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Abstract 8 

In recent years, small unmanned aircraft systems (sUAS) and advancements in remote sensing 9 

technology have provided alternative and more affordable means for monitoring crop health and 10 

stress than ground-based (handheld or vehicle-mounted) or other aerial-based platforms (manned 11 

aircraft or satellites). However, few scientific studies have evaluated the application of sUAS in 12 

turfgrass systems. The use of sUAS in monitoring turfgrass requires an understanding of basic 13 

remote sensing principles; identifying the target of interest and the various sUAS platforms and 14 

sensors that provide the necessary resolution and frequencies to measure and monitor that target; 15 

calibration of sensors in the field; and data processing considerations. Those topics are discussed, 16 

followed by reviews of recent turfgrass field studies conducted to predict and manage drought 17 

stress and pest outbreaks and improve phenotyping capabilities in turfgrass breeding programs. 18 

The use of sUAS remote sensing in turfgrass offers unique possibilities and challenges, which 19 

are addressed herein. 20 
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1  Introduction 34 

Remote sensing is the practice of obtaining information about an object without coming into 35 

physical contact with that object. Remote sensing-based observations have been the subject of 36 

agricultural research for well over 50 years, accompanied by significant advancements in 37 

foundational research and accessible technology. During that time, sensors have been deployed 38 

on platforms based on the ground (i.e., hand-held or vehicle-mounted) and in the air (i.e., 39 

manned aircraft or satellites). But in recent years, small unmanned aircraft systems (sUAS) have 40 

provided an alternative and more affordable means for remote data collection. Today, there are a 41 

wide variety of sUAS platforms ranging in size and operation (e.g., fixed-wing vs. multi-rotor). 42 

Along with the growing choice of platforms, more sensors (i.e., payloads) are becoming 43 

available representing a range in spatial and spectral resolutions. 44 

 45 



3 
 

2  Brief overview of light reflectance by plants 46 

Irradiant solar energy can be reflected, absorbed, or transmitted by plants (Campbell, 1996). 47 

Plants absorb light used for photosynthesis, but a majority of the remaining light is reflected. 48 

Sensors typically measure the amount of light reflected by the plant canopy, and this provides an 49 

assessment of how well a plant utilizes solar energy for photosynthesis and growth. A typical 50 

spectral reflectance curve for green vegetation exhibits a small peak in the green region (~550 51 

nm) of the spectrum followed by a sharp rise in the near-infrared (NIR) region (Figures 1 and 2). 52 

The NIR is primarily influenced by biomass production, canopy geometry, and subsequent light 53 

scattering (Hatfield et al., 2008, Sullivan et al., 2004), while the visible spectra are influenced by 54 

energy absorption for photosynthesis (Campbell, 1996). Plants with greater photosynthesis 55 

absorb more energy (i.e., reflect less) in the visible and may produce more biomass (affecting 56 

NIR reflectance) than their counterparts with lower photosynthesis, which typically results in 57 

different spectral reflectance response curves. Examples include turfgrass mown at different 58 

heights (Figure 1) and healthy vs. stressed turfgrass (Figure 2). The visible spectra generally 59 

exhibit a much smaller range in reflectance compared to the NIR. The small range within the 60 

visible region of “absorption” limits the visible region’s sensitivity to plant stress. Examples of 61 

this limitation are often observed when applying normalized vegetation indices (discussed in 62 

section 2.1) that include visible spectra.  63 

 64 
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 65 

Figure 1. Spectral reflectance signatures of well-watered Kentucky bluegrass (Poa pratensis 66 
L.) turfgrass mown at two heights. Higher green leaf area index (LAI) at 8.9 cm (LAI=2.13) 67 
than 5.0 cm (LAI=1.28) resulted in lower reflectance in the visible (400-700 nm) and higher 68 
reflectance in the near infrared (NIR, >780 nm) at 8.9 cm. The dramatic rise in reflectance 69 
between approximately 690 and 750 nm is the “red edge”. Reflectance was measured on 28 70 
September 2010 with a portable spectroradiometer (FieldSpec 3, ASD, Boulder, CO, USA) at 71 
the Rocky Ford Turfgrass Research Center (Manhattan, KS, USA) (An et al., 2015). 72 
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 74 

