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Abstract

Embryo transfer to the uterine horn contralateral to the ovary containing the corpus luteum (CL)
negatively impacts pregnancy establishment in cattle. Our aim was to compare the transcriptome
and ability of the ipsilateral and contralateral uterine horns to support preimplantation conceptus
survival and growth to day 14. In experiment 1, endometrial samples from both horns were col-
lected from synchronized heifers slaughtered on day 5, 7, 13, or 16 post-estrus (n = 5 per time)
and subjected to RNA sequencing. In experiment 2, 10 day 7 in vitro produced blastocysts were
transferred into the uterine horn ipsilateral (n = 9) or contralateral to the CL (n = 8) or into both
horns (i.e., bilateral, n = 9) of synchronized recipient heifers. Reproductive tracts were recovered
at slaughter on day 14, and the number and dimensions of recovered conceptuses were recorded
for each horn. A total of 217, 54, 14, and 18 differentially expressed genes (>2-fold change, FDR
P < 0.05) were detected between ipsilateral and contralateral horns on days 5, 7, 13, and 16, re-
spectively, with signaling pathways regulating pluripotency of stem cells, ErbB signaling pathway,
and mTOR signaling pathway amongst the top canonical pathways. Site of embryo transfer did
not affect recovery rate (48.0%, 168/350) or length of conceptuses (mean ± SE 2.85 ± 0.27 mm).
Although differences in gene expression exist between the endometrium of uterine horns ipsilat-
eral and contralateral to the CL in cattle, they do not impact conceptus survival or length between
day 7 and 14.
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Summary Sentence

Differences in endometrial gene expression exist between the ipsilateral and contralateral uterine
horns in cattle, but conceptus growth to day 14 is not different between the horns.

Key words: transcriptome profiling, endometrium, RNA-sequencing, conceptus, cattle.

Introduction

Pregnancy loss is a major cause of reproductive failure in cattle.
Despite a high fertilization rate (approximately 90%), only 30%
or less of high-producing lactating cows calve after a single artifi-
cial insemination [1]. Much of this embryonic loss occurs before
maternal recognition of pregnancy, encompassing the period be-
tween fertilization and day 16 after insemination [2], and is greatest
from fertilization to day 7 in high-producing dairy cows [3]. Dur-
ing the preimplantation period, the blastocyst undergoes significant
morphological changes, developing sequentially from a spherical to
ovoid then tubular and finally filamentous-shaped structure that pri-
marily involves growth of the trophectoderm cells [4]. The critical
process of blastocyst elongation is initiated between days 12 and 14,
with formation of a filamentous type conceptus by day 16. The uter-
ine endometrium plays a key role in driving the elongation process
via secretion and production of histotroph into the uterine luminal
fluid (ULF) (see [5–7]). Spatiotemporal alterations in the endome-
trial transcriptome and histotroph composition are hypothesized to
establish uterine receptivity to implantation and, in turn, are pivotal
to the success of pregnancy [8]. These modifications are primarily
regulated by progesterone (P4) and then influenced by interferon-
tau (IFNT) from the elongating conceptus beginning on day 16 [5,
9, 10].

Elevated concentrations of circulating P4 in the period immedi-
ately after conception have been associated with advanced concep-
tus elongation [11–13], increased IFNT production [14], and higher
pregnancy rates in cattle and sheep [15–17]. Differences in endome-
trial tissue P4 concentrations between different regions of the same
uterine horn and between the horns ipsilateral and contralateral to
the ovary bearing the corpus luteum (CL) during the luteal phase
have been reported [18–22], indicating a local effect of the CL on P4
concentrations in the bovine endometrium. Progesterone-associated
spatiotemporal changes in the transcriptome of the endometrium
[23–25] and protein composition of the ULF [26–29] have been
reported in cattle. Several studies have described a local counter-
current transfer system through which steroid hormones may be
transported from the ovarian vein to the ovarian artery, which is
connected to a branch of the uterine artery by a prominent anasto-
mosis in cattle [30, 31] supplying the oviduct and uterine horn (see
[32] for review). This system may control the dynamics of the re-
gional expression of P4-stimulated genes generating different molec-
ular microenvironments in the bovine uterus throughout the estrous
cycle.

Embryo transfer studies established that the incidence of embryo
loss is higher following transfer to the uterine horn contralateral to
the ovary containing the CL compared to transfer to the ipsilateral
horn [33–35] (see Supplemental Table S1). Whether these differ-
ences are manifest in conceptus growth and elongation in the critical
window preceding maternal recognition of pregnancy is unknown.
Knowledge of differences in gene expression and ULF composition
between the uterine horns during the estrous cycle could further
enhance our understanding of uterine receptivity and the process
of conceptus elongation, key events for the maternal recognition
of pregnancy, and, in turn, successful pregnancy establishment. We

hypothesized that differences in the endometrial transcriptome be-
tween the ipsilateral and contralateral horns throughout the cycle
exist, and those differences would be correlated with differences in
conceptus elongation after embryo transfer. Specifically, the objec-
tives here were to compare the ipsilateral and contralateral uterine
horns in terms of (i) global endometrial gene expression during the
luteal phase using RNA-sequencing (RNA-Seq) technology and (ii)
the ability to support conceptus growth and elongation.

Materials and methods

All experimental procedures involving animals were approved by the
Animal Research Ethics Committee of University College of Dublin
and licensed by the Health Products Regulatory Authority, Ireland,
in accordance with Statutory Instrument No. 543 of 2012 (under
Directive 2010/63/EU on the Protection of Animals used for Scientific
Purposes).

Experiment 1
Animal model
The experimental model used has been previously described by
Carter et al. [11] and Forde et al. [24]. Briefly, the estrous cycles
of cross-bred beef heifers were synchronized using an 8-day intrav-
aginal P4 device (PRID R©E, 1.55 g P4, Ceva Santé Animale) with a
2 ml intra muscular injection of a synthetic equivalent of natural
gonadotrophin releasing hormone (Ovarelin R©, Ceva Santé Animale,
equivalent to 100 μg Gonadorelin) administered on the day of PRID
insertion. One day prior to PRID removal, all heifers received a
5-ml intramuscular injection of a natural prostaglandin F2 alpha
(Enzaprost R©, Ceva Santé Animale, equivalent to 25 mg dinoprost)
to induce luteolysis. Only those heifers observed in standing estrus
(day 0) were used. For tissue collection, heifers were slaughtered
at one of four time points during the luteal phase (day 5, 7, 13
and 16 post-estrus). In pregnant animals, these days correspond to
key stages of early embryo development: (i) day 5 = 16-cell/early
morula-stage embryo (n = 5); (ii) day 7 = blastocyst stage (n = 5);
(iii) day 13 = ovoid conceptus at the initiation of conceptus elonga-
tion (n = 5); and (iv) day 16 = filamentous conceptus at the time
of maternal recognition of pregnancy (n = 5). Blood samples were
taken from the jugular vein for subsequent P4 measurement from
all heifers twice daily from day 0 to day 7 after estrus, and once
daily thereafter until slaughter. The P4 data were reported by Carter
et al. [11].

