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A B S T R A C T

Light detection and ranging (LIDAR) sensors measure the free wind ahead of the rotor, enabling the use of new
feedforward control strategies. However, there exist some sources of error inherent to the measuring process
that should be considered during the design of LIDAR-based controllers. Typically, the coherence function is
used for that purpose, but it is not compatible with some robust design methodologies. This paper presents an
analytic relation between the coherence function and a non-parametric uncertainty model of LIDAR sensors,
suitable for the design of controllers via 𝜇-synthesis or Quantitative Feedback Theory. Such a relation is applied
to a realistic LIDAR simulator. First, the linear non-parametric uncertainty model is identified using simulation
data obtained from the well-known NREL 5 MW wind turbine. Then, it is validated against the coherence model
by comparing linear predictions of the simulation outputs.
1. Introduction

Light detection and ranging (LIDAR) sensors provide a remote mea-
surement of the wind ahead of the rotor of a wind turbine. As LIDAR
measurements are less disturbed than the ones provided by traditional
anemometry and have some preview, they open the door to feedfor-
ward control strategies. However, LIDAR sensors still present sources
of error during the measurement process, such as information loss by
sampling, that have an impact on the performance of LIDAR-based
control. Consequently, a model of the measurement error should be
considered during the controller design process [1].

There exist two main ways of dealing with the measurement error
regarding the design of LIDAR-based controllers. The most common
one is known as sequential design [2], and entails two independent
steps. The first one consists on a processing stage in which the main
objective is to make measured wind as similar as possible to the average
wind speed in the rotor plane. The second step involves the design of
the feedforward controllers, for which a perfect preview is assumed.
Several controller proposals based on a sequential approach can be
found in the literature [3,4].

Although the decoupling in two steps might account for a simpler
design of the controller, it might also lead to a sub-optimal design.
Therefore, a second group of design methodologies is based on a single
step design in which the measurement error is taken into account.
These robust control design techniques, which have been specially

∗ Corresponding author.
E-mail address: irene.miquelez@unavarra.es (I. Miquelez-Madariaga).

developed to deal with errors and uncertainties, provide an interesting
tool for the design of LIDAR assisted controllers. Thus, by including
uncertain models during the design of the controllers, a real-case
optimal operation can be achieved.

The standard way to represent the realistic measurement of a LI-
DAR sensor is using a frequency response function that represents
its nominal behaviour and a coherence function as a measure of the
non-linearity between measured and rotor effective wind speed. This
frequency domain representation seems adequate, as wind is defined
theoretically in the frequency domain and many controllers are de-
signed in the frequency domain as well. Additionally, although it is not
possible to develop analytical models of LIDAR sensors providing real-
istic representations of all the different sources of error [5], frequency
domain identification provides a well-known, straightforward way to
obtain realistic models from measured data.

Even though the model formed by the frequency response data and
the coherence function has been used for determining the best sensor
configuration [6,7] and in some optimization-based designs [8], it is
not suitable for every robust design methodology. More specifically, the
tools used for the design of 𝜇-synthesis and QFT (Quantitative Feedback
Theory) controllers require uncertain systems to be modelled as a set of
linear time invariant (LTI) systems. These uncertain models can either
have a fixed structure with unknown parameters (parametric uncer-
tainty) or have some nominal response and a bound to the possible
deviation around it (non-parametric uncertainty).
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Nomenclature

𝛽(𝑡) Pitch angle demand
𝛾2𝑥𝑦(𝑡) Squared coherence function of signals 𝑥(𝑡)

and 𝑦(𝑡)
𝛺𝑔(𝑡) Generator speed
𝜃 Angular direction in the rotor plane coordi-

nate system
𝜑 Random phase in the uncertain model

𝐻(𝑠, 𝜑)
𝑐𝑃 Power coefficient
𝐶𝐹𝐵(𝑠) Feedback controller
𝐹 (𝑠) Feedforward controller
𝐺𝑦,𝑥(𝑠) Transfer functions of the wind turbine

model
𝐻(𝑠, 𝜑) Linear uncertain LIDAR model
ℎ0(𝑡) Impulse response of the linearized system
𝑛(𝑡) Random noise of a generic nonlinear

process
𝑟 Radial direction in the rotor plane coordi-

nate system
𝑅𝑥𝑥(𝑡) Auto-correlation of signal 𝑥(𝑡)
𝑅𝑦𝑥(𝑡) Cross-correlation between signals 𝑥(𝑡) and

