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Summary

There is a considerable appeal for interventions that can selectively reduce either the

visceral or subcutaneous white adipose tissues in humans and other species because

of their associated impact on outcomes related to metabolic health. Here, we

reviewed the data related to the specificity of five interventions to affect the two

depots in humans and rodents. The interventions relate to the use of dietary proteins,

monounsaturated fatty acids, polyunsaturated fatty acids, calorie restriction, or bar-

iatric surgery. The available data show that calorie restriction and bariatric surgery

reduce both visceral and subcutaneous tissues, whereas there is no consistency in

the effect of monounsaturated or polyunsaturated fatty acids. Dietary proteins, more

specifically, whey proteins show efficacy to reduce one or both depots based on how

the proteins interact with other macronutrients in the diet. We provide evidence that

this specificity is related to changes in the composition and the functional potential

of the gut microbiota and the resulting metabolites produced by these microorgan-

isms. The effect of the sex of the host is also discussed. This knowledge may help to

develop nutritional approaches to deplete either the visceral or subcutaneous adi-

pose tissues and improve metabolic health in humans and other species.
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1 | INTRODUCTION

All mammals attempt to regulate calorie (energy) intake and usage

(in tissues), so that at any given time, there is no energy excess or def-

icit. However, this is hard to achieve because of the energetic chal-

lenges faced by organisms on a daily basis. The imbalances in energy

are counteracted by the ability of the adipose tissue to store the

excess energy as lipids and mobilize these at times of energy deficit to

sustain functions of tissues. This role is assigned to the white adipose

tissues (WATs), which can be broadly categorized as visceral WAT

(vWAT) or subcutaneous WAT (sWAT).1 Interestingly, it is widely rec-

ognized that excess lipid accumulation in the vWAT increases the risk

of metabolic syndrome, while storage in the sWAT, in particular in the

thigh, has reduced risk of this negative health outcome,1,2 albeit evi-

dence also suggests that the deep sWAT in the abdominal area could

be an exception.3 Thus, interventions that can selectively reduce the

vWAT or the specific tissues associated with sWAT, can provide sig-

nificant health benefits. Additionally, and beyond the health implica-

tions, there is a societal burden to maintain specific body shape for

males and females that store dietary fat differently.4 Of note, males

tend to store excess lipids in the vWAT while deposition in the

females is mainly targeted toward the sWAT.4 Furthermore, although

there is on average a higher calorie intake in males than females,

females have a greater overall body fat.4,5 Thus, for both health and
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cosmetic reasons, there is a demand for safe and cost effective interven-

tions. Here, we reviewed evidence for types of interventions that can

selectively reduce the vWAT or the sWAT. The interventions are con-

sumption of dietary proteins (Tables 1 and 2), monounsaturated fatty

acids (MUFAs),28–32 or polyunsaturated fatty acids (PUFAs)32–41

(Table S1). We also assessed the effect of calorie restriction (CR)42–51 and

bariatric surgery (Rou-en-Y gastric bypass; RYGB),52–57 (Table S1). Of

note, we highlight the mechanisms that are likely to mediate effects of

dietary proteins on the vWAT and the sWAT (Tables 1 and 2).

