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• Storage of carbon (C) in grassland soils
is an effective method of C sequestra-
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• Grassland soil C is increased by several
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suitable for full inversion tillage.
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It has been suggested that the sequestration of CO2 by agricultural soils offers a means to reduce atmospheric
greenhouse gas (GHG) concentrations and in turn mitigate the impacts of climate change. Carbon
sequestration by grassland soils, which account for more than 60% of agricultural land use in Ireland, could con-
tribute to a successful net reduction of atmospheric GHG emissions in accordance with the COP21 Paris Agree-
ment. However, current estimates of soil carbon sequestration are variable and it is likely that many
permanent grasslands are close to saturation. A literature search shows that soil carbon sequestration is en-
hanced by a variety of different management strategies, although one option that has only been examined to
date in New Zealand is full inversion tillage (FIT) during grassland renovation. FIT involves inverting topsoil, gen-
erally to depths of 30 cm, resulting in the movement of C-deficient subsoil to the surface and the burying of
carbon-rich topsoil. In this review,we hypothesise that over the next ~30 years the new topsoil could incorporate
large amounts of soil organic carbon (SOC) from the re-seeded sward vegetation and that the buried carbon will
be retained. We assess the current capability of Irish grassland soils to sequester carbon and suggest a potential
role of FIT during grassland renovation. An analysis of the distribution of grasslands in Ireland using the Land Par-
cel Identification System (LPIS) suggests that ~26% of Ireland's agricultural grasslands are suitable for FIT.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Over the last century, industrial and agricultural activities have
greatly intensified, resulting in significant increases in atmospheric con-
centrations of greenhouse gases (GHG's) (Hegerl et al., 2019; Wang
et al., 2020). This in turn has directly impacted climatic conditions
across theworld, resulting in rising temperatures andmore frequent oc-
currences of extreme and destructive weather patterns (Leisner, 2020;
Azevedo et al., 2020). To counteract the impacts of increasing GHG
levels, the United Nations Framework Convention on Climate Change
(UNFCCC) proposed various mitigation strategies at the Paris Confer-
ence of Parties (COP21) convention in 2015, with an overall aim to
limit the global temperature increase to well below 2 °C, and ideally
1.5 °C, relative to pre-industrial levels, over the coming decades
(Minasny et al., 2017; UNFCCC, 2015). In order to achieve these targets
integrated assessment models have consistently shown that there will
be a need to actively remove CO2 from the atmosphere and sequester
it long-term using negative emission technologies (NETs) (EASAC,
2018; Rogelj et al., 2021)). NETs are any process that removes CO2

from the atmosphere and stores it in the biosphere or geosphere.
Terrestrial ecosystems, vegetation and soils, act as sinks for CO2, thus
offering potential NET opportunities for reducing atmospheric CO2

levels (Pugh et al., 2016; Strassmann et al., 2008). Furthermore the
long-term accumulation of soil organic carbon (SOC) additionally offers
multiple benefits along with GHG reduction, including improved agri-
cultural productivity and more stabilised food security (Lal, 2004). On
the basis of the importance of soil organic carbon (SOC) in the process
of carbon sequestration, COP21 adopted a ‘4-per-mille’ initiative, with
the aim of globally increasing stock carbon levels in agricultural soils
by 0.4% annually (Minasny et al., 2017; IPCC, 2019). However, the evi-
dence is that, in many circumstances, there are severe limitations in
achieving this goal (Poulton et al., 2017; Baveye et al., 2018; Martin
et al., 2021) and that the utilisation of optimised practices for enhancing
soil carbon sequestration will be region- and site- specific (Minasny
et al., 2018). Numerous factors including land use history, current land
management, soil physiochemical characteristics, microbial composi-
tion and climate, influence the accumulation of SOC, and in turn there-
fore the long-term capability of a soil to sequester carbon (Jones and
Donnelly, 2004; Lal, 2013; IPCC, 2019). As a consequence, strategies to
increase SOC sequestration in the future need an improved understand-
ing of these factors and the way that they operate under each agricul-
tural land management practice (Chenu et al., 2019; Soussana et al.,
2019).

Agricultural land use in Ireland is predominantly grass based, with
grassland and rough grazing occupying approximately 4.3 Mha
or ~ 61% of land cover in 2016 (Haughey, 2021). Irish grasslands repre-
sent the second largest stockof soil carbon after peatlands/wetlands and
are estimated to contain 53% of the national soil carbon stocks with
769 ± 163 Mt. of carbon held within the top 50 cm of soil (Khalil
et al., 2013). However, there is evidence that soils under long term per-
manent pastures already have large topsoil carbon stocks which means
that the scope for continued accumulation of additional carbon in these
2

surface soils may be limited (Whitehead et al., 2018). This has resulted
in warnings for caution in ascribing large, potential climate changemit-
igation to enhanced soil management (Schlesinger, 2000; Schlesinger
and Amundson, 2019). However, because most of the soil carbon and
grass roots are in the upper 15 cm there may be potential to sequester
additional carbon by burying C-rich topsoil and bringing the C-
deficient subsoils to the surface by inversion tillage during pasture
renewal (Whitehead et al., 2018; Lawrence-Smith et al., 2021). A litera-
ture search has shown that very few studies have directly investigated
the net effects of FIT on SOC stocks in managed grasslands, but a recent
report by Calvelo Pereira et al. (2017) has shown that, in New Zealand
grasslands, there was an increase of nearly 14 t C ha-1 over four years
following pasture renewal associated with FIT. Pasture renewal (re-
seeding) is frequently necessary at intervals of five to ten years because
the yields and quality of temperate managed permanent grasslands
progressively decreases during ageing due to sward deterioration
brought about by a range of factors including compaction, poor drainage
and weed invasion (Necpalova et al., 2013; Carolan and Fornara, 2016).

