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A B S T R A C T   

Meat products are popular foods and there is a need for cost-effective technologies for rapid quality assessment. 
In this study, RGB color imaging coupled with machine learning algorithms were investigated to detect plant and 
animal adulterants with ratios of from 1 to 50% in minced meat. First, samples were classified as either pure or 
adulterated, then adulterated samples were classified based on the adulterant’s type. Finally, regression models 
were developed to predict the adulteration quantity. Linear discriminant classifier enhanced by bagging 
ensembling performed the best with overall classification accuracies for detecting pure or adulterated samples up 
to 99.1% using all features, and 100% using selected features. Classification accuracies for adulteration origin 
were 48.9–76.1% using all features and 63.8% for selected features. Regression trees were used for adulterant 
level quantification and the r (RPD) values were up to 98.0%(5.0) based on all features, and 94.5%(3.2) for 
selected features. Gray-level and co-occurrence features were more effective than other color channels in 
building classification and regression models. This study presents a non-invasive, and low-cost system for 
adulteration detection in minced meats.   

1. Introduction 

In 2017, the total world production of cattle, pigs, and chickens 
reached 295,193 million Metric Tonnes, making meat the largest pro
duced agricultural product by volume [1]. Meat and poultry processing 
is the largest sector in the US food industry, with a $1020 billion 
contribution to the economy in 2016, providing over 5.4 million jobs 
[2]. Food fraud is the deliberate act of substituting, adding, tampering, 
or misrepresentation of food, food ingredients, or food packaging [3]. 
Therefore, preventing food fraud is essential for food manufacturers, 
retailers, fast food chains, and consumers. The meat industry has seen a 
significant surge of food fraud in 2013 when the “horsemeat scandal” 
was discovered in Ireland, England, and Luxemburg. Minced beef bur
gers were adulterated with up to 100% minced horsemeat and/or pork 
which opposes some ethical and religious groups [4]. This incident 
damaged the reputation of meat producers and retailers in the UK and 
Ireland and further highlighted the need for rapid and cost-effective 
techniques that can identify adulterants in minced meats in early pro
cessing stages. 

A fresh beef muscle contains water (~72%), protein (~21%), lipid 

(~5%), carbohydrate (~1%), and ash (~1%) [5]. Major processed meat 
products include minced beef, hamburgers, beef patties, cooked ham, 
cooked sausages, bacon, canned products, dry-cured ham, mold-ripened 
sausages, semi-dry, and dry fermented sausages [6,7]. For beef patties or 
burgers, several ingredients are added to the minced beef during pro
cessing to enhance flavor and fat emulsification, to ensure a consistent 
shape by increasing the water-binding properties, and to act as fillers for 
cost reduction These ingredients include water, salt, soy proteins wheat 
gluten, and milk proteins [8]. Functional ingredients such as isolated soy 
protein or non-fat dried milk proteins are usually added at approxi
mately 2%. Meat extenders and fillers such as soy flour, soy concentrate, 
beans, peas, lentils, cereal flours, starches are added at around 15% [7]. 
Consequently, the likelihood of adulterating a processed meat product 
will mostly be achieved by adding an excess of fillers such as wheat 
gluten, or soy proteins as they are cheaper than meat. 

The common laboratory-based techniques for identifying foreign or 
unwanted proteins in processed beef are electrophoresis, immunological 
reactions, and chromatography [9]. Examples of these techniques 
include detecting soybean and milk proteins in sterilized beef patties 
using SDS-PAGE [10], using ELISA to estimate soybean, and pea 
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proteins, and wheat gluten in sausages [11], utilizing Ion-exchange 
HPLC for tracking soybean proteins, caseins, and whey proteins in 
processed meats [12], and using PCR test to detect the characterizing 
DNA of animal-based adulterants in meat samples [13]. Although the 
previous methods have shown high accuracy and resolution in identi
fying various types of foreign proteins in processed meats, they still have 
several drawbacks including, relatively long sampling time, high cost, 
and the requirement of highly skilled workers. Therefore, such methods 
are not suitable for rapid, and online authentication within the meat 
supply chain. 

The applications of optical sensors for the evaluation of meat quality 
and safety has been extensively studied. Detection of horsemeat in 
minced beef was studied using visible(Vis)/near-infrared (NIR) spec
troscopy, and Vis/NIR hyperspectral imaging (400–1000 nm) with a 
maximum R2 value of 98% for regression models [14]. Distinguishing 
pork in minced beef using Vis/NIR multispectral imaging was feasible 
with 98% overall classification accuracy [15]. Al-Sarayreh, M Reis [16] 
studied the application of Vis/NIR hyperspectral imaging (548–1701 
nm) to identify beef or pork in lamb meat and achieved a classification 
accuracy of 94.4%. Other studies include utilizing spectroscopic systems 
to assess minced beef adulterated with turkey meat [17], using Vis/NIR 
spectroscopy (400–2500 nm) to detect pork, fat trimming, and offal in 
fresh and frozen-thawed minced beef [18], and assessing minced beef 
and pork adulterated with soybean and wheat gluten by Vis/NIR spec
troscopic [19] and hyperspectral imaging systems [20]. 

