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A B S T R A C T   

Precision Technologies are emerging in the context of livestock farming to improve management practices and 
the health and welfare of livestock through monitoring individual animal behaviour. Continuously collecting 
information about livestock behaviour is a promising way to address several of these target areas. Wearable 
accelerometer sensors are currently the most promising system to capture livestock behaviour. Accelerometer 
data should be analysed properly to obtain reliable information on livestock behaviour. Many studies are 
emerging on this subject, but none to date has highlighted which techniques to recommend or avoid. In this 
paper, we systematically review the literature on the prediction of livestock behaviour from raw accelerometer 
data, with a specific focus on livestock ruminants. Our review is based on 66 surveyed articles, providing reliable 
evidence of a 3-step methodology common to all studies, namely (1) Data Collection, (2) Data Pre-Processing and 
(3) Model Development, with different techniques used at each of the 3 steps. The aim of this review is thus to (i) 
summarise the predictive performance of models and point out the main limitations of the 3-step methodology, 
(ii) make recommendations on a methodological blueprint for future studies and (iii) propose lines to explore in 
order to address the limitations outlined. This review shows that the 3-step methodology ensures that several 
major ruminant behaviours can be reliably predicted, such as grazing/eating, ruminating, moving, lying or 
standing. However, the areas faces two main limitations: (i) Most models are less accurate on rarely observed or 
transitional behaviours, behaviours may be important for assessing health, welfare and environmental issues and 
(ii) many models exhibit poor generalisation, that can compromise their commercial use. To overcome these 
limitations we recommend maximising variability in the data collected, selecting pre-processing methods that are 
appropriate to target behaviours being studied, and using classifiers that avoid over-fitting to improve gen
eralisability. This review presents the current situation involving the use of sensors as valuable tools in the field 
of behaviour recording and contributes to the improvement of existing tools for automatically monitoring 
ruminant behaviour in order to address some of the issues faced by livestock farming.   
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1. Introduction 

Technologies are emerging in the context of precision livestock 
farming to improve the efficiency of livestock management (Rutten 
et al., 2016; Shalloo et al., 2021) and the monitoring of health and 
welfare (Medria Solutions, 2020). In the context of these developments, 
the collection of continuous information about the behaviour of live
stock offers considerable promise. For example, the continuous moni
toring of grazing behaviour may ensure a better understanding of 
feeding strategies in order to adapt management practices for greater 
efficiency (Carvalho, 2013). Continuous information about resting and 
lying behaviours can also help to detect stressful situations, as a change 
is observed when conditions are sub-optimal (Heinicke et al., 2019; 
Silberberg et al., 2017). Monitoring of feeding, drinking or lying 
behaviour can also help to detect reproductive events such as calving 
(Jensen, 2012), thus contributing to better reproductive performance on 
the farm. 

Several sensor types have been used in the literature to monitor 
animal behaviour (Delagarde et al., 1999; Rutter et al., 1997; Ruuska 
et al., 2016) but wearable 3-Dimensional accelerometer sensors seem 
currently the most promising of these sensing systems (Bailey et al., 
2018). In this regard, commercial systems based on 3-Dimensional ac
celerometers are now available to automatically quantify livestock 
behaviour (Borchers et al., 2016; Hendriks et al., 2020; Shalloo et al., 
2021), especially in cattle, such as the CowManager (Agis, Harmelen, 
the Netherlands), the HOBO Data Logger (HOBO Pendant G Accelera
tion Data Logger, Onset Computer Corporation, Pocasset, MA), the 
MooMonitor + collar (Dairymaster, Tralee, Ireland), the AfiAct 
Pedometer Plus (Afimilk, S.A.E. Afikim, Kibbutz Afikim, Israel) or the 
IceTag (IceRobotics Ltd., Edinburgh, Scotland). However, as shown in 
Borchers et al. (2016), these systems focus either on feeding behaviours, 
such as grazing or ruminating (e.g., CowManager), or on the lying po
sition (e.g., HOBO Data Logger). None of these systems covers a broad 
spectrum of behaviours (e.g., predicting ruminating, grazing, running, 
walking, grooming, drinking, lying down and standing up), unless 
several sensors are combined on different positions on the animal 
(RumiWatchSystem, Itin + Hoch GmbH, Liestal, Switzerland). This 
constraint, together with the high cost and difficult data management, 
makes the RumiWatchSystem not compatible in its current form with 
use in commercial farms. In addition, none of these systems provides 
information about behaviours that are less frequently expressed in ani
mals, such as grooming, scratching, urinating or drinking, but that are 
still relevant to address certain issues (e.g., health; Galindo and Broom, 
2002 or environmental; Lush et al., 2018). Finally, the validation of 
these systems to assess their reliability is not always reported (Borchers 
et al., 2016). Therefore, the limitations of current commercial systems 
justifies further development of new methods to predict livestock be
haviours from wearable 3-Dimensional accelerometers (Pavlovic et al., 
2021). 

Using 3-Dimensional accelerometer sensors requires appropriate 
analytical methods for robust and reliable identification of behaviours 
from raw data (e.g., Barwick et al., 2018). Many different processing 
techniques have been used in the literature to predict livestock behav
iour from accelerometer data. Although some studies have already 

compared several methods (Barwick et al., 2018; Dutta et al., 2015; Hu 
et al., 2020; Smith et al., 2016), there are currently no clear recom
mendations on those to be adopted or avoided, either for the data 
collection or analysis purposes. To begin to tackle this challenge, this 
paper reviews different processing techniques used to predict livestock 
behaviour continuously from raw accelerometer data, to identify the 
most effective ones and to highlight their limitations. To the best of the 
authors’ knowledge, no such review of this topic has yet been published 
in the literature. 

In this review, we focus specifically on the state-of-the-art in pro
cessing techniques used to predict ruminant behaviour from raw 
accelerometer data. Furthermore, our aim in this research is not just to 
record what has been done, but also to identify the most promising 
methods and techniques from a methodological standpoint in this field. 
In the remainder of this introduction, we outline (i) the keywords and 
searches used in our systematic survey (Section 1.1) and (ii) the struc
ture of the review (Section 1.2). 

1.1. Methodology used to select the papers in the systematic review 

Our systematic review of the literature on processing techniques for 
predicting ruminant behaviour arises from several literature searches 
carried out using Google Scholar (https://scholar.google.com/) during a 
period spanning 24th December 2020 to 3rd January 2021. The overall 
trawl was split into three searches related to the three main ruminant 
species, anchored by the keywords “cow” (307 citations), “sheep” (301 
citations) and “goat” (969 citations) (Table 1). 

As displayed in PRISMA flow diagram (Fig. 1), for each search, the 
initial set of papers were further filtered based on a close reading of the 
title and abstract using the following three criteria:  

• Criterion 1: The citation is an original paper resulting from a peer- 
review publication process.  

• Criterion 2: The target is to predict state behaviours of ruminants per 
se, as defined by Kilgour (2012) on pasture or by Zambelis (2019) in 
the barn, including maintenance (e.g., feeding, ruminating, drink
ing), self-expression (e.g., scratching) or social behaviours (e.g., 
grooming). In this respect, it is necessary to note that citations 
relating to the prediction of reproductive behaviours, such as estrus 
or calving, were excluded from the selection process because the 
methodology used to predict them is substantially different from that 
used to predict the basic behaviours of interest (Benaissa et al., 
2020). In the same way, behaviours related to health issues, like 
lameness, were considered outside the scope of the review.  

• Criterion 3: The accelerometer data used to predict behaviours are 
raw data, as this is the most promising way to improve current 
findings in the field. 

After applying these criteria the initial trawl of 1577 articles was 
reduced to 66 key citations. These 66 papers were subsequently read in 
full and their methodologies for predicting ruminant behaviour were 
noted, analysed and collated for the review. 

1.2. Structure of the paper 

In the remainder of this paper, we present a systematic review of the 
literature on processing techniques for predicting ruminant behaviour 
from raw accelerometer data. In the processing of raw accelerometer 
data to predict animal behaviour, most researchers use a methodology 
involving the following three stages, as illustrated in Fig. 2:  

1) Data Collection: Collection of raw accelerometer data from wearable 
sensors and behavioural observations in the field.  

2) Data Pre-processing: Pre-processing of accelerometer data to get a 
suitable dataset. 

Table 1 
Three systematic searches using keyword sets per ruminant livestock species and 
the numbers of non-unique citations found.  

Search # Keywords # 
Citations 

#1 
(cow) 

accelerometer, behaviour, classification, prediction, 
monitoring, processing, calf, cow, heifer, beef, bull 

307 

#2 
(sheep) 

accelerometer, behaviour, classification, prediction, 
monitoring, processing, sheep, ewes, lamb 

311 

#3 
(goat) 

accelerometer, behaviour, classification, prediction, 
monitoring, processing, goat 

969  
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3) Development of a Behavioural Classification Model: Development of 
classification model to predict ruminant behaviours. 

