

to maintain the privacy level (the maximum number of colluding servers without

compromising client’s privacy), we need to increase the degree of the polynomials

used in their schemes. This results in increasing the bandwidth/computation overhead

on the rich server of these prior works without reducing the burden on the poor

server. Also, we see that using a PRNG in our protocol reduces upload bandwidth

with the poor server, at the cost of weakening our information-theoretic security to a

computational security.

4.8.3.2 Computation Cost

Table 4.4 compares the computation cost of our protocol (Complete Version) with

other protocols. These numbers are based on standard matrix multiplication, which

take O(n3) operations. For large number of queries (q), using the Strassen’s algorithm

for matrix multiplication will further reduce the order of matrix multiplication to

O(n2.8) operations.

4.9 Implementation

Implementation Setup We have implemented our HPIR protocol in C++, wrapped

in Rust. We have implemented our code to be compatible with the Percy++ PIR

126

0.0
Database Size (GB)

0

T
o
ta

l
P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

1

2

3

4

5

w=256

w=512

w=768

w=1024

Figure 4.2. Total computation time (s) (i.e., server and client running times) vs.
database sizes (GB) of protocol (complete version) in retrieving one record with
different element sizes. w = 512 provides the least overhead.

library [73]. We use the NTL library [151] for handling big number operations similar

to the Percy++ [73] PIR suite.

We measure the performance of our algorithm on a desktop computer with a

quad-core i7 CPU @ 3.6 GHz and 32 GB of RAM, running Ubuntu 18.04. All of

our experiments are single-threaded, though our most expensive operation, which is

server computation, is highly parallelizable. In all of the experiments, we load the

database into the RAM before measuring the time, so the measured times do not

include the I/O times. Note that the computation time of our protocol depends mostly

on the size of the database, not its dimensions, so in all of the experiments we choose

s = r =
√

N/w, which is the communication-optimal block size derived by Goldberg

et al. [72] (N is the size of database in bits and w is the element size in bits). All of

our experiments are performed in a two servers scenario (that suits most of the real

world applications): a rich server with high communication/computation resources

and a poor server with lower resources.

127

0.0
Database Size (GB)

0

R
ic

h
 S

e
rv

e
r

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

2

4

6

8

10

12

HPIR DH=1/1 (homogeneous) (q=1)

HPIR DH=2/1 (q=2 records)

HPIR DH=3/1 (q=3 records)

HPIR DH=4/1 (q=4 records)

Goldberg [23] (q=1 record)

Goldberg [23] (q=2 records)

Goldberg [23] (q=3 records)

Goldberg [23] (q=4 records)

(a) Server processing time of the rich server vs.
Database size

0.0
Database Size (GB)

0

P
o
o
r

S
e
rv

e
r

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

0.5 1.0 1.5 2.0

2

4

6

8

10

12 HPIR for Any DH (Any Number of Records)

Goldberg [23] (q=1 record)

Goldberg [23] (q=2 records)

Goldberg [23] (q=3 records)

Goldberg [23] (q=4 records)

(b) Server processing time of the poor server vs.
Database size

Figure 4.3. Server processing time (for a degree of heterogeneity of q/1)

We compare our protocol with Goldberg PIR [72] design in a two servers scenario

with privacy level t = 1. To ensure a fair comparison, we integrate Goldberg’s PIR

protocol from Percy++ [73] into our test framework, which is wrapped in Rust. We

compare our design with this paper since Henry et al. PIR [82] with single query

(q = 1) is a variant of Goldberg’s PIR.

Degree of Heterogeneity (DH) We define a degree of heterogeneity (DH) parameter

to represent the heterogeneity of our protocol. For a two-server setting, we define DH

to be the ratio of the number of query shares the client sends to the rich PIR server

divided by the number of query shares she sends to the poor PIR server. This metric

represents the bandwidth/computation ratio of the PIR servers. Note that in our

protocol, when retrieving q records, the maximum DH is q/1, as the client will have

q + 1 secret shares to send to the servers.

Tuning the element size (w) parameter First, we measure the computation

overhead performance of our protocol for different element sizes to find the optimal

value of w. Figure 4.2 shows the total computation times (server and client side) for

128

various database sizes, and for different values of w. The plot suggests using w = 512

bits as the most efficient value, which we use for the rest of our experiments.

Note that a w = 512 bits results in n to have a size of 1024. In case of the collusion

of the PIR servers, the security of the protocol will be tied to factorizing n. Therefore,

increasing w will improve the security of the protocol in case of collusion at the cost

of higher processing times.

Server computation overhead The major computation performed by the servers

in our HPIR protocol is matrix multiplication (i.e., multiplying the query matrix, Q,

into the database matrix, D). Figure 4.3 shows the server processing time for both the

rich and poor servers for different database sizes and different number of queries (q) for

a fixed w = 512. As can be seen, the server processing time is linear with the size of

the database. The figure also compares the rich and poor server processing times with

that of Goldberg’s ITPIR [72] for various number of queries. As can be seen, the rich

server processing time of our HPIR protocol is very close to, but slightly larger than

Godlberg’s server processing time (for the same number of records q being retrieved).

On the other hand, the processing time of the poor server is significantly smaller than

Goldberg’s homogeneous server. As an example, to retrieve a 1.4 MB file (4 records)

from a 2 GB database, the rich and poor HPIR servers will take 12.5 and 4.09 seconds,

respectively, whereas the two servers of Goldberg will take 12.04 seconds each. That is,

our HPIR protocol significantly reduces the computation overhead on the

poor server by slightly increasing the computation on the rich (resourceful)

server. We see that the computation gain of our HPIR further increases by increasing

the degree of heterogeneity. As shown in below, increasing the degree of heterogeneity

slightly increases the client’s computation.

Client computation overhead The client computation overhead has two parts:

client preparation time, which includes constructing the r polynomials and generating

the query matrices, and client data extraction time, which includes the time of con-

129

0.0
Database Size (GB)

0

C
li
e
n
t

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

0.5 1.0 1.5 2.0

100

200

300

400

500

600

HPIR DH=1/1 (homogeneous) (q=1)

HPIR DH=2/1 (q=2 records)

HPIR DH=3/1 (q=3 records)

HPIR DH=4/1 (q=4 records)

Goldberg [23] (q=1 record)

Goldberg [23] (q=2 records)

Goldberg [23] (q=3 records)

Goldberg [23] (q=4 records)

Figure 4.4. Client processing time vs. Database size

structing s functions ϕk(x) and extracting the elements of queried records. Figure 4.4

shows the client processing time of our HPIR protocol for different database sizes and

different number of queries (for w = 512). As can be seen, client processing time has

a sub-linear (square-root) relation with the database size, which is in agreement with

Goldberg’s results [72].

Also, as Figure 4.4 shows, our client processing time is larger than Goldberg’s

homogeneous algorithm. However, we see that even the increased client computation

times are highly practical for typical clients, e.g., the computation time for q = 4

records in a 1.5GB database is around 500ms for HPIR, compared to 200ms for

Goldberg’s. Also, note that server computation times are the practical bottleneck in

PIR protocols since they are an order of magnitude larger that client computation

times (e.g., 0.2s client computation time compared to 9s server computation time in

Goldberg’s). Therefore, we believe that HPIR improves a client’s overall experience

by offloading the bulk of computations to the resourceful server, which can reduce the

client’s overall retrieving time.

130

Rich Server DBW/UBW

Poor Server DBW/UBW

Our Homogenous DBW/UBW

Goldberg [23] DBW/UBW

Poor Server UBW with PRNG

16/16 19/13 22/10 25/7 28/4 31/1
Degree of Heterogeneity (DH)

B
a
n
d
w

id
th

 C
o
n
s
u
m

p
ti

o
n
 (

M
B

)

100

101

10−4

(a) Actual overhead for q = 31

0
Record (MB)

B
a
n
d
w

id
th

 C
o
n
s
u
m

p
ti

o
n
 /

 S
iz

e
 o

f
F
il
e

246810

10−5

10−4

10−3

10−2

10−1

100

101

102

Rich Server DBW

Poor Server DBW

Rich Server UBW

Poor Server UBW

Poor Server UBW with PRNG

(b) normalized by size of the requested file

Figure 4.5. The upload and download overheads for our HPIR (complete version).
We download a 10.95MB file from a 2GB database

Communication overhead Recall that, in HPIR the client can control the DH

parameter by splitting the q + 1 query vectors non-uniformly among the PIR servers,

e.g., q and 1 vectors to the rich and poor servers, respectively. Figure 4.5(a) shows the

download and upload bandwidth overheads of our heterogeneous protocol for retrieving

q = 31 records from a 2 GB database, with different degrees of heterogeneity. As can

be seen, increasing the degree of heterogeneity trades off the communication overhead

of the poor and rich servers. For instance, for a DH = 16/16 (which represents a

homogeneous setting), the download/upload bandwidth of the rich and poor servers

are 11.3MB each. By increasing DH to 31/1, the bandwidth of the rich and poor

servers will be 21.9MB and 724KB, respectively. Therefore, we see that HPIR

reduces the communication overhead of the poor server by increasing the

communication overhead on the rich server. We also see that the homogeneous

version of our HPIR protocol (i.e., for DH = 16/16) imposes computation overheads

very close to that of Goldberg’s homogeneous protocol. Finally, the figure shows that

the bandwidth of our poor server when we are using a PRNG is always fixed regardless

of the value of DH, since the client sends only one element (the seed of the PRNG).

131

Note that for the above results, we set s = r [72], as described in our implementation

setup section. The client can also control DH by changing the value of s (the number

of elements in each database record), therefore changing the required number of queries

q for a given PIR transaction. We demonstrate this in Figure 4.5(b); The figure shows

the download and upload bandwidth overheads (normalized by the size of the queried

file) of our heterogeneous protocol for retrieving a 10.95MB file from a 2GB database

for different record sizes. We can see that there is a trade-off between the upload

bandwidth of the rich server and the download bandwidth of the poor server ; the client

can adjust this by changing s.

4.10 Conclusions

We introduced a new class of multi-server PIR protocols, called heterogeneous

PIR (HPIR), in which the PIR servers running the protocol undertake different

computation and communication overheads. We argue that HPIR algorithms enable

new applications for PIR by allowing the participation of low-resource parties in running

private services, as well as improve the utility of some of the existing applications of

PIR.

We design the first HPIR protocol, which is based on novel PIR-tailored secret

sharing construction, and deploy an efficient implementation of it compatible with the

Percy++ PIR library [73]. We extensively evaluate the performance of our implemented

HPIR protocol in different settings, e.g., for different degrees of heterogeneity.

132

CHAPTER 5

PRIVACY ANALYSIS OF FEDERATED RANK
LEARNING

In Chapter 4, we propose a heterogeneous private information retrieval mechanism

to enhance privacy for FL clients against adversarial servers that aim to infer client

data distribution through monitoring access patterns. In Chapter 3, we introduce

the first FL framework that trains on parameter ranks. Our results demonstrate that

exchanging rankings is more robust compared to existing FL designs that train on

parameter weights.

This chapter focuses on membership inference attacks, which allow the adversary

to determine whether a specific data sample was used in the target client’s training

data based on the local model of the target client throughout FL training. Previous

research on privacy analysis in federated learning has mainly focused on measuring

privacy leakage of weight parameters in the target model. The federated rank learning

(FRL) approach introduced in Chapter 3 is the first FL that operates on parameter

rankings, with weight parameters fixed and randomly initialized. However, there has

been no investigation into the information leakage of local rankings trained on private

data.

In this chapter, we aim to answer the following critical question: what is the

privacy risk of federated rank learning for individuals whose data is used for training

the global model (global ranking)? In other words, how much information leakage

does the FRL algorithm present about their individual training data samples?

133

5.1 Background

Though highly promising, FL faces multiple challenges [90] to its practical deploy-

ment. One of these challenges is data privacy for clients’ training data. The data

privacy challenge emerges from the fact that raw model updates of federation clients

are susceptible to privacy attacks by an adversarial server as demonstrated by several

recent works [117, 119, 134, 163, 177]. In this section, we first explain membership

inference attacks and then describe two approaches that can address the privacy issues

of FL.

5.1.1 Membership inference attack (MIA)

Membership inference attacks in Federated Learning (FL) have received increased

attention in recent years. Nasr et al. [134] were among the first to analyze such attacks,

where the adversary could be either the central server or a participant in the FL

framework. With passive attackers using the gradients, activation maps, prediction

vectors, loss, and true label of a single instance can classify the samples into members

and non-members. Zari et al. [171] proposed an efficient passive membership inference

attack that used the same idea of [134], but using only the probabilities of the correct

label under local models at different epochs as the feature vector. Melis et al. [127]

identified membership leakage when using FL for training a word embedding function,

where the set of words used in the training sentences could be inferred from the

gradients being 0 for words not appearing in a training batch. This attack assumes

that participants update the central server after each mini-batch rather than after

each training epoch.

5.1.2 Central differential privacy in FL (CDPFL)

In CDPFL [31, 68], a trusted server first collects all the clients’ raw model updates

(θi ∈ Rd), aggregates them into the global model, and then perturbs the model

with carefully calibrated noise to enforce differential privacy (DP) guarantees. The

134

server provides participant-level DP by the perturbation. Formally, consider adjacent

datasets (X,X ′ ∈ Rn×d) that differ from each other by the data of one federation

client. Then:

Definition 5.1.1 (Centralized Differential Privacy (CDP)) A randomized mech-

anism M : X → Y is said to be (ε, δ)-differential private if for any two adjacent

datasets X,X ′ ∈ X , and any set Y ⊆ Y:

Pr[M(X) ∈ Y] ≤ eε Pr[M(X ′) ∈ Y] + δ (5.1)

where ε is the privacy budget (lower the ε, higher the privacy), and δ is the failure

probability.

Algorithm 5 shows how CDPFL works which is also discussed in [31, 68, 133]. In

CDPFL, the server receives model updates capped by norm C, and after averaging

them, it adds i.i.d sampled noise to the parameters θt+1
g ← θtg+

1
n

(∑
u∈U θtu +N (0, σ2I)

)
where σ is the noise scale multiplied by the sensitivity of the local updates.

5.1.3 Local differential privacy in FL (LDPFL)

CDPFL relies on availability of a trusted server for collecting raw model updates.

On the other hand, LDPFL [162, 121] does not rely on this assumption and each client

perturbs its output locally using a randomizer R. If each client perturbs its model

updates locally by R which satisfies (εℓ, δℓ)-LDP, then observing collected updates

{R(x1), . . . ,R(xn)} also implies (εℓ, δℓ)-DP [59].

Definition 5.1.2 (Local Differential Privacy (LDP)) A randomized mechanism

R : X → Y is said to be (εℓ, δℓ)-locally differential private if for any two inputs

x, x′ ∈ X and any output y ∈ Y,:

Pr[R(x) = y] ≤ eεℓ Pr[R(x′) = y] + δℓ (5.2)

135

Algorithm 5 Central Differential Privacy in FL (CDPFL)

Input: number of FL rounds T , number of local epochs E, number of all the clients
N , number of selected users in each round n, total privacy budget TP , probability of
subsampling clients q, learning rate η, noise scale z, bound C
Output: global model θTg
1: θ0g ← Initialize weights
2: Initialize MomentAccountant(ε, δ,N)
3: for each iteration t ∈ [T] do
4: U ← set of n randomly selected clients out of N total clients with probability

of q
5: pt ← MomentAccountant.getPrivacySpent() ▷ % privacy budget spent till this

round
6: if pt > TP then
7: return θTg ▷ % if spent privacy budget is passed over the threshold finish

FL training
8: end if
9: for u in U do
10: θ ← θtg
11: for local eopoch e ∈ [E] do
12: for batch b ∈ [B] do
13: θ ← θ − η▽L(θ, b)
14: △← θ − θtg
15: θ ← θtg +△min (1, C

||△||2
)

16: end for
17: end for
18: Client u sends θtu = θ − θtg to the server
19: end for
20: σ ← zC/q
21: θt+1

g ← θtg +
1
n

∑
u∈U θtu +N (0, σ2I)

22: MomentAccountant.accumulateSpentBudget(z)
23: end for
24: return θTg

In LDPFL, each client perturbs its local update (θi) with (εℓ, δℓ)-LDP. Unfor-

tunately, LDP hurts the utility, especially for high-dimensional vectors. Its mean

estimation error is bounded by O(
√
d log d
εℓ
√
n
) meaning that for better utility we should

increase the privacy budget or use larger number of users in each round [25].

