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Abstract

Forest management is often practiced to enhance conditions for wildlife,

including native bees. Evaluations of the effects of forest management on bees

have shown that abundance and diversity are higher in newly created early-

successional conditions. To date, studies have restricted sampling to the forest

understory; however, recent research finds that bee abundance is as high or

higher in forest canopies than in understories, suggesting that previous obser-

vations of substantially greater bee abundance and diversity in recently man-

aged areas could be an artifact of incomplete sampling of the vertical gradient

within forests. To examine the potential implications of sampling biases associ-

ated with the failure of previous studies to include canopy samples in compari-

sons of managed and unmanaged forests, we sampled bees within a recently

harvested forest as well as the understory and canopy of adjacent unmanaged

forest. Bee abundance and diversity were an order of magnitude higher in

managed areas compared to the unmanaged forest, even when understory and

canopy samples were combined. These results suggest that not sampling the

canopy is inconsequential with respect to the broadly reported conclusion that

managed areas support more abundant and diverse bee communities than sur-

rounding forest cover.
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1 | INTRODUCTION

Reports of declining bee populations (Bartomeus et al.,
2013; Potts et al., 2010), specifically bumble bees
(Cameron et al., 2011; Carrié et al., 2017; Kerr et al.,
2015), have caused widespread concern among

researchers and conservationists. Understanding the habi-
tat needs of native bees is key to developing measures to
conserve their populations (Neumüller et al., 2020;
Tonietto & Larkin, 2017; Williams et al., 2010). Studies
have reported higher bee abundance and species richness
in disturbed areas, including powerline rights-of-way
(Russell et al., 2018; Wagner et al., 2014; Wagner et al.,
2019), thinned or cleared forest (Campbell et al., 2018;This article will be of interest to forest managers and conservationists.
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Hanula et al., 2015; Lee et al., 2021; Mathis et al., 2021;
Roberts et al., 2017), and managed barrens (Bried &
Dillion, 2012; Winfree et al., 2007), likely due to the
increased floral resources and nesting substrates newly
made available (Milam et al., 2018; Tonietto & Larkin,
2017). As a result, management for early-successional
conditions is increasingly practiced with the intention of
promoting more abundant and diverse bee communities
(Natural Resources Conservation Service, 2017).

The assumption that forest management activities
enhance bee communities is based on studies that com-
pare samples from recently harvested areas with samples
from forest understories (Campbell et al., 2018; Rivers
et al., 2018; Roberts et al., 2017; Taki et al., 2013). How-
ever, recent findings suggest that the forest canopy may
support a more abundant and diverse bee community
than the forest understory. For instance, Ulyshen et al.
(2010) found that diversity and abundance of the bee
community was greater in the canopy than forest floor in
the southeastern United States, with the abundance of
one species reaching nearly 40 times that of the forest
floor. Similarly, Campbell et al. (2018), Cunningham-
Minnick and Crist (2020), Ulyshen et al. (2020), and
Urban-Mead et al. (2021) reported diverse and abundant
bee communities within forest canopies in the eastern
United States. These studies emphasize the potential
importance of the canopy for bees within temperate for-
ests, which suggests that sampling the understory alone
may not adequately reflect forest bee communities. If the
current understanding that open-canopy habitats support
more abundant and diverse bee communities than forests
is simply an artifact of insufficient sampling of the verti-
cal gradient in forests then efforts to promote bee com-
munities through management practices that create
open-canopy conditions may be misguided (Roberts
et al., 2017).

The goal of this study was to examine whether sam-
pling the forest canopy in addition to the understory
could alter conclusions regarding the value of using for-
est management to enhance bee communities. Our spe-
cific objectives were to (a) compare bee communities
between managed areas and adjacent unmanaged forest
understories to illustrate the conventional approach
researchers have used to gauge the relative value of
management for bees and (b) sample bees in forest can-
opies to determine whether the addition of canopy bees
changes the perceived value of unmanaged forest versus
managed forest habitat for native bees. Because forest
management activities are routinely challenged based on
perceived deleterious impacts on biodiversity (King &
Schlossberg, 2014), managers need robust scientific
knowledge to guide their practices and defend them
when necessary.