This 3-step methodology is used to structure Sections 2–4. Section 2 
reviews the different approaches for the Data Collection, Section 3 re
counts methods used for the Data Pre-processing and Section 4 explores 
the dominant techniques used for the Development of a Behavioural 
Classification Model. Section 5 reviews the predictive performance found 
across the 66 selected studies. Sections 2-5 are designed using the same 
scheme: techniques used in the 66 papers are described in the core text 
and summarized in figures. Details of 30 articles of the 66 read in full are 
provided in appendices. These 30 core articles were selected to avoid 
large tables based on their high and complete methodological practices; 
that is, there is no main missing elements in the description of the ma
terial and methods used, the results are reported in a complete and 
understandable way and at least two distinct behaviours are predicted in 
order to display the performance obtained in a challenging framework. 

The details of the remaining 36 articles are reported in Supplementary 
Materials. Section 6 presents a set of recommendations that are more 
likely to lead to successful results for future studies. It is our hope that 
these recommendations will put the field on a better footing and 
contribute to the improvement of existing tools for automatically 
monitoring ruminant behaviour. A conclusion is finally proposed in 
Section 7. 

2. Data collection: Animal, sensor and observational options 

The purpose of this first step is to collect the data needed to develop a 
classification model in the final stage of the methodology (Fig. 2), that is:  

- Raw accelerometer data, collected at regular time-intervals (also 
called sampling rate; units: Hertz) using one or more 2-Dimensional or 
3-Dimensional accelerometer sensors attached to animals, posi
tioned on varied body-parts. 

Fig. 1. PRISMA flow diagram for the systematic review of the literature on the prediction of ruminant behaviours using raw accelerometer data. The keywords 
associated with each species are provided in Table 1. The criteria mentioned in the diagram are those introduced above. 
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- Observations of the equipped animals expressing different behav
iours. The behaviours observed and the associated time are recorded. 

The approach adopted in the studies varies according to three main 
sets of choices about (i) the animals studied, (ii) what sensors were used 
and how they were deployed and (iii) how the equipped animals are 
observed. Fig. 3 provides the summary statistics for the options adopted 
in this literature. Appendix 1 presents detailed profiles of the 30 core 
papers (see Supplementary Materials A1 for the details of the remaining 

36 papers). In the following sub-sections, we elaborate on the specifics of 
the three sets-of-choices made. 

2.1. Animals 

2.1.1. Species and breeds 
All the main species of livestock ruminants (cattle, sheep and goat) 

have been studied over the 66 papers reported, though almost two thirds 
were on cattle and one third on sheep (Fig. 3a). Of the studies using 

Fig. 2. Overview of the 3-steps methodology used in the literature to predict ruminant behaviour from raw accelerometer data with (1) the Data Collection step, (2) 
the Data Pre-Processing step and (3) the Development of a Classification Model step which involves the sub-steps of Dataset splitting, Model training and 
Model Validation. 
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cattle, 33% were done with Holstein and 20% were done with Japanese 
Black, Droughtmaster, Belmont Red, Brahman or crossings of these 
species. Cattle breed was unspecified in 31% of the cattle studies. In 
sheep, 30% of the studies were done on Merino or Merino crosses, 39% 
on Suffolk, Mule, Sarda, Poll Dorset or crossings of these species and 
11% on Texel or crosses Texel. Sheep breed was unspecified in 7% of the 
studies. Few studies focused on goat but the Saanen and Saanen crosses 
seem the most used in the goat studies (40%; Fig. 3a). 

2.1.2. Number of equipped animals 
The median number of animals used in the studies is 8 animals but 

the number of equipped animals varied considerably from one study to 
another, ranging from a minimum of one animal used per experiment 
(Watanabe et al., 2005) to a maximum of 86 animals (Riaboff et al., 
2020) but studies using more than 30 animals represent less than 10% of 
all studies (Fig. 3b). Suggestions on the optimal number of animals for 
studies are proposed in Section 6. 

2.2. Sensors and devices 

2.2.1. Accelerometer sensor 
Of the 66 studies using a wearable accelerometer to predict behav

iours, 97% used 3D-accelerometer sensors while the remaining used 2D- 
accelerometers (e.g. Nadimi et al., 2008). Accelerometer data were 
collected either using a study-specific device including a datalogger (e.g. 
Axivity AX3; Fogarty et al., 2020), a smartphone (e.g. iPhone 4S; 

Andriamandroso et al., 2017) or a commercial system for ruminants in 
which raw data is available (e.g. HOBO® loggers; Benaissa et al., 2018). 
It should be noted that additional sensors were sometimes attached to 
animals and used for behaviour prediction in addition to accelerometer 
data. The added sensors were most often a 3D-gyroscope (Walton et al., 
2018), a 3D-magnetometer (Dutta et al., 2015) or a GPS (González et al., 
2015). The value of combining the accelerometers with other sensors is 
discussed in Section 6. 

2.2.2. Sampling frequencies 
The median frequency used to sample raw accelerometer data is 12 

Hz. The sampling rate varied considerably from one study to another, 
ranging from a minimum of 0.02 Hz (Zobel et al., 2015) to a maximum 
of 200 Hz (Kleanthous et al., 2018). The signal was sampled at less than 
20 Hz in 70% of the studies and 17% of the studies used sampling fre
quencies higher than 40 Hz (Fig. 3c). It should be noted that several 
sampling frequencies have been used in some studies to explore their 
impact on behaviour prediction, either configuring different sampling 
frequencies during experimentation (Walton et al., 2018) or down 
sampling accelerometer signal at different frequencies from the original 
sampling rate (Benaissa et al., 2018). A recommendation on the sam
pling rate to be used is proposed in Section 6. 

2.2.3. Sensor positioning on animals 
Accelerometer devices have been attached to different positions on 

ruminants’ bodies (Fig. 3d), mostly around the neck using a collar (57%; 

Fig. 3. In Data Collection: Distribution of the different techniques used in the surveyed papers (N = 66) for (a) species and breeds, (b) number of animals, (c) sampling 
frequencies, (d) positioning of sensors and (e) duration of animal observation. Pie chart (a) shows the percentage of studies using cattle, sheep and goats with the 
distribution of breeds for each species. The bar charts (b)-(e) show the percentage of studies using the different techniques that we grouped into classes/categories. 
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e.g. Smith et al., 2016), on the leg using a tape (12%; e.g. Robert et al., 
2009) or on the ear using a tag (11%; e.g. Fogarty et al., 2020). The other 
main positions are under the jaw (7%; e.g. Watanabe et al., 2008) or the 
side of the head using a halter (5%; Kour et al., 2018) or on the back 
using a harness or adhesive (4%; Lush et al., 2018). Remaining positions 
represented only 4% of all the studies and involved the withers using a 
belt or a patch (e.g. Abell et al., 2017) or reticulum using a motion- 
sensitive bolus-sensor (Hamilton et al., 2019). See Section 6 for a dis
cussion on where best to position sensors based to the target behaviours 
being studied. 

2.3. Observations of animals 

2.3.1. Behaviours encoded during the observation period 
A wide range of ruminant state behaviours encoded during the 

observation period have been reported across the studies, including 
ruminating, resting, lying, standing, walking, running, chewing and 
feeding or grazing depending on whether observations were carried out 
in a barn or in a pasture, respectively (Martiskainen et al., 2009; Riaboff 
et al., 2020). Transitional behaviours, such as standing up or lying down, 
were recorded in some studies (Vázquez Diosdado et al., 2015). Social 
and welfare behaviours have already been encoded such as interaction 
between cows (Riaboff et al., 2020), grooming (Smith et al., 2015), so
cial licking (Peng et al., 2019) or scratching (Lush et al., 2018). Be
haviours contributing to the maintenance of integrity have also been 
recorded, such as drinking, urinating or defecating (Smith et al., 2015). 
It should be noted that the spectrum of behaviours was often broader in 
sheep and goat, as studies also include other specific behaviours, such as 
climbing, rubbing, perching or trotting (Kamminga et al., 2018; Radeski 
and Ilieski, 2017; Zobel et al., 2015). In general, the behaviours encoded 
have been defined in an ethogram, with slight differences in the defi
nition used from one study to another; for example, grazing behaviour 
may include chewing head up (Barwick et al., 2018) or chewing head 
down (Riaboff et al., 2020). 

2.3.2. Encoding techniques to observe animals 
In most studies, equipped animals were observed successively by one 

or more experimenters during a continuous period using either direct 
observations (Dutta et al., 2015) or video recordings (Barwick et al., 
2018). During these periods, both the observed behaviours and the 
corresponding times were recorded. Scan-sampling has been used oc
casionally so that each animal has been monitored regularly for a given 
period of time and the behaviour encoded is that expressed by the ani
mal each time it has been observed (Tamura et al., 2019). Encoding of 
behaviours was performed using either manual annotations (Decandia 
et al., 2018), custom-designed applications (Hu et al., 2020) or software 
designed for behaviour encoding (e.g. Noldus Observer XT 11, Noldus; 
Mansbridge et al., 2018). The value of using some of these approaches 
over others is discussed in Section 6. 

