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Abstract. In this paper we develop parallel numerical algorithms to
solve linear time dependent coefficient parabolic problems. Such meth-
ods are obtained by means of two consecutive discretization procedures.
Firstly, we realize a time integration of the original problem using a
Fractional Step Runge Kutta method which provides a family of elliptic
boundary value problems on certain subdomains of the original domain.
Next, we discretize those elliptic problems by means of standard tech-
niques. Using this framework, the numerical solution is obtained by solv-
ing, at each stage, a set of uncoupled linear systems of low dimension.
Comparing these algorithms with the classical domain decomposition
methods for parabolic problems, we obtain a reduction of computational
cost because of, in this case, no Schwarz iterations are required. We give
an unconditional convergence result for the totally discrete scheme and
we include two numerical examples that show the behaviour of the pro-
posed method.

1 Introduction

It is well known that the numerical resolution of multidimensional parabolic
problems by using standard methods requires a strong computational effort,
specially if very accurate solutions are wanted. The development and analysis
of such methods can be done by means of the combination of two discretization
stages: a time integration procedure (f.e. via Runge-Kutta or multistep methods)
and a spatial discretization method like finite differences or finite elements. For
the time integration it is usually chosen between the two following possibilities:
an explicit method that provides totally discrete schemes which are cheap per
time step in terms of computational cost, but have the disadvantage of being
conditionally convergent (that is to say, there is a strong restriction between the
time step and the spatial grid sizes to obtain convergence) or an implicit method.
In the last case we obtain totally discrete algorithms that are unconditionally
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convergent but have the drawback of involving one or several large linear systems
per time step, whose resolution implies a high computational cost.

In order to accelerate the resolution of such systems, specially if we use
parallel computer devices, one of the most successful techniques is the domain
decomposition (see [7]). Such technique permits to reduce the original system to a
set of systems of lower dimensions, as well as to parallelize the resolution of them.
When classical implicit methods are used to discretize the time variable, the user
must assume the cost of a Schwarz iterative process if overlapped subdomains
are taken; in order to get a fast convergence for these iterative processes, it is
essential to choose carefully the dimensions of the overlapping zones (see [7]). In
the case of non-overlapped subdomains, another kind of iterations are needed;
these ones are related to the transmission conditions that must be imposed
between the boundaries of the subdomains.

In this paper we propose to use a Fractional Step Runge-Kutta (shortly
FSRK, see [3]) method for the time discretization process, in which the operator
splitting is subordinated to the decomposition of the domain considered. After
that, the numerical algorithm will be easily obtained if we consider a standard
discretization method for the spatial variables (for example finite difference or
finite element methods). Following this technique, we only have to solve several
linear systems per stage of low dimensions that can be computed in parallel
without the need of doing any kind of iteration. In [5], the authors develop a
similar idea for the case of combining classical (low-order) FSRK methods with
finite differences to integrate linear parabolic problems with constant coefficients.

In section 3, we prove that a numerical method of this kind preserve the prop-
erty of unconditional convergence, which is typical for suitable implicit methods.
The last section contains two numerical experiments for one-dimensional and
two-dimensional problems integrated both with this kind of methods.

2 Obtaining the Totally Discrete Scheme

Let us consider the linear parabolic initial boundary value problem that consists
in finding u : Ω × [t0, T ] → H such that

du

dt
= A(x, t)u+ f(x, t), (x, t) ∈ Int(Ω)× (t0, T ],

u(x, t0) = u0(x) ∈ H, x ∈ Ω,

Bu(x, t) = g(x, t) ∈ Hb, (x, t) ∈ ∂Ω × (t0, T ],

(1)

whereH andHb are Hilbert spaces and, for each t ∈ [t0, T ], A(x, t) : D ⊆ H → H
is an unbounded elliptic differential operator that involves the partial derivatives
of the unknown u with respect to the spatial variables.