𝑦(𝑡)
𝑆𝑥𝑥(𝜔) Power spectrum of signal 𝑥(𝑡)
𝑆𝑦𝑥(𝜔) Cross power spectrum of signals 𝑥(𝑡) and

𝑦(𝑡)
𝑇𝑦,𝑥(𝑠) Closed loop transfer function
𝑤𝑓𝑖𝑒𝑙𝑑 Turbulent 4-dimensional wind field
𝑤𝐿(𝑡) Measured wind speed
𝑤𝑅(𝑡) Rotor effective wind speed
𝑤𝑢(𝑡) Wind speed perpendicular to the rotor

plane
𝑊 𝑇𝐺 Realistic nonlinear wind turbine model
𝑥(𝑡) Random input of a generic nonlinear

process
𝑦(𝑡) Random output of a generic nonlinear

process

The main contribution of this work is the novel theoretical re-
ation between measurement noise and model uncertainty developed
n Section 3. Experts on LIDAR sensors and wind measurement use
he estimated noise signal and coherence function to model the non-
inearities of the measurement process. However, the most well-known
obust control design methodologies, such as mu synthesis and QFT,
ork best when the non-linearities are represented by means of model
ncertainty instead of a noise signal. Generally speaking, the main
ontribution of this paper allows to obtain uncertain models directly
rom the data obtained by identification (measured signal spectra and
oherence function). More specifically, in the context of LIDAR assisted
ontrol, it allows transforming the valuable experimental models of the
IDAR sensor into uncertain models, which contain the same infor-
ation but allow to use multi-objective and robust controller design
ethodologies.

The structure of this work is as follows. Section 2 introduces a brief
eview on frequency domain identification of linear systems and Sec-
ion 3 provides a theoretical relation between the traditional coherence
odel and a LTI uncertain model required for robust control design.

ection 4 describes the different components needed for a realistic
imulation of a nacelle-mounted LIDAR sensor: a wind turbine, its
368

ontrol loops, a wind field vector and the LIDAR sensor itself. The a
Fig. 1. Block diagram of a linear system with noise at the output.

Fig. 2. System with additive uncertainty.

LTI uncertain model of the mentioned LIDAR sensor is validated on
Section 5. Section 6 contains the conclusions of the work.

2. Review of frequency domain identification of linear models

Obtaining mathematical models that describe the behaviour of phys-
ical systems is a common problem in many engineering fields. More
specifically, when designing controllers, it is necessary to have a model
of the relation between the input signals of the system, either control
input or disturbance, and the outputs to be controlled.

If small variations in the input are assumed, the behaviour of
a single-input–single-output system can be approximated to a linear
one [9], which follows the structure represented in Fig. 1. In order to
find the value of 𝐻0(𝑖𝜔), 𝑥(𝑡) and 𝑦(𝑡) need to be measured. The noise
nput 𝑛(𝑡), is linearly independent of 𝑥(𝑡) and represents the effect of
ther inputs in 𝑦(𝑡), the nonlinear relation between 𝑥(𝑡) and 𝑦(𝑡), and
easurement noise.

The relation between the signals represented in Fig. 1 can be
xpressed mathematically as

(𝑡) = ∫

𝑡

0
ℎ0(𝑢)𝑥(𝑡 − 𝑢)𝑑𝑢 + 𝑛(𝑡), (1)

here ℎ0(𝑢) is the impulse response of the linear system. Multiplying
oth sides of the equation by 𝑥(𝑡 − 𝜏) we obtain

(𝑡)𝑥(𝑡 − 𝜏) = ∫

𝑡

0
ℎ0(𝑢)𝑥(𝑡 − 𝜏)𝑥(𝑡 − 𝑢)𝑑𝑢 + 𝑛(𝑡)𝑥(𝑡 − 𝜏), (2)

hose expected value is

𝑥𝑦(𝜏) = ∫

𝑡

0
ℎ0(𝑢)𝑅𝑥𝑥(𝜏 − 𝑢)𝑑𝑢, (3)

here 𝑅𝑥𝑦(𝜏) is the cross correlation between 𝑥(𝑡) and 𝑦(𝑡) and 𝑅𝑥𝑥(𝜏) is
he auto-correlation of signal 𝑥(𝑡). The term including the noise signal
(𝑡) disappears because the noise is linearly independent from the input
nd, consequently, their cross correlation is equal to zero.