In this review, focusing on Irish agricultural grasslands, we
(i) identify the various factors influencing the development of soil car-
bon stocks throughout a temperate grassland soil profile and review
the effects of common grassland management practices on these stock
levels, (ii) explore the potential for enhanced long-term carbon seques-
tration in Irish grassland soils by the one-time application of pasture re-
newal by reseeding following full inversion tillage (FIT), (iii) make a
preliminary assessment of the current potential for carbon sequestra-
tion in Irish grassland soils if FIT pasture renewal is implemented, and
finally (iv) we estimate the grassland area in Ireland suitable for FIT,
as a precursor for future research to determine the sequestration poten-
tial of this management practice in Irish agriculture.

2. What factors influence SOC accumulation and stabilisation in
grasslands?

i) Soil carbon sequestration processes.

Soil carbon sequestration is the process of transferring CO2 from the
atmosphere into the soil through the plants, plant residues and other
organic solids which are retained as part of the soil organic matter
(humus) (Chenu et al., 2019). Long-term carbon sequestration in soil
is strongly dependent upon the rate of SOC decomposition and the
stability of SOC (Don et al., 2013; Dungait et al., 2012). Soil respiration
causes the breakdown of organic carbon by soil microbes, resulting in
the release of CO2 into the atmosphere (Fatichi et al., 2019;
Franzluebbers, 2018). Spatial separation of SOC from soil microbes via
physical occlusion within soil aggregates limits substrate availability,
thus reducing SOC decomposition (Dungait et al., 2012; Six and
Paustian, 2014). Aggregates range in size from macroaggregates
(> 250 μm), to microaggregates (53–250 μm) and silt plus clay aggre-
gates (< 53 μm) (Six et al., 2000). Various physiochemical processes
and biotic products influence the development of aggregates from pri-
mary soil particles (Wang et al., 2018). Processes may include ligand
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exchange and polyvalent cation bridging, while products from root and
microbial exudates along with organic matter provide binding material
for the soil particles (Bronick and Lal, 2005; Jastrow et al., 2007; Bailey
et al., 2019; Six et al., 2002b). SOC decomposition is particularly re-
stricted in microaggregates and silt plus clay aggregates due to limited
oxygen availability and SOC accessibility for soil microbes, thus offering
greater long-term sequestration capabilities (Torres-Sallan et al., 2018;
Six et al., 2002; Six et al., 2002b). SOC also forms more stable chemical
bonds with fine mineral particles (i.e. fine silt and clay), which may be
protected by the formation of microaggregates (Dungait et al., 2012;
Baldock and Skjemstad, 2000; Wiesmeier et al., 2019; Beare et al.,
2014; Torres-Sallan et al., 2017). Overall, therefore, macroaggregates
are the least stable form of soil aggregation, with a turnover time of
less than a decade (Six et al., 2002b; Six et al., 1998). In contrast,
microaggregates can remain stable for up to a century, while silt plus
clay aggregates may remain unaltered in excess of 100 years (Six
et al., 1998; Von Lützowet al., 2006). The carbon sequestration potential
of a soil is thus enhanced relative to the proportion of these smaller ag-
gregates throughout the soil profile. In particular, soils of higher silt and
clay content offer a greater likelihood of long-term carbon sequestra-
tion, as this fraction can store up to 90% of the total SOC in agricultural
soils (Torres-Sallan et al., 2017; Creamer and O' Sullivan, 2018; Flessa
et al., 2008; Ghafoor et al., 2017). However, this can vary across soils
as the type of clay (i.e. mineralogy) and its physiochemical characteris-
tics also influence the SOC stabilisation process (Torn et al., 1997; Beare
et al., 2014).

ii) Land management practices.

Various landmanagement practices can influence soil carbon stocks
and potentially lead to increases in soil carbon sequestration and carbon
storage. The main pathways to maximising SOC sequestration have
been summarised by Sykes et al. (2020) and Chenu et al. (2019) to be
the result of optimising the crop productivity and carbon inputs to the
soil and minimising the CO2 losses by microbial mineralisation, while
the addition of carbon produced outside the production system by
application of manure also increases carbon stocks. Table 1 lists a
number of management practices that have been demonstrated to
increase soil carbon sequestration and storage in temperate grassland
Table 1
Literature survey of the effects of changes in temperate grassland management on soil carbon

Management practice Potential soil carbon
sequestration

Estimated
uncertainty

Increased fertiliser on nutrient poor
permanent pasture (N&P)

0.3- 0.4 t C ha-1 year-1 >50%

Manure application Cattle slurry – 2.16
Sludge pellets – 4.53

±2.28
±1.73

Long term liming Limed – 0.70 t C ha-1 year-1

(Un-limed – 0.25 t C ha-1 year-1)
n.a.

