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Abstract
Background Reproduction is a key feature of the sustainability of a species and thus represents an important 
component in livestock genetic improvement programs. Most reproductive traits are lowly heritable. In order to gain 
a better understanding of the underlying genetic basis of these traits, a genome-wide association was conducted 
for age at first calving (AFC), first inter-calving period (ICP) and scrotal circumference (SC) within the South African 
Bonsmara breed. Phenotypes and genotypes (120,692 single nucleotide polymorphisms (SNPs) post editing) were 
available on 7,128 South African Bonsmara cattle; the association analyses were undertaken using linear mixed 
models.

Results Genomic restricted maximum likelihood analysis of the 7,128 SA Bonsmara cattle yielded genomic 
heritability’s of 0.183 (SE = 0.021) for AFC, 0.207 (SE = 0.022) for ICP and 0.209 (SE = 0.019) for SC. A total of 16, 23 and 51 
suggestive (P ≤ 4 × 10-6) SNPs were associated with AFC, ICP and SC, while 11, 11 and 44 significant (P ≤ 4 × 10-7) SNPs 
were associated with AFC, ICP and SC respectively. A total of 11 quantitative trait loci (QTL) and 11 candidate genes 
were co-located with these associated SNPs for AFC, with 10 QTL harbouring 11 candidate genes for ICP and 41 QTL 
containing 40 candidate genes for SC. The QTL identified were close to genes previously associated with carcass, 
fertility, growth and milk-related traits. The biological pathways influenced by these genes include carbohydrate 
catabolic processes, cellular development, iron homeostasis, lipid metabolism and storage, immune response, ovarian 
follicle development and the regulation of DNA transcription and RNA translation.

Conclusions This was the first attempt to study the underlying polymorphisms associated with reproduction in 
South African beef cattle. Genes previously reported in cattle breeds for numerous traits bar AFC, ICP or SC were 
detected in this study. Over 20 different genes have not been previously reported in beef cattle populations and may 
have been associated due to the unique genetic composite background of the SA Bonsmara breed.
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Background
The improvement of reproductive efficiency is of major 
economic importance in beef production systems and 
improvements in total lifetime productivity is a key met-
ric for efficiency, which is a function of both reproduc-
tion and total output per cow [1, 2]. In South Africa (SA), 
the majority of beef is produced under extensive produc-
tion systems with average calving percentages (i.e., the 
proportion of cows that give birth in comparison to the 
number of cows that could possibly give birth) of 62% 
[3]. Bonsmara cattle are a beef breed, developed during 
the nineteen-sixties, resulting in a composite comprised 
of approximately 5/8 Afrikaner and 3/8 exotic breeds [4]. 
It is the largest breed represented in the seed stock and 
commercial beef industry in SA. As the beef industry 
primarily relies on reproductive efficiency, a reduction in 
the unproductive period of a female’s life would positively 
impact production costs and profit as well as having a 
favourable impact on the carbon footprint.

Genetic improvement in reproductive performance 
remains challenging, hindered by the generally low 
associated heritability (h2), coupled with the complex-
ity of recording these traits and/or the late expression of 
reproductive traits [5–7]. The age at onset of puberty can 
impact overall productivity through the heifer becoming 
productive at an earlier age [8]. Puberty is experienced 
earlier in composite and crossbred animals compared 
to their purebred counterparts with the same trend 
observed for early maturing versus late maturing beef 
breeds [9]. Age of puberty is however difficult to record, 
and therefore age at first calving (AFC) is often used as 
an indicator of heifer fertility. The heritability estimates 
reported for AFC differ depending on the breed, with 
[10] estimating a h2 = 0.10 in Brahman cattle, [8, 11, 12] 
reporting on Nellore cattle (0.01 to 0.31) and [13] esti-
mating a h2 = 0.08 for AFC in Angus and Hereford cattle. 
Recent studies on South African populations are lim-
ited with [14] reporting a h2 = 0.08 in Bonsmara cross 
cattle, while [5] reported higher heritability for AFC in 
Afrikaner (0.27) and Drakensberger (0.30) Sanga cattle 
breeds. Inter-calving period (ICP) is a relatively easy trait 
to record and is included in most beef and dairy breed 
societies recording schemes in South Africa [15]. Esti-
mates of ICP yield low to moderate heritability (0.01–
0.10) in Brahman and composite beef cattle breeds [6, 10, 
16]. As scrotal circumference (SC) in bulls is relatively 
easy to measure, with a moderate to high heritability [6, 
12, 17–19], it has been suggested as an indicator trait 
for age at puberty, the latter being resource-intensive to 
measure.

Several studies have reported positive genetic cor-
relations between SC and growth traits like mature 
body weight (rg = 0.37–0.40) in composite beef cattle 
[20], weaning and mature weight (rg = 0.60–0.72) in 

Bos indicus cattle [21] as well as weaning (rg = 0.312) 
and yearling (rg = 0.519) weight in Nellore cattle [22]. 
Although weaker genetic correlations between SC and 
weaning weight (rg = 0.15) have been reported in SA 
Bonsmara bulls [23], genomic analyses of SC and SC-
related traits have identified genes which are also known 
to associate with growth traits [24].