Figure 2. Spectral reflectance signatures of healthy and drought-stressed creeping bentgrass 75 
(Agrostis stolonifera L.) mowed at tee height (6.35 mm), measured with a portable 76 
spectroradiometer (PSR-1100F, Spectral Evolution, Haverhill, MA, USA) in a greenhouse study 77 
in Blacksburg, VA, USA. Reflectance is lower in the visible region of the spectrum (denoted by 78 
the colors corresponding to their respective wavelengths) because of absorption of energy by 79 
photosynthesis, compared with higher reflectance in the NIR (> ~750 nm). Figure by Travis 80 
Roberson. 81 
 82 
 83 
2.1  Benefits and limitations of vegetation indices 84 

Images are the base product or layer from which additional information can be derived. The most 85 

common data layers generated from remote sensing are vegetation indices (VIs), which are 86 

mathematical combinations of two or more spectral wavebands and are also referred to as 87 

radiometric indices. Vegetation indices are designed to target specific plant characteristics such 88 

as canopy geometry, chlorophyll content, nutrient status, or water demand to name a few 89 
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(Tucker, 1979; Sullivan et al., 2004, 2007; Gitelson et al., 2006). The earliest VIs were 90 

combinations of NIR and red band ratios with the specific intent to lessen the impact of 91 

variability in atmospheric conditions during the time of flight, as well as to separate the plant 92 

spectral response from the soil background (Hatfield et al., 2008). Specifically, VIs leveraged 93 

differences in soil and plant spectra to isolate plant spectral response prior to canopy closure in 94 

row crop agriculture. This was needed because early measurements were typically obtained via 95 

satellite imagery (30 m2 pixel resolution or greater) or sensors aboard manned aircraft (1 m2 per 96 

pixel resolution), which often resulted in a mixture of plant and soil within any one pixel 97 

(Sullivan et al., 2007).  In more recent years, high resolution sUAS-based imaging has allowed 98 

practitioners to more easily segment images into plant and soil components for analysis.  99 

 100 

One of the most well-known VIs, the normalized difference vegetation index (NDVI) (Rouse et 101 

al., 1974), is a normalized ratio of NIR and red spectral bands. The NDVI has been, in practice, a 102 

means to evaluate nitrogen and chlorophyll content, predict yields, and provide a measure of 103 

overall plant health status for more than five decades (Fenstermaker-Shaulis et al., 1997; Bell et 104 

al., 2004; Baghzouz et al., 2006, 2007; Sullivan and Holbrook, 2007; Caturegli et al., 2016, 105 

2019). However, there are strengths and limitations associated with NDVI applications, 106 

particularly as applied to turfgrass. First, the NDVI is not linear with respect to plant response 107 

(Ritchie and Bednardz, 2005). The NDVI is a normalized measurement of NIR and red spectral 108 

response, but low ranges in red reflectance limit the sensitivity of this index over the dense 109 

canopy. Second, a basic assumption of the NDVI is that the spectral reflectance curve is that of a 110 

typical living plant, where reflectance in the NIR can be ≥ 70% higher than reflectance in the 111 

visible region of the light spectrum (Figures 1 and 2). However, the topical application of some 112 
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pigmented products (e.g., turf colorants, pesticides with pigmented additives) has been shown to 113 

greatly influence the spectral response patterns in turfgrass, which impacts the interpretation of 114 

NDVI when NIR wavelengths between 730 and 850 nm are used. In these cases, it is 115 

recommended to use alternative indices such as the green-to-red ratio index (GRI) or 116 

photochemical reflectance index (PRI) that utilize regions of the light spectrum unaffected by the 117 

pigment but remain sensitive to plant status (McCall et al., 2021). 118 

 119 

Other considerations include turfgrass cultural practices that may affect NDVI such as turfgrass 120 

species, mowing height, and sand topdressing, because these practices impact canopy geometry, 121 

shading, and surface features (Bremer et al., 2011a; Lee et al., 2011; An et al., 2015; Alvarez et 122 

al., 2016). Considering the impact of cultural practices on the response and interpretation of data, 123 

consistency in data collection, flight planning, and analysis can mitigate variability in spectral 124 

response associated with those cultural practices. 125 

 126 

3  Critical mission planning 127 

Important considerations must be made prior to initiating data collection protocols using sUAS 128 

in turfgrass. These considerations should clearly (i) identify the target of interest, (ii) specify 129 

resolution requirements to adequately assess the target of interest, (iii) determine the appropriate 130 

sensors to be used, (iv) identify an aircraft suitable for mounting the desired sensors, (v) 131 

determine appropriate flying altitudes, image overlapping settings, and travel speeds to achieve 132 

the desired spatial resolution, and (vi) identify the frequency at which data should be collected. 133 