2 | METHODS

This study was conducted in 2018 within the Patrill Hol-
low section of the Muddy Brook Wildlife Management
Area, in Hardwick, Massachusetts (Worcester Co.;
42.3�,�72.2�; Figure 1). The historic land use of the study
site was timberland, which resulted in 60–80% of the land
being harvested at any given time, as was typical with
most of the forest in this region. The last major timber
harvest occurred here in the early 1900s, at which point
the land was left to regenerate to a typical mixed oak-pine
forest. From 2014 to 2017, approximately one third of the
784 ha area was treated with whole-tree harvest and pre-
scribed fire to reestablish barrens communities retaining
mature tree oak (Quercus spp.), pitch pine (Pinus rigida),
and scrub oak (Quercus ilicifolia). Prior to restoration, this
site was a typical transition hardwood forest with a heavy
influence of white pine (Pinus strobus) in all strata. After
treatment, managed areas featured scattered pitch pine,
retained tree oaks, scrub oaks, heaths (Vaccinium spp.),
warm season grasses (e.g., Schizachyrium scoparium), and
composites (e.g., Aster and Solidago spp.) and areas of
bare mineral soil. The surrounding forest primarily con-
sisted of red oak (Q. rubra), white oak (Quercus alba), red
maple (Acer rubrum), sugar maple (Acer saccharum),
shagbark hickory (Carya ovata), white pine (P. strobus),
and birch (Betula spp.).

We sampled bees at 20 points distributed throughout
the study area that were established in 2015 prior to res-
toration, such that each point within a managed area was
paired with a point in the forest (Figure 1). The mean dis-
tance of points in managed areas from edges was 83.7 m
(SD = 41.4; range = 30.7 m–148.8 m), and the distance of
points within forest to edge was on average 88.8 m (SD =

43.0; range = 41.4 m–58.7 m) from edges. Mean distance
between neighboring points in managed areas was 231.1
m (SD = 25.0; range = 194.0 m–271.1 m) and the average
distance between neighboring points within the forest
was 278.6 m apart (SD = 92.11; range = 116.7–404.8 m).
The distance between adjacent sample points was greater
than the average flight distance of most bee species
(Hofmann et al., 2020), and thus provided a reasonable
level of independence among sample points.

At every point, we mounted a blue vane trap
(SpringStar Inc., Woodinville, WA) on a 1-m tall wooden
post and used propylene glycol diluted with soapy water
to collect bees. Within the canopy of each forest point,
we suspended a blue vane trap in the mid-to-lower can-
opy following the methods of Ulyshen et al. (2010). We
selected blue vane traps because they sample a high
diversity of bees (Gibbs et al., 2017), particularly in open
and wooded habitats (Kimoto et al., 2012; Rao &
Stephen, 2010; Stephen & Rao, 2007), and were relatively
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efficient to deploy. Other canopy studies had used blue
vane traps (Cunningham-Minnick & Crist, 2020), bucket
traps (Ulyshen et al., 2010), bowl traps (Campbell et al.,
2018), or a combination of methods (Urban-Mead et al.
2021). The choice of collecting method influences bee
captures near the ground (Portman et al., 2020); however,
there have been no comprehensive comparisons of bee
captures among trapping methods, including blue vane
traps, in prior canopy studies. Since we employed the
same collection methods in all conditions, any biases
would not affect the relative abundance of species, which
is sufficient for our purposes, although they might affect
comparisons of our results with other studies. Canopy
traps were hung on average 8.63 m above the ground (SD
= 1.72; range = 6–13 m).

The bee community was sampled in managed areas
during three periods in 2018: May 23–28, July 11–16, and
September 17–20. Forest canopy and understory traps
remained deployed continuously from May 3 to
September 20, and specimens were collected a total of
nine times: May 23 and 28, June 12, July 11 and
16, August 10 and 31, and September 17 and 20. Canopy
trees and spring ephemerals were both in flower during
the May sampling period. Bees were identified by JM to
species or morphospecies using published keys (Gibbs,
2011; Gibbs et al., 2013; LaBerge, 1973, 1980, 1987, 1989;

Mitchell, 1960, 1962) and the online source Discoverlife.
org (Ascher & Pickering, 2020). Due to unresolved taxon-
omy, most bidentate specimens of the Nomada genus
were lumped as Nomada bidentate group. Male Hylaeus
affinis and modestus specimens were identified to species.
Identification assistance was provided by M. F. Veit with
Nomada, Sphecodes, and male Andrena identifications.
Voucher specimens are currently held in the research col-
lection of JM.