Increased duration of grass leys 0.1-0.5 t C ha-1 year-1 >50%
Extensive grazing compared to
mowing

NGGB, flux measurementsa -
0.62 t C ha-1 year-1

±0.77 t C
ha-1 year-1

Convert arable to grassland 1.44 t C ha-1 year-1 n.a.

Re-seeding grazed grassland 1.125–1.454 t C ha-1 year-1

(low – high N application)
± 0.839 t C
ha-1 year-1

Re-seeding by direct drilling
intensively managed grassland

NECB flux measurementsb

-1.89 t C ha-1 year-1
Mean of two
plots.

Higher species diversity in N depleted
soils

0.649 t C ha-1 year-1 ± 0.076 t C
ha-1 year-1

Biochar application 0.03–1.0 t C ha-1 year-1 n.a.

n.a. = not available.
a NGGB = Net Greenhouse Gas Balance.
b NECB = Net Ecosystem Carbon Balance.
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soils. It also shows some of the potential additional benefits or
disadvantages of the practices. For example, the addition of inorganic
and organic fertilisers such as manure to soil can both directly and
indirectly increase SOC levels along with improving plant productivity
in grasslands (Arrouays et al., 2002; Jokubauskaite et al., 2016, Sykes
et al., 2020)while beneficially altering soil parameters such as structure,
water holding capacity and erosion susceptibility, that indirectly im-
prove SOC stability (Shehzadi et al., 2017; Brady and Weil, 2002; Pan
et al., 2009).

Landmanagement practiceswhich optimise soil pH to enhance agri-
cultural productivity normally require reducing soil acidity via liming
(Hamilton et al., 2007; Fornara et al., 2011; Sykes et al., 2020). Coinci-
dentally, various chemical and biological processes associated with
SOC accumulation and stability are also altered by the change of soil
pH. The availability of additional calcium carbonate through liming gen-
erates more organo‑calcium aggregates, thus enhancing the stability
and long-term sequestration potential of SOC (Tu et al., 2018). However,
the increased pH can both weaken the stability of some organo-Al ag-
gregate complexes and result in an increase in soil microbial carbon res-
piration rates (Paradelo et al., 2015; Miyazawa et al., 2013). Therefore,
various soil characteristics must be taken into consideration prior to
liming to ensure the effects to SOC stocks and the long-term carbon se-
questration capability of a soil are beneficial.

Other management practices influencing SOC levels include irriga-
tion and changes in the species composition of grasslands. Irrigation
can have a negative impact on soil carbon stock levels, as soil conditions
become more suitable for carbon mineralisation due to enhanced soil
microbial activity (Whitehead et al., 2018). SOC levels are generally
greater in grasslands where swards are composed of multiple species
(Fornara and Tilman, 2008; Nobilly et al., 2013). Additionally, the inclu-
sion of deep rooting and rhizomatous species in swardsmay further en-
hance SOC stocks, as the primary source of SOC in grassland soils is
associated with root exudate and root particulate matter (Li et al.,
2019; Crow et al., 2009).

iii) SOC distribution throughout the soil profile.

The SOC stocks of grasslands tend to be highly stratified from the
surface downwards with the top-soils (0-15 cm) containing
sequestration and co-benefits or disadvantages.

Reference Additional benefits Disadvantages

Arrouays et al. (2002) -Enhanced productivity. -Increased N2O emissions.
-Additional financial costs.
-Enhanced water pollution risk.

Jones et al. (2006) -Enhanced productivity. - Increased soil respiration.
- Increased CH4 emissions.

Fornara et al. (2011) - Lower N fertiliser
requirements.
Counteracts soil acidity.

Arrouays et al. (2002) -Reduced financial costs. -Declining productivity.
Koncz et al. (2017) -Reduced GHG

emissions from land use.
-Lower usage intensity of grass
supply.

Vleeshouwers and
Verhagen (2002)

-Reduced run-off losses. -Big change in farming practices.

Watson et al. (2007) -Enhanced productivity.
-Reduced weed invasions.

Rutledge et al. (2017) -Enhanced productivity.
-Reduced weed invasions.

Fornara and Tilman
(2008)

-Reduced fertiliser
requirement.

-Lower nutritive value of sward.
-Benefits dependant on soli
quality.