Color Vision (CV) is a tri-waveband imaging technique that acquires 
spectral information about an object on the Red, Green, Blue (RGB) color 
channels. CV has been used to perceive external defects in fruits and 
vegetables and is significantly lower in cost compared with other optical 
systems [21,22]. The utilization of CV in meat quality comprised iden
tifying quality parameters of beef such as color [23–25], marbling 
[25–27], intramuscular fat [28], lean meat content [29], and palat
ability [30]. CV was also used for pork quality such as assessing color 
[31–36], freshness [37], and intramuscular fat content [38]. Other ap
plications were about quality tracking of chicken and lamb [39]. CV 
systems were studied for detecting fraudulent frozen bovine meat where 
images of histological cuts of bovine were classified against those 
injected with water-based solutions, and a Support Vector Machine 
(SVM) classifier showed a classification accuracy of 96.6% [40]. How
ever, the application of CV systems for detecting adulteration in beef or 
pork has not been studied before. Therefore, the objective of this study is 
to assess the feasibility of using a low-cost CV system and machine 
learning methods to detect plant and animal protein adulterants in 
minced beef and pork meats. In this study, models were developed to 
detect if a sample contains adulterants before determining the origin and 
quantity of the adulterant. The study also explored the effect of different 
featured engineering methods on the performance of the machine 
learning models. 

2. Materials and methods 

2.1. Materials and experimental design 

The meat samples utilized in this study were beef (chuck roast), pork 
(Boston Butt), and chicken thigh. Additionally, textured soybean protein 
(SP) (Red Mill, Milwaukie, Oregon, USA), which is a soy flour containing 
50% protein, and wheat gluten (WG) (TruTex RS 65, MGP, Atchison, 
Kansas, USA), which includes 75% protein were used as adulterants. The 
SP or WG had relatively larger particles as shown in Fig. 1compared with 
those are commonly used in beef patty processing. However, the 
referred plant proteins were chosen to study the feasibility of applying 
the RGB color sensor for evaluating beef or pork adulteration. Meat 
samples were bought from a local store in Lexington, State of Kentucky, 
USA. The sources of the meat were farms in the State of Kentucky. Meat 
samples were stored at 1 ◦C until they were minced and imaged. The 
grinding process took place using a kitchen grinder (Kitchen Aid, Benton 

Harbor, Michigan, USA) at an approximate speed of 60 rpm. Grinder 
parts were carefully washed between each consecutive grindings with 
warm water and soap, then dried using paper towels. SP was prepared by 
stirring dry SP with boiling water at 100 ◦C (1:2.6, w:w) in a stainless 
steel bowl for 10 min. It was then added to the meat at the required 
quantity. WG was prepared by stirring dry WG with warm water at 
approximately 50 ◦C (1:3.5, w:w) in a stainless steel pan for 20 min until 
the water was completely absorbed. It was then added to the meat at the 
required quantity. The surface of each sample was flattened using a 
round glass disc to minimize the impact of surface topography on the 
recorded images and subsequent analysis. 

The prepared samples were pure meat (i.e., beef, pork, chicken, SP, 
and WG) and adulterated samples (Beef + Pork, Beef + SP, Beef +
Chicken, Beef + WG, Pork + SP, and Beef + Pork + SP). For each 
mixture, the first material is the adulterated and the rest is the adulterant 
(s). There were 14 ratios of adulteration of pork in beef with a range of 
1–50% (w/w), while 21 different ratios of SP, chicken, and WG were 
used to adulterate the beef with ranges between 1 and 40%. The pork 
was adulterated with SP (21 ratios, 1–40%). Finally, beef samples were 
adulterated simultaneously with pork and SP, the ratios of pork and SP 
adulteration in beef varied such that the pork portions were 50, 40, 33.3, 
25, and 20%, whereas the equivalent SP portions were 33.3, 40, 25, 50, 
and 60% [19]. Adulterated samples were prepared by manually mixing 
the desired components for 10–20 s until complete mixing was achieved. 
Approximately 30 ± 5 g of each sample was weighed, shaped into a 
uniform disc, flattened and then placed in a petri dish and flatten until 
imaged. Each sample was prepared individually and the manual mixing 
was chosen over a specialized mixer to minimize sample preparation 
time (e.g. equipment cleaning) which may induce changes (e.g. color) in 
the samples. Fig. 1 displays the color images of the tested samples (pure 
and adulterated) along with the number of samples that were imaged. 
The total number of adulterated samples was 1545 compared with 152 
pure samples which is due to the range of different adulterants and 
adulterants’ ratios investigated in this study. 

2.2. Color vision (CV) system 

A schematic configuration of the CV system utilized in this study is 
shown in Fig. 2. The system contained a Fiber-Lite illuminator (MI-150, 
Dolan-Jenner, Boxborough, MA, USA) with a halogen lamp (output 
power of 150 W) and two light guides (EEG 2823 M, Dolan-Jenner, 
Boxborough, MA, USA). These were horizontally inclined at an angle 
of 57◦ and located 26 cm vertically above the samples. A CMOS (com
plementary metal-oxide semiconductor) color digital camera (Coolpix 
P520, Nikon Corporation, Minato, Tokyo, Japan) was used to acquire 
the images. The imaging configurations were determined via pre
liminary trials and included mounting the camera 23 cm above the 
surface of the samples and setting the angle between the camera lens 
axis and the light beam to be around 33◦. To ensure a consistent illu
mination condition, the camera along with the lighting guides were 
enclosed in a black wooden box. The petri dish containing the sample 
was placed on a black surface. Each image was captured with no flash, 
and the output image was saved in JPEG format with 3672x4896 pixels. 

2.3. Image processing 

2.3.1. Segmentation of the region of interest 
RGB (red, green, and blue) and HSI (hue, saturation, and intensity) 

color coordinates are common in color image analysis, with the latter 
system being more representative of human vision [41]. While RGB il
lustrates each color channel in its spectral region, hue, saturation, and 
intensity describe a pure color, the dilution degree of a pure color by 
white light, and the brightness of the object, respectively [42]. Each RGB 
image was transformed into the HSI space. The data used in subsequent 
feature extraction included the red, green, blue channels, gray-level 
images, in addition to the saturation component of the HSI color 
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space. The saturation coordinate represents how much the studied color 
value is diluted with the white light [43]. 

