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Abstract 

Data on human visual attention is increasingly collected online, but there are limited tools 

available to study attention to video stimuli in online experiments. Webcam-based eye tracking is 

improving, but it faces issues with precision and attrition that prevent its adoption by many 

researchers. Here I detail an alternative mouse-based paradigm that can be used to measure 

attention to videos online. This method uses a blurred display and a high-resolution window 

centered on the user’s computer mouse location. As the user moves their mouse to view different 

screen content, their mouse movements are recorded, providing an approximation of eye 

movements and the attended screen location. To validate this Mouse-Contingent Bi-Resolution 

Display (MCBRD) paradigm, mouse movements collected from online participants watching 

twenty-seven videos were compared to eye movements from the DIEM dataset. Display settings 

of window size and blur level were manipulated to identify the settings that resulted in mouse 

movements most similar to eye movements. This validation study found differences in speed 

between mouse and eye movements, but similarities in attended regions of interest, especially 

when the MCBRD screen was blurred with the highest tested Gaussian blur sigma of 0.45 

degrees of visual angle. These results suggest that the MCBRD paradigm can be used to measure 

what regions viewers find salient, interesting, or visually informative in online videos. 
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Chapter 1 - Introduction 

Over the last two decades attention researchers have begun studying viewers’ attention 

while they watch videos (Carmi & Itti, 2006; Dorr et al., 2010; Mital et al., 2011). At the same 

time, people are spending increasing amounts of time watching video content on the Internet. 

The 2020 Nielsen Total Audience Report shows the average American spends at least 35 minutes 

a day watching video on smartphones, tablets, and computers alone, and over 4 hours watching 

video on tv or tv-connected devices (Nielsen 2020). This prevalence of video media raises the 

question: when people watch video content, where are they attending on the screen? The content 

we pay attention to is what we are generally aware of, can incorporate into our understanding, 

and later remember (Anderson & Pichert, 1978; Kaakinen et al., 2011; Madsen et al., 2012; 

O’Brien et al., 1988; Simons & Chabris, 1999). Knowing what people pay attention to when 

watching videos can inform us about their thoughts and cognitive processes. Online methods for 

collecting data on viewers’ attention are increasingly sought after because data can be collected 

much faster than in-person data collection, data can be collected on a much larger scale, and data 

collection can continue even if pandemic conditions like COVID-19 prevent in-lab data 

collection. 

How can we measure video viewers’ attention while they watch videos online? The gold 

standard measure of the allocation of attention is eye tracking. However, high quality eye 

trackers are restricted to lab usage, and webcam-based eye tracking has not yet reached the point 

of having sufficient accuracy and precision to provide the quality of data needed by many 

attention researchers (Burton et al., 2014; Semmelmann & Weigelt, 2018). A simple alternative 

is the use of mouse-contingent multi-resolution displays (Anwyl-Irvine et al., 2021; Blackwell et 

al., 2000; Jansen et al., 2003; Jiang et al., 2015; Jones and Mewhort, 2004; N. W. Kim et al., 
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2017). In such displays, a circular region of high-resolution is centered on the viewers’ mouse 

location while the rest of the stimulus is presented in a lower resolution. To see something that is 

currently blurred, the viewer simply moves their mouse cursor to that location. In this way, the 

viewer’s mouse movements provide an approximation of their eye movements, and thus, where 

they are attending on the screen. If implemented well, mouse-contingent multi-resolution 

displays should not cause any undue influence on the viewer’s attentional selection compared to 

viewing the entire video image in high resolution. In this study I use prior research using eye 

tracking, gaze-contingent displays, and mouse-contingent displays to inform my current mouse-

contingent multi-resolution display design. I then validate the optimal window radius and blur 

level settings necessary for obtaining data comparable to eye movements. 

 Current Measures of Attention 

Eye tracking has been used as an empirical measure of attention since the late 1800s and 

has grown from the eye cap methods of Delebarre and Orschansky to the incredibly data-rich 

methods of today (see Wade, 2010 for a review of eye tracking history). Eye movements are a 

fruitful measure of attention because the eye must move (or saccade) in order to collect detailed 

information from different locations in the field of view. The distribution of rods and cones in 

the eye, ganglion cell convergence, and cortical magnification (more cells in the Lateral 

Geniculate Nucleus and V1 designated for processing central visual information) all result in our 

central vision having the highest resolution within our field of view, with diminishing resolution 

as distance from the fovea increases. Specifically, the higher density of cells in the fovea and the 

convergence of peripheral rods and cones onto fewer ganglion cells results in the highest 

perceptible spatial frequencies being in the fovea (1-2 degrees of visual angle eccentricity), 

followed by the parafovea (2-5 degrees of visual angle eccentricity) (Curcio & Allen, 1990; 
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Drasdo & Fowler, 1974; Quinn et al., 2018; Thibos, 1998; Watson, 2014). After making a 

saccade to a new location, the eye fixates to extract high resolution information. Our attention 

can be inferred from eye movements because attention cannot be disengaged from an active 

saccade. Each saccade to a new location is preceded by covert attention to that location (Deubel 

& Schneider, 1996; Hoffman & Subramaniam, 1995; Kowler et al., 1995). Thus, both saccades 

and eye fixations can be recorded to inform us of where viewers have attended and may have 

extracted particular information from in a visual stimulus (Holmqvist & Andersson, 2017), the 

order in which they gathered this information (Bylinskii et al., 2018; Le Meur & Baccino, 2013; 

Noton & Stark 1971) and how long they processed this information (Findlay & Walker, 1999; 

Henderson, 2007; Just & Carpenter, 1976; Nuthmann, 2017; Nuthmann et al., 2010; Nuthmann 

& Henderson, 2012). 

 Nevertheless, it is not uncommon for circumstances to prevent the use of this gold 

standard measure of visual attention. Top of the line eye trackers are expensive (upwards of 

$10,000), and lower-level eye trackers ($1,000-$10,000) sacrifice spatial and temporal detail. 

Furthermore, data collection is limited to one participant per eye tracker at a time. The 

limitations of eye tracking data collection were made especially salient to many labs during the 

COVID-19 pandemic. With many labs shutting down in-person data collection, eye tracker use 

was not possible. Some of these labs shifted to online data collection in the form of webcam-

based eye tracking and mouse-based methods of measuring attention (Anwyl-Irvine et al., 2021; 

Yang & Krajbich, 2021). 

 Webcam-based eye tracking (appearance-based gaze estimation) is improving as a 

methodology, but it is still not good enough for the detailed data collection required by many 

labs. Particularly, webcam-based eye tracking has calibration and precision issues (alongside 
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attrition issues that follow the difficulty of calibration-at-home) and is recommended only for 

studies that require rough estimates of eye movement locations, studies that are using large areas 

of interest, or studies with regions of interest that are not too close together (Burton et al., 2014; 

Semmelmann & Weigelt, 2018; Yang & Krajbich, 2021). Recent improvements in webcam-

based eye tracking are due to the introduction of machine learning approaches, where models are 

trained on large datasets of images of various eyes, in different settings, looking at specific 

screen locations (George, 2019; Krafka et al., 2016; Zhang et al., 2015). These methods, 

although an improvement upon webcam-based eye tracking alone, still do not have the accuracy 

of commercial eye trackers and have not yet reached widespread use. The issue of low precision 

could be helped by collecting more data, similar to how a small statistical effect can be identified 

with a large enough sample size. However, the other limitations of webcam-based eye tracking 

(high attrition in particular) can make it difficult to gather a large enough sample to reduce the 

impact of variance from camera imprecision. 

 Another method of measuring attention in an online setting is through the use of mouse-

based manipulation of the screen resolution without the use of a webcam. In particular, allowing 

a participant to see a region of high-resolution information only where they move their mouse 

has been shown to produce similar results to eye movements in terms of areas of interest visited 

and x-y coordinate similarity analyses (Anwyl-Irvine et al., 2021; Jiang et al., 2015; N. W. Kim 

et al., 2017). This methodology is extended and tested here in order to run online experiments 

with video stimuli and build upon previous gaze-contingent display paradigms. Reviewing the 

primary findings of tests of gaze-contingent display methodology can inform and guide this 

mouse-contingent paradigm. 
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 Gaze-contingent Display History 

The first application of gaze-contingent display methodology was in research on reading 

processes in 1975 (McConkie & Rayner, 1975). Generally, gaze-contingent displays change their 

display content based on the location of one’s focus on the screen with a region of clear or high-

resolution viewing most frequently tied to the location of the fovea, as identified by eye tracking 

(i.e., foveated rendering; Reingold et al., 2003). In the first gaze-contingent applications in 

reading research, text on a screen would change depending on where a participant was currently 

fixating. In this paradigm, legible text was only presented around the location of the readers’ 

gaze (McConkie & Rayner, 1975). This method was used to test the extent of letters perceived 

around the reader’s current point of fixation, but the process of changing screen content 

depending on gaze location would later be expanded upon in a variety of contexts. 

 Gaze-contingent displays have been implemented with letter scrambling in reading, 

blurred-periphery designs in scene viewing, and detail limitations in rendering 3D objects 

outside of the identified center of vision (Luebke et al., 2000). These latter two methods are 

largely directed towards saving image processing and transmission resources because high 

resolution content cannot be resolved by the visual system outside of the center of vision 

(Reingold et al., 2003). Thus, gaze-contingent displays have been used to save resources in many 

contexts, like driving and flight simulators, video teleconferencing, virtual reality, and 

augmented reality (Duchowski et al., 2004; Duchowski & Coitekin, 2007; Kim et al., 2019; 

Reingold et al., 2003). 

 The lower resolution content outside of the center of vision is designed to not be visibly 

different from a full high-resolution image to the viewer (i.e., a metamer in peripheral vision; 

Loschky et al., 2005). Gaze-contingent methodologies work because the fovea can resolve high 
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and medium and spatial frequencies whereas the periphery can only resolve low spatial 

frequencies (Cajar et al., 2016). If the resolution of a visual area is reduced, but still above the 

high-resolution cut-off (i.e., the highest resolution that can be perceived) at a given retinal 

eccentricity, the reduction will be imperceptible (Loschky et al., 2005) thus saving image 

processing or transmission resources without compromising the viewers’ visual experience. The 

multi-resolution display is most commonly implemented by creating images at different 

resolutions beforehand or allowing an algorithm to filter the presented resolutions in real-time 

(Duchowski et al., 2005; Reingold et al., 2003). 

 These methods take advantage of the fact that the eye can resolve different spatial 

frequencies when they are presented at different retinal eccentricities. Psychophysical studies 

have identified functions describing the relationship (Peli et al., 1991; Pointer & Hess, 1989; 

Thibos, 1998; Watson, 2014). This function is captured by Geisler and Perry (1998) as: 

𝐶𝑇(𝑓 , 𝑒) =  𝐶𝑇0 𝑒𝑥𝑝 (𝛼𝑓
 𝑒+ 𝑒2

𝑒2
 )     (1) 

where 𝑓 is spatial frequency in cycles per degree, 𝑒 is the retinal eccentricity in degrees,𝐶𝑇0 is 

the minimum contrast threshold, α is the spatial frequency decay constant, and 𝑒2 is the half-

resolution eccentricity. 

If the image degradation or blurring removes spatial frequency information that could 

have been resolved at any given eccentricity then that degradation will, in principle, be 

perceptible (Loschky et al., 2005). The information presented on the screen must adapt over time 

to the changing locations of the viewer’s fovea. If updating the areas of clear and degraded visual 

information takes place during a saccade or even up to 50-70 ms after (Albert et al., 2017; 

Loschky & Wolverton, 2007), saccadic suppression prevents this update from being visible. 
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After the input methodology, the second largest difference between gaze-contingent 

displays and the use of mouse-contingent blurred displays is the purpose of the blurring. In the 

case of gaze-contingent displays, blur is designed to be imperceptible. For mouse-contingent 

displays, peripheral blur exists as a catalyst to spur movement of the high-resolution window. 

Why compare the two at all? The comparison to gaze-contingent displays is a crucial foundation, 

because the findings from research on gaze-contingent display methodology can greatly impact 

the design of a successful mouse-contingent display that captures attention similarly to how it 

would be allocated by the eye in an unblurred display. Specifically, the degree to which 

peripheral image content is blurred and the size of the unblurred foveal region can have a large 

impact on the attentional exploration patterns of the viewer. 

 Mouse-Contingent Multi-Resolution Displays 

A mouse-contingent multi-resolution display is a viable method of obtaining data on 

participants’ allocation of attention for one key reason: the blurred peripheral region of space 

prevents the viewer from gathering more detailed visual information unless they move the high-

resolution window. In fact, visual blur is preattentively processed (Loschky et al., 2014; 

Peterson, 2016; Peterson, 2018). Clear information is more salient with uniquely clear content 

amongst blurred content capturing attention whereas uniquely blurred content will only capture 

attention if it is task-relevant (Peterson, 2018). Blur is also generally avoided by the visual 

system through lens accommodation. Lens accommodation (changing focus for objects at 

different distances) provides clarity to visual stimuli, as does making saccades to fixate on visual 

areas. These processes aim to reduce the discomfort that can be experienced with perceived blur 

(O'Hare & Hibbard 2013). In the mouse-contingent multi-resolution display, if a viewer wants to 

get detailed visual information about content on their screen, they must move their mouse to 
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reveal it. However, the peripheral content must be sufficiently blurred to motivate moving the 

window, but not so blurred that attentional selection is inhibited or discouraged. Blur that is too 

intense may prevent viewers from perceiving visual cues that could guide their mouse 

movements, similar to how we select our fixation locations from our low-resolution visual 

periphery.  