1.1 | Adipose tissues differ in location and
function

Adipocytes exist as white, brown, and/or beige.58,59 While mammals

differ in the size and location of the adipose tissues, their overall func-

tionality appears to be preserved across the Animal Kingdom. Notably,

the WAT functions to regulate energy balance, whereas the brown

adipose tissue (BAT), which is located in several regions including the

interscapular region and around the kidneys, is involved in non-

shivering thermogenesis.60,61 While the existence of WAT and BAT

have been known for some time, the beige (or brown in white) is a

more recent discovery, presumably because these cells are found

interspersed within the WAT, and can be induced to achieve a ther-

mogenic potential similar to BAT by external stimuli such as exposure

to cold, exercise, or tissue injury.58

The vWAT is located throughout the body and can be further sub-

categorized ascardiac WAT (epi-, peri-, and para-cardial), omental WAT

(oWAT), mesenteric WAT (mWAT), retroperitoneal WAT (rWAT), peri-

renal WAT (pWAT), periaortic, or the gonadal WAT, which in males, is

the epididymal WAT (eWAT) and in females, the periovarian.62 The

sWAT compartment is located under the skin, which exists as anterior

(suprascapular and interscapular) or posterior, the latter as dorsolumbar,

inguinal (iWAT) or the gluteal.62,63 While this classification is based on

studies conducted in rodents, there are some similarities (e.g., mWAT

and rWAT) and differences with corresponding tissues in humans. Of

note, the humans do not have the perigonadal fat that rodents have,

and the sWAT in humans is located in the abdomen and the gluteofe-

moral regions, whereas in rodents, the sWAT can be found in the ante-

rior and posterior regions as detailed above.64 Interestingly, and in

contrast, the BAT and beige show remarkable topological similarity

between humans and rodents.65 The comparison between species is

further complicated by the fact that there is no formal definition as to

which tissues constitute vWAT and sWAT. Accordingly to one classifi-

cation, the vWAT drain blood into the hepatic portal vein, while sWAT

drain blood systemically into the vena cava. According to this classifica-

tion, rWAT is sometimes excluded as vWAT and yet its metabolic activ-

ity is more similar to vWAT than sWAT.62

Twin studies suggest a substantial (>75%) genetic contribution to

the variance in body mass index (BMI) in humans.66,67 Indeed, we know

that distinct genetic programs determine the differences in functionality

and location of the adipose tissues,68–71 which show diverse neuronal

innervation.72–74 These differences allow the adipose tissues to have

distinct hyperplastic potential,75 respond differently to nutrient quantity

and quality,76–78 via their access through the surrounding vasculature,79

leading to increased cell number by cellular proliferation and differentia-

tion (hyperplasia), and/or cell expansion because of excess storage

(hypertrophy).75 For the sWAT, the tissue expansion occurs by hyper-

plasia and hypertophy, while the vWAT grows by cellular hypertro-

phy.62 Additionally, the sex of the individual, puberty, and the

composition of the gut microbiota all contribute to the differences in

functionality of adipose tissues, as discussed below. Thus, alteration in

the mechanisms that link these different components can provide a

route to selectively alter the mass of the sWAT or the vWAT.

1.2 | Selectivity of dietary proteins with respect to
affecting either the vWAT or sWAT

It is generally believed that the obesity crisis has arisen, at least in part,

from the increased intake of calories, mainly from dietary fat,80–83 rather

than due to a declined energy expenditure.84 In contrast, intake of die-

tary proteins has remained largely stable in humans, roughly around

15% of total intake.80,83 This suggests that intake of dietary protein is

largely regulated in humans and accordingly, the protein leverage

hypothesis was formulated based on the data that intake of diets low

(5%) in proteins caused a higher energy intake compared to intake of

diets high (30%) in proteins.85,86 However, data also exist that contradict

this hypothesis with some studies showing no effect on energy intake

(Tables 1 and 2). Thus, there is a renewed focus on assessing if protein

quality, within the range that humans consume this macronutrient,

affects satiety,87–90 energy expenditure,90,91 and/or feed

efficiency,8,15,92,93 as this in turn would affect energy balance and adi-

posity. When assessing the effects of different proteins, it is important

to note that dietary proteins differ substantially in terms of their amino

acid composition including branch chain amino acids (BCAAs),94,95 and

how they are released upon digestion and how they are absorbed into

the blood stream.96 Of note, whey proteins derived from milk have high

levels of BCAA compared to casein proteins, derived also from the same

source, as well as compared to many plant proteins.94 Additionally, whey

proteins are digested quickly and the amino acids are absorbed much

more rapidly than most other dietary proteins.96 Thus, while excess

availability of BCAA has been shown to cause detrimental metabolic

health effects,97,98 intake of dietary proteins rich in BCAA (e.g., whey

proteins) provide many health benefits including improved body compo-

sition.15,16,91,99,100 Here, we highlight how variation in protein quality

and associated amino acids can selectively affect either the vWAT or

sWAT and how interactions with other macronutrients in the diet (die-

tary fat to carbohydrate [F/C] ratio) can further modify this effect.