Tissue collection
The experimental design including details of tissue collection and
RNA-Seq analysis is shown in Figure 1A. On each day, the repro-
ductive tract of each heifer was recovered and placed on ice within 30
min of slaughter. The uterine horn ipsilateral (IPSI) and contralateral
(CONTRA) to the CL was flushed with 20 ml of PBS containing 5%
fetal calf serum (FCS). After flushing, both uterine horns were opened
longitudinally and strips of intercaruncular endometrium (approx-
imately 300 mg) were carefully removed from the cranial third of
each uterine horn and immediately immersed in 1:5 w/v of RNAlater
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Figure 1. (A) Experimental design for tissue collection and RNA-Seq analysis. Only heifers observed in standing estrus (day 0) were used. Heifers were assigned
to slaughter on either day (D) 5, 7, 13, or 16 of the estrous cycle (n = 5 per day) and endometrium samples from ipsilateral (Ipsi) and contralateral (Contra) horns of
each animal were recovered. (B) Experimental design for the generation of day 14 embryos. GnRH = gonadotrophin releasing hormone; PGF2α = prostaglandin
F2α; ET = embryo transfer; P4 = progesterone; IVM = in vitro maturation; IVF = in vitro fertilization; IVC = in vitro culture; blast = blastocyst. Fresh day 7 (n = 10)
in vitro produced blastocysts were transferred to either (i) both horns of the same synchronized heifer (bilateral transfer, BI; n = 9 heifers) or to either (ii) the
ipsilateral (IPSI; n = 9 heifers) or (iii) the contralateral (CONTRA; n = 8 heifers) horn of a synchronized heifer (unilateral transfer).

(Sigma). Endometrial samples were then transported on ice back to
the laboratory and stored at 4◦C for 24 h. Excess RNAlater was re-
moved and samples were placed into new tubes and stored at –80◦C
until they were analyzed.

RNA extraction and RNA-sequencing
Total RNA extraction was carried out as described previously by
Forde et al. [24]. Briefly, total RNA was extracted from approx-
imately 100 mg of endometrial homogenate using Trizol reagent
(Invitrogen, Carlsbad, CA) per the manufacturer’s instructions. On-
column DNase digestion and RNA clean-up was performed us-
ing the Qiagen mini kit (Qiagen). The quantity and quality of
RNA were determined using the Nano Drop 1000 (Thermo Fisher
Scientific) and the Agilent Bioanalyzer (Agilent Technologies), re-
spectively. Only samples with an RNA integrity number > 8.0
were used for RNA-Seq analysis. RNA concentration was deter-
mined by quantitative high-sensitivity RNA analysis on the Frag-

ment Analyzer instrument (DNF-472; Advanced Analytical Tech-
nologies, Inc.). RNA library preparation and sequencing was con-
ducted by the University of Missouri DNA Core facility as described
previously [36].

Data analysis
Raw sequences (fastq) were subjected to quality control (QC) us-
ing windowed adaptive quality trimming approach implemented in
fqtrim (https://ccb.jhu.edu/software/fqtrim/). The quality reads were
then mapped to the bovine reference genome UMD3.1 using Hisat2
mapper (https://ccb.jhu.edu/software/hisat2/), which is a fast and
sensitive alignment program for next-generation sequencing data
[37]. Read counts mapping to each gene were determined from
the mapping data using FeatureCounts [38]. Differential expression
analysis between sample groups was performed by robustly fitting
the expression data to a generalized linear model using edgeRrobust
[39]. Functional prediction of genes was assessed by mapping the
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genes to KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
ways. Significant impact of differentially expressed genes (DEGs)
on signaling pathways was assessed by analysis of Pathway Regula-
tion Score (PRS) as described previously [40]. This topology-based
pathway analysis was conducted using ToPAseq package [41]. The
gene ontology (GO) analysis was performed using PANTHER (pan-
therdb.org). All statistical procedures were performed in R.

Experiment 2
Animal model
The experimental design is illustrated in Figure 1B. Thirty cross-bred
beef heifers (Charolais or Limousin cross), 23.7 ± 2.6 months old
and 612.6 ± 26.1 kg (mean ± SD), were used. All animals were
housed indoors on slats for the duration of the experiment (August-
September 2015) and were fed a diet consisting of grass silage and
maize silage supplemented with a standard beef ration. All heifers
were ultrasound scanned immediately before initiation of the syn-
chronization protocol using a portable ultrasound machine (Easi-
ScanTM; BCF Technology Ltd) fitted with a 4.5 to 8.5-MHz linear
array transducer in order to examine the reproductive tract. Only
those animals free of reproductive diseases detectable by ultrasonog-
raphy were used. Recipient heifers were scanned immediately before
embryo transfer for CL assessment (size and side). Estrous cycles
were synchronized as described in experiment 1. Only those heifers
observed in standing estrus (day 0) were used as embryo recipients
7 days later. Fresh day 7 (n = 10) in vitro produced blastocysts were
pooled before being loaded into straws for transcervical transfer into
one of three uterine sites: (i) both horns (bilateral transfer, BI; n = 9
heifers); (ii) the ipsilateral horn (IPSI; n = 9 heifers); or (iii) the con-
tralateral horn (CONTRA; n = 8 heifers). In all cases, the embryos
were transferred as far forward (cranially) into each uterine horn
without causing any trauma.

Blood samples from the coccygeal vessels were collected for P4
measurement on the day of embryo transfer (day 7) and the day of
slaughter (day 14). Reproductive tracts were recovered, transported
to the laboratory within 2 h of slaughter, and gently dissected in or-
der to completely isolate each uterine horn. Each horn was indepen-
dently flushed with PBS containing 5% FCS (Sigma). The number,
dimensions (length and width), and site (ipsilateral or contralateral
horn) of recovered embryos were recorded; in addition, each CL was
dissected from the ovarian tissue, measured, and weighed.