Further motivation for thinking that a mouse-contingent multi-resolution display could 

serve as a measure of attention comes from the findings of studies that have investigated the 

correlation between eye and mouse movements in normal computer usage. Chen et al. (2001) 

recorded the eye movements of participants while they browsed websites and found a strong 

relationship between users’ gaze and cursor positions (with eye gaze in the same region as the 

mouse at the beginning of a mouse movement 76% of the time, and at the end of a mouse 

movement 77% of the time). Other experiments have replicated this finding and have also shown 

that gaze and mouse cursor locations tend to be more correlated along the vertical (y) axis (Guo 

& Agichtein, 2010; Rodden et al., 2008). Cursor movements can differ from eye movements 

depending on the task if, for example, participants are reading text on a website versus clicking 

on screen content to navigate a page (Huang et al., 2012), but studies have shown that viewers 

commonly precede a cursor movement with a similar movement of the eye, or look at their 

cursor while moving it, while looking at full resolution screens. These results show both a strong 

connection between viewers’ gaze and cursor locations, but also systematic temporal lags 

between gaze and mouse positions, with the gaze often leading the mouse to a new location. 

Mouse-based multi-resolution displays have been used to measure attention since at least 

the early 2000s. They have since appeared in multiple forms, which differ in their method of 

viewpoint selection, online capabilities, and compatible stimuli. 
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Some multi-resolution display paradigms are based on mouse clicks on an image 

stimulus, revealing a window of high resolution on one clicked area at a time. These paradigms 

include Deng, Krause, and Fei Fei’s online implementation of the BubbleView paradigm, where 

participants choose the location of clear-view bubbles, to aid in an object recognition task (Deng 

et al., 2013). The Bubbles paradigm, originally created by Gosselin and Schyns in 2001 with 

randomly placed bubbles of clear information on an otherwise obscured image, was adapted to 

be click-based by Deng et al. (2013) and allowed participants to choose the placement of the 

Bubbles. This expansion found results similar to free-viewing patterns in object recognition 

(Deng et al., 2013). This paradigm was expanded upon by Kim et al. (2017) in their BubbleView 

paradigm, which tested a click-based bubble paradigm on a wide variety of image stimuli 

(natural images, information visualizations, static webpages, and graphic designs). Kim et al. 

(2017) found that these clicks approximated eye fixations in defining areas of importance in 

stimuli. Kim et al. (2017) also found that their click-based paradigm resulted in a better 

approximation of eye fixations compared to SALICON (Jiang et al., 2015), a mouse-motion 

based paradigm. Click-based measures are certainly cleaner in terms of data collection—there is 

no need to parse continuous x-y coordinate data to identify mouse-saccades and mouse-fixations. 

Click-based methods would seem to be far less feasible for video stimuli, however. In their study 

only using static image stimuli, Kim et al. (2017) found slower exploration patterns in their 

collected mouse clicks vs eye movements. Clicks can potentially provide cleaner data, because 

they require conscious decisions on which area of the screen to reveal, but a window tied to 

mouse movements can potentially reveal different areas much faster, since there is no 

requirement for the viewer to consciously decide to click, and then do so. Instead, the viewer 

would only need to move their mouse to reveal the desired higher resolution. Note too that 
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mouse movement requires movement of the hand, which is assumedly a faster movement than 

moving a mouse and clicking with one’s forefinger. This speed is especially important when 

considering the constant updating of video stimuli. 

To date, most mouse-movement-based multi-resolution display paradigms have only 

been made for use with static image stimuli (for a comparison of mouse-movement methods, see 

Table 1). These methodologies date back to the early 2000s with the Restricted Focus Viewer of 

Blackwell et al. (2000) and Jansen et al. (2003), and a similar methodology used by Jones and 

Mewhort (2004). The Restricted Focus Viewer tied a rectangular window of high resolution to 

mouse movements, with four levels of increasing blur extending into the periphery. Blackwell et 

al. (2000) and Jansen et al. (2003) found exploration behavior similar to free viewing. Jiang et 

al.’s (2015) SALICON study used multi-resolution blur (increasing levels of blur into the 

periphery) on images tied to mouse movements, first in-lab and then extending online, and found 

resulting mouse-fixation maps to be similar to eye-fixation maps from the same images. When 

used online, SALICON required pre-study checks to ensure that participants’ computers could 

run the multi-resolution blur design without lag. Multi-resolution designs that blur in real time 

are more computationally intensive than bi-resolution designs, which only require the processing 

of two resolution levels—the original resolution layer and the blurred layer. 

 MouseView.JS is a JavaScript library that allows for a bi-resolution display controlled by 

mouse movements in online experiments (Anwyl-Irvine et al., 2021). A Gaussian blur layer can 

be implemented on top of image stimuli, but video stimuli require the implementation of an 

opacity filter (overlaying a color of a set transparency). This opacity filter requirement is due to 

MouseView.JS working through a screenshot-and-blur method. The content of the screen is 

captured in a screenshot, a blurred version of this image is created, and then this blurred version 
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is drawn onto an HTML canvas overlay. This screenshot and blurred version is only updated 

when there is a user-initiated change in the underlying webpage by default (scrolling on a page, 

for example), but this updating can be set to instead update at a set time interval. The 

MouseView.JS team recommends an interval no faster than 1-2 seconds and instead using an 

opacity filter for video stimuli that update more frequently. 

 The experiment building platform PsychoPy has a mouse-contingent demonstration that 

can be used with video stimuli (https://gitlab.pavlovia.org/demos/dynamic_selective_inspect) 

employing an opacity-based filter. Opacity-based filters are less optimal than blur-based filters, 

as they can induce eye movements (mainly shorter saccades) that are different from normal 

viewing patterns. The online mouse-contingent platform FocalVid also uses an opacity-based 

filter for recording attention to video stimuli1. The only present literature describing an online, 

mouse-contingent multi-resolution display that allows for blur over video is a preprint from 

Lyudvichenko and Vatolin (2019), which describes mouse-contingent blurring of video working 

in a custom video player. However, this program is presently not available for open use, and a 

custom-video-player based implementation may limit the stimuli to only video and introduce 

complications when wanting to integrate this program with experiment creation software. The 

only presently available online methods that allow for video stimuli use opacity-based filters, 

which can differentially affect how attention is allocated in a scene. Specifically, reviews of 

relevant research using gaze-contingent methodologies find that more opaque filters can produce 

attentional exploratory behavior that differs considerably from the natural exploratory behavior 

of an unobstructed image.  

 

1 The next iteration of FocalVid, which I am a collaborator on, will add a multi-resolution blur 

method to their platform. 
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Table 1 

Comparison of the Mouse-Movement-Based Multi-Resolution Display Paradigms Discussed 

Tool Stimulus Resolution Method Available 

Online 

MouseView.JS Image Bi-resolution Blur Yes 

MouseView.JS Video Bi-resolution Opacity Yes 

Restricted Focus Viewer Image Multi-resolution Blur No 

SALICON Image Multi-resolution Blur No 

PsychoPy Dynamic Selective Inspect Image Bi-resolution Opacity Yes 

PsychoPy Dynamic Selective Inspect Video Bi-resolution Opacity Yes 

Lyudvichenko et al., (2019) Video Multi-resolution Blur No 

FocalVid Video Bi-resolution Opacity Yes 

Current MCBRD Paradigm Video Bi-resolution Blur Yes 

  

 Attention in Multi-Resolution Displays  

Knowing that mouse-contingent multi-resolution displays can serve as a measure of 

attentional allocation is good, but the best data would come from a display that most closely 

approximates natural viewing patterns. To approximate natural viewing patterns, the blur level 

and window size are likely to be crucial, and guidance may be provided by research on gaze-

contingent methodologies. 

Fine-tuning of the blur level in accordance with the function by which perceptible 

resolution drops off in the periphery is important to making the blur in gaze-contingent multi-

resolution displays imperceptible (Reingold et al., 2003). However, in designing a mouse-

contingent multi-resolution display paradigm to study attention, the fine-tuning of the blur level 

serves a different purpose: identifying the level of blur that induces participants to move their 

mouse but without causing them to search the screen area differently from the eye movement 

patterns they would produce when watching a normal unblurred video. 

From research utilizing gaze-contingent display methodology, we know that saccade 

amplitudes decrease with greater peripheral blur (Cajar et al., 2016; Laubrock et al., 2013; 
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Loschky & McConkie, 2002; Reingold & Loschky, 2002a, 2002b; van Diepen & Wampers, 

1998) or degradation in the form of spatial noise (Shioiri & Ikeda, 1989). In this case, the content 

in the high-resolution window is considered to be more salient and is more likely to become the 

target of the next saccade (in terms of the salience-based competition for saccade target location 

in the superior colliculus; see Findlay & Walker, 1999; Reingold & Loschky, 2002a, 2002b). The 

heightened salience of the content in the high-resolution window results in shorter saccades on 

average. Importantly, peripheral filtering similarly modulates covert attention (i.e., attention 

away from the fovea). Cajar et al. (2016) found that both central and peripheral scene 

degradation leads to inhibited target detection in the degraded region. Thus, excessive blur or 

degradation restricts both overt attention (i.e., eye movements) and covert attention. 

Given the effects of excessive blur, it seems that the ideal blur level used in a mouse-

contingent multi-resolution display should fall between two thresholds: the lower blur detection 

threshold, below which participants will not need to move their mouse, and the higher threshold, 

above which the blur begins to restrict both overt and covert attention (and subsequently, mouse 

movements). The blur detection threshold will depend on window size, with the just detectable 

blur threshold dropping to lower cycles per degree (higher blur) at larger eccentricities (Loschky 

et al., 2014). The threshold at which eye movements become unnatural is the point at which the 

level of blur outside the clear window is so high that eye movements become restricted to the 

clear window (similar to what was found in gaze-contingent displays). Because of the drop-off of 

visual resolution with increasing retinal eccentricity, this higher threshold of blur affecting 

attentional selection similarly depends on window size (Cajar et al., 2016; Loschky & 

McConkie, 2002; Nuthmann, 2014; Shioiri & Ikeda, 1998). 
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 In validating the present mouse-contingent bi-resolution display paradigm, I tested three 

different levels of blur and three different window sizes in a 3 × 3 factorial within-subjects 

design to identify the combination of blur level and window radius that fit within these two 

thresholds and resulted in mouse movements that are the most similar to eye movements. I tested 

these blur and window settings in a variety of different video stimuli (pulled from the DIEM 

dataset, Mital et al., 2011), but it remains a possibility that stimulus differences may result in no 

clear best choice in terms of window and radius combination. Videos depicting scenes may be 

differently affected by blur that inhibits recognition of the gist of a scene (largely informed by 

the periphery, see Larson & Loschky, 2009). At the same time, too little blur (or too large of a 

window) could give viewers too much detailed visual information in some stimuli but not others, 

resulting in a decreased need to move the mouse. Blackwell et al. (2000) suggested using a level 

of blur that prevents participants from getting important information without moving a clear 

window of view over it (which can depend on both stimulus and task). In a similar paradigm, 

Jones and Mewhort (2004) suggested that a blur filter be customized to obscure diagnostic or 

biasing information. This blur level determination is similar to the method by which blur levels 

were decided in Kim et al. (2017). This validation will help to identify whether there is an 

optimal recommended setting for blur level and window size for video stimuli. 

 Hypotheses 

This validation study comes with two sets of competing hypotheses regarding the 

similarity of mouse movements to eye movements and the generalizability of optimal blur and 

window settings across multiple video stimuli. Mouse movements are expected to be similar to 

eye movements, as was found in prior research (Anwyl-Irvine et al., 2021; Jiang et al., 2015; 

Kim et al., 2017), but the introduction of video stimuli could result in different exploration 
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patterns. Similarity between mouse and eye movements in terms of the distance explored, gaze 

similarity, and time spent within Areas of Interest (AOIs) will be analyzed to see if participants 

are attending to the same visual content on average, even if their exploration patterns differ. A 

lag between eye movements and mouse movements is anticipated due to the putatively inherent 

differences between moving one’s eyes and moving a computer mouse. Eye movements are 

generally (though not always) automatic, require no conscious effort, and are quickly initiated. 

Conversely, moving a mouse is generally (though not always) a more controlled action which 

may require an intention to act, resulting in a delay in execution of movement (see a comparison 

of movement latencies for eyes and limbs in Abrams et al., 1990). There are also potential speed 

differences of eye movements versus cursor movements after the movements are initiated. This 

validation study tests for differences of mouse and eye movement speed through analyses of 

distance covered from each video frame to the next (see Distance Analyses below). The 

following analyses take potential differences of speed into account through temporal margins for 

error in the gaze similarity analyses (see Normalized Scanpath Saliency below) and the total time 

spent within AOIs (see Areas of Interest Analyses below). 

 It is hypothesized that the best blur and window settings could apply to most, if not all 

videos. This wide application of blur and window settings would be due to the combination of 

settings matching most naturally with the resolution of the visual system, and with the resulting 

blur falling between the blur detection threshold and the threshold at which eye movements are 

abnormally affected. As a competing hypothesis, it is also possible that blur and window settings 

are too stimulus-dependent for a pairing of settings to come out as a clear, optimal choice.  
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Chapter 2 - Methods 

 Materials: Mouse-Contingent Bi-Resolution Display (MCBRD) Paradigm 

I implemented and tested a mouse-contingent paradigm based on mouse movement 

without clicking (in contrast to the BubbleView paradigm) because clicking may be slower and 

less natural for video stimuli. This paradigm is implemented in JavaScript (JS) and can be used 

in JavaScript-based experiments or alongside experiment creation software like PsychoPy that is 

able to use custom JavaScript code and export JS experiments to the web. This design utilizes the 

CSS (Cascading Style Sheets; a programming language for stylization of web-based content) 

blur backdrop filter that places a Gaussian blur with a designated standard deviation (blur sigma) 

in pixels (determining the strength of the blur) across the entire screen. A CSS clip-path is then 

set to the size of a circle indicated by the window radius value in pixels and is centered on a new 

location with each mouse movement. This clip-path allows us to cut through the blur layer and 

reveal the high-resolution content underneath. This method can be used over any type of visual 

stimuli, including video, and is relatively lag-free at 60 Hz (see appendix). The blur backdrop 

filter and clip-path are supported by most major web browsers, including Google Chrome, 

Mozilla Firefox, Microsoft Edge, and Apple’s Safari browser. For this validation experiment, I 

will be using this code alongside an experiment created in PsychoPy (Peirce et al., 2019) on 

Pavlovia.org in an iFrame that can place this blur layer on top of any PsychoPy stimuli. 