Once these parameters are defined, planning and implementation of flights may proceed. 134 

 135 
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3.1  Defining the target of interest 136 

It is critically important to accurately identify the target of interest as the first step in planning for 137 

data collection, as this greatly influences other parameters. For many situations, turfgrass 138 

response to various abiotic and biotic stresses will be the target of interest. Examples include 139 

monitoring turfgrass performance during abiotic stresses such as drought, heat, cold, salinity, 140 

herbicide application, or traffic as well as monitoring turfgrass performance during biotic 141 

stresses such as disease infection or insect feeding. However, the target of interest does not 142 

exclusively have to be turfgrass response. For certain missions, investigators may focus on 143 

quantifying disease severity or weed pressure, for example. In these situations, the targets of 144 

interest would be identifying specific disease symptoms or weed species present. 145 

 146 

Consider a situation (scenario 1) where an investigator is interested in collecting data on small 147 

plot (0.9 m x 1.5 m) turfgrass research trials to monitor dollar spot (caused by Clarireedia spp.) 148 

disease activity. Alternatively, consider a second situation (scenario 2) where an investigator is 149 

interested in collecting data to identify large-scale drought stress patterns across a 40 ha golf 150 

course facility. The appropriate flight plans for these two situations will be extremely different 151 

from each other.  152 

 153 

For scenario 1, there are at least two targets of interest that could be defined for the mission. The 154 

investigator could identify turfgrass performance as the target of interest and plan a mission to 155 

assess percent green cover (PGC) within a given area. However, the investigator could also 156 

identify dollar spot infection centers as the target of interest and plan a mission to quantify the 157 

number of infection centers within a given area. Both approaches are logical, and either could 158 
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work for this scenario. Of greatest importance is that the investigator clearly defines the target of 159 

interest.  160 

 161 

For scenario 2, there are also options available when identifying the target of interest. At this 162 

scale, the benefits of high-resolution imagery must be weighed against some logistical 163 

constraints. For instance, time to acquire data, number of batteries needed to complete the 164 

mission, and most importantly the size of the dataset to be processed (in gigabytes). Once the 165 

target resolution has been decided, imagery is most often used as a means to calculate PGC or 166 

measure relative differences in stress using common vegetation indices. 167 

 168 

3.2  Critical resolution requirements 169 

In the above scenarios, the resolution requirement for identifying dollar spot infection centers in 170 

small plot research trials will be much higher than that needed to identify large-scale drought 171 

stress patterns across a golf course facility. In turn, this will directly influence subsequent 172 

decisions for sensor type, aircraft selection, flight altitude, image overlapping, and travel speed, 173 

all of which will impact total data collection time. Moreover, higher resolution data will increase 174 

the total size of resulting datasets; thus, ground resolution thresholds should be identified to 175 

adequately reflect the needs of the mission. For example, spatial resolution requirements should 176 

be determined based on the size of the target of interest. If the target of interest (i.e., disease 177 

expression, localized dry spot, nutrient stress) is most noticeable at 4 cm in diameter, a spatial 178 

resolution of 1-2 cm2 per pixel may be necessary to accurately capture targets due to image 179 

overlapping and distortion concerns (discussed further in sections 3.5 and 4.3). 180 

 181 
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3.3  Selection of appropriate sensors 182 

There are various sUAS-mounted sensors available for monitoring turfgrass response, but there 183 

is often a single sensor that will be best suited for the task at hand. Many of the tools available at 184 

present are optical sensors that capture plant interactions with light. Examples include visible 185 

light sensors, spectral sensors, thermal sensors, and fluorescence sensors. There are important 186 

advantages and limitations to each of these and they have been thoroughly reviewed previously 187 

