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Abstract 

Pakistan is one of the most vulnerable countries to climate change and sustainable growth 

in its wheat supply holds one key to food security. Therefore, the purpose of this research is to 

analyze the relationship between weather and wheat production in Pakistan and assess the 

adaptation possibility. The first paper, using district-level agricultural data spanning 37 years and 

covering more than 80% of wheat production in the country, provides estimates of the overall and 

intra-seasonal impacts of extreme temperature exposure. It finds that the impact of temperature 

extremes varies across different seasons such that the freezing temperatures in the fall season and 

warming of the winter season are found to be the biggest drivers of yield loss, with 16.7% and 

8.8% yield reduction respectively. The future warming scenarios suggest overall mild gains in 

wheat yields. The second paper utilizes a richer farm-level dataset with 33,621 plot-year 

observations to estimate the warming impacts across irrigation status and explore heterogeneities 

across wheat varieties. It finds that warming temperatures are particularly harmful in rainfed 

conditions and irrigation provides significant protection against heat stress. estimating a 70% 

smaller yield reduction. Moreover, the paper examines the heterogeneity of temperature effects 

across wheat varieties and finds that newer varieties are associated with higher yields and more 

heat resistance. Further, variety selection is also found to have significant potential in mitigating 

the adverse impact of warming temperatures. The research aims to inform future research on the 

relationship between weather and wheat yields in Pakistan by providing evidence of the impact of 

temperature on wheat yields and measuring the effectiveness of possible adaptation measures. 
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Chapter 1 - Introduction 

Extreme weather events such as floods, droughts, and heat waves are becoming 

increasingly frequent in Pakistan, making it among the top ten countries most affected by climate 

change. The vulnerability to climate change along with heavy reliance on the agricultural sector 

makes the relationship between weather and agricultural production an important area of 

research.  

Therefore, this research presents two papers on the relationship between climate change 

and wheat production in Pakistan. Chapter 2 presents the first paper that aims to estimate the 

nonlinear impact of temperature extremes on the wheat production of two of the largest wheat-

producing provinces of Pakistan. It extends the analysis by estimating the intra-seasonal impact 

of the temperature changes. This research links 37 years of agricultural data with globally-

gridded weather observations and employs the exposure variable treatment of the weather data. 

As the temperatures are expected to rise, it further provides evidence of future warming 

scenarios on wheat yield. The purpose of this paper is to inform future research in Pakistan in the 

context of climate impacts on wheat production. 

Chapter 2 utilizes are richer dataset of farm-level agricultural variables to extend the 

research toward analyzing potential pathways to climate adaptation. It focuses on exploring the 

heterogeneity of the warming impacts across wheat varieties and providing a comparison of two 

widely used adaptation methods, irrigation and variety selection, in mitigating the impact of 

future warming on wheat yields.  
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Chapter 2 - Estimating the Nonlinear Effects and Intra-seasonal 

Variation of Temperature Extremes on Wheat Yields in Pakistan 

 Introduction 

Climate change is a global phenomenon with countries across the world joining hands in 

understanding its impacts and proposing adaptation and mitigation solutions (Pachauri et al., 

2014). Developing countries are considered the primary recipients of the damages due to greater 

vulnerability caused by geographic factors and limited structural, institutional, and financial 

abilities (Wijaya, 2014). These countries typically rely on their agricultural sector for a significant 

portion of individual income, which is directly affected by the changing climate, as the climate 

variables serve as key inputs to the agricultural production process. For countries like Pakistan, 

the relationship between climate and agriculture is of key relevance due to its extreme vulnerability 

to climate change and heavy reliance on the agricultural sector. It is the largest source of foreign 

exchange earnings and contributes 24% of the country’s GDP and employs half of the labor force 

(PBS, 2019). Among the agricultural contribution to the economy, wheat is Pakistan’s largest 

staple crop which accounts for 14% of value-added in agriculture and three percent of Pakistan’s 

GDP. It is grown by 80% of farmers on 40% of the country’s total cultivated land (Prikhodko & 

Zrilyi, 2013). Therefore, sustainable growth in wheat production is of key importance to the 

economy of Pakistan.  

Moreover, Pakistan is among the world's top ten wheat producers and a traditionally net 

exporter of wheat, but wheat production is not growing at the rate of the increasing demand, and 

it is increasingly becoming a net importer of wheat in recent years (Raza, 2023). Therefore, as a 

significant contributor to global wheat production, the wheat yield changes in Pakistan may also 

have considerable implications for the global wheat supply. 
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Despite the importance, Pakistan is increasingly facing extreme climate events including 

floods, droughts, and heat waves. According to Eckstein et al., (2021), Pakistan is among the top 

ten most affected countries by climate change. In August 2022, Pakistan faced record-breaking 

levels of precipitation throughout the country causing severe flooding resulting in over 1,500 

deaths and 30 million people displaced. It was estimated that over one-third of the country is 

underwater with an estimated loss of over $15 billion to the economy (World Bank, 2022). The 

aftermath looks even bleaker, with agricultural and livestock reserves depleted and supply chains 

destroyed,1 Pakistan is on the brink of famine and waterborne diseases have already reached 

endemic levels.  

Furthermore, sustainable wheat production is also at the forefront of the food security 

policy in Pakistan. It is the staple crop of Pakistan which contributes to 72 percent of daily caloric 

intake and a per-capita consumption of around 124 kilograms (kg) per year, one of the highest in 

the world (Raza, 2020). Considering this extreme vulnerability towards climate change and a 

heavy reliance on wheat production make the assessment of weather impacts on crop yields a 

research area of key relevance for Pakistan.  

Therefore, the objective of this paper is to estimate the nonlinear impacts of temperature 

extremes on the production of wheat crops in Pakistan. It provides a deeper understanding of 

weather impacts on wheat yields by estimating the intra-seasonal impacts of temperature changes. 

The current literature exploring the intra-seasonal warming impacts is limited to a few studies (e.g. 

Ortiz-Bobea et al., 2019; Tack et al., 2015) focusing primarily on the US. The evidence from 

developing countries and more specifically Pakistan is even more rare. The statistical studies on 

 

1 According to International Rescue Committee (2022), 4 million acres of crops and 800,000 livestock were 

destroyed. 
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Pakistan are limited to using aggregated weather data (Ali et al., 2017; Janjua et al., 2010; Shakoor 

et al., 2011; Siddiqui et al., 2012), thus unable to exploit the wide range of variation available in 

daily level datasets and runs the risk of biased estimates of the nonlinear effects (Schlenker & 

Roberts, 2009). These studies also lack the utilization of fine-scale satellite weather datasets and 

are primarily reliant on the weather station data which is sparsely located and argued to be less 

reliable (Parkes et al., 2019). 

Therefore, this study aims to contribute to the literature on climate impacts on wheat yields 

in Pakistan by using daily weather data covering over 80% of the country’s wheat production. 

Following the approach proposed by (Schlenker & Roberts, 2009), this study estimates the 

nonlinear effects of temperature changes on wheat yield by preserving the variations in the daily 

data. The temperature distribution within a day was approximated using a synodal function 

(Snyder, 1985) to provide hourly exposure for each degree of Celsius. These exposure variables 

provide the time the wheat crop was exposed to each one-degree temperature interval. These 

variables were then summed across all days of the growing season. The study further divides the 

growing season into three three-month periods to disaggregate the effects on different stages of 

the crop cycle. In addition to the estimation of the effects based on the historical data, future 

warming impacts for a uniform increase in the daily temperature of one degree through five 

degrees Celsius were also calculated. 

The results show that the wheat yield in Pakistan has a varied response to changes in 

temperature. The impacts vary significantly in the three periods within the growing season. 

Depending on the period, both the low and the high extremes of the temperature show detrimental 

effects.  
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The following sections of the paper include in chronological order; a brief review of 

relevant literature, an outline of research objectives, a discussion of the study area and data sources, 

and methods employed to carry out the research, the results of the study, and a conclusion. 

 Literature Review 

Climate change is one of the most prominent issues in the world evidenced by the 

increasing efforts to coordinate a global response to tackle its adverse impacts (Pachauri et al., 

2014). Although the change in climate is a constant process in the history of the earth, the rate at 

which it is exhibiting weather variation is alarming for human life. The observed changes in the 

climate only in the 21st century are comparable to the magnitudes of the largest global changes in 

observed history (Kemp et al., 2015; Pecl et al., 2017). It is estimated that since the 19th century, 

the average global temperature has increased by ~0.8°C along with rising sea levels, changes in 

seasonal patterns, and abrupt extreme events, and expected to further rise to 1.5°C by 2050 

(Pachauri et al., 2014). The majority of this rapid change is credited to anthropogenic activities 

leading to an increase in greenhouse gas emissions (GHG) which is exacerbated by excessive 

deforestation (Arora, 2019). This is highlighted by the fact that, in the last 50 years, the rate of 

increase in land temperatures (surface air temperature) is twice as high as the temperatures over 

oceans (Solomon et al., 2007).  