In order to dicretize in time problem (1) using an FSRKmethod, we introduce
a partition for the elliptic operator in the form A(x, t) =

∑m
i=1Ai(x, t) and for

the source term f(x, t) =
∑m

i=1 fi(x, t) that will be specified later. Classically,
when the elliptic operator does not contain any crossed derivative, the splitting is
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taken by grouping in each addend the derivatives with respect to each coordinate
(obtaining a method of type Alternating Directions).

An FSRK method, considering τ as (constant) time step, provides a numer-
ical approximation of the solution of the semidiscrete problem at each time tn,
un(x) ≈ u(x, tn), by solving

Un,j = un + τ

j∑
k=1

aikjk
(
Aik(x, tn,k)U

n,k + fik(x, tn,k)
)
,

BijU
n,j = g(x, tn,j), for j = 1, . . . , s,

un+1 = un + τ

s∑
j=1

b
ij
j

(
Aij (x, tn,j)U

n,j + fij (x, tn,j)
)
,

(2)

where tn = t0+nτ and tn,j = tn+cjτ . With the aim of using a more comfortable
matrix notation, we can consider an FSRK method as an Additive Runge-Kutta
method (see [4]) with many null columns (in particular, we consider aijk = bij = 0
for i ̸= ik) and, using a notation similar to Butcher’s table for classical Runge-
Kutta methods, we can express it in the following compacted form

c A1 A2 . . . Am

bT1 bT2 . . . bTm
,

where Ai = (aijk) ∈ Rs×s and bi = (bij), c = (c1, . . . , cs)
T ∈ Rs for i = 1, . . . ,m.

The advantage that these methods may provide, in comparison with classical
implicit methods, comes from the fact that the calculus of each stage Un,j is done
by solving linear elliptic boundary value problems of the form{

(I − τ a
ij
jjAij (x, tn,j))U

n,j = Fn,j ,

BijU
n,j = g(x, tn,j),

(3)

where Fn,j is computed from the data of the problem and the results of pre-
vious stages. If operators Ai(x̄, t) are simpler than the global operator A(x̄, t),
then a suitable spatial discretization of these problems permits the obtaining of
numerical algorithms which are much cheaper than classical implicit methods.

In this work we propose a smooth splitting of A(x̄, t) related to a decompo-
sition of domain Ω in the form Ω =

⋃m
i=1Ωi, where each subdomain Ωi consists

of a set of mi disjoint components Ωij satisfying Ωi =
⋃mi

j=1Ωij . Concretely,
we consider Ai(x, t) = ψi(x)A(x, t), fi(x, t) = ψi(x)f(x, t), where ψi(x) is a
sufficiently smooth function which satisfies

ψi(x) = 0 if x ∈ Ω \Ωi, ψi(x) = 1 if x ∈ Ωi \
⋃ m

j=1
j ̸=i

(Ωi ∩Ωj),

and ψi(x) = hi(x) if x ∈
⋃ m

j=1
j ̸=i

(Ωi ∩Ωj),

with 0 ≤ hi(x) ≤ 1 and
∑m

i=1 hi(x) = 1 ∀ x ∈
⋃ m

j=1
j ̸=i

(Ωi ∩Ωj).

(4)

We include below, in Figure 1, an example of a two-dimensional domain which
is decomposed in four subdomains and each one of them consists of four compo-
nents, i.e.m = 4, mi = 4 ∀i = 1, . . . , 4. We have also included, in the same figure,
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a graphic representing a possible function ψ4(x, y) that would be associated to
the subdomain Ω4.

Ω11 Ω21 Ω12 Ω22

Ω31 Ω41 Ω32 Ω42

Ω13 Ω23 Ω14 Ω24

Ω33 Ω43 Ω34 Ω44

Fig. 1. Domain decomposition in four subdomains

After the time integration, we proceed to discretize in space the resultant
family of elliptic boundary value problems (2) by means of classical methods.
Let us consider a spatial discretization parameter h which is going to tend to
zero. For each value of h, we consider a mesh Ωh (of the original domain Ω) which
has been constructed taking into account the boundaries of every subdomain Ωi

and we denote with Hh a finite dimensional space made up of discrete functions
in Ωh, if we use finite differences, or piecewise polynomial functions associated
to the meshing Ωh, if we use finite elements. We denote with Aih : Hh → Hh

the operators that discretize Ai and with fih = πhfi, gh = πhg the restric-
tions or projections of the continuous functions fi, g, depending on the spatial
discretization method used.