To obtain the Region of Interest (ROI), color segmentation using k- 
means clustering was applied, based on the International Commission on 
Illumination (CIE) L*a*b* color space where L*, a*, and b* refer to 
lightness from black to white, green to red component, and blue-yellow 
component, respectively [41,44]. The objects in each image were the 
sample ROI, the petri dish, and the background. First, the image was 
converted into the L*a*b*, and only the a*b* coordinates were consid
ered as they hold the color information. K-means clustering was then 
applied assuming the k value to be 3 (i.e., no. of objects in each image). 

The binary mask image was then obtained by choosing the clustered 
image containing the ROI and projecting it on the original RGB image 
before applying dilation. The ROI segmented color and gray-level im
ages were finally calculated by applying the binary mask on the original 
RGB image. A transform was applied to generate a gray-level image. 
Fig. 3 displays the segmentation process utilized in this study. 

2.3.2. Feature extraction 
Based on preliminary analysis, the image features required for the 

machine learning models were extracted from the red (R), green (G), and 
blue (B) channels in the RGB color space, and the saturation (S) 

Fig. 1. Examples of color images of the pure and adulterated meat samples utilized in this study. The mixtures are stated as adulterated + adulterant. The number in 
parenthesis refers to the adulteration level for the referred adulterant. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 2. Schematic diagram of the RGB vision system used to acquire color images for pure and adulterated meat samples. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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coordinate in the HSI color space. Additionally, the gray-level images 
were used in the data analysis. The aim of studying so many features was 
to investigate the effect that different image features have on machine 
learning model performance. Features extracted from gray-level images 
are commonly used in color imaging analysis, which is why they were 
studied in this work [45]. 

2.3.2.1. Histogram-based features. One of the simplest methods that can 
be used for image description is the histogram-based features or first- 
order statistics that calculate different parameters for describing ob
jects in an image [41]. The calculated features were mean, variance, and 
third moment of the ROI histogram (3 features). z represent the intensity 
level in an image for any of the aforementioned four-color coordinates in 
the range of [0,L-1], p(zi) represents the normalized histogram compo
nent corresponding to the ith r value and can be considered as an esti
mate of the probability of the occurrence of the intensity level ri, and L as 
the number of possible intensity levels. The mean (m), variance (s), and 
3rd moment (μ3 (z)) can then be calculated as follows: 

m=
∑L− 1

i=0
zi p(zi )

s=
∑L− 1

i=0
(zi − m)

2p(zi )

μn =
∑L− 1

i=0
(zi − m)

3p(zi )

2.3.2.2. Spectral measures of texture. Spectral measures of texture uses 
the Fourier spectrum to represent distinguishing periodic and non- 
periodic patterns in images [46]. These features are extracted in polar 
coordinates (r, θ) and include S(r), and S(θ). S(r) represents the spectrum 
at all r values and a fixed θ value, whereas the S(θ) represents the 
spectrum at all θ values and a fixed r value. Each function can be 
calculated as follows: 

s(r)=
∑π

θ=0
Sθ(r)

s(θ) =
∑π

θ=0
Sr(θ)

Where Sr(θ) and Sθ(r) are a one-dimensional function in θ and r, 
respectively. In this study, the θ varies from 0-π (180 values) and is 
normalized between [0–1]. Only the maximum value was considered for 
the S(r), and the first 10 values were considered for S(θ). Thus, the total 
number of spectral features was 11. 

2.3.2.3. Texture features derived from the co-occurrence matrix. Texture 
features calculated based on the co-occurrence matrix considers the 
intensity distribution as well as the spatial position of two neighbor 
pixels in an image [41]. Thus, COM is a common measure of image 
texture. Texture features extracted in this study were adapted from the 
work by Haralick, Shanmugam [47] and included contrast, correlation, 
sum of squares or variance, inverse difference moment, sum average, 
sum variance, sum entropy, difference, difference variance, entropy, 
information measures of correlation 1, information measures of corre
lation 2 and the inverse difference moment. Assuming that P is the 
normalized form of the gray-level co-occurrence matrix (GLCM) of an 
image I, p(i,j) is the (i,j)th entry in P, x and y represent the spatial co
ordinates of P. Px and Py are the ith and jth entries in the matrices ob
tained by summing the rows and columns of P, respectively. μx, μy, σx, σy 
are the means and standard deviations of Px and Py, μ is the mean value 
of P, and Ng is the number of gray-level images used. Therefore, the 
following equations can be developed based on the work by Haralick 
et al. (1973): 

Correlation=
∑

i
∑

j(ij)p(i, j) −
(
μxμy

)

σxσy  

Contrast=
∑Ng − 1

n=0
n2

{
∑Ng

i=1

∑Ng

J=1
p(i, j)

}

|i− j|=n 

Fig. 3. Summary of segmentation steps followed to obtain the region of interest (ROI) from the initial RGB image.  
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Sum of squares, variance=
∑

i

∑

j
(i − μ)2 p(i, j)

Inverse difference moment=
∑

i

∑

j

1
1 + (i − j)2 p(i, j)

Sum average=
∑2Ng

i=2
iPx+y(i)

Where Px+y(k) = {
∑Ng

i=1

∑Ng

J=1
p(i, j)}i+j=k, k=2, 3, …., 2Ng 

Sum entropy= SE= −
∑2Ng

i=2
Px+y(i)log

{
Px+y(i)

}

Sum variance=
∑2Ng

i=2
(i − SE)2Px+y(i)

Entropy= −
∑

i

∑

j
p(i, j)log(p(i, j))

Difference variance= variance of px− y  

Difference entropy= −
∑Ng − 1

i=0
Px− y(i)log

{
Px− y(i)

}

Where. Px− y(k) = {
∑Ng

i=1

∑Ng

J=1
p(i, j)}i− j=k 

Texture features commonly used by other researchers were also 
calculated incorporating homogeneity, uniformity, and maximum 
probability [41], cluster prominence and cluster shade [48], autocor
relation [42], dissimilarity [49], and inverse difference [50]. The total 
texture features extracted were 20. 