2.3.3. Duration of observation 
Duration of observation was unspecified in 16% of the studies and is 

sometimes reported as an approximation (e.g. Walton et al., 2018) but 
we can still estimate that the average total duration of observation is 47 
h ± 69 (mean ± standard deviation). Duration of observations also 
varied considerably from one study to another, ranging from <2 h (e.g. 
Radeski and Ilieski, 2017) to >200 h (e.g. Wang et al., 2018). A more 
detailed analysis also highlights two distributions for the 66 studies 
(Fig. 3e), with a duration of observation <20 h in 42% of cases but also 
>50 h in 25% of studies. A recommendation on the minimum obser
vation time of animals to ensure reliable model development and vali
dation is proposed in Section 6. 

3. Pre-processing: Data cleaning, time series calculation, 
segmentation & feature extraction 

The raw accelerometer signal measured on three axes – the x-axis, y- 
axis, z-axis – is usually represented as a time-series; that is, acceleration 
measurements associated with the corresponding recording time. The 
main target of this step is to compute features from the time-series that 
best represent the information provided in the accelerometer signal, to 
best predict the targeted behaviours being studied. The pre-processing 
step is usually carried out in 4 sub-steps (Fig. 2) that include: cleaning 
and removing noise in the raw time-series, calculating additional time-se
ries, segmenting the time-series into time-windows and, finally, calculating 
features from each time-window. The main differences identified in the 
66 papers are related to (i) how the initial raw data is cleaned and noise 
is removed, (ii) how the filtered time-series is segmented and (iii) what 
different types of features are calculated. Fig. 4 provides the summary 
statistics of the options adopted in the literature. Appendix 2 presents 
detailed profiles of the 30 core papers (see Supplementary Materials A2 
for the details of the remaining 36 papers). In the following sub-sections, 
we elaborate on the specifics of the three sets-of-choices made. 

3.1. Cleaning and removing noise in the raw time-series 

Poor data transmission, or a problem during data acquisition, may 
result in missing samples, especially when a wireless data-acquisition 
system was used (e.g. up to 10% of the acceleration measurements 
may not be received; Martiskainen et al., 2009). In the 66 surveyed 
papers, 15% of the studies reported removing missing data (Fig. 4a) due 
to sensor malfunction or other data retrieving issues (e.g. Walton et al., 
2018). Typically, when the timestamps of the records were not associ
ated with their corresponding accelerometer values, these records were 
most often removed (Peng et al., 2020; Wang et al., 2019) before 
continuing with signal processing. More rarely, missing records have 
been replaced using linear interpolation (Kleanthous et al., 2018). 

In addition to the missing data, raw accelerometer time-series may 
be noisy or have outliers (e.g. sensor impact, measurement error; see 
Supplementary Data B). For that reason, removing noise from the raw 
time-series has been reported in 15% of the studies (Fig. 4a). Outliers 
have often been removed arbitrarily using a threshold based on quan
tiles (95th and 5th quantile; Williams et al., 2020) or standard deviations 
(mean ± 2 standard deviations; Giovanetti et al., 2017). In some studies, 
artefacts were corrected using unwrap correction (e.g. jumps in orien
tation coordinates due to spherical coordinate representation; Smith 
et al., 2015). Moving average filtering (Hamalainen et al., 2011) or low- 
pass filtering (cut-off frequency: 10 Hz; le Roux et al., 2017) have also 
often been used to filter the noisy time-series. 

Recommendations regarding the cleaning and procedure for 
removing noise in the raw time-series are suggested in Section 6. 

3.2. Calculating additional time-series 

Additional time-series are calculated (Fig. 2) from the cleaned or raw 
time-series in 68% of the studies (Fig. 4b). Additional time-series can be 
calculated to be used on their own (23%) or in combination with 
additional time-series (44%). Based on the 66 papers, there are three 
main reasons to calculate additional time-series. 

3.2.1. Time-series independent of the orientation of the sensor 
As illustrated in Supplementary Data B1, the influence of the gravity 

force is more or less important depending on the direction of the axis. 
Therefore, a minor rotation of the sensor around the neck or the leg may 
result in different acceleration measurements for the same expressed 
behaviour by the same animal and from the same sensor (Hamalainen 
et al., 2011). An additional time-series independent of the sensor 
orientation is thus usually calculated (Fida et al., 2015), such as the 
magnitude of the acceleration, which can be called the Signal Vector 
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Fig. 4. In Pre-Processing: Distribution of the techniques used in the surveyed papers (N = 66), including (a) the cleaning and filtering techniques applied on the raw 
accelerometer signal, (b) the time-series extracted from the pre-processed signal to segment it and then calculate features, (c) the window-size chosen for the 
segmentation and (d) the type of features calculated in each time-window. Note: Abbreviations used in the Figure: AccSt: Static Acceleration; AccDy: Dynamic 
Acceleration; Amag: Magnitude of the acceleration; OBDA: Overall Body Dynamic Acceration; VeDBA: Vector Dynamic Body Acceleration; TS: Time-Series; MI: 
Motion Intensity; DL: Deep Learning. 
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Magnitude (Robert et al., 2009), Asum (Benaissa et al., 2017), resultant 
(Watanabe et al., 2008) or Amag (Riaboff et al., 2019) time-series, 
depending on the paper, and calculated as follows for a 3D-accelerom
eter sensor: 

Amag =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x axis2 + y axis2 + z axis2

√
(1) 

As illustrated in Fig. 4b, Amag is used as a single time-series in the 
further steps in 12% of the 66 surveyed papers, and in addition to the 3 
time-series from the x-, y-, and z-axes in 20% of them. 

3.2.2. Time-series related to the two main components of the acceleration 
Some additional time-series are calculated because they give an 

approximation for the energy expended during animal movement 
(Qasem et al., 2012), such as the Overall Body Dynamic Acceleration 
(OBDA) or the Vectorial Dynamic Body Acceleration (VeDBA) (Benaissa 
et al., 2017; Khanh et al., 2016). Both of these time-series are derived 
from the dynamic acceleration (Supplementary B1) which is usually ob
tained by subtracting the running mean from raw accelerometer time- 
series (Lush et al., 2018; Sakai et al., 2019) or high-pass filtering (cut- 
off frequency: 0.3 Hz; Smith et al., 2016). For formulae and a more in- 
depth explanation of these series, we refer to Qasem et al. (2012). 

Some additional time-series are also calculated because they give an 
approximation for the animal’s body tilt during the expressed behav
iours (e.g. head up, head down, head tilted to the right side), such as the 
pitch, roll or sway time-series. All of these measures are derived from the 
static acceleration (Supplementary B1) which is often isolated using 
running means (Lush et al., 2018) or low-pass filtering (cut-off fre
quency: 0.3 Hz; Riaboff et al., 2020). For formulae and a more in-depth 
explanation of these series, we refer to Lush et al. (2018) and Walker 
et al. (2015). 

As illustrated in Fig. 4b, the dynamic and static time-series and their 
derived time-series OBDA, VeDBA and pitch, roll, heading or sway, 
respectively, are used alone in the further steps in 8% of the 66 surveyed 
papers and combined together in 6% of them. 

3.2.3. Time-series associated to a specific frequency-band 
Some behaviours may be related to specific frequencies. If these 

frequencies are known, the raw time series can be filtered according to 
these frequencies using a bandpass filter. A peak observed in the selected 
band is then used to identify the behaviour and discriminate it from 
others (Supplementary Data B1). This technique has been found in one 
study (Andriamandroso et al., 2017) where the authors used a band-pass 
filter between 1 Hz and 2 Hz to isolate the frequencies related to the 
periodicity of the chewing movement during grazing and ruminating, 
and have used this filtered time-series to discriminate chewing from the 
other behaviours thereafter. Recommendations regarding the time- 
series that may be usefully calculated are suggested in Section 6. 

3.3. Segmentation of the time-series into time-windows 

The time-series obtained are then split into segments at regular in
tervals (fixed segmentation) (Fig. 2), usually called epochs (Robert et al., 
2009), interval (Giovanetti et al., 2017) or windows (Smith et al., 2016) in 
the literature. In this review, we call these segments windows thereafter. 
The window is the fundamental statistical unit in subsequent analyses. 

The number of data samples that are collected together in a window 
(Supplementary Data B2) is usually called the time-epoch (Robert et al., 
2009), the time-interval (Giovanetti et al., 2017) or the window size 
(Smith et al., 2016). In this review, we call the number of data samples in 
the window the window size (WS) thereafter. Different window sizes 
(Supplementary Data B2) have been used to split the time-series in the 
surveyed papers, from 1 sec. as the shortest (Hu et al., 2020; Moreau 
et al., 2009) to one hour as the largest (Mattachini et al., 2016), with a 
median window size of 10 sec. In our survey, most studies (46%) used a 
WS < 10 sec. but WS > 1 min were also used in ~20% of the studies 

(Fig. 4c). Several studies investigated different window sizes to find the 
one that yields the best predictive performance with their classification 
model (Alvarenga et al., 2016; Robert et al., 2009). Considering several 
different windows for the next steps instead of just one window size has 
also been found in the literature (Hu et al., 2020). 