Genome-wide association studies (GWAS) conducted 
on European and tropically adapted beef cattle breeds 
revealed several potential genes for fertility traits includ-
ing AFC [8, 12, 25, 26], ICP [27], pregnancy status [28], 
gestation length [29], sexual precocity [30] and SC [12, 
31, 32]. Some studies have combined fertility traits with 
body weight at puberty [33] while multi-trait meta-analy-
ses have also been applied [12], which indicated that sim-
ilar regions of the genome harbour genetic variation that 
potentially influence reproductive traits in both genders.

The SA Bonsmara, classified as a Sanga type, is a 
unique composite breed of 3/8 exotic (Milk Shorthorn, 
Hereford) and 5/8 Afrikaner [4]. The breed was estab-
lished through a well-documented crossbreeding pro-
gram, with the aim of founding a local composite breed 
that was well adapted to the challenges of a diverse SA 
climate. This study was the first attempt to apply GWAS 
for fertility traits in SA Bonsmara cattle to provide insight 
on gene regions in the SA Bonsmara. The objective of 
this study was to perform a genome-wide association 
study for three reproductive traits (AFC, ICP and SC) in 
a South African Bonsmara population in order to identify 
quantitative trait loci (QTL) for these traits.

Results
Variance components estimation
A genetic correlation of 0.37 was estimated between AFC 
and ICP in the SA Bonsmara using the breeding values 
derived from the bivariate model. Pedigree heritability 
estimates were 0.22 for AFC, 0.13 for ICP and 0.38 for 
SC. The genomic REML analysis yielded genomic heri-
tability and standard errors (SE) of 0.183 (SE = 0.021) for 
AFC, 0.207 (SE = 0.022) for ICP and 0.209 (SE = 0.019) for 
SC.

Genomic population quality control
Individual based quality control resulted in the omission 
of ninety-five SA Bonsmara genotypes across the five 
genotyping arrays available. Assessment of identical by 
state (IBS) genetic distances yielded a multidimensional 
scaled plot (MDS; Fig. 1). Identification of outliers as well 
as their genotyped progeny led to the further removal of 
103 genotypes (Fig. 2) resulting in a final sample popula-
tion of 7,128 SA Bonsmara animals (4,403 males, 2,725 
females). The effect of filtering out animals with reliabili-
ties smaller than 0.01 and an effective record count (ERC) 
of less than 0.50 culminated in genome-wide population 
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sizes of 4,460 animals for AFC (median ERC = 1.758), 
4,276 animals (median ERC = 1.717) for ICP1, and 5,452 
animals for SC (median ERC = 1.004).

Age at first calving
Eleven single nucleotide polymorphisms (SNPs) at the 
genome wide threshold p-value of less than 4 × 10− 7 and 
a further 16 suggestive SNPs at a p-value of less than 
4 × 10− 6 were associated with AFC (Fig.  3). Pair-wise 
linkage disequilibrium (LD) analysis of significant SNPs 
resulted in the identification of 11 QTL across eight 
autosomes (Table  1). A total of 11 different genes were 

co-located with the associated QTL, with the frequency 
of the major alleles being between 0.527 and 0.982, 
respectively. Bos taurus autosome (BTA) 7 harboured 
two QTL containing nine genes (ARAP3, CLINT1, 
FCHSD1, LSM11, PCDHGA, PCDHGB, PCDHGC, 
RELL2 and THG1L) with each of these QTL having seven 
SNPs in pair-wise LD. The most significant QTL, located 
on BTA 17, was a single intergenic SNP with a minor 
allele frequency (MAF) of 0.13. The gene, PLCB1, resides 
in a QTL that spans four SNPs in pair-wise LD (r2 > 0.50), 
212.17 kilobase pairs (kbp) across BTA 13, with the 

Fig. 2 Multidimensional Scaling of 7,128 SA Bonsmara Genotypes

 

Fig. 1 Multidimensional Scaling of 7,231 SA Bonsmara Genotypes
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significant SNP (BovineHD1300000449; MAF = 0.15), 
associating with AFC.

Inter-calving period
Eleven SNPs were significantly associated with ICP, 
with a further 23 SNPs being suggestively associated 
(Fig.  4). The most significant SNP (BTA-16,045-no-rs; 
P = 2.83 × 10− 16, MAF = 0.13) was on BTA 17 and was an 
intergenic SNP. A total of ten QTL across eight auto-
somes were significantly associated with ICP (Table 2). A 
QTL 337.43 kbp in length containing six genes (ARAP3, 
FCHSD1, PCDHGA, PCDHGB, PCDHGC and RELL2) 
and a second QTL of 158.19 kbp in length harbouring 
three genes (CLINT1, LSM11 and THG1L) were both 
positioned on BTA 7. A QTL containing the LDAH gene, 
is a 131.85 kbp long and contains two SNPs in high LD 
(r2 = 0.74).