 This paradigm is bi-resolution, meaning that there is a window of high resolution, and a 

uniform level of blur in the periphery. Two resolution levels (high resolution and lower 

resolution) are less resource-intensive than multiple different levels of blur which makes it better 

suited for running alongside video stimuli in an online experiment. A bi-resolution display (with 

the right window size) should not cause any decrement in similarity results compared to a multi-
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resolution display. Kim et al. (2017) found that, when comparing a bi-resolution mouse-

contingent paradigm to SALICON’s multi-resolution blur, SALICON’s results could be 

approximated without the multi-resolution blur thus saving computational resources. Loschky 

and McConkie (2002) tested a gaze-contingent bi-resolution display with a high-resolution 

window tied to the participants’ gaze and a lower resolution area in the periphery. They found a 

larger number of shorter saccades when there was heavy peripheral filtering, but they did not 

find that saccades were abnormally allocated to the window edge eccentricity. Furthermore, 

Loschky and McConkie (2000) found that bi-resolution displays with a sharp edge did not 

increase peripheral degradation detection compared to a blended-edge design. In related 

research, Hoffman et al. (2018) found hard transitions between resolutions in the periphery to be 

less visible than smoothed transitions in VR foveated rendering. Finally, Reingold and Loschky 

(2002) found that peripheral targets were located more slowly when the periphery was degraded, 

but this finding was unaffected by whether there was a blurred versus sharp window edge. These 

results suggest that the blurred screen content, set to a blur level intended to keep eye and mouse 

movements relatively natural, should not be adversely affected by the edge of the mouse-

contingent window.  

 To address internet lags that can affect video-based experiments online, videos were 

loaded into the browser cache before participants could begin the experiment. Despite 

introducing a wait time before the beginning of the experiment (3-5 minutes in testing), pre-

loading videos into the cache lowers the chances of video lag during experimentation. Likewise, 

it was recommended that participants close all other programs and browser tabs before beginning 

the experiment to reduce any lag that could be caused by the computer’s RAM and CPU resource 

limitations. 
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 Materials: Stimuli 

Participants watched 29 1- to 3-minute videos, all presented through a mouse-contingent 

bi-resolution display, with different combinations of three blur levels and three window sizes in a 

3 × 3 factorial within-subjects design. All participants experienced each of these nine 

combinations three times. The first two videos were used as practice to reduce the variability that 

could come from participants getting acclimated to the mouse-contingent display. These practice 

videos were not part of the 3 × 3 design and were run with middle values of both blur sigma 

(0.3°) and window radius (3.0°). To test window sizes close to the sizes of the fovea, the middle 

of the parafovea, and the beginning of the visual periphery in the 3 × 3 design, I used window 

sizes of 1.5°, 3.0°, and 4.5° of visual angle, respectively. These window radii are close to the 

window sizes of 1.6°, 2.9°, and 4.1° used by both Loschky and McConkie (2002) and Nuthmann 

(2014) in gaze-contingent window designs with a slightly larger range to strengthen the 

difference between the window size options. These window sizes will test the effect of allowing 

different amounts of the parafovea to be presented without blur. For window size visualization, 

see Figure 1. 

The blur levels are characterized by the standard deviation of the Gaussian blur applied 

(blur sigmas). Here I have implemented blur sigmas of 0.15°, 0.30°, and 0.45° of visual angle. 

These blur sigmas result in visibly similar blur to two of the wavelet-created blur conditions used 

in Loschky and McConkie (2002) with an additional stronger blur condition to test the similarity 

of movements induced by a stronger blur. For blur level visualization, see Figure 1.  
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Figure 1 

Visualization of All Window Radius and Blur Sigma Level Combinations  

 

   

The visual angle values of the window radii and blur levels were converted to pixels 

depending on each individual participant’s screen size and distance from the screen (using an 

adaptive screen scaling method described below). Existing mouse contingent display paradigms 

have not used visual angle in determining their window radius and blur sigma levels—these 

paradigms are all solely pixel based, or based on a proportion of screen size, which does not take 

viewer distance into account. Basing display content on pixel number or screen proportions is 

problematic because the resulting physical stimulus size will likely be different for each 

participant. BubbleView provides the visual angle equivalents of their pixel values, but these 

visual angle values are based on the eye tracking condition their comparison data was collected 
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in—BubbleView itself was tested using downsized videos with Internet participants using 

unmeasured screen sizes and watching from unmeasured distances to the screen (Kim et al., 

2017). This paradigm may highlight the utility of using visual angle in setting display sizes for 

online participants in different viewing conditions.  

After watching two practice videos, participants viewed all 27 test videos and 

experienced each of the nine blur level and window size combinations three times. The 

conditions each participant experienced were randomly selected from a data source with 

conditions block randomized such that each video was experienced in each viewing condition an 

equal number of times by the end of the study. With this counterbalancing, each video was 

experienced with different window sizes and blur levels by different participants. The videos, 

along with the existing eye tracking data from 42 to 220 participants per video, are from the 

Dynamic Images and Eye Movements (DIEM) dataset (Mital et al., 2011), a dataset popular for 

its use as ground truth in testing saliency algorithms for videos (Dorr et al., 2012; Gorji & Clark, 

2018; Tangemann et al., 2020; Wang et al., 2021). All available DIEM eye tracking data for each 

video was retained to provide the most informed baseline of eye movements. Unequal DIEM 

sample sizes were accounted for in creating the baselines in our analyses such that videos with 

more participant data did not influence the baseline means more than videos with less participant 

data (see Results below).  

Mital et al. (2011) originally used 26 videos, so I included one more video from the 

DIEM dataset to reach 27 total test videos (to fit the 3 × 3 design). Two other videos were 

included as practice. These videos included a wide range of video stimulus types, including 

documentary footage, advertisements, trailers, and time lapse footage. All videos were presented 

at 30 frames per second, at a resolution equal in visual angle to the original video pixel 
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resolutions (ranging from 704 to 1280 pixels in width, and from 480 to 720 pixels in height) 

presented in the original in-lab viewing conditions (21’’ monitor with desktop resolution of 1280 

× 960, and a viewing distance of 90cm). Videos were compressed to 25% of their original 

bitrates—a percentage of compression found for these videos that lowers video file size (and 

subsequently pre-experiment load time) without noticeably hindering the visual video quality. 

The details of all videos used are available in Table 2.  
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Table 2 

Video Stimuli Used From the DIEM Dataset 

Video Video type 

Width 

(px) 

Height 

(px) 

Width 

(dva) 

Height 

(dva) 

Duration 

(s) Frames 

1 Advertisement 1024 576 21.3 12.1 41 1216 

2 Advertisement 1024 576 21.3 12.1 40 1200 

3 Advertisement 1280 720 26.7 15.1 72 2164 

4 Advertisement 1272 720 26.5 15.1 30 898 

5 Documentary 1280 720 26.7 15.1 109 3281 

6 Documentary 1280 720 26.7 15.1 99 2968 

7 Documentary 1280 720 26.7 15.1 145 4359 

8 Documentary 1280 720 26.7 15.1 106 3180 

9 Documentary 1280 720 26.7 15.1 87 2602 

10 Documentary 1280 704 26.7 14.8 169 5080 

11 Game trailer 1280 720 26.7 15.1 124 3718 

12 Game trailer 1280 720 26.7 15.1 103 3100 

13 Game trailer 1280 720 26.7 15.1 110 3313 

14 Game trailer 1280 548 26.7 11.5 181 5418 

15 Home movie 960 720 20.0 15.1 55 1660 

16 Movie trailer 1280 690 26.7 14.5 109 3282 

17 Movie trailer 1280 688 26.7 14.5 100 2992 

18 Music video 880 720 18.3 15.1 30 886 

19 Music video 1024 576 21.3 12.1 187 5595 

20 Music video 1280 720 26.7 15.1 43 1280 

21 News 768 576 16.0 12.1 102 3071 

22 News 768 576 16.0 12.1 67 1998 

23 News 1080 600 22.5 12.6 86 2571 

24 News 960 720 20.0 15.1 209 6275 

25 News 768 576 16.0 12.1 166 4978 

26 Time-lapse 1280 720 26.7 15.1 47 1417 

27 Home movie 960 720 20.0 15.1 39 1169 

28  Documentary 1276 720 26.6 15.1 144 4319 

29 News 1280 720 26.7 15.1 80 2409 

Note. Video size is reported in pixels and degrees of visual angle (dva) according  

to the screen size and distance reported in Mital et al., 2011. Videos 28 and 29  

were used as practice videos. The names of all videos as they are listed in the  

DIEM dataset are featured in Appendix E. 
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 Procedure 

A total of 54 participants were recruited through Amazon’s Mechanical Turk platform 

using Cloud Research’s MTurk Toolkit (for better participant pre-screening options to allow for 

higher quality data collection; see Eyal, et al., 2021). I chose this sample size to be evenly 

divisible by nine, so that each blur and window size ordering in the 3 × 3 factorial design was 

experienced by six participants per video. Similar within-subjects designs are adequately 

powered by 50-60 participants. Each participant was compensated $15 for the experiment which 

lasted roughly an hour. This study had multiple steps as illustrated in Figure 2. Each of these 

steps is described in detail below. 

 

Figure 2  

Procedural Steps Encountered by All Participants in This Study 

 

 

Participants were first given a link to a Qualtrics page that included the informed consent 

for the study, a description of the study, demographic questions (age and sex), and a place to 

report their MTurk ID. Participants were then asked if they had a card the size of a credit card 

and a tape measure to use in the screen size estimation (explained in more detail below), and 

measuring their viewing distance. Once participants verified they had both items ready, they 

were given a link to the PsychoPy experiment on Pavlovia and informed that they should not exit 
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the fullscreen window once the experiment began (screen size throughout the experiment was 

collected and reviewed to ensure participants adhered to these instructions—see Results below.).  

After all videos had loaded into the browser cache and participants had entered their 

MTurk ID on the experiment page, the system estimated the number of pixels per degree of 

visual angle for the participant’s viewing setup. Using Morys-Carter’s ScreenScale code on 

Pavlovia (2021), participants were asked to place a credit card (or card of similar size) against 

their screen and rescale an on-screen rectangle until it matched the size of the physical card (see 

Figure 3). The number of pixels equal to one centimeter was calculated for the participant’s 

display.  

 

Figure 3  

Card-Based Screen Scale Method 

 

  

Calculating the visual angle of content on the screen also required knowing the 

participants’ distance from the screen. Participants were given instructions regarding screen 
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placement to ensure that their screen was facing them directly and that the top half of their screen 

lined up with their eyes. The “top half” was given as an instruction for participants so the screen 

height would be comfortable for laptop users who would be propping up their devices such that 

they would not need to keep their arms raised as high to use their trackpads. This “top half” 

instruction also ensured that participants would still be facing the screen directly, even if they 

eventually slouched over the course of the hour-long study. See Figure 4 for the instructions as 

they were presented to participants. 

 

Figure 4 

Screen Height Instructions That Were Presented to Participants 

 

  

 Participants were then instructed to sit at an arm’s length from the screen. An arm’s 

length is a comfortable viewing distance that did not result in participants sitting too close to 

their computers and that was easy to describe without instructing participants to match their 

viewing distance to exact inch or centimeter values. These instructions are shown in Figure 5. 
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Figure 5  

Screen Distance Instructions That Were Presented to Participants 

 

  

After participants established their viewing height and distance, they were instructed to 

use a tape measure to measure the distance from their eyes to the screen. Participants were 

presented with an instructional video detailing how to correctly make this measurement. A still 

of this video is presented in Figure 6. Participants were asked to input their viewing distance in 

inches or centimeters, and they were then presented with a screen asking them to confirm that 

their measurement was correct. A broad interpretation of arm length range was used to determine 

if participants followed instructions and sat an arm’s length away from the screen. Participants 

were removed for reporting distances shorter than 38 cm (15 inches), and distances longer than 

101 cm (40 inches).  
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Figure 6 

Screen Distance Measurement Instructions That Were Presented to Participants 

 

  

 Participants’ viewing distances were converted to centimeters (if they were not already 

entered in centimeters) and then used with their unique pixel-to-centimeter ratio (calculated in 

the card scaling task) to calculate the pixels necessary to display content at specific visual angle 

sizes throughout the experiment. For this calculation I used the following formula: 

𝑃𝑖𝑥𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑡𝑎𝑛 ((
𝜋

180
) × (

𝑉𝐴

2
)) × 2 × 𝑑𝑐𝑚 × 𝑤𝑠𝑐𝑟𝑒𝑒𝑛 (𝑝𝑥) / 𝑤𝑠𝑐𝑟𝑒𝑒𝑛 (𝑐𝑚) (2) 

where VA is the desired visual angle, d is the measured distance from the screen, and w is equal 

to the width of the screen (in pixels and centimeters in the ratio above). All videos were 

presented at the same size in degrees of visual angle as they were originally presented in the 

DIEM study (Mital et al., 2011; see Table 2). 