(Deery et al., 2014; Li et al., 2014; Fahlgren et al., 2015; Zhang and Zhang, 2018; Chandel et al., 188 

2020; Sangha et al., 2020; Tmušić et al., 2020; Feng et al., 2021).  189 

 190 

Sensor options can be divided into four primary categories: visible light, multispectral, 191 

hyperspectral, and thermal. Visible light sensors, also called true color or red, green, blue (RGB) 192 

sensors, measure light in three wide bands (i.e., red, green, and blue) and are typically used for 193 

high-resolution data acquisitions necessary for fine feature detection (e.g., weed identification 194 

and disease onset). At the time of this publication, true color sensors are the least costly and 195 

provide numerous opportunities unique to turfgrass systems because of the relative uniformity 196 

across targeted fields of interest. While there are only three bands to explore, the combinations of 197 

digital pixel values within these three bands allow for differentiating approximately 16 million 198 

unique colors (Yucky et al., 2021). Many emerging uses of artificial intelligence and machine 199 

learning for pest identification utilize only true color images. 200 

 201 

Multispectral sensors measure light spectra in discrete bands that are often 20 – 100 nm in width, 202 

while hyperspectral sensors measure light spectra in much smaller (< 10 nm) increments that are 203 

usually continuous across the spectrum of measurement. For example, a hyperspectral sensor 204 
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may record spectra in 2 nm increments from 450 nm to 1100 nm while a multispectral instrument 205 

will record spectra in five or more select regions and each region will be 10 or more nm wide. 206 

These “regions” of the light spectrum that are monitored are oftentimes referred to as “bands”. 207 

Hyperspectral sensors are designed to collect discrete measurements of reflected energy in 208 

hundreds of short bandwidths across the spectrum; bandwidths are typically much narrower than 209 

those of multispectral sensors. Hyperspectral data allow scientists to isolate discrete regions of 210 

the plant reflectance spectrum that are related to very specific plant attributes (e.g., carotenoids, 211 

anthocyanins, lignins, water stress, and disease). Hyperspectral sensors produce more data, 212 

which has advantages and disadvantages. Analyzing data with narrow spectral bandwidth may 213 

provide opportunities for detecting subtle changes that a multispectral sensor may miss but 214 

comes at a cost in both equipment expense and time required for data processing. 215 

 216 

Thermal bands are increasingly available as well and allow the user to assess how well a plant 217 

canopy can dissipate heat. When transpiration rates are compromised, plants will emit long wave 218 

energy as a means to dissipate heat (i.e., sensible heat flux) (Hatfield et al., 2008). It is less 219 

efficient than transpiration, thus long wave emittance is positively correlated with plant stress 220 

(Bremer and Ham, 1999; Bremer et al., 2001; Sullivan et al., 2007; Peterson et al., 2017). 221 

 222 

3.4  Selection of suitable aircraft 223 

Unmanned aircraft systems are typically categorized as either fixed-wing or multicopter aircrafts. 224 

These platforms are quite different in terms of payload, run time, maneuverability, initial costs, 225 

and maintenance costs (Li et al., 2014). Fixed-wing aircrafts are regarded as having higher 226 

payloads, longer run times, and faster travel speeds, meaning they can accommodate more 227 
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onboard sensors and other data recording instruments and they can cover more ground surface 228 

area in a given time, compared to multicopter aircrafts (Boon et al., 2017). However, operators 229 

must be conscious of potential image-blurring issues and ensure that onboard sensors will be 230 

compatible with the fast travel speeds of fixed-wing aircrafts. Many fixed-wing aircrafts also 231 

require large takeoff and landing areas and do not have the ability to hover in one location. 232 

Multicopter aircrafts have the capability to travel at slower speeds and maintain stable speeds at 233 

lower altitudes, often giving them an advantage for applications where high spatial resolution 234 

data are required (Thamm et al., 2015). However, multicopter aircrafts have lower payloads and 235 

shorter flight time capacities than fixed-wing aircrafts (Cai et al., 2014). Single rotor and fixed-236 

wing hybrid vertical take-off and landing (VTOL) aircrafts are other options, though to date have 237 

been less used. Single-rotor helicopters are slower, with improved longevity and the capacity to 238 

carry heavier payloads but are also more expensive and potentially dangerous to operate. The 239 

fixed-wing hybrid has VTOL capacity and is an emerging option for improved flight endurance. 240 