The percentage of data in common between two consecutive win
dows is called the overlap (Supplementary Data B2). As illustrated in 
Fig. 4c, over the 66 surveyed papers, 80% used no overlap between 
windows; that is, there is no common data across two successive time- 
windows. Hence, 20% of studies have also considered overlap be
tween successive time-windows (e.g. le Roux et al., 2017; Riaboff et al., 
2020). The effect of overlap has only been investigated in one study, 
evaluating the performance of the prediction of the models using several 
percentages of overlap (from 0% to 90%; Riaboff et al., 2019). Recom
mendations relating to which segmentation techniques increase the 
predictive accuracy are proposed in the Section 6. 

3.4. Features calculation into each time-window 

With the exception of studies involving a deep learning algorithm 
(8% of the studies; Fig. 4d), features are usually extracted from each 
time-window at the last stage of the pre-processing step (Fig. 2) in order 
to describe each time window with features. Across the 66 papers, fea
tures are mostly calculated in the time-domain (TD) alone (~66% of the 
studies), but the frequency domain (FD) using the Fourier Transform is 
also commonly used (in 33% of studies; e.g. Rahman et al., 2018). 
Sometimes, wavelet features are also extracted in the time-frequency 
domain (TFD; e.g. Hokkanen et al., 2011). 

Whatever the domain, features may provide information on (i) the 
motion intensity (MI), (ii) the orientation of the animal’s body, (iii) the 
shape of the signal and (iv) the physical description of the movement (e. 
g., periodical, predictable). A non-exhaustive list of features used for 
each of these information categories along with the domain from which 
are calculated is provided in Appendix 3. Equations for these features are 
detailed in Supplementary Data B3. It is worth noting that in the 66 
surveyed papers, only 21% of studies used a single type of features to 
develop the classification model thereafter (Fig. 4d), most often the MI 
(10%) and orientation features (3%). Hence, 79% of the studies used a 
combination of several type of features, the most frequent combinations 
found being the (i) MI and orientation features (33%), (ii) the MI, 
orientation and physical features (10%) and (iii) all the above feature 
types together (14%). Recommendations for features to compute to get 
good predictive performance are suggested in the Section 6. 

At the end of the pre-processing step, each time-window is defined by 
a set of accelerometer features which are associated with the behaviour 
observed at the same time during data collection. 

4. Development of a behavioural classification model: Splitting, 
modelling and validation options 

In this step, a classification model to predict ruminant behaviours 
(outputs) from accelerometer features (inputs) previously extracted is 
trained and validated. The 66 papers are reviewed by addressing the 
three sub-steps applied in model development (Fig. 2), that is, (i) Dataset 
Splitting, (ii) Model Training and (iii) Model Validation. The approach 
adopted in the studies varies according to three main sets of choices 
regarding (i) the technique applied to validate the model and the cri
terion used to split the dataset, (ii) the classifier used and (iii) the way in 
which the performance of the model is reported. Fig. 5 summarises the 
options adopted in this literature. Appendix 4 presents detailed profiles 
of the 30 core papers (see Supplementary Materials A3 for the details of 
the remaining 36 papers). In the following sub-sections, we elaborate on 
the specifics of the three sets-of-choices made. 
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4.1. Dataset splitting: Validation techniques and options to split the 
dataset 

Among the 66 reviewed papers, 42% split the time-windows dataset 
into a training-set and a test-set (e.g. Martiskainen et al., 2009; Fig. 5a). 
This step involves using a percentage of the dataset to train the model 
(training-set) and the remaining percentage to assess the performance of 
the model independently (test-set). Cross-Validation (CV) and Leave- 
One-Out validation (LOOV) are used in 45% of the studies (e.g. Mans
bridge et al., 2018; Fig. 5a). Using CV, the dataset is split into K folds, 
with K-1 folds used to train the model, and the Kth used to test it. The 
LOOV is the specific case of the CV where there are as many folds as 
there are observations in the dataset. The procedure is repeated K times, 
so that all folds have been used to test the model. Finally, 13% used the 
whole dataset both for training and validation (e.g. Busch et al., 2017; 
Fig. 5a). Recommendations on the different techniques used and their 
impact on the reliability of the model validation are discussed in Section 
6. 

When the dataset is split into several portions in the surveyed papers, 
either into a training data-set and test data-set, or into a cross-validation 
procedure, one of the following three criteria is usually chosen to split 
the dataset (Supplementary Data B4):  

• Random splits: The split is done in a completely random way; that is, 
the partitioning of the time-windows into training and test sets is done 
regardless of the animals and periods from which the time-windows 
came (e.g. Dutta et al., 2015). This option is used in the 63% of 
studies (Fig. 5a).  

• Time-based splits: The split is done regardless of the animals from 
which the time-window came, but the period when the animals are 
observed is taken into account (e.g. Riaboff et al., 2020). Validation 
is therefore carried out by considering the time-period associated to 
the time-window. This option is used in 5% of the studies (Fig. 5a).  

• Animal-based splits: The split is drawn from a different sample of 
animals than those used to train the model (e.g. Tamura et al., 2019). 
This option has been used in 32% of the studies (Fig. 5a). 

Recommendations on the criterion to be used for splitting the dataset 
and its impact on the reliability of the model validation, are also dis
cussed in Section 6. 

4.2. Model training: Options for the classifiers 

The objective of this step is to train and validate a classification 
model that best discriminate the different behaviours (Fig. 2). Of the 66 
reviewed papers, six main categories of models can be identified:  

• Supervised Machine Learning (SML): This category of classifiers has 
been used in 56% of the studies (Fig. 5b). It mainly includes Linear 
Discriminant Analysis (LDA; Giovanetti et al., 2017) or Quadratic 
Discriminant Analysis (QDA; Barwick et al., 2018), Support Vector 
Machines (SVM; Martiskainen et al., 2009), k-Nearest Neighbour (k- 
NN; Sakai et al., 2019), Naïve Bayes models (NB; Benaissa et al., 
2017) and Decision Trees (DT; Robert et al., 2009). The best 
hyperparameters for each model are usually found using Grid Search 
and a validation dataset (e.g. Martiskainen et al., 2009). 

Fig. 5. In Development of a Behavioural Classification Model: Distribution of the different techniques used in the surveyed papers (N = 66) to (a) validate the model 
using train and set-tests and (b) classify the time-windows into behavioural categories from the accelerometer features. 

L. Riaboff et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 192 (2022) 106610

10

• Supervised Ensemble Machine Learning (SEML): This category of clas
sifiers has been used in 18% of the studies (Fig. 5b). It essentially 
involves ensemble methods for classification, such as Random Forest 
(RF; Lush et al., 2018), eXtreme Gradient Boosting (XGB; Riaboff 
et al., 2020) or Adaboost (ADA; Dutta et al., 2015). The best 
hyperparameters for each model are usually found using Grid Search 
and a validation dataset (e.g. Riaboff et al., 2020)  

• Unsupervised Machine Learning (UML): This category of classifiers has 
been used in 3.2% of the studies (Fig. 5b). It especially includes the k- 
means classification (Vázquez Diosdado et al., 2015).  

• Deep Learning (DL): These methods have been used in 8% of studies 
(Fig. 5b). This category of classifiers includes the different varieties 
of Artificial Neural Networks, including Multilayer Perceptions 
(MLP; Nadimi et al., 2012), Convolutional Neural Networks (CNN; 
Peng et al., 2019) and Recurrent Neural Networks (RNN), notably 
Long Short-Term Memory (LSTM; Peng et al., 2020). It should be 
mentioned that this category is somewhat marginal to the other lis
ted categories as accelerometer features are not necessarily used as 
model inputs, and accelerometer time-series are usually used 
instead.  

• Statistical Models (SM): This category has been used in 3.2% of the 
studies (Fig. 5b). It includes generalised linear models like logistic 
regression (LR; le Roux et al., 2019) or models based on a Markov 
processes like Hidden Markov Models (HMM; Konka et al., 2014).  

• Manual Thresholding (MT): This classification has been used in 11% 
of the studies (Fig. 5b). The manual assignment of thresholds for each 
feature to discriminate behaviours is done using the feature distri
bution, either with the observational data directly (Arcidiacono 
et al., 2017), or by first modelling the feature distribution (González 
et al., 2015). 

Many papers test several classification methods comparatively from 
several categories of classifiers to find the one with the best classification 
performance in their study (Dutta et al., 2015; Hu et al., 2020; Riaboff 
et al., 2020; Smith et al., 2016). These comparisons will be used to 
support the recommendations on the models to choose in Section 6. 

4.3. Model validation: Options to evaluate model performance 

The validation step aims to assess the accuracy and robustness of the 
developed model (Fig. 2). This evaluation includes the three distinct 
sub-steps that were typically found across the 66 articles:  

• Predictive testing: Behaviours are predicted for each time-window 
from the developed model, using the test-data-set (42% of the 
studies), CV technique (45% of the studies) or the whole dataset 
(13% of the studies).  

• Confusion matrix calculating: The predicted behaviours of each time- 
window are compared to the actual observed behaviours (references 
obtained from the observations) as a confusion matrix. When more 
than 2 behaviours are predicted, a confusion matrix per behaviour is 
usually used to calculate true positives, false positives, true negatives 
and false negatives associated to each behaviour.  