136

5.2 Privacy analysis setup

In this section, we explain different settings, hyperparameters, etc, about how we

measure the privacy leakage of local updates in FedAvg vs. FRL.

5.2.1 Membership inference attacks (MIA)

In order to compare the privacy leakage between Federated Averaging (FedAvg)

with local weight parameters (16/32 bits float numbers) and Federated Rank Learning

(FRL) with local ranks (permutation of integers), we adopt the passive whitebox access

membership inference attack method from Nasr et al. [134]. This attack conducts an

analysis of membership inference attacks on neural networks under federated learning

with access to some training members and some training non-members (not used in

training but drawn from the same distribution). The adversary can be the central

server or one of the FL participants. In their work, passive attackers perform the

training normally following the FL protocol. Nasr et al. showed that they can leverage

information such as gradients, activation maps, prediction vectors, loss, and true label

of instances obtained from the local models of each user at different epochs during

training to conduct MIAs.

5.2.2 FL setting

In our federated learning experiments, we consider a scenario with 5 participating

clients in each round of training (N = n = 5). The clients communicate with the

central server after each local epoch (E = 1). For example, with CIFAR-100 dataset,

each client has 10,000 instances, leading to 1,250 steps of SGD (with a mini-batch

size of B = 8) before sending the updated parameters to the central server.

In our experiments, we evaluate the trustworthiness of federated learning on two

widely used datasets, CIFAR10 and CIFAR100. We focus on the most challenging

setting of membership inference attacks, where the client’s data is drawn i.i.d from

the training distribution.

137

Table 5.1. Dataset sizes in the experiments of FRL and FedAVG.

Dataset
FL training Inference Attack Model

FL Client Training Test Training Members Training Non-members Test Members Test Non-members
CIFAR100 10,000 10,000 5,000 5,000 5,000 5,000
CIFAR10 10,000 10,000 5,000 5,000 5,000 5,000

Table 5.2. Final test accuracies of different FL algorithms.

Dataset FedAvg FRL
CIFAR100 57.46 56.15
CIFAR10 82.55 80.12

To assess the membership inference attack against each participant, we create a

balanced evaluation set in line with existing literature (Nasr et al. [134]; Shokri et

al. [150]; Carlini et al. [37]), which consists of half members and half non-members.

The data distribution for the federated learning training and the number of members

and non-member samples available to the attacker is presented in Table 5.1. The

non-member samples, which are not used in the local model’s training, are drawn

from the same distribution as the training data. We use ReNet18 and Conv8 to train

CIFAR100 and CIFAR10 with 500 FL rounds in our experiments. Table 5.2 shows

the final test accuracies for the FedAvg and FRL training in our experiments.

5.2.3 Evaluation metrics

In this work, we use attack accuracy as a metric to measure the privacy leakage

of the data samples used in the training of local models. We also report the True

Positive Rate (TPR) at a low False Positive Rate (FPR) to evaluate the performance

of the membership inference attacks, following the methodology introduced by Carlini

et al. [37]. A higher TPR at low FPR value indicates a successful attack that is able

to generate more true positive results than false positive results.

5.3 Privacy analysis of FRL vs. FedAvg

In this study, we aim to compare the privacy leakage between the FedAvg and FRL

algorithms. To achieve this, we have designed two evaluation scenarios: 1) Global

138

attacker: In this scenario, the attacker has access to the local updates of the target

client. For example, if the central server is adversarial and attempts to infer the

presence of a specific data sample in the target client’s training data, or if the attacker

can eavesdrop on the connection between the target client and the central server, and

observe the actual local updates in each FL round. In this scenario, we can evaluate

the privacy leakage of type of local updates by observing the weight parameters in

FedAvg compared to the rankings in FRL. 2) Local attacker: In this scenario, the

attacker has access to the global model. For example, if one of the participating clients

is adversarial or if the attacker can obtain the global model. In this scenario, we can

evaluate the privacy leakage of the aggregation method in addition to the type of

local updates. This means we can assess the majority vote aggregation rule in FRL

compared to the average method in FedAvg, as well as the type of updates.

5.3.1 Measuring privacy leakage: Local attacker

In this section, we conduct experiments to assess the privacy of FL against a

local passive attacker. The attacker is limited to observing only the aggregate model

parameters of each FL round and cannot access the individual model updates of the

participants. Our experiments involve five participants, including the local attacker,

and the objective of the attacker is to determine if a specific target input was included

in the training data of any other participants. We adopt the attack model architecture

used by Nasr et al. [134] to conduct these experiments.

5.3.1.1 Impact of observed epochs

We examine the impact of observing different numbers of FL rounds on the accuracy

and true positive rate of membership inference attack launched by a local passive

attacker. Our results are based on two datasets, CIFAR10 and CIFAR100. To reduce

computational resource limitations, we only input a global model of five FL rounds to

the attack network.

139

Table 5.3. The accuracy and TPR of the passive local attacker in the federated
setting when the attacker uses various training epochs.

Dataset
Observed
Epochs

Metric
FedAvg FRL

Attack
Accuracy

TPR @
FPR=1%

Attack
Accuracy

TPR @
FPR=1%

CIFAR10

[10,20,30,40,50] 59.11 5.51 54.83 3.18
[50,100,150,200,250] 68.40 18.70 59.35 6.41
[460,470,480,490,500] 68.00 19.16 63.21 11.05
[100,200,300,400, 500] 68.71 20.15 63.67 11.32

CIFAR100

[10,20,30,40,50] 56.67 6.34 52.51 2.16
[50,100,150,200,250] 83.37 30.28 54.60 2.34
[460,470,480,490,500] 90.61 41.30 56.61 4.87
[100,200,300,400, 500] 88.76 39.01 59.07 11.16

Table 5.3 compares the results of the membership inference attack between standard

FL and Federated Rank Learning (FRL). Our results show that observing the late FL

rounds leaks more information compared to the initial rounds, as the models converge

at the end of the training. For instance, if the attacker observes the global model

of [10,20,30,40,50] FL rounds, the attack accuracy and true positive rate (for 1%

false positive rate) are 56.67% and 6.34% for CIFAR100, and 59.11% and 5.51% for

CIFAR10. On the other hand, observing the global ranking in FRL leads to lower

attack accuracy and true positive rate, with values of 52.51% and 2.16% for CIFAR100,

and 54.83% and 3.18% for CIFAR10.

Our results show that local rankings of FRL leak less information about the

training data compared to weight parameters in standard FL. This holds true across

all scenarios, from observing the global model of initial and small distance FL rounds

to large-distance FL rounds. For instance, if the attacker observes the global model of

[100,200,300,400,500] FL rounds, the attack accuracy and true positive rate (for 1%

false positive rate) are 88.76% and 39.01% for CIFAR100, and 68.71% and 20.15% for

CIFAR10 with standard FL. In contrast, observing the local rankings in FRL results

in 59.07% attack accuracy and 11.16% true positive rate for CIFAR100, and 63.67%

attack accuracy and 11.32% true positive rate for CIFAR10. These results demonstrate

140

the privacy benefits of using local rankings in FRL over weight parameters in standard

FL.

5.3.1.2 Impact of the training size

Table 5.4 presents the results of the membership inference attack accuracy for

different sizes of the attacker’s training data in two datasets, CIFAR10 and CIFAR100.

The attack is launched on both standard Federated Learning (FL) and Federated

Rank Learning (FRL) by observing the global model of the [100,200,300,400,500] FL

rounds. The attack is performed on the same test set for all the scenarios. The results

show that as expected, the accuracy of the membership inference attack improves as

the size of the attacker’s training data increases. For instance, when the attacker has

access to 2000 members and 2000 non-members, the attack accuracy and true positive

rate (for 1% false positive rate) are 68.57% and 8.66% for CIFAR10 and 87.86% and

34.0% for CIFAR100 in standard FL. On the other hand, in FRL, the attacker achieves

a lower success rate with 62.35% attack accuracy and 7.28% true positive rate for

CIFAR10 and 58.58% attack accuracy and 5.90% true positive rate for CIFAR100.

With larger training data, for example 5000 members and 5000 non-members, the

attack accuracy and true positive rate (for 1% false positive rate) are 88.76% and

39.01% for CIFAR100, and 68.71% and 20.15% for CIFAR10 in standard FL.

Table 5.4. Attack accuracy and TPR for various sizes of the attacker’s training
dataset.

Dataset Member Sizes Non-member Sizes

Metric
FedAvg FRL

Attack
Accuracy

TPR @
FPR=1%

Attack
Accuracy

TPR @
FPR=1%

CIFAR10

2,000 2,000 68.57 8.66 62.35 7.28
2,000 5,000 68.98 18.30 62.94 7.86
5,000 2,000 68.69 19.65 63.52 10.02
5,000 5,000 68.71 20.15 63.67 11.32

CIFAR100

2,000 2,000 87.86 34.00 58.58 5.90
2,000 5,000 88.44 35.06 58.90 8.56
5,000 2,000 87.92 36.37 58.64 8.40
5,000 5,000 88.76 39.01 59.07 11.16

141

5.3.2 Measuring privacy leakage: Global attacker

In this investigation, a global attacker has access to the parameter updates of

each participant at each FL round. The attacker passively collects all updates from

each participant and performs the membership inference attack against each target

participant individually. Due to resource constraints, the attack only observes each

target participant during five non-consecutive training epochs. Table 5.5 shows the

accuracy of the attack using different sets of training epochs for the datasets CIFAR10

and CIFAR100, and we report the average of metrics for all the targets. The results

indicate that using later epochs significantly increases the attack accuracy. This is due

to the fact that earlier training epochs contain generic features of the dataset, which

do not reveal significant membership information, while later epochs contain more

membership information as the model starts to learn the outliers in such epochs [134].

Table 5.5. The accuracy and TPR of the passive global attacker in the federated
setting when the attacker uses various training epochs.

Dataset
Observed
Epochs

Metric
FedAvg FRL

Attack
Accuracy

TPR @
FPR=1%

Attack
Accuracy

TPR @
FPR=1%

CIFAR10

[10,20,30,40,50] 65.95 11.17 59.09 5.87
[50,100,150,200,250] 68.88 19.75 61.43 8.62
[460,470,480,490,500] 68.75 19.85 65.46 15.44
[100,200,300,400, 500] 69.70 20.27 64.03 16.32

CIFAR100

[10,20,30,40,50] 72.82 20.22 56.05 4.12
[50,100,150,200,250] 84.94 30.46 57.04 6.93
[460,470,480,490,500] 90.76 41.92 62.69 25.68
[100,200,300,400, 500] 88.88 39.93 60.40 15.76

Comparing the global and local attacks, the global attack has higher success as

it observes the aggregate model parameters of all participants, allowing for a larger

extent of membership leakage. For instance, if the local attacker observes the global

model of [100,200,300,400,500] FL rounds in standard FL, the attack accuracy and

true positive rate (for 1% false positive rate) are 88.76% and 39.01% for CIFAR100

and 68.71% and 20.15% for CIFAR10. Observing local rankings in FRL results in

142

59.07% attack accuracy and 11.16% true positive rate for CIFAR100, and 63.67%

attack accuracy and 11.32% true positive rate for CIFAR10. On the other hand, the

global attacker can achieve a higher success rate in both standard FL and FRL. For

CIFAR10, the attacker achieves 69.70% attack accuracy and 20.27% true positive rate

in standard FL and 64.03% and 16.32% in FRL. For CIFAR100, the attacker achieves

88.88% attack accuracy and 39.93% TPR in standard FL and 60.40% attack accuracy

and 15.76% TPR in FRL.

5.4 Differential Privacy and FRL

In this section, we present a differential private version of federated rank learning

(FRL). We begin by elucidating the concept of differential privacy in rankings and

then extend it to private rank aggregation in FRL.

In the field of rank aggregation, the objective is to derive a consolidated ranking

that accurately reflects the input rankings from a group of individuals. As a result,

numerous rank aggregation algorithms have been proposed in the literature [79, 10, 55,

58, 108, 60]. An example of its application can be seen in recommendation systems,

where rank aggregation is used to integrate users’ preferences into a single ranking

that aligns with those preferences.

In the context of rank aggregation, a ranking refers to an ordered list of elements

from a universe U of elements. The ranking can be represented as τ = {x1, x2, ..., xm}

where each xi ∈ U and m is the number of elements in the universe. The position of

an element x in a ranking τ can be denoted by τ(x). Rankings are typically sorted in

ascending or descending order based on the level of preference for each element. A

dataset of rankings, T = {τ1, τ2, ..., τn}, is created when n users provide their rankings.

The objective of rank aggregation is to find a single, representative ranking that

reflects the rankings within the dataset T .

143

5.4.1 Sensitivity of local rankings

In the context of Differential Privacy, the amount of noise required to ensure

privacy is proportional to the sensitivity of the outputs. The sensitivity of the outputs

measures the maximum possible change in the result that could occur due to the

addition or removal of a single record.

Definition 5.4.1 The quality of an aggregate ranking is typically measured by Kendall

tau distance. This metric measures the number of pairwise disagreements between two

permutations. The Kendall distance of two rankings R1 and R2 is:

K(R1, R2) = |{(i, j) : R1(i) < R1(j) and R2(i) > R2(j)}| (5.3)

The maximum possible Kendall tau distance occurs when R2 is the reverse rankings

of R1; In this case K(R1, R2) =
d(d−1)

2
where d is the size of rankings.

In Figure 5.1, we evaluate the Kendall tau distance between the rankings of each

client, for before and after local updates, across multiple FL rounds. The experiment

features 5 clients and focuses on the last layer ranking (i.e., a fully connected layer

with 2560 edges). The distance is normalized by dividing it by 2560×2559
2

, the maximum

possible value. The blue line in the figure represents the median distances of the clients

at each FL round. The results show that initially, the difference between the global

ranking and the local ranking after the update is substantial, with an average of 34065

disagreements (0.0104 as normalized) in the first rounds. However, as the FL training

progresses, this difference decreases, reaching an average of 6878 disagreements (0.0021

as normalized) at the end. This reduction in disagreements and sensitivity of the

updates highlights the convergence of the model rankings throughout FL training.

The concept of Differential Privacy provides a framework for quantifying and

controlling the privacy loss incurred by individuals. It asserts that, given a privacy

parameter ϵ, the output of an algorithm that processes sensitive information will

144

Figure 5.1. Normalized Kendall tau distance of rankings in federated rank learning
(FRL) for the last layer with 2560 ranks over multiple FL rounds.

be approximately the same, regardless of whether or not the information of a single

individual is included. This property is formalized as a characteristic of an algorithm

that operates on a database, where the database D consists of records that represent

the sensitive information of individual subjects. Two databases, D and D′, are

considered neighbors if they differ by only one tuple. We define two sets of rankings,

T = {τ1, τ2, ..., τn} and T ′ = {τ ′1, τ ′2, ..., τ ′n}, to be neighbors if they differ only in one

ranking.

5.4.2 Borda Count Aggregation

The rank aggregation method used in each round of Federated Rank Learning

(FRL) is the Borda count method [60]. The Borda count method was originally

introduced as a single-winner selection technique, where each item is assigned a certain

number of points based on its position in a given ranking. For instance, in a universe of

145

five elements, an element will receive 0 points every time it is ranked first, 1 point for

second place, and so on. The element with the lowest number of points is determined

as the winner.

Definition 5.4.2 (Borda Scores) Given a ranking database T = {τ1, τ2, ..., τn} over a

universe U = {x1, . . . , xd}, the Borda score of element xi is defined as bscore(xi) =∑n
j=1 τj(xi).

The Borda scores can be utilized as a rank aggregation method by sorting the

elements according to their Borda scores. The Borda score aggregator is compu-

tationally efficient and, when ties are resolved arbitrarily, has been shown to be a

5-approximation of the optimal rank aggregation [79, 12].