In vitro embryo production
Blastocysts were produced in vitro as described previously [42].
Briefly, immature cumulus-oocyte complexes (COCs) were obtained
from ovaries of heifers and cows slaughtered at a local abattoir. The
COCs were washed and matured for 24 h in groups of 50 in 500 μL
TCM-199 supplemented with 10% (vol/vol) FCS and 10 ng/mL epi-
dermal growth factor (Sigma) at 39◦C under an atmosphere of 5%
CO2 in air with maximum humidity. Matured COCs were fertilized
using sperm at a concentration of 1 × 106 spermatozoa/mL. Semen
from the same bull was used throughout. Gametes were co-incubated
at 39◦C in an atmosphere of 5% CO2 in air with maximum humidity.
At approximately 20 h post insemination, presumptive zygotes were
denuded by gentle vortexing and cultured in synthetic oviduct fluid
droplets (25 μL; 25 embryos per droplet). Blastocysts for transfer
were removed from culture on day 7 (IVF = day 0).

Progesterone assays
After collection, blood samples were refrigerated (4◦C) for 12 to
24 h before being centrifuged at 1500 × g at 4◦C for 20 min. Serum
was separated and stored at –20◦C until analysis of P4 concentra-
tion by solid-phase radioimmunoassay using a PROG-RIA-CT Kit
(DIAsource ImmunoAssays S.A.) according to the manufacturer’s
instructions. The sensitivity of the assay was 0.05 ng/mL. The in-
terassay coefficients of variation for QC sample were 3.89% (low),
6.51% (medium), and 5.33% (high). The intra-assay coefficients of
variation were 9.73% (low), 9.51% (medium), and 8.65% (high).

Statistical analysis
Data were checked for normality and homogeneity of variance by
histograms, qqplots, and formal statistical tests as part of the UNI-
VARIATE procedure of SAS (version 9.1.3; SAS Institute, Cary, NC,
USA). Data that were not normally distributed were transformed by
raising the variable to the power of lambda. The appropriate lambda
value was obtained by conducting a Box–Cox transformation anal-
ysis using the TRANSREG procedure of SAS. The transformed data
were used to calculate P values. The corresponding least squares
means and standard error of the nontransformed data are presented
in the results for clarity. Conceptus related data and progesterone
concentrations (on day 7 and day 14, respectively) were analyzed us-
ing mixed model ANOVA (PROC MIXED of SAS). The model had
experimental treatment (IPSI, CONTRA or BI) as a fixed effect, and
heifer within treatment was included as a random effect. Differences
between treatments were determined by F tests using type III sums
of squares. The PDIFF command incorporating the Tukey test was
applied to evaluate pairwise comparisons between treatment means.
Values were considered to be statistically significantly different when
P < 0.05 and considered a tendency when P < 0.10.

RESULTS

Experiment 1
Overall transcriptional changes in the endometrium of the
ipsilateral and contralateral uterine horns
RNA sequencing of IPSI and CONTRA endometrial samples gener-
ated on average 51 million reads per sample. Raw read counts, the
number of reads obtained after QC, and mapping rates to reference
genome of individual samples are listed in Supplemental Table S2.
On average, 49 million reads were obtained after performing QC,
and they were used for mapping to the bovine reference genome (ap-
proximately 95.9% of mapping rate per sample). The read counts
were obtained for each protein coding gene, and they were subjected
to a principal component analysis for global survey of transcriptome
variation (Figure 2A).

The IPSI and CONTRA had distinct patterns of gene expression
on each day (i.e., day 5, 7, 13, and 16) with day 5 exhibiting the
most variation and day 16 being least variable (Figure 2). This was
mirrored in the numbers of DEGs identified between IPSI and CON-
TRA on day 5 (n = 217), day 7 (n = 54), day 13 (n = 14), and
day 16 (n = 18 DEGs) (Table 1). At Day 5, the transcriptome of the
CONTRA horn was similar between heifers whereas that of the IPSI
horn was more variable (Figure 2A). At Day 7, the difference in gene
expression between the two horns diminished, though differences
were still obvious (Figure 2A). In contrast at Days 13 and 16, there
was little or no distinction in the endometrial transcriptome of the
IPSI and CONTRA horns.
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Figure 2. (A) Principal component analysis of endometrial gene expression variation between uterine horns on different days of estrous cycle. The plot shows
that IPSI (I) and CONTRA (C) have distinct gene expressions on each day (day 5, black line; day 7 green line; day 13 blue line; day 16 red line), indicating the
source of greatest variation in the overall transcriptional profile is time. Further, IPSI exhibit significantly greater variation in gene expression (solid black line)
compared to CONTRA (dotted black line) on day 5. (B) Volcano plots of gene expression changes between uterine horns (IPSI and CONTRA) on day 5 (left) and
day 16 (right) of the estrous cycle. Genes in red show nonsignificant changes in expression and those in blue are differentially expressed (DE) genes that ≥2 log
fold changes in expression with false discovery rates ≥0.05.

Differentially expressed genes between IPSI vs. CONTRA
To identify genes that were significantly differentially expressed be-
tween IPSI and CONTRA, edgeR-robust analysis was conducted
with read count data for samples of the two groups at each given
day of the estrous cycle. The number of genes showing statistically
significant changes in expression levels (based on FDR < 0.05) are
listed in Table 1. Across all four time points, among the DEG, more
genes (∼10-fold) had higher expression in IPSI relative to CON-
TRA. The most up- and down-regulated DEGs at each day (>2-fold

change, FDR P < 0.05) are shown in Table 2 and Supplemental
Table S3A–D.

To understand the functional implication of DEGs between
IPSI and CONTRA, we performed GO analysis (Supplemental
Table S4a and b). One of the most enriched ontologies was pro-
tein deubiquitination, which was the top over-represented function
among DEGs at days 5, 7, and 13. At day 16, microtubule anchor-
ing was the most over-represented function among the significant
DEGs.
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Table 1. Number of significantly differentially expressed genes (increased vs decreased expression) identified from RNA-seq data analysis.