Applying the Fourier transform to both sides of Eq. (3), the convo-
ution between the system’s impulse response and the auto-correlation
f the input becomes a multiplication, and the correlation functions
ecome power spectral densities, as given by

𝑥𝑦(𝜔) = 𝐻0(𝑖𝜔)𝑆𝑥𝑥(𝜔). (4)

onsequently, if the power spectral density of the input 𝑆𝑥𝑥(𝜔) and the
ross power spectral density of the input and the output 𝑆𝑥𝑦(𝜔) can be
alculated from measurements of 𝑥(𝑡) and 𝑦(𝑡), it is possible to obtain
he transfer function 𝐻0(𝑖𝜔).

As the noise signal 𝑛(𝑡) is not a real signal within the system, but
mathematical representation of non-linearities and other effects, it is
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not possible to measure it. However, as explained by Ljung [10], its
power spectrum can be derived from the power spectral densities of
the input and output signals:

𝑆𝑛𝑛(𝜔) = 𝑆𝑦𝑦(𝜔) − |𝐻0(𝜔)|
2𝑆𝑥𝑥(𝜔) = 𝑆𝑦𝑦(𝜔) −

|𝑆𝑥𝑦(𝜔)|
2

𝑆𝑥𝑥(𝜔)
. (5)

s it happens with the cross correlation, the cross spectral density
unction is bounded by the cross spectral density inequality [11] given
y

𝑆𝑥𝑦(𝜔)|
2 ≤ |𝑆𝑦𝑦(𝜔)| |𝑆𝑥𝑥(𝜔)|. (6)

he square coherence function is defined as a normalized expression of
he cross power spectral density:

2
𝑥𝑦(𝜔) =

|𝑆𝑥𝑦(𝜔)|
2

𝑆𝑦𝑦(𝜔)𝑆𝑥𝑥(𝜔)
. (7)

he coherence function is defined for all 𝜔 for which 𝑆𝑥𝑥(𝜔) and 𝑆𝑦𝑦(𝜔)
re defined. Being a normalized function, it fulfils

≤ 𝛾2𝑥𝑦(𝜔) ≤ 1. (8)

sing Eq. (5), the coherence function can be also expressed as

2
𝑥𝑦(𝜔) =

|𝐻0(𝑖𝜔)|
2𝑆𝑥𝑥(𝜔)

𝑆𝑛𝑛(𝜔) + |𝐻0(𝑖𝜔)|
2𝑆𝑥𝑥(𝜔)

=
|𝐻0(𝑖𝜔)|

2𝑆𝑥𝑥(𝜔)
𝑆𝑦𝑦(𝜔)

. (9)

In other words, the squared coherence represents the fraction of the
power in the output that is linearly dependent from the input 𝑥(𝑡).

onsequently, if the original system is linear, it will be completely
epresented by 𝐻0(𝑖𝜔), 𝑛(𝑡) will be equal to 0 and the squared coherence
ill be equal to 1. If 𝑥(𝑡) and 𝑦(𝑡) are linearly independent, 𝛾2𝑥𝑦(𝜔) will
e equal to 0.

Using Eqs. (5) and (9), the noise spectrum can be written in terms
f the squared coherence as

𝑛𝑛(𝜔) = 𝑆𝑦𝑦(𝜔)(1 − 𝛾2𝑥𝑦(𝜔)). (10)

When generating a model for a LIDAR sensor, signal 𝑥(𝑡) will be
otor effective wind speed (defined in Section, Eq. (15)), signal 𝑦(𝑡) will

be the actual measured wind signal and 𝑛(𝑡) will be the measurement
noise.

3. Theoretical relation between the coherence function and addi-
tive uncertainty

The purpose of this section is to set a theoretical relation between
the linear model of a system defined by Eqs. (4) and (10) (Fig. 1), and
a uncertain LTI system (Fig. 2). In terms of LIDAR assisted control, the
model in Fig. 1 is often generated using data from field measurements
or a realistic non-linear simulation. The model in Fig. 2 is better suited
fro controller design and is compatible with Matlab’s Robust Control
Toolbox and the QFT toolbox.

Although coherence is clearly related to the systems uncertainty
aused by both the unmodelled dynamics and the uncertain param-
ters, it might not be a suitable representation of the uncertainty
or control purposes. For some design methodologies, such as H∞

or QFT, robust stability and performance are imposed on a set of
possible linear time invariant plants, known as the uncertainty set,
which captures the nonlinear behaviour of the system and other sources
of uncertainty [12].