5.4.3 Private Borda Count Aggregation

Differential privacy provides a strong, proven guarantee of privacy, ensuring that

the result of any analysis on a database is not significantly affected by the presence or

absence of a single individual’s data. Rankings pose a challenge when working with

differential privacy due to their high dimensionality (the number of ranked items) and

the limitations in analyzing rankings and sets of rankings.

Similar to [79], we use Borda scores as the foundation for a differentially private

ranking method by first privately computing an estimate of the Borda score for each

candidate using the Laplace mechanism. Then, the noisy scores are sorted to obtain

an aggregate ranking.

Definition 5.4.3 (Private Borda Scores) Given a ranking database T = {τ1, τ2, ..., τn}

over a universe U = {x1, . . . , xd} and privacy budget ε, the P-BORDA algorithm

returns [b1, . . . , bd] where bi ∈ R represents a noisy estimate of the Borda score of

element i. For each i ∈ [1, d], bi = bscore(xi) + Z, where Z ∼ Laplace
(

d(d−1)
2ε

)
.

146

5.4.4 Differential Private FRL (DP-FRL)

In Federated Rank Learning (FRL), we incorporate the Private Borda count

method (P-BORDA [79]). We apply differential privacy to ranking contexts by

treating an individual’s information as their complete ranking of all elements in U,

thus providing robust privacy protection for all preference information they may

disclose by participating in the database. Alternative approaches, which might only

protect parts of an individual’s ranking or just pairwise comparison information, would

be less secure: for instance, they might protect an individual’s top preferences but

expose preferences about lower-ranked elements. Consequently, we consider two rank

databases T and T ′ as neighboring if they differ by the presence or absence of precisely

one ranking.

We employ the Laplace mechanism to introduce noise to the scores, which are then

sorted to establish the global rankings. Nonetheless, due to the high dimensionality of

the rankings in FRL, their sensitivity is also considerable, resulting in a substantial

amount of noise being added to the rankings. Consequently, DP-FRL might not

converge owing to the excessive noise introduced into the Borda scores.

5.5 FRL against FL with differential privacy

In this section, we evaluate the privacy of FRL in comparison to FL algorithms

that aim to preserve privacy. Table 5.6 presents a comparison of utility and privacy

leakage for standard FL (FedAvg), FedAvg with norm bounding at the server, FL

with local differential privacy (LDPFL [133, 121, 162]), and centralized differential

privacy FL (CDPFL [31, 68, 133]) when learning CIFAR100 using the ResNet18 model

architecture. For LDPFL and CDPFL, we employ the code provided in [133]. A

threshold bound of C = 1.0 is utilized to clip the updates in these FL algorithms, and

the momentum accountant [6] is used to monitor the spent privacy loss.

147

Table 5.6. Comparison of utility and privacy leakage for Federated Learning al-
gorithms - FedAvg, FedAvg with Norm-bounding, LDPFL, CDPFL, and FRL, on
CIFAR100 with ResNet18 model architecture.

FL type

Metric

Global model Accuracy
Membership Inference Attack
Attack
Accuracy

TPR @
FPR=1%

FedAvg 57.46 88.76 39.01
Norm-bound (C = 1.0) 47.51 52.43 5.92

LDPFL (C = 1.0, ε = 9.8, δ = 10−5) 41.23 51.20 1.84
CDPFL (C = 1.0, ε = 5.0, δ = 10−5) 43.90 53.39 2.32

FRL 56.15 59.07 11.16

From Table 5.6, we observe that FedAvg offers the best utility (i.e., accuracy of

57.46%) but suffers from the highest privacy leakage, allowing a local attacker to

achieve an 88.76% accuracy and a true positive rate of 39.01% when the false positive

rate is 1%. This is due to the lack of defense mechanisms in this FL algorithm. By

implementing norm bounding, CDPFL, and LPDFL, we can enhance privacy at the

cost of reduced accuracy. For instance, CDPFL lowers the model accuracy to 43.90%

while improving privacy, with the attack accuracy reduced to 53.39% and a true

positive rate of only 2.32% when the FPR is 1%. FRL strikes a balance by achieving

a respectable test accuracy of 56.15% (close to FedAvg) while limiting membership

inference attack accuracy to 59.07% (similar to privacy-preserving FL algorithms).

Privacy attack on FRL also results in a TPR of 11.16% when the FPR is 1%.

5.6 Conclusion

In this chapter, we explore the privacy leakage of ranking updates in Federated

Rank Learning (FRL). We employ the membership inference attack developed by

Nasr et al. [134] to assess the privacy leakage of local updates and the aggregation

rule in FRL. Additionally, we compare the privacy leakage of FRL to that of standard

FL, demonstrating that FRL protects the privacy of private training data from both

local attackers (who observe the aggregated global model) and global attackers (who

148

observe local ranking updates). This enhanced privacy comes at the expense of a

slight decrease in global model accuracy. We evaluate the privacy leakage using two

metrics of attack accuracy and report the true positive rate for a low false positive

rate (i.e., 1%).

We also evaluate the sensitivity of local rankings in FRL using the Kendall Tau

distance. Moreover, we propose a differentially private aggregation rule for FRL based

on adding Laplace noise to the outcome of the Borda count aggregation rule. Given

the large size of rankings in FRL, the sensitivity of the rankings is also substantial,

resulting in significant noise being added to the outcome of the aggregated rankings.

We observe that FRL with differential privacy fails to converge due to the magnitude

of noise added to the final rankings in each FL round.

149

CHAPTER 6

FAIR FEDERATED LEARNING BY TRAINING ON
RANKS

In Federated Learning (FL), the performance of the global model varies across

the clients due to heterogeneity in the data that each client owns. This concern is

called representation disparity [78] and results in unfair performance gaps for the

participating clients. That is, although the accuracy may be high on average, some

tail user whose data distribution differs from the majority of the clients is likely to

receive a much lower performance compared to the average.

In this chapter, we look at FL fairness with two different lenses: a) Equality :

whose goal is providing similar performances for all individual clients; b) Equity :

whose goal is providing similar performances across all groups of clients (i.e., groups

of majority and minority), where a group is defined as a set of clients with similar

data distributions. The key question we try to answer is: Can we design an efficient

federated learning algorithm that achieves both equality and equity concurrently?

Due to the heterogeneity in clients’ data distributions, one single model cannot

represent all the clients equally. There is a trade-off between training one global

model and multiple global models; if we train one global model, all the clients can

utilize each other’s knowledge; however, it will be biased towards those that have the

majority of the population. On the other hand, if we train multiple models (e.g., as in

IFCA [70], HypCluster [125] and MOCHA [153]), we improve fairness, but each global

model will lose the knowledge from excluded clients. To get the best of both worlds,

we present Equal and Equitable Federated Learning (E2FL), a novel FL algorithm to

150

achieve both equality and equity. In E2FL, we train multiple global models, but in

each round, we combine all of the models into one global model to take advantage of

the knowledge of all client groups.

The key insight used in E2FL is converting the problem of model weight optimiza-

tion (in standard FL) to the problem of ranking model edges (Chapter 3). Therefore,

in each round of E2FL training, the clients and the server exchange rankings for

the edges of a randomly initialized neural network (called supernetwork), as opposed

to exchanging parameter gradients. More specifically, each client computes the im-

portance of the edges within the supernetwork on their local data, represented by a

ranking vector. Next, E2FL server uses a majority voting mechanism to aggregate the

collected local rankings into multiple global rankings based on the index of group they

belong to. Finally, the E2FL server aggregates all the group rankings into one global

ranking for next round of training. Applying the majority vote on the group rankings

instead of all the local rankings helps E2FL enforce equity because each group has

an equal vote to influence the global model. To provide equality in E2FL, if a client

wants to use the model in a downstream task, they use their own group global ranking,

instead of the global ranking, which is a better representation model for the client

and its groupmates.

Our ranking-based FL training enables attractive fairness properties, as shown

through our experiments, which is intuitively due to the following reason: In rank-

based federated learning, each client computes a local ranking (i.e., a permutation of

integers ∈ [1, d] where d is the layer size), so each local ranking has a fixed norm (i.e.,
√
12 + 22 + ...+ d2). This fixed norm of local updates makes the rank aggregation

more fair as each local ranking has the same impact on the aggregated global ranking.

On the other hand, in standard FL, when the server aggregates the local model updates

into the global model, each local update has a different impact on the global model

(because of their different l2 norms). For example, in FedAvg, the server averages the

151

parameter updates for the d dimensions, therefore a large parameter update has more

influence on the final average compared to a small parameter update.

E2FL when the group IDs are unknown. In many applications, clients may be

unaware of their protected attributes (i.e., the group they belong to). We propose

one approach on server-side and three approaches on client-side for inferring group

IDs. To infer the group IDs on the server-side, we propose to use a rank clustering

approach to cluster clients into groups. Moreover, a client can also infer its group

ID by picking the right group based on their local training data. Using rankings

allows us to exchange only the binary masks produced by each group ranking which

lowers the communication cost compared to prior works. Each client can pick the

right binary mask based on three approaches. First, each client can pick the binary

mask that produces the smallest loss. Binary masks also enable the clients to find

their matching group by a new novel idea from [164], where clients can infer the group

ID using gradient based optimization to find a linear superposition of learned masks

which minimizes the output entropy. We propose two variants of this approach, one

based on a binary search and the other using OneShot optimization.

6.1 Fairness using two lenses: Equity and Equality

Fairness in FL can be evaluated from two main perspectives: a) Equality, which is

fairness between individuals, and b) equity, which is fairness between groups. A group

is a set of individuals with the same protected attribute. The protected attribute

may be known to the clients, e.g., race, gender, or age. Alternatively, clients may be

unaware of their particular group, e.g., handwriting style (as this needs clustering

clients into groups by someone who has samples from all clients).

Figure 6.1 shows an example of two FL systems where six clients want to learn a

global model for prediction of handwritten digits. These clients have three handwriting

styles: (A) normal handwriting style, (B) a little bit rotated handwriting, and (C)

152

Hand Writing

 Style A

Hand Writing

 Style B

Hand Writing

 Style C

Equity Aggregation

Group A Group B Group C

Equality Aggregation

Figure 6.1. An example showing two different FL systems with two goals: equality
(on left) and equity (on right).

180 degree rotated handwriting (upside-down). We consider each model update (θqu

for client u in group q) has the same effect on updating the global model, so each

client update is like a vote. In this example, group A has the majority of the voters,

and groups B and C are minorities. The left part of the figure shows an FL in which

the goal is providing equality, so we give each client the same chance (one vote) to

change the final model by an aggregation such as averaging (e.g., what we have in

FedAvg). In this setting, the majority group with a higher population (group A) has

more influence on the final vote. On the other hand, the right part shows an FL

in which the goal is to provide equity. In this setting, first, we aggregate the votes

inside each group to find the group votes (θAg , θ
B
g , θ

C
g), and then aggregate the group

votes to produce the final model. In this setting, each client has the same chance (one

vote) to influence its own group vote, and finally, each group of voters has the same

chance (one vote) to influence the final vote. We define two aspects of fairness in FL

as follows:

Definition 1 (Equality: User-level fairness): Trained global model θ is more

equalized when its performance is more uniform across the individual clients partic-

ipating in FL, i.e., when STD{Fu(θ)}u∈[N] is smaller where STD{.} is the standard

deviation, and Fu(.) denotes the local objective function of client u from N clients.

153

Existing fair federated learning literature [116, 113, 153, 78, 174, 131, 170] use this

definition in their designs.

Definition 2 (Equity: Group-level fairness): Trained global model θ is

more equitable when its performance is more uniform across the groups, i.e., when

STD{Avg{Fu(θ)}u∈[q]}q∈[Q] is smaller where AVG{}u∈[q] denotes the average of perfor-

mances for all the individual clients in the qth group, and there are Q total groups.

In E2FL, our goal is to provide both equity and equality. To provide equity, an

individual client has one vote in their group, and each group has one vote among all

the groups. To provide equality, we allow the clients in each group use their group

model, which represents their training data better.

6.2 Our design: Equal and Equitable Federated Learning

This section provides the design of our Equal and Equitable Federated Learning

(E2FL) algorithm. We first describe how E2FL provides equity and then discuss how

it provides equality. The intuition behind E2FL is to train multiple global models

and first perform a majority vote among the clients’ model updates in each group

and then another majority vote among the group models to find the global model.

Algorithm 6 describes E2FL training.

The critical insight used in E2FL is converting the problem of model weight

optimization (in standard FL) to the problem of ranking model edges (FRL in

Chapter 3). In E2FL, each local update (one vote) is a ranking, i.e., a permutation of

integers ∈ [1, d] where d is the size of the network layer. We use rankings because of

their intrinsic fairness feature: In rank aggregation, each local ranking has the same

impact on the aggregated global ranking. In rank-based FL, all the local rankings are

bounded to be a permutation of unique integers ∈ [1, d]. For example, for a network

layer with d = 3 parameters, there are only 3! possible permutations for local ranking

([1, 2, 3], . . . , [3, 2, 1]). However, in existing standard FL designs, the local updates

154

Algorithm 6 Equal and Equitable Federated Learning (E2FL) Algorithm.
1: Input: number of FL rounds T , number of local epochs E, number of selected users in each

round n, number of groups Q, seed seed, learning rate η, subnetwork size k%
2: θs, θw ← Initialize random scores and weights of global model θ using seed
3: R1

g ← ArgSort(θs) ▷ Sort the initial scores and obtain initial global rankings
4: for t ∈ [1, T] do
5: U ← set of n randomly selected clients out of N total clients
6: for u in U do
7: θs, θw ← Initialize scores and weights using seed
8: If q (group ID) is not known, use Algorithms 7 and 8 for ID inference (Section 6.3)
9: θs[Rt

g]← sort(θs) ▷ Reorder the scores based on the global ranking
10: θsu ← Edge-PopUp(E,Dtr

u , θw, θs, k, η) ▷ Train local scores on the local training data
11: Rt

u,q ← ArgSort(θsu) ▷ Ranking of the client u with estimated group ID: q
12: return Rt

u,q

13: end for
14: Rt+1

g,q∈[Q] ← Vote(Rt
u∈U,q∈[Q]) ▷ Majority vote aggregation inside each group

15: Rt+1
g ← Vote(Rt+1

g,q∈[Q]) ▷ Majority vote aggregation among all the groups

16: end for
17: function Vote (R{u∈U})
18: V ← ArgSort(R{u∈U}) ▷ Reputation of each edge in each local ranking
19: A← Sum(V) ▷ Sum the reputations
20: return ArgSort(A) ▷ Order of the reputations
21: end function

(∈ Rd) have different impacts on the aggregated global model because the direction

and magnitude of each parameter update is not bounded to other parameters.

In E2FL, different FL clients gather together to learn a global model, but each

one belongs to a different group (which could be considered known or unknown).

In this section, we assume the clients know their group IDs, and in Section 6.3, we

explain how the clients can infer their group IDs using the features of rankings when

the groups are unknown. In E2FL, the server trains multiple global rankings, each

belonging to a different group. These global group rankings show different orders of

importance of the same supernetwork for different groups from least to most important

edges. Each client participates in the training of their group model by sending the

local ranking they have. For aggregation, the server performs a majority vote among

the local rankings (local votes) in each group. It then performs another majority vote

among global group rankings (group votes) to find the global model for the next round

(i.e., a global ranking that clients will start their training for the next E2FL round).

155

Edge-PopUp algorithm: The edge-popup (EP) algorithm [143] is an optimization

method to find supermasks within a large, randomly initialized neural network, i.e., a

supernetwork, with performances close to the fully trained supernetwork. EP algorithm

does not train the weights of the network; instead only decides the set of edges to keep

and removes the rest of the edges (i.e., pop). Specifically, the EP algorithm assigns a

positive score (θs) to each of the edges in the supernetwork and updates it. In E2FL,

each client learns its local scores θsu by using EP on its local data for E local epochs

starting from the global scores θs. On the forward pass, it selects the top k% edges

with the highest scores, where k is the percentage of the total number of edges in

the supernetwork that will remain in the final subnetwork. On the backward pass, it

updates the scores with the straight-through gradient estimator [21].