Given the various differences in sUAS, much thought should be taken for the selection of the 241 

appropriate type of aircraft (Li et al., 2014).  242 

 243 

3.5  Flight planning 244 

Careful attention should be given to decisions concerning flight altitude, image overlapping, and 245 

travel speed. In general, higher flight altitudes will generate lower resolution data. Nonetheless, 246 

more ground surface area can be covered in a given time with higher altitudes. Thus, the tradeoff 247 

in data collection time and data resolution must be considered. This underscores the previous 248 

statement that it is essential to identify appropriate resolution thresholds for a given target of 249 

interest, as there is no added benefit to acquiring higher resolution data than is needed to assess 250 
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the defined target of interest. Image overlapping is the amount of redundancy between data taken 251 

from adjacent viewpoints. In general, the higher the overlapping rate, the higher the final data 252 

resolution will be. In most agricultural applications, a minimum frame front and side-lap (i.e., 253 

image overlap in the forward and lateral directions) of 70 to 80% is required for accurate 254 

stitching of individual frames to generate a single composite image, known as an orthomosaic. 255 

Again, the target resolution must be kept in mind when deciding on an appropriate image 256 

overlapping setting. Travel speed is another variable that can impact total data collection time. 257 

However, travel speed constraints will generally be determined by the type of aircraft that is 258 

being used and the shutter speeds of the onboard sensor equipment. Nonetheless, a higher travel 259 

speed will enable faster data collection across a larger ground surface area in a given time. 260 

 261 

3.6  Data collection frequency 262 

This is the time interval between flights required to adequately monitor the identified target of 263 

interest. The proper collection frequency will largely depend on the dynamics of the target of 264 

interest. For example, if the target of interest changes rapidly, such as foliar disease progression 265 

or drought stress development, a weekly or daily collection frequency may be required. 266 

However, if the target of interest is more stable, such as genetic color, a monthly collection 267 

frequency may be adequate. Also keep in mind that certain targets, such as some patch diseases 268 

or weed inflorescence, may have a finite period for data collection. Careful planning before this 269 

critical window of opportunity will lead to fewer mistakes and wasted efforts due to insufficient 270 

data collection. These types of decisions will require input from expert personnel who 271 

understand the various targets of interest.  272 

 273 
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4  Data processing considerations  274 

4.1  Unique characteristics of sUAS-acquired remote sensing data 275 

Unlike satellite and aircraft imagery, sUAS acquire imagery as a steady stream of frames, or 276 

images, which are “stitched” together to produce a final image mosaic, as discussed previously 277 

(section 3.5). The resulting mosaic is a product of platform (aircraft) choice, sensor (payload), 278 

and flight planning as well as time of day and atmospheric conditions during data capture. Time 279 

of day and atmospheric conditions are critical because to date, sUAS-mounted sensors are 280 

typically passive (i.e., do not have their own light source, as opposed to active sensors) and thus, 281 

are impacted by factors such as sun angle and cloud cover (Campbell, 1996). 282 

 283 

4.2  Calibration 284 

Although platform, sensor choice, and flight planning are critical first steps, image pre-285 

processing and calibration significantly impact the digital integrity of the image product. 286 

Uncalibrated images represent an “at-sensor” measurement of reflectance or more simply the 287 

amount of reflected light from the vegetation surface that was received by the sensor. At-sensor, 288 

or uncalibrated measurements are subject to conditions during the instant of data capture such as 289 

sun angle (time of day), atmospheric conditions, surface conditions, and canopy geometry. 290 

Calibration techniques are designed to adjust uncalibrated values to “at-target” values by 291 

correcting the at-sensor measurement for atmospheric conditions during the time of capture. 292 