After the participants’ pixel-to-centimeter ratio and distance from the screen were 

collected, participants were asked if they were using a computer trackpad or mouse. Next, 

participants were presented with a mock eye-tracking calibration screen with instructions to click 



28 

on nine fixation crosses as they appeared in a mouse contingent blurred display (the “click 

location test” in Figure 2). This mock calibration screen served as the first introduction to the 

mouse-contingent display method, and the clicked locations were used as a check to verify active 

participation (participants would be removed if they did not follow instructions and move their 

mouse to different cued regions of the screen). The screen advanced when the mouse was clicked 

but only clicks reasonably near the center of the fixation crosses (within the 45 × 45 px area 

occupied by the cross shape when coordinates were transformed back to the 1024 × 768 size of 

the original image), signified an attentive participant whose display truly matched the pixel size 

identified by PsychoJS (PsychoPy’s JavaScript library) win.size function. This step ensured that 

the dimension of the blur window matched the dimensions recorded by the screen.  

Participants watched two practice videos (videos 28 and 29 in Table 2) to familiarize 

themselves with the mouse-contingent display process. After completing two practice videos, 

participants watched the 27 trial videos in a randomized blur level and window size condition 

(with no condition being used more than three times per participant). Each video was preceded 

by a clickable cross shape in the center of the screen that functioned the same as the fixation dot 

preceding the videos in the DIEM eye movement data—this clickable cross regularized the 

starting location between participants. After each video, the participant was asked how much 

they liked the video on a scale of 1 (did not like) to 4 (liked a lot), similar to the procedure in 

Mital et al. (2011), to add interactivity and additional motivation for attending to the videos. 

After participants finished watching all videos, they were directed to a Qualtrics survey 

where they were asked questions about their computer usage and computer setup. These 

questions were used to describe the nature of the sample. Participants were asked how much 

experience they have with computer-based video games on a scale of 0 (no experience) to 5 (a 
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lot of experience), whether they were using a laptop or a desktop, whether their computer was 

connected to multiple monitors, their operating system, and their browser. Participants were 

asked if they were wearing bifocals, and they were asked for their height in feet and inches (used 

to estimate what a reasonable range was for the arm’s length viewing distances). Participants 

were also directed to find their mouse speed and screen refresh rate in their system settings and 

report these values. Finally, participants were asked if they encountered any issues, if they were 

confused by anything in the study, and if they had any feedback to provide about their 

experience. They were then given a code to redeem their $15 MTurk payment. 

 Refresh Rate Measurement 

 After the conclusion of the study, I created a second experimental program to test the 

refresh rate of the MCBRD display. Using the existing MCBRD paradigm, I created a program 

with one looping video presented with a mouse-contingent window. The visual angle calculation 

procedures were skipped for this testing program, and instead blur sigmas and window radii of 

50 px each were implemented for simplicity when testing refresh rates in different browsers and 

on different computers (this procedure required frequently exiting and restarting the program in 

different settings). Although participants in this study experienced blur intensities and window 

sizes that depended on their screen’s size in degrees of visual angle, these 50 px testing values 

appeared to be a high amount of blur and a small window size. These values were chosen to test 

a higher amount of blur, in case it became more computationally intensive, to ensure the refresh 

rate measurements were conservative. A 500 × 500 px black square was overlaid on top of a 500 

× 500 px white square in the top left corner of the screen. With each detected mouse movement, 

the transparency of the black square would shift from 1 (fully opaque) to 0 (fully translucent, 

with the white square then showing underneath). A still from this program is featured in 
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Appendix C. I placed a photodiode (interfacing with a Chronos response box) on this square and 

affixed it with elastic. When I moved the mouse continuously, the box would flicker between 

black and white. This flicker rate would thus be equal to the rate at which the blurred screen 

presentation updated. I measured the refresh rate for three different computers, and in three 

browsers per computer. Different mouse types and screen resolutions were also tested on one 

computer. The details of these refresh rate measurements are available in the Appendix. 
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Chapter 3 - Results 

 Sample Demographics 

This study originally recruited 66 participants, however four were excluded from the 

analyses because they quit the experiment after the calibration routine (not providing any mouse 

movement data) and eight more were excluded for entering implausible viewing distances (see 

exclusion criterion in the Methods section). No participants were removed for exiting out of the 

full screen experiment or for not following instructions in the click location test. Subjects were 

recruited until a final sample size of 54 was reached (using all datasets in the block-randomized 3 

× 3 factorial design). 

Of the participants that completed the study and had input distance measures that 

plausibly fit the instruction of sitting roughly one arm’s length away from the screen, some 

participants had their data for select videos removed for potential lag issues. I defined 

unacceptable lag as total time spent in the video PsychoPy routine lasting longer than 2 seconds 

past the duration of the video (allowing the potential for brief data transfer time at the end). 

Participants with potential lagged videos had their data for the lagged videos removed in the 

analyses. One participant had their data for three videos removed. Two participants had their data 

for two videos removed. Two participants had their data for one video removed. 

Within the final sample, 21 participants were female and 33 were male with a mean age 

of 41 (SD = 12). The computer-related information for the 54 final participants is included in 

Table 3. For the responses on a continuous scale, means and standard deviations are included in 

Table 4. There are two things to note in these results. First, other than a similar number of 

participants using laptops and desktops, the responses were highly skewed towards a common 

setup—most participants used the Chrome browser on a Windows computer, used a computer 
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mouse opposed to a trackpad, and did not wear bifocals. There were also some unexpected 

options reported (like the Opera browser, or a participant reporting using a Trackball). The data 

from these participants did not appear different from the others and were kept in the final 

analyses. Future work can use these variables as predictors to determine any potential impact of 

different technological conditions, but sample sizes were too small for such an analysis in this 

study. Future studies could experimentally manipulate these conditions (other than bifocal usage) 

to directly examine the impact of these factors on the MCBRD output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Categorical Computer and User Information 

Measurement  N 

Computer Type   

 Desktop 28 

 Laptop 26 

OS   

 Windows 47 

 Mac OS 4 

 Linux 3 

Browser   

 Chrome 44 

 Edge 3 

 Firefox 6 

 Opera 1 

Bifocals   

 No 51 

 Yes 3 

Mouse Type   

 Trackpad 7 

 Mouse 46 

 Trackball 1 
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Data Pre-Processing 

 The initial mouse cursor position results in x-y coordinates are in terms of the 

participant’s computer screen size. Additionally, the mouse position is recorded at 60 Hz, but the 

position is only recorded/updated when the mouse moves. Mouse positions when the mouse does 

not move therefore require interpolation. Initial interpolation extends the data to a sample every 

millisecond—this interpolation can then be downsampled to 30 Hz to match the downsampling 

used in the DIEM dataset, and the frame rate of the DIEM videos. The raw x-y coordinates of the 

30 Hz samples were then transformed in terms of each participants’ unique video size using the 

following equations where 𝑤 is width in pixels, and ℎ is height in pixels (for both the 

participant’s screen and the video size, see below): 

𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  =  𝑥 – (
𝑤𝑠𝑐𝑟𝑒𝑒𝑛

2
)  + (

𝑤𝑣𝑖𝑑𝑒𝑜

2
)    (3) 

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  =  𝑦 – (
ℎ𝑠𝑐𝑟𝑒𝑒𝑛

2
) + (

ℎ𝑣𝑖𝑑𝑒𝑜

2
)    (4) 

 

   
 

Table 4  

Descriptive Statistics for Continuous Computer and User Information 

Measurement      M    SD Range 

Screen Refresh Rate (Hz) 66.5 22.7 40–144 

Mouse Cursor Speed Percent (Windows) 51.5 14.7 5–100 

Mouse Cursor Speed Percent (Mac) 52.5 25.0 40–90 

Gaming Experience (0 to 5 scale) 3.4 1.4 1–5 

Screen Width (pixels) 1755.2     500.9 1080–3440 

Screen Height (pixels) 985.9 210.9 576–1728 

Screen Width (cm) 43.9 12.1 25.3–92.0 

Screen Height (cm) 24.9 7.0 14.4–51.1 

Distance from screen (cm) 56.7 9.2 38.1–78.7 
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 After participants’ x-y position data are transformed into coordinates respective to their 

individual video sizes, these coordinates are taken as a proportion of the participants’ video size 

in width and height respectively: 

     (
𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

𝑤𝑣𝑖𝑑𝑒𝑜
) , (

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

ℎ𝑣𝑖𝑑𝑒𝑜
)           (5) 

These values are then multiplied by the original display size of the video in pixels: 

     ((
𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

𝑤𝑣𝑖𝑑𝑒𝑜
) ∗  𝑤𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) , ((

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑

ℎ𝑣𝑖𝑑𝑒𝑜
) ∗  ℎ𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)                         (6) 

These normalized x-y values allow the data to be compared among all mouse-contingent bi-

resolution display (MCBRD) participants and compared with the DIEM eye tracking data for 

each video. 

DIEM Baselines 

For the following analyses, direct comparisons were only made between MCBRD 

conditions in the 3 × 3 design. The eye tracking data, collected from an entirely different sample, 

only serves as a baseline value that can be used to interpret the MCBRD results. DIEM mean 

baselines were gathered by running null models for each analysis on the DIEM data with no 

fixed effects and only random effects of video intercept and participant intercept. This method 

allowed for means (e.g., distance traveled per frame) to be estimated while controlling for 

different video lengths and different DIEM sample sizes per video. 

The following results will be interpreted in two ways. First, if a MCBRD condition is 

deemed to create behavior significantly closer to the DIEM baseline than other conditions in 

these analyses, that condition will be deemed to generate the closest results possible to eye 

movements. However, this significance is qualified by the distance to the DIEM baseline. If a 

setting condition results in significantly closer values to the DIEM baseline than other MCBRD 
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conditions, but the DIEM baseline is still farther away from all MCBRD values, the significant 

difference between MCBRD conditions may not result in an important difference. These results 

are presented such that researchers can use the settings that best fit their goals, and the sizes of 

these differences may have different interpretations for different researchers. Here I suggest the 

following: If a difference between MCBRD conditions is smaller than the difference between the 

lower and upper 95% confidence intervals for the DIEM baseline, the difference, though 

potentially significant, may not be meaningful (the difference would be similar to the natural 

differences seen in participants viewing videos with an eye tracker). Furthermore, for the Area of 

Interest analyses (detailed below), differences between MCBRD conditions are meaningful if the 

MCBRD AOI results on average are closer to the DIEM baseline than they are to chance (the 

average likelihood of viewing an AOI on any given frame). For the Normalized Scanpath 

Saliency analyses, if a MCBRD setting results in an NSS z-score greater than zero on average, 

that setting has gaze similarity that is greater than average to the DIEM ground truth. Differences 

between MCBRD settings with results above this zero value are considered to be meaningful. 

For the distance per frame analysis, this interpretation is more subjective and depends on the 

intended use case of the MCBRD paradigm. Here, I suggest that values closer to the DIEM 

baseline than half of the baseline are meaningful to interpret. Whether the following results meet 

these criteria will be discussed for each analysis. 

Finally, the goal is to find settings that result in mouse movements closest to eye 

movements. This mouse-contingent display paradigm can of course serve as a unique measure of 

attentional selection interpreted aside from eye movements. If a researcher prefers to use this 

paradigm without consideration of the comparison to eye movements, only the differences 
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between the 3 × 3 MCBRD settings in the Distance and AOI conditions are meaningful (the NSS 

analyses are based on comparisons to the DIEM ground truth). 

Distance per Frame Analyses 

 Gamma Regression 

Distance traveled between subsequent x-y position samples was calculated in Euclidean 

distance: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2   (7) 

After I calculated the Euclidean distance between each sample, I converted this distance back to 

visual angle using the pixels-to-visual-angle ratio obtained from the original DIEM data video 

width in pixels and visual angle: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑑𝑣𝑎 =  (𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑥 ∗  (
𝑤𝑑𝑣𝑎

𝑤𝑝𝑥
))   (8) 

 Although measures of distance, velocity, and acceleration (the variance of which is 

addressed in these analyses through the measure of distance covered over each 30 Hz video 

frame; velocity and acceleration are derivations of this measure) are most frequently used in 

identifying saccade, fixation, and smooth pursuit events (Holmqvist & Andersson, 2017), the 

threshold values for determining these events are only established for eye tracking data. Future 

work will determine what these thresholds may be for mouse tracking data, and the process of 

determining thresholds will be elaborated upon in the Discussion. For the analyses of this study, 

I will only be comparing distance per frame as values with no defined event titles. 

I conducted all analyses in R (version 4.2.1) using the lme4 library (Bates et al., 2015), and 

using the emmeans library (Lenth, 2019) to calculate the estimated marginal means for each 

model and to conduct contrast tests. The Euclidean distance data showed a heavy right skew (see 

Figures 7 and 9). For this reason, the first analysis on the distance data was a multilevel gamma 



37 

regression (with a log link function). I ran this multilevel gamma regression with blur sigma 

(continuous predictor, centered by subtracting the mean of 0.3), window radius (continuous 

predictor, centered by subtracting the mean of 3), and their interaction predicting the Euclidean 

distance traveled every three frames (every tenth of a second). For all distance per frame 

analyses I aggregated the data by every three frames. This aggregation was necessary to reduce 

the significant runtime of subsequent Bayesian analyses due to their computational complexity 

(detailed below). The model results were back-transformed to the original data scale for Figure 8. 