6.2.1 E2FL: Design

This section explains the different steps of one round of E2FL training. We detail

a round of E2FL training and depict it in Figure 6.2, where we use a supernetwork

with six edges ei∈[0,5] to demonstrate a single E2FL round and consider six clients

Cj∈[1,6] from three groups (handwriting style A, B, C) who aim to find a subnetwork

of size k=50% of the original supernetwork.

6.2.1.1 Server: Initialization phase (only for round t = 1)

In the first round, the E2FL server chooses a random seed Seed to generate initial

random weights θw and scores θs for the global supernetwork θ; note that, θw, θs,

and Seed remain constant during the entire E2FL training. Next, the E2FL server

shares Seed with E2FL clients, who can then locally reconstruct the initial weights

θw and scores θs using Seed. Figure 6.2- 1 depicts this step. Recall that the goal

of E2FL training is to find the most important edges in θw without changing the

weights. At the beginning, the E2FL server finds the global rankings of the initial

random scores, i.e., R1
g = ArgSort(θs). We define rankings of a vector as the indices

156

e0

e3

e5
e4

e1

e2

Client 2:

Client 3:

Server: Initialization

v

v

1

Clients: reordering2a

e0(0.4)

e3(0.3)

e5(0.5)
e4(1.2)

e1(0.7)

e2(0.2)

Clients: training2b

Client 1:

3a Server: Vote

inside each group

e5

e3

e4

3b Server: Vote

between groups

Hand Writing

 Style A

Client 5:

Client 4:

Hand Writing

 Style B

Client 6:

Hand Writing

 Style C

v

v

e5

e3

e1

e5

e4
e1

e5

e3

e2

Hand Writing

 Style A

Hand Writing

 Style B

Hand Writing

 Style C

Figure 6.2. A single E2FL round with six clients from three groups and a network of
6 edges. Note that all the operations in E2FL training are performed in a layer-wise
manner.

of elements of a vector when the vector is sorted from low to high, which is computed

using ArgSort function.

6.2.1.2 Clients: Calculating the ranks (for each round t)

In the tth round, E2FL server shares the global rankings Rt
g with the clients. Each

client locally reconstructs the weights θw’s and scores θs’s using seed. Then, each

E2FL client reorders the random scores based on the global rankings, Rt
g. We depict

this in Figure 6.2- 2a . For instance, the initial global rankings for this round are

Rt
g = [2, 3, 0, 5, 1, 4], meaning that edge e4 should get the highest score (s4 = 1.2), and

edge e2 should get the lowest score (s2 = 0.2).

157

Next, each client uses reordered θsu and finds a subnetwork within θw using edge-

popup algorithm [143]; to find a subnetwork, they use their local data and E local

epochs. Note that each iteration of the edge-popup algorithm updates the scores θsu.

Then client u computes their local rankings Rt
u using the final updated scores and

Argsort(.), and sends Rt
u,q to the server where q is the group identifier. We will

explain the group inference methods we propose in Section 6.3. Figure 6.2- 2b shows,

for each client, the local rankings they obtained after finding their local subnetwork.

For example, rankings of client C1 are Rt
1,A = [4, 0, 2, 3, 5, 1], i.e., e4 is the least

important and e1 is the most important edge for C1. Considering desired subnetwork

size to be 50%, C1 uses edges {3,5,1} in their final subnetwork in this round.

6.2.1.3 Server: Majority Vote (for each round t)

The server receives all the local rankings of the clients, i.e., {Rt
1,A, R

t
2,A, R

t
3,A,

Rt
4,B, R

t
5,B, R

t
6,C}. Then, it performs a majority vote over all the local rankings inside

each group, i.e., {A,B,C}. We depict this in Figure 6.2- 3a . Note that, for group q,

the index i in Rt+1
g,q represents the importance of the edge ith for clients in group q.

For instance, in Figure 6.2- 3a , rankings of A are Rt
g,A = [0, 2, 4, 5, 3, 1] and rankings of

B are Rt
g,B = [0, 2, 3, 1, 4, 5], hence the edge e1 is the most important edge for group A,

while the edge e5 is the most important edge for group B. Next, the server performs

a majority vote over all the group rankings of different groups {Rt+1
g,A , R

t+1
g,B , R

t+1
g,C} to

find the global ranking Rt+1
g . We depict this in Figure 6.2- 3b .

E2FL provides both equity and equality. Equity is not the main goal of existing

distributed learning systems because it can hurt the motivation of the majority of

clients to participate in the FL. If we have a learning algorithm that provides equity, it

has this constraint to allow the same contribution from all groups (i.e., majorities and

minorities). This comes with the price of reducing the performance of the majorities,

which can demotivate them to participate in learning a model.

158

E2FL provides both equity and equality. In this algorithm, at the final round

of the learning, each group uses its own global rankings instead of using the global

ranking. The global rankings can provide better performances to the majority groups

as they have access to more training data. For example, a client of handwriting style

A will use f(x, θw
⊙

M t
g,A) in their downstream classification task, where M t

g,A is

the learned binary mask for group A at FL round t, and θw is the random weights

(initialized randomly and kept fixed), and x is the test input. Note that in E2FL and

its variants, M t
g,q is the supermask trained for group q where for top k% of the top

rankings of group ranking Rt
g,q, we put 1’s, and we set other masks to 0’s.

6.3 E2FL when group IDs are unknown

In the previous section, we assumed that the clients know their group IDs. In this

section, we explain the approaches the server or a client can utilize to estimate the

group IDs when the groups are unknown. In this setting, there are federated clients

that have a small amount of data with no known protected attribute. For instance,

people with their own style of handwriting want to learn a global model by learning

a local model on the images of their handwriting. The clients have no knowledge

about their style as it is not something to be identified. It is not even possible to

announce that clients with similar styles collaborate with each other. This type of

scenario usually happens in cross-device settings, where each user has a small dataset,

and there are many clients in the system. In this section, we propose group inference

approaches both for server and client side. For the server-side approach, the server

clusters the local rankings into different groups and assigns a group ID to each client.

For client-side approaches, each client should estimate its own group ID using the

binary masks learned so far (Algorithm 6 line 8).

Communication cost of E2FL when group IDs are unknown: Note that for

finding the best group ID at the client-side, there is no need to send all the group

159

rankings (e.g., {Rt+1
g,A , R

t+1
g,B , R

t+1
g,C} in our example) to the clients. As we mentioned

before, in E2FL, each ranking (local or global) can be converted to a binary mask of

’0’s and ’1’s that is superimposed on the random weights (i.e., supermask). Thus, the

server only broadcasts the binary masks of groups (e.g., {M t+1
g,A ,M t+1

g,B ,M t+1
g,C } in our

example) to the clients so they can estimate their group ID where they belong to.

6.3.1 Server-side: Rank clustering

Working with rankings enables us to design an efficient algorithm to cluster the

local rankings. Clustering rankings is more efficient than clustering the model weight

updates in standard FL. The main reason is that rankings are from a discrete space

(∈ perm([1, d]), all the possible permutation of integers ∈ [1, d] where d is the layer

size) while model updates in standard FL are from a continuous space (∈ Rd). In

this approach, all the clients should learn a local rankings on their local data at the

beginning of the learning, and send it to the server. Then the server clusters the

rankings into Q clusters to find the group ID of each client. This is just one-time

clustering, and throughout the E2FL learning, the server selects the local rankings for

different group rank aggregation (majority voting) based on their group IDs (estimated

with this approach).

160

Algorithm 7 Identity Inference with Rank Clustering
1: Input: number of clients N , Local rankings R{i∈[N]}, number of clusters Q, number of iterations

T
2: function RankClustering (R{i∈[N]})
3: Centroids← pick Q random rankings from R{i∈[N]}
4: r ← 0 ▷ iteration counter
5: while r < T do
6: ClustersRanking← [[] for q ∈ [Q])]
7: for u ∈ [N] do
8: q ← getClosestCluster(Centroids, Ri)
9: ClustersRanking[q].append(u)
10: end for
11: for q ∈ [Q] do

12: Cnetroids[q]← Vote (ClustersRanking[q])
13: end for
14: r+ = 1
15: end while
16: return ClustersRanking
17: end function

Algorithm 7 shows how the server can cluster the local rankings of N clients into

Q groups. We adapt K-means clustering to cluster the rankings. In this algorithm, at

the first step (Algorithm 7 line 3), the E2FL server chooses Q random rankings as the

initial Q clusters, called centroids. Then it assigns the cluster ID of the closest centroid

for all the N local rankings (Algorithm 7 line 7-10). To determine the distance of two

rankings, we use Spearman rank distance in which the distance between two rankings

of R1 and R2 is D(R1, R2) =
∑

ℓ∈[L]
∑

i∈[nℓ]
|R1[i]−R2[i]| where R1[i] shows the rank

of parameter ith in ranking R1, L is the number of layers in the network, and nℓ

shows the number of parameters in layer ℓ. In the next step (Algorithm 7 line 11-13),

the server updates the centroid of each cluster by applying the majority vote on the

rankings inside each cluster. It repeats this process for T iterations to find the final Q

rankings groups.

6.3.2 Client-side: Lowest loss

In this approach, each client estimates its group ID by choosing the group that

its binary mask that produces the lowest loss. Thus, in each E2FL round, the server

broadcasts all the binary masks related to existing groups (M t
g,q∈[Q]), and each selected

161

client calculates the loss for each binary mask on its training data. Algorithm 8 line 2-4

shows this approach. This approach was used by IFCA [70], where in their algorithm,

in each training round, the server broadcasts all the model parameters to clients, and

then they can find the lowest loss group. Note that our E2FL, compared to IFCA,

needs ×32(×64) less download bandwidth in each round because it is working on the

binary masks.

Algorithm 8 Identity Inference at Client Side
1: Input: training data Dtr

u , random weights θw, number of groups Q, group binary masks M t
g,q∈[Q],

loss function loss(.)

2: function lowestLoss (θw, Q,M t
g,q∈[Q], D

tr
u)

3: return argminq∈[Q] loss
(
Dtr

u , θw
⊙

M t
g,q∈[Q]

)
4: end function
5: function OneShot (θw, Q,M t

g,q∈[Q], D
tr
u)

6: α← [1Q , 1
Q , ..., 1

Q]

7: p(α)← f
(
Dtr

u , θw
⊙

(
∑Q

q=1 αqM
t
g,q)

)
8: return argmaxq∈[Q]

(
−∂H(p(α)))

∂αq

)
9: end function
10: function Binary (θw, Q,M t

g,q∈[Q], D
tr
u)

11: α← [1Q , 1
Q , ..., 1

Q]

12: while ||α||0 > 1 do

13: p← f
(
Dtr

u , θw
⊙

(
∑Q

q=1 αqM
t
g,q)

)
14: g ← ▽αH(p)
15: for q ∈ [Q] do
16: if gq ≤ median(g) then
17: αq ← 0
18: end if
19: end for
20: α← α/||α||1
21: end while
22: return argmaxq∈[Q] (αq)
23: end function

6.3.3 Client-side: Entropy of the output

Binary masks enable us to utilize other approaches for group inference. In these

approaches [164], the client can infer the group ID using gradient-based optimization

to find a linear superposition of learned binary masks which minimizes the output

entropy. [164] proposed these solutions to learn multiple tasks without catastrophic

forgetting in continual learning. In these solutions, each client infers the group ID by

162

choosing the most confident binary mask that produces more stable results. There

are two variants of this approach as follows:

OneShot inference: Algorithm 8 line 5-9 shows this approach. At E2FL training

round t, the server broadcasts Q leaned binary masks M t
g,q∈[Q] to the selected clients.

Next, each client assigns a confidence coefficient (αq) to each binary mask. Each αq

represents how much the client is confident that qth binary mask is its match. Then it

calculates the output of the model as the weighted superposition of these masks (i.e.,

p(α) = f
(
x, θw

⊙
(
∑Q

q=1 αqM
t
g,q)

)
). The α is initialized in a way that all the masks

have equal chance (α0[q] =
1
Q
for q ∈ [Q]). Now, Each client tries to find the perfect

αq that minimizes the entropy of the outputs H(p(α)) by applying gradient descent

with respect to α just for one round, i.e., α ← α − β▽αH(p(α)). In this approach,

the client chooses the group ID q that changing its confidence level (αq) has the most

impact on the entropy of the output of mixed models, i.e., argmaxq

(
−∂H(p(α)))

∂αq

)
.

Binary Search: Algorithm 8 line 10-23 shows this approach. In this approach, the

client utilizes binary search to find the best group ID by removing half of the candidates

at each step until one αq remains nonzero, which indicates the best candidate. The

client calculates the p(α) for α, then it applies the gradient descent with respect to

α on entropy of p(α). Next, the client eliminates half of the coefficients where they

produce gradients less than the median of the gradients.

Time complexity comparison: The lowest loss approach needs to have O(Q)

forward passes to find the binary mask that produces the lowest loss for Q groups.

Binary search over the entropy needs to have O(log(Q)) forward and backward passes.

Finally, the OneShot inference only requires O(1) forward and backward passes,

making the estimation process very fast.

163

6.4 Experiments

In this section, we examine the performance, fairness, and communication cost

of the proposed E2FL algorithm in two different settings with known and unknown

group IDs. To assess equity, we first calculate the average final accuracies of the

clients in each group; then, we report the mean and variance of accuracies of groups’

accuracies (see Section 6.1). For equality, we measure these metrics on the final

accuracies of all the FL clients. We use three benchmark datasets widely used in

prior works on federated learning applications. We run all the experiments for five

runs with different seeds and report their average. We also report results of a new

FL algorithm, IFCA Avg, where similar to IFCA [70] and HypCluster [125], trains

multiple separated group models and combines the models in each round by averaging

the weights (as opposed to rankings). Therefore, in each FL round, the IFCA Avg

clients need to download the Q models (consisting of 32/64 bits parameters) and the

average of them.

It is worth noting that the use of Personalized FL (PFL) algorithms to reduce the

variance of clients’ performances by personalizing the global model for each client is

orthogonal to our approach in E2FL. The various personalization techniques employed

in PFL, such as fine-tuning [170, 125, 161, 175], mixing global and local models [153,

113, 77, 52], re-weighting [174, 112, 131], meta-data learning [39, 89, 64, 62], and

representation learning [118, 47], could lead to an increase in performance and further

reduction of the variance of the clients’ performances. However, exploring the utility

and performance of PFL in combination with our approach is outside the scope of

this work and is deferred to future research.

6.4.1 Equality vs Equity via E2FL

FairMNISTRotate: In this work, we present a novel dataset for evaluating fairness

in FL applications. Our goal is to measure both equity and equality by conducting

164

experiments using this new dataset. To create this dataset, we utilize a widely adopted

method in the continual research community [74, 100, 122] by manipulating the MNIST

dataset. Specifically, we rotate the images in MNIST to create ten different data

distributions, each with a different number of clients.

(a) Data sample from each group

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Group

0

50

100

150

200

250

Nu
m

be
r o

f C
lie

nt
s

(b) Number of clients in each group

Figure 6.3. FairMNISTRotate: a new dataset to investigate equality and equity in
FL application.

The dataset is comprised of 1000 clients in total, with each client receiving 200

training and 50 test samples based on their group number. The distribution of clients

across groups is diverse, with some groups having a large number of clients (e.g., G6

with 257 clients) and others having a small number of clients (e.g., G1 with 8 clients).

Figures 6.3(a) and 6.3(b) show sample images and the number of clients in each group,

respectively. In this dataset, G1 and G10 are considered minority groups, while G5

and G6 are considered majority groups. We evaluate the performance of our proposed

E2FL algorithm, along with other FL algorithms, in terms of utility, equity, equality,

and communication cost on the FairMNISTRotate dataset and present the results in

Table 6.1.

165

Table 6.1. Comparison of equality, equity, and communication cost among various
variants of FLs on FairMNISTRotate with 1000 clients. The algorithms are ranked
based on the respective metric in each column.