In this context, the totally discrete scheme can be expressed as follows

Un,j
h = uh,n + τ

j∑
k=1

aikjk(Aikh(tn,k)U
n,k
h + fikh(tn,k)),

BijhU
n,j
h = gh(tn,j), for j = 1, . . . ,m,

uh,n+1 = uh,n + τ

s∑
j=1

b
ij
j (Aijh(tn,j)U

n,j
h + fijh(tn,j)).

(5)

Looking at (5) it is clear that the calculus of each stage involves a linear system
of the form

(Ih − akjjAkh(tn,j)U
n,j
h ) = Fn,j

h , (k = ij)

which, in practice, implies the resolution of mk uncoupled linear systems whose
sizes depend of the number of mesh points that belong to the components Ωki of
subdomain Ωk; this permits a straightforward parallelization for their resolution.
On the other hand, it is important to notice that the main advantage of our
method is that no Schwarz iterations are required to obtain uh,n+1.
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3 Global Convergence of the Totally Discrete Scheme

To study the convergence of the totally discrete scheme, we suppose that the el-
liptic operators −A(x, t) are maximal, monotone and satisfy the following bound

∥A(x, t)u−A(x, s)u∥ ≤ |t− s|M ∥A(x, t)u∥, ∀ t, s ∈ [t0, T ]. (6)

Operators −Ai(x, t), due to their construction, are also maximal and monotone
and verify bounds similar to (6). Henceforth, we denote with rh(t), ri,h(t) : D →
Hh certain restrictions or projections, depending on the spatial discretization
used, and with C any constant independent of τ and h.

Moreover, we suppose that the spatial discretization is stable, i.e., the discrete
operators −Aih(t) are monotone, and that such discretization is consistent of
order r, that is to say, for sufficiently smooth functions u(x, t), we have

∥Aih(t)ri,h(t)u(x, t)− πhAi(x, t)u(x, t)∥h ≤ C hr,

∥Bihri,h(t)u(x, t)− πhBiu(x, t)∥h ≤ C hr,
(7)

where ∥.∥h denotes a suitable norm in Hh.
We define the global error associated to the total discretization in the moment

tn in the usual form Eh,n = ∥rh(tn)u(x, tn) − uh,n∥h and it is said that the
totally discrete scheme (5) is convergent, of order p in time and order r in space,
if Eh,n ≤ C(τp + hr). If the spatial discretization is stable, the totally discrete
scheme possesses unique solution which can be expressed in the form (see [3])

uh,n+1 = R̃
(
τ Ân

1h, . . . , τ Â
n
sh

)
uh,n + S̃

(
− τ Ân

1h, . . . ,−τ Ân
sh, τ F̂

n
1h, . . . , τ F̂

n
sh

)
,

where we group the evaluations of the partitioned source terms and operators
as follows F̂n

ih = (fih(tn,1), . . . , fih(tn,s))
T ∈ Hs

h and Ân
ih = diag (Aih(tn,1), . . . ,

Aih(tn,s)) ∈ Hs×s
h , for i = 1, . . . , s and n = 1, 2, . . .

When operators Aih(t) preserve bounds of type (6) and we choose FSRK
methods satisfying certain linear absolute stability properties, the following
bound for the linear transition operator can be obtained (see [1])∥∥R̃(τ Ân

1h, . . . , τ Â
n
sh

)∥∥
h
≤ eγτ . (8)

In [3] it is proven that, if the time discretization is accomplished with an
FSRK method of order p and the problem data in (1) are sufficiently regular
and compatible, the scheme (2) is uniformly consistent of order p, that is to say,

∥u(tn)− ǔn∥ ≤ C τp+1, (9)

where ǔn is obtained after a step of the semidiscrete scheme (2) starting from
ǔn−1 = u(tn−1).