When successful, calibrated measurements should provide a measurement of plant response that 293 

may be compared from flight-to-flight (time-series measurements). 294 

 295 

Image calibration is typically accomplished using a combination of camera-specific settings or 296 
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metadata, ground calibration targets, and paired measurements of downwelling (irradiant) and 297 

upwelling (reflected) energy. Downwelling light measurements are typically collected during 298 

flight by an upward-facing sensor on the aircraft, while calibration panel measurements are often 299 

collected manually pre- and post-flight with the onboard down-facing sensor. Although 300 

commonly used, reference panels can considerably impact the calibrated reflectance in both 301 

positive and negative ways. Considering that calibration panels are typically used pre- and post-302 

flight, two new sources of error arise if calibration data are not acquired carefully:  1) human 303 

error during panel capture, and 2) potential variability in conditions during flight that is not 304 

representative of conditions during the time of panel capture. Examples that could negatively 305 

affect the representativeness of panel calibrations include (i) partly cloudy conditions and (ii) 306 

extended flight times when the angle of incident energy and/or cloud cover may vary 307 

significantly. For these reasons, the effective use of calibration panels and incorporation of 308 

downwelling irradiance at low altitudes is still the subject of ongoing research (Assmann et al., 309 

2018; Delvapour et. al, 2021).  310 

 311 

4.3  Image processing packages: Research grade versus edge-of-field 312 

Image processing can be placed into two categories:  pre-processing and post-processing. During 313 

the pre-processing phase, individual frames are mosaicked (stitched) into a single image 314 

composite (orthomosaic). It is during this phase that camera-specific settings, calibration data, 315 

and even the spatial resolution of the final image product are applied. The scope of the flight 316 

mission and ultimate use of image products will impact image processing decisions. 317 

Considerations include overall area, need for real-time assessments, target size and spatial 318 

resolution requirements, and research-grade versus field-grade requirements. For example, an 319 
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edge-of-field solution, which is intended to provide near-real-time results, may be appropriate for 320 

a field-scale mission (> 10 ha for example). Edge-of-field solutions are appropriate when image 321 

turn-around time needs to be fast and spatial resolution requirements are > 10 cm2 per pixel, such 322 

as with rapid assessments of drought stress. In this example, the number of key points selected 323 

during the stitching process may be greatly reduced and filters may be used to smooth the final 324 

image product. 325 

 326 

Alternatively, a research grade approach may be taken when the target area is smaller, spatial 327 

resolution requirements are higher (sub-centimeter to < 10 cm2 per pixel) and more rigorous 328 

image processing parameters are required to retain the digital integrity of the dataset (e.g., 329 

calibration, increased number of key points, reduced filtering/smoothing assumptions, 330 

bidirectional reflectance corrections, band to band alignment, geo-registration) (van der Merwe 331 

et al., 2020). Ultimately, a research-grade product increases the processing time required and can 332 

generate a much larger dataset given its high spatial resolution requirements. 333 

 334 

As a real-world example of how spatial resolution can impact a data product, consider a 38 ha 335 

location flown by one of the coauthors. When the as-flown image spatial resolution was 3 cm2 336 

per pixel, the generated image file size was 2.5 gigabytes. However, when the resolution was 337 

decreased to 6 and 10 cm2 per pixel, the generated image file sizes were only 615 and 222 338 

megabytes, respectively. Therefore, as spatial resolution requirements of the target of interest 339 

increase, the raw file sizes used to generate these images increase by orders of magnitude.  340 

 341 

Software service providers often estimate costs based on these parameters as well. Taking all 342 
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aspects of a flight mission into consideration (elevation, speed, overlap, spatial resolution, 343 

number of bands, and temporal resolution) will define the amount of data in gigapixels that are 344 

acquired, prior to any post-processing costs (time and expense). Gigapixels are determined based 345 

on the number of images multiplied by the image pixel width and height, number of bands, and 346 

number of flights. Since most cameras have a fixed image pixel count, the number of frames per 347 

mission increases/decreases with altitude, speed, and overlap. Although cloud-based image 348 

processing solutions are prevalent today, moving large amounts of data via the cloud is still 349 

inefficient. 350 

 351 

5  Examples of sUAS applications in turfgrass 352 

5.1  Drought assessment and detection in turfgrass 353 

Few studies have investigated drought stress in turfgrass using sUAS. Those few studies have 354 

demonstrated that drought stress was successfully detected using spectral or thermal sensors 355 

mounted on sUAS (Table 1). In a three year study involving deficit-irrigated creeping bentgrass 356 