Scrotal circumference
Forty-four SNPs were significantly (P ≤ 4 × 10− 7) asso-
ciated with SC with a further 51 SNPs being suggestive 
(P ≤ 4 × 10− 6, Fig.  5). Pair-wise LD analysis identified a 
total of 41 QTL across 14 autosomes (Table 3). The most 
significant SNP, (BovineHD2300009170; P = 5.02 × 10− 11, 
MAF = 0.04), which is lowly segregating in the SA Bons-
mara population, was an intron variant of SLC17A3 
located on BTA 23. A QTL consisting of eleven SNPs in 
LD (r2 > 0.50) on BTA 11 consisted of downstream vari-
ants for the gene NEURL1B. Gene rich QTL were located 
on BTA 2, 11, 19 and 22. A 93.2 kbp QTL on BTA 2 
consisting of six SNPs harboured the gene ABCA12, a 
small nucleolar RNA (RF00156) and an insertion/dele-
tion copy number variant (CNV). Five QTL spanning 
a 1.65 Mega basepair (Mbp) portion of BTA 11 house 
the genes AAK1, ANTXR1, CNRIP1, GMCL1, MXD1, 
PP3R1 and SNRNP27. A homeobox gene dense QTL on 

Table 1 List of identified QTLs and genes associated with Age at First Calving
BTA1 SNPs in QTL2 Start - End Significant SNP P-value MAF3 Genes in quantitative trait loci
1 1 149305906–149305906 BTB-00069838 1.92E-09 0.070

6 6 260882–524856 BTA-94560-no-rs 2.45E-09 0.392 ENSBTAG00000032764

6 6 37840605–37850593 BovineHD0600010469 6.13E-08 0.326

7 7 54096162–54433589 ARS-BFGL-NGS-11368 1.15E-07 0.132 ARAP3, FCHSD1, PCDHGA, PCDHGB, PCDHGC, RELL2

7 7 71366963–71525148 BTA-79723-no-rs 1.15E-07 0.224 CLINT1, LSM11, THG1L

9 1 64310181–64310181 BovineHD0900017655 8.78E-11 0.240

12 3 57271355–57364937 BTB-01886351 3.50E-10 0.448 CNV

13 4 1655502–1867669 BovineHD1300000449 5.13E-11 0.146 PLCB1, CNV

14 1 58874718–58874718 BovineHD1400016348 5.51E-11 0.330

14 3 58902500–58967114 BovineHD1400016360 1.18E-12 0.473

17 1 19384978–19384978 BTA-16045-no-rs 8.90E-16 0.127
1BTA Bos taurus autosome
2SNPs in QTL Number of single nucleotide polymorphisms in this quantitative trait loci
3MAF Minor allele frequency of the significant single nucleotide

Fig. 3 Significant SNP above the red line (≤ 4 × 10− 7) for Age at First Calving (4,460 animals)
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Table 2 List of identified QTLs and genes associated with Inter Calving Period
BTA1 SNPs in QTL2 Start - End Significant SNP(s) P-value MAF3 Genes in quantitative trait loci
1 1 149305906–149305906 BTB-00069838 8.79E-08 0.069

7 7 54096162–54433589 BovineHD0700015625 2.98E-07 0.129 ARAP3, FCHSD1, RELL2, PCDHG(A/B/C)

7 7 71366963–71525148 BTA-79723-no-rs 5.30E-08 0.223 CLINT1, THG1L, LSM11

9 1 64310181–64310181 BovineHD0900017655 1.63E-09 0.235 CNV

11 2 78114859–78246711 ARS-BFGL-NGS-16050 5.30E-08 0.325 LDAH

12 3 57271355–57364937 BTB-01886351 1.77E-07 0.444 CNV

13 4 1655502–1867669 BovineHD1300000449 4.92E-08 0.146 PLCB1, CNV

14 1 58874718–58874718 BovineHD1400016348 4.65E-11 0.333

14 3 58902500–58967114 BovineHD1400016360 1.36E-10 0.477

17 1 19384978–19384978 BTA-16045-no-rs 2.83E-16 0.129
1BTA Bos taurus autosome
2SNPs in QTL Number of single nucleotide polymorphisms in this quantitative trait loci
3MAF Minor allele frequency of the significant single nucleotide

Fig. 5 Significant SNP above the red line (≤ 4 × 10− 7) for Scrotal Circumference (5,452 animals)

 

Fig. 4 Significant SNP above the red line (≤ 4 × 10− 7) for Inter-Calving Period (4,276 animals)
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BTA 19 sweeping 171.78 kbp consisted of four HOXB 
gene variants and TTLL6. On BTA 22, a significant SNP 
(Hapmap33950-BES3_Contig483_1359; P = 4.02 × 10− 9, 
MAF = 0.425) in moderate LD with two flanking SNPs 
(downstream r2 = 0.524, upstream r2 = 0.527) includes the 
genes ABHD6, PXK and RPP14 associated with SC in this 
study. The QTL with the most genes, namely ALDH1L1, 
CHST13, C22H3orf22, SLC41A3, TXNRD3, UROC1 and 
ZXDC, was comprised of five SNPs over a 137.92 kbp 
DNA region on BTA 22.