• Performance analysis: The performance recorded in the confusion 
matrix is analysed using a variety of standard metrics for model 
evaluation, the most common ones identified in the 66 papers being 
accuracy, F-score measure, Cohen’s Kappa, Area Under Curve, 
sensitivity, specificity and precision. The formulae for these metrics 
are provided in Supplementary Data B5 and a detailed explanation 
can be found in Sokolova and Lapalme (2009). Depending on the 
studies, performance are related for the overall model (e.g. Wata
nabe et al., 2008), for each behaviour (e.g. Hokkanen et al., 2011), or 
for both (e.g. Alvarenga et al., 2016). Recommendations on how to 
report the performance of models are provided in Section 6. 

5. Predicting ruminant behaviour: Good overall and by- 
behaviour performance, but still limitations for field 
applications 

We profile the findings from the 66 surveyed papers, summarising 
their results in terms of the metrics used. Fig. 6 summarises the overall 
predictive performance for the surveyed studies using overall accuracy, 
Kappa, F-score and precision, and also profiles performance for each of 
the predicted behaviours using the accuracy, sensitivity and specificity 
per behaviour. Appendix 5 details the overall performance and 
performance-by-behaviour for the 30 core papers (see Supplementary 
Materials A4 for the performance of the remaining 36 papers). In the 
following sub-sections, we summarise the main positive and negative 
trends that emerge from these results and consider practical aspects 
regarding the use of these technologies in commercial farms. 

5.1. High predictive performance for the common behaviours 

Across the surveyed papers, overall predictive performance of 
models tend to be very good on key metrics (Fig. 6a): accuracy is > 80% 
in > 75% of the 66 papers, with ~50% of them achieving an accuracy of 
> 90% for correct classifications. The Cohen’s Kappa scores for the 
agreement between the predicted and observed behaviours is also very 
high, at > 0.8 (on a scale from 0 to 1) in more than half of the surveyed 
papers. Almost 40% of the studies reached a F-score of > 0.8 (on a scale 
from 0 to 1), corresponding to excellent sensitivity and precision in the 
classifications made. Finally, the precision scores were also > 80% in 
more than the half of the surveyed papers, and > 90% in 17% of them. 

The predictive performance by behaviour separately is also good for 
key metrics, at least for common predicted behaviours (i.e., feeding, 
ruminating, resting, moving, lying, standing; Fig. 6b and 6c). Indeed, for 
each of these common predicted behaviours, accuracy and sensitivity 
scores were > 80% in 50% of the surveyed papers. Specificity scores 
were > 80% in 75% the surveyed studies, and exceeded 90% in > 50% of 
them. 

These results show that the prediction of the dominant ruminant 
behaviours from raw accelerometer data is quite feasible and successful. 
Thus, these methods provide a good basis for prediction of ruminant 
behaviour in the field. Note that these basic behaviours can in turn be 
used to quantify other issues, such as animal performance, health or 
welfare. 

5.2. Poor prediction of rarely observed behaviours and large sets of 
behaviours 

Although common ruminant behaviours can be predicted relatively 
accurately (i.e., feeding, ruminating, resting, moving, lying, standing; 
Fig. 6b and 6c), some other behaviours are harder to predict. The latter 
include those that are only expressed occasionally by animals or ones 
that tend to be rarely studied. For instance, transitional behaviours such 
as “lying down” and “standing up” are often poorly predicted (Martis
kainen et al., 2009; Vázquez Diosdado et al., 2015). In the surveyed 
papers, the best reported sensitivities and specificities for “lying down” 
and “standing up” reached only 86% and 85%, respectively (Wang et al., 
2018). Similarly, some maintenance behaviours (e.g. urinating, drink
ing), self-grooming behaviours and social-interaction behaviours tend to 
have lower accuracies, at < 80% (Lush et al., 2018; Rodriguez-Baena 
et al., 2020). Some of these prediction issues clearly arise from a lack 
of sufficient data with which to train models (Fogarty et al., 2020). 
Arguably, these predictive shortfalls present obstacles to some assess
ments as common behaviours are not always sufficient to infer certain 
events (O’Leary et al., 2020). In particular, transitions between postures 
can be important indicators to assess animal health (e.g., lameness 
detection; Yunta et al., 2012), grooming may be a relevant indicator of 
well-being (Keeling, 2019), and maintenance behaviours, such as uri
nating, may be useful to address environmental issues (Lush et al., 
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Fig. 6. Performance obtained in the surveyed papers (N = 66); overall performance are reviewed based on the accuracy, Kappa, Fscore and precision metrics (a); the 
performance reached for the main behaviours predicted in the literature (b) are reviewed based on their accuracy, sensitivity and specificity (c). 
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2018). 
Furthermore, prediction issues can arise when the number and di

versity of behaviours to predict with the model increase, since predic
tion performance tends to decrease in such situations (Martiskainen 
et al., 2009; Peng et al., 2020). For instance, Hänninen (2010) reported a 
decrease in predictive accuracy from 87% to 63% when the behavioural 
categories being predicted increased from 3 to 6, respectively. Bishop- 
Hurley et al. (2014) have argued that the limited range of predicted 
behaviours available is quite a serious challenge in commercial uses of 
this technology, as there are many practical problems that require 
tracking and capturing a diversity of behaviours (e.g., the detection of 
lameness in grazing cattle; Riaboff et al., 2021). 

5.3. Experimental performance may not extend to field applications 

Although current models report impressive performance, this per
formance is very much experimental-based and may not extend to 
commercial deployments. Recall that an original dataset can be split in 
different ways for model validation purposes (Sections 4.1). In this 
respect, the performance obtained with the same model seems to be 
greatly affected by the split used. Several studies report a substantial 
decrease in performance when validation is done with animals other 
than those used to train the model, that is, using an animal-based split, 
compared to a random or time-based splits. For instance, Rahman et al. 
(2018) reported a 0.4 decrease in F-score (scale 0–1) using the same 
original dataset when it was split by animal in a Leave-One-Out-Animal 
validation technique, compared to the random split using a k-fold Cross- 
Validation. In the same way, Riaboff et al. (2020) also reported a 13% 
decrease in accuracy when splitting the dataset by animal as opposed to 
a time-based split, using the independent test-set in both cases. These 
decrements in model performance come from high inter-animal vari
ability based on differences in physical characteristics (e.g., muscles, 
tendons, joints) that lead to different expressions of the same behaviour 
(e.g., motion intensity, speed, posture; Barwick et al., 2020); hence the 
same behaviour ends up being expressed by different accelerometer 
patterns. Consequently, splitting an original dataset by animal can lead 
to markedly different feature-distributions between the training and 
test-sets and consequential poor predictive performance (Rahman et al., 
2018). A decrease in performance can also be expected when validation 
is applied with a time based-split, compared to a random split (Riaboff 

et al., 2020). Indeed, behaviour prediction may also be a non-stationary 
problem since animal behaviour is continuously changing, constantly 
adapting to varying management and environmental conditions. Thus a 
model trained at one time for a given behaviour may not generalise to 
what nominally is the same behaviour at a later time (Vázquez-Diosdado 
et al., 2019). This lack of model generalization from one animal to 
another and from one time-period to another is an additional major 
constraint for applications in the field. 

5.4. Technical limitations of the experimental devices for a commercial 
use 

Although beyond the scope of this review, it is worth mentioning that 
most of the devices reviewed here in an experimental context can be 
used for research purposes, but are not compatible with commercial use. 
For example, in most studies, manual data extraction (Robert et al., 
2009), calculation time for extracting complex features (Smith et al., 
2016) or predicting behaviours with computationally intensive algo
rithms are unlikely to be suitable for long-term or for scaled-up use when 
one considers the battery-life of these devices. These technical issues are 
also a major constraint to the development of marketable systems. 

6. Recommendations & lines to explore for future studies 

In this section, we propose an overall optimal framework for 
achieving good predictive performance based on detailed choices at 
each step in the methodology (Section 6.1). Then we propose some 
perspectives to address the challenge of increasing the range of well- 
predicted behaviours (Section 6.2), and to address the challenge of 
increasing the generality of models (Section 6.3). Finally, we briefly 
consider the issues surrounding the transitioning of these technologies 
from a research environment to commercial settings (Section 6.4). 

6.1. General recommendations for good and robust predictive 
performance 

General recommendations for further research investigations are 
divided into proposals for each of the key techniques identified in the 3 
steps of the methodology. Key techniques and proposals are made to 
achieve good and robust predictive performance in a properly designed 

Table 2 
Overall recommendations for the key techniques identified for each step of the 3-step methodology to achieve high predictive performance in a properly designed 
scheme for model evaluation, based on the reviewed papers (N = 66).  