There exist several ways to express uncertainty. If the frequency
response of the uncertain set 𝐻(𝑖𝜔, 𝑞) is represented in the complex
plane at a single frequency 𝜔0, it is common to have a nominal system
represented by the complex number 𝐻0(𝑖𝜔0) and a region around it,
usually a circle, representing the set of possible values for such number.
These circular bounds can be expressed mathematically in different
ways [13], such as additive uncertainty, in which an uncertain system
is described as

𝐻(𝑖𝜔) = 𝐻 (𝑖𝜔) + 𝛥𝐻(𝑖𝜔), (11)
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and 𝛥𝐻(𝑖𝜔) is some bounded value.
Fig. 2 shows a graphical representation of a linear system with

additive uncertainty. By comparing this system to the one represented
in Fig. 1, a relation between signals 𝑥(𝑡) and 𝑛(𝑡) can be established
by the uncertainty block 𝛥𝐻(𝑖𝜔). This new perspective implies that the
external noise sources in Fig. 1 are the uncertainty sources embedded
in the linear model in Fig. 2.

However, as the cross spectrum between 𝑥(𝑡) and 𝑛(𝑡) cannot be
estimated, only the magnitude of the uncertainty is known, as given
by

|𝛥𝐻(𝑖𝜔)|2 =
𝑆𝑛𝑛(𝜔)
𝑆𝑥𝑥(𝜔)

. (12)

In this case, the magnitude of 𝛥𝐻(𝑖𝜔) is fixed by the amplitude of the
noise and the uncertainty comes only in the phase. Consequently, if the
uncertain system is represented at a single frequency in the complex
plane, it will take the form of a circle with centre in 𝐻0(𝑖𝜔) and radius
|𝛥𝐻(𝑖𝜔)|, which means

(𝑖𝜔, 𝜑) = 𝐻0(𝑖𝜔) + |𝛥𝐻(𝑖𝜔)|𝑒𝑖𝜑, (13)

here 𝜑 randomly takes any value between 0 and 2𝜋.
Seeing that the size of the uncertain system is related to the magni-

ude of the noise signal power spectral density, a further step is taken
o link the uncertain model with the coherence function. This way a
onnection appears between the usual indicator of measurement quality
nd a control-oriented representation of the systems uncertainty. Using
qs. (9), (10) and (12), the relation between the coherence function
nd the size of uncertainty becomes

|𝛥𝐻(𝑖𝜔)|
|𝐻0(𝑖𝜔)|

=

√

√

√

√

1 − 𝛾2𝑥𝑦(𝜔)

𝛾2𝑥𝑦(𝜔)
. (14)

This equation confirms the expected result between models: a perfect
coherence (𝛾2𝑥𝑦(𝜔) = 1) leads to an uncertainty-free model (𝛥𝐻(𝑖𝜔) =
0), whereas a coherence value of zero (𝛾2𝑥𝑦(𝜔) = 0) implies infinite
uncertainty (𝛥𝐻(𝑖𝜔) = ∞).

The objective of representing a nonlinear system as a set of linear
models is thus achieved, as there exists an analytical relation between
the coherence function and the size of the uncertainty in the frequency
response function of the system.

4. A realistic nonlinear simulator of a LIDAR sensor

In order to validate the proposed linear approximation of a non-
linear system, the outputs of nonlinear simulations are compared with
their linear approximations. More specifically, a nacelle-mounted LI-
DAR sensor is approximated by an uncertain linear system which can
later on be used for control design purposes. However, this model
cannot be tested on its own, as many of the measurement errors are
induced by the coupling between the sensor and the wind turbine it is
installed on, blade-crossing and the tower fore-aft movement among
others. As a consequence, the linear model of the LIDAR model is
used, together with the linear model of a wind turbine and its control
loops, to predict the output of a nonlinear simulation of a wind tur-
bine operating with a LIDAR-based feedforward controller. The chosen
aeroelastic code for this simulation is OpenFAST [14], as it includes
both the wind turbine and the LIDAR module, which was validated
using field data [15]. This section describes all the elements involved
in the simulations.