All distance values of zero were transformed into half of the lowest non-zero distance value for 

the gamma regression. Gamma regressions cannot model 0 values, but it was important to retain 

all distance data provided by the participants. Random slope and intercept effects for the 

variables of video and participant were included in these analyses to allow for variability in the 

average distance measures and unique slopes across each video and participant (i.e., participants 

may show different sensitivity to the blur and window manipulations, and the movements 

recorded may differ uniquely depending on which video is presented). Multiple random effect 

structures were tested, and the best fitting model was found to be the one that included random 

slope effects of blur, window, and their interaction for videos and participants, and intercept 

effects for videos and participants. Model comparison is detailed more in Table 5. 
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Figure 7 

Raw Distributions of MCBRD and DIEM Euclidean Distance Per Frame  

 

Note. MCBRD (left, purple) and DIEM (right, teal) Euclidean distance measured in degrees of 

visual angle (dva). These values are before the aggregation by three that was used for analyses. 

These distributions are heavily right skewed (zoomed-in versions of these figures are shown in 

Figure 9) thus the initial choice to analyze the data with a multilevel gamma regression. 

 

Table 5 

Model Comparisons for Gamma Regressions Predicting Distance 

Model AIC BIC 

1. Intercept effect, participant: (1|participant) -359,385 -359,312 

2. Intercept effect, participant and video: (1|participant) + (1|video) -390,748 -390,663 

3. Blur and window slope and intercept effect, participant and video:  

    (blur + window | participant) + (blur + window | video) -397,942 -397,735 

4. Blur, window, and interaction slope and intercept effect of      

    participant and video:    

    (blur * window | participant) + (blur * window | video) 

-400,778 -400,475 

Note. Models only differed in their random effects. The fixed effects of blur condition, window 

condition, and their interaction were kept the same for all models. The R syntax for each random 

effect structure is included. With the lowest AIC and BIC values Model 4 was chosen as the best 

fit. 
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The parameter estimates for the best fitting model are featured in Table 6. This model 

found a significant negative effect of window radius predicting distance traveled every three 

frames (B = -0.07, t = -4.34, p < .001) such that, as window radius increased, the predicted 

distance traveled decreased. The effect of blur approached significance (B = 0.16, t = 1.92, p = 

.054) suggesting that blur could have a positive effect with higher levels of blur resulting in more 

distance traveled on average. The estimated marginal means of this model are plotted in Figure 8 

along with the DIEM baseline mean and standard error. 

 

Table 6 

Parameter Estimates for Gamma Regression Predicting Distance 

   B         SE          t          p 

Intercept -0.66 0.07 -9.51 < .001 

Blur 0.16 0.08 1.92 .054  

Window -0.07 0.02 -4.34 <.001 

Blur * Window -0.07 0.07 -1.03 .303 

Note. Multilevel gamma regression with blur sigma, window radius, and their interaction 

predicting the Euclidean distance traveled every three frames. This model included random 

intercept effects of video and participant, and random slope effects of blur, window, and their 

interaction for video and participant. 
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Figure 8  

Estimated Marginal Means From Gamma Regression Predicting Distance

 

Note. Estimated marginal means from the multilevel gamma regression predicting distance (in 

dva) per three frames (back transformed from the original log scale of the model and back 

transformed to match the distance-per-frame scale the distance values were originally calculated 

on). Error bars are equal to 1 SE. The DIEM mean (0.34) is featured as a solid teal line with an 

error ribbon representing 1 SE (0.01). For information on how this baseline was generated see 

DIEM Baselines above. 
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Tukey’s post-hoc contrast tests were run to investigate the differences between individual 

window and blur settings. These contrasts showed no significant differences between the 

outcome of blur levels at the small (1.5 dva), medium (3.0 dva), or large (4.5 dva) window radii. 

Contrast tests did find, however, that the outcomes of window radii did significantly differ from 

each other at each blur level. Overall, the smallest window size of 1.5 dva resulted in the most 

distance traveled. Despite these significant differences, all MCBRD conditions resulted in 

distance traveled per frame that was less than 75% that of the DIEM eye tracking data (less than 

0.26 dva covered per frame). As detailed in the DIEM Baselines section above, this group 

distance means the MCBRD distances traveled per frame are shorter than the eye tracking 

distances on average in a way that undermines the importance of any value being significantly 

different and closer to the DIEM baseline (this determination is subjective, with the rationale that 

the MCBRD results are closer to half of the DIEM results). These values may still be used to 

influence MCBRD settings at a user’s discretion, but the MCBRD paradigm is not recommended 

for any research that requires the rapid speed of eye movements (e.g., replicating saccade 

speed/distance effects or showing briefly-flashed images in a Rapid Serial Visual Presentation 

paradigm). 

 Bayesian Left-Censored Regression: 

The distance-per-frame values from the MCBRD paradigm differed from the DIEM eye 

tracking data in one particularly interesting way. The MCBRD resulted in many more zero-

distance frames than eye movements. This prevalence of zero-distance frames in mouse 

movements and not eye movements makes sense given the physical construction of the eye. 

Even when making a fixation, the eye moves slightly with microsaccades and drifting (Engbert 

& Kliegl, 2004). Mouse movements do not have this miniscule jitter and drift. Pauses in mouse 
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motion result in pure zero values for distance covered, and that results in different distributions 

of the raw distance data between mouse movements and eye movements (see Figure 9) 

 

Figure 9 

Zoomed-in Raw Distributions of MCBRD and DIEM Euclidean Distance per Frame 

 

Note. Raw distributions of MCBRD (left, purple) and DIEM (right, teal) Euclidean distance per 

frame in degrees of visual angle (dva). These values are before the aggregation by three that was 

used for analyses. The MCBRD data had many zero values, and the DIEM data had a smoother 

distribution over small non-zero dva values. 

 

The zoomed-in distribution of the MCBRD distance data points without zero values is 

shown in Figure 10. To account for this distribution, the distance analyses were also run as a left-

censored regression. A left-censored regression allows a model to be fit that has unique variance 

at and below a censored point. 

As the model would still be run as a gamma regression, the zero values were transformed 

to be equal to half of the smallest non-zero value. I treated this new value as the censor point. I 

used a gamma model because the distribution without the censored values (Figure 10) still 

showed a heavy positive skew. 
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Figure 10 

Zoomed-in Raw Distributions of MCBRD Euclidean Distance Without Zeroes 

 

Note. This figure shows the distribution of the non-zero MCBRD Euclidean distance per frame 

values in degrees of visual angle (dva). 

 

Running a multilevel censored regression in R requires running the analysis as a 

Bayesian model. Thus, I ran a multilevel Bayesian left-censored gamma regression using the 

brms library (Bürkner, 2017) in R. As with the previous multilevel gamma regression, blur sigma 

(continuous predictor, centered by subtracting the mean of 0.3), window radius (continuous 

predictor, centered by subtracting the mean of 3), and their interaction were used as predictors of 

the Euclidean distance traveled every three frames (every tenth of a second). I aggregated the 

distance data to shrink the size of the dataset, to lessen the runtime of the tested Bayesian 

models. The large amount of data and complex random effect structure resulted in extremely 

long model-fitting times (running for two weeks in the longest case, even with multi-chain 

threading afforded by the cmdstanr backend, see 
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https://cran.r-project.org/web/packages/brms/vignettes/brms_threading.html for more 

information on brm threading). The aggregated data was used in the original gamma models for 

consistency with the Bayesian models. 

 Models with different random effect structures were tested similar to the previous gamma 

models. The results of this model comparison are detailed in Table 7. Here, as it was for the 

original gamma models, the best fitting model was found to be the one that included blur, 

window, and their interaction as terms that could vary in slope for individual videos and 

participants. I ran this model with 15,000 total iterations, with 1,500 burn-in iterations.. These 

iterations were run across 4 chains that were each threaded to run 16 computer cores each 

(running on 64 cores total). This Bayesian model included priors for the intercept value that 

followed a student’s t distribution, with 3 degrees of freedom (default), -1 as the mean (a 

conservative prior that suggests an initial negative value for distance traveled per frame), and 4 

as the variance. Both the random effects and regression weights of the model were given priors 

of a student’s t distribution with 3 degrees of freedom, a mean of 0, and a variance of 3. Random 

effect correlations were given prior following a LKJ(2) distribution. 
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Table 7 

WAIC Comparisons for Bayesian Left-Censored Regressions predicting Distance  

Model  WAIC 

1. Intercept effect, participant and video: (1|participant)+(1|video) 1,736,363 

2. Blur and window slope and intercept effect, participant and video:  

    (blur + window | participant) + (blur + window | video) 1,734,864 

3. Blur, window, and interaction slope and intercept effect of  

    participant and video:    

    (blur * window | participant) + (blur * window | video) 

1,734,296 

Note. Models only differed in their random effects. The fixed effects of blur 

condition, window condition, and their interaction were kept the same for all models.  

The R syntax for each random effect structure is included. With the lowest WAIC 

value, Model 3 was chosen as the best fit. 

 

The parameter estimates for this model are shown in Table 8, and the estimated marginal 

means of this model are in Figure 11. The results of this model are similar to those of the original 

gamma regression run on this data. In these results, only the effect of window radius does not 

have 0 within its 95% confidence intervals. This result suggests that it is unlikely that the effect 

of window radius on distance traveled per frame is zero. The similarities between the two models 

run for the distance-per-frame measure are further cemented when comparing Figures 8 and 11. 

. 

Table 8 

Parameter Estimates for Bayesian Left-Censored Regression Predicting Distance 

 B Est.Error l-95% CI U-95% CI Rhat 

Intercept -0.67 0.08 -0.83 -0.51 1.001 

Blur  0.16 0.13 -0.09  0.41 1.000 

Window -0.07 0.02 -0.11 -0.04 1.000 

Blur * Window -0.08 0.11 -0.29  0.14 1.000 

Note. This model included random intercept effects of video and participant, and random slope 

effects of blur, window, and their interaction for video and participant. 
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Figure 11 

Estimated Marginal Means From Bayesian Left-Censored Regression Predicting Distance  

 

Note. Estimated marginal means from the multilevel Bayesian left-censored gamma regression 

predicting distance per three frames (back transformed from the original log scale of the model, 

and back transformed to match the distance-per-frame scale the distance values were originally 

calculated on). Error bars are equal to half of the distance from the mean estimate to the upper 

and lower HPD values reported by the Bayesian model. DIEM mean of 0.34 is featured as a solid 

teal line with an error ribbon representing 1 SE (0.01). For information on how this baseline was 

generated, see DIEM Baselines above. 
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 Similar to the conclusions drawn from the earlier gamma regression these results are 

presented with the disclaimer that the MCBRD distance values are close to half of the distance 

values generated by eye movements. These results can be used to inform how distance and 

velocity may change with different window and blur levels, but these results suggest that no blur 

sigma and window radius will result in mouse movements that move at the speed and frequency 

of eye movements. 

Normalized Scanpath Similarity 

 To analyze the similarity of attentional allocation between MCBRD and DIEM 

participants on the same videos, I used the Normalized Scanpath Saliency (NSS) method of 

comparing gaze heatmaps (maps of the probability of gaze position) calculated for each video 

frame (Bylinskii et al., 2018; Dorr et al., 2010; Le Meur & Baccino, 2013; Loschky et al., 2015; 

Peters et al., 2005). The implementation of this NSS method is similar to that used in Hutson et 

al., 2017. I used the DIEM eye tracking data, already downsampled to 30 Hz, to create the 

probability map of the reference condition. I placed a circular multivariate Gaussian distribution 

with a sigma (i.e., standard deviation) of 2 degrees (rough size of the fovea) around each gaze 

location and averaged over a temporal sigma of 280 ms (a moving window of time 

approximately the length of an average eye fixation). I summed and normalized the Gaussians 

using the mean and standard deviation of all DIEM participant values except one—this process 

was done in a leave-one-out procedure repeatedly for each DIEM participant so that each 

participant’s gaze locations could be compared to the group without them in it. In these 

comparisons the z-score of similarity is equal to a participant’s gaze location for one frame 

minus the mean from the summed Gaussians for that frame divided by the standard deviation of 
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that mean value. When the MCBRD values were compared to the DIEM probability map, the 

leave-one-out procedure was skipped. 

 The resulting output for each participant is a set of z-scores for each frame that represent 

their similarity to the Gaussian-smoothed probability map of the DIEM participants. Positive z-

scores indicate higher gaze similarity than the mean, a z-score of zero represents an average 

similarity, and a negative z-score represents less similarity than the mean. These z-scores 

(comparing all MCBRD results to the DIEM probability map, and all DIEM results to the DIEM 

probability map using a leave-one-out procedure) were then used as the outcome variable for 

further analyses. For visualization of this measure the mean similarity results by frame for each 

group compared to the DIEM ground truth probability map for Video 1 are illustrated in Figure 

12. The NSS z-score by frame figures for all other videos are featured in Appendix B. 
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Figure 12 

Gaze Similarity of MCBRD and DIEM Participants for Video One 

 

Note. Mean z-score of gaze similarity of MCBRD participants (in purple) and DIEM participants 

(in teal) compared to the DIEM reference gaze probability map for Video 1. DIEM participants 

were compared to a probability map made from all DIEM data but theirs in a leave-one-out 

method. A positive z-score represents greater similarity than average, a z-score of zero (indicated 

by a red dotted line) represents average similarity, and a negative z-score represents lower 

similarity than average. For NSS z-score by frame figures for all other videos see Appendix B. 

The videos for MCBRD participants were entirely blurred at the beginning, to prompt users to 

make the first mouse movement. Data recording for MCBRD participants began with the first 

mouse movement and was entered as NA values before that point. This resulted in lower NSS z-

scores for MCBRD participants at the very beginning of each video. 

 

 The distributions of these z-scores are shown in Figure 13. Due to the heavy positive 

skew and the presence of negative values ending at -0.97, I transformed this data with a log(x + 
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1) transformation. The transformed distributions are shown in Figure 14. These transformed z-

scores were used as the outcome variable in a multilevel linear model with blur sigma 

(continuous predictor, centered by subtracting the mean of 0.3), window radius (continuous 

predictor, centered by subtracting the mean of 3), and their interaction as predictors. The model 

results were back-transformed for the estimated marginal means plot in Figure 15. Multiple 

random effect structures were tested, and the best fitting model included random slope effects of 

blur, window, and their interaction for videos and participants, and intercept effects for videos 

and participants. Model comparison is featured in Table 9. 