3-Steps Key Techniques General recommendations 

Data Collection 

Equipped animals Include as much variability as possible: > 25 animals from > 2 different farms  
Observation of animals Include as much variability as possible: Continuous observations during > 40 h  
Sampling rate [10 Hz; 20 Hz]  
Sensor positioning Feeding behaviour Jaw; Neck; 

Ear  
Motion; Restless Ear; Neck  
Posture; Transition Leg  

Data Pre-Processing 

Cleaning raw data Clean any missing data.  
Additional time-series Calculating Amag, OBDA and/or VeDBA, pitch, roll, sway, etc, and combining several time-series.  
Segmentation WS: [3 sec; 30 sec]; A mix of different window-sizes; Adding overlap  
Features Combination of MI, orientation, shape and physical features   

Development of a 
Model 

Validation technique; 
dataset splitting 

Split according to the individual criterion; Independent dataset to test the model; 
Balanced dataset between the different behaviours.  

Classifier Supervised Machine Learning: SVM 
Supervised Ensemble Machine Learning: RF, XGB 
Deep Learning: PNN, LSTM, CNN  

Metrics of performance Provide metrics of performance for both the overall model (e.g. Fscore, Cohen’s Kappa) and for each 
predicted behaviour (e.g. sensitivity and specificity per behaviour).  

Note: For the abbreviations used in the table, we refer to the list of abbreviations provided at the beginning of the review. 
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scheme for model evaluation, with respect to the assessment of the 66 
papers reviewed. The main recommendations are summarized in Table 2 
and detailed in the following sections. 

6.1.1. General recommendations for data collection 
In data collection, a general recommendation can be made about the 

number of animals to equip during the experiment. Good performance of 
prediction have already been reached with few equipped animals (<10 
animals; e.g. Arcidiacono et al., 2017) but the lack of variability in the 
dataset can disimprove the generality of the model (see Section 5.3). 
While this is not a major problem when the model is used thereafter with 
the same animals for experimental purposes, it is a critical issue for 
commercial deployments. Therefore, the more animals that are 
involved, the greater the variability between individuals in the training 
set, the more robust the model will be. In this respect, equipping 25 
animals (Smith et al., 2016) seems to be a reasonable minimum to 
achieve both robust prediction, that is, good performance using appro
priate technique for validation (see Section 6.1.3 to follow). Although 
rarely seen in the papers surveys, equipping animals from at least 2 
different farms is also recommended to improve model robustness. In 
the same way, the longer the animals are observed, the more inter- and 
intra-individual variability is taken into account in the dataset, the more 
robust the model will be. In this regard, about 40 h of observation ap
pears to be the minimum time to achieve both high and robust predic
tion (González et al., 2015). It is worth mentioning that continuous 
observation ensures correct association between accelerometer data and 
observed behaviours over continuous intervals, to both train and vali
date the model properly. This technique is thus to be preferred to scan 
sampling (e.g. Tamura et al., 2019) as it is necessary to extend the 
observed behaviour between the different observation scans, while the 
animal may have expressed another behaviour over the interval. Video 
recordings also reduce the degree of uncertainty related to direct 
observation since it is possible to go back to the observations if neces
sary, but behaviours should be encoded after filming the animals, which 
can be more constraining. 

Recommendations can also be made on the sampling rate, as studies 
show that reducing the sampling rate (using down sampling) reveal 
performance decrements below 10 Hz (Benaissa et al., 2018; Walton 
et al., 2018). Furthermore, the benefit of sampling rates higher than 20 
Hz is not clear since high predictive performance tends to be achieved 
for many behaviours with 20 Hz (Peng et al., 2019). As increasing the 
sampling rate decreases the battery life, a sampling rate between [10; 
20 Hz] is probably an appropriate trade-off (Benaissa et al., 2018). 
However, it should be noted that a thorough analysis of the maximum 
frequencies that can be generated by animal movements according to 
their species and breed is necessary to make strong recommendations on 
optimal sampling rates. To the authors’ knowledge, such a study has not 
yet been carried out for livestock. 

Sensor positioning must be chosen according to the behaviours being 
predicted. Indeed, neck-, jaw- and ear-mounted sensors seem adapted to 
predict feeding behaviours, such as grazing, feeding, ruminating, both in 
cattle (Smith et al., 2016; Weizheng et al., 2019) and sheep (Barwick 
et al., 2018; Giovanetti et al., 2017). Ear- and neck- mounted sensors can 
be recommended to predict behaviours related to motion and restless
ness, both in cattle (Peng et al., 2019) and in sheep (Fogarty et al., 2020). 
Leg-mounted sensors seem the most suitable to discriminate between 
postures and detect the lying down and standing up transitions, both in 
cattle (Wang et al., 2018) and goats (Zobel et al., 2015). 

6.1.2. General recommendations for data pre-processing 
Although removing noise from the raw accelerometer signal does not 

necessarily appear to improve performance based on studies assessing 
its impact on performance (Riaboff et al., 2019), it may be advisable to 
use such filters when the accelerometer signal is likely to be very noisy 
(e.g. when using ear-mounted sensors; Chapa et al., 2020). Removing 
accelerometer data indicating that the data could not be generated for a 

time stamp (e.g. artificial zeros, outliers, symbols, etc) is recommended 
to avoid biasing the analysis later on. 

Calculating new time-series appear really relevant to reach a high 
level of performance prediction. Most especially, OBDA and/or VeDBA 
extracted from dynamic acceleration are useful to predict behaviours 
with different levels of activity/energy expenditure (Lush et al., 2018; 
Vázquez-Diosdado et al., 2019) while pitch, roll, sway, etc, extracted 
from the static acceleration are useful to predict behaviours involving 
different posture and body/head tilt (Lush et al., 2018; Zobel et al., 
2015). The magnitude of the acceleration, called Amag in this review, 
also appears relevant when the axis direction is not helpful (e.g. cate
gories of behaviour related to the activity level) or not interpretable (e.g. 
different sensor positioning to train a same classifier, collar subjected to 
rotation, etc) (Kamminga et al., 2018; Mansbridge et al., 2018; Tamura 
et al., 2019). Finally, combining different time-series is promising to 
predict a large set of behaviours, involving different level of motion 
intensity and postures, as it is a way to provide complementary inputs 
into the classifier (Lush et al., 2018; Riaboff et al., 2020; Vázquez Dio
sdado et al., 2015). 

In the 66 surveyed articles, the main differences concerning the 
segmentation step are related to the chosen window size and whether or 
not an overlap is added. In that respect, it seems that WS < 10 sec result 
in better performance than larger windows (Lush et al., 2018; Peng 
et al., 2019; Robert et al., 2009), possibly because short WS have less 
variability or transition between behaviours (Banos et al., 2014). 
However, WS > 10 sec capture the high motion variability found in 
activities with a complex description (Banos et al., 2014) and therefore 
may be relevant to predict behaviours with different sub-units, such as 
grazing which involves alternation between chewing and biting (Gibb, 
1996). Large WS > 30 sec may reduce the number of time-windows 
available as each window spanning several behaviours are usually 
removed from the data set (Andriamandroso et al., 2017): The longer the 
windows, the more windows spanning several behaviours, the less time- 
windows are available for training and validation. Such large window 
size may also lead to optimal performance in experimental context as 
validation is usually done using single-behaviour windows (Tamura 
et al., 2019), while on the field there will surely be a mix of behaviours 
within WS > 30. Therefore, adopting a window size between [3 sec; 30 
sec] appears to be a good trade-off. Another interesting trade-off is to use 
several different window sizes to calculate features instead of using a 
single one (Hu et al., 2020), as features extracted from time windows of 
mixed sizes, ranging from 2 s to 15 s, significantly improved the clas
sification of behaviour. It is worth noting that the best WS is also highly 
dependent on the sampling rate and behaviours to predict. Thus, we 
encourage researchers to identify the best WS for their study in a pre
liminary analysis. Adding overlap is also a way to increase the predictive 
performance, especially for large WS when there are not enough win
dows available for training and validation (Riaboff et al., 2019). 

Regarding the features to extract from each time window, using a 
combination of several types of features, including motion intensity, 
orientation, shape and physical features (Appendix 3) is highly recom
mended, especially when a broad range of behaviours is predicted. 
Indeed, high predictive performance are usually obtained combining 
different types of features, as it provides an exhaustive and comple
mentary description of the time-series into the classifier (Riaboff et al., 
2020; Walton et al., 2018). 

6.1.3. General recommendations for model development 
Regarding the techniques used to train and test the model, the most 

important decision seems to involve the criterion used to split the data 
set. As explained in Section 5.3, several studies report a substantial 
decrease in performance when validation is done with other animals 
than those used to train the model compared to random or time-based 
splits due to the variability between animals and time periods. There
fore, splitting the dataset randomly does not seem appropriate for 
testing the robustness of the model and may lead to overly-optimistic 
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performances, not representative of those obtained in a commercial 
context. In this respect, we recommend to use an animal-based split to 
evaluate the robustness of the model properly (Rahman et al., 2018). 
Testing the model with an independent dataset (Riaboff et al., 2020) is 
also a good way to ensure that the parameters used to train the model 
(window size, overlap, classifier, hyperparameters, etc.) are suitable for 
another dataset than the one used to develop the model and are not too 
specific, which could lead to overly-optimistic performance. Consis
tently, testing the model with the same dataset than the one used to train 
it, as done in 13% of the studies (Fig. 5a), conflates training and testing, 
and is thus a validation technique to be proscribed. Another reason 
leading to unreliable and sub-optimal performance is the unbalanced 
distribution of time-windows within the different behaviours to predict; 
that is, with some behaviours over-represented, and other under- 
represented. In this way, using stratified CV (Riaboff et al., 2019) or 
using under sampling (Fogarty et al., 2020; Sakai et al., 2019) to 
improve the balance of the dataset between the different behaviours to 
predict is also recommended. 