Based on this rate of change, it is highly plausible that the warming of temperature will 

continue. These changes have the potential to influence a wide range of outcomes, among which 

the impact on agriculture is considered to be one of the largest (Nordhaus, 1991). Climate change 

influences agriculture through increased events of heatwaves, droughts, floods, irregular patterns 

of precipitation, and extreme temperatures (Arora, 2019). Both temperature extremes are found to 

be harmful to crop production. High temperatures adversely impact crop yields (Asseng et al., 
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2013; Rosenzweig & Parry, 1994) typically through the impact on the floral stage of plant growth 

(Hatfield & Prueger, 2015) where grain filling period is reduced by exposure to temperature 

extremes (Zabel et al., 2021) and thus, leading to lower yields. Whereas low temperatures affect 

different stages of crop growth. The temperatures below the required thresholds can cause poor 

germination, seedling stunting, and reduced tillering (Kaneda, 1970). Moreover, in the 

reproductive stage, the adverse impact of low temperatures is found to inhibit the fertilization 

process (Thakur et al., 2010).  

Due to the strong influence of weather on crop production, the understanding of the impact 

of temperature extremes on crop yields has gathered considerable attention in the literature. Vogel 

et al., (2019) using machine learning algorithms find that climate variables explain 20-49% of the 

variance in global crop yields. Moreover, they show that temperature extremes have a stronger 

association with yield anomalies as compared to precipitation extremes. The study further finds 

evidence of irrigation mitigating the harmful impacts of weather on crop yields. In another study, 

Lesk et al., (2021) investigate the interaction of temperature and moisture to explain heat 

sensitivity of global crops. They find that crop yield reductions are more pronounced, and an 

additional five percent yield loss, in regions with hotter growing seasons, accompanied by 

decreased precipitation and evapotranspiration. Therefore, they provide evidence that the changes 

are beneficial in countries in Asia, where there is a weak linkage between temperature and 

moisture.  

On the other hand, there is evidence of a positive impact of temperature changes on wheat 

yields. Zhao et al., (2017) provides a compilation of published results on the impact of temperature 

on crop yields from four different analytical strands of literature; global grid-based, local point-

based, statistical regressions, and field warming experiments. They find that the majority of the 
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results suggest a negative impact of warming temperatures whereas, in some studies, positive 

impacts are reported (e.g. Tian et al., 2012). Using a five-year field warming experiment, Tian et 

al., (2012) find that in Yangtze Delta Plain, China, warming increased winter wheat grain yield by 

16.3%. They suggest that warming increased the numbers of productive spikes and filled grains 

and stimulated the filling rate, particularly for the inferior grains. Moreover, a study using the 

dataset for the Northwestern semi-arid region of China from 1981 to 2005, find similar results 

where the changes in the temperature were found to increase winter wheat yields at both high and 

low altitude sites by 3.1% to 4% respectively (Xiao et al., 2008).  

A more recent branch of statistical studies includes degree days/exposure bin models with 

a focus on estimating the nonlinear impact of temperature extremes on agricultural production. 

These studies incorporate the whole distribution of temperature variables and thus, preserve the 

variation which is lost in the aggregation of weather observations. Schlenker & Roberts (2009) in 

their seminal study on the nonlinear effect of climate change on US crop yields provide thresholds 

of yield changes for corn, soybean, and cotton. They find that temperatures above 29°C are 

extremely detrimental to crop yield. Tack et al., (2015) estimated the effects of warming 

temperatures on US wheat yields utilizing a variety of field trial data. They disaggregated the 

growing season into three seasons to decompose the temperature impacts. They found that the 

largest drivers of yield reduction are freezing temperatures in the Fall season and extreme heat in 

the Spring season. Other studies that explore the seasonal variation of temperature impacts include 

Ortiz-Bobea et al., (2019) which explore the intra-seasonal sensitivity of crop yields in the US to 

temperature and moisture variables. They find that exposure to high temperatures in the warmer 

parts of the growing season and relatively low moisture in the middle portion of the growing season 

are the biggest drivers of yield loss.  
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Despite the considerable uptake of this approach in the last decade, the evidence from 

Pakistan is still limited to the use of monthly averages of weather variables (Ali et al., 2017; 

Siddiqui et al., 2012), the annual averages (Shakoor et al., 2011), or the growing season averages 

(Hanif et al., 2010; Janjua et al., 2010). As argued by Schlenker & Roberts (2009), the average 

weather variables can cause biased nonlinear estimates. Moreover, our literature review suggests 

that the use of global gridded datasets is not utilized to extract daily data for Pakistan which can 

be particularly useful given the geographic sparsity of weather stations. Parkes et al. (2019) 

provide a useful review of the availability and sensitivity of the gridded datasets available for 

South Asia.  

 Research Objective 

Focusing on this research gap, the purpose of this paper is to provide a deeper 

understanding of the nonlinear impact of temperature extremes on wheat yields in Pakistan. We 

utilize the globally gridded satellite weather data that provides daily observations and link it with 

the wheat yield data reported at the district level to estimate the role of temperature changes on 

wheat production. Therefore, the research objective is to estimate the nonlinear impact of increased 

exposure to extreme temperatures. We extend the analysis considering the long growing season 

typically from September through May, by dividing the growing season into three seasons to 

estimate a season-wise disaggregated impact. Moreover, based on these estimates, we aim to 

forecast the future warming impacts of a uniform increase in temperatures for the growing season, 

as well as for each of the specific seasons, for a range of warming scenarios. The aim, therefore, 

is to generate evidence to inform future research on potential adaptation. 
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 Study Area 

The study area includes the provinces of Punjab and Sindh which collectively contributes 

to 84% of the wheat production in Pakistan, with Punjab accounting for 82% of the output and 

Sindh the remaining 18%.  

Punjab is the largest province in Pakistan and has a significant contribution to the 

agricultural sector, with wheat being the major crop produced in the region. The province has a 

vast irrigated agricultural land supporting crop production. The irrigation system comprises a 

network of canals, distributaries, and watercourses, which supply water to the fields. Apart from 

wheat, other crops grown in Punjab include cotton, sugarcane, rice, and maize. In recent years, 

Punjab has seen a significant increase in the use of modern technology in agriculture, including 

precision agriculture, drip irrigation, and high-efficiency irrigation systems. This has led to higher 

crop yields, reduced water usage, and improved water management practices. 

Sindh, on the other hand, is the second-largest province in Pakistan and also contributes 

significantly to the agricultural output of the country, especially in terms of rice and cotton 

production. However, wheat is also an important crop in the province, with the majority of 

production concentrated in the northern and central parts of the region.  

Figure 1 provides an overview of the study area, displaying the average wheat production, 

average temperature, and average precipitation in each district of Pakistan from 1981 to 2017. 

Among the two provinces, most of the production is concentrated in Punjab, which includes the 

mountainous northern region and the plains of central and southern Punjab. The northern region 

of Punjab is characterized by lower wheat production, lower average temperature, and higher 

rainfall. These regions include the mountainous Murree Kahuta up-lands, the Potowar plateau, and 

the hilly Salt Range. Based on the topographical characteristics of this region, irrigation is 
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extremely limited, and crop production relies heavily on rainfall. The central and southern regions 

of Punjab contribute the highest proportion of wheat production in Pakistan, despite having lower 

rainfall and higher temperatures, as compared to the northern region.  

Whereas the climate in the Sindh region is hot and dry, with temperatures ranging up to 

49°C. The annual rainfall in Sindh is relatively low, ranging between 100-300 mm, making 

irrigation a critical factor in crop production. The topography of Sindh is characterized by plains 

and desert areas, which support crop cultivation. Despite the challenging weather conditions, Sindh 

has been able to produce significant quantities of wheat due to the access to irrigation. The major 

irrigation systems in Sindh include the Indus Basin Irrigation System, the Left Bank Outfall 

Drainage (LBOD) System, and the Right Bank Outfall Drainage (RBOD) System, which provides 

water to the fields for crop production.  

 Administratively, the province of Punjab is divided into 36 districts and Sindh into 

30 districts. Since 1981, the first year of the dataset, the district boundaries have changed for 

multiple districts. Therefore, to allow comparability over time, the district boundaries of 1981 were 

used.  This reduces the total number of districts in both provinces to 34.  
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Figure 1: Study Area Characteristics 
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 Data Sources and Description 

The weather data were obtained from CPC Global Unified Temperature data provided by 

the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov.  The dataset 

is created using the optimal interpolation of quality-controlled gauge records of the Global 

Telecommunication System (GTS) network (Fan & Dool, 2008). It provides daily observations of 

minimum and maximum temperature and precipitation variables on a spatial resolution of global 

0.50 x 0.50-degree latitude/longitude grids. The subset for Pakistan was extracted through the 

latitude and longitude information of each district obtained from the weather station data by the 

Pakistan Meteorological Department.  