Approach
Metric

Group-level Fairness (Equity) User-level Fairness (Equality) Communication Cost
Average Variance Average Variance Up (MB) Down (MB)

Local training 84.78 0.11 85.03 3.44 0 0

FedAvg 94.20 5 17.39 4 97.85 4 4.46 4 6.20 2 6.20 3
FRL 93.41 6 41.73 6 97.27 6 5.61 6 4.05 1 4.05 1
IFCA 97.74 1 2.40 2 98.75 1 0.41 2 6.20 2 62.01 4

IFCA Avg 95.39 4 14.06 3 97.62 5 5.02 5 6.20 2 68.21 5
q-FFL 95.41 3 39.12 5 98.52 2 2.76 3 6.20 2 6.20 3

Our E2FL 96.81 2 1.41 1 98.03 3 0.28 1 4.05 1 5.99 2

Our experimental results on the FairMNISTRotate dataset demonstrate the follow-

ing findings: (1) All groups, including minority and majority groups, benefit

from participating in FL. Without access to other clients’ knowledge, local models

perform poorly. (2) FedAvg [103, 126] and FRL (Chapter 3) prioritizes major-

ity groups, with clients from these groups having a higher chance of being selected in

each round and thus having a larger impact on the global model. Although FedAvg

achieves 97.85% mean test accuracy for individual clients, the mean accuracy for

groups is only 94.20%, indicating a focus on user-level fairness rather than group-based

fairness (equity). (3) q-FFL [116] improves equality, but worsens equity. This

user-level fairness framework improves fairness for the majority groups, but at the

expense of the minority groups. q-FFL reduces the accuracy variance for all clients

by 38% but increases the variance between groups by 125% compared to FedAvg,

at a communication cost of 12.4 MB per client. (4) Training multiple FLs (i.e.,

IFCA [70] and HypCluster [125]) is not optimal for minorities (e.g., G1, G2,

and G10), as these groups are unable to benefit from shared knowledge. Additionally,

communication cost is very high for IFCA compared to E2FL. Specifically, IFCA

reduces the variance for groups and clients by 86% and 91% compared to FedAvg,

respectively, but at a higher communication cost of 68.21 MB per client. IFCA is also

unable to benefit from our entropy-based approaches, which are specifically designed

166

for binary masks. (5) IFCA Avg is inferior to IFCA as it reduces the utility

and fairness of IFCA. When the server aggregates the group model updates (i.e.,

averaging weight updates, each consisting of 32/64 bits parameters) into the global

model, each group update has a different impact on the global model (because of their

different l2 norms), reducing the overall utility and fairness of the algorithm.. (6) Our

proposed algorithm, E2FL, provides both equality and equity. Compared to

FedAvg (FRL), E2FL decreases the variance of group and client accuracies by 92%

(97%) and 94% (95.0%) with a communication cost of 10.04 MB per client.

6.4.2 E2FL when group IDs are unknown

In this section, we provide experimental results on the FEMNIST [33], which is a

character recognition classification task distributed non-iid over 3,400 clients. At first,

data distribution among all the clients seems similar as all of them classify handwritten

letters or digits. However, there might be hidden groups of clients among these 3400

clients with even more similar handwriting styles. To address this, we use three group

inference approaches, which are introduced in section 6.3. These include lowest loss,

oneshot, and rank clustering. The experiments use two clusters (Q = 2) for the group

inference and for IFCA and IFCA Avg. We also report more details of 2, 3, 4, and

5 clusters for rank clustering E2FL on FEMNIST in Table 6.6. The results of the

binary search in the entropy of outputs are not presented as they are similar to the

oneshot inference approach.

In Table 6.2, we present a comparison of the performance and fairness of various FL

algorithms on the FEMNIST dataset. The table only showcases the equality metrics

at the user level, as the dataset does not define any specific groups. Our experimental

results indicate the following: (1) The local training as opposed to FedAvg (or FRL)

does not offer any benefits, motivating all clients to participate in FL for improved

accuracy. (2) The q-FFL algorithm [116] provides a more equitable outcome, reducing

167

Table 6.2. Comparison of utility, equality, and communication cost among different
FL algorithms on FEMNIST using 3400 clients. We also show the average accuracies
for the worst and best 10% of the clients.

Approach
Metric

User-level Fairness (Equality) Communication Cost
Average Worst

(10%)
Best
(10%)

Variance Up
(MB)

Down
(MB)

Local training 68.74 44.45 87.41 154.50 0 0
FedAvg 85.80 63.51 99.39 104.04 6.23 6.23
FRL 84.20 62.65 98.52 114.49 4.06 4.06
IFCA 87.38 67.31 100 88.51 6.23 12.45

IFCA Avg 84.71 62.73 98.88 108.33 6.23 18.68
q-FFL 84.40 64.09 99.14 100.80 6.23 6.23

Our E2FL (OneShot) 83.52 60.37 98.31 121.44 4.06 4.44
Our E2FL (Rank Clustering) 87.21 66.36 99.87 94.09 4.06 4.06

Our E2FL (Lowest Loss) 87.93 68.59 99.96 81.88 4.06 4.44

variance by 4% at the cost of a 1.40 reduction in accuracy compared to FedAvg. This

reduction in accuracy is due to the emphasis on uniform performance among clients

in majority groups, leading to the minority groups receiving less attention. (3) IFCA

improved the average and variance of the client’s accuracies, but it requires each client

to download Q models, each consisting of 32/64 bits weight parameters. (4) Our

proposed method, E2FL, demonstrates a clear advantage over the other algorithms.

E2FL leverages the benefits of both accuracy and fairness, for instance, the EFFL

method with the lowest loss group inference approach improves the average accuracy

by 2.13 (3.73) and reduces the variance among clients by 21% (28%) in comparison

to FedAvg (FRL). These improvements stem from the training of multiple models,

one for each group, and the combination of all group models into a global model that

utilizes knowledge from all participating clients by performing a fair majority vote

among them. (5) The lowest loss and rank clustering group inference methods perform

better than the oneshot inference method, as the latter only requires a single forward

and backward pass, while the former require additional operations.

168

6.4.3 Fair FL when each client has training data of multiple groups

In our experiments, we also evaluate the performance of the E2FL on a real-

world dataset, the Adult Census Income Dataset [102]. This dataset contains 48,842

samples collected from the United States Census Database, with the task of classifying

individuals’ income into two categories: earning less than or equal to 50K per year

(mapped to 0) or earning more than 50K per year (mapped to 1) where the output of

Ŷ = 1 is regarded as a positive output (i.e., making more money). In our analysis,

gender is considered as the protected attribute, with male samples (represented by

A = 1) being the privileged group and female samples (represented by A = 0) being

the unprivileged group. We split the data into train and test, and Table 6.3 shows the

bias in this dataset for the difference in their opportunities for making higher income

(Pr[Ŷ = 1|A = a] where a ∈ {0, 1}). The bias towards the male group is evident, with

the male group having a 31.4% chance of getting Ŷ = 1 and the female group having

only an 11.3% chance in the training data. During testing, models trained on this

dataset further amplify the bias towards the male samples by having a higher chance

of making a positive prediction (Ŷ = 1) for male data inputs.

Table 6.3. Distribution of training and test samples for male and female groups on
the Adult dataset.

Protected Attr Stats train data test data

Gender

Pr[A = 1] 67.50% 67.50%
Pr[A = 0] 32.5% 32.5%

Pr[Ŷ = 1|A = 1] 31.4% 30.8%

Pr[Ŷ = 1|A = 0] 11.3% 11.3%

In our experiments, we distribute the samples of the Adult Census Income Dataset

among five clients, using Dirichlet distribution. The data distribution is done with two

settings: (a) Independent and Identically Distributed (IID) with a Dirichlet parameter

of α = 5000, and (b) Non-Independent and Identically Distributed (Non-IID) with a

Dirichlet parameter of α = 1.

169

To evaluate the fairness of the trained global model, we adopt two metrics that have

been previously used in related works such as [61, 7, 172]. The first metric is the Equal

Opportunity Difference (EOD), i.e., EOD = Pr(Ŷ = 1|A = 0, Y = 1) − Pr(Ŷ =

1|A = 1, Y = 1), which measures the difference in the True Positive Rate between the

privileged and unprivileged groups. The second metric is the Discrimination Index

(DI), i.e., DI = F1(θ|A = 0)− F1(θ|A = 1), which measures the difference in the F1

score between the two groups.

Table 6.4. Comparison of fairness between E2FL and other baselines on the Adult
dataset.

Algorithm Metric
Heterogeneity Level α

5000 (IID) 1 (Non-IID)

FedAvg
Test Accuracy 85.56 85.47

EODte -0.0689 -0.0834
DIte -0.0432 -0.0517

FairFed
Test Accuracy 85.1 84.47

EODte -0.0701 -0.069
DIte -0.0441 -0.041

E2FL
Test Accuracy 85.22 85.20

EODte -0.0174 -0.0222
DIte -0.019 -0.0252

Table 6.4 presents the fairness comparison between FedAvg [103, 126], FairFed [61],

and the proposed method, E2FL, for different data distributions on Adult dataset.

FairFed is selected as the baseline due to its ability to provide group fairness when

different data groups (protected attributes) are present at each client, which is similar

to the situation in the Adult Census Income dataset. This algorithm adaptively

modifies the aggregation weights at the server in each round. The weights are based

on the mismatch between each client’s global fairness measure (at the server) and the

local fairness measure. This algorithm favors clients whose local measures match the

global fairness measure more. The results in the table demonstrate that E2FL reduces

the equal opportunity difference (EOD) and discrimination index (DI) between the

male and female groups with a minor reduction in the final test accuracy. Specifically,

170

for non-IID data distribution, E2FL improves the EOD by 73% and the DI by 51%

with only a small loss in test accuracy (0.27%) compared to FedAvg. On the other

hand, FairFed improves the EOD by 17% and the DI by 20% with a 1% decrease in

test accuracy compared to FedAvg. In the case of IID data distribution, FairFed does

not provide the same level of improvement as its design is optimized for heterogeneous

data distribution. In contrast, E2FL achieves similar improvement in both cases.

These results highlight that E2FL enforces a fairer model behavior even when each

client has a mixture of training samples belonging to different groups.

6.4.4 Our group inference approaches

In Section 6.3, we proposed four approaches for the estimation of the group to

which an FL client belongs based on its data distribution. This section presents a

discussion of the performance and utility of these approaches.

Table 6.5. Accuracy of group inference in rank clustering approach on FairMNISTRo-
tate with 1000 clients based on local rankings learned after two local epochs. Results of
the accuracy of prediction are presented for rankings of individual layers with varying
numbers of parameters.

Layer No Params Accuracy of predicting the right group (%)
Conv1 288 91.78
Conv2 18432 94.94
FC1 1605632 93.76
FC2 1280 91.99
ALL 1625632 93.21

Table 6.6. Comparison of utility, equality, and equity of E2FL with rank clustering
on FEMNIST using 3400 clients.

Approach
Number of
Clusters

Metric
Group-level Fairness (Equity) User-level Fairness (Equality)

Average Worst
group

Best
group

Variance Average Worst
(10%)

Best
(10%)

Variance

E2FL

2 88.12 85.65 90.60 6.10 87.21 66.36 99.87 94.09
3 88.03 84.74 91.33 10.82 86.36 64.82 99.66 101.80
4 88.01 85.01 91.39 5.42 87.12 65.81 100 98.80
5 87.61 85.31 91.06 3.80 87.40 67.30 100 88.54

171

Rank clustering approach: Table 6.5 presents the accuracy of the rank clustering

approach in E2FL on FairMNISTRotate, in which the local rankings of different

network layers are clustered either separately or all together. In this approach, each

E2FL client learns local rankings for E = 2 local epochs on its local data (each layer

has its own ranking) at the beginning of E2FL and sends the local ranking to the

server so that the server can assign different group IDs to the clients. From this table,

we can see that with larger rankings, we can predict group ID with higher accuracy.

Table 6.6 also presents the equity and equality measurements of E2FL on FEMNIST

for different numbers of clusters. By increasing the number of clusters, more diverse

groups can be covered, leading to fairer results.

0 100 200 300
Round

88

90

92

94

96

98

100

Gr
ou

p
ID

 E
st
im

at
io
n
Ac

cu
ra
cy

 (%
)

Entropy (Binary) Entropy (Oneshot) Lowest Loss

Figure 6.4. Accuracy of client-side group inference approaches in E2FL on FairM-
NISTRotate during the first 300 global epochs.

Client-based group inference approaches: In this study, we evaluate the perfor-

mance of three client-side group inference approaches, namely lowest loss, binary search

of entropy of outputs, and oneshot method. Figure 6.4 presents the accuracy results

of these approaches over the first 300 global epochs of E2FL on FairMNISTRotate.

The results indicate that the lowest loss approach outperforms the binary and oneshot

methods. Additionally, the binary search approach exhibits better accuracy compared

172

to the oneshot method as it requires more forward and backward passes to accurately

determine the group ID.

6.5 Conclusions

This Chapter addresses the fairness issue in Federated Learning (FL) by introducing

two fairness metrics, equality and equity, to assess user-level and group-level fairness,

respectively. To achieve both equality and equity in FL, a novel algorithm, named E2FL

(Equal and Equitable Federated Learning) was proposed and implemented. Through

empirical evaluations on various real-world FL scenarios, the results demonstrated that

E2FL outperforms existing methods in terms of efficiency, fairness among different

groups, and fairness for individual clients.

173

CHAPTER 7

CONCLUSION

7.1 Summary

In this dissertation, I focus on addressing the trustworthiness challenges arising

in distributed learning systems, particularly in Federated Learning (FL). I carry out

extensive measurement studies to shed light on security, privacy, and fairness issues

in FL. Moreover, I develop innovative mechanisms to enhance the trustworthiness of

existing FL algorithms.

To improve robustness, I introduce a comprehensive framework encompassing

various poisoning attacks and defensive aggregation strategies found in FL literature.

This framework aims to bridge the gap between existing works and provide a clear

understanding of the different types of threats that must be considered when designing

FL systems. Additionally, I devise the Federated Rank Learning (FRL) approach,

in which clients rank edges within a randomly initialized network. This method was

demonstrated to restrict the adversary’s options for poisoning the global model.

Regarding access privacy, I create the Heterogeneous Private Information Retrieval

(HPIR) mechanism, allowing clients to fetch their specific model parameters from

untrusted servers without revealing any information. I also examine the privacy

leakage of local rankings in FRL by performing membership inference attacks on them.

I demonstrate that FRL offers superior privacy against local and global membership

inference attacks compared to standard FL training.

To tackle fairness in FL, I propose learning multiple global models by training

on parameter ranks (similar to FRL), enabling each group of clients to benefit from

174

their personalized model. I establish a fair FL approach based on learning parameter

ranks to ensure that the global model performs consistently across various clients and

different groups of clients.

In summary, I have contributed to each aspect of trustworthiness in distributed

learning systems and provided a clear understanding of the current state of the art in

FL security.

7.2 Future work

The research presented in this thesis can be extended in various directions. In this

section, I present the potential future works to explore.

7.2.1 FRL with different rank aggregation methods

One potential extension is to investigate the effect of different rank aggregation

methods in FRL (Chapter 3). Specifically, the FRL server uses the Borda count rank

aggregation method [60], where it assigns a reputation to each edge for each ranking,

sums the reputations, and sorts them from least to most to find the global ranking.

The average Kendall tau distance of a ranking Rg
t to a ranking dataset T =

{θ1t , θ2t , ..., θnt } is defined as K̄(Rg
t , T) = 1

n

∑n
i=1 K(θit, R

g
t). The Kemeny optimal

aggregation [94, 48] is a commonly used criterion for determining the best aggregate

ranking, which minimizes the average Kendall tau distance to T . Although computing

the Kemeny optimal ranking is NP-hard for rank databases with size n > 3, PTIME

approximation algorithms are available [58, 79]. Furthermore, numerous heuristic

methods have been proposed, including scoring and ranking elements [60], conducting

locally directed searches in the rank space [95, 58], and defining a Markov chain from

the rank database to rank elements based on their stationary probabilities [58, 108].