 

Figure 13 

Raw Distributions of MCBRD and DIEM NSS Z-Scores 

 

Note. Raw distributions of MCBRD (left, purple) and DIEM (right, teal) NSS z-scores. These 

distributions are heavily right skewed and were transformed by log(x + 1) before being used in a 

multilevel linear regression. 
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Figure 14 

Distributions of MCBRD and DIEM NSS Z-Scores After Log(x + 1) Transformation 

 

Note. Distributions of MCBRD (left, purple) and DIEM (right, teal) NSS z-scores after log(x + 

1) transformation. A vertical red line is included at x = 0 for comparison between the two 

distributions. 
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Table 9 

Model Comparisons for Linear Regressions Predicting Gaze Similarity  

Model AIC BIC 

1. Intercept effect, participant: (1|participant) 11,335,582 11,335,662 

2. Intercept effect, participant and video: (1|participant)+(1|video) 10,981,181 10,981,274 

3. Blur and window slope and intercept effect, participant and video:  

    (blur + window | participant) + (blur + window | video) 10,919,190 10,919,416 

4. Blur, window, and interaction slope and intercept effect for    

    participant and video:    

    (blur * window | participant) + (blur * window | video) 10,908,519 10,908,851 

Note. Model comparisons for multilevel linear regressions predicting log(NSS z-score + 1). 

Models only differed in their random effects. The fixed effects of blur condition, window 

condition, and their interaction were kept the same for all models. The R syntax for each random 

effect structure is included. With the lowest AIC and BIC values Model 4 was chosen as the best 

fit. 

 

The best fitting model did encounter convergence errors but the model parameters were 

found to be similar across different lme4 optimizers (including the default nloptwrap optimizer 

and the other six optimizers included in the allfit function in the lme4 library; see the allfit() 

section of the lme4 manual at https://cran.r-project.org/web/packages/lme4/lme4.pdf for more 

information). The lme4 manual suggests that if model parameters are practically equivalent 

between tests with different optimizers, convergence warnings can be considered to be false 

positives. Furthermore, the final optimizer chosen for this model, NLOPT_LN_PRAXIS, 

resulted in the model coming closer to convergence with max|grad| = 0.0028 (the tolerance of 

this model convergence was set to max|grad| = 0.002). Finally, the model fixed effect beta 

weights were similar to those of the other models with less complex random effects structures 
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(models 1, 2, and 3 in Table 9). For these reasons, I am comfortable reporting Model 4 as the 

best fitting model and describing the results below. 

 The parameter estimates for the best fitting model are featured in Table 10. The model 

found significant effects of blur sigma (B = 0.28, t = 3.18, p < .01) and window radius (B = -0.03, 

t = -2.43, p = .02) predicting participants similarity to the DIEM probability map in terms of their 

NSS z-scores (with z-scores log(x+1) transformed). The effect of the blur sigma was positive 

such that as blur sigma values increased, the predicted NSS z-score increased. The effect of 

window size was negative such that as window size increased, the NSS z-score decreased. The 

estimated marginal means of this model are shown in Figure 15, zoomed out to show the DIEM 

baseline, and in Figure 16, zoomed in to show differences between the 3 × 3 MCBRD 

conditions. 

 

Table 10 

Parameter Estimates for Linear Regression Predicting Gaze Similarity 

   B SE df   t  p 

Intercept  -0.85 0.06 36.72 -13.82 <.001 

Blur  0.28 0.09 68.52   3.18 .002 

Window -0.03 0.01 39.85 -2.43 .020 

Blur * Window  0.07 0.06 46.38       1.18 .245 

Note. Parameter estimates for the multilevel linear regression predicting log(NSS z-score + 1). 

This model included random intercept effects of video and participant, and random slope effects 

of blur, window, and their interaction for video and participant. Estimates are given on the scale 

of log(x+1). 
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Figure 15 

Estimated Marginal Means From Linear Regression Predicting Gaze Similarity 

 

Note. Estimated marginal means from the multilevel linear regression predicting log(NSS z-score 

+ 1) . Values are back-transformed for this figure. Error bars are equal to 1 SE. DIEM mean 

(0.66) is featured as a solid teal line with an error ribbon representing 1 SE (0.02). For 

information on how this baseline was generated see DIEM Baselines above. 
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Figure 16 

Zoomed-In Estimated Marginal Means From Linear Regression Predicting Gaze Similarity 

 

Note. Estimated marginal means from the multilevel linear regression predicting log(NSS z-score 

+ 1). Values are back-transformed for this figure. Error bars are equal to 1 SE. 

 

Tukey’s post-hoc contrast tests were run to determine differences between NSS z-scores 

under different blur sigma and window radius conditions. These contrasts showed a significant 

effect of blur when the window radius was 3 dva (B between conditions = -0.0418, z = -3.180, p 

< .01) or 4.5 dva (B = -0.0578, z = -3.739, p < .001). Contrasts also found a significant effect of 

window radii, but only at blur sigma values of 0.15 dva (B = 0.065, z = 2.44, p = .04) or 0.30 dva 

(B = 0.049, z = 2.43, p < .001). However, an important finding here is that all MCBRD setting 
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conditions resulted in negative NSS z-scores. These negative z-scores mean that the MCBRD x-y 

coordinates on each frame were more different than the DIEM ground truth probability map than 

average, when compared to how the DIEM eye tracking participants’ data correlated to the 

ground truth map. As described in the DIEM Baselines section above, this difference diminishes 

the importance of significantly different values in the MCBRD 3 × 3 conditions. On average, 

MCBRD movements differ from eye movements. I believe this movement difference to be due 

to the inherent differences between hand movements and eye movements, discussed earlier when 

describing the similar influence of this factor on the distance per frame measures.  

This difference is easier to grasp when visualizing the scanpaths between a mouse 

tracking participant and an eye tracking participant. Example scanpaths for both are plotted in 

Figure 17. Although this figure only shows data for one participant from each group, it is 

characteristic of the data found for all participants in the two viewing paradigms. Within Figure 

17, despite the two participants attending to similar regions of the screen at similar times, their 

motion patterns differ. Specifically, the mouse movements are slow enough that points along the 

motion paths are captured at the downsampled 30 Hz data rate. The eye movement data, also 

downsampled to 30 Hz, reflects movements fast enough that the motion paths are difficult to 

distinguish in the plotted data points. NSS analyses, comparing data points on a frame-by-frame 

basis, would be sensitive to these motion differences. 
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Figure 17 

Raw Data Points for MCBRD Participant One and DIEM Participant One Viewing Video One  

 
Note. Raw data points for MCBRD Participant 1 (left) and DIEM Participant 1 (right) viewing 

Video 1. The data points are colored with a gradient ranging from yellow to dark purple, with 

yellow points representing the early frames of the video, and dark purple representing the later 

video frames. The slower motion of the mouse movements (left) is perceptible as distinct motion 

paths in the 30 Hz data. 

 

The final analyses will examine whether, despite the differences in types of motions 

made between the hand and the eye, participants viewing videos in both paradigms attended to 

semantically important Areas of Interest at a similar rate. 

Areas of Interest Analyses 

 Dynamic Areas of Interest were created to capture semantically important characters and 

objects in 18 videos. These characters and objects were manually identified in rectangular 

regions and tracked along subsequent frames using the Dynamic Regions Tracker (DRT) 

program (Bonikowski et al., 2021) using the Kernelized Correlation Filters (KCF) object 

tracking method. AOIs were not created for videos without semantically important characters or 
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objects (like Video 26, time-lapse footage of a building being constructed) or videos with too 

many rapid cuts that introduced difficulties with the object tracking software. 

The DRT program produces an output with the x-y coordinates of AOIs across all frames, 

including the top y value and leftmost x value, alongside a height and width measure in pixels. I 

wrote custom code in R to parse through the MCBRD and DIEM x-y coordinate data for each 

frame to determine whether a participant’s coordinates were within an AOI with 1 dva of error (a 

standard amount of error found in eye trackers that is commonly used as an error value in AOI 

analyses, see Holmqvist & Andersson, 2017) on any given frame. AOIs were created with 

rectangle borders close to the edges of important characters or objects to ensure that the 1 dva 

margin of error did not result in too large of AOI regions. A visualization of AOIs created and 

the 1 dva error regions is shown in Figure 18.  

 

Figure 18 

Example AOIs With One Degree of Visual Angle Error Regions Around Each 

 

Note. Example AOIs are shown in red, and error regions of 1 dva are shown in green. 
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I analyzed the total time spent within AOIs throughout video frames that had AOIs 

present. Total time is used as the predicted output in this analysis instead of the common AOI 

analysis of total fixation time because there is currently no distinction made between saccades 

and fixations in mouse movement data (see the Future Analyses section for suggestions on how 

this distinction could be made). With the slower rate that participants moved their mouse-

contingent window compared to eye movements (see Distance per Frame analyses above), visual 

information can also be collected from a moving mouse-contingent window, as opposed to eye 

saccades that prevent the input of visual information through saccadic suppression. For this 

reason, I consider the total time spent in AOIs to be the more appropriate analysis. 

Instead of the common method of comparing AOI results with t tests of the proportion of 

fixations on selected AOIs between conditions (Hutson et al., 2017; Vo et al., 2012 as examples), 

I analyzed this data with a multilevel binomial logistic regression. I formatted the data for each 

participant with each possible AOI frame receiving either a 0 if the participant’s coordinates 

were not within an AOI plus error region in this frame (considered a miss), or a 1 if they were 

(considered a hit). I ran a multilevel binomial logistic regression with blur sigma (continuous 

predictor, centered by subtracting the mean of 0.3), window radius (continuous predictor, 

centered by subtracting the mean of 3), and their interaction predicting the probability of hits on 

each frame. I included random slope effects of blur, window, and their interaction for videos and 

participants, and intercept effects for videos and participants in this analysis. I chose this random 

effect structure from multiple tested models detailed in Table 11. Similar to the reported NSS 

model above, I ran this model with the NLOPT_LN_PRAXIS optimizer and the model 

converged. 
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Table 11 

Model Comparisons for Binomial Logistic Regressions Predicting AOI Hit Probability 

Model AIC BIC 

1. Intercept effect, participant: (1|participant) 1,699,826 1,699,888 

2. Intercept effect, participant and video: (1|participant)+(1|video) 1,606,352 1,606,427 

3. Blur and window slope and intercept effect, participant and video:  

    (blur + window | participant) + (blur + window | video) 1,594,105 1,594,304 

4. Blur, window, and interaction slope and intercept effect for  

    participant and video:    

    (blur * window | participant) + (blur * window | video) 

1,589,159 1,589,457 

Note. Model comparisons for multilevel binomial logistic regressions predicting AOI hits on 

each frame. Models only differed in their random effects. The fixed effects of blur condition, 

window condition, and their interaction were kept the same for all models. The R syntax for each 

random effect structure is included. With the lowest AIC and BIC values Model 4 was chosen as 

the best fit. 

 

 The parameter estimates for the best fitting model are featured in Table 12. This model 

found a significant main effect of blur predicting the likelihood of AOI hits, with higher blur 

sigma values increasing the likelihood of AOI hits (B = 0.60, z = 10.66, p < .001). This model 

also found a significant interaction between blur sigmas and window radii in predicting AOI hits, 

with smaller window sizes predicting more AOI hits for the lowest blur sigma of 0.15 dva, and 

larger window sizes predicting increasingly higher rates of AOI hits for the medium blur sigma 

(0.3 dva) and highest blur sigma (0.45 dva) conditions (B = 0.20, z = 5.52, p < .001). This 

interaction can be visualized with the estimated marginal means plot in Figure 19 alongside the 

DIEM baseline. 
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Table 12 

Parameter Estimates for Binomial Logistic Regression Predicting AOI Hit Probability 

 B SE z p 

Intercept 2.01 0.04 54.64 <.001 

Blur 0.60 0.06 10.66 <.001 

Window 0.01 0.03   0.50    .619 

Blur * Window 0.20 0.04   5.52 <.001 

Note. Parameter estimates for the multilevel binomial logistic regression predicting AOI hit 

probability on individual video frames. This model included random intercept effects of video 

and participant, and random slope effects of blur, window, and their interaction for video and 

participant 
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Figure 19 

Estimated Marginal Means From Binomial Logistic Regression Predicting AOI Hit Probability 

 

Note. Estimated marginal means from the multilevel binomial logistic regression predicting AOI 

hit probability on each frame. Error bars are equal to 1 SE. All values are back transformed from 

the logit scale of the original model. DIEM mean (0.92) is featured as a solid teal line with an 

error ribbon representing 1 SE (0.003). For information on how this baseline was generated, see 

DIEM Baselines above. 

 

 The MCBRD paradigm is comparatively much closer to eye tracking in terms of AOI 

results relative to the previous Distance per Frame and NSS analyses. The high similarity of the 
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MCBRD results to the DIEM baseline is noteworthy when compared to chance. I calculated 

chance as the percentage of pixels in AOI regions (with 1 dva margins of error on all sides) 

divided by the total number of pixels in each frame. The mean chance, averaged over the chance 

values calculated for all videos, was 0.41 (SD = 0.04). For visualization, this chance value is 

shown as the lower y axis limit in Figure 20. 
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Figure 20 

Zoomed-Out EMMs From Binomial Logistic Regression Predicting AOI Hit Probability 

 

Note. Estimated marginal means from the multilevel binomial logistic regression predicting AOI 

hit probability on each frame. The Y axis minimum is the mean probability of AOI hits 

(including 1 degree of error) for any pixel on any frame, averaged over all AOI videos, M = 0.41, 

SE = 0.04. Error bars are equal to 1 SE. All values are back transformed from the logit scale of 

the original model. DIEM mean (0.92) is featured as a solid teal line with an error ribbon 

representing 1 SE (0.003). For information on how this baseline was generated, see DIEM 

Baselines above. 
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These results suggest that MCBRD and DIEM participants are both frequently attending 

to regions of semantic interest on the screen despite the motion differences between hand and 

eye movements. This conclusion is supported by an example heatmap of total x-y samples taken 

from one video in Figure 21, and the heatmaps for the rest of the videos shown in Appendix A. 