2.3.2.4. Principal component features. Principal Component Analysis 
(PCA) has several applications in multivariate analysis including 
dimension reduction, transforming highly correlated data to uncorre
lated variables, and data visualization [51]. Principal components can 
be used for describing sets of images registered spatially with different 
intensities for pixels having the same location, such as the three channels 
in an RGB image [41]. In this study, only 5 eigenvalues were considered, 
and these represented ≥99% of the total variance. 

2.3.2.5. Invariant moments. Invariant moments are 2-D moments 
derived from the normalized central moments with different orders 
[41]. Invariant moments are not affected by translation, scale change, 
mirroring, or rotation. In this study, 7 invariant moments were calcu
lated. Table 1 summarizes the extracted features from the RGB images. 
For each color coordinate, 46 features were calculated. 

2.4. Data analysis 

2.4.1. Feature engineering 
The different features calculated for each image were concatenated 

and normalized before developing the machine learning models. Based 
on the number of samples in this study, there were 108 classes 
comprising 5 pure samples and 103 adulterated samples, corresponding 
to different types and ratios of adulteration Given this number of class, 
conducting a one-step classification would require a much larger data 
set. Therefore, it was decided to perform the analysis in three consecu
tive stages with different classification and regression models for each 
stage. In the first stage, a binary classification model was developed to 
classify each sample into pure (i.e. unadulterated) (1 class) or adulter
ated (1 class). The second stage was to determine the adulterant type. 
Therefore, only the data for adulterated samples was used in the second 
stage. The second stage models were trained based on 6 output classes 
(Beef + Pork, Beef + SP, Beef + Chicken, Beef + WG, Pork + SP, or Beef 
+ Pork + SP). The third stage aimed to quantify the level of adulteration 
by developing regression models. The complete flow of the analysis 
followed in this study is shown in Fig. 4. To overcome the problem of an 
imbalanced dataset in the first stage where there are 152 pure samples 
vs. 1545 adulterated samples, resampling using downsampling, and 
oversampling was applied [52]. Downsampling was conducted such that 
the adulterated class was reduced to 154 samples, that included 
approximately 26 samples in each adulterated sub-class, and 9 different 
possibilities of the adulterated class depending on the selected samples. 
For the oversampling scheme, two techniques were utilized, the pure 
class was either resampled to reach 1520 samples, or the Synthetic 
Minority Over-sampling Technique (SMOTE) was applied [52–54]. 

Although the several types of features implemented in this study, it 
was worth studying the most effective variables for classification or 
quantification. Feature selection was addressed using sequential feature 
selection either for classification based on DT or for regression based on 
RT. 

2.4.2. Development of classification models 
To develop classification models, Linear Discriminant Analysis (LDA) 

boosted by the ensemble methodology to enhance the classifier’s per
formance. The LDA classifier is simple to implement and relatively fast 
to train compared with artificial neural networks [55]. The classifier 
includes a linear combination of the features and is based on the value of 
the discriminant function before the sample (i.e., image) is classified 
into the appropriate class [56]. Ensemble techniques are based on 
optimizing the classification performance by weighing several individ
ual classifiers and combining them to obtain a classifier that 
out-performs the single classifier [57]. Among several ensemble 
methods, the bagging technique was applied in this study. The purpose 
of ensemble bagging is to form a better-performing classifier from a 
number of weaker performing classifiers, where each weak classifier is a 
result of training the samples with replacement [57]. The number of 
weak classifiers used in this study was 10. The data were divided into 
training (80%) and testing (20%) sets and cross-validation (10-fold) was 
applied to the training set to obtain the best model. This model was then 
applied on the separate test set, and the classification accuracy was 
reported. 

2.4.3. Development of regression models 
To develop regression models for determining the quantity of adul

terant in each adulterated sample, Regression Trees (RT) models were 
developed. Classification and regression trees are based on sequential 
partitioning of the input feature space into several binary sub-regions 
based on model parameters. The sample is then classified into the 
class that has the minimum error [58]. In the RT algorithm, the input 
features are partitioned into regions, and a regression model is fitted 
based on the features in each region with the objective to find the 
optimal partitioning variables and points [51]. Samples were divided 
into calibration (80%) and validation (20%) sets. Cross-validation 
(10-fold) was then implemented on the calibration set, and the best 
validation model was reported based on the correlation coefficient (r), 
Root Mean Square Error of Cross-Validation (RMSECV), and the Residual 

Table 1 
Extracted features from each color coordinate.  

Type of features Extracted features 

Histogram-based features 3 
Spectral measures of texture 11 
GLCM texture features 20 
Principal component features 5 
Invariant moments 7 
Total no. of features for each color coordinate 46  
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Predictive Deviation (RPD). No test set was used for regression models 
due to the relatively low number of samples used to develop each model. 
In addition to obtaining a regression model for each adulterant, a gen
eral regression models was also developed where adulterants’ ratios can 
be determined using the same model apart from prior information about 
the adulterant type. The model was developed using either all or 
selected features. In the latter case, only the common selected features 
between all classes were applied. MATLAB® was used for implementing 
image processing operations, and applying different machine learning 
algorithms in this study. 