The agricultural data includes yearly wheat production and crop area observations for 34 

districts of Punjab and Sindh provinces, as per the 1981 boundaries. This covers all 66 present-day 

districts of the two provinces. The temporal range of the dataset is from the year 1981 through 

2017. The data were obtained from the Pakistan Bureau of Statistics (PBS, 2010) through its yearly 

Agricultural Statistics of Pakistan publications. The yield variable equals total district-level 

production divided by the area harvested. Moreover, the irrigation data reflecting the percentage 

of irrigated area for each district was obtained from the Agricultural Statistics publication for each 

province. The data is reported only for the years 2003 through 2017. We used linear interpolation 

to fill in the remaining irrigation data. 

Thus, the dataset includes wheat production, wheat area, and irrigation observations for 

each district in Punjab and Sindh from the years 1981 through 2017. Table 1 shows the descriptive 

statistics of each of these variables. The agricultural and weather data are the yearly observations 

for each district. The yield variable was calculated by dividing the production variable by the area 

variable. The area variable includes the area cultivated by the wheat crop for each district, and the 

https://psl.noaa.gov/
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production variable shows the wheat production accordingly. The irrigation variable shows the 

percentage of area irrigated in each district. Similarly, the Min Temp and Max Temp variables are 

the yearly averages of minimum and maximum temperature for each day for each district, whereas 

precipitation is the yearly average of rainfall recorded each day in each district.  

Table 1: Descriptive Statistics of Source Data 

Variable Obs. Mean Std. dev. Min Max 

Agricultural Data 
    

Production (‘000 tonnes) 1,171 365.5 260.3 0.3 1218.4 

Area (‘000 hectares) 1,171 155.4 96.2 0.2 469.4 

Yield (kg/hectare) 1,171 2305.4 702.2 598.9 4052.9 

Irrigation 1,171 0.8 0.3 0 1 

     

Weather Data 
    

Min Temp (°C) 1,171 16.4 1.9 11.6 21.8 

Max Temp (°C) 1,171 30.1 2.2 24.4 34.9 

Precipitation (mm) 1,171 127.5 124.0 0.56 983.5 

 

For the calculation of the exposure variables, daily-level observations of weather data were 

used. Following Schlenker & Roberts (2009), the within-day distribution of temperature was 

approximated using a sinusoidal curve between the predicted minimum and maximum 

temperature. This hourly exposure for each degree Celsius was then aggregated for each day in 

each district to achieve annual district-level observations for the wheat-growing season of 

September through May. These variables were then summed to create eight exposure bins, and a 

freeze variable capturing exposures below 0°C. A similar exercise was conducted to create the 

exposure bin variables for each of the three seasons. This provides a total of 1,171 observations. 

The descriptive statistics of these variables for the growing season are in Table 2. The units are the 

exposure, in days (24 hours), the crop is exposed to the respective temperature bin during the 

growing seasons, September through May. 
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Table 2: Descriptive Statistics of Exposure Variables 

Variable Obs. Mean Std. dev. Min Max 

Freeze 1,171 0.03 0.11 0.0 1.1 

Exposure 0-4°C 1,171 2.5 2.7 0.0 15.5 

Exposure 5-9°C 1,171 16.8 7.8 0.0 35.4 

Exposures 10-14°C 1,171 34.1 8.3 7.8 59.0 

Exposures 15-19°C 1,171 46.6 7.2 27.1 65.6 

Exposures 20-24°C 1,171 54.0 4.2 42.2 72.6 

Exposures 25-29°C 1,171 53.9 8.8 36.0 93.0 

Exposures 30-34°C 1,171 38.4 8.2 19.2 73.1 

Exposures > 35°C 1,171 26.2 11.3 2.2 54.8 

 

Figure 2 shows the variation over the years in the wheat yields, precipitation, and Exposure 

> 35°C bin. Wheat yields exhibit an increasing trend over the years possibly due to advancements 

in technology and farmer practices. In the last ten years, the outliers increase showing higher 

sensitivity of wheat yields. Moreover, the Exposure >35°C graph shows variations over the years 

which tend to increase in frequency and intensity in the latter half of the graph.  

It is important to note that in Pakistan, wheat is typically planted in the Fall and harvested 

in the Spring of the following year. Although the growing season follows the winter wheat cycle, 

the wheat genotype grown in Pakistan is spring wheat. Therefore, the wheat seed does not go 

through the vernalization dormancy period. For the intra-seasonal estimation of weather impacts, 

the growing season was decomposed into three seasons: Fall, Winter, and Spring. Wheat is 

typically planted in late September to October and harvested in late April to May. Therefore, the 

Fall season variables include data from September, October, and November; Winter from 

December, January, and February; and Spring includes data from March, April, and May. 
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Figure 2: Boxplots of Key Variables 

 

 Methods 

The study dataset provides sufficient in-sample variation to support a robust estimation of 

wheat yield response to different weather conditions. It varies spatially across districts, and 

temporally across the growing season. Equation 1 shows the study regression model where 𝑦𝑖𝑡 is 

the log wheat yield in kgs per hectare for district i and year t,  𝑡𝑟𝑒𝑛𝑑𝑡 and  𝑡𝑟𝑒𝑛𝑑𝑡
2 are the linear 

and quadratic trend variables, 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡 is the precipitation in millimeters along with its quadratic 

approximation, 𝐼𝑟𝑟 is the percentage area irrigated for each district, and 𝑑𝑖 are district-fixed effects. 

The ∑ ∑ 𝛿𝑠𝑘  𝑏𝑖𝑛𝑠𝑘𝑖𝑡
8
𝑘=1

3
𝑠=1  are the eight exposure bin variables with 5°C intervals, for each of the 

three seasons. ∑ 𝛽𝑠1𝐹𝑟𝑒𝑒𝑧𝑒𝑠𝑖𝑡
3
𝑠=1  is the freeze variable capturing exposures below 0°C for each of 

the three seasons. 
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Equation 1: Regression Model 

𝑦𝑖𝑡 = ∑ ∑ 𝛿𝑠𝑘  𝑏𝑖𝑛𝑠𝑘𝑖𝑡

8

𝑘=1

3

𝑠=1

+  ∑ 𝛽1𝑠𝐹𝑟𝑒𝑒𝑧𝑒𝑠𝑖𝑡

3

𝑠=1

+ ∑ 𝛽2𝑠𝑝𝑟𝑒𝑐𝑖𝑝𝑠𝑖𝑡

3

𝑠=1

+ ∑ 𝛽3𝑠 𝑝𝑟𝑒𝑐𝑖𝑝𝑠𝑖𝑡
2

3

𝑠=1

+ 𝛽4 𝐼𝑟𝑟𝑖𝑡

+ 𝛽5𝑡𝑟𝑒𝑛𝑑𝑡 + 𝛽6 𝑡𝑟𝑒𝑛𝑑𝑡
2 + 𝑑𝑖 +  𝜀𝑖𝑡 

The quadratic time trend was included to control for technological change and the district-

specific fixed effects ensure controls for time-invariant heterogeneity such as soil type and quality.  

Moreover, following Tack et al. (2015), the warming impacts were calculated for a uniform 

increase of 1°C to 5°C in the daily temperature. For this, exposure bins were recalculated with an 

increase of 1°C, and yield change was simulated based on the initial regression parameters and 

yield estimates. Similarly, the same steps were repeated for each of the four remaining warming 

scenarios. Equation 2 shows the formula for the calculation of the warming impacts where the bin 

is the vector of temperature exposure bins for increased (1) and initial (0) models. 

Equation 2: Warming Impacts Formula 

𝑊𝑎𝑟𝑚𝑖𝑛𝑔 𝐼𝑚𝑝𝑎𝑐𝑡 = 100 {𝑒𝛽̂(𝑏𝑖𝑛1−𝑏𝑖𝑛0) − 1} 
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 Results 

 Intra-seasonal Variation of the Impact of Temperature Exposures 

The results show that the impact of temperature on wheat yields varies considerably across 

seasons where the freezing temperatures in the Fall and extreme heat in the Winter seasons are 

found to be detrimental to the wheat yields. However, the impact of extreme heat in the spring 

season was found to be marginally beneficial. 

Table 3 summarizes the results of the regression model showing variation in the impact of 

temperature on wheat yields across three seasons: Fall, Winter, and Spring. The trend variables 

show that wheat yields are increasing in Pakistan over time with a positive estimate for the 

quadratic approximation. This increase can be credited to the improvements in the wheat variety 

breeding programs and other technical advancements in crop management. Moreover, the 

precipitation variable was found to have a statistically significant positive impact on the yield in 

the Fall season whereas, it impacts the yields adversely in the Spring season. Our understanding is 

that the rainfall closer to the harvest season can be damaging to the crops and thus resulting in a 

negative coefficient. Moreover, higher moisture near harvest creates a conducive environment for 

crop diseases such as rust and thus, can be responsible for a negative association with wheat yields.  