In studies comparing several classifiers, best predictive performance 
have often been obtained with SVM, RF and XGB (Mansbridge et al., 
2018; Riaboff et al., 2020; Vázquez Diosdado et al., 2015). Although 
Deep Learning is seldom used in the community, contrary to Human 
Activity Recognition (e.g. Song-Mi Lee et al., 2017), excellent perfor
mance has been achieved with PNN and LSTM models (Peng et al., 2020; 
Weizheng et al., 2019) and more recently with a Convolutional Neural 
Network (Pavlovic et al., 2021). These Machine Learning and Deep 
Learning classifiers are thus recommended for the classification of 
ruminant behaviours from accelerometer data. 

Regarding the way in which performance metrics are reported, it 
seems that providing the overall performance of the model (e.g. overall 
accuracy and Cohen’s Kappa; González et al., 2015), but also the per
formance for each behaviour (e.g. accuracy, sensitivity and specificity of 
each predicted behaviour; Alvarenga et al., 2016), is the best way to 
ensure a complete and unbiased evaluation of the model (Decandia 
et al., 2018). 

6.2. How to increase the range of well-predicted behaviours 

As explained in Section 5.2, current studies encounter difficulties in 
predicting (i) rarely observed, short and transitional behaviours (e.g. 
grooming, drinking, urinating, transition between postures) and (ii) a 
broad spectrum of behaviours using a single accelerometer sensor. To 
overcome these difficulties, we propose several lines to investigate in the 
3-step methodology, detailed in the following sub-sections. 

6.2.1. Data Collection: Use additional devices 
Adding several accelerometer devices at different positions on an 

animal is a good way to extend the spectrum of well-predicted behav
iours (Benaissa et al., 2017) even though this solution may not be 
practicable for use in the field. Alternatively, additional sensors along
side accelerometers could be used, such a magnetometer or a gyroscope. 
These additional devices will provide more information that should 
improve predictive performance. For instance, Walton et al. (2018) used 
a gyroscope in addition to a collar-mounted accelerometer and achieved 
good performance for the lying behaviour, a behaviour that is usually 
quite hard to predict with collar-mounted sensors (Hamalainen et al., 
2011). Furthermore, Guo et al., (2018) found that gyroscope features 
were included in the top-5 most important features for discriminating 

grazing from non-grazing behaviours, highlighting the potential utility 
of additional sensing capabilities. Also, Brugarolas et al. (2013) have 
argued that adding a gyroscope should improve the classification of 
cyclic behaviours. Nevertheless, further investigations are needed to 
assess the utility of gyroscopes as sometimes they do not deliver major 
improvements (Kleanthous et al., 2019; Sakai et al., 2019). Similarly, 
adding a magnetometer also seems to improve predictive performance 
(Sakai et al., 2019). Additional data can also be used to reassess the 
outputs at the end of the prediction. For example, Wang et al. (2019) 
observed a significant improvement in the prediction of standing and 
feeding behaviours that were poorly predicted with the Adaboost model 
by re-evaluating the prediction with location data, using D-S evidence 
theory. Indeed, location sensors are also relevant, as knowing where the 
animals are can provide additional about what they are doing (Fogarty 
et al., 2021). The addition of sensors other than the accelerometer in the 
same device is therefore probably a good way to improve the prediction 
of behaviours that are difficult to predict using an accelerometer on its 
own. 

6.2.2. Data pre-processing: Investigate new segmentation techniques 
Most studies use a fixed-window size when segmenting a time-series; 

that is, the time interval used to split the signal is kept constant across 
the whole time-series (see Section 3.3). However, in related areas, such 
as Human Activity Recognition from accelerometer sensors, different 
segmentation techniques are often used and should be investigated to 
predict ruminant behaviours. For example, the signal can be split into 
different window-sizes determined by partitioning (top-down approach) 
or aggregating (bottom-up approach) on a chosen criterion (Keogh et al., 
2001). In this way, the segmentation can be carried out at a specific 
location within the time-series, in a way that minimizes the intra- 
segment variability and maximizes the variability between the 
different segments. This approach looks promising as a way to avoid 
splitting the signal in the middle of the expression of the same behav
iour, an issue that can arise in predicting short and transitional behav
iours (such as chewing or biting in the grazing process or standing up/ 
lying down transitions). 

6.2.3. Model development: Use temporal structure in time-series or 
sequence of behaviours 

In general, good predictive performance can be achieved using Ma
chine Learning (ML) and Ensemble methods but often these classifiers do 
not take the temporal structure within the time-series into account. 
Although they are not yet widely used in this literature, classifiers that 
make use of the dependence between samples in the accelerometer time- 
series, such as LSTM, seem promising as predictive models for varied 
and rarely-observed behaviours (Peng et al., 2020, 2019). In that regard, 
the range of Machine Learning and Deep Learning classifiers designed 
for time-series classification specifically (Bagnall et al., 2017; Ismail 
Fawaz et al., 2019) deserve to be tested in ruminant behaviour predic
tion. It should be noted that accelerometer features could also be used 
with such classifiers instead of using the raw time-series, calculating 
features in each time-window and then retaining the time stamp of the 
corresponding time-window. 

Another option is to consider the temporal structure within the 
continuous sequence of the expressed behaviours. Assuming that the 
sequence of behaviours expressed by animals is not random, and that 
there is, on the contrary, a direct relationship between the behaviour 
expressed at window t and that expressed at window t + 1, then one 
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could use this temporal structure to improve the prediction of behav
iours. For instance, Riaboff et al. (2020) used a Viterbi HMM algorithm 
to reassess the predicted behaviours by a ML model for each time- 
window considering the temporal structure within a behaviour 
sequence. Such an approach leads to an improvement in predictive 
performance, especially for behaviours with the lowest sensitivities. 
Considering temporal structure, either in the accelerometer data or a 
continuous sequence of behaviours, can thus improve prediction for 
certain behaviours. 

6.3. Methods to improve of model generality 

As explained in Section 5.3, current studies encounter difficulties in 
developing robust models that generalise well; that is, models that 
maintain good predictive performance when tested on different animals 
and/or over different time-periods. These difficulties present a major 
obstacle to the commercial use of these technologies in farming. To 
overcome these issues, we propose several methods and techniques to 
investigate in a 3-step methodology, detailed in the following sub- 
sections. 

6.3.1. Data collection: Include as much variability as possible 
As explained in Section 6.1.1, equipping a large number of animals 

from different farms, each observed continuously during a long time is 
essential to acquire a training dataset representative of the observed 
variability between animals (Hu et al., 2020). To further develop robust 
models, including different breeds (Andriamandroso et al., 2017), 
different parities and lactation periods, observing animals at different 
times of the year (Riaboff et al., 2020) and possibly under different 
breeding conditions (e.g. different types of housing, such as straw yards 
vs. cubicles) or different management and feeding practices (e.g. 
different grass heights for pasture-based systems; Guo et al., 2018) 
seems to be a promising way to include as much variability as possible in 
a training dataset, and consequently to develop models that have greater 
generality. 

6.3.2. Model development: Use classifiers that prevent overfitting and/or 
adaptive over time 

As mentioned in Section 6.1.3, SVM, RF or XGB classifiers lead to 
good predictive performance. Moreover, beyond the good performance 
obtained in an experimental framework, such classifiers include 
hyperparameters specifically designed to avoid overfitting (i.e., where a 
model becomes too adapted to its training dataset, and therefore does 
not generalise well). For example, the margin width relative to the hy
perplane in the SVM model (Burges, 1998) can be adapted (hyper
parameter C: cost of constraints violation) so that it allows some 
misclassification in the training dataset for observations that are too far 
from the mean distribution (i.e. outliers). Ensemble machine learning 
methods such as RF, Adaboost or XGB use several weak classifiers to 
avoid overfitting and also include hyperparameters to optimize (Brei
man, 2001; Friedman, 2001). In that regard, some models like manual 
thresholding or DT are more prone to overfitting and thus the excellent 
performance obtained with such algorithms in an experimental context 
need to be qualified (Tamura et al., 2019). 

Another way to improve the generality of a model is to use an 
evolving model, that adapts the prediction as it goes along according to 
the data it receives. For example, Vázquez-Diosdado et al. (2019) first 
predicted a new instance with a trained and non-evolving off-line model 
(k-NN classifier) and then use an evolving on-line model (k-means 
classification) which was updated as the data were received to reassess 
the predictions from the off-line model. When this combination is tested 
on new animals over new time periods, better performance was obtained 

than when the offline model was used on its own. 