3. Results and discussion 

3.1. First stage classification results (sample is pure or adulterated) 

Classification results for the first stage (i.e., pure and adulterated) 
using different resampling techniques are shown in Table 2. In general, 
oversampling yielded better performance than downsampling. Over
sampling by repetition resulted in similar classification accuracies for 
individual color channels. Classification accuracy values obtained by the 
SMOTE algorithm showed that combined features yielded results as high 
as 93.2%. Features obtained from gray-level, red, green, blue, and 

saturation had accuracy values of 92.9%, 88.0%, 91.0%, 89.9%, and 
91.0%, respectively. In the case of downsampling, the classification 
accuracy for models obtained from all channels ranged from 87.0 to 
88.1%. The classification accuracy results for color channels were 
76.3–86.4%, 76.3–81.4%, 76.3–81.4%, 79.7–83.1%, 78.3–88.1% for 
gray-level, red, green, blue, and saturation, respectively. In the case of 
selected features, the minimum and maximum classification accuracy 
values for downsampling were 72.9, and 84.7%. While the classification 
accuracy results for oversampling and oversampling by SMOTE were 
100% and 87.2%, respectively. Table 3 shows the confusion matrix for 
the classification models obtained after applying the SMOTE algorithm. 
The individual classification accuracies using all features were 82.7% for 
pure samples and 97.7% for adulterated samples. For selected features, 
the accuracy values were 74.5% for pure and 93.9% for adulterated 
samples. These results are comparable to those from other studies that 
used spectroscopic systems for meat adulteration detection [19,20]. The 
PCA score plot is shown in Fig. 5. The clusters for pure and adulterated 
samples are not separated, which is possibly a result of the presence of 
beef or pork in all adulterated and unadulterated samples. It is also 
noted that the PC scores for pure samples show more scattering than 
those for adulterated samples which is a result of the variability of the 
pure samples which had plant and animal origins, whereas, the 

Fig. 4. Data analysis steps followed during the study to determine and quantify the adulterant in minced beef or pork.  

Table 2 
Classification results for the test set for pure and adulterated meat samples (stage 1) using LDA, and all or selected features from different color channels along with 
different resampling techniques.   

Source of features No. of features Classification accuracies for the training-testing sets (%) 

Downsampling Oversampling (by repetition) Oversampling (by SMOTE Algorithm) 

Minimum Maximum 

All features All features 230 86.4–87.0 90.6–88.1 99.3–98.9 94.7–93.2 
Gray-level 46 90.6–76.3 93.8–86.4 98.8–98.6 92.0–92.9 
Red 46 87.5–76.3 91.5–81.4 98.9–99.1 92.2–88.0 
Green 46 86.7–79.7 93.8–83.1 99.1–98.0 92.2–91.0 
Blue 46 89.7–78.3 93.8–88.1 99.1–98.4 92.2–89.9 
Saturation 46 82.4–81.0 90.0–83.1 98.0–98.4 92.8–91.0 

Selected features  8 74.6–72.9 90.6–84.7 100–100 88.2–87.2  
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adulterated samples contained mainly meats. The selected features for 
the first classification stage are displayed in Fig. 6. There were only 8 
features selected for the first stage. Among the studied channels, the 
gray-level had 7 selected features in addition to only 1 feature selected 
from the green channel. While various color channels did not show a 
significant difference for classification performance, the selected fea
tures yielded slightly lower performance in the case of downsampling. 
Models obtained using selected features along with the oversampling 
technique yielded similar or better classification performance than those 
deduced using downsampling. This shows the redundant information 
contained in all features (236) compared with only 8 selected features 
which accounts for only 3.5% of the total number of features (see Fig. 6). 

Table 3 
Confusion matrices for the test set for pure vs. adulterated meat and plant 
proteins using LDA, and all or selected features based on the SMOTE over
sampling algorithm.     

Pure Adulterated 

All features Predicted 
class 

Pure 91 6 
Adulterated 19 252 
Classification 
accuracy (%) 

82.7 97.7 

Selected 
features 

Pure 80 17 
Adulterated 30 241 
Classification 
accuracy (%) 

74.5 93.9  

Target (true) class  

Fig. 5. PCA score plot for the first stage of classification of pure or adulterated samples using a downsampling technique, and the LDA classifier.  

Fig. 6. Selected features for classifying pure vs. adulterated samples and adulterated samples using different features extracted from color coordinates, and the LDA 
classifier. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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3.2. Second stage classification results (type of adulterant) 