(Agrostis stolonifera L.) mowed at golf course fairway-height (15.9 mm), drought stress was 357 

detected with six of eight spectral VIs evaluated, which were derived from broadband reflectance 358 

in the NIR, green, and blue (e.g., Blue NDVI, NDVI Enhanced2, NIR BlueRatio, GreenBlue; 359 

Table 1) (Hong et al., 2019b). Correlations of those six VIs with visual turf quality ratings (TQ) 360 

and PGC from ground-based measurements with a digital camera, which were indicators of 361 

canopy drought stress, ranged from r = 0.68 to 0.87 (TQ) and r = 0.71 to 0.92 (PGC). In the same 362 

study, the NIR broadband also detected drought stress (TQ, r = 0.65 to 0.75; PGC, r = 0.68 to 363 

0.84). Interestingly, early drought stress was detected with VIs before decreases in TQ and PGC 364 

(due to drought-induced leaf firing) were observed. Specifically, indices that detected early 365 
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drought stress included Blue NDVI, NDVI Enhanced2, and NIR Blueratio in treatments irrigated 366 

at 15 and 30% reference evapotranspiration (ETo) replacement (P < 0.05). However, the most 367 

consistently sensitive parameters of sUAS were the GreenBlue VI and the NIR broadband, which 368 

detected drought stress >5 d before decreases in TQ over the three-year study (Figure 3). Thus, 369 

both reflectance from an individual broadband (NIR) and VIs derived from multiple broadbands 370 

demonstrated strong capabilities for detecting drought stress in turfgrass. 371 
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Table 1. Spectral, red-green-blue (RGB), and thermal measurements and vegetation indices that detected drought stress from small 372 
unmanned aircraft systems (sUAS) and ground-based platforms in turfgrass field studies. 373 

Sensor Index Description Relationship with drought stress 
variables References 

sUAS-based 

Spectral 

NDVI 
Normalized difference 
vegetation index:  
(NIR−red)/(NIR+red) 

Leaf relative water content, 
r = 0.96; Soil moisture r = 0.82 to 
0.86 

(Caturegli et al., 2020) 

 
Turf quality (TQ), R2 = 0.13 to 0.68; 
Percent green cover (PGC), R2 = 
0.73 to 0.88; (two species). 

(Zhang et al., 2019b) 

 Blue NDVI (NIR−blue)/(NIR+blue) TQ, r = 0.77 to 0.87; PGC, r = 0.83 
to 0.92. (Hong et al., 2019b) 

 NDVI Enhanced2 (NIR+green−blue)/ 
(NIR+green+blue) 

TQ, r = 0.76 to 0.87; PGC, r = 0.82 
to 0.92. (Hong et al., 2019b) 

 NIR Blueratio NIR−blue TQ, r = 0.77 to 0.86; PGC, r = 0.83 
to 0.90. (Hong et al., 2019b) 

 WBI Water band index: 
R900 / R970 

Soil moisture, r = 0.87 to 0.89; Leaf 
relative water content, r = 0.98. (Caturegli et al., 2020) 

 NDRE Normalized difference red edge: 
(NIR−red edge)/(NIR+red edge) 

Spearman’s rank correlation: TQ, r 
= 0.60; PGC, r = 0.68; (2 species). (Zhang et al., 2019b) 

RGB 
 GreenBlue (green−blue)/(green+blue) TQ, r = 0.68 to 0.86; PGC, r = 0.71 

to 0.91. (Hong et al., 2019b) 

 VARI 
Visible atmospherically resistant 
index: 
(green−red)/(green+ red−blue) 

TQ, R2 = 0.05 to 0.63; PGC, R2 = 
0.69 to 0.89; (2 species). (Zhang et al., 2019b) 



20 
 

Thermal Tc Canopy temperature TQ, r = -0.77; 
PGC, r = -0.78. (Hong et al., 2019a) 

 Tc-Ta Canopy and air temperature 
difference 

TQ, r = -0.60; 
PGC, r = -0.58. (Hong et al., 2019a) 

Ground-based 

Spectral 
NDVI 

Normalized difference 
vegetation index:  
(NIR−red)/(NIR+red) 