FDR P ≤ 0.05 FDR P ≤ 0.05 and FC ≥ 2

IPSI vs CONTRA IPSI vs CONTRA
Day Increased Decreased Increased Decreased

5 1964 624 201 16
7 1000 98 44 10
13 536 44 13 1
16 640 43 14 4

Ipsilateral endometrium
FDR P ≤ 0.05 FDR P ≤ 0.05 and FC ≥ 2

Day Increased Decreased Increased Decreased
5 vs 7 2675 2134 414 296
7 vs 13 2464 2958 387 633
13 vs 16 227 318 44 71

Contralateral endometrium
FDR P ≤ 0.05 FDR P ≤ 0.05 and FC ≥ 2

Day Increased Decreased Increased Decreased
5 vs 7 1763 1584 292 213
7 vs 13 2574 2982 476 657
13 vs 16 279 563 56 114

FDR: false discovery rate; FC: fold change in expression.

Temporal changes in the endometrial transcriptome between
IPSI and CONTRA
The main driver of gene expression changes in the endometrium was
time (i.e., day). More genes were differentially expressed between
days (e.g., day 5 vs day 7 vs day 13 vs day16) than between IPSI vs
CONTRA on a given day. Comparison of gene expression between
day 5 vs day 7, day 7 vs day 13, and day 13 vs day 16 indicated
that the largest temporal alteration in the transcriptome coincided
with the largest time interval (day 7 vs day 13) in both uterine horns
(Figure 3A). Lists of top 30 up- and downregulated DEGs between
day 5 vs day 7, day 7 vs day 13, and day 13 vs day 16 in IPSI and
CONTRA horns are provided in Supplemental Tables S5 and S6,
respectively.

To elucidate the temporal changes in endometrial gene expression
specific to each uterine horn, we compared the list of DEGs in IPSI
and CONTRA within time interval (i.e., DEGs in IPSI between day
5 and day 7 were compared with DEGs in CONTRA for the same
time interval, etc.). During the early luteal phase (day 5 vs day 7),
there were 431 (46%) and 226 (24.1%) DEGs unique in IPSI and
CONTRA, respectively (Figure 3B), while 279 (29.8%) were shared
in both uterine horns. In contrast, despite the higher number of
DEGs between day 7 and day 13, almost 50% of them (719) were
common to both horns, while 301 (21%) and 414 (28.9%) were
unique to IPSI and CONTRA, respectively (Figure 3B). During the
late luteal phase, there were 48 (22%) and 103 (47.2%) DEGs in
IPSI and CONTRA, respectively, with 67 (30.7%) in both uterine
horns (Figure 3B).

Signaling pathway impact analysis
In an attempt to gain insight into the underlying biology of DEGs
between uterine horns throughout the luteal phase of the estrous
cycle, a topology-based pathway analysis approach was used. The
top five canonical pathways associated with DEGs between IPSI and
CONTRA were involved in signaling pathways regulating pluripo-
tency of stem cells (73/138), progesterone-mediated oocyte matu-
ration (55/89), endometrial cancer (31/51), ErbB signaling path-
way (50/87), and mTOR signaling pathway (36/61) (Supplemental

Table S7). Signaling pathway impact analysis revealed that signaling
pathways regulating pluripotency of stem cells showed the high-
est pathway regulation score (nPRS) when IPSI was compared to
CONTRA irrespective of day (Figure 4). Specifically, on day 5 the
eight most significantly (q value < 0.05) dysregulated pathways be-
tween IPSI and CONTRA were (from greatest to least nPRS, Supple-
mental Table S8) pluripotency of stem cells (29.35), mTOR (7.24),
serotonergic synapse (5.47), melanoma (5.41), long-term depression
(4.45), prostate cancer (3.97), glioma (2.20), and endometrial can-
cer (2.07). On day 7 they were prostate cancer (11.50), pluripotency
of stem cells (9.79), insulin resistance (9.38), fatty acid degradation
(9.18), melanoma (8.64), RIG-I-like receptor (5.67), mTOR (5.64),
and adipocytokin (5.05). On day 13 only pluripotency of stem cells
(4.67) was dysregulated. Finally, on day 16 the top three dysreg-
ulated pathways were pluripotency of stem cells (14.15), thyroid
cancer (9.17), and mTOR (7.22).

To identify those pathways significantly (q value < 0.05) that
were also dysregulated across the cycle in each uterine horn, path-
way analysis was carried out for the DEGs between day 5 vs day
7, day 7 vs day 13, and day 13 vs day 16 (Supplemental Table S8).
The pathways most dysregulated in IPSI between days 5 and 7, 7
and 13, and 13 and 16 were mainly involved in metabolism (car-
bohydrates, lipid, and amino acid metabolism), organismal system
(immune system), and, human diseases and metabolism (carbohy-
drates), respectively. In contrast, the pathways most dysregulated in
CONTRA were associated with cellular processes and organismal
system (immune system) in the early luteal phase, with metabolism
(amino acid metabolism carbohydrates, and lipid) between day 7 vs
day 13, and with metabolism (carbohydrates) in the late luteal phase.

Experiment 2
Conceptuses were recovered from all heifers in the BI group (9/9) and
8/9 and 7/8 in the IPSI and CONTRA groups, respectively. Recovery
rate of conceptuses on day 14 (conceptuses recovered as a proportion
of embryos transferred) was similar in all three groups (BI = 45.0%;
IPSI = 53.3%; CONTRA = 48.7%; P > 0.05) (Table 3). Amongst
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Table 2. Gene ID, Entrez ID, gene name, logarithm of fold change (log FC), and P values of differentially expressed genes with the highest
fold difference in the endometrium of cyclic heifers on days 5,7,13, and 16.

Gene ID Entrez ID Gene Name log FC P value

Day 5
LOC100297621 100297621 dystrophin 6.073 5.1E-09
ZNF589 789895 zinc finger protein 589 5.963 3.1E-06
PAQR9 522374 progestin and adipoQ receptor family member IX 5.505 1.6E-05
LOC104968948 104968948 uncharacterized LOC104968948 5.420 8.0E-05
EDA2R 100301324 ectodysplasin A2 receptor 5.375 3.3E-04
LOC100848945 100848945 5.348 1.6E-04
LOC104972015 104972015 5.340 6.2E-05
MUC19 100140959 mucin 19, oligomeric 5.118 1.4E-05
LOC104969569 104969569 5.101 7.4E-05
LOC104971153 104971153 5.073 7.2E-07
LOC104971020 104971020 5.016 2.2E-05
LOC104975350 104975350 4.993 6.8E-06
LOC104971219 104971219 4.986 6.6E-04
LOC100297222 100297222 cytochrome b-c1 complex subunit 7 4.865 8.7E-05
BOSTAUV1R416 100139634 vomeronasal 1 receptor bosTauV1R416 4.820 3.7E-04
UPK3A 100336102 uroplakin 3A −2.210 1.2E-03
TRNAE-UUC-87 −2.916 1.9E-03
PADI3 508160 peptidyl arginine deiminase, type III −3.153 4.3E-03
CPNE6 508059 copine VI (neuronal) −3.185 3.1E-03
LOC785133 785133 −3.547 1.0E-03
HIST1H3J 540148 histone cluster 1, H3j −3.698 1.3E-04
CD163L1 338056 CD163 molecule-like 1 −3.859 3.6E-03
LYPD2 790087 LY6/PLAUR domain containing 2 −3.861 1.9E-03
MAG 540576 myelin associated glycoprotein −3.954 1.0E-03
LOC104973034 104973034 −4.075 2.7E-03
LOC104971717 104971717 −4.163 8.6E-04
LRRIQ4 784301 leucine-rich repeats and IQ motif containing 4 −4.170 1.6E-03
LOC104973719 104973719 −4.176 1.4E-03
LOC104974917 104974917 uncharacterized LOC104974917 −4.268 1.5E-03
PSMB11 538873 proteasome (prosome, macropain) subunit, beta type, 11 −4.472 1.4E-03