Smith (2016) -Improved soil quality -Potential for sink saturation.
-Decreased soil albedo.
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considerably higher quantities of carbon relative to sub-soils. The top-
soils are therefore moderately limited in regards to their ability to fur-
ther sequester carbon (Linsler et al., 2013; Whitehead et al., 2018;
Chenu et al., 2019). SOC decomposition is also greatest in the topsoil re-
gion, where conditions for microbial activity are most favourable. Con-
sequently, soil carbon sequestration is non-linear with depth. Long-
term experiments show that increases in top-soil carbon are greatest
soon after a land-use or land management change (Post and Kwon,
2000; Chan et al., 2011). As the soil reaches a new equilibrium after
20-100 years no further change takes place (Smith et al., 1997; West
et al., 2004). This is referred to as sink saturation. The ‘effective
stabilisation capacity’ of a soil relates to the soil carbon sequestration po-
tential as the carbon stock increases due to changed management
(Stewart et al., 2007). In contrast, the sub-soils continue to offer consider-
able potential in relation to long termSOC sequestration as they are low in
SOC content and thus are in an unsaturated state with a high effective
stabilisation capacity (Beare et al., 2014; Paustian et al., 2016). Soil carbon
losses through respiration is also reduced at depth as environmental con-
ditions such as lower temperatures, reduced organic matter availability,
as well as lack of oxygen and nutrients are unfavourable for microbial ac-
tivity (Don et al., 2013; Dungait et al., 2012; Whitehead et al., 2018).

3.What are the current carbon stocks and SOC sequestration rates in
Irish grassland soils?

Ireland has a land area of 6.9 Mha, with a temperate climate
consisting of seasons varying across a moderate temperature range
and relatively high rainfall throughout the year (Keane et al., 2004).
The temperate climate is conducive to grass growth for almost
10 months per year. Thus, a large proportion (~ 65%) of the land area
in Ireland is used for agriculture, the majority (91%, 4.3 Mha) of which
is accounted for by grasslands and rough grazing (DAFM, 2015;
Creamer andO' Sullivan, 2018; Aksoy et al., 2016). Furthermore, in com-
parison with many other western European countries, Ireland has a
greater proportion of permanent grassland to temporary leys (Smit
et al., 2008) which are particularly beneficial for carbon sequestration
(see Table 1 and Arrouays et al., 2002).The predominant Irish grassland
soils with high moisture and clay content are well suited to SOC accu-
mulation due to both reduced soil microbial activity and greater
stabilisation of organic carbon (Creamer and O' Sullivan, 2018). As a re-
sult, it is generally recognised that Ireland's soils have one of the highest
mean concentrations of SOC in Europe. The SOC of these soils show a
strong vertical gradient. Based upon empirical data of 806 sampled ag-
ricultural soil profiles, Simo et al. (2019) found that 54% of the carbon
Fig. 1. Soil organic carbon stocks from 144 soil profiles taken in improved and unimproved gras
points represent recordings from each profile.
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in the top 100 cm of soils was contained within 0-30 cm depth, with
an additional 36% represented between 30 and 50 cm, and the final
10% found between 50 and 100 cm. Specifically for Irish grasslands,
Khalil et al. (2013) found that 57% of SOC in the top 100 cm is between
0 and 30 cm, with 21% at a 30-50 cm depth and 22% in the remaining
sub-soil. Data on the vertical distribution of SOC in the top 30 cm of
grassland soils in Ireland are limited but we have extracted information
from 144 profile sites from the Irish Soil Information System (SIS)
(Creamer et al., 2014). Fig. 1 shows the distribution of SOC stocks across
improved (by drainage, re-seeding and increased fertiliser application)
and unimproved grassland soils with a mean value of 64.9 t ha-1 in the
top 15 cm and 46.0 t ha-1 in the 15 to 30 cm layer. The significance of
the difference was confirmed using the Kruskal-Wallis Rank Sum Test
(p< 0.01). The type of grassland, however, had no significant influence
on the SOC stocks. Jointly, these studies confirm that Irish soils contain
large amounts of soil carbon stock in the surface layer, which is likely
to constrain the ability of the top-soil to further accumulate carbon, es-
pecially in the long-term. Conversely, sub-soils contain less carbon, and
therefore offer a significant potential for enhanced carbon sequestration
as they have a greater effective stabilisation capacity (Kiely et al., 2017).
A measure of stratification has been termed the SOC stratification ratio
by Lawrence-Smith et al. (2021) and is the C stock (t ha-1) in the 0-
15 cm layer divided by the C stock in the 15-30 cm layer. The average
ratio for Irish grassland soils based on data in Fig. 1 is 1.41.

A review of the literature indicates that currently there are limited
data available on measured rates of carbon sequestration in temperate
grassland soils (Freibauer et al., 2004;Minasnyet al., 2017). Table 2 sum-
marises estimates that have been derived from either direct measure-
ments of soil carbon accumulation over periods of at least 10 years or
carbon flux measurements using eddy covariance over at least one an-
nual cycle. Three of the estimates are from publications including Irish
grasslands and in addition there is an estimate fromamodelling exercise
(Khalil and Osborne, 2018). The highest estimates of current carbon se-
questration rates of well managed swards in Ireland are considerably
higher than those made elsewhere, at 2.15 t C ha-1 yr-1 (Byrne et al.,
2007), but it should be noted that there are large uncertainties associ-
ated with all of these measurements (Soussana et al., 2007).