Overlapping genes across traits
In this study, three QTL, two on BTA 7 and one on BTA 
13, were detected to be associated with more than one 
reproductive trait. The QTL on BTA 13 contains four 
SNPs in LD, with the SNP (BovineHD1300000449) being 
significantly associated with both AFC (P = 5.13 × 10–11) 
and ICP (P = 5.13 × 10− 8). Two large aforementioned QTL 
located on BTA 7 are both significantly associated with 
AFC and ICP. The first QTL was significantly associated 
with both AFC (P = 1.15 × 10− 7) and ICP (P = 2.98 × 10− 7), 
while the SNP (ARS-BFGL-NGS-11368), located in 
this same QTL was significantly associated with ICP 
(P = 2.98 × 10− 7). The second QTL, with seven SNPs in LD 
with each other, was identified to be significantly linked 
to both AFC (P = 1.15 × 10− 7) and ICP (P = 5.30 × 10− 8).

Discussion
This study was the first attempt to gain insight into the 
underlying genetic mechanisms for reproductive traits 
in a South African beef cattle breed. The pedigree and 
genomic based heritability estimates for AFC, ICP and 
SC were similar to those identified in studies in beef cat-
tle breeds [6, 8, 10–14, 17–19]. The low to moderate heri-
tability estimates for most reproductive traits and limited 
genomic studies on indigenous breeds in Southern Africa 
[34–36] justifies the further investigation of this study. 
Genomic tools hold the potential to unlock invaluable 
information [37], that may help explain physiological 
conditions that currently remain unanswered [38].

Age at first calving
In this study, a total of eleven significant SNPs associ-
ated with AFC were observed; none of these have been 
previously reported in Bos indicus and crossbred beef 
cattle to be associated with AFC. Of the eleven genes 
and two CNVs located in QTL associated with AFC, ten 
of these genes have not been previously associated with 
AFC or sexual precocity in beef cattle populations but 
have been reported in human [39] and sheep [40] pop-
ulations. Four of the genes observed in this study (ENS-
BTAG00000032764, FCHSD1, PLCB1 and RELL2) have 
been previously associated in beef cattle populations 
[41–43] with two of these genes involved in more than 

one trait. Physical growth and body composition have a 
developmental effect on the reproductive organs which 
would determine the onset of puberty and subsequent 
AFC [44, 45]. ENSBTAG00000032764 (pseudogene) was 
previously reported as a candidate gene associated with 
carcass traits [41]. The resultant translated protein facili-
tates the storage of iron in a soluble, non-toxic form, 
which is an essential component for iron homeostasis.

Inter-calving period
The inter calving period which is the period between two 
calvingss has the lowest genetic and genomic heritability 
of all three traits in this study and, in practice, is a func-
tion of the ability to ovulate post-calving [45], express 
oestrus, establish and maintain pregnancy and gestation 
length [29, 46]. A total of eleven genes and three CNVs 
were based in QTL associated with ICP which included 
ten genes not previously associated with ICP or repro-
duction in beef cattle. The 337.43 kbp QTL on BTA 7 
contains three genes (PCDHGA, PCDHGB, PCDHGC) 
from the protocadherin (PCDH) family group. Stud-
ies have shown the PCDH genes play an integral role 
in ovarian follicular [47] and embryonic [48] develop-
ment. LDAH is a lipid droplet-associated hydrolase that 
is essential in lipid storage and was previously associated 
with feet and leg disorders in Danish Holstein cattle [49].

Scrotal circumference
Pair-wise LD analysis identified a total of 41 QTL across 
14 autosomes (Table 3). Genes not previously reported in 
beef cattle populations include AAK1, ACAD19, CHST13, 
CNRIP1, CRISP1, DERA, KIF2A, PARVB, PNPO, PXK, 
RPP14, SKAP1, SLC41A3, SNRNP27, SSBP2, TCOM5B, 
TJP2, TTLL6, UBE2Z, UROC1 and ZXDC. Most of these 
genes have not been previously reported to be associ-
ated with SC or sperm-related traits, but upon further 
investigation into the biological pathways that the genes 
are involved in, it becomes clear that the genes may play 
some role in the expression of fertility related traits. Bio-
logical pathways discussed below include carbohydrate 
catabolic processes (CHST13, DERA and UROC1), cellu-
lar development (HOXB5, HOXB7, HOXB9, HOXB13 and 
TTL13), lipid metabolism (ABCA12, ABHD6, ACAD9 
and PARVB), immune response (SKAP1) and regulation 
of DNA transcription and RNA translation (CDKAL1, 
E2F3, MXD1, RPP14, SNRNP27, SSBP2 and ZXDC).