As expected, irrigation was found to have a considerable positive impact on the wheat yields, 

where a one percent increase in irrigation showing a yield increase of 8.1 percentage points. The 

coefficient is also statistically significant at a five percent confidence interval.  

During the Fall season, the most striking finding is the impact of freezing temperatures. 

We find that an additional day (24h) of exposure to the freezing temperatures in the Fall season is 

associated with a 16.6% decrease in wheat yields, the estimate is statistically significant at a 95% 

confidence level. This result is supported by the agronomic literature, which suggests that cold 
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stress, which is reported to be below 4°C, reduces wheat yields by delayed emergence and poor 

stand establishment at the initial seedling stage (Hassan et al., 2021). The exposure to lower 

temperatures causes leave chlorosis and wilting which leads to stunted growth and lower crop 

productivity (Janowiak et al., 2002). Moreover, it also conforms with the evidence from the US 

where the freezing exposure in the Fall season was identified as one of the biggest drivers of wheat 

yield loss (Tack et al., 2015). The results do not suggest any negative impact of high temperatures 

in the Fall seasons.   

However, in the Winter season, the high temperatures (Exposure > 35°C) are associated 

with a considerable yield reduction where an additional day of exposure at these temperatures is 

associated with a yield loss of 8.8%. Of the 37 years in the dataset, 17 years have positive exposure 

to temperatures 35°C and above in the winter season. This suggests that the warming of the winter 

is the likely source of wheat yield reductions in Pakistan. Moreover, in the winter months, 

exposures above 35°C have had an increasing frequency in the last 20 years.  If this trend 

continues, the warming of the winter will pose a serious threat to wheat production in Pakistan. 

The coefficient of freezing temperatures in the Winter seasons was found to be statistically 

insignificant and the low temperatures have a mild negative impact on wheat yields.  

In the Spring season, the freezing temperatures have a high positive coefficient suggesting 

a 26% yield increase, but the estimate is not statistically significant possibly due to a very small 

number of observations below 0°C in the Spring season. Only 5 years exhibit positive exposure to 

freezing temperatures in the Spring season and all these years are before 1985. With the colder 

exposure decreasing, we can expect the yield gains to drop over time. Moreover, high temperatures 

are also found to have a small positive impact on wheat yields.  
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Table 3: Regression Output 

Variables Estimates 

     

Trend 0.01222***    

 (0.003)    

Trend2 0.00015**    

 (0.00007)    

Irrigation 0.08121**    

 (0.038)    

  Fall Winter Spring 

     

Precipitation  0.00057** 0.00010 -0.00045* 

  (0.0003) (0.0003) (0.0002) 

Precipitation2  -1.10e-06 -1.57e-07 6.43e-07 

  (9.88e-07) (9.01e-07) (6.51e-07) 

     

Freeze  -0.16602** 0.05142 0.26825 

  (0.071) (0.059) (0.269) 

Exposure 0-4°C  -0.03228 -0.00750** 0.08630 

  (0.040) (0.003) (0.083) 

Exposure 5-9°C  0.00325 0.00167 0.01549 

  (0.008) (0.002) (0.015) 

Exposure 10-14°C  0.00751* 0.00735*** -0.00467 

  (0.004) (0.002) (0.005) 

Exposure 15-19°C  0.00491 -0.00039 0.01462*** 

  (0.004) (0.003) (0.005) 

Exposure 25-29°C  0.00399 -0.00467 0.00389 

  (0.003) (0.004) (0.004) 

Exposure 30-34°C  0.00617** 0.00601 0.01013** 

  (0.003) (0.011) (0.004) 

Exposure > 35°C  0.00580* -0.08806* 0.00832*** 

  (0.003) (0.079) (0.003) 

Constant 5.77958***    

 (0.390)    

     

Observations 1,171    

R-squared 0.797    

Standard errors clustered by location-year in parentheses. Output includes district fixed effects. 

*** p<0.01, ** p<0.05, * p<0.1 

  

 



20 

 Warming Impacts – Intra-seasonal Variation 

The regression estimates from Table 3 show a mix of positive and negative effects of 

different temperature exposure variables. The offsetting nature shows that a reduction in exposure 

to freezing temperatures simultaneously increases the exposure to higher temperatures. To 

evaluate which effect dominates, we estimate the net effect by calculating the yield impact for a 

range of warming scenarios for each of the three seasons. 

Figure 4 below shows the disaggregation of the warming impacts across the three seasons. 

The results are found to be statistically significant for the Winter and the Spring season, except for 

the +1°C scenario in Winter, and insignificant for the Fall season. As expected from the regression 

estimates, the winter season shows an expected negative impact of warming temperatures on wheat 

yields. The negative impact reaches a 14.30% yield loss for the most aggressive warming scenario 

of a +5°C increase in the temperatures. Similarly, based on the regression output, the Spring results 

show yield improvements. However, as the warming scenarios progress, the rate of yield 

improvement is slower in the Spring season as compared to the rate of yield loss in the Winter 

season, as shown in Table 5. Moreover, the table shows the high p-values associated with the 

warming impacts of the Fall seasons, and hence, the estimates for Fall cannot be considered 

different from zero.  
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Figure 3: Warming Impacts by Season 

 

Table 4: Warming Impacts Estimates by Season 

Scenarios 
Fall Winter Spring 

Impact p-value Impact p-value Impact p-value 

+1°C 1.15% 0.31 -1.16% 0.11 1.73% 0.00 

+2°C 2.20% 0.34 -3.20% 0.03 3.45% 0.00 

+3°C 3.23% 0.36 -6.03% 0.01 5.12% 0.00 

+4°C 4.27% 0.38 -9.74% 0.00 6.62% 0.00 

+5°C 5.31% 0.39 -14.30% 0.00 7.90% 0.01 
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 Warming Impacts – Growing Season 

The same regression model was used to estimate the warming impacts of the entire growing 

season.  The results are shown in Fig. 3. The results show that warming temperatures are associated 

with a marginally positive effect such that the benefit of reduced exposure to low temperatures 

outweighs the adverse impact of high temperatures. However, the estimates were not found to be 

statistically significant for any of the warming scenarios.  

Figure 4: Warming Impacts Growing Season 

 

Table 5: Warming Impacts Estimates Growing Season 

Scenarios Impact (%) p-value 

+1°C 1.7% 0.14 

+2°C 2.5% 0.31 

+3°C 2.3% 0.56 

+4°C 0.8% 0.89 

+5°C -2.0% 0.82 
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The horizontal identifies the five warming scenarios, and the vertical axis shows the yield 

impact expressed as a percentage change relative to historical weather. The whisker on each bar 

shows 95% confidence intervals.  

The results show marginal improvements for scenarios +1°C through +4°C and a yield 

reduction for the scenario of +5°C. Pakistan being a semi-arid country, these results conform with 

the findings of the field warming experiment from the Northwestern semi-arid region of China 

which suggest that the warming of the temperature increases winter wheat yields by four percent 

(Xiao et al., 2008). The temporal range of the data for this study also begins in 1981 but ends in 

2005.  

 Out-of-Sample Predictions 

Following Schlenker & Roberts (2009), the study model with exposure bins as the 

explanatory set of variables was compared with two other specifications: (i) a base model with no 

weather variables, (ii) a model with the annual average temperature for the nine-month growing 

season. The comparison was made using the root-mean-squared error (RMSE) of out-of-sample 

predictions. The three models were estimated 1000 times for 80% of the observations. The 

estimates are then used to predict the remaining 20% of observations for each sample.  

The results show that the model with exposure bins has the highest improvement in making 

out-of-sample predictions followed by the model with average temperature. This shows that the 

study model performs 18.8% better than the base model. 
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 Conclusion 

Climate change is one of the most pressing issues of our time, and its effects are being felt 

worldwide. Pakistan, like many other countries, is not immune to the impacts of climate change, 

and in fact, it is particularly vulnerable to extreme weather events, such as droughts, heat waves, 

and floods. These weather events have already caused severe impacts on the country's wheat 

production, which is its staple food. The consequences of these impacts are significant, given that 

millions of people rely on wheat as their primary source of food. 

To develop a better understanding of the weather impacts on wheat yields in Pakistan, this 

study aimed to estimate the nonlinear impact of temperature on wheat yields in Pakistan. It exploits 

the immense variation available in the daily level weather data and employs the exposure bin 

treatment of weather variables to allow for unbiased nonlinear estimates of temperature impacts. 

Moreover, the study also contributes to a limited literature base that explores the intra-seasonal 

variations of the temperature impacts on wheat yields. 

The results indicate that the freezing temperatures in the Fall season and hot temperatures 

in the winter season have the most significant negative impacts on wheat yields. However, future 

warming scenarios suggest a positive impact on yields, indicating that the benefits of reduced 

exposure to freezing temperatures outweigh the harmful effects of warmer winter temperatures. 