To deduce the convergence of (5) we decompose the global error as Eh,n ≤
∥rh(tn)(u(tn)−ǔn)∥h+∥rh(tn)ǔn−ǔh,n∥h+∥ǔh,n−uh,n∥h, where ǔh,n is obtained
after a step of the totally discrete method (5) taking ǔh,n−1 = rh(tn−1)u(tn−1)
as starting point.
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The first addend is bounded using (9) together with certain compatibility
properties for the continuous and discrete norms (see [3]). The bound for the
second addend is deduced combining the consistency and stability of the spatial
discretization (see [3]). Finally, using (8), we can write

Eh,n ≤ C τp+1 +C τ hr + eβτ∥Eh,n−1∥h ≤ C τ

n−1∑
k=0

eβkτ (τp + hr) ≤ C (τp + hr).

4 Numerical Examples

Example a) We consider the parabolic problem
∂u

∂t
= A(x, t)u+ f(x, t), ∀ (x, t) ∈ (0, 1)× (0, 2],

u(x, 0) = u0(x), ∀x ∈ (0, 1), u(0, t) = u(1, t) = 0, ∀ t ∈ [0, 2],

with A(x, t) = (1+x)(1+ t)e−t ∂2

∂x2 − (1+ 2x)(1+ e−t) ∂
∂x − (1+x2)I and where

f(x, t) and u0(x) are data functions chosen so that u(x, t) = e−tx2(1−x)2 is the
exact solution. In this experiment we consider the spatial domain made up of two
overlapped subdomains ([0, 1] = Ω1∪Ω2, where Ω1 = [0, 12 +d], Ω2 = [ 12 −d, 1],
being d = 1

8 ).
We integrate this problem following two different ways. On one hand, we use

standard SDIRK methods of order 2, 3 and 4 (with 1, 2 and 3 internal stages,
respectively) for the time integration together with a central difference discretiza-
tion of the spatial variables on a uniform grid and we apply the Schwarz iterative
method. On the other hand, we combine a time integration by means of FSRK
methods of order 2, 3 and 4 (with 2, 6 and 8 implicit stages, respectively, see
[2]) with a central difference spatial discretization. Following the ideas presented
in the previous sections, we choose a partition for the original elliptic operator
A(x, t) in two addends Ai(x, t) = ψi(x)A(x, t), i = 1, 2 with {ψi(x)}i=1,2 a par-
tition of unity (4) associated to the domain decomposition {Ωi}i=1,2, where we
have chosen h1(x) =

1
2 − 3

4d (x− 1
2 ) +

1
4d3 (x− 1

2 )
3 and h2(x) = 1− h1(x).

In both options we will take the following relations between N = 1
h and the

time step size: N2τ2 = 0.16, N2τ3 = 8E − 3 or N2τ4 = 4E − 4, depending on
wether the consistency order of the time integrator used is 2, 3 or 4, respectively.

The maximum global errors obtained for these six totally discrete methods
have been computed as

Eh,n = max
xi∈Ωh

tn=nτ, n=1,2,..., 2τ

|uih,n − u(xi, tn)|,

where u(xi, tn) is the exact solution evaluated in the grid node xi = ih at time
tn = nτ and uih,n is the numerical solution obtained in the same grid point and
at the same time moment. All of them have shown almost the same propagation
of global errors and, consequently, the same numerical orders of convergence, so
we only include in Table 1 the corresponding errors for the methods with second
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order in time and in space (FSRK2 refers to the classical Peaceman & Rachford
method and RK2 to the Crank-Nicolson method) .

Finally, in order to show the reduction of computational cost achieved with
our proposal, we show in Table 2 the average number of linear systems of size N

2 +
Nd involved, per time step, for each method. This average has been computed
in the time interval [0, 0.2] which is the most relevant zone attending to the
variation of the solution and the time steps considered. In a variable time step
integration procedure this average should be watched in the whole interval [0, 2]
to compare suitably the efficiencies. Concretely, when we use an FSRK method
for the time integration, we have to solve a linear system of N

2 +Nd unknowns
per stage (and we don’t need any kind of iterations), whereas when we use
classical domain decomposition techniques we have to solve 2k linear systems
of size N

2 +Nd per stage, where k is the number of Schwarz iterations required
(the tolerance imposed for this iterative method has been 10−1τh2).