ABCA12 mediates lipid transporter activity, sig-
nals receptor binding, and has active trans-membrane 
transporter activity [50, 51]   identified that ABCA12 is 
the major gene that influences Harlequin Ichthyosis in 
humans and later was identified in livestock species. 
ABCA12 was associated with birth weight in Holstein 
cattle [52]. Monoacylglycerol lipase (ABHD6) is a lipase 
and the major enzyme for bone morphogenic protein 



Page 7 of 13Reding et al. BMC Genomics          (2023) 24:480 

catabolism, which plays a key role in the formation of 
intraluminal vesicles and in lipid sorting [53]. Although 
not previously associated with SC or fertility traits in 
cattle breeds, ABHD6 was associated with average daily 
gain in crossbred beef cattle [54] as well as identified as 
a positional candidate gene for milk cholesterol in dairy 
cattle [55]. ACAD9, which catalyses the rate limiting 
step during the beta-oxidation of fatty acyl-CoA, was 

identified as a CNV in Italian sheep [56] and was found 
to be significantly associated with intramuscular fat con-
tent in Large White pigs [57]. Parvin beta (PARVB) is 
essential in establishing and/or maintaining cell polarity 
as well as actine cytoskeleton reorganization. Although 
not previously reported in beef cattle, a study on ketosis 
in German Holstein cattle [58] associated PARVB with 
non-alcoholic fatty liver disease, indicating that PARVB 

Table 3 List of identified QTL and genes significantly associated with Scrotal Circumference
BTA1 SNPs in QTL2 Start - End Significant SNP P-value MAF3 Genes in quantitative trait loci
2 6 103647078–103740281 ARS-BFGL-BAC-5705 2.96E-07 0.4904 ABCA12, RF00156 and a CNV

2 1 106952479–106952479 BTA-48880-no-rs 2.04E-07 0.4164

3 1 78383390–78383390 ARS-BFGL-NGS-67919 2.01E-07 0.1769

5 1 94407955–94407955 BovineHD0500026808 2.36E-07 0.1589 DERA

5 7 115473272–115577302 ARS-BFGL-NGS-38686 2.04E-07 0.1882 PARVB

7 2 83800568–83815912 BovineHD0700024601 5.60E-08 0.1386 SSBP2

8 5 45501201–45696078 BovineHD0800013600 8.38E-08 0.1396 FXN, TJP2 and 3 CNVs

10 1 29117018–29117018 BTB-00415713 6.67E-09 0.0643

10 1 29126891–29126891 BovineHD1000009600 3.10E-10 0.3962 TMCO5B

10 1 29621558–29621558 BovineHD1000009772 2.37E-07 0.2387

10 4 32006964–32221643 Hapmap30523-BTA-133067 3.37E-07 0.1802 2 CNVs

11 3 66622010–66705064 BovineHD1100018839 2.05E-07 0.4144 PPP3R1, CNRIP1

11 3 67319888–67350067 BovineHD1100018999 2.24E-07 0.226 ANTXR1

11 2 67577210–67626052 ARS-BFGL-NGS-32754 2.01E-07 0.3291 ANTRX1

11 2 67847635–67869723 BovineHD1100019186 2.01E-07 0.3463 AAK1

11 2 68190789–68274343 BovineHD1100019275 2.01E-07 0.0394 GMCL1, MXD1, SNRNP27

12 5 60509480–60612829 ARS-BFGL-NGS-61380 8.38E-08 0.4923

14 5 78092917–78209050 BovineHD1400021894 3.09E-07 0.2385 CNV

19 1 32819208–32819208 BovineHD1900009676 2.05E-07 0.3072

19 1 37784677–37784677 BovineHD1900010983 3.68E-10 0.2839

19 1 38242204–38242204 BovineHD1900011094 3.68E-10 0.3803 UBE2Z

19 3 38370506–38542284 BovineHD1900011158 3.68E-10 0.4151 HOXB5, HOXB7, HOXB9,HOXB513, TTLL6

19 1 38912461–38912461 BovineHD1900011204 3.20E-10 0.2616 SKAP1

19 1 39183738–39183738 BovineHD1900011267 3.68E-10 0.0205 PNPO

19 1 52841109–52841109 BovineHD1900014798 1.58E-08 0.3857 CNV

19 1 53473744–53473744 ARS-BFGL-NGS-103691 2.96E-07 0.279

19 1 62932571–62932571 BovineHD1900018179 3.63E-07 0.3632 CNV

20 11 4356597–4395656 BovineHD2000001405 5.77E-09 0.1642 NEURL1B

20 1 16209098–16209098 BovineHD2000004865 3.20E-10 0.1877

20 2 17075769–17124999 BovineHD2000005141 2.16E-08 0.133 KIF2A

20 1 20720490–20720490 BovineHD2000006199 1.31E-09 0.357 RAB3C

20 1 31848979–31848979 ARS-BFGL-NGS-10108 2.70E-07 0.4553

22 3 43503370–43595820 Hapmap33950-BES3_Contig483_1359 4.02E-09 0.4245 ABHD6, PXK, RPP14