By replacing FRL’s rank aggregation at the FRL server with alternative methods

such as the KwiKSort [10], Footrule and scaled Footrule [55],and Markov chain

175

methods [58, 108], it is possible to examine the impact on FL accuracy in highly

heterogeneous data distributions where all rankings significantly differ from one another.

Additionally, the effect of excluding adversarial local updates can be evaluated. The

privacy leakage and fairness of different rank aggregation methods at the server can

also be assessed, allowing for a more comprehensive understanding of how various

aggregation techniques influence the overall trustworthiness of FL systems.

7.2.2 Extending FRL with existing ideas in FL algorithms

Our main argument in Chapter 3 is that FL algorithms based on FedAvg are

vulnerable to the same kind of attacks that even a single malicious client can corrupt

the model by sending well-crafted updates (e.g., very large updates for FedAvg). This

vulnerability comes from sending and receiving weight parameters, as the adversary has

more space to find the most damaging updates. Recent studies on FL, such as SCAF-

FOLD [92], FedProx [115], FedNova [160], and Momentum-based FedAVG [49, 145],

have introduced new techniques to improve global model performance in heterogeneous

data distributions without malicious clients. These systems’ clients also send updates

as trained weights (similar to FedAvg), making them vulnerable to the same attacks

as FedAvg. Conversely, FRL employs ranking, with free-scale ranks, resulting in

greater robustness compared to these systems. However, to enhance performance in

the absence of malicious clients, we can incorporate their ideas into FRL as follows:

SCAFFOLD [92] estimates the update direction for the global model and each

client’s update direction. It then uses the difference as a client drift estimate to correct

the local update. This concept can also be applied to FRL for correcting client drifts.

In the modified FRL, each client estimates the global reputation of edges (using global

ranking) and the local reputation of edges (using local ranking). The client then uses

the difference between these reputations to correct the local ranking.

176

FedProx [115] learns a local model for a chosen client by regularizing the distance

between the local and global models. This technique can also be integrated into FRL.

In the modified FRL, each client calculates the local rankings of the supernetwork,

ensuring that the local ranking (Rk
t) remains close to the global ranking (Rg

t). To

measure the difference between the two rankings, we can compute the Kendall tau

distance of the two rankings, which measures the number of disagreements between

rankings. In this case, we optimize the following objective functions: for FedProx

optimization, wt+1
k = argminw Fk(w)+

µ
2
||w−wt||, and for modified FRL optimization,

Rt+1
k = argminR Fk(R) +

µ
2
×K(R,Rg

t). Here, Fk(.) is the objective function of the

kth client, and µ is a tunable hyperparameter in FedProx.

FedNova [160] averages gradients based on the number of local epochs each client

has, rather than using a fixed number of local epochs per client. This idea can also

be integrated into FRL. In our FRL experiments, we used 2 local epochs for MNIST

and FEMNIST clients and 5 local epochs for CIFAR10 users. However, by using

different numbers of local epochs per client, we can employ the same technique by

averaging the reputation of edges based on the number of local epochs. In FedAvg,

the server announces the global model as wt+1 = 1
n

∑n
i=1 W

t
i , and in FedNova, the

server announces the global model as wt+1 = 1
n

∑n
i=1

W t
i

τi
, where τi is the number of

local updates for the ith client. In the modified FRL, the server calculates the global

rankings using Algorithm 9, with T being a vector containing the number of local

epochs applied by each user.

Algorithm 9 Modified FRL vote to act similar to idea of FedNova [160].

1: function Vote (R{u∈U}, T{u∈U})
2: V ← ArgSort(R{u∈U}) ▷ Reputation of each edge in each local ranking
3: A← Sum(V/T) ▷ Sum the reputations devices by number of local epochs
4: return ArgSort(A) ▷ Order of the reputations
5: end function

Momentum-based FLs [49, 145] : Das et al. [49] use a global momentum for

updating the global model, and Reddi et al. [145] extend this approach by incorporating

177

AdaGrad and Adam. All of these methods can be integrated into FRL as well since

the server calculates the reputation of each edge and sums them. In momentum-based

FRL, the server incorporates previous rankings (reputations) for each edge to update

the new rankings as momentum. In this case, Algorithm 10 illustrates the Vote

function with momentum, where µ is the momentum, and Rg
t is the previous global

ranking.

Algorithm 10 Modified FRL vote to act similar to idea of Momentum-based FLs [49,
145] [160].

1: function Vote (R{u∈U}, R
g
t)

2: V1 ← ArgSort(R{u∈U}) ▷ Reputation of each edge in each local ranking
3: V2 ← ArgSort(Rg

t) ▷ Reputation of each edge in the global ranking
4: A← Sum(V1 + µV2)
5: return ArgSort(A) ▷ Order of the reputations
6: end function

7.2.3 FL personalization with rankings

Personalized FL (PFL) algorithms reduce the variance of clients’ performances by

personalizing the global model for each client. Incorporating the following ideas in

FRL could lead to an increase in performance and further reduction of the variance of

the clients’ performances:

Personalization through fine-tuning. A natural strategy for personalizing the

global model is that each client can fine-tune the global model parameters on its local

data [125, 161, 175]. Zhao et al. [175] also show that accuracy of FL will be reduced

significantly when the data is non-i.i.d. (up to 55% reduction in test accuracy when

each client has a different class of data). For solving this problem, the authors propose

to use fine-tuning on a shared global dataset that has all the classes and then send a

warm-up model to the clients.

Personalization through mixing global and local models. Hanzely et al. [77]

propose a new FL algorithm that jointly learns local representations on each client and

a global model across all of them. In the new optimization problem, they are trying

178

to find local updates for each client to minimize the average of local objective function

plus a regularizer consisting of the distance from the global model. They mention

that using the new FL algorithm can help in solving performance, communication,

and fairness issues of current FL. They also provide convergence guarantees for their

algorithm by assuming convex loss functions. Deng et al. [52] propose an adaptive

personalized federated learning algorithm where each FL participant will train a local

model while contributing to the global model. They aim to balance the tradeoff

between getting benefit by using other clients’ knowledge and the disadvantage of

statistical heterogeneity of data, which may cause divergence on the gradients.

Personalization through meta-data. In meta-learning, the goal is to use data

from previous tasks to learn updates or model parameters that can be fine-tuned to

perform well on new tasks with a small amount of data. Chen et al. [39] and Jiang

et al. [89] use the idea of Model-Agnostic Meta-Learning (MAML) [64] to achieve

personalization in FL. The main idea of MAML is to find a meta initialization that

performs well on new unseen tasks once it is updated using gradient-based updates

of the loss related to the new task. The authors suggest to find an initial model for

each client that can be fine-tuned using a few steps of gradient descent. Fallah et

al. [62] introduce Per-Fed, a personalized FL using meta-learning that provides the

first theoretical guarantees for MAML methods for nonconvex functions.

Personalization through representation learning. Liang et al. [118] propose to

mix different network layers for personalization. Collins et al. [47] suggest learning

lower layer parameters as a shared global representation, and then each client can learn

a customized classifier on top of that. They suggest that each client, after receiving

the global representation for base layers, fine-tunes the last layer on its local data,

and then performs one round of SGD on the base layer parameters, which are then

uploaded as the user’s gradients.

179

BIBLIOGRAPHY

[1] Glove: Pretrained word embeddings by standford nlp group. http://nlp.

stanford.edu/data/glove.840B.300d.zip.

[2] Sparsemodule: finding score-based subnetworks in any neural network architec-
tures. https://github.com/dchiji/sparse_module.

[3] Tiny imagenet challenge [online]. https://tinyimagenet.herokuapp.com.

[4] Denoising Diffusion Probabilistic Model, in Tensorflow. https://github.com/
hojonathanho/diffusion, 2020.

[5] Denoising Diffusion Probabilistic Model, in Pytorch. https://github.com/

lucidrains/denoising-diffusion-pytorch, 2022.

[6] Abadi, Mart́ın, Chu, Andy, Goodfellow, Ian, McMahan, H Brendan, Mironov,
Ilya, Talwar, Kunal, and Zhang, Li. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security (2016), ACM.

[7] Abay, Annie, Zhou, Yi, Baracaldo, Nathalie, Rajamoni, Shashank, Chuba,
Ebube, and Ludwig, Heiko. Mitigating bias in federated learning. arXiv preprint
arXiv:2012.02447 (2020).

[8] Aguilar-Melchor, Carlos, Barrier, Joris, Fousse, Laurent, and Killijian, Marc-
Olivier. Xpir: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016, 2 (2016), 155–174.

[9] Aguilar-Melchor, Carlos, and Gaborit, Philippe. A lattice-based computationally-
efficient private information retrieval protocol. In Western European Workshop
on Research in Cryptology (2007), Citeseer.

[10] Ailon, Nir, Charikar, Moses, and Newman, Alantha. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM) 55, 5 (2008),
1–27.

[11] Aji, Alham Fikri, and Heafield, Kenneth. Sparse communication for distributed
gradient descent. In EMNLP (2017).

[12] Alabi, Daniel, Ghazi, Badih, Kumar, Ravi, and Manurangsi, Pasin. Private rank
aggregation in central and local models. In Proceedings of the AAAI Conference
on Artificial Intelligence (2022), vol. 36, pp. 5984–5991.

180

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://github.com/dchiji/sparse_module
https://tinyimagenet.herokuapp.com
https://github.com/hojonathanho/diffusion
https://github.com/hojonathanho/diffusion
https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

[13] Alistarh, Dan, Hoefler, Torsten, Johansson, Mikael, Konstantinov, Nikola, Khiri-
rat, Sarit, and Renggli, Cédric. The convergence of sparsified gradient methods.
In NeurIPS (2018).

[14] Angel, Sebastian, Chen, Hao, Laine, Kim, and Setty, Srinath. Pir with com-
pressed queries and amortized query processing. In 2018 IEEE Symposium on
Security and Privacy (SP) (2018), IEEE, pp. 962–979.

[15] Bagdasaryan, Eugene, Veit, Andreas, Hua, Yiqing, Estrin, Deborah, and
Shmatikov, Vitaly. How to backdoor federated learning. In AISTATS (2020).

[16] Baruch, Moran, Gilad, Baruch, and Goldberg, Yoav. A little is enough: Circum-
venting defenses for distributed learning. In NeurIPS (2019).

[17] Beimel, Amos, and Ishai, Yuval. Information-theoretic private information
retrieval: A unified construction. In International Colloquium on Automata,
Languages, and Programming (2001), Springer, pp. 912–926.

[18] Beimel, Amos, Ishai, Yuval, Kushilevitz, Eyal, and Orlov, Ilan. Share con-
version and private information retrieval. In 2012 IEEE 27th Conference on
Computational Complexity (2012), IEEE, pp. 258–268.

[19] Beimel, Amos, Ishai, Yuval, Kushilevitz, Eyal, and Raymond, J-F. Breaking
the o (n/sup 1/(2k-1)/) barrier for information-theoretic private information
retrieval. In Foundations of Computer Science, 2002. Proceedings. The 43rd
Annual IEEE Symposium on (2002), IEEE, pp. 261–270.

[20] Beimel, Amos, and Stahl, Yoav. Robust information-theoretic private information
retrieval. In International Conference on Security in Communication Networks
(2002), Springer, pp. 326–341.

[21] Bengio, Yoshua, Léonard, Nicholas, and Courville, Aaron. Estimating or propa-
gating gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432 (2013).

[22] Bernstein, Jeremy, Zhao, Jiawei, Azizzadenesheli, Kamyar, and Anandkumar,
Anima. signsgd with majority vote is communication efficient and fault tolerant.
In ICLR (2019).

[23] Bhagoji, Arjun Nitin, Chakraborty, Supriyo, Mittal, Prateek, and Calo, Seraphin.
Analyzing federated learning through an adversarial lens. In ICML (2019).

[24] Bhat, Radhakrishna, and Sunitha, NR. A novel hybrid private information
retrieval with non-trivial communication cost. In 2018 4th International Con-
ference on Recent Advances in Information Technology (RAIT) (2018), IEEE,
pp. 1–7.

181

[25] Bhowmick, Abhishek, Duchi, John, Freudiger, Julien, Kapoor, Gaurav, and
Rogers, Ryan. Protection against reconstruction and its applications in private
federated learning. arXiv preprint arXiv:1812.00984 (2018).

[26] Blakley, George Robert, and Meadows, Catherine. Security of ramp schemes. In
Workshop on the Theory and Application of Cryptographic Techniques (1984),
Springer, pp. 242–268.

[27] Blanchard, Peva, Guerraoui, Rachid, Stainer, Julien, et al. Machine learning
with adversaries: Byzantine tolerant gradient descent. In NeurIPS (2017),
pp. 119–129.

[28] Bonawitz, Keith, Eichner, Hubert, Grieskamp, Wolfgang, Huba, Dzmitry, In-
german, Alex, Ivanov, Vladimir, Kiddon, Chloé, Konecnỳ, Jakub, Mazzocchi,
Stefano, McMahan, H Brendan, et al. Towards federated learning at scale:
System design. In MLSys (2019).

[29] Borisov, Nikita, Danezis, George, and Goldberg, Ian. Dp5: A private presence
service. Proceedings on Privacy Enhancing Technologies 2015, 2 (2015), 4–24.

[30] Brakerski, Zvika, and Vaikuntanathan, Vinod. Efficient fully homomorphic
encryption from (standard) lwe. SIAM Journal on Computing 43, 2 (2014),
831–871.

[31] Brendan, McMahan H, Ramage, Daniel, Talwar, Kunal, and Zhang, Li. Learning
differentially private recurrent language models. International Conference on
Learning and Representation (2018).

[32] Cachin, Christian, Micali, Silvio, and Stadler, Markus. Computationally private
information retrieval with polylogarithmic communication. In International
Conference on the Theory and Applications of Cryptographic Techniques (1999),
Springer, pp. 402–414.

[33] Caldas, Sebastian, Wu, Peter, Li, Tian, Konečný, Jakub, McMahan, H. Brendan,
Smith, Virginia, and Talwalkar, Ameet. LEAF: A benchmark for federated
settings. CoRR abs/1812.01097 (2018).

[34] Cantelli, Francesco Paolo. Sui confini della probabilita. In Atti del Congresso
Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928 (1929),
pp. 47–60.

[35] Cao, Xiaoyu, and Gong, Neil Zhenqiang. Mpaf: Model poisoning attacks to
federated learning based on fake clients. arXiv preprint arXiv:2203.08669 (2022).

[36] Cappos, Justin. Avoiding theoretical optimality to efficiently and privately
retrieve security updates. In International Conference on Financial Cryptography
and Data Security (2013), Springer, pp. 386–394.

182

[37] Carlini, Nicholas, Chien, Steve, Nasr, Milad, Song, Shuang, Terzis, Andreas, and
Tramer, Florian. Membership inference attacks from first principles. In 2022
IEEE Symposium on Security and Privacy (SP) (2022), IEEE, pp. 1897–1914.

[38] Chang, Hongyan, Shejwalkar, Virat, Shokri, Reza, and Houmansadr, Amir.
Cronus: Robust and heterogeneous collaborative learning with black-box knowl-
edge transfer, 2019.

[39] Chen, Fei, Luo, Mi, Dong, Zhenhua, Li, Zhenguo, and He, Xiuqiang. Federated
meta-learning with fast convergence and efficient communication. arXiv preprint
arXiv:1802.07876 (2018).

[40] Chen, Ting, Zhang, Ruixiang, and Hinton, Geoffrey. Analog bits: Generating
discrete data using diffusion models with self-conditioning, 2022.

[41] Chien, Hung-Yu, Jan, Jinn-Ke, and Tseng, Yuh-Min. A practical (t, n) multi-
secret sharing scheme. IEICE transactions on fundamentals of electronics,
communications and computer sciences 83, 12 (2000), 2762–2765.

[42] Chijiwa, Daiki, Yamaguchi, Shin’ya, Ida, Yasutoshi, Umakoshi, Kenji, and
Inoue, Tomohiro. Pruning randomly initialized neural networks with iterative
randomization. Advances in Neural Information Processing Systems 34 (2021),
4503–4513.