4.1. LIDAR sensor

The chosen LIDAR system has a 4 beam configuration. The azimuth
angles of the beams are ±15◦ and the elevation angles are ±12.5◦. The
measurement distance of the beams is 85 m and the pulse width at half
maximum is 30 m and a full scan takes 1 s.
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Fig. 3. (a) Frequency response of the LIDAR system at the operation point corresponding to a wind speed of 20 m s−1. (b) Coherence function of the LIDAR system.
Fig. 4. Frequency response of the wind turbine (WTG), the wind turbine in closed loop operation (WTG+FB) and the wind turbine with both feedback and feedforward control
loops (WTG+FB+FF). The input to the system is the wind speed and the studied outputs are tower base bending moment (TwrBsMyt) and generator speed (GenSpeed).
Due to the limited measurement capability of the sensor, both in
terms of sampling frequency and spatial distribution, and other effects
described in the bibliography, such as the wind field evolution or the
coupling of the beams with the wind turbine blades, the LIDAR system
cannot be considered to have a linear behaviour, which means that the
measured signal includes some measurement noise.

For many wind turbine applications, it is enough to get information
on the average wind on the rotor plane, also known as rotor effective
wind speed (REWS). As a consequence, rotor effective wind speed will
be considered the input to the linear model of the sensor. Theoretically,
REWS is given by

𝑤𝑅(𝑡) =
3

√

√

√

√

√

∫ 2𝜋
0 ∫ 𝑅

0 𝑤3
𝑢(𝑟, 𝜃, 𝑡)

𝜕𝑐𝑃
𝜕𝑟 𝑑𝑟𝑑𝜃

∫ 2𝜋
0 ∫ 𝑅

0
𝜕𝑐𝑃
𝜕𝑟 𝑑𝑟𝑑𝜃

, (15)

here 𝑤𝑢 is the wind speed in the direction perpendicular to the rotor,
and 𝜃 are the polar coordinates in the rotor plane, and 𝑐𝑃 is the power
oefficient of the wind turbine. The spectrum of such signal 𝑆𝑅𝑅(𝜔) is
elated to the spectrum of the measured wind signal 𝑆𝐿𝐿(𝜔) by means of
he frequency response function of the sensor 𝐻 (𝑖𝜔) (Fig. 3a) following
370
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Eq. (4), where 𝑆𝑅𝑅(𝜔) and 𝑆𝐿𝐿(𝜔) are now the spectra of the input
and the output of the system respectively. Fig. 3b shows the coherence
function 𝛾2𝐿𝑅(𝜔) between the signals as given by Eq. (7).

4.2. Wind turbine generator

The wind turbine used for this study is the onshore 5 MW NREL
model [16], which is a horizontal axis, three-bladed turbine. For a re-
alistic representation of the behaviour of a wind turbine, all degrees of
freedom except the rotor teeter are activated both during the simulation
and the linearization of the system. The most relevant parameters of the
wind turbine are presented in Table 1.

4.3. Control structures

The linear model is validated at above rated operation of the
wind turbine, using a constant torque strategy. Consequently, the wind
turbine requires a collective pitch feedback controller, given by

𝐶 (𝑠) = 0.003383𝑠 + 0.001865 , (16)
𝐹𝐵 𝑠
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Fig. 5. Block diagram of the nonlinear simulation scenario.
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Table 1
Parameters for the 5 MW NREL wind turbine [16].

Parameter Value

Rotor diameter 126 m
Hub height 90 m
Cut-in rotor speed 6.9 rpm
Rated rotor speed 12.1 rpm

that ensures a correct generator speed regulation.
Besides, to see the effect of the measurement error in the output, a

collective pitch feedforward controller given by

𝐹 (𝑠) = 0.009436𝑠 + 0.01784
0.4754𝑠 + 1

(17)

is added. The feedforward controller has a simple first order structure
with one zero and its parameters are chosen to obtain perfect model
inversion at a single frequency [17].

Fig. 4 shows the open loop response of the system, the effect of
the feedback controller and the addition of the feedforward controller,
assuming perfect preview.

5. Validation of the model using simulation data

The theoretical relation between the coherence and the size of the
uncertainty of the frequency response function, shown in Eq. (14),
is validated using simulation data. For the new model to be correct,
it should provide the same information as the model that represents
the measured wind as an input independent from the rotor effective
wind speed (Fig. 6a). At the same time, it should be an accurate
approximation of the nonlinear system (Fig. 5).