1.2.1 | Human studies

The impact of protein quality on vWAT and sWAT have been investi-

gated using different doses (0.63 up to 60 g/d), over a range of dura-

tions (8–20 weeks), using both or one sex (only females), and in
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individuals of different ages who are either overweight or obese and

with different BMIs (Table 1). In these studies, the effects of the

tested dietary protein were compared to baseline measurements or to

a different control protein, where the magnitude of the effect on the

vWAT and/or the sWAT was calculated using a wide variety of tech-

niques (Table 1). Despite these differences, a pattern emerges

highlighting an effect of protein quality on the two depots. Notably,

while milk proteins (22 g/d), which are a mixture of whey and casein

proteins,101 reduced both vWAT and sWAT in individuals who were

obese after 20 weeks of intake compared to baseline measurements,6

intake of a higher quantity of whey (60 g/d) alone reduced sWAT

without affecting vWAT7 (Table 1). In comparison to intake of soy

protein or carbohydrates, a similar dose of whey proteins reduced

waist circumference,8 suggesting an effect on the sWAT because of

the stronger correlation between waist circumference and the

sWAT than vWAT102,103 (Table 1). Switching the protein quality to

one of the nine individual proteins that constitute whey, notably

lactoferrin (Lf),101 and using the enteric-coated form of the protein

(E-Lf) to protect it from digestion in the upper digestive tract, also

switched the effect, which reduced vWAT,9 similar to intake of fer-

mented egg white,13 whereas intake of soy proteins reduced only

the sWAT12 (Table 1). The specificity of soy proteins to affect one

depot was not seen using the peptide β-conglycin, derived from soy

protein.11 Ultimately, these data suggest an effect of dietary protein

quality on the vWAT and/or sWAT. These observations are in con-

trast with intake of MUFA,28–32 PUFA,32–41 CR,42–51 or bariatric

surgery (RYGB),52–57 which affect both depots (CR and RYGB), or

show no consistency in their effects on either depot (MUFA and

PUFA) (Table S1).

1.2.2 | Rodent studies

Extending the findings from humans, the effects of protein quality

have been investigated in rodents in specific tissues associated with

the two depots, although it should be noted that the majority of these

studies focused on the vWAT (Table 2). Furthermore, there was a bias

toward using males (Table 2). However, these studies benefited from

being able to have greater control over the ingredients that can be

added into the diets to investigate the interaction between protein

quality and F/C ratio. While studies conducted in human show that

whey proteins specifically reduced sWAT in males and females who

are obese, when tested together as a group, or reduced vWAT in

females (Table 1), data from rats show that 32% (energy) protein

either as whey or the muscle from Kangaroo, were able to reduce

both vWAT and sWAT when compared to intake of 8% (energy) pro-

tein14 (Table 2). Interestingly, whey reduced both eWAT and pWAT,

whereas the meat from the Kangaroo significantly reduced the com-

bine weight of eWAT, rWAT and pWAT (Table 2). Similar data were

obtained when we compared consumption of 30% or 20% energy

from whey proteins to intake of casein in mice15,16 (Table 2). Since

the various studies referred above focused on the collective proteins

within whey and assessed effects at high F/C ratios, we then

investigated the effects of individual whey proteins on the two

depots. In the first series of investigations, using the same high F/C

ratio, 20% energy from bovine serum albumin (BSA), associated with

whey, reduced sWAT without affecting the eWAT compared to intake

of casein in mice,17 which contrasts with the impact of the collective

whey proteins, which affected both depots16 (Table 2). Interestingly,

this specificity was not seen with some other whey proteins, namely

Lf104 or lactalbumin,105,106 regardless of the control protein used in

mice. Other proteins have also been studied. Casein has been shown

to be more efficacious than chicken proteins, reducing eWAT but not

pWAT.20 Cod/scallop reduced eWAT, and pWAT/rWAT tissues and

with an added reduction in iWAT approximately by 50%.23 Collec-

tively, these data from studies conducted in rodents provide further

evidence that the quality of the protein in a diet enriched with high

F/C ratio affects the adipose tissue.