 

 

Figure 21 

Heatmaps From MCBRD and DIEM X-Y Coordinate Data From Video One  

 
A.               B. 

Note. A: Heatmap generated from MCBRD x-y coordinate data (normalized to the scale of the 

original DIEM video presentation) from Video 1. B: Heatmap generated from DIEM x-y 

coordinate data from video 1. Heatmaps are created with 12 different levels, with colors closest 

to red representing the highest density of samples in those regions. As shown in the AOI 

analyses, participants viewing videos in MCBRD and eye tracking paradigms attended to similar 

regions of interest. 

 

 Due to this similarity in AOI hits to the DIEM data, the results found for the 3 × 3 

MCBRD conditions are worth special consideration. Because the goal of these comparisons was 
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to identify the conditions that produce results closest to the DIEM baseline, these AOI 

comparisons are more valuable when the DIEM baseline is within reach.  

Tukey’s post-hoc contrast tests showed that the effect of window size was not significant 

at any blur sigma value (at the blur sigma of .15 dva, B between conditions (as an odds ratio) = 

1.03, z = 0.63, p = 0.80; at the blur sigma of .3 dva, B = 0.98, z = -0.50, p = 0.87; at the blur 

sigma of .45 dva, B = 0.94, z = -1.63, p = 0.23). However, the effect of blur sigma was 

significant at any window size. At the window radius of 1.5 dva, B between conditions = 0.96, z 

= -3.66, p < .001. At the 3.0 dva window radius, B = 0.91 , z = -10.66, p < .001. At the 4.5 dva 

window radius, B = 0.87, z = -12.06, p < .001. The results are qualified by the significant 

interaction described above. Furthermore, the SE of all MCBRD estimated marginal means 

(mean SE = 0.005, SD of this mean = 0.001) is larger than the SE of the DIEM baseline (0.003). 

Following these larger SE values, any significant results from this multilevel binomial logistic 

regression are deemed significant with a larger 95% confidence interval (2 * SE from the mean 

in the positive and negative direction) than that of the eye tracking data, so the differences are 

meaningful in that they are greater than the natural differences that would be found in eye 

tracking data. 

These contrast tests found the highest blur sigma of 0.45 dva to produce AOI hit rates 

closest to those of eye movements. For this reason, a blur sigma of 0.45 is the recommended 

setting for MCBRD paradigms used for video stimuli. The difference between window radii was 

not significant at this blur sigma. One could choose to go with a window radius of 4.5 dva, as it 

resulted in the highest estimated marginal mean shown in Figure 19, or a lower window radius 

like 1.5 dva that elicited higher scores for distance traveled per frame (see Distance per Frame 

measures above). The 3.0 dva window radius is a good compromise between the two. However, 



67 

these recommendations are given with the caveat that the differences between AOI hit 

percentages are only as large as 2.7% in the most extreme case. Though the different blur 

settings result in significant differences, some users may find that a 2.7% increase does not 

warrant a hard rule on blur sigma level.  
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Chapter 4 - Discussion 

 This validation study did not definitively find optimal choices for blur sigma and window 

radius settings to use in a mouse-contingent bi-resolution display of video stimuli, but it does 

clarify how this paradigm could be used in the measurement of attention to video stimuli. I ran 

this validation with the goal of obtaining eye-like movements. For some of the observed results, 

reaching eye-like movements is simply unfeasible. In particular, Euclidean distance traveled per 

frame and gaze similarity to eye movements both suffered as a result of the motion differences 

between eye movements and hand movements. Eye tracking results for the 27 videos used here 

showed that participants moved their eyes an average of 0.34 degrees of visual angle (dva) per 

30 Hz frame (SE = 0.01), whereas participants viewing videos through the MCBRD moved their 

high-resolution window about half this distance per frame, with an average of 0.17 dva (SE = 

0.01). Eye tracking participants moved their eyes faster and more often than MCBRD 

participants moved their mice, and this result matches my expectation about the relative speed of 

both motion types.  

My first set of competing hypotheses addressed whether or not eye tracking and MCBRD 

participants would generally attend to the same visual content even if their motion patterns 

differed. The results of this validation study suggest that participants do attend to similar content. 

With Areas of Interest created for different people and objects of semantic importance, I found 

that MCBRD AOI hit percentages (ranging from 87%, SE = 0.6% to 90%, SE = 0.5%) were 

closer on average to the eye movement reference baseline (M = 92%, SE = 0.3%) than they were 

to chance (M = 41%, SD = 4%). Furthermore, increases in blur sigma up to 0.45 dva were found 

to increase the AOI hit percentage (B = 0.6, z = 10.66, p < .001). For this reason, my primary 

recommendation is to use a blur sigma of 0.45 dva when setting up a MCBRD paradigm with 



69 

video. Because window radius was not found to have a significant effect at this blur level, I am 

tentatively recommending the middle value radius of 3.0 dva (for more on this recommendation, 

see the Areas of Interest Analysis section of the Results). 

The second set of competing hypotheses concerned whether or not an optimal blur sigma 

and window radius setting would apply to all videos. Each of the final best-fitting models for the 

analyses run in this study included a random slope and intercept effect of video. These random 

effects accounted for individual variance in videos and how that variance may impact the effects 

of blur sigma, window radius, and their interaction. The effect of blur found in the AOI analysis 

occurs even when the variance from videos is taken into account. Thus, on average, the higher 

blur level of 0.45 dva can be expected to increase the AOI hit rate in a MCBRD paradigm.  

This study did find significant effects of smaller window sizes predicting more distance 

traveled per frame, and of smaller window sizes and higher blur sigmas predicting slightly higher 

gaze similarity to eye tracking data. However, due to the larger distance between MCBRD values 

and the DIEM baseline in these analyses, it may not be fruitful to base MCBRD settings off of 

these significant differences. Even with the best settings found here, the distance and speed of 

mouse movements will not reach that of eye movements, and motion patterns will differ on 

average. I instead suggest a different role that a MCBRD paradigm could play in the 

measurement of attention to video. 

This validation study shows that a Mouse Contingent Bi-Resolution Display can be used 

as a measure of attention to Areas of Interest in videos. I believe this separate measure of 

attention is the optimal role of this paradigm going forward. MCBRD paradigms are not a 

replacement for eye tracking, but they can be useful for determining semantically important 

visual content. These methods can be especially helpful in conditions where eye tracking is not 
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available (due to cost for example), or if the logistics of eye tracking are not optimal (if a 

researcher wants to collect a large sample without running participants one-at-a-time with an eye 

tracker). A researcher may find a mouse-contingent display suits their needs better than webcam-

based eye tracking if they are concerned about eye tracking calibration errors, imprecision in 

measurements, or attrition due to technical issues or privacy concerns. Furthermore, this mouse 

contingent display paradigm is easy to implement into existing online experiment creation 

software and is easier to set up than eye tracking. 

 Limitations 

 One practical limitation of this study is its strict experimental control, which may reduce 

ease of use. Screen size and distance from the screen were measured to create blur levels and 

window radii that were based on degrees of visual angle in the participant’s visual field. 

However, this visual angle calculation was a necessary step in this validation study and will be a 

necessary step in other studies where lab-quality data is desired. Despite this, some users may 

find these steps take away from the ease and speed of tracking mouse movements. To see if there 

is a way to extend the findings of this controlled validation even to people who want a simple 

mouse-contingent paradigm without the dynamic screen scaling measure, I intend to analyze the 

proportion of pixels used in the 0.45 dva blur condition and the 0.30 dva window condition out 

of the total screen size for all participants. If there is a general proportion of screen size that can 

be used instead to approximate these dva blur settings when presented at an average viewing 

distance, it may be valuable to add that as an option for those who would otherwise pick an 

uninformed screen proportion value instead of implementing degree of visual angle 

measurements. 
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 In contrast to this, there were areas of the study where more control could have been 

beneficial. Particularly, the distance from the viewer to the screen was only measured once 

throughout the experiment. Viewers were instructed to stay in the same viewing position for the 

duration of the study, but additional distance measurements could have ensured that participants 

followed this instruction without moving in their seat or slouching to a degree that may have 

impacted the size of the video presentation in their field of view. A follow-up in-lab study could 

determine whether the findings from this project replicate when viewing distance is strictly 

controlled and participants are seated in a head rest. 

 Another limitation of this study is that there were specific analyses that could not validly 

be run but would have been of interest to readers. Within this study, the DIEM eye tracking data 

was only used as a baseline when interpreting the MCBRD 3 × 3 results. Because the DIEM eye 

tracking data was collected from an entirely different sample of participants, at a different 

location and at a different time, these two viewing conditions could not be reasonably compared 

in a statistical analysis. A future study could address this limitation by randomly assigning 

participants to an eye tracking or mouse tracking condition. 

 This study could not analyze the effects of computer setup on mouse movement patterns 

due to the overall sample size and the uneven number of participants responding with different 

viewing conditions (see Table 3). These variables are still important to consider and are worth 

addressing in a follow-up study (see the Future Analyses and Directions section below). 

 Finally, this study did not include a formal survey addressing how participants felt about 

each of the blur levels and window sizes. The ending survey did ask if participants were 

confused by anything in the study and if they had general feedback, but only three participants 

had feedback that mentioned any particular conditions by name. These three participants 
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reported not liking the smallest window (1.5 dva). A follow-up should be conducted with a more 

detailed user experience survey to determine if any of the tested conditions were more pleasant 

to work with.  

 Future Analyses and Directions 

 Future work can help to clarify the best ways to use this paradigm and to analyze the data 

from it. Some researchers may prefer a way to analyze mouse movement results similar to how 

they analyze eye movement results. Eye movements are generally analyzed by making the 

distinctions between saccades, fixations, and smooth pursuit movements. These distinctions are 

generally made in two ways: dispersion-based methods can identify fixations and non-fixations 

by identifying when the distance traveled surpasses a threshold. Velocity-based methods use 

velocity cutoffs to identify saccades and fixations and will sometimes implement acceleration 

thresholds to separate out smooth pursuit movements (Holmqvist & Andersson, 2017). These 

analyses were considered for this project, but I decided that these analyses would be best suited 

for a follow-up study. The threshold values that best separate fixation, saccade, and smooth 

pursuit movements for mouse movement data are unknown. Trial fixation analyses were 

conducted for data visualization purposes, and these analyses showcase the differences in 

movement types between eye and mouse movement data when measured with the same 

threshold. These differences, shown in Appendix D, suggest that it may be worthwhile to 

determine new thresholds to describe the different motions made by mouse movements. For 

these trial analyses I wrote a fixation detection algorithm in R to identify fixations as any time 

period where the participant’s measured x-y coordinates move no more than 1 dva for a 

minimum duration of 100 ms (common thresholds for fixation detection, see Holmqvist & 

Andersson, 2017). Thresholds best suited for mouse movement data could be identified through 
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a cluster analysis, like Latent Class Analysis, using distance traveled per frame as a predictor. If 

clusters form that are qualitatively similar to the definitions of fixations, saccades, and smooth 

pursuit movements, the lower bounds of the distance per frame measure in each cluster can be 

used as a threshold that best identifies these activities in mouse movement data. 

 My future analyses will also include two uses of a video saliency model, DeepGaze MR 

(Tangemann et al., 2020). This model outputs predicted log density values for each x-y 

coordinate for each video frame, indicative of the likelihood of attention being directed to any 

particular content on a video frame. First, this model can be used to calculate the Information 

Gain metric (see Kümmerer et al., 2015) which here can be used to determine how well the 

model predicts the eye and mouse movement coordinates beyond a simple model only predicting 

central bias. I am also conducting an exploratory analysis by gathering the predicted log density 

values corresponding to each DIEM and MCBRD participant’s x-y coordinates on each frame 

and using these predicted values in a larger model to determine the relative salience of each 

group’s attended content over the course of different videos. Both of these methods can be used 

to determine if eye tracking and mouse tracking data from a blurred paradigm correspond to 

salient video content in a similar way. Second, I am using DeepGaze MR to analyze the relative 

salience of content in video frames after they have been filtered with different levels of blur. 

Analyses on these blurred videos can determine potential differences in the salience of the 

blurred periphery that may affect some videos differently depending on the original strength of 

the salient content in these videos. These analyses were originally considered for this validation 

study but have expanded enough that they are now a better fit for their own follow-up study. 

 A follow-up study is also warranted to examine the effect of computer type (laptop vs. 

desktop), browser, screen size, and mouse cursor speed on mouse movement patterns. Data on 
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these factors were collected in this study, but they could only be used for describing the general 

make-up of the study sample due to their relative sample sizes. A future study could 

experimentally manipulate these variables to determine their impact. For factors between 

participants that cannot be experimentally manipulated, like previous computer video game 

experience or wearing bifocals, a larger sample size is needed to increase the number of 

participants that respond from the uncommon categories. Future work will also be done on 

measuring the MCBRD paradigm refresh rate between different computers running different 

browsers and using different screen resolutions. These measures will be used in creating a 

comprehensive guide to inform researchers about what refresh rates they can expect when 

deploying a MCBRD paradigm on different device or browser types. Finally, a study with 

participants using a MCBRD paradigm while their eyes are tracked can be conducted to confirm 

that participants are attending to the high-resolution window instead of the blurred periphery. 