22 2 45589797–45681461 BovineHD2200013184 2.04E-07 0.4508 RF00100

22 2 59576240–59596062 BovineHD2200017302 2.18E-08 0.369 ACAD9

22 5 61086693–61224609 ARS-BFGL-NGS-105794 3.61E-07 0.1034 ALDH1L1, CHSR13, TXNRD3, UROC1, ZXDC

23 1 22245990–22245990 BovineHD2300005886 3.20E-10 0.0961 CRISP1

23 1 22536307–22536307 BovineHD2300005950 1.94E-07 0.3384

23 1 31768035–31768035 BovineHD2300009170 5.02E-11 0.0391 SLC17A3

23 6 37029269–37422153 BovineHD2300010762 8.53E-10 0.4092 CDKAL1, E2F3

29 6 13935802–14009294 BovineHD2900004129 2.04E-07 0.255
1BTA Bos taurus autosome.
2SNPsin QTL Number of single nucleotide polymorphisms in this quantitative trait loci.
3MAF Minor allele frequency of the significant single nucleotide.
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could be a part of lipid metabolism. An investigation into 
selection signatures in Indian swamp buffaloes identified 
PARVB [59].

Two genes previously reported to be linked to fertility 
traits in cattle include FXN and GMCL1. Frataxin (FXN) 
promotes the biosynthesis of heme and plays a role in 
the protection against iron-catalysed oxidative stress. 
FXN was the second ranking SNP in a logistic regres-
sion analysis of pregnancy status in Santa Gertrudis 
cows [60]. GMCL1 appears to be located in an extended 
selection signature that shows high haplotypic homozy-
gosity [61] and was previously associated with fertility 
traits in beef cattle breeds [62]. Single Stranded Binding 
Protein (SSBP2), located on BTA 7, is a candidate QTL 
for conferring resistance to Johne’s disease in cattle [63, 
64]. SSBP2 is involved in the positive regulation of tran-
scription by RNA polymerase II and transcription by 
RNA polymerase II. A study in Holstein cattle associ-
ated SSBP2 with body conformation traits [65]. PPP3R1 
is a regulatory subunit of calcineurin, which plays a role 
in neuronal calcium signalling. A study on transcrip-
tome profiling of muscle in Nelore cattle [66] identified 
PPP3R1 participates in mitogen-activated protein kinase 
(MAPK) signalling pathway which is responsible for cell 
proliferation, differentiation, and apoptosis.

A range of genes identified to be associated with 
SC have not been previously identified in cattle, but 
have been in water buffaloes and crossbred buffaloes. 
ALDH1L1 [67], TJP2 [67] and TCOM5B [68] were all 
linked to milk composition traits, more specifically 
fat and protein yield. The QTL containing ALDH1L1, 
CHST13, SLC41A3, TXNRD3, UROC1 and ZXDC on 
BTA 22 was previously reported to be associated with 
somatic cell score in Holstein cattle [69]. The TXNRD3 
genes is known to affect adipocyte differentiation 
through the Wnt signalling pathway [70].

On BTA 19, an SC-associated QTL harbours four 
homeobox genes and TTLL6. TTLL6 is a gene in a strong 
candidate region, which included HOXB7 and HOXB9, 
for controlling skeletal tail length in sheep [71]. The 
four HOXB genes in this QTL have not been previously 
reported in beef cattle, but other HOX gene clusters 
are known to affect sperm quality in humans [72]. It is 
known that poor sperm DNA methylation is associated 
with decreased male fertility and low embryo quality. The 
hypomethylation of microRNA and HOX gene clusters 
play a significant role in embryonic development and is 
evidence of the sperm’s epigenetic contribution. KIF2A is 
known modulate mitotic events during spermatogenesis 
[73].

A limited number of studies have considered SC as 
a direct trait of interest for genomic investigations. 
Reviews of literature on bull fertility highlight the biolog-
ical processes associated with sperm quality, motility, and 

scrotal volume [24, 74, 75]. More recent association stud-
ies revolve around sexual precocity, especially in tropical 
cattle [32, 74, 76–79] located in Central and Southern 
America.