We conclude that, because of the very limited number of studies of
soil carbon dynamics in Irish grassland soils, it is not currently possible
to make reliable quantitative assessments of the magnitude of soil car-
bon changes under most management practices and further research
is therefore required to determine the site management, soil conditions
and plant species that may govern whether grasslands will continue to
sequester carbon over a prolonged duration (West et al., 2004; Kiely
slands in Ireland. The layers represent average values from 0 to 15 cm and 15 to 30 cm. The



Table 2
Literature survey of observed rates of carbon sequestration in temperate grassland soils.

Reference Soil carbon sequestration
(t C ha-1 year-1)

Source of information Location/grassland type

Lal (2017) 0.10 ± 0.175 Collation and synthesis of peer-reviewed publications. Managed temperate pastures globally.
Rutledge et al. (2015) 0.61 ± 0.53 Field scale eddy covariance and carbon balance. Intensively managed pasture grazed rotationally. New Zealand.
Schipper et al. (2014) 0.52 Top 0.3 m soil profiles. Drystock grazing hill country, New Zealand
Chan et al. (2011) 0.499 not limed

0.552 limed
Soil sampling over 13 years. Perennial pastures, temperate Australia

Byrne et al. (2007) 2.05 (Farm A)
2.15 (Farm B)

Farm scale carbon balance and eddy covariance. Southern Ireland.
Intensively managed ryegrass –dominated, grazed grasslands.

Soussana et al. (2007) 1.04 ± 0.73 Field scale eddy covariance. Nine contrasted grassland sites across Europe including Ireland.
Watson et al. (2007) 1.125–1.454 Soil sampling over 10 years. Northern Ireland.

Newly established perennial ryegrass.
Khalil and Osborne, 2018) 0.53 Modelled using IPCC density change factors. Irish permanent grasslands.
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et al., 2017). Capturing the impacts of changes in management will be
challenging and will require the establishment of a large number of
long-term monitoring sites (Soussana et al., 2004). In addition, there is
an opportunity for the introduction of new and innovative forms of
management in order to maximise the sequestration potential of grass-
lands. In the following section we review the potential that full inver-
sion tillage, involving a once-off inversion of soils to depths of 30 cm,
associated with the re-sowing of the grassland sward, and recently in-
troduced in New Zealand (Beare et al., 2020; Hedley et al., 2020), has
for significantly increasing soil carbon sequestration rates over rela-
tively short periods of time in Irish agricultural grasslands.

4. How does full inversion tillage (FIT) increase SOC sequestration
potential?

i) Overview

Full inversion tillage is a land management practice involving a
once-off inversion of agricultural soils to depths of 30 cm (Calvelo
Pereira et al., 2017; Hedley et al., 2020). In some cases, deeper inver-
sions up to 150 cm are referred to as ‘deep ploughing’ (Alcántara et al.,
2016; Hussein et al., 2019) or ‘flipping’ (Schiedung et al., 2019). Irre-
spective of the depth of ploughing, the inversion transposes SOC-rich
top-soil into the sub-soil region, and in turn SOC-deficient sub-soil be-
comes established as a new top-soil horizon (Schiedung et al., 2019;
Fig. 2. Diagrammatic representation of the profile of carbon dist
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Paustian et al., 2016), as illustrated in Fig. 2. This process offers potential
for greater carbon sequestration throughout the soil profile due to:
(i) the greater carbon stabilisation capacity of the new SOC-deficient
top-soil which is generally higher in silt and clay content (Wiesmeier
et al., 2019), (ii) reduced mineralisation of the translocated SOC-rich
top-soil in the sub-soil region (Chung et al., 2010), and (iii) greater ver-
tical penetration of roots, which allows for increased deposition of C
from roots (e.g. exudation and turnover) (Cai et al., 2014; Tefs and
Gleixner, 2012; Crow et al., 2009).

Until recently, there have been remarkably few studies exploring the
associations between full inversion tillage or deep ploughing and en-
hanced soil carbon sequestration (Chaopricha and Marin-Spiotta,
2014; Alcántara et al., 2016). However, recent studies in New Zealand
on permanent pastures have provided valuable evidence that this man-
agement practice may have a potential role in future agricultural prac-
tices. Results from these studies are summarised in Table 3. Calvelo
Pereira et al. (2017) found that four years after FIT of a field re-sown
with ryegrass and white clover the soil carbon mass to approximately
30 cm increased on average by 3.5 t C ha-1 yr-1. Schiedung et al.
(2019) investigated the stability and stock changes of SOC in pasture
grassland on highly-productive sandy loam soils over a 20 year period
post full inversion soil flipping (mean depth of 140 cm). The burial of
top-soil (0–30 cm) from these resulted in a one-time sequestration of
160 ± 14 t SOC ha-1, while the annual top-soil sequestration rate for
flipped soils averaged 9.4 t C ha-1 yr-1. Top-soil (0–15 cm) stocks were
ribution in soils before and after Full Inversion Tillage (FIT).



Table 3
Literature survey of the effects of full inversion tillage (FIT) on soil carbon sequestration in the new top-soil of grasslands and croplands.