Day 7
LOC101905162 101905162 uncharacterized LOC101905162 5.011 1.0E-03
HOXD13 100336775 homeobox D13 4.954 3.5E-04
LOC104968876 104968876 uncharacterized LOC104968876 4.899 2.2E-05
LOC101907562 101907562 GATA zinc finger domain-containing protein 14-like 4.803 1.6E-04
LOC104972242 104972242 4.598 8.1E-04
LOC104975944 104975944 4.440 1.7E-03
LOC104969603 104969603 4.415 6.2E-04
LOC104975892 104975892 uncharacterized LOC104975892 4.395 4.8E-04
LOC104973355 104973355 4.367 1.1E-03
LOC104970245 104970245 4.330 7.6E-04
GRIFIN 528362 galectin-related inter-fiber protein −3.849 1.1E-03
LOC505183 505183 histone H2B type 1 −3.904 1.7E-03
CLDN6 511318 claudin 6 −4.070 9.3E-04
PCDH8 513346 protocadherin 8 −4.071 1.7E-03
LOC104974902 104974902 uncharacterized LOC104974902 −4.078 1.5E-03
LOC101905008 101905008 uncharacterized LOC101905008 −4.171 5.0E-04
LOC104973274 104973274 −4.246 9.4E-04
LOC101902082 101902082 −4.632 7.3E-04
C18H19orf81 100140272 chromosome 18 open reading frame, human C19orf81 −4.813 5.2E-05
DLK1 281117 delta-like 1 homolog (Drosophila) −4.901 1.4E-03

Day 13
PCDHB1 504206 protocadherin beta 1 4.830 1.8E-04
LOC104975807 104975807 4.823 2.7E-04
LOC104971550 104971550 AMP deaminase 1-like 4.429 5.8E-04
IFNK 100138192 interferon, kappa 4.401 3.9E-04
LOC104969747 104969747 4.106 5.6E-04
GPR97 529961 4.077 5.0E-04
LOC101905569 101905569 3.931 4.9E-04
LOC101907661 101907661 uncharacterized LOC101907661 3.868 7.1E-04
ZNF589 789895 3.407 5.2E-04
POU5F2 104968986 POU domain class 5, transcription factor 2 2.755 1.3E-05
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Table 2. Continued

Gene ID Entrez ID Gene Name log FC P value

TRIM72 528804 tripartite motif containing 72, E3 ubiquitin protein ligase −4.474 8.7E-04

Day 16
LOC100296102 100296102 T-cell receptor alpha chain V region 2B4 5.331 2.3E-05
C11H2orf61 100335365 chromosome 11 open reading frame, human C2orf61 4.952 2.1E-04
LOC104973290 104973290 4.852 1.0E-03
LOC104974072 104974072 4.833 3.0E-04
LOC530990 530990 olfactory receptor 52Z1 4.825 2.7E-05
LOC104975364 104975364 4.822 6.7E-05
ERBB4 522419 erb-b2 receptor tyrosine kinase 4 4.547 9.1E-04
LOC104971979 104971979 uncharacterized LOC104971979 4.485 4.8E-04
LOC104973272 104973272 4.342 5.8E-04
LOC104968931 104968931 uncharacterized LOC104968931 4.219 2.1E-04
AARD 616184 alanine and arginine rich domain containing protein −4.106 2.9E-04
CHRNB3 521702 cholinergic receptor, nicotinic beta 3 −4.333 2.0E-04
JSRP1 509378 junctional sarcoplasmic reticulum protein 1 −4.547 1.3E-04
LOC104973970 104973970 uncharacterized LOC104973970 −4.550 2.0E-04

For full list of genes see Supplemental Table S3.

Table 3. Conceptus recovery data on day 14 after the transfer of day 7 IVP blastocysts to the uterine horn(s) ipsilateral (group I) or
contralateral to the CL (group C) or to both horns (bilateral) of synchronized recipients (10 embryos transferred per horn per recipient).

No of embryos transferred No of embryos recovered (recovery rate %)

No of animals IPSI CONTRA Total IPSI CONTRA Total

Bilateral 9 90 90 180 41 (45.5%) 40 (44.4%) 81 (45%)
Unilateral:
I 9 90 0 90 46 (51.1%) 2a (4.2%) 48 (53.3%)
C 8 0 80 80 7a (17.9%) 32 (40%) 39 (48.7%)

aEmbryos which had migrated from the horn into which they were transferred to the opposite horn, from where they were collected.

the embryos transferred in the IPSI group, two conceptuses from two
different heifers (22.2% of recipients; 2/9) were recovered from the
contralateral horn (4.2% of recovered embryos; 2/48) while seven
migrated embryos (7/39; 17.9%) from four different heifers (50%
of the recipients; 4/8) were collected from the ipsilateral horn in the
CONTRA group.

One heifer from the CONTRA group was removed from further
analysis as an outlier as all of the conceptuses recovered from her
were excessively long (n = 10; mean length >30 mm, which is longer
than the longest conceptuses recovered amongst the other 158 con-
ceptuses from all heifers). Such an outlier may have arisen due to
the time of transfer relative to ovulation as differences in the timing
of the early rise in progesterone can significantly advance conceptus
elongation [12, 13].