[43] Choi, Jooyoung, Lee, Jungbeom, Shin, Chaehun, Kim, Sungwon, Kim, Hyun-
woo J., and Yoon, Sung-Hoon. Perception prioritized training of diffusion models.
ArXiv abs/2204.00227 (2022).

[44] Chor, Benny, and Gilboa, Niv. Computationally private information retrieval. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
(1997), ACM, pp. 304–313.

[45] Chor, Benny, Goldreich, Oded, Kushilevitz, Eyal, and Sudan, Madhu. Private
information retrieval. In Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on (1995), IEEE, pp. 41–50.

[46] Cohen, Gregory, Afshar, Saeed, Tapson, Jonathan, and van Schaik, André.
EMNIST: extending MNIST to handwritten letters. In 2017 International Joint
Conference on Neural Networks, IJCNN (2017).

[47] Collins, Liam, Hassani, Hamed, Mokhtari, Aryan, and Shakkottai, Sanjay.
Exploiting shared representations for personalized federated learning. In Inter-
national Conference on Machine Learning (2021).

[48] Conitzer, Vincent, Davenport, Andrew, and Kalagnanam, Jayant. Improved
bounds for computing kemeny rankings. In AAAI (2006), vol. 6, pp. 620–626.

183

[49] Das, Rudrajit, Acharya, Anish, Hashemi, Abolfazl, Sanghavi, Sujay, Dhillon,
Inderjit S, and Topcu, Ufuk. Faster non-convex federated learning via global
and local momentum. In Uncertainty in Artificial Intelligence (2022), PMLR,
pp. 496–506.

[50] Dauphin, Yann N, and Bengio, Yoshua. Big neural networks waste capacity.
arXiv preprint arXiv:1301.3583 (2013).

[51] Demmler, Daniel, Herzberg, Amir, and Schneider, Thomas. Raid-pir: Practical
multi-server pir. In Proceedings of the 6th edition of the ACM Workshop on
Cloud Computing Security (2014), ACM, pp. 45–56.

[52] Deng, Yuyang, Kamani, Mohammad Mahdi, and Mahdavi, Mehrdad. Adaptive
personalized federated learning. arXiv preprint arXiv:2003.13461 (2020).

[53] Denil, Misha, Shakibi, Babak, Dinh, Laurent, Ranzato, Marc’Aurelio, and
de Freitas, Nando. Predicting parameters in deep learning. In Proceedings of the
26th International Conference on Neural Information Processing Systems-Volume
2 (2013), pp. 2148–2156.

[54] Devet, Casey, Goldberg, Ian, and Heninger, Nadia. Optimally robust private
information retrieval. In USENIX Security Symposium (2012), pp. 269–283.

[55] Diaconis, Persi, and Graham, Ronald L. Spearman’s footrule as a measure of
disarray. Journal of the Royal Statistical Society: Series B (Methodological) 39,
2 (1977), 262–268.

[56] Dingyi, Pei, Arto, Salomaa, and Cunsheng, Ding. Chinese remainder theorem:
applications in computing, coding, cryptography. World Scientific, 1996.

[57] Dong, Changyu, and Chen, Liqun. A fast single server private information
retrieval protocol with low communication cost. In European Symposium on
Research in Computer Security (2014), Springer, pp. 380–399.

[58] Dwork, Cynthia, Kumar, Ravi, Naor, Moni, and Sivakumar, Dandapani. Rank
aggregation methods for the web. In Proceedings of the 10th international
conference on World Wide Web (2001), pp. 613–622.

[59] Dwork, Cynthia, Roth, Aaron, et al. The algorithmic foundations of differential
privacy. Foundations and Trends® in Theoretical Computer Science (2014).

[60] Emerson, Peter. The original borda count and partial voting. Social Choice and
Welfare 40, 2 (2013), 353–358.

[61] Ezzeldin, Yahya H, Yan, Shen, He, Chaoyang, Ferrara, Emilio, and Avestimehr,
Salman. Fairfed: Enabling group fairness in federated learning. arXiv preprint
arXiv:2110.00857 (2021).

184

[62] Fallah, Alireza, Mokhtari, Aryan, and Ozdaglar, Asuman. Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning approach.
Advances in Neural Information Processing Systems 33 (2020).

[63] Fang, Minghong, Cao, Xiaoyu, Jia, Jinyuan, and Gong, Neil Zhenqiang. Local
model poisoning attacks to byzantine-robust federated learning. In USENIX
Security (2020).

[64] Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning (2017), PMLR, pp. 1126–1135.

[65] Frankle, Jonathan, and Carbin, Michael. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. ICLR (2019).

[66] Gao, Yang, Colombo, Nicolo, and Wang, Wei. Adapting by pruning: A case
study on bert. arXiv preprint arXiv:2105.03343 (2021).

[67] Gertner, Yael, Goldwasser, Shafi, and Malkin, Tal. A random server model
for private information retrieval (or how to achieve information theoretic pir
avoiding data replication). IACR Cryptology ePrint Archive 1998 (1998), 13.

[68] Geyer, Robin C., Klein, Tassilo, and Nabi, Moin. Differentially private federated
learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[69] Ghinita, Gabriel, Kalnis, Panos, Khoshgozaran, Ali, Shahabi, Cyrus, and Tan,
Kian-Lee. Private queries in location based services: anonymizers are not
necessary. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data (2008), ACM, pp. 121–132.

[70] Ghosh, Avishek, Chung, Jichan, Yin, Dong, and Ramchandran, Kannan.
An efficient framework for clustered federated learning. arXiv preprint
arXiv:2006.04088 (2020).

[71] Glorot, Xavier, and Bengio, Yoshua. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS (2010).

[72] Goldberg, Ian. Improving the robustness of private information retrieval. In
Security and Privacy, 2007. SP’07. IEEE Symposium on (2007), IEEE, pp. 131–
148.

[73] Goldberg, Ian, Devet, Casey, Lueks, Wouter, Yang, Ann, Hendry, Paul, and
Henry, Ryan. Percy++ project on sourceforge, 2014.

[74] Goodfellow, Ian J, Mirza, Mehdi, Xiao, Da, Courville, Aaron, and Bengio,
Yoshua. An empirical investigation of catastrophic forgetting in gradient-based
neural networks. arXiv preprint arXiv:1312.6211 (2013).

185

[75] Gupta, Trinabh, Crooks, Natacha, Mulhern, Whitney, Setty, Srinath TV, Alvisi,
Lorenzo, and Walfish, Michael. Scalable and private media consumption with
popcorn. In NSDI (2016), pp. 91–107.

[76] Hafiz, Syed Mahbub, and Henry, Ryan. Querying for queries: Indexes of queries
for efficient and expressive it-pir. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (2017), ACM, pp. 1361–
1373.

[77] Hanzely, Filip, and Richtárik, Peter. Federated learning of a mixture of global
and local models. arXiv preprint arXiv:2002.05516 (2020).

[78] Hashimoto, Tatsunori, Srivastava, Megha, Namkoong, Hongseok, and Liang,
Percy. Fairness without demographics in repeated loss minimization. In Inter-
national Conference on Machine Learning (2018).

[79] Hay, Michael, Elagina, Liudmila, and Miklau, Gerome. Differentially private
rank aggregation. In Proceedings of the 2017 SIAM International Conference on
Data Mining (2017), SIAM, pp. 669–677.

[80] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision (2015),
pp. 1026–1034.

[81] Henry, Ryan. Polynomial batch codes for efficient it-pir. Proceedings on Privacy
Enhancing Technologies 2016, 4 (2016), 202–218.

[82] Henry, Ryan, Huang, Yizhou, and Goldberg, Ian. One (block) size fits all: Pir
and spir with variable-length records via multi-block queries. In NDSS (2013).

[83] Henry, Ryan, Olumofin, Femi, and Goldberg, Ian. Practical pir for electronic
commerce. In CCS, 2011. Proceedings (2011).

[84] Ho, Jonathan. Classifier-free diffusion guidance. ArXiv abs/2207.12598 (2022).

[85] Ho, Jonathan, Jain, Ajay, and Abbeel, Pieter. Denoising diffusion probabilis-
tic models. In Advances in Neural Information Processing Systems (2020),
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, Eds., vol. 33,
Curran Associates, Inc., pp. 6840–6851.

[86] Hsu, Tzu-Ming Harry, Qi, Hang, and Brown, Matthew. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335 (2019).

[87] Ivkin, Nikita, Rothchild, Daniel, Ullah, Enayat, Braverman, Vladimir, Stoica,
Ion, and Arora, Raman. Communication-efficient distributed sgd with sketching.
In NeurIPS (2019).

186

[88] Jabri, A., Fleet, David J., and Chen, Ting. Scalable adaptive computation for
iterative generation.

[89] Jiang, Yihan, Konečnỳ, Jakub, Rush, Keith, and Kannan, Sreeram. Improving
federated learning personalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488 (2019).

[90] Kairouz, Peter, McMahan, H Brendan, Avent, Brendan, Bellet, Aurélien, Bennis,
Mehdi, Bhagoji, Arjun Nitin, Bonawitz, Keith, Charles, Zachary, Cormode,
Graham, Cummings, Rachel, et al. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977 (2019).

[91] Karimireddy, Sai Praneeth, Jaggi, Martin, Kale, Satyen, Mohri, Mehryar, Reddi,
Sashank J, Stich, Sebastian U, and Suresh, Ananda Theertha. Mime: Mim-
icking centralized stochastic algorithms in federated learning. arXiv preprint
arXiv:2008.03606 (2020).

[92] Karimireddy, Sai Praneeth, Kale, Satyen, Mohri, Mehryar, Reddi, Sashank,
Stich, Sebastian, and Suresh, Ananda Theertha. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine
Learning (2020), PMLR, pp. 5132–5143.

[93] Karras, Tero, Aittala, Miika, Aila, Timo, and Laine, Samuli. Elucidating the
design space of diffusion-based generative models. ArXiv abs/2206.00364 (2022).

[94] Kemeny, John G, and Snell, James Laurie. Mathematical models in the social
sciences, vol. 9. Blaisdell New York, 1962.

[95] Kenyon-Mathieu, Claire, and Schudy, Warren. How to rank with few errors. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing
(2007), pp. 95–103.

[96] Ker, Justin, Wang, Lipo, Rao, Jai, and Lim, Tchoyoson. Deep learning applica-
tions in medical image analysis. Ieee Access 6 (2017), 9375–9389.

[97] Khodak, Mikhail, Tu, Renbo, Li, Tian, Li, Liam, Balcan, Maria-Florina F, Smith,
Virginia, and Talwalkar, Ameet. Federated hyperparameter tuning: Challenges,
baselines, and connections to weight-sharing. Advances in Neural Information
Processing Systems 34 (2021), 19184–19197.

[98] Kiayias, Aggelos, Leonardos, Nikos, Lipmaa, Helger, Pavlyk, Kateryna, and
Tang, Qiang. Optimal rate private information retrieval from homomorphic
encryption. Proceedings on Privacy Enhancing Technologies 2015, 2 (2015),
222–243.

[99] Kingma, Diederik P, Salimans, Tim, Poole, Ben, and Ho, Jonathan. On density
estimation with diffusion models. In Advances in Neural Information Processing
Systems (2021), A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
Eds.

187

[100] Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil, Veness, Joel, Desjardins,
Guillaume, Rusu, Andrei A, Milan, Kieran, Quan, John, Ramalho, Tiago,
Grabska-Barwinska, Agnieszka, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences 114, 13 (2017),
3521–3526.

[101] Knill, Oliver. A multivariable chinese remainder theorem. arXiv preprint
arXiv:1206.5114 (2012).

[102] Kohavi, Ron, et al. Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid. In Kdd (1996), vol. 96, pp. 202–207.

[103] Konečnỳ, Jakub, McMahan, H Brendan, Yu, Felix X, Richtárik, Peter, Suresh,
Ananda Theertha, and Bacon, Dave. Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[104] Krizhevsky, Alex, and Hinton, Geoffrey. Learning multiple layers of features
from tiny images.

[105] Kukkala, Vipin Kumar, Tunnell, Jordan, Pasricha, Sudeep, and Bradley, Thomas.
Advanced driver-assistance systems: A path toward autonomous vehicles. IEEE
Consumer Electronics Magazine 7, 5 (2018), 18–25.

[106] Kurihara, Jun, Kiyomoto, Shinsaku, Fukushima, Kazuhide, and Tanaka, Toshi-
aki. A fast (k, l, n)-threshold ramp secret sharing scheme. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 92, 8
(2009), 1808–1821.

[107] Kushilevitz, Eyal, and Ostrovsky, Rafail. Replication is not needed: Single
database, computationally-private information retrieval. In Foundations of
Computer Science, 1997. Proceedings., 38th Annual Symposium on (1997), IEEE,
pp. 364–373.

[108] Langville, Amy N, and Meyer, Carl D. Who’s# 1?: the science of rating and
ranking. Princeton University Press, 2012.

[109] Li, Ang, Sun, Jingwei, Wang, Binghui, Duan, Lin, Li, Sicheng, Chen, Yiran, and
Li, Hai. Lotteryfl: Personalized and communication-efficient federated learning
with lottery ticket hypothesis on non-iid datasets. CoRR (2020).

[110] Li, Ang, Sun, Jingwei, Zeng, Xiao, Zhang, Mi, Li, Hai, and Chen, Yiran.
Fedmask: Joint computation and communication-efficient personalized federated
learning via heterogeneous masking. In Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems (2021), pp. 42–55.

[111] Li, Lichun, Militzer, Michael, and Datta, Anwitaman. rpir: ramp secret sharing-
based communication-efficient private information retrieval. International Jour-
nal of Information Security 16, 6 (2017), 603–625.

188

[112] Li, Tian, Beirami, Ahmad, Sanjabi, Maziar, and Smith, Virginia. Tilted empirical
risk minimization. In International Conference on Learning Representations
(2021).

[113] Li, Tian, Hu, Shengyuan, Beirami, Ahmad, and Smith, Virginia. Ditto: Fair and
robust federated learning through personalization. In International Conference
on Machine Learning (2021).

[114] Li, Tian, Sahu, Anit Kumar, Talwalkar, Ameet, and Smith, Virginia. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[115] Li, Tian, Sahu, Anit Kumar, Zaheer, Manzil, Sanjabi, Maziar, Talwalkar, Ameet,
and Smith, Virginia. Federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127 (2018).

[116] Li, Tian, Sanjabi, Maziar, Beirami, Ahmad, and Smith, Virginia. Fair re-
source allocation in federated learning. In International Conference on Learning
Representations (2019).

[117] Li, Zhuohang, Zhang, Jiaxin, Liu, Luyang, and Liu, Jian. Auditing pri-
vacy defenses in federated learning via generative gradient leakage. CoRR
abs/2203.15696 (2022).

[118] Liang, Paul Pu, Liu, Terrance, Ziyin, Liu, Allen, Nicholas B, Auerbach, Randy P,
Brent, David, Salakhutdinov, Ruslan, and Morency, Louis-Philippe. Think
locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523 (2020).

[119] Lim, Jia Qi, and Chan, Chee Seng. From gradient leakage to adversarial attacks
in federated learning. In IEEE International Conference on Image Processing
(ICIP) (2021), pp. 3602–3606.

[120] Lipmaa, Helger, and Pavlyk, Kateryna. A simpler rate-optimal cpir protocol. In
International Conference on Financial Cryptography and Data Security (2017),
Springer, pp. 621–638.

[121] Liu, Ruixuan, Cao, Yang, Yoshikawa, Masatoshi, and Chen, Hong. Fedsel:
Federated sgd under local differential privacy with top-k dimension selection.
In International Conference on Database Systems for Advanced Applications
(2020), Springer, pp. 485–501.

[122] Lopez-Paz, David, and Ranzato, Marc’Aurelio. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017),
6467–6476.

[123] Ludwig, Heiko, Baracaldo, Nathalie, Thomas, Gegi, and Zhou, Yi. IBM federated
learning: an enterprise framework white paper V0.1. CoRR abs/2007.10987
(2020).

189

[124] Maas, Andrew, Daly, Raymond E, Pham, Peter T, Huang, Dan, Ng, Andrew Y,
and Potts, Christopher. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies (2011), pp. 142–150.