Table 4 shows classification accuracies for samples correctly classi
fied as adulterated in the first stage. Models based on all features yielded 
classification accuracy as high as 76.1%, which is significantly higher 
than those deduced from other color channels, which ranged from 
48.9% to 53.9%. For models developed using selected features, the 
classification accuracy was 63.8%. However, there were only 53 
selected features compared with 230 total features, which still repre
sents the efficacy of the sequential feature selection algorithm applied in 
this study. The confusion matrices shown in Table 5 demonstrate the 
effect of different adulterants on classification performance. In the case 
of all feature-models, beef adulterated with SP, chicken, or WG as well as 
pork adulterated with SP yielded relatively high accuracy, which ranged 
from 71.9 to 87.7%. Beef adulterated with pork yielded lower accuracy 
(65.8%), and beef adulterated with Pork + SP had the lowest accuracy 
(46.2%). The misclassification is mostly due to that the presence of beef 
or pork was obvious in all adulterated samples. This effect was higher in 
beef sample adulterated with Pork + SP as the total number of data 
points in the test set was much lower than other classes. It can also be 
observed from Fig. 1 that in the high ratios of SP in beef, SP in pork, or 
Pork + SP in beef, samples can be classified to the wrong class as the 
color and texture features are slightly similar [59]. Therefore, having a 
larger data set reduces the classification error as the training model will 
be more robust when it is developed with a repeated cross-validation, or 
bootstrap methodologies as they showed the advantages of producing 
less overfitting and more practical prediction errors [51]. In the case of 
models developed using selected features, only beef, and pork adulter
ated with SP achieved classification accuracies of 71.9% and 89.7%, 
respectively. Beef adulterated with pork, chicken, WG, or SP + Pork 
achieved classification accuracy values of 41.0%, 64.9%, 50.9%, and 
45.5%, respectively. Selected features for classifying adulterated sam
ples, as shown in Fig. 6, were considerably more than those needed for 
classifying samples into pure or adulterated. This increase was expected 
as the adulterated samples had foreign components compared with pure 
samples, and the classifier was required to get trained then to identify 
the adulterant’s origin, not just to evaluate the presence of adulterants 
or not. It is also important to note that while there were mostly no 
features needed from color channels to differentiate between pure and 
adulterated samples, identifying the adulterant type required more in
formation from various color channels utilized in this study. Further
more, the gray-level was more effective than other color coordinates and 
had 18 selected features for the stage two classification models. Whereas 
the blue, red, green, and saturation channels contributed to 12, 9, 8, and 
6 selected features, respectively. It is worth stating that gray-level im
ages are more common in image processing and pattern classification 
when monochromatic-based vision systems are utilized [43]. GLCM 
yielded 30 selected features compared with 7, 6, 8, and 2 features 
selected based on statistical moments, spectral moments, PCA, and 

invariant moments. Texture features obtained from the GLCM were, 
therefore, more critical for identifying foreign materials added to beef or 
pork samples. The advantage of GLCM is that it incorporates the spatial 
and intensity levels between neighboring pixels in the image which 
indeed helps identify foreign materials (i.e. adulterants) in the sample 
[55]. The importance of GLCM features was confirmed by previous 
studies that applied GLCM-based features for potatoes [60], beef 
tenderness [61,62], classification of bovine meat based on muscle type, 
age, and breed [63]. 

While most color-based imaging for meat quality assessment avail
able in the literature targeted the evaluation of freshness and color, the 
previous studies that focused on meat adulteration utilized spectro
scopic techniques such as NIR, and Fourier-Transform Infrared (FTIR) 
spectroscopy, or hyperspectral imaging. The previous work demon
strated that hyperspectral imaging could achieve classification accu
racies of 100% for classifying unadulterated and adulterated bovine cut 
muscles or minced meat adulterated with animal and plant proteins 
[20]. ultraviolet (UV), Vis, NIR, and/or mid-infrared (MIR) were also 
successfully applied with classification accuracies of 69–100% to detect 
minced beef or lamb adulterated with pork, chicken, and horsemeat 
[64], minced beef adulterated with turkey [17], raw and cooked beef 
patties adulterated with pork, skimmed milk or mutton [65], minced 
beef and pork adulterated with animal and plant proteins [19]. Multi
spectral imaging was also demonstrated as a successful technique to 
identify minced beef adulterated with horsemeat [66] or pork [15] with 
classification accuracy as high as 98.48%. FTIR (4000-700 cm− 1) was 
tested to assess the presence of pork in beef jerky with classification 
accuracies as high as 100% [67]. While the aforementioned studies 
demonstrate the capabilities of optical techniques for detecting adul
teration in meat, the majority utilized large and expensive systems 
which differ from the small and low-cost color imaging system used in 
this current work. 

3.3. Stage three regression results (quantification of adulterant) 

Regression Tree (RT) model results for quantifying the adulterant 
level in each adulterated sample using all or selected features are shown 
in Table 6. Using all features, the prediction of pork quantity in minced 
beef samples had the highest r(RPD) values of 98.0%(5.0%). In the case 
of beef adulterated with SP, chicken, WG, and Pork + SP, the r(RPD) 
values were 97.7%(4.7%), 96.2%(3.7%), 97.5%(4.3%), and 87.0% 
(2.1%), respectively. For pork adulterated with SP, the r(RPD) values 
were 97.8%(4.8%). Regression models using selected features achieved 
lower performance compared to those reported using all features. 
Regression models for beef adulterated with pork, SP, chicken, WG, and 
SP + Pork yielded r(RPD) values of 92.4%(2.6), 86.4%(2.0), 94.5%(3.2), 
91.3%(2.5), and 80.8%(1.7), respectively; while those for pork adul
terated with SP were 89.2%(2.2). There were 105 common selected 
features for regression and the general regression models based on all 
and the common selected features had r(RPD) values of 92.6%(2.7%) 
and 92.5%(2.7%), respectively. Regression models yielded relatively 
high RMSEcv values compared with the lowest adulteration ratio (1%) 
and this could be decreased further by testing a larger number of sam
ples, which would reduce training errors [56]. Current results indicate 
that using all features for predicting the adulteration level was the best 
method as the models had lower errors. Similar to the classification 
results, the GLCM features represented the majority of selected features 
used to develop the regression models which proves that such features 
hold the most influencing information about the adulterants [68]. The 
features needed to explain the exact quantity of adulterant in each 
mixture, as shown in Fig. 7, are more than those needed to differentiate 
between pure or adulterated samples. This can be explained by the 
similarity between different classes that include beef, SP, or pork. Thus, 
extracted features, especially from images with low adulterant concen
trations, can lead to misclassification between the different classes. 
Results indicated that there were 71 selected GLCM features, whereas 

Table 4 
Classification results obtained for adulterated meat samples (stage 2) using LDA, 
and all or selected features from different color channels under several methods 
for imbalanced classes.   