2.1 | Statistical analysis

We used generalized linear mixed effects models with the
glmmTMB package (Brooks et al., 2017) to relate bee
abundance, extrapolated species richness, and diversity
(Shannon's diversity; Jost, 2006) to environmental
covariates. We used a negative binomial error distribu-
tion to model bee abundance and a quasi-Poisson error
for species richness and diversity. Extrapolated species
richness was calculated using the estimateR function
while correcting for small sample size with the vegan
package (Okansen et al., 2019). Two sets of models were
built: the first only included bees sampled within man-
aged areas and the forest understory, while the second
set of models included bees sampled within managed

FIGURE 1 Map of the Patrill Hollow section of the Muddy Brook Wildlife Management Area (Worcester County, MA) in which

experimental plots of forest management treatments and controls were sampled
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TABLE 1 Number of bees included in analyses that compared the three overlapping sampling periods among managed, forest floor,

and forest canopy habitats, as well as all bees captured throughout the year (nine sampling periods) on the forest floor and in the canopy

at points

Species Managed (3) Floor (3) Canopy (3) Floor (9) Canopy (9)

Agapostemon sericeus 1

Agapostemon texanus 3 1

Agapostemon virescens 2 4 1

Andrena carolina 1 1

Andrena carlinia 1 2 1

Andrena mandibularis 1

Andrena miserabilis 1

Andrena nivalis 1

Andrena rufosignataa 2

Andrena rugosaa 2 1

Andrena thaspii 1 1

Andrena vicina 1

Apis mellifera 1

Augochlora puraa 4 7 2 28 13

Augochlorella aurata 1 1 4 1

Bombus bimaculatusb 93 3 5 7 16

Bombus fervidus 1

Bombus griseocolis 1

Bombus impatiensa 68 5 5 51 42

Bombus perplexus 1 2

Bombus sandersoni 24 1 1 2 3

Bombus vagansa 1 9 1

Ceratina calcaratab 2 1 1 5 4

Ceratina duplab 2

Ceratina mikmaqi 1

Colletes simulans armatus 1

Halictus ligatus 2

Halictus rubicundusb 5 4 2

Hylaeus mesillae 1

Hylaeus modestus 1

Lasioglossum acuminatum 2 1

Lasioglossum birkmanni 2

Lasioglossum brunerib 3 3

Lasioglossum coeruleuma 6 1 15 9

Lasioglossum coriaceuma 1 2 21 9

Lasioglossum cressoniia 10 8 1

Lasioglossum katherineae 1

Lasioglossum leucocomus 1

Lasioglossum leucozonium 3 1

Lasioglossum nelumbonis 6 3

Lasioglossum nigroviride 1 2
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areas, but pooled bees captured in the forest understory
and the forest canopy. Only data from sampling periods
shared between managed and forest points were used
in models. We included habitat type (managed vs.
unmanaged forest), distance to nearest water, distance to
forest edge, and their interaction as fixed effects and used
Akaike Information Criteria corrected for small sample
sizes (AICc) for model selection with the AICcmodavg
package (Mazerolle, 2020). We measured distance vari-
ables using aerial imagery (dated September 2017) in
Google Earth Pro v. 7.3.3.7786 (© 2021 Google). We
included a nested random effect of each unique point
within a site in all models to address the paired-point
design and account for the uneven sampling between
points of each site. Models included an offset term to
account for the differences in days between sampling
periods. Marginal significance of habitat type was deter-
mined using likelihood ratio tests (anova function)
models with and without the habitat type predictor and
evaluated using the r2_nakagawa function in the perfor-
mance package (Lüdecke et al., 2021). Only the best

model is discussed. Post-hoc Tukey tests were performed
with the glht function in the multcomp package (Hothorn
et al., 2008) with a “holm” correction to determine signif-
icance of each habitat type comparison.

To visualize differences in bee species composition
among forest strata and habitat type, we created a non-
metric multidimensional scaling (NMDS) plot of the
Bray-Curtis dissimilarities of square-rooted transformed
relative species abundances within each point using the
metaMDS function in the vegan package. We then per-
formed a PERMANOVA using the pairwiseAdonis func-
tion with the “bray” simulation method and Bonferroni
correction in the pairwiseAdonis package (Arbizu, 2017)
on the same standardized species matrix to determine
significance. We also performed an NMDS and a PER-
MANOVA using data from all nine sample periods to
compare bee communities between forest understory
and canopy strata. All analyses were performed in the
R programming language v. 4.0.3 (R Core Team, 2020)
and all graphics were created with the ggplot2 package
(Wickam, 2016).