Disaggregating the findings by season reveals that warming temperatures may lead to yield 

reductions in Winter and yield gains in the Spring season. 

Overall, the study underscores the urgency of developing effective adaptation strategies to 

mitigate the adverse effects of climate change on wheat production in Pakistan. A lot of effort is 

being made in developing heat-tolerant wheat varieties. The findings suggest a need to focus on 
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developing frost-tolerant varieties to safeguard against the negative impact of freezing 

temperatures.  

Given that Pakistan is one of the top ten wheat producers globally, the implications of 

disruptions in its production go beyond its borders, highlighting the need for international 

cooperation and collective action to address the challenges posed by climate change. The findings 

of this study may inform policy decisions aimed at promoting sustainable agriculture and ensuring 

food security for millions of people in Pakistan and beyond. 
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Chapter 3 - Exploring the Heterogeneity of Warming Impacts on 

Wheat Production in Pakistan – A Comparative Analysis of 

Adaptation Measures. 

 Introduction 

There is a growing body of research that provides evidence of the future impacts of climate 

change on various aspects of human life, with a particular focus on food (Change, 2014). Among 

food crops, wheat is widely considered to be one of the most vulnerable to the impacts of climate 

change (Mall, 2014). This invites an opportunity to generate evidence on the factors at the interplay 

of weather outcomes and wheat yields for an informed response in terms of adaptation measures.  

The adoption of improved varieties and irrigation are two of the most used adaptation 

measures by farmers in low or middle-income countries (Acevedo et al., 2020). The adoption of 

heat or drought-tolerant crop varieties and the use of irrigation to mitigate the adverse impact of 

climate change have been studied extensively by recent research (Shew et al., 2020; Tack et al., 

2017). However, these adaptation measures are often studied in isolation from one another, and 

the interaction between them remains an open area of research. Therefore, this study aims to 

contribute to the literature by exploring the interaction of variety selection and irrigation as 

adaptation practices against the negative effect of warming temperatures on wheat yields.  

This research is particularly relevant for Pakistan because its food security relies heavily 

on the performance of wheat production. Wheat is the staple crop of Pakistan which contributes to 

72 percent of daily caloric intake and a per-capita consumption of around 124 kilograms (kg) per 

year, one of the highest in the world. It is also one of the largest crops in Pakistan, grown by over 

80% of the farmers on 9 million hectares, making up 40% of the cultivated land in the country 
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(Raza, 2020). Despite its importance, the wheat yields in Pakistan are almost at half of their 

potential as compared to other countries with similar agroecological conditions (Prikhodko & 

Zrilyi, 2013). This is reflected in Pakistan's struggle to meet the growing local demand as 

evidenced by the recent and growing more frequent wheat flour crisis2, despite being one of the 

world's top ten producers and a traditional net exporter.  

Moreover, climate change poses serious concerns to wheat production in Pakistan, which 

is ranked among the top ten countries most affected by climate change (Eckstein et al., 2021). The 

warming temperatures and changing precipitation patterns along with the increasing frequency and 

intensity of extreme weather events such as droughts, floods, and heat waves are posing major 

threats to crop production (Rasul et al., 2012). Thus, to meet the growing demand for wheat, there 

is a dire need to explore possible adaptation measures to safeguard and enhance wheat production 

in Pakistan in the likely event of future warming of temperatures.  

Therefore, the specific objective of this paper is to estimate the impact of warming 

temperatures on wheat yields in Pakistan and explore the heterogeneity of these impacts across 

wheat varieties and irrigation status. It intends to make a specific contribution to the literature by 

addressing the interaction of variety selection and irrigation as measures for adaptation to future 

warming of temperature. The paper also attempts to contribute to an even more limited evidence 

base from developing countries that are argued to be most affected by climate change (Wijaya, 

2014). 

To do this, we have created a unique dataset by combining the daily weather observations 

with agricultural data of 12,409 unique plots across all 37 districts of the province of Punjab from 

 

2 Multiple newspaper reports show acute wheat flour shortages, unprecedented inflation, stampedes during food 

distributions in the first quarter of the year 2023. Previously, Pakistan also faced wheat flour crisis in 2019-2020. 
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the year 2013 through 2018 yielding a total number of 33,621 plot-year observations. The dataset 

includes the irrigation status of each plot and the release year of each wheat variety.  

To preserve the variation in the daily weather data, exposure “bin” variables are calculated 

by fitting a sinusoidal distribution between the daily minimum and maximum temperatures as in 

(Schlenker & Roberts, 2009). Exposures in days (24 h) for each 1°C interval are aggregated into 

nine temperature exposure bins with 5°C intervals with all exposures above 35°C allocated to the 

highest bin and all temperatures below 0°C allocated to the lowest. The warming impacts were 

obtained by uniformly shifting the entire distribution of observed historic temperatures for three 

scenarios, +1°C, +2°C, and +3°C, and expressed as the percentage change in yield relative to 

baseline climate.   

The following sections of the paper include in chronological order; a brief review of 

relevant literature on the study of climate change adaptation measures and methodological 

approaches, an outline of research objectives and hypotheses, a discussion of the dataset and 

methods employed to carry out the research, the results of the study, and a conclusion. 

  



29 

 Literature Review 

The focus of this study is motivated by the research gap in estimating the comparative 

potential of two adaptation measures: adopting improved wheat varieties and irrigation. Both 

adaptation practices, irrigation (Tack et al., 2017; Zaveri & B. Lobell, 2019; Zhang et al., 2015) 

and adoption of wheat varieties (Shew et al., 2020; Tack et al., 2015, 2016; Zhao et al., 2022), 

have been studied extensively in recent statistical studies but usually independent of each other. 

Other strands of research do evaluate multiple adaptation measures but are specific to either 

agronomic approaches that employ biophysical models to simulate the yield response to changing 

weather conditions (Zeleke, 2021) or limited to measuring the adoption rate and dynamics rather 

than the performance of adaptation measures (Marie et al., 2020).   

Irrigation plays a significant role in cereal production, it contributes to 40% of grain 

production despite being only 17% of the global cropped land (Cai & Rosegrant, 1999; Rosegrant 

et al., 2002). In regions that do not receive sufficient precipitation, irrigation contributes to the 

water requirement for crop production and protection against abiotic stress (Luan & Vico, 2021). 

It has the potential to mitigate the adverse impacts of warming temperatures in different ways; by 

cooling the canopy temperature (Siebert et al., 2014) and by reducing the evapotranspiration 

requirement caused by high temperatures (Lobell et al., 2013). Several statistical studies have 

provided evidence of the performance of irrigation as an adaptative practice. Tack et al. (2017) 

find that irrigation significantly reduces the negative impact of warming temperatures in the 

dryland winter wheat yields in the US. They find that a 1°C increase in temperature leads to a 

decrease of eight percent in yield for dryland wheat; whereas, irrigation completely offsets this 

negative effect. Troy et al. (2015) studies the impact of climate extremes on US crop yields and 

find that irrigation has a beneficial impact in increasing yields and providing a buffer against both 
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precipitation and temperature-derived climate indices. Moreover, evidence from the developing 

world also shows the positive impact of irrigation where Zaveri & B. Lobell (2019) find that 

irrigated wheat yields in India were 13% higher in 2000 than they would have been without 

irrigation trends since 1970. Whereas, in their study on the central US for maize, soybean, and 

wheat crops, Zhang et al. (2015) did not find significant differences in heat resilience between 

irrigated and dryland locations for the wheat crop.  

On the other hand, heat stress caused by high temperatures adversely impacts crop yields 

(Asseng et al., 2013; Rosenzweig & Parry, 1994) typically through the impact on the floral stage 

of plant growth (Hatfield & Prueger, 2015) where grain filling period is reduced by exposure to 

temperature extremes (Zabel et al., 2021) and thus, leading to lower yields. Wheat breeders 

develop new and improved varieties which are claimed as heat and/or drought-tolerant, intending 

to protect against this heat-stress (Driedonks et al., 2016). This provides a platform for the ongoing 

debate on the adaptative potential of adopting improved, heat or drought-tolerant, wheat varieties 

to mitigate the adverse impact of warming temperatures. Tack et al., (2015) find that the newer 

wheat varieties in the US are less resistant to heat stress as compared to older varieties. However, 

Shew et al. (2020) find that optimal cultivar selection and selective breeding provide possibilities 

to offset heat stress which is not the case in Tack et al., (2015). Moreover, Zhang & Zhao (2017) 

finds that using heat-tolerant varieties increases the maize yield in North China Plains by 6-10%. 