[125] Mansour, Yishay, Mohri, Mehryar, Ro, Jae, and Suresh, Ananda Theertha.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[126] McMahan, H Brendan, Moore, Eider, Ramage, Daniel, Hampson, Seth, and
Arcas, Blaise Aguera y. Communication-efficient learning of deep networks from
decentralized data. AISTATS (2017).

[127] Melis, Luca, Song, Congzheng, Cristofaro, Emiliano De, and Shmatikov, Vitaly.
Exploiting unintended feature leakage in collaborative learning. 40th IEEE
Symposium on Security and Privacy (2019).

[128] Mhamdi, El Mahdi El, Guerraoui, Rachid, and Rouault, Sébastien. The hidden
vulnerability of distributed learning in byzantium. In ICML (2018).

[129] Minka, Thomas. Estimating a dirichlet distribution, 2000.

[130] Mittal, Prateek, Olumofin, Femi G, Troncoso, Carmela, Borisov, Nikita, and
Goldberg, Ian. Pir-tor: Scalable anonymous communication using private
information retrieval. In USENIX Security Symposium (2011), p. 31.

[131] Mohri, Mehryar, Sivek, Gary, and Suresh, Ananda Theertha. Agnostic federated
learning. In International Conference on Machine Learning (2019).

[132] Mozaffari, Hamid, Shejwalkar, Virat, and Houmansadr, Amir. Fsl: Federated
supermask learning. arXiv preprint arXiv:2110.04350 (2021).

[133] Naseri, Mohammad, Hayes, Jamie, and De Cristofaro, Emiliano. Local and
central differential privacy for robustness and privacy in federated learning.
arXiv preprint arXiv:2009.03561 (2020).

[134] Nasr, Milad, Shokri, Reza, and Houmansadr, Amir. Comprehensive privacy
analysis of deep learning: Stand-alone and federated learning under passive
and active white-box inference attacks. Security and Privacy (SP), 2019 IEEE
Symposium on (2019).

[135] Nichol, Alexander Quinn, and Dhariwal, Prafulla. Improved denoising diffusion
probabilistic models. In Proceedings of the 38th International Conference on
Machine Learning (18–24 Jul 2021), Marina Meila and Tong Zhang, Eds., vol. 139
of Proceedings of Machine Learning Research, PMLR, pp. 8162–8171.

[136] Olumofin, Femi, and Goldberg, Ian. Privacy-preserving queries over relational
databases. In International Symposium on Privacy Enhancing Technologies
Symposium (2010), Springer, pp. 75–92.

190

[137] Olumofin, Femi, and Goldberg, Ian. Revisiting the computational practicality
of private information retrieval. In International Conference on Financial
Cryptography and Data Security (2011), Springer, pp. 158–172.

[138] Paillier, Pascal. Public-key cryptosystems based on composite degree residu-
osity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques (1999), Springer, pp. 223–238.

[139] Pang, Liao-Jun, and Wang, Yu-Min. A new (t, n) multi-secret sharing scheme
based on shamir’s secret sharing. Applied Mathematics and Computation 167, 2
(2005), 840–848.

[140] Paulik, Matthias, Seigel, Matt, and Mason, Henry. Federated evaluation and
tuning for on-device personalization: System design & applications. arXiv
preprint arXiv:2102.08503 (2021).

[141] Piotrowska, Ania M, Hayes, Jamie, Gelernter, Nethanel, Danezis, George, and
Herzberg, Amir. Annotify: A private notification service. In Proceedings of the
2017 on Workshop on Privacy in the Electronic Society (2017), ACM, pp. 5–15.

[142] Qiao, Siyuan, Wang, Huiyu, Liu, Chenxi, Shen, Wei, and Yuille, Alan Loddon.
Weight standardization. ArXiv abs/1903.10520 (2019).

[143] Ramanujan, Vivek, Wortsman, Mitchell, Kembhavi, Aniruddha, Farhadi, Ali,
and Rastegari, Mohammad. What’s hidden in a randomly weighted neural
network? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020).

[144] Ramanujan, Vivek, Wortsman, Mitchell, Kembhavi, Aniruddha, Farhadi, Ali,
and Rastegari, Mohammad. What’s hidden in a randomly weighted neural
network? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020), pp. 11893–11902.

[145] Reddi, Sashank J, Charles, Zachary, Zaheer, Manzil, Garrett, Zachary, Rush,
Keith, Konečnỳ, Jakub, Kumar, Sanjiv, and McMahan, Hugh Brendan. Adaptive
federated optimization. In ICLR (2020).

[146] Salimans, Tim, and Ho, Jonathan. Progressive distillation for fast sampling of
diffusion models. ArXiv abs/2202.00512 (2022).

[147] Shamir, Adi. How to share a secret. Communications of the ACM 22, 11 (1979),
612–613.

[148] Shejwalkar, Virat, and Houmansadr, Amir. Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning. In NDSS
(2021).

191

[149] Shejwalkar, Virat, Houmansadr, Amir, Kairouz, Peter, and Ramage, Daniel.
Back to the drawing board: A critical evaluation of poisoning attacks on federated
learning. In Security and Privacy (SP). 2021.

[150] Shokri, Reza, Stronati, Marco, Song, Congzheng, and Shmatikov, Vitaly. Mem-
bership inference attacks against machine learning models. In Security and
Privacy (SP), 2017 IEEE Symposium on (2017).

[151] Shoup, Victor. Number theory library (ntl) for c++. Available at Shoup’s
homepage http://shoup. net/ntl (2010).

[152] Smith, Virginia, Chiang, Chao-Kai, Sanjabi, Maziar, and Talwalkar, Ameet.
Federated multi-task learning. In Advances in Neural Information Processing
Systems (2017).

[153] Smith, Virginia, Chiang, Chao-Kai, Sanjabi, Maziar, and Talwalkar, Ameet.
Federated multi-task learning. In Neural Information Processing Systems (NIPS)
(2017).

[154] Song, Jiaming, Meng, Chenlin, and Ermon, Stefano. Denoising diffusion implicit
models. ArXiv abs/2010.02502 (2021).

[155] Stern, Julien P. A new and efficient all-or-nothing disclosure of secrets protocol.
In International Conference on the Theory and Application of Cryptology and
Information Security (1998), Springer, pp. 357–371.

[156] Stich, Sebastian U, Cordonnier, Jean-Baptiste, and Jaggi, Martin. Sparsified
sgd with memory. In NeurIPS (2018).

[157] Sun, Ziteng, Kairouz, Peter, Suresh, Ananda Theertha, and McMahan, H Bren-
dan. Can you really backdoor federated learning? In NeurIPS FL Workshop
(2019).

[158] Sunkara, Raja, and Luo, Tie. No more strided convolutions or pooling: A
new cnn building block for low-resolution images and small objects. ArXiv
abs/2208.03641 (2022).

[159] Wang, Hongyi, Sreenivasan, Kartik, Rajput, Shashank, Vishwakarma, Harit,
Agarwal, Saurabh, Sohn, Jy-yong, Lee, Kangwook, and Papailiopoulos, Dimitris.
Attack of the tails: Yes, you really can backdoor federated learning. In NeurIPS
(2020).

[160] Wang, Jianyu, Liu, Qinghua, Liang, Hao, Joshi, Gauri, and Poor, H Vincent.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. Advances in Neural Information Processing Systems 33 (2020).

[161] Wang, Kangkang, Mathews, Rajiv, Kiddon, Chloé, Eichner, Hubert, Beaufays,
Françoise, and Ramage, Daniel. Federated evaluation of on-device personaliza-
tion. arXiv preprint arXiv:1910.10252 (2019).

192

[162] Wang, Ning, Xiao, Xiaokui, Yang, Yin, Zhao, Jun, Hui, Siu Cheung, Shin,
Hyejin, Shin, Junbum, and Yu, Ge. Collecting and analyzing multidimensional
data with local differential privacy. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE) (2019), IEEE, pp. 638–649.

[163] Wei, Wenqi, Liu, Ling, Loper, Margaret, Chow, Ka Ho, Gursoy, Mehmet Emre,
Truex, Stacey, and Wu, Yanzhao. A framework for evaluating gradient leakage
attacks in federated learning. CoRR abs/2004.10397 (2020).

[164] Wortsman, Mitchell, Ramanujan, Vivek, Liu, Rosanne, Kembhavi, Aniruddha,
Rastegari, Mohammad, Yosinski, Jason, and Farhadi, Ali. Supermasks in
superposition. In NeurIPS (2020).

[165] Xie, Chulin, Huang, Keli, Chen, Pin-Yu, and Li, Bo. Dba: Distributed backdoor
attacks against federated learning. In ICLR (2019).

[166] Yamamoto, Hirosuke. Secret sharing system using (k, l, n) threshold scheme.
Electronics and Communications in Japan (Part I: Communications) 69, 9
(1986), 46–54.

[167] Yang, Chou-Chen, Chang, Ting-Yi, and Hwang, Min-Shiang. A (t, n) multi-
secret sharing scheme. Applied Mathematics and Computation 151, 2 (2004),
483–490.

[168] Yekhanin, Sergey. New locally decodable codes and private information retrieval
schemes. In Electronic Colloquium on Computational Complexity (2006), vol. 127,
p. 2006.

[169] Yin, Dong, Chen, Yudong, Ramchandran, Kannan, and Bartlett, Peter L.
Byzantine-robust distributed learning: Towards optimal statistical rates. In
ICML (2018).

[170] Yu, Tao, Bagdasaryan, Eugene, and Shmatikov, Vitaly. Salvaging federated
learning by local adaptation. arXiv preprint arXiv:2002.04758 (2020).

[171] Zari, Oualid, Xu, Chuan, and Neglia, Giovanni. Efficient passive membership
inference attack in federated learning. arXiv preprint arXiv:2111.00430 (2021).

[172] Zhang, Daniel Yue, Kou, Ziyi, and Wang, Dong. Fairfl: A fair federated learning
approach to reducing demographic bias in privacy-sensitive classification models.
In 2020 IEEE International Conference on Big Data (Big Data) (2020), IEEE,
pp. 1051–1060.

[173] Zhang, Lixia, Afanasyev, Alexander, Burke, Jeffrey, Jacobson, Van, Crowley,
Patrick, Papadopoulos, Christos, Wang, Lan, Zhang, Beichuan, et al. Named
data networking. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 66–73.

193

[174] Zhang, Michael, Sapra, Karan, Fidler, Sanja, Yeung, Serena, and Alvarez,
Jose M. Personalized federated learning with first order model optimization. In
International Conference on Learning Representations (2021).

[175] Zhao, Yue, Li, Meng, Lai, Liangzhen, Suda, Naveen, Civin, Damon, and Chandra,
Vikas. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582
(2018).

[176] Zhou, Hattie, Lan, Janice, Liu, Rosanne, and Yosinski, Jason. Deconstructing
lottery tickets: Zeros, signs, and the supermask. In NeurIPS (2019).

[177] Zhu, Ligeng, Liu, Zhijian, and Han, Song. Deep leakage from gradients. In
Advances in Neural Information Processing Systems (2019), pp. 14747–14756.

194

	Emerging Trustworthiness Issues in Distributed Learning Systems
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	INTRODUCTION
	Trustworthiness of distributed learning systems
	Robustness
	Privacy
	Fairness

	Contributions
	Robustness: Fake vs. compromised clients in federated learning
	Robustness: Robust federated learning by training on parameter ranks
	Private access: Heterogeneous Private Information Retrieval
	Privacy analysis of federated rank learning
	Fair federated learning by training on parameter ranks

	Fake or Compromised? Making Sense of Malicious Clients in Federated Learning
	Background
	Diffusion models

	Types of Byzantine-robust aggregation rules
	Non-robust AGR
	FedAVG

	Robust AGRs agnostic to FL poisoning
	Median
	Norm-Bounding

	Robust AGRs that adapt to FL poisoning
	Multi-Krum
	Trimmed-Mean

	Types of poisoning adversaries
	Adversary with fake clients
	Adversary with compromised clients
	FedAVG
	Mutli-Krum
	Trimmed-Mean and Median
	Norm-Bounding

	Our hybrid adversary model
	Comparing the costs of different attacks

	Experiment setup
	Datasets and hyperparameters
	Evaluation metric
	Generating synthetic data using DDPM

	Empirical results
	Attacking agnostic robust AGRs
	Attacking adaptive robust AGRs
	Data poisoning with label flipped data samples

	Conclusions

	Robust Federated Learning via Learning on Parameter Ranks
	Related works
	Preliminaries
	Edge-popup algorithm

	Our proposal: Federated Rank Learning
	Server: Initialization (only for round t=1)
	Clients: Calculating the ranks (for each round t)
	Server: Majority vote (for each round t)
	Additional details of FRL's optimization

	Robustness of FRL to poisoning
	Theoretical analysis of FRL's robustness

	 Communication efficiency of FRL
	Subnetwork connectivity in FRL
	Quantifying the number of possibilities that the subnetwork becomes disconnected
	What does happen if the subnetwork becomes disconnected?
	FRL against an adversary who wants to make the subnetwork disconnected

	Experimental setup
	Datasets and their distribution
	Hyperparameters
	Model architectures
	Baseline FL algorithms

	Empirical evaluation
	Analyses of robustness to poisoning
	Communication cost analysis
	Comparison with naïve extension of edge-popup algorithm to FL
	FRL for text classification
	FRL against targeted poisoning
	Existing FL backdoor attacks
	Evaluation setup
	Evaluation results

	FRL with larger number of clients
	Ablation study
	FRL under different heterogeneous data distribution methods
	FRL under different weight initializations
	FRL with varying sizes of subnetworks
	FRL with larger networks
	FRL with different hyperparameters

	Conclusions

	Heterogeneous Private Information Retrieval
	Background
	Related Works
	Preliminaries
	Preliminaries on secret sharing
	Key secret sharing designs
	Key PIR Designs

	Introducing Heterogeneous PIR
	Other potential applications scenarios
	Privacy from content delivery networks (CDN)
	Private P2P file sharing
	Query privacy in cache networks

	Our PIR-tailored secret sharing algorithm
	The differences between secret sharing and PIR-tailored secret sharing
	Algorithm details
	Security analysis
	Security proof
	Chinese remainder theorem (CRT)
	Multivariable chinese remainder theorem

	Sketch of our HPIR protocol
	Our HPIR algorithm (basic version)
	Client generates r polynomials
	Client generates queries
	The servers respond
	Reconstructing the records by the client
	Communication overhead
	Security

	Our HPIR algorithm (complete version)
	Communication costs
	Security
	Overhead comparison to prior work
	Communication cost
	Computation Cost

	Implementation
	Conclusions

	Privacy Analysis of Federated Rank Learning
	Background
	Membership inference attack (MIA)
	Central differential privacy in FL (CDPFL)
	Local differential privacy in FL (LDPFL)

	Privacy analysis setup
	Membership inference attacks (MIA)
	FL setting
	Evaluation metrics

	Privacy analysis of FRL vs. FedAvg
	Measuring privacy leakage: Local attacker
	Impact of observed epochs
	Impact of the training size

	 Measuring privacy leakage: Global attacker

	Differential Privacy and FRL
	Sensitivity of local rankings
	Borda Count Aggregation
	Private Borda Count Aggregation
	Differential Private FRL (DP-FRL)

	FRL against FL with differential privacy
	Conclusion

	Fair Federated Learning by Training on Ranks
	Fairness using two lenses: Equity and Equality
	Our design: Equal and Equitable Federated Learning
	E2FL: Design
	Server: Initialization phase (only for round t=1)
	Clients: Calculating the ranks (for each round t)
	Server: Majority Vote (for each round t)

	E2FL when group IDs are unknown
	Server-side: Rank clustering
	Client-side: Lowest loss
	Client-side: Entropy of the output

	Experiments
	Equality vs Equity via E2FL
	E2FL when group IDs are unknown
	Fair FL when each client has training data of multiple groups
	Our group inference approaches

	Conclusions

	Conclusion
	Summary
	Future work
	FRL with different rank aggregation methods
	Extending FRL with existing ideas in FL algorithms
	FL personalization with rankings

	Bibliography