6.4. Moving from experimental to commercially-usable systems 

As explained in Section 5.4, it seems important to point out that most 
of the methods mentioned in the review were developed in experimental 
settings and do not yet transfer to on-farm commercial use at scale. 
Making a given tool compatible with commercial use in farming (posi
tioning of sensors, automatic transfer of comprehensible data, battery 
life, etc.) is already the subject of many studies (Kuźnicka and Gbur
zyński, 2017; Nadimi et al., 2008). Several lines have been investigated, 
including the automatic transfer of data using edge computing (Hen
driks et al., 2020) or limiting the volume to transfer (Benaissa et al., 
2018; Kuźnicka and Gburzyński, 2017). Decreasing computation time 
by (i) adapting the pre-processing (increasing the window size; Walton 
et al., 2018), (ii) extracting variables with low computational re
quirements (Vázquez-Diosdado et al., 2019) or (iii) selecting suitable 
classifiers (Vimalajeewa et al., 2021) is also an issue addressed in several 
studies. 

7. Conclusions 

This paper has reviewed the key literature predicting ruminant be
haviours from raw accelerometer data. In the paper, we have (i) profiled 
the main characteristics of 66 key articles on this topic area within the 3- 
step methodology used in the area, (ii) reported on main results that 
have arisen from these studies, (iii) detailed the challenges and issues 
that arise in this area and (iv) made recommendations and suggested 
lines to investigate for resolving these challenges in future studies. 
Overall, the good predictive performance obtained in most of the studies 
supports the potential of this methodology to predict ruminant behav
iour from accelerometer sensor data, across a variety of farming appli
cations. The main limitations that arise include the difficulties 
surrounding the prediction of certain behaviours and the lack of gen
erality and robustness in developed models. For that purpose, we 
encourage researchers to include as much variability as possible in their 
datasets and to use classifiers that prevent overfitting. Some lines to 
investigate are also proposed to address these issues, but, in general, we 
would argue that the techniques used need to be objective-driven (e.g. 
adapted to the behaviours to predict, to the desired application on farms, 
etc). In this regard, we recommend that a series of pilot studies be car
ried out to identify the most appropriate methods and techniques for the 
objectives of the study. Finally, while the large range of relevant tech
niques and methods reported in ruminants and related communities 
should help to solve the mentioned limitations, further work is still 
needed to combine performance and operability of the systems 
developed. 
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Appendix 1. In Data Collection: Detail of the key choices made when predicting ruminant behaviour from accelerometers in each 
surveyed paper (note - based on the 30 core articles*; see Supplementary data A1 for the other 36 studies). 

Note: * The 30 papers presented in Appendix 1 out of the 66 reviewed were selected based on their complete methodological practices; that is, there 
is no main missing elements in the description of the material and methods used and the results are reported in a complete and understandable way. 
Furthermore, we selected papers predicting at least two distinct behaviours in order to display the predictive performance obtained in a challenging 
framework. The details of the remaining 36 articles are reported in Supplementary Materials. 

1 Cell background is displayed in dark green, orange or light green depending on the study was on cattle, sheep or goat, respectively. 
2 Behaviours observed at pasture are written on green background; behaviours observed in the barn are written on orange background. 
3 Notations used for behaviours: G: grazing, F: feeding, Rum: ruminating, R: resting, W: walking, S: standing, L: lying, RumL: ruminating while 

lying; RumS: ruminating while standing; RL: resting while lying; RS: resting while standing; SU: standing up, LD: lying down, Run: running, Scr: 
scratching, Sea: searching; Fo: foraging; Gro: grooming, Int: interaction, Moun: mounting; U: urinating, D: drinking, O: other. 

4 Depending on the studies, the time displayed is the exact or approximate duration of observation. Observations using time-sampling are notified 
in brackets. 
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Appendix 2. In Pre-processing: Key choices made when predicting ruminant behaviour from accelerometers in each surveyed (note - 
based on the 30 core articles*; see Supplementary Data A2 for the other 36 studies). 

Note: * The 30 papers presented in Appendix 2 out of the 66 reviewed were selected based on their complete methodological practices; that is, there 
is no main missing elements in the description of the material and methods used and the results are reported in a complete and understandable way. 
Furthermore, we selected papers predicting at least two distinct behaviours in order to display the predictive performance obtained in a challenging 
framework. The details of the remaining 36 articles are reported in Supplementary Materials. The background of the cells is green when the technique 
has been applied, grey otherwise. Abbreviations used in the Table: AccSt: Static Acceleration; AccDy: Dynamic Acceleration; Amag: Magnitude of the 
acceleration; OBDA: Overall Body Dynamic Acceration; VeDBA: Vector Dynamic Body Acceleration; WS: Window Size; MI: Motion Intensity. 

Appendix 3. Quantitative features used to describe the time-series into each time-window, organized by information-category and 
signal domain.  

Category Domain Time-series Example of Features References 

Motion Intensity TD x-axis, y-axis, z-axis Standard-deviation, movement variation, median, first and third quartile, 
interquartile, minimum, maximum, range, root mean square 

Williams et al., 2017 
Barwick et al., 2018 
Riaboff et al., 2020 

Dynamic acceleration, Amag, 
OBDA, VeDBA 

Mean, standard-deviation, movement variation, median, first and third 
quartile, interquartile, minimum, maximum, range, root mean square 

Vázquez Diosdado 
et al., 2015 
Robert et al., 2009 
Benaissa et al., 2018  
Riaboff et al., 2020 

Orientation of the body TD x-axis, y-axis, z-axis Mean, median 

(continued on next page) 
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(continued ) 

Category Domain Time-series Example of Features References 

Kleanthous et al., 
2018 
Alvarenga et al., 
2016 

Static acceleration, pitch, roll, sway Mean, median, standard-deviation, minimum, maximum Lush et al., 2018 
Characterization of the 

shape 
TD x-axis, y-axis, z-axis, pitch, roll Skewness, kurtosis Dutta et al., 2015 
FD x-axis, y-axis, z-axis, pitch, roll Spectral flatness, spectral centroid, spectral spread, spectral kurtosis Smith et al., 2016 

Physical description of the 
movement 

FD 
TFD 

x-axis, y-axis, z-axis, Amag, pitch, 
roll, dynamic acceleration 

Spectral entropy, fundamental frequency, maximum and second maximum 
power spectral density, wavelet features 

Smith et al., 2016 
Lush et al., 2018 
Riaboff et al., 2020 
Hokkanen et al., 
2011  

Note: Equations of features listed in the table are provided in Supplementary Data B3. 
Abbreviations: TD: time-domain; FD: frequency-domain. TFD: time-frequency domain 

Appendix 4. In the Development of a Behavioural Classification Model: Key choices made when predicting ruminant behaviour from 
accelerometers in each surveyed paper (note - based on the 30 core articles*; see Supplementary Data A3 for the other 36 studies). 

Note: * The 30 papers presented in Appendix 4 out of the 66 reviewed were selected based on their complete methodological practices; that is, there 
is no main missing elements in the description of the material and methods used and the results are reported in a complete and understandable way. 
Furthermore, we selected papers predicting at least two distinct behaviours in order to display the predictive performance obtained in a challenging 
framework. The details of the remaining 36 articles are reported in Supplementary Materials. The background of the cells is green when the technique 
has been applied, grey otherwise (n.b., for the abbreviations see list at the beginning of the review). 
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Appendix 5. Model Performance profiles showing overall performance (in terms of Accuracy, Kappa, F-score, Sensitivity, Specificity and 
Precision) and performance for each behaviour examined (in terms of Accuracy, F-score, Sensitivity, Specificity and Precision) (note - 
based on the 30 core articles*; see Supplementary Data A4 for the other 36 studies). 

Note: 
* The 30 papers presented in Appendix 5 out of the 66 reviewed were selected based on their complete methodological practices; that is, there is no 

main missing elements in the description of the material and methods used and the results are reported in a complete and understandable way. 
Furthermore, we selected papers predicting at least two distinct behaviours in order to display the predictive performance obtained in a challenging 
framework. The details of the remaining 36 articles are reported in Supplementary Materials. 

1 Behaviours observed and then predicted at pasture are written on green background; behaviours observed and then predicted in the barn are 
written on orange background. 

2 Overall performance reported in the studies. Note that when several models have been explored, minimum and maximum performance are 
provided in the Table (notation: min-max). Notations used: Acc:: accuracy; Sens.: sensitivity, Spe.: specificity; Prec: precision. 

3 Performance per behaviour reported in the studies. Note that when several models have been explored, minimum and maximum performance are 
provided in the Table (notation: min-max). Results on event- or disease-related behaviour are not reported in the Table. 

Notations used for behaviours (alphabetical order): D: drinking; F: feeding; Fo: foraging; G: grazing; Gro: grooming; Int: interaction; L: lying; LD: 
lying down; Moun: mounting; O: other; R: resting; RL: resting while lying; RS: resting while standing; Rum: ruminating; RumL; ruminating while lying; 
RumS: ruminating while standing; Run: running; S: standing; Scr: scratching; Sea: searching; SU: standing up; U: urinating; W: walkin 
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Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compag.2021.106610. 
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