To carry out the analysis, a turbulent wind field of mean wind speed
of 20 m s−1, class A and length 4096 s generated with Turbsim [18]
has been simulated in the system represented in Fig. 5. The analysis
could have been performed at any other wind speed at the above
rated operation region without losing its validity, but for the sake of
simplicity, it has been developed at a single mean wind speed. Besides,
using simulations with different mean speeds for the same analysis,
for example 19 to 21 m s−1 instead of just 20 m s−1, would provide
a model valid at a wider range or wind speeds but would also increase
the uncertainty introduced by the linearization. Lastly, one must take
into account that, as the linear models are tested under the turbulent
wind fields corresponding to the wind turbine class, the new linear
model has been tested against the traditional linear representation and
the nonlinear system in a realistic environment. This means that the
nonlinear system undergoes as sudden wind speed changes as one can
expect in normal operation. Extreme gusts not represented by this
371

turbulent wind model would require a specific analysis and design. i
The block WTG represents the nonlinear model of the wind turbine,
the block LIDAR represents the realistic LIDAR simulator and blocks
𝐶𝐹𝐵(𝑠) and 𝐹 (𝑠) represent the feedback and feedforward controllers.

utput signals generator speed (GenSpeed) and longitudinal tower base
ending moment (TwrBsMyt) are used for the validation. Their spectra
re represented in Fig. 8 by the line 𝐹𝐹 − 𝑂𝑝𝑒𝑛𝐹𝐴𝑆𝑇 .

Fig. 6a shows the common representation of the linear model of
he system. Now, the wind turbine is described by its linearized model
𝑊 𝑇𝐺(𝑠), whose input is no longer a wind field but the rotor effective
ind speed 𝑊𝑅(𝑠). The LIDAR system is represented by a second wind

nput, the measured wind 𝑊𝐿(𝑠), whose relation to 𝑊𝑅(𝑠) is described
y the frequency response and the coherence functions shown in Fig. 3.

According to this lineal modelling, a generic output 𝑌 (𝑠) is given by

𝛾2 (𝑠) =
𝐺𝑦,𝑊𝑅

(𝑠)
1 + 𝐶𝐹𝐵(𝑠) ⋅ 𝐺𝛺𝑔 ,𝛽 (𝑠)

𝑊𝑅(𝑠) +
𝐹 (𝑠) ⋅ 𝐺𝑦,𝛽 (𝑠)

1 + 𝐶𝐹𝐵(𝑠) ⋅ 𝐺𝛺𝑔 ,𝛽 (𝑠)
𝑊𝐿(𝑠)

= 𝑇𝑦,𝑊𝑅
(𝑠)𝑊𝑅(𝑠) + 𝑇𝑦,𝑊𝐿

(𝑠)𝑊𝐿(𝑠)
(18)

here 𝐺𝑦,𝑢(𝑠) and 𝑇𝑦,𝑢(𝑠) denote the open loop and closed loop transfer
unctions of the wind turbine between any input 𝑈 (𝑠) (typically wind,
itch or generator torque) and any output 𝑌 (𝑠), such as the generator
peed or any mechanical load among others. More specifically, 𝛺𝑔
tands for the generator speed signal and 𝛽 represents the collective
itch angle demand.

A theoretical approximation of the power spectra of outputs of the
ystem can be obtained from Eq. (18) as

𝑦𝑦,𝛾2 (𝜔) = |𝑇𝑦,𝑊𝑅
(𝑖𝜔)|2𝑆𝑅𝑅(𝜔)

+ 𝑇𝑦,𝑊𝑅
(𝑖𝜔)𝑇 ∗

𝑦,𝑊𝐿
(𝑖𝜔)𝑆𝑅𝐿(𝜔)

+ 𝑇 ∗
𝑦,𝑊𝑅

(𝑖𝜔)𝑇𝑦,𝑊𝐿
(𝑖𝜔)𝑆𝐿𝑅(𝜔)

+ |𝑇𝑦,𝑊𝐿
(𝑖𝜔)|2𝑆𝐿𝐿(𝜔)