In terms of morphology, 83.5% (132/158) of all conceptus re-
covered were ovoid with 13.3% (21/158) tubular and 3.2% (5/158)
being filamentous. The number of conceptuses and range in concep-
tus lengths recovered from each group are shown in Figure 5 and on
a per heifer basis in Supplemental Figure S1. Day 14 conceptus length
was not different following BI transfer (2.27 ± 0.49 mm) compared
to unilateral transfers (3.03 ± 0.42 mm, P = 0.24). Overall, transfer
to the ipsilateral uterine horn resulted in similar conceptus length and
width (2.24 ± 0.35 mm and 1.09 ± 0.07 mm, respectively; n = 89)
to transfer to the contralateral horn (2.91 ± 0.38 and 1.01 ± 0.07
mm, respectively; n = 69; P > 0.10). No differences were found in
either P4 concentrations on day 7 and day 14 or in the CL weight
on day 14 in recipients heifers into which embryos were transferred.

Discussion

Spatiotemporal changes in the endometrial transcriptome
[23, 24, 43] and histotroph composition [27–29] are hypoth-
esized to be essential for establishment of uterine receptivity to
implantation and, in turn, are pivotal to the success of pregnancy in
cattle. Main findings of the present studies were that: (1) day of the
estrous cycle contributed to the greatest variation in the endometrial
transcriptome; (2) there were many more altered genes between the
uterine horns ipsilateral and contralateral to the CL in the early
(day 5 and 7) as compared to late (day 13 and 16) luteal phase; (3)
signaling pathways regulating pluripotency of stem cells were highly
dysregulated when both uterine horns were compared, regardless of
the day of luteal phase; and (4) the differences in endometrial gene
expression between the uterine horns ipsilateral and contralateral to
the CL were not associated with a reduced ability of the uterus to
support conceptus survival or development to day 14 after embryo
transfer on day 7.

In line with previous studies conducted in our laboratory exam-
ining endometrial gene expression during the estrous cycle (either
pregnant or cyclic heifers, with high, normal, or low P4 concen-
trations) [24, 44, 45], the factor that contributed most to altered
endometrial gene expression was the day of the cycle. Moreover,
and also in agreement with those previous studies, the comparison
of endometrial tissue samples collected within a short interval (day 5
vs day 7 and day 13 vs day 16), regardless of uterine horn, resulted
in a smaller number of DEGs compared to samples collected from
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Figure 3. (A) Temporal changes in endometrial gene expression (FDR ≤ 0.05) in the uterine horns ipsilateral (IPSI) and contralateral (CONTRA) to the corpus
luteum. The numbers of upregulated and downregulated genes between days 5 vs 7, 7 vs 13, and 13 vs 16 in each horn are shown. Venn diagrams illustrate the
numbers of genes that were specific to each time interval and genes that were common to two or all three time intervals. (B) Temporal changes in endometrial
gene expression (FDR ≤ 0.05; FC ≥ 2) specific to each uterine horn and in common between both horns throughout the estrous cycle. IPSI = ipsilateral uterine
horn; CONTRA = contralateral uterine horn; P4 = progesterone; E2 = estradiol.

more distant days (day 7 vs day 13), highlighting the importance of
the temporal changes that occur during the estrous cycle.

Comparison of the endometrial transcriptome between the uter-
ine horns ipsilateral and contralateral to the ovary bearing the CL
on a given day of the luteal phase revealed the greatest number of
DEGs on day 5 and then a progressive decrease throughout the luteal
phase. Moreover, the ipsilateral horn exhibited the highest variation
in gene expression compared to the contralateral horn on any given
day. These changes may be regulated by P4 and dependent on its con-
centration in the endometrium and are consistent with the finding
that endometrial tissue P4 concentrations were higher in the cranial
part of the ipsilateral horn than in the contralateral horn during
the luteal phase [20]. In addition, endometrial P4 concentrations in
both uterine horns tended to be highest at the beginning of the luteal
phase and then gradually decreased throughout the cycle [20]. This

is in agreement with other studies that reported differences in P4
concentrations between diverse regions of the reproductive tract in
cattle [18, 19, 21, 22].

We are aware of reports that periovulatory endocrine events drive
the endometrial tissue toward the receptive state during early diestrus
(e.g. [8, 46]). In that model, authors concluded that during diestrus
the bovine endometrial transcriptional profile was regulated by the
periovulatory endocrine milieu. However, it is not clear if the dif-
ferences in the endometrial transcriptome were related to estrogen
or P4 or a combination of both. It is possible that the elevation in
estradiol associated with first wave dominant follicle could interact
with the effect of P4. However, given that the differences in gene ex-
pression between both horns declined from day 5 onwards, despite
a second and probably third dominant follicle, the evidence for a
strong effect of estradiol at the times we studied is weak.
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Figure 4. An example of a pathway enriched by differentially expressed genes between IPSI and CONTRA. Genes shown in red are differentially expressed.

In the present study, PAQR9, a receptor that belongs to the
class II progestin and adipoQ receptor (PAQR) family, was one of
the genes with the largest fold differences between uterine horns on
day 5. This gene is associated with regulation of rapid P4 signaling in
the nervous system [47]. Therefore, in our study, its expression may
be altered in the presence of greater P4 concentrations in the ipsilat-
eral horn on day 5. Consistent with our results, previous studies have
also reported that other genes associated with steroid concentrations
such as nuclear progesterone receptor (PGR), progesterone receptor
membrane component 1 (PGRMC1) and 2 (PGRMC2), and estro-
gen receptor 1 (ESR1) and 2 (ESR1) were not differentially expressed
between the ipsilateral and contralateral uterine horns in cattle [20,
48] or in sheep [49]. Additionally, no differences in the expression of
PGR, ESR1, or ESR2 were detected between bovine oviduct epithe-
lial cells derived from oviducts ipsilateral and contralateral to the CL
[50]. In contrast, others [23] found greater abundance of transcripts
for PGR and oxytocin receptor (OXTR) in the horn contralateral
to the CL and greater PGRMC1 expression was reported during the
early luteal phase in the cranial part of the ipsilateral horn com-
pared with the contralateral horn [20]. Consistent with this finding,
while we did not observe a difference in PGRMC1 expression be-
tween horns on a given day, we observed an increase in PGRMC1

expression in the ipsilateral horn compared to the contralateral horn
between day 5 and day 7. Steroid hormones such as P4 and other
molecules (i.e., growth factors, transcription factors, or micro RNAs)
may be transported from the ipsilateral ovary to the endometrium
by a local counter-current transfer system [30, 31]. In addition, the
blood flow toward the uterus increases during the periestrous period
in cattle [51]. This may explain greater differences in the endome-
trial transcriptome between the uterine horns during the early luteal
phase, and especially the distinct pattern in the ipsilateral horn on
day 5. Dynamic and regional changes in the bovine uterus through-
out the estrous cycle may be controlled by this system, generating
different molecular microenvironments and/or gradients that could
be essential to the successful establishment of pregnancy. Therefore,
results confirm previous speculation based on comparison of gene
expression [50, 52] between ipsilateral and contralateral oviducts,
and gene expression [43] and protein secretions [28, 29] between
ipsilateral and contralateral endometrial tissue, that differences in
the transcriptome pattern between bovine uterine horns exist during
the luteal phase of the estrous cycle.