 Closing remarks 

 Through this study I have validated that a Mouse Contingent Bi-Resolution Display can 

be used as a measure of attention to Areas of Interest in videos and is best done so with a blur 

sigma of 0.45 dva, instead of a lower blur sigma of 0.15 dva or 0.30 dva. There are many 

potential use cases for a MCBRD paradigm in research. Because these paradigms are cheaper to 

implement than eye tracking and faster in terms of data collection (with the ability to run 

multiple subjects simultaneously online, instead of one at a time in a lab), mouse-contingent 

displays have the potential to become a huge asset for anyone studying attention to screen-based 

stimuli (e.g., consumer research, visual search research, video game research). With the 

methodology discussed here allowing us to run video stimuli in a mouse-contingent bi-resolution 

display, I similarly hope to extend this asset to the growing field of video-based attention studies.  
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Appendix A - Heatmaps 

This appendix contains Heatmaps generated from MCBRD x-y coordinate data 

(normalized to the scale of the original DIEM video presentation; left side) and from DIEM x-y 

coordinate data (right side) for all videos. Heatmaps are created with 12 different levels, with 

colors closest to red representing the highest density of samples in those regions. Figure axes are 

all scaled to the height and width of each video in pixels. As shown in the AOI analyses, 

participants viewing videos in MCBRD and eye tracking paradigms attended to similar regions 

of interest. 
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Figure 22 

Heatmaps From MCBRD and DIEM Movements for Videos One Through Five 

 

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Figure 23 

Heatmaps From MCBRD and DIEM Movements for Videos Six Through Ten 

  

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Figure 24 

Heatmaps From MCBRD and DIEM Movements for Videos Eleven Through Fifteen  

 

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Figure 25 

Heatmaps From MCBRD and DIEM Movements for Videos Sixteen Through Twenty 

 

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Figure 26 

Heatmaps From MCBRD and DIEM Movements for Videos Twenty-One Through Twenty-Five 

 

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Figure 27 

Heatmaps From MCBRD and DIEM Movements for Videos Twenty-Six Through Twenty-Seven 

 

Note. MCBRD on left, DIEM on right. Heatmaps are created with 12 different levels, with colors 

closest to red representing the highest density of samples in those regions.  
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Appendix B - NSS Z-score by Frame Figures 

This appendix contains figures depicting the mean z-score of gaze similarity of MCBRD 

(purple line in the figures) and DIEM (teal) participants compared to the DIEM reference gaze 

probability map for all videos. DIEM participants were compared to a probability map made 

from all DIEM data but theirs in a leave-one-out method. A positive z-score represents greater 

similarity than average, a z-score of zero represents average similarity, and a negative z-score 

represents lower similarity than average. Note: The videos for MCBRD participants were 

entirely blurred at the beginning, to prompt users to make the first mouse movement. Data 

recording for MCBRD participants began with the first mouse movement and was entered as NA 

values before that point. This resulted in lower NSS z-scores for MCBRD participants at the very 

beginning of each video. 
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Figure 28 

Gaze Similarity of MCBRD and DIEM Participants for Videos One Through Ten 

  

Note. For videos 1-10, mean z-score of gaze similarity of MCBRD participants (in purple) and 

DIEM participants (in teal) compared to the DIEM reference gaze probability map. 
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Figure 29 

Gaze Similarity of MCBRD and DIEM Participants for Videos Eleven Through Twenty 

  

Note. For videos 11-20, mean z-score of gaze similarity of MCBRD participants (in purple) and 

DIEM participants (in teal) compared to the DIEM reference gaze probability map. 
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Figure 30  

Gaze Similarity of MCBRD and DIEM Participants for Videos Twenty-One to Twenty-Seven 

      

Note. For videos 21-27, mean z-score of gaze similarity of MCBRD participants (in purple) and 

DIEM participants (in teal) compared to the DIEM reference gaze probability map.       
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Appendix C - Refresh Rates 

This appendix contains a still image from the refresh rate measurement program, and the 

refresh rate measurement results from all measured conditions. Refresh rates were gathered on 

three different computers and in three browsers per computer. Different mouse types and screen 

resolutions were also tested on one computer. This appendix also contains information about 

each tested computer to inform what refresh rates may be possible on similar devices. Refresh 

rates were all measured with a photodiode through a Chronos response box. Refresh rates were 

measured five times per condition, and the mean and standard deviations of these five 

measurements are featured in the tables below. Baseline refresh rates of all computer screens 

were 60 Hz. Slower refresh rates were found for Firefox across all computers (M = 32.6, SD = 

16.1; see Table 14), for screen resolution above 2560x1600 (without Firefox, M = 31.9 , SD = 

10.3; see Table 13), and in Safari in the one tested Mac computer (M = 11.9 , SD = 1.7; see Table 

14). Average refresh rate across all 3 computers, using a screen resolution of 1440x900 or lower, 

running Chrome and Edge was M = 54.6 , SD = 8.9 (without the lower spec Lenovo computer’s 

lower performance in Edge, M = 58.7, SD = 3.2.) Refresh rates were not changed by using a 

trackpad or mouse, see Table 15. The current recommendations are to run this paradigm in 

Chrome or Edge and at a screen resolution of 1440x900 if a refresh rate near 60 Hz is desired. In 

this study the videos were presented at a rate of 30 Hz, so values lower than 60 Hz are 

acceptable. Future refresh rate measurements will be added to create a comprehensive guide to 

inform researchers about what refresh rates they can expect from their sample. 
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Figure 31  

A Still From the Refresh Rate Measurement Program 

 

Note. The box in the top left corner would flicker between black and white whenever a mouse 

movement was detected and the blurred display updated. A blur sigma and window radius of 

50px each were implemented for simplicity when quickly testing refresh rates in different 

browsers and on different computers. 
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Table 13  

Mean Refresh Rates Across Screen Resolutions and Browsers 

Browser   Resolution (px)  M SD 

Chrome 1440 × 900 60.25 1.00 

Chrome   2560 × 1600 30.49 0.28 

Chrome   3840 × 2160 24.40 0.84 

Edge 1440 × 900 59.99 0.04 

Edge   2560 × 1600 47.45 8.72 

Edge   3840 × 2160 25.19 0.91 

Firefox 1440 × 900 18.95 2.60 

Firefox   2560 × 1600 28.88 0.20 

Firefox   3840 × 2160 13.06 2.79 

Note. Mean refresh rates collected from a Dell XPS laptop (specs in Table 16) across different 

screen resolutions and browsers. Screen resolutions of 1440 × 1900 px, 2560 × 1600 px, and 

3840 × 2160 px were tested in Google Chrome, Microsoft Edge, and Mozilla Firefox browsers. 

Refresh rates were recorded five times per browser and resolution combination. 
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Table 14 

Mean Refresh Rates From Three Computers Across Three Browsers 

Computer Spec Tier OS Browser M SD 

Dell XPS Mid Windows 10 Chrome 60.25 1.00 

Dell XPS Mid Windows 10 Edge 59.99 0.04 

Dell XPS Mid Windows 10 Firefox 18.95 2.60 

Lenovo IdeaPad Low Windows 10 Chrome 54.63 4.58 

Lenovo IdeaPad Low Windows 10 Edge 38.59 5.75 

Lenovo IdeaPad Low Windows 10 Firefox 54.05 4.37 

MacBook Air Mid Mac OS Catalina Chrome 59.76 0.33 

MacBook Air Mid Mac OS Catalina Firefox 24.87 1.72 

MacBook Air Mid Mac OS Catalina Safari 11.91 1.70 

Note. Mean refresh rates collected from three different computers (specs in Table 16), testing 

three browsers each. The two Windows computers were tested in Google Chrome, Microsoft 

Edge, and Mozilla Firefox browsers. The Mac computer was tested in Google Chrome, Mozilla 

Firefox, and Apple Safari browsers. Dell XPS screen resolution was lowered to 1440x900 px to 

be closer to the other screen resolutions. Refresh rates were recorded five times per computer 

combination. 

 

Table 15 

Mean Refresh Rates Across Two Mouse Types, Trackpad and Corded  

Resolution Mouse Type M SD 

3840 × 2160 Trackpad 24.40 0.84 

3840 × 2160 Corded 28.12 1.14 

3840 × 2160 Wireless 26.60 2.20 

1440 × 900 Trackpad 60.25 1.00 

1440 × 900 Corded 60.00 0.75 

1440 × 900 Wireless 59.99 0.83 

Note. Mean refresh rates collected from a Dell XPS laptop (specs in Table 16) running Google 

Chrome, tested using 1440 × 900 px and 3840 × 2160 px screen resolutions and two mouse 

types, trackpad and corded. Refresh rates were recorded five times per resolution and mouse type 

combination. 
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Table 16 

Technical Specifications for All Computers Used for Refresh Rate Testing  

Computer OS CPU UB PM RAM Screen 

Resolution 

Spec 

Tier 

Dell XPS 15 9550  Windows Intel Core 

i7-7700HQ 

62nd 6953 16 GB 

DDR4 

3840 × 

2160 

Mid 

Lenovo IdeaPad 110 Windows AMD A6-

7310 APU 

33rd 1736 4 GB 

DDR3 

1366 × 

768 

Low 

MacBook Air 13 2017 Mac OS Intel Core 

i7-5650U 

56th 3044 8 GB 

DDR3 

1440 × 

900 

Mid 

Note. Benchmark ratings from User Benchmark (UB; https://cpu.userbenchmark.com/; higher 

percentiles are better)and Passmark CPU Benchmark (PM; https://www.cpubenchmark.net/; 

scores are relative to each other, higher scores are better) are provided to compare CPU power 

across brands. For RAM, more RAM is better, and DDR4 is newer, faster RAM than DDR3. A 

subjective rating of Spec Tier is added for easier interpretation of these values, in comparison to 

other computers one could expect in a subject population.
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Appendix D - Trial Fixation Analyses 

This appendix includes figures for trial fixation count and fixation duration analyses that 

were run for data visualization purposes. These fixations were classified as any time period 

where the participant’s measured x-y coordinates move no more than 1 dva, for a minimum 

duration of 100 ms (common thresholds, see Holmqvist & Andersson, 2017). These figures show 

the differences in movement types between eye and mouse movement data. These differences 

suggest it may be worthwhile to determine new thresholds to describe the different motions made 

by mouse movements.  



100 

Figure 32 

Estimated Marginal Means From Poisson Regression Predicting Number of Fixations 

 

Note. Estimated marginal means from a multilevel Poisson regression with blur sigma 

(continuous predictor, centered by subtracting the mean of 0.3), window radius (continuous 

predictor, centered by subtracting the mean of 3), and their interaction predicting number of 

fixations. Random intercept effects and slope effects of blur, window, and their interaction for 

both video and participant were included in this analysis. Error bars are equal to 1 SE. All values 

are back transformed from the log scale of the original model. DIEM mean (122.5) is featured as 

a solid teal line with an error ribbon representing 1 SE (asymmetric SE with a mean of 13.4). For 

information on how this baseline was generated, see DIEM Baselines above. 
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Figure 33 

Estimated Marginal Means From Gamma Regression Predicting Fixation Duration 

 

 

Note. Estimated marginal means from a multilevel gamma regression with blur sigma 

(continuous predictor, centered by subtracting the mean of 0.3), window radius (continuous 

predictor, centered by subtracting the mean of 3), and their interaction predicting fixation 

duration (in seconds). Random intercept effects and slope effects of blur, window, and their 

interaction for both video and participant were included in this analysis. Error bars are equal to 1 

SE. All values are back transformed from the log scale of the original model. DIEM mean (0.57) 

is featured as a solid teal line with an error ribbon representing 1 SE (asymmetric SE with a mean 

of 0.02). For information on how this baseline was generated, see DIEM Baselines above.
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Appendix E - DIEM Video Names 

This appendix includes a table with the names of all included videos as they are listed in 

the DIEM dataset (Mital et al., 2011; see https://thediemproject.wordpress.com/). 

 

Table 17 

Names of Video Stimuli Used in This Project From the DIEM Dataset  

Video Name 

1 advert_bbc4_bees_1024x576 

2 advert_bbc4_library_1024x576 

3 advert_bravia_paint_1280x720 

4 advert_iphone_1272x720 

5 documentary_adrenaline_rush_1280x720 

6 documentary_coral_reef_adventure_1280x720 

7 documentary_discoverers_1280x720 

8 documentary_dolphins_1280x720 

9 documentary_mystery_nile_1280x720 

10 documentary_planet_earth_1280x704 

11 game_trailer_bullet_witch_1280x720 

12 game_trailer_ghostbusters_1280x720 

13 game_trailer_lego_indiana_jones_1280x720 

14 game_trailer_wrath_lich_king_shortened_subtitles_1280x548 

15 home_movie_Charlie_bit_my_finger_again_960x720 

16 movie_trailer_ice_age_3_1280x690 

17 movie_trailer_quantum_of_solace_1280x688 

18 music_gummybear_880x720 

19 music_red_hot_chili_peppers_shortened_1024x576 

20 music_trailer_nine_inch_nails_1280x720 

21 news_bee_parasites_768x576 

22 news_sherry_drinking_mice_768x576 

23 news_us_election_debate_1080x600 

24 news_video_republic_960x720 

25 news_wimbledon_macenroe_shortened_768x576 

26 university_forum_construction_ionic_1280x720 

27 pingpong_closeup_rallys_960x720 

28  BBC_wildlife_special_tiger_1276x720 

29 sport_golf_fade_a_driver_1280x720 

Note. Names of all video stimuli used in this project from the DIEM dataset (Mital et al., 

2011).Videos 28 and 29 were practice videos shown at the beginning of the experiment. 
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