Whereas, studies such as Zhang et al. (2022) find the mixed performance of climate-resilient 

varieties where the winter varieties show fewer yield reductions as compared to traditional 

varieties but in the case of spring wheat, the advanced varieties perform even worse than the 

traditional varieties. 
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Previous studies on the interaction of weather and crop yields can be broadly divided into 

agronomic and regression-based statistical studies. Statistical studies aim to establish an empirical 

relationship between weather and yield based on observed data gathered typically from surveys 

and census (Cai et al., 2014; Duncan et al., 2016; Lobell & Burke, 2010; Ortiz-Bobea et al., 2019). 

Whereas, the agronomic studies rely on process-based bio-physical models such as APSIM 

(Holzworth et al., 2014) or AquaCrop (Foster et al., 2017) to model the plant physiology 

mathematically and simulate yield response to changing weather conditions and other determinants 

of crop yield i.e. soil characteristics, application of fertilizers, and management practices (Parkes 

et al., 2019). These studies focus on the dynamic plant growth process which is difficult to estimate 

in a regression framework and allows incorporating the complete distribution of daily or sub-daily 

variables into rich theoretical models to simulate the yield response (Adams et al., 1990; 

Rosenzweig & Parry, 1994).  

The disadvantage, however, is that the predictions are limited to the simulated crops only 

and the results are highly dependent on the crop models used (Schlenker & Roberts, 2009). Rötter 

et al. (2011) suggest an overhaul of these models in favor of a multi-model approach to potential 

control for this bias. Whereas statistical models are equipped to account for the unobserved farmer 

preferences as well as other determinants of yield loss that cannot be simulated in agronomic 

models (Roberts et al., 2017). Roberts et al. (2017) provide a useful assessment of both approaches 

and find that statistical models show more severe predictions of warming impacts under uniform 

climate change scenarios as compared to process-based models.  

The recent focus of the literature on the impact of climate change on crop yields is on 

contributing to model specifications with particular regard to the treatment of weather variables. 

Earlier statistical approaches mainly used aggregated weather observations to estimate impacts on 
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different agricultural variables e.g., agricultural profits (Deschênes & Greenstone, 2007), and total 

factor productivity (Zhang et al., 2018). The aggregation of weather data loses significant 

variations which are otherwise available in disaggregated datasets (daily level) and thus, makes it 

harder to generate evidence on weather extremes.  

A recent strand of research creates degree days/exposure bins weather variables to estimate 

the impact of temperature extremes on agricultural production (Schlenker & Roberts, 2009; Tack 

et al., 2015). These studies incorporate the whole distribution of temperature variables and thus, 

preserve the variation which is lost in the aggregation of weather observations. These studies 

combine the benefits of agronomic studies and earlier statistical studies by calculating the time a 

crop is exposed to each one-degree temperature interval. By doing this, they incorporate the 

complete weather distribution along with making predictions on historically observed yields. 

Schlenker & Roberts (2009) estimate the nonlinear temperature effects on crop yields in the US 

and identify temperature thresholds above which the crop yields decline. They further predicted a 

decrease of 30-46% in crop yields by the end of this century. Tack et al. (2015) decompose the 

impact of temperature by season to identify key climatic drivers of yield changes. They find that 

the freezing temperatures in the Fall and extreme heat in the Spring seasons are the biggest drivers 

of wheat yield loss in the US. Ortiz-Bobea et al. (2019) estimate the role of water stress in 

explaining historical yields by using intra-seasonal yield sensitivities to high-frequency 

fluctuations of soil moisture and temperature. Concerning adaptation practices, Tack et al. (2017) 

find that irrigation completely offsets the negative effect of heat stress on Wheat yields in Kansas, 

and Shew et al. (2020) find evidence of heterogeneity of the heat effect across wheat cultivars in 

South Africa. Our study attempts to contribute to this branch of research that employs temperature 

exposure variables to estimate the impact of temperature extremes on agricultural production. 
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 Research Objectives and Hypotheses 

The purpose of this paper is to estimate the warming impact on wheat yields in Pakistan 

and to investigate the interaction of the adaptation measures of irrigation and variety selection. To 

achieve this, the study aims to achieve three research objectives. The first objective is to estimate 

the impact of warming temperatures on wheat yields disaggregated by irrigation status. This will 

enable us to provide estimates on the role of irrigation in mitigating heat stress.  

• Hypothesis 1: Warming temperatures have a significant negative impact on wheat yields 

in Pakistan. 

• Hypothesis 1a: Irrigation provides substantial protection from the adverse impact of 

heat stress on wheat yields. 

In addition to estimating the warming impacts, understanding the heterogeneity of these 

impacts provides a possible direction for adaptation. Newer varieties are often associated with 

higher yields and claim increased heat resistance. We aim to test these claims in this study. 

Therefore, the second research objective is to estimate the variety-specific heat resistance and 

mean yields. Exploiting the commercial release year information of each wheat variety in the 

dataset, we aim to provide insights into the performance of newer varieties in terms of heat 

resistance and mean yields. These results will be further disaggregated into irrigated and dryland 

to provide estimates independent of the irrigation status. 

• Hypothesis 2: Newer wheat varieties exhibit higher yields and increased heat resistance 

compared to older varieties and this effect is more pronounced for irrigated yields than 

dryland yields. 

Finally, the third research objective is to explore the interaction of irrigation and variety 

selection as adaptation measures. For this, the warming impacts of wheat varieties with minimum 
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and maximum heat resistance will be calculated for both the irrigated and the dryland samples. 

This will allow us to estimate the protection against heat stress provided by the selection of wheat 

variety and how this protection changes across irrigation status. 

• Hypothesis 3: Selecting wheat varieties with the highest heat resistance protects against 

heat stress, and this protection is greater for rain-fed yields than irrigated yields. 

• Hypothesis 3a: Variety selection and irrigation in combination are more effective in 

mitigating the adverse impact of warming temperatures on wheat yields. 
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 Data and Study Area 

To achieve the above research objectives, we have assembled a unique dataset by linking 

daily weather observations with agricultural data from 12,409 distinct plots representing all 37 

districts of the Punjab province and covering the period between 2013 and 2018. The following 

subsections will provide a detailed description of the dataset and its sources, and an explanation 

of additional weather exposure bin variables constructed for the analysis. 

 Agricultural Data 

The agricultural data come from the Crop Reporting Survey conducted by the Crop 

Reporting Service (CRS), an attached wing of the Agriculture Department, Government of Punjab. 

Punjab is the major wheat-producing province of Pakistan contributing to over 70% of the 

production. Administratively, the province is divided into nine divisions, which are further divided 

into a total of 37 districts. Each district is divided into Tehsils and each Tehsil has urban towns 

and rural villages.  

The CRS survey employs a two-stage random sampling technique for sample selection 

where the crop area of the village segment is the sampling unit. The sample size is around 5,500 

cropped plots of size 15’ x 20’ (sq. feet) with a small variation each year. These plots are randomly 

selected from 2,088 villages representing all districts (37) and 133 of the tehsils of Punjab. Within 

each village, three farms are randomly selected and within each farm, two plots are randomly 

selected using a lottery system. Not all villages have six plots, the selection of plots varies 

significantly for each village and year. This makes a total of 12,409 plots from a total of 2,088 

villages covering 133 tehsils and all 37 districts of Punjab. The temporal range is six years (2013 

to 2018) giving 33,621 observations. However, the dataset is unbalanced and some of the variables 
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do not have observations for certain years. Table 6 below summarizes the variables used in the 

available dataset.  

Table 6: Descriptive Statistics of Agricultural Data 

Variable Obs. Mean Std. Dev. Min Max 

Wheat Yield (kg/acre) 33,621 9.014 2.823 0.009 25.05 

Wheat Variety 33,621 11.943 7.594 1 25 

Irrigation 33,621 0.931 0.254 0 1 

 

The wheat yield variable provides the yearly observed yields in kg/acre for each plot, the 

wheat variety is a dummy variable that identifies the wheat variety used by the farmer for each 

plot in each year, and irrigation is a binary variable identifying the irrigation status of the plot.  

Figure 5 below shows the temporal variation in wheat yields for irrigated and dryland 

subsamples respectively. The graph shows consistent interquartile ranges across the years with 

irrigated samples indicating higher mean yields. Whereas the dryland sample shows a larger spread 

as compared to irrigated, reflecting greater variability in yield over the years. The differences in 

the median of both groups indicate sufficient variation of wheat yield across irrigation status to 

make robust estimates. 

 

Figure 5: Wheat Yield Boxplots by Irrigation Status 
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 Weather Data 

The weather data were obtained from the Climate Prediction Centre (CPC) dataset which 

is developed by the American National Oceanic and Atmospheric Administration (NOAA) using 

the optimal interpolation of quality-controlled gauge records of the Global Telecommunication 

System (GTS) network.  