Overlapping genes across traits
Of the genes observed to be significantly associated with 
both AFC and ICP in the present study, PLCB1 was iden-
tified to be linked to stay-ability in Nelore cattle [80]. 
PLCB1 is known to be a target of a micro interfering RNA 
(miR-301b), which has been associated with ovarian fol-
licle development in cattle breeds [81]. Puberty in a heifer 
occurs upon ovulation of a potentially fertile oocyte [44], 
while [82, 83] stress the importance of proper nutrition 
postpartum in order to re-establish ovarian activity for 
a shortened ICP. PLCB1 is an enzyme that hydrolyses 
phospholipids into fatty acids as well as other lipophilic 
molecules and is involved in oxidative stress responses 
[84]. The regulation of adipose tissue affects the meta-
bolic hormone leptin, known to regulate reproductive 
function in female animals [85, 86]. Twelve haplotype 
blocks for PLCB1 were identified through an associa-
tion analysis of carcass traits in Hanwoo cattle [42] and 
through ontology of this gene linked it to lipid metabo-
lism. ARAP3, a GTPase-activating protein, and the mul-
tiple genes that are members of the PCDH family group 
have been reported as a selection signature in cattle 
related to immune response [87]. Although immunologi-
cal studies in livestock species are limited, [88] reviewed 
the effect immune cells have on ovarian follicle develop-
ment and the establishment of pregnancy.

FCHSD1 and RELL2 are located in a long run of 
homozygosity (ROH) detected in multiple Alpine-based 
dual-purpose breeds. These two genes are involved in 
the MAPK14/p38 cascade as well as apoptosis. Clathrin 
interactor 1 (CLINT1) plays a major role in the formation 
of coated vesicles. This gene was associated with milk 
yield, fat yield and percentage as well as protein yield and 
percentage in dairy cattle [84], while was linked to milk 
fat content in Simmental cows [43]. LSM11 and THG1L 
have not been previously reported in cattle breeds but 
have been associated with milk protein yield and milk 
protein percentages in Valle del Belice dairy sheep [40]. 
LSM11 being a small nuclear RNA that has processes 
the mRNA 3’-end prior to translation while THG1L is 
involved in the regulation of tRNA processing during 
translation.

The number of overlapping genes co-located in QTL 
shared by AFC and ICP, alongside the moderate genetic 
correlation (0.37) in this study, indicates fertility is initi-
ated, regulated and maintained by pleiotropic genetic 
mechanisms. Multiple genes in this study have no obvi-
ous direct link with fertility traits and this further 
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demonstrates the complexity of genetic mechanisms for 
traits such as AFC and ICP.

Conclusion
In this study numerous genes, ARAP3, CLINT1, 
FCHSD1, LSM11, PLCB1, RELL2, SM11 and THG1L 
were co-located in QTL that had a significant or sugges-
tive association with both AFC and ICP. Numerous QTL 
were identified across 14 autosomes for SC, the majority 
of which had never been previously reported to be linked 
to reproductive traits. The identification of different 
genes with similar molecular and biological characteris-
tics for these sex-limited traits reaffirms our understand-
ing that these lowly heritable traits are influenced by 
many genes each contributing a small amount to the vari-
ation in these traits’ expression. Some genes related to 
carbohydrate catabolic processes, cellular development, 
iron homeostasis, lipid metabolism and storage, immune 
response, ovarian follicle development and the regula-
tion of DNA transcription and RNA translation were 
identified as candidate genes for reproductive traits in SA 
Bonsmara cattle.

Methods
Genotypic data
Genotypes from 7,326 SA Bonsmara animals originating 
from one of five possible genotype arrays were available. 
A total of 1,950 animals were genotyped on the GeneSeek 
Genomic Profiler (GGP) 150K (140,113 SNPs), while 
597 animals were genotyped on the GGP 80K (76,883 
SNPs), 2,625 animals were genotyped on the Versa 50K 
(49,855 SNPs), 1,326 animals were genotyped on the 
SASB 50K (54,394 SNPs) with the remaining 828 on the 
ICBF IDB v.2 platform (52,445 SNPs). Only autosomal 
SNPs with a known base pair position, a call rate ≥ 0.90, 
a MAF ≥ 0.10 and did not significantly deviate from 
Hardy-Weinberg equilibrium (p > 0.001) were retained. 
All SNP locations were based on the UMD 3.1 genome 
build (GCF_000003055.6; [89]). Animals had a call rate of 
> 90%, while individuals with ≥ 0.95 identical genotypes 
were discarded as were families with more than 10% 
Mendelian errors. Quality control of SNP data was car-
ried out using PLINK v.1.9 [90].

Population stratification
Identical by state genetic distances between animals were 
computed through a MDS analysis with PLINK v.1.9 [90]. 
The analysis involved a total of 7,231 SA Bonsmara geno-
types at a density of 24,216 SNPs that are truly genotyped 
across all five arrays. Visualisation of the data, reduced 
into two dimensions, allowed for the detection of pos-
sible population stratification as well as outliers. The 
remaining SA Bonsmara genotypes (4,403 males, 2,725 

females) were imputed to 120,692 SNPs using FImpute 
v.3 [91].