(19)

he results have been represented in Fig. 8 by the lines 𝐹𝐹 − 𝛾2

nd are almost overlapped with the simulation output spectra (𝐹𝐹 −
𝑝𝑒𝑛𝐹𝐴𝑆𝑇 ), thus showing a very good correspondence between non-

inear and linear models.
If correct, the alternative model developed in this work (Fig. 6b)

hould provide the same results as the previous ones. The sensor is
ow represented by a set of linear time invariant models, 𝐻(𝑠, 𝜑) in
ig. 7, with input rotor effective wind speed and output measured wind.
he nominal system 𝐻0(𝑠) corresponds to the frequency response data

n Fig. 3 and the size of its uncertainty 𝛥𝐻(𝑠) has been obtained by
pplying Eq. (14). The complete closed loop system has now a single
nput, rotor effective wind speed, and a set of possible outputs 𝑌 (𝑠, 𝜑)
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Fig. 6. Linear representations of the model in Fig. 5. Block diagram a uses a signal 𝑊𝐿(𝑠) to represent the measured wind. Block diagram b represents the LIDAR sensor as an
uncertain system 𝐻(𝑠, 𝜑).
Fig. 7. Magnitude plot of the frequency response of the LIDAR system. In blue, the nominal response of the system 𝐻0(𝜔). In grey, the outer bound of the uncertain system given
by 𝐻(𝑖𝜔, 𝜑) = 𝐻0(𝑖𝜔) + |𝛥𝐻(𝑖𝜔)|𝑒𝑖𝜑.
is given by

𝑌𝛥𝐻 (𝑠, 𝜑) =
𝐺𝑦,𝑊𝑅

(𝑠) + 𝐹 (𝑠) ⋅𝐻(𝑠, 𝜑) ⋅ 𝐺𝑦,𝛽 (𝑠)
1 + 𝐶𝐹𝐵(𝑠) ⋅ 𝐺𝛺𝑔 ,𝛽 (𝑠)

𝑊𝑅(𝑠)

= 𝑇 ′
𝑦,𝑊𝑅

(𝑠, 𝜑)𝑊𝑅(𝑠),
(20)

where 𝑇 ′
𝑦,𝑊𝑅

(𝑠, 𝜑) now includes the LIDAR linear model and the feed-
forward controller.
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The set of possible output spectra is

𝑆𝑦𝑦,𝛥𝐻 (𝜔,𝜑) = |𝑇 ′
𝑦,𝑊𝑅

(𝑖𝜔, 𝜑)|2𝑆𝑅𝑅(𝜔), (21)

which is represented by the set of lines 𝐹𝐹 − 𝛥𝐻(𝑖𝜔, 𝜑) in Fig. 8. The
average behaviour of the system is defined by the average of these
spectra which is represented by 𝐹𝐹 − 𝛥𝐻(𝑖𝜔). As anticipated by the
theoretical relation developed in Section 3, the information provided
using the new linear approximation is just the same as the model that
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Fig. 8. Spectra of the output signals. The lines denoted with OpenFAST correspond to the spectra estimated from simulation of the feedback only case (blue) and feedback +
feedforward control (red). The dashed blue line represents the theoretical spectrum of the feedback only case. The red dashed line (FF-𝛾2) is the theoretical spectrum of the output
using the coherence function to represent the error in the measurement. The grey lines (FF-𝛥𝐻(𝜔,𝜑)) correspond to all the possible responses of the closed loop linear system
representing the LIDAR sensor as a uncertain linear system with a single input. Their frequency domain average is represented by the dashed black line (FF-𝛥𝐻(𝜔)).
considers the coherence function and can be thus considered valid for
robust controller design purposes.

6. Conclusions

This paper presents a theoretical relation between the coherence
based model of the measurement noise introduced by a LIDAR sensor
and a non-parametric uncertain linear model. The relation between
the coherence function 𝛾2𝑥𝑦(𝜔) and the size of the non-parametric un-
certainty |𝛥𝐻(𝑖𝜔)| shows two different ways of representing the same
information: a linear approximation of the behaviour of a nonlinear
system and the degree of its non-linearity.

The difference between models is relevant when using linear sys-
tems to design controllers. The coherence-based model has two inputs
and produces a single output that represents the average behaviour
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of the system. On the other hand, the uncertain system described by
𝐻0(𝑖𝜔)+|𝛥𝐻(𝑖𝜔)| has a single input but, as it represents the uncertainty,
it provides the set of all the possible outputs of the actual system.
One model being more adequate than the other would depend on
the intended purpose for it. However, when applying robust control
methodologies such as H∞ design or QFT, the uncertainty set 𝐻(𝑠, 𝜑)
will be preferred, as it allows to use typical design criteria such as
robust stability and performance, and it makes it easier to evaluate
multiple control objectives simultaneously.
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