Extending the above line of investigation into the interaction

between whey proteins and F/C ratio, the same protein combination

as part of diet enriched with low F/C ratio reduced the eWAT without

affecting the sWAT in mice.18 Interestingly, in the latter case, re-

switching the animals fed a diet enriched in whey proteins from a low

to high F/C changed the specificity from eWAT to sWAT,16 but did

not regain the specificity to affect both depots, seen as part of intake

of whey proteins with high F/C ratio16 (Table 2). Similarly, the ability

of casein to reduce eWAT relative to the impact brought about by the

intake of chicken can be abolished by switching the diet from a high

to low F/C20 (Table 2). There was no difference in the ability of soy

proteins to reduce eWAT in rats fed diets with either high or low F/C

ratio24 (Table 2). These data suggested that the effects of some die-

tary proteins, and in particular whey, can be tailored to affect the

vWAT or sWAT by varying the F/C ratio. Extending this work, and

within the same high F/C diet, mice that drank water supplemented

with antibiotics and ingested whey had a greater loss of tissues com-

pared to mice that drank water without antibiotics, whereas the effect

was less for the same comparison in mice-fed casein19 (Table 2). This

further suggest that the related effects involve the gut microbiota,

which are impacted by the consumption of dietary proteins (see

below). Indeed, it may be that the microbial utilization of the digested

dietary proteins reduced (and modify) the direct impact of the

digested components on the host tissues.

In searching for the bioactivity associated with the effect of die-

tary proteins, data have emerged highlighting the importance of die-

tary amino acids. Of note, mice that ate hydrolysed casein in diets

high in F/C ratio reduced both depots relative to the impact of intake

of casein that was unhydrolysed.21 It has also been shown that sup-

plementing essential amino acids (EAAs) in place of casein in diets

high in F/C ratio reduced body weight and body fat in mice, although

the affected adipose tissues were not reported in this study25

(Table 2). Further studies have narrowed the impact to a specific

reduction of BCAA in the diet, which reduced both depots in mice fed

diets high in F/C ratio.26 Moreover, the specificity can be altered such

as to only reduce the iWAT in the subcutaneous depot by reducing

the BCAA in the diet in combination with phenylalanine.26 Interest-

ingly, this effect is lost when switched to diets low in F/C ratio,27 or
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can be reversed to cause a gain in weight (for the eWAT) if a low F/C

ratio is combined with a diet restricted in leucine27 (Table 2).

Given that whey proteins contain a high BCAA content,94 we

wondered how whey proteins can specifically affect the vWAT or

sWAT tissues, when reducing the BCAA in diets had a similar impact

on the two tissues.26,27 Some clues that might explain this paradox

came from analysis of the metabolite content in the caecal samples

collected from mice-fed whey proteins.15 The data show that inges-

tion of whey proteins relative to casein as part of a diet with a high

F/C ratio decreased levels of BCAA, in particular valine, in the caecum

in mice and that this change in the BCAA content was associated with

the reduction in body weight gain and fat mass.15 We have now

established that the gut microbiota are the primary cause of the

reduced BCAA seen with intake of whey (see below).

1.3 | Potential mechanisms

1.3.1 | Calorie intake

There is evidence supporting the protein leverage

hypothesis,85,86,107–109 where the effects relate, at least in part, to the

production of satiety related hormones.89,110–113 However, there is

also accumulating evidence that dispute the protein leverage hypoth-

esis. As detailed above, there are studies showing that dietary pro-

teins have no effect on energy intake or that it increases intake, and

yet, the effects on vWAT or the sWAT are still sustained (Tables 1

and 2). For instance, enteric coated Lf reduced vWAT9 and intake of

whey reduced sWAT7 without changing intake in humans (Table 1).

Similarly, the hydrolysed form of casein21 or intake of fish

(cod/scallop),114 reduced both vWAT and sWAT via a mechanism that

did not change energy intake in mice (Table 2). In some instances,

specificity to affect tissues was seen even during increased intake of

energy,16–18 albeit this was not consistently reported.105,115 These

data suggest that the effects of dietary proteins to impact on either or

both depots, are not dependent on energy intake. In fact, subjecting

animals of different species to an imposed reduction in calorie intake

reduced both v- and sWAT simultaneously42–51 (Table S1), whereas

intake of dietary proteins retained specificity to affect one or both tis-

sues, based on the interaction with other macronutrients.