Example b) We consider now a two-dimensional problem associated to the

equation ∂u
∂t = (1+ e−t)

(
∂2u
∂x2 + ∂2u

∂y2

)
− (1+2xy)e−2tu+ f(x, y, t) in the domain

Ω = (0, 1)×(0, 1) for t ∈ (0, 2] with homogeneous Dirichlet boundary conditions,
where the source term f and the initial condition u0 are chosen in order to have
u(x, y, t) = e−t+7.5( 1+e

e − e−x − e−1+x)2( 1+e
e − e−y − e−1+y)2 as exact solution.

Now we have considered the spatial domain Ω decomposed as the union
of 4 overlapped subdomains (an example of a decomposition of this type can
be observed in Figure 1). In this numerical experiment we use a first and a
second order FSRK method (with 4 and 6 implicit stages, respectively) both
combined with a second order spatial discretization using central differences. We
compare their results with the ones obtained with standard RK methods of order
1 and 2 (both with 1 internal stage) combined with a central difference spatial
discretization, using the Schwarz iterative method with tolerance 10−1τh2.

Let us define the following functions of one variable

i1(x) =


1 if x ∈ [0, 14 − d] ∪ [ 12 + d, 34 − d],

0 if x ∈ [ 14 + d, 12 − d] ∪ [ 34 + d, 1],

1
2 − 3

4d (x− α) + 1
4d3 (x− α)3 if x ∈ [α− d, α+ d], with α = 1

4 ,
1
2 ,

3
4

and i2(x) = 1−i1(x). The splitting operators used in this example are A1(x, y) =
i1(x)i1(y)A, A2(x, y) = i2(x)i1(y)A, A3(x, y) = i1(x)i2(y)A and A4(x, y) =
i2(x)i2(y)A and the overlapping zones are again determined by d = 1

8 . In this
experiment we consider the relationsN2τ = 5.12 andN2τ2 = 0.1024 for the time
integrators of first and second order, respectively. Due, again, to the fact that
the four totally discrete methods provide very similar maximum global errors,
we only include in Table 1 the global errors for the methods with second order
in time and in space. At last, in Table 2, we show the difference between the
number of linear systems that we have to solve in each case. This number will
again depend on the number of internal implicit stages of the time integrator
used and on the average number of Schwarz iterations per stage (only for the
case of classical domain decomposition techniques).
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Table 1. Global errors

N=16 N=32 N=64 N=128 N=256 N=512 N=1024

Example a)

FSRK2 8.4121E-4 2.0942E-4 5.2304E-5 1.3072E-5 3.2678E-6 8.1695E-7 2.0424E-7

RK2 8.3353E-4 2.1018E-4 5.2758E-5 1.3213E-5 3.3063E-6 8.2692E-7 2.0678E-7

Example b)

FSRK2 1.6364E-2 4.6055E-3 1.2801E-3 3.3917E-4 8.6694E-5 2.1794E-5 5.4278E-6

RK2 1.2747E-2 3.1979E-3 8.0116E-4 2.0049E-4 5.0130E-5 1.2501E-5 3.1254E-6

Table 2. Number of systems to solve

FSRK RK N=16 N=32 N=64 N=128 N=256 N=512 N=1024

Example a)

order 2 2 6 2 6 2 6 2 6.1 2 6 2 6 2 4

order 3 6 30.9 6 34.5 6 31.8 6 32.6 6 28.5 6 24.4 6 24.1

order 4 8 76.4 8 81 8 82.2 8 77.6 8 77.7 8 72 8 73.2

Example b)

order 1 16 96 16 80 16 48 16 48 16 32 16 32 16 32

order 2 24 80 24 88 24 64 24 64 24 48 24 64 24 64
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