Phenotypic data
The SA Bonsmara minimum breed standards [92] indi-
cate that a heifer must calve before 39 months of age and 
the first ICP cannot exceed 790 days. SA Bonsmara ani-
mals occur throughout all nine of South Africa’s prov-
inces and are mainly raised in extensive natural pasture 
systems. The recording of weaning weight (205-day 
weight) is compulsory and facilitates the selection of 
bulls for post-weaning growth tests. Scrotal circumfer-
ence is measured on bulls participating in central and 
farm-based growth tests at around 12 to 18 months of 
age. Standardised phenotypes for AFC (days), first ICP 
(days), and SC (millimetres) were available on 347,749 
records for AFC, 206,505 for records ICP and 238,454 
records for SC in individual SA Bonsmara animals from 
the LOGIX Genetic Evaluation System [93]. This was 
accompanied by pedigree information on 2,135,235 ani-
mals dating back to 01 June 1949, as well as data on the 
contributing systematic environmental effects associated 
with these traits.

Deregression of breeding values
In order to predict estimated breeding values, a bivariate 
animal linear model for AFC and ICP and a univariate 
animal linear model for SC were defined as follows;

 y = Xb +Zu + e

where,
y is the vector of phenotypes for AFC, ICP and SC;
b is a vector of fixed effects which include sex, herd, 

birth month and year, age in days at measurement of the 
phenotype covariate (linear regression);

u is a vector representing the direct additive-genetic 
effects, with u ~ N(0,A σ2

u ), where A is the pedigree-based 
matrix and σ2

u  is the direct genetic variance;
e represents the residual, where e ~ N(0,Iσ2

e ), with 
σ2
e  representing the residual variance and I the identity 

matrix;
X and Z are incidence matrices for b and u respectively.
Estimation of variance components for the animal 

model stated above was calculated using restricted esti-
mated maximised likelihood (REML) optimised with 
quasi-Newton procedure using analytical gradients 
in Variance Component Estimation (VCE) [94] soft-
ware. MiX99 [95] was used to predict breeding val-
ues for AFC, ICP and SC using the same model in the 
estimation of variance components. Effective record 
contributions (ERCs) for each animal and trait were gen-
erated as described in [96] using the reversed reliability 
approximation method in APaX99 [97]. The EBVs of the 
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genotyped animals for each trait were then deregressed 
using the Secant method [98] in MiX99 [95] alongside 
the generated ERC. Deregressed EBVs (DEBVs) were 
weighted using the formula set out by [99];

 

wi =
1− h2[

c +
1−r2i
r2i

]
h2

where,
w is the weighting factor of the ith animal with a DEBV;
h2 is the heritability estimate for the respective traits,
r2 is the reliability of the DEBV for the ith animal for a 

specific trait and,
c is the proportion of genetic variance not accounted by 

the SNPs with a value of 0.90 being used for all weighting 
factors between all the traits under analysis.

Only animals with an ERC ≥ 0.50 and a reliability ≥ 0.01 
were retained for each trait analysis.

Association analyses
A genomic relationship matrix (GRM) was constructed 
for each trait using the VanRaden method 1 [100]. Addi-
tive and residual genetic variances for each trait were 
computed via genomic REML (GREML) using GCTA 
v1.94 [101]. Weighted DEBVs were regressed on each 
SNP individually using a linear mixed model in WOM-
BAT [102].

 y = µ+ SNP + a + e

where,
y is the vector of phenotypes, the weighted DEBV;
µ is the fixed effect of the population mean;
SNP is the fixed effect of allele dosage for each SNP 

(coded as 0, 1 or 2);
a is the random effect of the animal, where a ~ (0,Gσ2

a ), 
with σ2

a  representing the additive genetic variance of the 
animal;

G is the genomic relationship matrix among animals,
e represents the residual, where e ~ N(0,Iσ2

e ),
with σ2

e  representing the residual variance and I the 
identity matrix.

The t-test statistics for all SNPs were obtained and 
subsequently transformed into lower tail p-values. To 
minimise false positives, the Benjamini-Hochberg False 
Discovery Rate (B-H FDR) method was applied to each 
SNP. SNPs with a P ≤ 4 × 10− 7 were considered to be 
genome-wide significant as per Bonferroni correction, 
with SNPs with a P ≤ 4 × 10− 6 being deemed suggestive. 
Manhattan plots, Figs.  3, 4 and 5, were generated in R 
using the qqman [103] package.

Defining QTLs and candidate genes
The extent of LD among significant SNPs (P ≤ 4 × 10− 7) 
was estimated, as was the pairwise LD among all SNPs 
within 5 Mb up and downstream of the significant SNP 
[104]. The start and end of each QTL was defined by 
SNPs furthest up and downstream of the significant SNP 
and had an r2 > 0.50 with other significant SNPs. If any 
QTL were deemed to be overlapping, these were consoli-
dated into one large QTL. If no SNPs were in LD with 
the significant SNP, that SNP was deemed a quantitative 
trait nucleotide. Identified QTL were then explored using 
ENSEMBL (https://www.ensembl.org/) according to 
the UMD 3.1 genome build in order to detect candidate 
genes residing within and Panther [105] was used to list 
the biological and metabolic functions and/or processes 
of possible genes.
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