1.3.2 | Gut microbiota

The importance of the gut microbiota for energy harvest was demon-

strated by the finding that germ-free mice consume more food

despite a reduced body weight gain and body fat.116 Further evalua-

tion of the relationship between diet, the gut microbiota and energy

balance has shown that dietary fat is the main cause of changes in the

composition of the gut microbiota in humans and mice15,117 but, in

addition, in humans, there is a measurable effect of protein quality

when the source of dietary fat is separated into high and low satu-

rated forms.117 Similar effects were notable in mice when fed whey

proteins in diets with a high15,16 or low F/C ratio.18 Focusing on whey

proteins, and within diets high in F/C ratios, the impact that reduced

both vWAT and sWAT also altered the beta diversity in the gut micro-

biota compared to intake of casein, with some difference in alpha

diversity.16 Mice-fed whey or casein that were administered antibi-

otics, supplemented in water, had a depleted gut microbiota and had

reduced adipose tissues, with the impact been greater in mice con-

suming whey (Table 2), suggesting a potential role for the gut micro-

biota in modifying the effects of source of protein on specific

depots.19 Further evidence in support of this hypothesis came from

our work with diets enriched with whey or casein and with a low F/C

ratio. In this experimental setup, whey proteins reduced only the

eWAT and not the sWAT, and the impact on the gut microbiota now

included changes in both alpha and beta diversities.18 A switch from

low to high F/C ratio that also switched the specificity of whey pro-

teins onto the sWAT, resulted in the low impact on alpha and beta

diversities.16 Of note, the abundance of Lactobacillus murinus and its

functional pathways were associated with the effect of whey in diets

high in F/C ratio but not in animals that had a previous history of con-

suming a diet with a low F/C ratio,16 which we know to affect the

sWAT.18 These data generated from mice from adolescent to adult-

hood (15 weeks old), were further extended by feeding the proteins

at a much older age (20 weeks). In these older mice, increasing the

F/C ratio with a much higher protein quantity (30% whey proteins),

altered the bacterial species, with increased abundance of Bacteroides

uniformis and Akkermansia muciniphila15 and increased the pathways

associated with degradation of proteinogenic amino acids as well as

synthesis of lipids in the gut microbiota.15 This effect was reflected in

the caecal metabolome, which differed between mice-fed whey or

casein.15 Of note, and consistent with the metabolism of amino acids

by the gut microbiota, the concentration of caecal BCAA, specifically,

valine, decreased in the group-fed whey, as detailed above.15 Further-

more, and consistent with the increased activity of the pathways in

microbiota related to lipid biosynthesis, the caecal availability of

medium and long chain fatty acids increased.15 This metabolite profile

has been shown to reduce both vWAT and sWAT in humans118

(Table S1), where the effect is accentuated by intake of whey,92 likely

due to changes in the gut microbiota.15 In fact, transfer of microbiota

from mice-fed whey to mice-fed casein, reduced weight gain among

the recipients by 90%.15 The data highlight the importance of the gut

bacteria and its functional pathways in mediating the effects of whey

proteins, although data are lacking for how these microorganisms

mediate other protein effects particularly related to humans.117

1.3.3 | Sex

There is a striking difference in the body composition between males

and females, with females having a higher percentage of body fat than

males.4,119,120 Yet, males consume more energy,5 whereas females

have greater clearance of free fatty acids121 and glucose metabolism,

which could explain why males tend to have a higher prevalence of

type 2 diabetes.119,122 This suggests the existence of mechanisms that
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partition energy differently in males and females. These mechanisms