Land use (post FIT) Location Inversion
depth
(cm)

Duration
(post FIT)
(years)

Total C stock increase
(t ha-1)

Increased
sequestration rate
(t ha-1 year-1)

Reference

Pasture grassland New Zealand west coast 170 20 179 ± 40 1.2–1.8 (0-15 cm)
3.6 (0-30 cm)

Schiedung et al. (2019)

Ryegrass/Clover on poorly
drained soil

New Zealand 25 4 ~ 18% 3.475 Calvelo Pereira et al. (2017)

Pasture grassland New Zealand soils representing 80%
of grassland area

30 20 Modelled change in
surface 15 cm
8 -13

0.40–0.65
(0–15 cm)

Lawrence-Smith et al. (2021)

10 cropland soils Germany 55 - 90 36–48 13 0.302 Alcantara et al. (2017)
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initially higher in un-flipped soils compared to flipped soils, however no
significant differencewas observed 20 years postflipping. This indicates
that flipped sub-soils build up SOC stock, and thus sequester atmo-
spheric CO2, greater than un-flipped soils, in part due to a greater effec-
tive stabilisation capacity caused by a higher carbon saturation deficit.
Furthermore, deep burial of top-soils resulted in a 69% increase of the
total SOC stock (0–150 cm) after 20 years, with almost 75% of the total
SOC below30 cmdepth (Schiedung et al., 2019). This suggestion of bur-
ied top-soil carbon conservation is consistent with reports indicating
that the breakdown of subsoil SOC is a slow process, with significant
mineralisation of buried carbon taking place over a long period of time
(i.e. centuries) (Wang et al., 2014; Gleixner, 2013).

An earlier study of arable crop land use, Alcantara et al. (2017) found
that SOC stocks were 42% greater in soils deep ploughed (55–90 cm),
36-48 years prior to sampling compared to reference soils (to 100 cm
depth). Deep ploughed top-soils showed a greater potential for further
carbon sequestration after 45 years, as indicated by 15% less SOC in
comparison to reference top-soils, while top-soil SOC mineralisation
was reduced by 67% in deep ploughed soils.

A recent modelling exercise by Lawrence-Smith et al. (2021) esti-
mated the carbon stock changes in New Zealand pasture grassland
soils following a hypothetical full inversion tillage to 30 cm. In a
20 year period following FIT andpasture renewal the soil carbonwas es-
timated to increase by between 8 (in sedimentary soils) and13 t ha-1 (in
Allophanic soils). This assumed that the surface 15 cm recovered to 80%
of the pre-FIT stocks.

Collectively, the above studies suggest that deep burial of top-soil
enhances overall SOC stocks over a prolonged period, with a capability
to maintain accumulated SOC at depths in both grasslands and crop-
lands, but that the rates of carbon accumulation are considerably higher
in grassland than in cropland. In general, almost three times more SOC
in the sub-soil region (below 30 cm) is associatedwithmicroaggregates
and silt plus clay particles in comparison with the top-soil, thus indicat-
ing that sub-soil SOC has a greater potential for long term carbon se-
questration (Torres-Sallan et al., 2017; Torres-Sallan et al., 2018;
Denef et al., 2004). However, the stability of soil aggregates are also in-
fluenced by physiochemical characteristics such as soil composition and
texture, and these factorsmust be consideredwhen assessing the stabil-
ity of SOC throughout a soil profile (Gaiser et al., 2009). Overall, FIT or
deep ploughing can produce new top-soil conditions that aremore con-
ducive to developing stable complexes between SOC and soil mineral
particles, and thus offer a potential for enhanced long-term carbon se-
questration, particularly in grassland soils (Six and Paustian, 2014; Six
et al., 2002; Alcántara et al., 2016). Therefore, based on experimental ev-
idence, primarily from trials in New Zealand, we conclude that full in-
version tillage associated with pasture renewal appears to offer a
potential management strategy for a significant contribution by the
Irish agricultural sector to reducing GHG emissions, although as of yet
we lack experimental evidence to support this hypothesis. However,
confidence in this conclusion is based on the similarities between cli-
mate and soil carbon status in Ireland and New Zealand. In both coun-
tries the largest land use is grazed pastures, consisting of productive
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perennial grasses and legumes. Both countries have temperate climates
and although in New Zealand the mean annual temperature is warmer
at 16 °C in the north, it is 10 °C on south island, while Ireland's annual
mean is 9.5 °C. Mean annual rainfall for Ireland is 1230 mm while for
New Zealand it is 1366 mm. In relation to soil carbon status, the New
Zealand case study of Lawrence-Smith et al. (2021) ‘targeted’ soils for
FIT during pasture renewal with pre-inversion SOC stratification ratios
in the top 30 cm that were > 1.4 for sedimentary soils. This is the
same mean value we obtained for the SOC stocks shown in Fig. 1 for
the Irish soil survey.

ii) An estimate of grassland area in the Republic of Ireland suitable for
full inversion tillage