The top five canonical pathways associated with those genes al-
tered between the uterine horns during diestrous were involved in sig-
naling pathways regulating pluripotency of stem cells, P4-mediated
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Figure 5. Box plots showing the variation in conceptus length recovered from uterine horns on day 14 of pregnancy. Each box plot represents the length (mm) of
the recovered conceptuses in each group. B-IPSI: embryos recovered from the ipsilateral uterine horn to the ovary bearing the corpus luteum after the bilateral
transfer of 10 embryos to each uterine horn (n = 41); B-CONTRA: embryos recovered from the contralateral uterine horn after the bilateral transfer of 10 embryos
to each uterine horn (n = 40); IPSI: embryos recovered from the ipsilateral uterine horn after the unilateral transfer of 10 embryos to this horn (n = 48); and
CONTRA: embryos recovered from the contralateral uterine horn after the unilateral transfer of 10 embryos to this horn (n = 29). The two box plots on the right
represent the length of all recovered conceptuses in the study from either the ipsilateral (IPSI; n = 89) or contralateral (CONTRA; n = 69) uterine horns. Note
that circles and asterisks represent the outliers and extreme outliers (more than three times the height of the boxes), respectively.

oocyte maturation, endometrial cancer, ErbB signaling pathway, and
mTOR signaling pathway. Moreover, the impact of DEGs on signal-
ing pathways assessed by pathway analysis revealed that signaling
pathways regulating pluripotency of stem cells showed the highest
dysregulation score when IPSI was compared to CONTRA, irre-
spective of day. These signaling systems are complex processes of
signal transduction, and may play a crucial role in the coordination
of the reproductive events associated with embryo–maternal inter-
action that leads to successful pregnancy establishment. WNT sig-
naling is a critical pathway that regulates embryo development [53]
and embryo–uterine communication and placentation [54, 55]. The
inactivation of Wnt/beta-catenin signaling pathway in endometrial
cancer pathways, altered in this study, promotes the downregulation
of target genes involved in proliferation, cell adhesion, and inhibi-
tion of apoptosis (reviewed by [56]), and also prevents implantation
[57]. Akt/PI3K (phosphatidylinositol 3-kinase) is another important
signaling pathway involved in endometrial cancer and its activation
occurs through binding ligands such as cytokines, growth factors
or insulin (reviewed by [56]). Akt, also known as protein kinase B,
promotes protein synthesis, glucose metabolism, and cell prolifera-
tion [56]. A key downstream target of PI3K is mTOR [58]. Growth
factors such as insulin-like growth factor 1 (IGF-1), upregulated in
the present study, and insulin block the tuberous sclerosis complex
2 (TSC2), which in turn inhibits mTOR protein [56], consistent
with the downregulation of the gene in the ipsilateral horn in our
study. mTOR signaling pathway positively regulates cell metabolism,
growth, proliferation, and survival [59]. Moreover, mTOR mRNA
and protein increased in pregnant mice, with a peak on day 5 and a
reduction thereafter [60], suggesting that mTOR participates in the
process of embryo implantation in rodents. It has also been reported

that activation of the Akt/PI3K/mTOR signaling pathway enhances
pregnancy outcome in rats [61]. Overactivation of mTOR signaling,
however, leads to endometrial hyperplasia in women and mice [62].
Taken together, these studies suggest that differences in mTOR in the
endometrium may play an important role during early pregnancy,
especially during implantation, although its role remains unclear.
ErbB signaling was significantly dysregulated in the present study.
This pathway plays a vital role in early pregnancy, predominantly
via the epidermal growth factor receptor (EGFR/ERBB1), which was
upregulated in the ipsilateral horn compared to the contralateral in
the present study. Egfr ablation in mice had no apparent defects
during the preimplantation period [63]; however, there was a fail-
ure of implantation and decidualization. Despite ruminants having a
relatively noninvasive type of placentation, the endometrial stroma
undergoes structural changes and angiogenesis [64, 65]. Although
samples were collected only from intercaruncular endometrium in
this study, it has been reported that some of these changes during
implantation were similar in both caruncular and intercaruncular
uterine epithelium and stromal endometrium [66]. All these findings
suggest that defects in uterine receptivity or embryo/uterine signaling
can cause implantation failure or early pregnancy loss.

Signaling pathways regulating pluripotency of stem cells were
significantly dysregulated when comparing ipsilateral to the con-
tralateral uterine horn during the entire luteal phase, but it was at
the beginning of diestrous (day 5), the day on which the embryo
enters the uterus, when most changes occurred. Stem cells are capa-
ble of self-renewal or of producing multiple cell linages [67]. Adult
stem cells have been found in many organs and tissues, residing in
niches [68]. Uterine endometrium exhibits high regenerative poten-
tial as demonstrated by its adaptation to changes that occur during
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gestation, the post-partum period, and the early estrous cycle. The
recent identification of mesenchymal stem cells in the bovine [69–71]
and ovine endometrium [72] suggests that these cells play a key role
in maintaining cyclicity and endometrial function. In agreement with
our results, greater expression of pluripotent markers in the ipsilat-
eral than in the contralateral horn have been reported [71], suggest-
ing ovarian hormones influence these characteristics. Furthermore,
the same authors revealed a decrease in pluripotent transcription fac-
tor expression in older compared with younger cows [71]. Recently,
a progressive decrease in stem cell markers in endometrium from
healthy cows compared to those exhibiting subclinical or clinical en-
dometritis has been reported [69], while those markers were more
highly expressed in cows with adenomyosis [73]. Taken together,
these findings showing that a decrease in the expression of stem cell
markers, or in the actual number of stem cells, is related to factors
affecting pregnancy rate (uterine horn, cow age, and uterine health
status) strongly support the hypothesis that uterine stem cells play a
key role in many physiological and pathological reproductive events
and highlight the utility of our model to study these events.