No. of 
samples 

Source of 
features 

Classification accuracy 
(%) 

Training 
set 

Testing 
set 

All features 230 All channels 80.00 76.1 
46 Gray-level 57.6 53.9 
46 Red 54.5 53.9 
46 Green 57.9 55.7 
46 Blue 57.2 50.4 
46 Saturation 55.5 48.9 

Selected 
features 

53  70.7 63.8  
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the selected features from statistical moments were 13. The number of 
features selected from spectral moments, PCA, and invariant moments 
was 21, 29, and 32. The Considering the color channels, the number of 
features selected from gray-level, red, green, blue, and saturation were 
24, 34, 36, 40, and 32, respectively. The results in this study are 
distinguishable compared with similar studies due to the simplicity of 
the RGB system and the large range of adulterants, and the different 
ratios of adulteration studied. Weng, Guo [69] used Vis/NIR spectros
copy (350–2500 nm) to detect 4 pork ratios (4%, 12%, 20%, and 30%, 
w/w) in minced beef, and the developed models were able to achieve a 
maximum R2 value of 97.3%. In a study conducted by Zhao, Feng [70], a 
hyperspectral imaging system (400–1000 nm) was used to quantify 
different ratios of spoiled beef in minced beef, and the R2 and RMSE 
values of the developed regression models were 94% and 5.39%, 
respectively. Spoiled beef adulterating minced beef was also studied 
using UV/Vis/NIR (200–1100 nm), and the R2 (RMSE) values of the 
developed models were 91% and 2.68% [70]. A hyperspectral imaging 
system (400–1000 nm) was utilized to assess minced beef adulterated 
with different ratios of chicken, and the developed models had R2 value 

Table 5 
Confusion matrices for the test set obtained adulterated meat samples (stage 2) using LDA, and all or selected features.     

Beef+
Pork 

Beef + SP Beef+
Chicken 

Beef + WG Pork + SP Beef+
Pork + SP 

All features Predicted class Beef + Pork 25 6 7 0 0 0 
Beef + SP 3 41 2 1 2 1 
Beef + Chicken 10 5 44 9 1 1 
Beef + WG 0 5 4 47 1 0 
Pork + SP 0 0 0 0 50 5 
Beef + Pork + SP 0 0 0 1 3 6 
Classification accuracy (%) 65.8 71.9 77.2 81.0 87.7 46.2 

Selected features Predicted class Beef + Pork 16 4 8 9 2 0 
Beef + SP 11 41 7 3 1 0 
Beef + Chicken 7 2 37 13 0 1 
Beef + WG 3 9 4 29 2 2 
Pork + SP 2 1 1 2 52 9 
Beef + Pork + SP 0 0 0 1 1 10 
Classification accuracy (%) 41.0 71.9 64.9 50.9 89.7 45.5 
Target (true) class  

Table 6 
Regression results using RT and cross-validation for quantifying adulterant level 
using all or selected features along with regression trees.   

Adulterated (adulterant) r (%) RMSECV (%) RPD 

All features Beef (Pork) 98.0 3.3 5.0 
Beef (SP) 97.7 2.6 4.7 
Beef (Chicken) 96.2 3.3 3.7 
Beef (Wheat Gluten) 97.5 2.8 4.3 
Pork (SP) 97.8 2.5 4.8 
Beef (Pork + SP) 87.0 6.0 2.1  
General model 92.6 4.9 2.7 

Selected features Beef (Pork) 92.4 6.5 2.6 
Beef (SP) 86.4 6.1 2.0 
Beef (Chicken) 94.5 3.8 3.2 
Beef (Wheat Gluten) 91.3 4.9 2.5 
Pork (SP) 89.2 5.4 2.2 
Beef (Pork + SP) 80.8 7.3 1.7  
General model 92.5 4.9 2.7  

Fig. 7. Selected features from color coordinates for quantifying the plant and animal adulterants ratios in minced beef or pork using RT. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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as high as 97% [71]. While some of the previous studies presented the 
feasibility of applying optical sensors to evaluate the ratios of various 
adulterants in meats, this study presents a cost-effective technology and 
data analysis methodology that suits small meat processing businesses 
that want to assure the quality and legality of their products. The system 
can also be embedded in a cloud-based IoT scheme that can provide 
assurance to a variety of stakeholders across the supply chain including 
regulatory agencies. Fig. 8 shows an example of the scatter graphs for 
regression models that show the relationship between predicted and 
actual adulteration ratios for Beef + SP. While most predicted adulter
ant’s values were lower than the actual values, the majority of error 
values were uniformly distributed demonstrating that the model per
formance does not reduce at different adulteration ratios. 