Globally gridded weather data is preferred over the in-situ monitoring stations data due to 

the sparse spread of weather stations in Pakistan. Moreover, the weather station data in developing 

countries is also argued to be less reliable (Parkes et al., 2019). Among other commonly used 

datasets, the CPC dataset has been evaluated to be the most efficient in the reconstruction of 

observed temperature (Salehie et al., 2022), and provides a high correlation with the observed 

precipitation (Gummadi et al., 2022). It provides daily observations of minimum and maximum 

temperature and precipitation on a spatial resolution of global 0.50 x 0.50-degree latitude/longitude 

grids. Table 7 below summarizes the three variables. Each weather variable provides daily 

observations for each of the 33,621 plots in the dataset ranging from the year 2013 through 2018. 

Table 7: Descriptive Statistics of Weather Data 

Variable Obs. Mean Std. Dev. Min Max 

Precipitation (mm) 27,253,849 1.089 4.748 0 162.586 

Maximum Temp (°C) 27,253,849 31.398 7.824 2.602 47.791 

Minimum Temp  (°C) 27,253,849 18.389 8.536 -4.279 38.866 

 

 Creating Temperature Exposure Bin Variables 

To enhance the measurement of temperature (Ortiz-Bobea et al., 2021; Schlenker & 

Roberts, 2009; Tack et al., 2015), exposure “bin” variables are calculated by fitting a sinusoidal 

distribution between the daily minimum and maximum temperatures as in (Schlenker & Roberts, 

2009). Exposures in days (24 h) for each 1°C interval are aggregated into seven temperature 
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exposure bins with 5°C intervals with all exposures above 35°C allocated to the highest bin and 

all temperatures below 0°C allocated to the lowest. Daily bins are then summed across all days in 

the growing season which is defined as the typical span of planting to harvest from September 

through May. This provides a total of nine exposure bin variables. Table 8 below shows the 

summary statistics of these variables. The units are the exposure, in days (24 hours), the crop is 

exposed to the respective temperature bin during the growing seasons, September through May. 

One exposure bin, Exposures 20-24°C, is omitted to avoid the dummy variable trap, and 

the remaining eight serve as covariates in the regression model. The Freeze bin includes exposure 

below 0°C, and the Exposure >35°C bin is the measure of exposure to extreme heat. The minimum 

values for the two lowest and the hottest bins are zero as there were instances when no exposures 

within these bins were recorded in the data. 
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Table 8: Descriptive Statistics of Exposure Bins 

 Exposure Bins  Obs.  Mean  Std. Dev.  Min  Max 

 Freeze 33,621 0.019 0.116 0 5.004 

 Exposure 0-4°C 33,621 5.12 3.6 0 40.227 

 Exposure 5-9°C 33,621 21.678 4.768 8.396 51.028 

 Exposure 10-14°C 33,621 37.063 4.607 22.202 59.669 

 Exposure 15-19°C 33,621 46.616 4.369 37.803 66.035 

 Exposure 20-24°C 33,621 53.521 3.72 40.66 62.713 

 Exposure 25-29°C 33,621 51.6 4.92 23.082 61.929 

 Exposure 30-34°C 33,621 34.086 4.307 1.679 43.449 

 Exposure >35°C 33,621 23.461 9.302 0 48.009 

Figure 6 below demonstrates the variation available in the exposure bins for both the 

irrigated and dryland samples. The horizontal axis shows exposures in days (24hrs) and the vertical 

axis has the exposure bin variables. The exposures are highest, as expected, for the milder 

temperatures 15°C to 24°C, and lowest for extreme temperatures for both samples. The hottest bin 

shows greater variation for the irrigated sample.  

Figure 6: Temperature Exposure Variation across Irrigation Status 

 

The dryland wheat is cultivated in the northern parts of Punjab called the Barani region. 

The Barani region is characterized by lower temperatures and higher rainfall. The temperatures 

tend to increase, and rainfall decrease from North to South. Whereas the central and southern parts 

of Punjab are predominantly irrigated. This is reflected by higher exposure days for the low-

temperature bin for the dryland sample as compared to the irrigated sample in Figure 6. Moreover, 
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the precipitation density curve in Figure 7 also shows a higher density of heavy rainfall in the 

dryland as compared to the irrigated plots. 

Figure 7: Precipitation Density Curve 

 

 Linking Weather and Agricultural Data 

To link the agricultural data with the weather data, the geographic coordinates of each plot were 

collected and linked with the weather data. Since the weather data is on a grid level of 0.5x0.5 

resolution, which is usually larger than a typical village area, there is a possibility of multiple 

villages in one grid, thus containing the same weather information across the grid. Therefore, the 

spatial variation of the weather data comes at the Tehsil level and not the plot or village level. 
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 Methods 

The study dataset provides sufficient in-sample variation to support a robust estimation of 

wheat yield response to different weather conditions. It varies spatially across plot locations, wheat 

varieties, and production types (irrigation, dryland) and temporally across growing seasons. We 

control for the unobserved time-invariant factors such as soil quality, that may vary across 

locations, using location fixed effects. We expect changes in technology over time, particularly 

through breeding efforts as newer varieties are generally associated with higher mean yields. To 

address this, we use variety fixed effects that capture genetic gains over time. A quadratic time 

trend is also included to control for changes in best management practices. The regression model 

is specified as: 

𝑦𝑖𝑣𝑡 = ∑ 𝛿𝑘  𝑏𝑖𝑛𝑖𝑘𝑡 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3 𝑝𝑖𝑡 + 𝛽4 𝑝𝑖𝑡
2 +

8

𝑘=1

𝛼ℎ + 𝛼𝑣 +  𝜀𝑖𝑣𝑡 

where 𝑦𝑖𝑣𝑡 is log wheat yield for variety 𝑣, at farm 𝑖, in year 𝑡. ∑ 𝛿𝑘  𝑏𝑖𝑛𝑖𝑘𝑣𝑡
8
𝑘=1  are the eight 

exposure bins with 5°C intervals including the freeze bin that measures exposures below 0°C and 

the highest temperature bin of >35 °C measuring the extreme heat. These bins are a measure of 

exposure in days to respective temperatures and capture the effects of weather on wheat yields. 

The linear and quadratic approximation of the trend and precipitation is denoted by 𝑡𝑡 , 𝑡𝑡
2 and  𝑝𝑖𝑡 

and 𝑝𝑖𝑡
2  respectively. 𝛼ℎ and 𝛼𝑣 are location and variety fixed effects.  

Due to the nature of the dataset, it is plausible that the error terms 𝜀𝑖𝑣𝑡 exhibit spatial 

dependence which potentially violates the independence assumption. Therefore, we use the 

multiway framework which clusters standard errors by year-division. This allows for errors to be 

heteroskedastic, spatially correlated within each year, and temporally correlated within each 
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division. This is an important consideration as the standard errors are found to be 3.1 times larger 

relative to heteroskedastic robust errors. With 9 divisions, it is the highest spatial classification 

available in the dataset, providing 54 clusters. We do not cluster by year alone due to the limited 

temporal resolution of the dataset. 

The warming impacts were obtained by uniformly shifting the entire distribution of 

observed historic temperatures for each of the three scenarios and expressed as the percentage 

change in yield relative to baseline climate.  To do this, we simulate new exposure bins for each 

+1°C increase in the observed daily minimum and maximum temperature up to +3°C. The 

warming impact for each scenario is then calculated by 100 {𝑒𝛽̂(𝑏𝑖𝑛1−𝑏𝑖𝑛0) − 1} where bin is a 

vector of exposure bins for shifted (1) and baseline (0) climate and 𝛽̂ are the parameter estimates 

from the regression model. The estimation follows the delta method of asymptotic approximation 

for large samples which takes the nonlinear transformations of the estimated parameter vector and 

apply the delta method to make calculations of variance, standard errors, and other statistics. It is 

implemented through the nlcom command in Stata 17.0. Precipitation remains constant at 

historical averages.  

To estimate the heterogeneity of the extreme heat (exposure > 35°C) across wheat varieties, 

we used a multilevel model where the impact of temperature > 35°C was allowed to vary across 

wheat varieties. This leads to the following modification in the regression model: 

𝑦𝑖𝑣𝑡 = ∑ 𝛿𝑘  𝑏𝑖𝑛𝑖𝑘𝑡 + 𝜇𝑣𝑏𝑖𝑛𝑖𝑣9𝑡 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3 𝑝𝑖𝑡 + 𝛽4 𝑝𝑖𝑡
2 +

9

𝑘=1

𝛼ℎ + 𝛼𝑣 +  𝜀𝑖𝑣𝑡 

where (𝜇𝑣) is included as the random slope that varies across wheat varieties for only the 

9th exposure bin representing extreme heat. The random part of the model thus includes only the 
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exposures > 35°C. Best linear unbiased predictions (BLUPs) were calculated for these random 

effects using the reffects option of the predict command in Stata 17.0. The heat resilience for each 

variety is calculated by adding the estimated fixed coefficient of exposure >35°C and the predicted 

random coefficient, given by 𝛿9 𝑏𝑖𝑛𝑖9𝑣𝑡+ 𝜇𝑣. Since we focus only on varieties with more than ten 

location-years, the number of clusters is limited (17 for irrigated and 8 for dryland). The lower 

number of clusters (<50) exacerbates the downward bias of estimated variance parameters inherent 

in the maximum likelihood estimator. Therefore, we use a restricted maximum likelihood 

estimator (REML) that considers the loss of degrees of freedom from the estimation of regression 

parameters and produces unbiased estimates particularly when the number of clusters is small 

(Snijders & Bosker, 2011). The adjusted mean yield for each wheat variety was calculated keeping 

the weather covariates fixed at the mean level. This was implemented using the margins command 

in Stata 17.0.  