include genetic contributions119,123,124 and sex hormones,119 which

are further modified by the diet.78,122 Of note, feeding a diet high in

fat to males and females differentially affected genes involved in

glucose and fatty acid transport,125 lipid accumulation and synthesis,

as do fasting and refeeding.126 Extending the effect of diet, there is

now growing evidence that the composition of the gut microbiota

also segregate according to sex.127–129 The sex specificity in the gut

microbiota is further highlighted by the finding that the transfer of

fecal matter from a 32-year woman to male and female rats that

were germ-free resulted in clustering of microbiota according to the

sex of the host animal.130 Interestingly, it has been shown that

effects that are independent of sex predispose the gut microbiota to

differences that are specific to the sex.131

There is limited data on how the sex modifies the effects of die-

tary proteins on the vWAT and sWAT as majority of the studies have

been undertaken in groups that included both sexes in humans and in

males only in different rodent species (Tables 1 and 2). Of note, only

six studies tested the effects of dietary proteins on both sexes

(together) in humans, whereas three undertook similar work only

recruiting females and one with only males (Table 1). In rodents, only

two studies used females but, in both cases, there were no effects of

the tested protein (glycomacropeptide and salmon) on the two

depots.115,132 Despite this, there are some interesting observations

that need to be highlighted. For instance, while above studies show

that whey proteins reduce sWAT in both male and female subjects

that were obese when tested together as a group, studies undertaken

with only females show that whey proteins reduced only the vWAT

(Table 1).10 Similarly, effects of casein were confined to the vWAT in

both sexes when tested together,11 but when only females were used,

the effect was seen only in the sWAT12 (Table 1). In the latter

instance, it is uncertain if the effect on the sWAT relates to the life

stage of the females (postmenopausal). Regardless, and in contrast to

all other proteins mentioned above, intake of dietary casein increased

the size of the adipose tissues in humans (Table 1). These data suggest

that the effects of dietary protein on the vWAT and sWAT can further

be modified by the sex of the individual, which may be related to the

difference in energy and macronutrient intake exhibited by females as

compared to males.5 Indeed, the effects of whey proteins on energy

intake, gastric emptying, and the production of gut hormones are

influenced by the sex of the individual.133 In trying to untangle these

different possibilities of interactions between protein quality and sex,

and to determine the associated mechanisms of action, we showed

that microbiota associated with intake of casein in mice, as part of

diets high in F/C ratio, do in fact increase weight gain in males in the

same species.15 To explore the effect of sex, we investigated for

metabolites that are specific to each sex. In this unpublished study,

we fed male and female mice that are of adolescent age, 20% (energy)

casein for 4 weeks and analyzed the caecal contents by metabolomics

approach as detailed previously.15 Data show the presence of a

unique molecule, which was more abundant in females than in males

(Figure S1A). Moreover, in virgin females, the abundance of this

molecule can be further increased by feeding whey proteins

(Figure S1B), where the effect was sustained at lactating females that

had reduced eWAT and rWAT, based on the effect of protein quality

and the energetic demand of lactation (Figure S1C). The data provide

the incentive to search for other metabolites with the view to deter-

mining if these have functional links with the vWAT or sWAT.

1.3.4 | Future studies

Based on data presented for humans in Table 1, there is a need to focus

attention on males and females separately, and to assess the effect of

protein quality on the two depots in humans consuming diets high or

low in F/C ratio as free living individuals. Similarly, in studies related to

rodents, the bias toward using males need to be addressed (Table 2). In

both species, more work is needed to determine if the sensory aspects

of protein quality affect energy partitioning in the two depots. More-

over, and exploiting the similarities and differences in the gut micro-

biota between humans and rodents,134,135 which are reflected in the

caecal and plasma profiles between species,136,137 it might be then pos-

sible to understand how cross species transfer of microbiota (from the

humans to rodents in each sex) could modify vWAT and/or the sWAT

compared to the effects seen within the species.

2 | CONCLUSION

Based on the limited studies in humans and the more extensive

work undertaken in rodents, evidence suggest that dietary

proteins, in particular whey proteins, can selectively reduce either

the vWAT or sWAT. Studies undertaken in rodents further show

that dietary proteins interact with other macronutrients in the diet,

and change the above outcomes, where the effects are likely to be

mediated by the associated gut microbiota and the metabolites

produced by these microorganisms, and accordingly to the sex of

the host. The data provide direction to further investigate and

develop dietary approaches to improve metabolic health in

humans and in other species in a way that has not been achieved

to date.
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