4. Conclusions 

The current study demonstrates the potential of a cost-effective and 
easy to use technology for the detection and quantification of different 
adulterants in minced beef and pork. This technology could be used 
across the meat supply chain for enhanced traceability. Plant and 
animal-based proteins were assessed as adulterants for minced beef or 
pork. Although the plant proteins used in manufacturing beef patties are 
usually in powder form, this study provides a dependable methodology 
that can build upon for obtaining quick evaluation of minced meats. This 
study presented a complex scenario with a range of different adultera
tion ratios up to 50%. Results of extracted features showed the impor
tance of using gray-level images in differentiating between pure and 
adulterated samples where all samples were correctly classified. Beef, 
chicken, and wheat gluten adulterants were easier to identify than pork 
or soybean protein. Identifying adulterant type was promising with an 
individual accuracy of 46.2–87.7% when using all features and 
41.0–89.7% when using selected features (primarily from GLCM). 
Quantifying the ratios of each adulterant was possible, and the r value 
reached 87.0–98.0% and 80.8–94.5% using all and selected features, 
respectively. While the system presented in this study cannot be used to 
detect sub-surface adulterants in minced meat, and it will be more 
difficult to identify plant proteins in the powder form, it can still serve as 
a fast, low-cost, and effective method for accurate, and initial decision 
making for meat adulteration in the food industry, or government 
agencies. Moreover, the system can be fused with other optical sensors 
such as spectroscopic or multispectral imaging to attain more 

comprehensive quality evaluation of possible adulteration. To boost the 
performance of the system, diversity in meat sources, breeds, muscles, 
powder plant proteins, and storage conditions should be considered in 
future work. Moreover, the performance of the machine learning models 
could be improved by training larger data set of images to optimize the 
models using more advanced machine learning methodologies such as 
deep learning. 
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[35] M. Chmiel, M. Słowiński, K. Dasiewicz, Lightness of the color measured by 
computer image analysis as a factor for assessing the quality of pork meat, Meat 
Sci. 88 (3) (2011) 566–570. 

[36] X. Sun, et al., Prediction of pork color attributes using computer vision system, 
Meat Sci. 113 (2016) 62–64. 

[37] K. Xiao, G. Gao, L. Shou, An improved method of detecting pork freshness based on 
computer vision in on-line system, Sensors & Transducers 169 (4) (2014) 42. 

[38] J.-H. Liu, et al., Predicting pork loin intramuscular fat using computer vision 
system, Meat Sci. 143 (2018) 18–23. 

[39] A. Taheri-Garavand, et al., Meat Quality Evaluation Based on Computer Vision 
Technique: A Review, Meat science, 2019. 

[40] J.J. Neto, J.A.d. Santos, W.R. Schwartz, Meat Adulteration Detection through 
Digital Image Analysis of Histological Cuts Using LBP, 2016 arXiv preprint arXiv: 
1611.02260. 

[41] R.C. Gonzalez, R.E. Woods, B.R. Masters, Digital Image Processing, third ed., 
Pearson International Edition, 2008. 

[42] W.K. Pratt, Image Enhancement, Digital image processing, 2001, pp. 247–307. 
[43] B. Jahne, Practical Handbook on Image Processing for Scientific and Technical 

Applications, CRC press, 2004. 
[44] H. Zhou, J. Wu, J. Zhang, Digital Image Processing: Part II, Bookboon, 2010. 
[45] C. Palm, Color texture classification by integrative co-occurrence matrices, Pattern 

Recogn. 37 (5) (2004) 965–976. 
[46] R.C. Gonzalez, R.E. Woods, S.T. Eddins, Digital Image Procesisng Using Matlab, 

Gatesmark Publishing, USA, 2009. 
[47] R.M. Haralick, K. Shanmugam, I. Dinstein, Textural features for image 

classification, IEEE Transactions on Systems, Man, and Cybernetics 3 (6) (1973) 
610–621. SMC. 

[48] F. Albregtsen, Statistical Texture Measures Computed from Gray Level Coocurrence 
Matrices, vol. 5, Image processing laboratory, department of informatics, 
university of oslo, 2008, 5. 

[49] J.-B. Martens, L. Meesters, Image dissimilarity, Signal Process. 70 (3) (1998) 
155–176. 

[50] D.A. Clausi, An analysis of co-occurrence texture statistics as a function of grey 
level quantization, Can. J. Rem. Sens. 28 (1) (2002) 45–62. 

[51] K. Varmuza, P. Filzmoser, Introduction to Multivariate Statistical Analysis in 
Chemometrics, CRC press, 2016. 

[52] Y. Sun, A.K. Wong, M.S. Kamel, Classification of imbalanced data: a review, Int. J. 
Pattern Recogn. Artif. Intell. 23 (2009) 687–719, 04. 

[53] N.V. Chawla, et al., SMOTE: synthetic minority over-sampling technique, J. Artif. 
Intell. Res. 16 (2002) 321–357. 

[54] H. Han, W.-Y. Wang, B.-H. Mao Borderline-SMOTE, A new over-sampling method 
in imbalanced data sets learning, in: International Conference on Intelligent 
Computing, Springer, 2005. 

[55] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Academic Press, Elsevier, 
2003. 

[56] R.O. Duda, P.E. Hart, D.G. Stork, Linear discriminant function, in: Pattern 
Classification, John Wiley & Sons, Inc., NY, USA, 2012, pp. 215–281. 

[57] L. Rokach, Pattern Classification Using Ensemble Methods, vol. 75, World 
Scientific, 2010. 

[58] C.M. Bishop, Linear models for classification, in: Pattern Recognition and Machine 
Learning, Springer, 2006, pp. 179–224. 

[59] R. Mancini, M. Hunt, Current research in meat color, Meat Sci. 71 (1) (2005) 
100–121. 

[60] F. Mendoza, P. Dejmek, J.M. Aguilera, Colour and image texture analysis in 
classification of commercial potato chips, Food Res. Int. 40 (9) (2007) 1146–1154. 

[61] J. Li, et al., Image texture features as indicators of beef tenderness, Meat Sci. 53 (1) 
(1999) 17–22. 

[62] X. Sun, et al., Predicting beef tenderness using color and multispectral image 
texture features, Meat Sci. 92 (4) (2012) 386–393. 

[63] O. Basset, et al., Application of texture image analysis for the classification of 
bovine meat, Food Chem. 69 (4) (2000) 437–445. 
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