TABLE 1 (Continued)

Species Managed (3) Floor (3) Canopy (3) Floor (9) Canopy (9)

Lasioglossum oblonguma 1 3

Lasioglossum pectoraleb 2 4

Lasioglossum quebecensea 1 2 15 6

Lasioglossum subviridatum 1

Lasioglossum versansa 1 1 1

Lasioglossum versatum 14 4 2

Megachile latimanus 1

Megachile mendicab 1

Megachile relativab 2

Melissodes bimaculatus 1 1

Melissodes desponsus 1

Melissodes druriellus 5

Nomada bidentate-groupa 3

Nomada maculataa 1

Osmia atriventrisa 7 12 3

Osmia cornifronsa 4

Osmia pumilaa 1 1 13 6

Osmia taurusa 8 1

Osmia virgaa 1

Peponapis pruinosa 17 3

Total 283 31 16 268 130

Note: Species are alphabetically listed.
aForest associated bees.
bHabitat generalist bees as designated by Smith et al. (2021).
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3 | RESULTS

We captured a total of 681 individual bees representing
62 described species (Table 1). Six additional bees could

not be identified due to either body damage (five bees) or
taxonomic difficulties (one; Table S1).

Best performing models for bee abundance, extrapo-
lated species richness, and Shannon's diversity included

TABLE 2 Summary of best-fitting

generalized linear mixed effects models,

including Chi-squared statistic from

likelihood ratio tests, associated

p-value, and marginal and conditional

pseudo-R2 of the model with and

without the “habitat type” predictor

Response Chi-squared p-value Marginal R2 Conditional R2

Abundance 35.8 <.0001 0.527 0.527

Abundance 32.5 <.0001 0.449 0.449

Extrap. species richness 29.4 <.0001 0.369 0.383

Extrap. species richness 25.9 <.0001 0.315 0.327

Shannon's diversity 33.1 <.0001 0.438 0.448

Shannon's diversity 31.6 <.0001 0.398 0.398

Note: Models are listed by bee abundance, extrapolated species richness, and Shannon's diversity responses;
shaded rows include canopy bees within the response while non-shaded rows do not include canopy bees.

FIGURE 2 Means with 95% CI of post-hoc Tukey

comparisons between shrubland (Opening) and forest

bees with (Plus Canopy) and without (Understory)

canopy samples for abundance (top), extrapolated

species richness (middle) and Shannon's diversity

(bottom) responses. The relationship between

shrubland and forest bees is not significant if the 95%

CI includes 0
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only habitat type, which explained 32%–53% of the varia-
tion in the data (Table 2). Bee abundance, species rich-
ness, and Shannon's diversity were significantly greater
in managed areas than in forest, and there was no change
in these relationships when canopy bees were included
or excluded (Figure 2; Table S2).

Species composition of the bee community differed
between managed areas and forest with (FPseudo[1] = 9.49,
padj < .005) and without (FPseudo[1] = 7.81, Padj < .005)
canopy samples (Figure 3). Bee species composition did not
differ between the forest understory and the pooled assem-
blage of the forest understory and forest canopy (FPseudo[1]
= 0.24, padj = .98; Figure S1), though the composition of
canopy and understory bees were different when consid-
ered separately (FPseudo[1] = 2.11, padj < .05; Figure S2).

4 | DISCUSSION

Recent revelations of remarkably high bee abundance
and diversity in temperate forest canopies (Cunningham-

Minnick & Crist, 2020; Ulyshen et al., 2010; Ulyshen
et al., 2020; Urban-Mead et al., 2021) have raised critical
questions about whether widespread biases in forest bee
research—due to insufficient vertical sampling—have
inaccurately portrayed forest bee communities as depau-
perate relative to other habitat types (e.g., Roberts et al.,
2017). Our study showed that the general pattern of
greater bee numbers in open-canopy, early-successional
areas compared to forest was apparent whether or not
forest canopies were sampled. These findings suggest that
previous evaluations that reported greater bee abun-
dance, species richness, and diversity in forest openings
based on comparisons with forest understory bee com-
munities are generally correct despite the omission of
samples from the forest canopy. Thus, this study supports
the widely held view that forest management enhances
bee communities.