As we have indicated, the use of FIT in grasslandmanagement to in-
crease carbon sequestration should be accompanied by grassland reno-
vation, which involves the sowing of grass and clover seed mixes.
Currently, approximately 140,000 ha of grassland in Ireland is re-
sown annually with a mixture of perennial ryegrass (Lolium perenne)
and white clover (Trifolium repens) (Humphreys and Casey, 2002;
Necpalova et al., 2013). It is estimated that around half of this takes
place in tillage (cropland) areas in mixed-arable-grassland enterprises.
Generally such swards are sown down for at least four years and often
for considerably longer. The remainder involves grass to grass re-
sowing to renovate permanent grasslands. Re-sowing swards is an ex-
pensive operation and the justification depends on obtaining a financial
benefit from more intensive production (Velthof et al., 2010). Agricul-
tural advisors in Ireland generally recommend that the more intensive
grasslands used primarily for silage are re-sown every 5 to 10 years
(Teagasc, 2017).

An estimate of grassland suitable for FIT as a practice for increasing
soil carbon sequestration was calculated using a range of data available
on agricultural grassland distribution in the Republic of Ireland. An ini-
tial area of total grassland in Irelandwas estimated using the LandParcel
Identification System (LPIS) (Zimmermann et al., 2016a). The LPIS is a
support dataset which helps farmers and authorities with subsidy
claims under the European Union Common Agricultural Policy. It pro-
vides annual updates with a high spatial accuracy (agricultural land-
use in Ireland is reported on a field basis, where a field is defined as a
land unit on a single farm under a single crop). Using the LPIS, a land
use history from 2000 to 2016 was created (data from subsequent
years not available) (Zimmermann et al., 2016b). Within this history
suitable grassland was defined as following:

(1) Any land area never subject to tillage practice (i.e. used for crop-
land or horticulture).

(2) Any area that was either grassland or unreported from 2000 to
2015 (the assumption is that unreported land is fallow/set-
aside and therefore still suitable for FIT).

(3) Any area that has never been reported as anything other than
grassland in 2016 (to avoid areas that have been set aside for
non-agricultural land uses such as housing or forestry).
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From an initial estimate of the total grassland area in Ireland the area
not meeting the following criteria was subsequently removed:

(1) Grassland parcels which exceeded a maximum slope of 16 de-
grees (Lynn et al., 2009). This was considered unsuitable for FIT
due to inaccessibility to farm machinery and increased risk of
soil erosion. The slopewas calculated from a 20mDigital Terrain
Model (produced by the Irish Environmental Protection Agency)
using ArcGIS Pro (ESRI, Redlands, CA, USA).

(2) Grassland parcels on organic soils (peats and soils with organic
horizons) or on shallow soils which were identified using the
Teagasc Irish Forest Soils (IFS) indicative soils map (Fealy et al.,
2009). Organic soils were considered unsuitable for FIT as distur-
bance will likely lead to increased loss of organic matter (Morris
et al., 2004; Renou-Wilson et al., 2014; Renou-Wilson et al.,
2015). Following the definition in the IFS map, shallow soils are
all soils that overlay a subsoil class considered to be providing a
shallow soil-forming environment, including eskers, gravels
and rock outcrop (Fealy et al., 2009). While this does not provide
a clear cut-off with regards to the depth to which a soil can be
ploughed, these soils were excluded as there is a strong likeli-
hood that such soils are too shallow to apply FIT. The resulting
exclusion of soils can be considered conservative as suitable
soils will likely be excluded. However, since there is no spatially
explicit data on soil depth available for Ireland it was decided
to exclude all shallow soils.

(3) Additionally, areas of commonage were removed. Commonages
are large areas utilised by multiple farmers and therefore not
suitable for FIT. Furthermore commonage is generally linked to
upland areas with shallow and stony soils which are not suitable
for FIT.

(4) Finally, any grassland situated in Special Areas of Conservation
(SAC) and Special Protection Areas (SPA) was removed as FIT
may cause conflict with wildlife conservation. Outlines for SACs
and SPAs were acquired from the Irish National Parks and Wild-
life Service (NPWS, 2020).

In all cases, the exclusion was carried out using ArcGIS Pro (ESRI,
Redlands, CA, USA). Each grassland parcel resulting from the creation
of land use histories was considered the minimum mapping unit and
was not further modified as part of the exclusion, as LPIS is the highest
resolution of the available datasets. Therefore, each parcel spatially co-
incidingwith an exclusion criterionwas fully removed from the final se-
lection of suitable grasslands, rather than removing parts of grasslands
that overlap with exclusion datasets.

Applying all exclusions, the remaining grassland potentially suitable
for FIT is 9975.6 km2 or 24.5% of the total estimated area of grassland in
Ireland. Fig. 3 shows the distribution of areas considered to be suitable
for FIT across the Republic of Ireland.