 Results 

The main regression model specifies log yield as a function of location and variety fixed 

effects, a quadratic time trend and cumulative precipitation, and the exposure bins. The parameter 

estimates for the regression model are reported in the Table 9. Our main interest is in estimating 

the yield response of the net effect of warming temperatures. Therefore, these parameter estimates 

serve as an input for the calculation of the warming impacts for the three warming scenarios. 
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Table 9: Regression Output of Base Model 

Variables Irrigated Dryland 

Freeze  -0.079 

(0.111) 

-0.111 

(0.105) 

Exposure 0-4C      0.026*** 

(0.006) 

-0.034 

(0.023) 

Exposure 5-9C 0.026*** 

(0.005) 

0.021 

(0.014) 

Exposure 10-14C 0.018*** 

(0.005) 

0.006 

(0.017) 

Exposure 15-19C 0.011* 

(0.006) 

-0.017 

(0.014) 

Exposure 25-29C 0.02*** 

(0.005) 

0.003 

(0.018) 

Exposure 30-34C 0.014** 

(0.005) 

-0.015 

(0.016) 

Exposure >35C 0.013*** 

(0.003) 

-0.02 

(0.013) 

Constant -1.685** 

(0.804) 

2.956 

(2.501) 

No. of Obs. 31,291 2,330 

R-squared  0.205 0.399 

Joint Test (p-

value) 

0.0000 0.0035 

Locations 124 44 

Varieties 25 19 
Notes: Tehsil and variety fixed effects included in both models. 

Standard errors clustered by division-year are reported in 

parentheses. *, **, and *** denote statistical significance at the 

10, 5, and 1 percent levels, respectively.  
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 Irrigation Provides Substantial Protection from Heat Stress under Uniform 

Warming Scenarios. 

The yield impacts across three uniform warming scenarios for both the irrigated and 

dryland samples are shown in Figure 8. The predicted yield impact expressed as percentage change 

is on the vertical axis and the three warming scenarios on the horizontal axis. Each two-bar cluster 

shows estimates for dryland and irrigation samples using parameter estimates from the 

regression model. Bars show 95% confidence intervals using standard errors clustered by division-

year.  

Figure 8: Predicted Yield Impacts of Future Warming Scenarios by Irrigation Status 

 

The results show that irrigation provides considerable protection against warming 

temperatures. All scenarios suggest that warming is associated with net yield reductions (p < 0.02). 

Under the conservative +1°C scenario, the yield reduction is predicted to be 13% for the dryland 

and 4% for the irrigated samples. This reflects a 69.2% lesser yield reduction in the irrigated 
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sample as compared to the dryland sample, which increases slightly to 70.4% and 70.7% under 

+2°C and +3°C scenarios respectively. 

 Newer Varieties Suggest Improvement in Mean Yields but the Yield Gains are 

Offset by Lower Resistance to Heat. 

The dataset includes information on irrigation status and wheat varieties with commercial 

release years ranging from 1991 through 2013. This allows us to assess genotype-by-

environmental interactions in both the dryland and irrigated settings. We use a varying slope 

multilevel model where the fixed part of the model takes the form of the regression model, except 

effect of extreme heat (exposure >35°C) is allowed to vary randomly across wheat varieties. We 

plot both the adjusted mean yields, predicted under average weather conditions, and the variety-

specific heat resilience against release year for both dryland and irrigated samples in Figure 9. The 

mean yields (Panel A) are predicted using restricted maximum likelihood (REML) estimation of 

the multilevel model with the weather variables held constant at their sample average. Heat 

resilience (Panel B) is measured as the percentage impact on mean yield from an additional degree 

day above 35°C. The heat resilience estimates are the release-year specific best linear unbiased 

predictor (BLUP) estimates for the random effects of exposures above 35°C obtained from a 

multilevel model of log yields. Panel C shows the ratio given by heat resilience over mean yield. 

The varieties with a presence of fewer than ten location-years were not included in this analysis. 
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Figure 9: Variety Specific Mean Yield and Heat Resilience by Irrigation Status 

 

The plot trends suggest that newer varieties have higher mean yields. However, the heat 

resilience plot shows a decreasing resilience for the newer varieties. This indicates the success of 

the breeding efforts in terms of increasing mean yields over time, however potentially at the 

expense of greater sensitivity to extreme heat.  

The tradeoff between mean yields and heat resilience is similar across both the dryland and 

irrigation settings. The correlation coefficient between adjusted mean yields and heat resilience is 

-0.89 for dryland and -0.76 for irrigated plots. This suggests a strong negative relationship where 
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the varieties with the highest mean yields have the lowest heat resilience. Panel C shows that for 

newer varieties, the yield loss from decreased heat resilience is higher than the yield gain from 

increased mean yields making producers worse off, particularly in the irrigated sample. 

 There is Extensive Adaptation Potential for Reducing Warming Impacts by 

Switching to Heat-Resilient Varieties. 

The heat resilience estimates show evidence of extensive heterogeneity across wheat 

varieties with the differences in estimates being as large as three times for varieties at each extreme 

in the pooled sample. This suggests a potential path toward adaptation through selective breeding 

and variety selection. We estimated the warming impacts for the most heat-resilient variety 

(MHRV) and the least heat-resilient variety (LHRV) for both irrigated and dryland samples and 

found evidence that variety selection provides extensive protection from heat stress. The results 

are shown in Figure 10. Impacts are reported as the percentage change in mean yield under +1 to 

+3°C warming scenarios relative to historical climate. Bars show 95% confidence intervals using 

standard errors clustered by division-year. 

Under the conservative scenario of +1°C in the irrigated sample, the MHRV shows 

approximately 65% lesser yield reduction as compared to the LHRV, which increases to 96% for 

the dryland sample. The LHRV estimates also show major differences across irrigation status 

which implies that irrigation significantly reduces the reliance on variety selection, although 

variety selection still provides extensive protection in the irrigated sample. Thus, the combination 

of irrigation and optimal variety selection could be a doubly-effective management strategy for 

mitigating the adverse effects of warming temperatures. However, the tradeoff between heat 

resilience and mean yields (Fig. 9) across varieties suggests that extensive protection might come 

at the cost of reduced mean yields. 
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Figure 10: Comparison of Variety Selection and Irrigation as Adaptation Measures 
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 Conclusion 

Climate change is causing an increase in global temperatures which poses a challenge to 

agricultural production in general and grain production in particular. Pakistan is currently 

battling with the adverse impacts of extreme weather events such as droughts, floods, and intense 

heat waves, and it is considered one of the top ten countries affected by climate change. With the 

extreme vulnerability to climate-related calamities and heavy reliance on wheat production for its 

food security, understanding the impacts of warming temperatures on wheat yields and possible 

adaptation measures is an important and relevant topic of research for Pakistan. 

Therefore, the purpose of this research is to estimate the impact of warming temperatures 

on wheat yields in Pakistan and to provide an assessment of adaptation measures of irrigation 

and variety selection. Utilizing a unique dataset of farm-level observations linked with the daily 

observation of weather variables, the study finds that warming temperatures have a substantial 

and negative impact on the wheat yields of Pakistan. Moreover, this impact is more pronounced 

in dryland areas as irrigation provides significant coverage against heat stress. The study also 

finds that these warming impacts show considerable heterogeneity across wheat varieties where 

the newer varieties show higher mean yield and lower heat resilience. Finally, the study shows 

that both variety selection and irrigation protect against the negative effects of warming 

temperatures and presents a case in favor of employing a combination of both adaptation 

measures to ensure the most protection. The evidence proposes policy intervention geared 

towards an enhanced focus on improving and extending irrigation coverage for the wheat crops 

as well as facilitation of developing heat tolerant and yield-enhancing wheat varieties. 

 This research extends the existing knowledge by addressing the research gap in 

estimating the interaction of irrigation and variety selection as adaptation measures against the 
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warming temperatures which were otherwise addressed separately. A better understanding of the 

relationship between weather and agricultural production allows us to better prepare to respond 

to the potential future increase in temperature. This knowledge also provides a starting point for 

the wheat variety breeders to identify genetic traits that provide increased heat resilience and 

thus, inform their breeding efforts accordingly. The creation of knowledge on making staple 

crops more climate resilient, particularly for countries that are extremely vulnerable to climate 

change, holds the key to ensure the food security of millions of people. 
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