Differences in community composition indicated that
the greater bee diversity in managed areas was driven by
bee species associated with open habitats. These included
open nesting sites in sun-exposed areas for solitary

FIGURE 3 Non-metric multidimensional scaling and 95% confidence ellipses of Bray–Curtis dissimilarity matrix comparing bee

assemblages standardized by site in shrubby openings (light gray circles; dotted lines), forest understory and canopy (dark gray circles;

dashed lines), and forest understory (black circles; solid lines) habitat. Species scores are represented by “X”
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ground-nesting species from genera including Las-
ioglossum and Halictus and stem nesting bees such as the
Ceratina. Open sandy soils associated with sandplain
communities also support several ground nesting genera
such as Andrena, Lasioglossum, and Halictus. Forest-
associated species including Augochlora pura (Smith),
Lasioglossum coeruleum (Robertson), Lasioglossum cor-
iaceum (Smith), and Lasioglossum quebecense (Crawford)
were more abundant in traps within forest. Overall, the
composition of the bee assemblage in the managed areas
had transitioned into a distinct community that differed
from the forest.

Although the inclusion of the canopy samples in the
analyses did not alter the fact that bee abundance and
extrapolated species richness were higher in harvested
areas than forest, we did observe differences in bee com-
munities between forest strata. The overall forest bee
community was compositionally nested within that of
the understory, suggesting that the differences we found
in species composition between the forest canopy and
understory were likely driven by species with low abun-
dances that did not comprise much of the overall com-
munity. This finding contrasts with Ulyshen et al. (2010)
and Cunningham-Minnick and Crist (2020) and
Campbell et al. (2018), who found some species (i.e.,
Augochlora pura) in much higher numbers in the canopy.
These differences could be explained by bees using
resources within forest strata differently throughout the
year as suggested by Cunningham-Minnick and Crist
(2020). We did not measure temporal changes in resource
availability since it was outside the scope of our question.
However, addressing factors that may affect differences in
vertical stratification of bee communities throughout the
year would provide forest managers with a higher resolu-
tion perspective of how forest bees use canopy resources.

We suspended canopy traps “above the lowest leaf-
bearing branch in each tree” following Ulyshen et al.,
(2010); however, the height of our traps was lower than
other canopy studies (Cunningham-Minnick & Crist,
2020; Ulyshen et al., 2010; Ulyshen et al., 2020; Urban-
Mead et al., 2021). Nevertheless, the traps were high
enough to reveal a contrast with the forest floor samples,
and reflected an assemblage of the bee community that
was unsampled by the traps on the forest floor, which
was the objective of our study. Moreover, Cunningham-
Minnick and Crist (2020) reported no difference in spe-
cies richness between traps suspended 7–10 m high (simi-
lar to the height of our traps) and canopy traps
suspended 13–16 m high, further indicating that our sam-
ple heights were sufficient for sampling the canopy. Fur-
thermore, our study was conducted on a restored
barrens, and since barrens communities are known to
support distinct bee communities (Bried & Dillion, 2012),

one could argue that our findings might not pertain to
other forest systems. We maintain that these results are
generally applicable since the pre-treatment forest con-
sisted of a mixed hardwood forest typical of the region,
which was oak-dominated, as were the forests where ver-
tical stratification of bees was demonstrated by Ulyshen
et al. (2010) and Campbell et al. (2018). Finally, we can
only speculate what bees are doing in the canopy, how-
ever, others have suggested they are seeking forage from
tree flowers and/or nesting opportunities in dead limbs
or trunks (Cunningham-Minnick & Crist; Ulyshen et al.,
2010; Urban-Mead et al., 2021).

5 | CONCLUSION

Concern for native bees is widespread, and many agen-
cies and organizations are tasked with undertaking mea-
sures to promote bee abundance and diversity through
habitat management, and to ensure that forest practices
are undertaken to address that other objectives are con-
sistent with bee conservation. Since evaluations of forest
management effects on bees have been based on samples
from forest understories, prior to this study it was uncer-
tain whether high numbers of bees in managed forests
relative to unmanaged forests were due to the failure of
prior studies to account for bees in the forest canopy
(Roberts et al., 2017). Thus, practitioners had reason to
be uncertain about the effects of forest management on
bees, and this uncertainty left forest management prac-
tices open to challenge and controversy. Our study dem-
onstrates that comparisons of bee communities between
managed and unmanaged forests based on samples from
the forest understory accurately reflect the effects of man-
agement, despite reports that bee communities in forests
are vertically stratified. Thus, managers are justified in
implementing forest management to increase bee diver-
sity and abundance, and can confidently evaluate their
outcome by comparing samples of bee communities
between managed areas and the forest understory.
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