Based upon the limited amount of research that has estimated the
long-term carbon sequestration resulting from FIT during pasture re-
newal and presented in Table 3, we suggest that the sequestration rates
expected in Ireland would be in the range of 1-2 t C ha-1 yr-1 and similar
to those recentlymodelled inNewZealand (Lawrence-Smith et al., 2021)
The sequestration rates reported by Calvelo Pereira et al. (2017) and
Schiedung et al. (2019) are higher but they are obtained from locations
with particularly high levels of rainfall and are on deep, sandy soils.
These are conditionswhichwould appear tomaximise carbon sequestra-
tion rates (Schiedung et al., 2019). We also suggest that FIT could have a
net beneficial effect of enhancing SOC stock levels in soils over a
prolonged period (> 20 years). The application of FIT across suitable
Irish grasslands (9976 km2) therefore offers a sequestration potential av-
eraging 1-2 × 105 t C yr-1 which is equivalent to 2.1 - 4.2% of the current
GHGs emitted by Irish agriculture each year (Khalil and Osborne, 2018).

As previously indicated, numerous factors affect the long-term capa-
bility of a soil to sequester carbon (Lal, 2013; IPCC, 2019). Therefore, it is
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difficult to estimate with a high degree of confidence the possible se-
questration potential of FIT during pasture renewal in Irish grasslands
based upon data from other countries and land uses post-FIT. However,
the Irish climate is conducive to the accumulation of SOC levels (Byrne
et al., 2007; Soussana et al., 2007), and coupled with a carbon-
deficient ‘new’ topsoil resulting from FIT, there is a strong potential for
long-term accumulation of carbon in Irish grassland soils (Creamer
and O' Sullivan, 2018).

5. Conclusions and research directions

The Irish Climate Change Advisory Council (CCAC, 2019) has
identified a need for additional research covering both new and
existing mitigation measures for agriculture which will evaluate
the development and refinement of national inventory accounting
in terms of emission factors and activity data collection. Because of
the significance of grasslands for agricultural land, accounting for
~61% of land cover and 53% of terrestrial carbon stocks in Ireland
(Haughey, 2021), all management strategies to increase these stocks
and sequester carbon need to be maximised. In support of these rec-
ommendations, this review has highlighted the need for further ex-
perimental evidence not only to assess potential soil C stock
development during pasture renewal, post FIT, in Ireland but to do
this while recognising the importance of maximising the contribu-
tion of a number of other management practices illustrated in
Table 1. We therefore recommend conducting short- to medium-
term trials (e.g. 10 years) on representative grassland sites on a
range of soils throughout Ireland. In relation to the use of FIT during
pasture renewal there will be a need to monitor the establishment of
soil aggregate formations throughout the soil profile in order to as-
sess how FIT alters the stability of fractions in Irish grassland soils.
Multi-year trials assessing above- and below-ground dry matter pro-
duction as well as measuring changes in various soil parameters in-
cluding structure, pH, and levels of N, P and K will provide valuable
information regarding optimum pasture management strategies
post FIT (e.g. Beare et al., 2020; Calvelo Pereira et al., 2020). This
includes assessing appropriate fertiliser application to ensure
nutrient availability alongside carbon stock accumulation. In turn,
further investigations are required to assess the financial costs to
farmers to replenish the nutrient-poor ‘new’ topsoil by additional
fertiliser inputs.

The response of a soil to the alteration of pH is complex andmay re-
sult in potentially beneficial or destructive effects on the development
of soil aggregates. Therefore, it is also important to explore the climatic
and soil physiochemical conditionsmost conducive to the advantageous
application of liming in associationwith FIT. There are currently numer-
ous potential methods for assessing soil fractions (Poeplau et al., 2018),
making it difficult to directly compare data across various studies. A ro-
bust, reproducible and cost-effective standardised soil fractionation
analysis would allow for greater knowledge acquisition across the sci-
entific community and in turn a more comprehensive understanding
of the dynamics involved in SOC development post FIT.

For FIT to be considered a feasible futuremanagement practice in ag-
riculture, it is essential that the environmental benefits from reducing
atmospheric CO2 levels are not counteracted by increases in emissions
of other GHG's, particularly N2O, as well as any increased risk of
nitrate leaching (Velthof et al., 2010). Therefore, it is important to
assess if deep soil disturbance either directly (physically) or indirectly
(altered soil microbial activity) affects the release of N2O and nitrates.
Further research is required to evaluate the effects of FIT on soil micro-
bial community structures as well as the primary productivity and C se-
questration functions they help to deliver. As soil microbes are central
for healthy plant production and nutrient supply, understanding soil
microbial responses to deep ploughing, especially in the ‘new’ topsoil,
is critical in determining the potential of FIT as part of an atmospheric
CO2 mitigation management strategy for Ireland.



Fig. 3.Map of areas assessed to be most suitable for FIT across the Republic of Ireland
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Although we suggest that, based on our current knowledge of soil
carbon in Irish grasslands, the adoption of full inversion tillage during
pasture renewal couldmake a significant contribution to increasing car-
bon sequestration in grasslands, further research is needed to verify the
amount of sequestration that could be achieved over the next two or
8

three decades. This is particularly important for Irish agriculture as
there is a need to maximise any offsets to the very high current levels
of GHG emissions from this sector. Furthermore, we need to verify
that these benefits are achieved without environmental costs and that
there are no significant barriers to its adoption.
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