The findings that differences in endometrial gene expression ex-
ist between the uterine horns ipsilateral and contralateral to the CL
during the luteal phase were not associated with reduced ability of
the uterus to support conceptus survival and growth (in terms of
conceptus length) on day 14. Data from embryo transfer studies
indicate that transfer to the uterine horn contralateral to the ovary
containing the CL significantly increases embryonic loss [33–35, 74].
We suggest three plausible reasons for a lack of difference in con-
ceptus length: (i) the day chosen for conceptus recovery was not the
most appropriate to detect slight differences in embryo development
in terms of conceptus length (due to the small size of the recovered
conceptuses); (ii) no significant differences in P4 concentrations at the
site of embryo transfer; or (iii) differences in pregnancy rate between
ipsilateral and contralateral embryo transfer are due to an increase
in embryo losses after day 14. Day 14 was chosen because we have
previously shown differences in conceptus length on this day in con-
trol and progesterone-manipulated heifers [45, 75]. In addition, in
a previous study in beef heifers the majority of the embryonic loss
occurred before day 14 [76]. Furthermore, previous personal expe-
rience has shown that in the case of multiple transfers of embryos
as carried out here, separating rapidly elongating conceptuses after
day 14 can be extremely difficult. We acknowledge that the use of
multiple embryo transfer is associated with some issues related to in-
terpretation and cannot rule out that the presence of up to 10 times
the normal mass of conceptus tissue in the endometrium altered the
uterine environment in a way that overcame deficiencies in the con-
tralateral horn that may have compromised pregnancy if only one
embryo was transferred.

In routine commercial embryo transfer, the embryo is deposited
as cranial as possible in the horn ipsilateral to the CL. Depending
on the difficulties encountered with an individual animal during this
procedure, however, the embryo may be placed at any site less cranial
in the ipsilateral horn without a detrimental effect on pregnancy
rate [77]. For example, Newcomb et al. [78] reported that fetal
survival at day 42 was similar when embryos were transferred into
the base of the ipsilateral horn, base of the contralateral, or tip of
the contralateral horn, but all were lower than when the embryos
were transferred into the tip of the ipsilateral horn. This is consistent
with the lack of differences in either P4 concentration or in PGR,
PGRMC1, or PGRMC2 mRNA expression in the middle part of
both uterine horns [20]. In the same study, endometrial tissue P4
concentrations in the cranial portion were higher in the ipsilateral

than the contralateral horn. It is possible, therefore, that conceptuses
assessed in the current study developed until day 14 of the estrous
cycle under an environment of similar P4 concentrations regardless
the CL site.

One could hypothesize that the lower pregnancy rate observed
after embryo transfer to the contralateral horn is due to the inability
of a conceptus in the contralateral horn to maintain the CL unless it
migrates to the ipsilateral uterine horn; if this was the case one would
expect most loss to occur before or at the time of maternal recogni-
tion of pregnancy (day 16). However, Christie et al. [33] indicated
that embryonic death after contralateral embryo transfers occurred
after day 24. In that study, although animal numbers were low, a
reduction in pregnancy rate was observed between day 24–26 (14/20
pregnant heifers) and day 42 (13/40 pregnant heifers). In a separate
study, the loss of single embryo from day 27 to 107 of gestation
was less in the ipsilateral horn (2 out of 14) compared with the con-
tralateral (12 out 14) [79]. When multiple embryos (n = 10) were
transferred into the contralateral horn (unilateral embryo transfer),
a greater occurrence of embryo migration was observed. Transuter-
ine migration is a rare phenomenon in cattle [80, 81] and seems to
be influenced by the number of embryos present. In agreement with
our results, several studies have reported an increase in the incidence
of migration when more than one embryo was initially located in
the same uterine horn [81–83]. Moreover, our results further sup-
port the observation that migration rate is higher if embryos are
transferred exclusively to the contralateral horn [82]. Although em-
bryo migration is postulated to be a crucial approach for assuring
adequate space in multiple pregnancy [84], the physiological mech-
anisms involved are unknown.

In conclusion, significant differences in endometrial gene expres-
sion exist between the uterine horns ipsilateral and contralateral
to the CL in cattle. Dynamic and regional changes in the bovine
uterus throughout the estrous cycle may be controlled by a counter-
current transfer system that generates different molecular microen-
vironments and/or gradients that could be essential to the successful
establishment of pregnancy. Under the conditions of this study, we
did not see evidence that these changes translate into a difference
in conceptus survival and growth to day 14. However, knowledge
generated here regarding the most significant dysregulated signaling
pathways supports the utility of the ipsilateral vs contralateral model
for understanding embryonic losses in the periimplantation and/or
placentation period.

Supplementary data

Supplementary data are available at BIOLRE online.

Supplemental Figure S1. Box plot showing the variation in concep-
tus length on day 14 of pregnancy for each recipient. Each box plot
represents the length (mm) of the recovered conceptuses from each
individual recipient, identified with the acronym of the group in
which the heifer was enrolled and a number (e.g. B-IPSI 1). The box
plot on the right represents the length of all recovered conceptuses
(n = 158) from all recipients yielding embryos (n = 23). B-IPSI: em-
bryos recovered from the ipsilateral uterine horn to the ovary bearing
the corpus luteum after the bilateral transfer of 10 embryos to each
uterine horn; B-CONTRA: embryos recovered from the contralat-
eral uterine horn after the bilateral transfer of 10 embryos to each
uterine horn; IPSI: embryos recovered from the ipsilateral uterine
horn after the unilateral transfer of 10 embryos to this uterine horn;
CONTRA: embryos recovered from the contralateral uterine horn
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after the unilateral transfer of 10 embryos to this uterine horn. Note
that points and asterisks represent the outliers and extreme outliers
(more than three times the height of the boxes), respectively.
Supplemental Table S1. Review table regarding pregnancy outcomes
after the embryo transfer to the ipsilateral, contralateral or bilateral
uterine horn bearing the corpus luteum in cattle.
Supplemental Table S2. Raw read counts (read quality), number of
reads obtained after quality control (reads mapped) and mapping
rates to reference genome of individual samples.
Supplemental Table S7. Top five canonical pathways associated with
differentially expressed genes (DEGs) between IPSI and CONTRA.
Supplemental Table S8. Significant dysregulation of signaling path-
ways of differentially expressed genes. nPRS is the score for dys-
regulation of the pathway. The q value, representing the corrected
significance levels, for each of the listed pathways was q < 0.05.
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