TQ, r = 0.87 to 0.90; PGC, r = 0.92 
to 0.95. (Hong et al., 2019b) 

 Soil volumetric moisture at 0% ETo 
treatment, r = 0.54  

(Badzmierowski et al., 
2019) 

 SAVI 
Soil adjusted vegetation index: 
(1.0 + L) (R830 – R660)/(R830 + 
R660 + L); usually L=0.5 

Non-linear relationship with ETo 
treatments (Lower SAVI at bottom 
ETo treatments) 

(Taghvaeian et al., 
2013) 

RGB PRI 
Photochemical Reflectance 
Index: 
(R531 − R570) / (R531 + R570) 

Color, R2 = 0.58; Tissue moisture 
content, R2 = 0.73. (Baghzouz et al., 2007) 

 GRI Green-to-red ratio index: 
R550 / R670 

Soil volumetric moisture at 0% ETo 
treatment, r = 0.54  

(Badzmierowski et al., 
2019) 

Thermal  Tc-Ta Canopy and air temperature 
difference 

Vapor pressure deficit of non-water-
stressed turf, r = 0.64 to 0.88 (2 
species) 

(Haghverdi et al., 2021) 

 

CWSI 
Crop water stress index: 
[(Tc-Ta)measured − (Tc-Ta)lower]/ 
[(Tc-Ta)upper − (Tc-Ta)lower] 

Non-linear relationship with ETo 
treatments (Lower CWSI at bottom 
ETo treatments) 

(Taghvaeian et al., 
2013) 

 

Seasonal CWSI average: A non-
linear relationship with color; 
Threshold for seasonally acceptable 
color= 0.1 

(Emekli et al., 2007) 

374 
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 375 

Figure 3. A red-green-blue (RGB) image (A), thermal image (B), GreenBlue VI orthomosaic 376 
(C), and NIR reflectance orthomosaic (D) on June 15, 2017 of a sUAS study. Data were 377 
collected six days after deficit-irrigation treatments (15 to 100% ETo) began (Hong et al., 2019a, 378 
2019b). 379 

 380 

As discussed earlier (section 3.3), VIs calculated from wavebands strictly in the visible region of 381 

the spectrum may be produced from sUAS-based RBG images (i.e., without wavebands in the 382 

NIR or higher) and used to evaluate drought stress in turfgrass (Caturegli et al., 2019; Hong et 383 

al., 2019b; Zhang et al., 2019b). For example, the GreenBlue VI mentioned above (in the 3 yr 384 

sUAS study in deficit-irrigated creeping bentgrass plots) utilized green and blue wavebands in 385 

the visible region of the spectrum and was highly sensitive to drought stress in turfgrass, and it 386 
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consistently detected drought stress earlier than seven other VIs (Table 1; Figure 3) (Hong et al., 387 

2019b). The visible atmospherically resistant index (VARI; Table 1), which uses green and red 388 

wavebands in the visible spectrum and was developed to reduce atmospheric effects (Gitelson et 389 

al., 2002), was strongly correlated with PGC of turfgrass under drought stress in a sUAS study 390 

(Zhang et al., 2019b). The dark green color index (DGCI) derived from sUAS RGB images was 391 

highly correlated with sUAS measurements of NDVI (r = 0.85 to 0.96; under different N 392 

fertilization regimes), which implies DGCI might be used in lieu of NDVI to detect drought-393 

induced leaf firing when spectral sensors that measure NIR reflectance are not available 394 

(Caturegli et al., 2019); strong relationships between NDVI and PGC in turfgrass have been 395 

reported by others using sUAS-based measurements (Bach et al., 2022a) and ground-based 396 

measurements (Bell et al., 2002; Bremer et al., 2011b).  397 

 398 

Canopy temperature is another powerful indicator of early drought stress, including when 399 

measured from sUAS. For example, only six days after initiation of deficit irrigation treatments 400 

in small plots of creeping bentgrass, early drought stress was detected from a single image taken 401 

with a sUAS-mounted thermal camera (Hong et al., 2019a). Specifically, higher canopy 402 

temperature was detected in deficit-irrigated plots (15 and 30% ETo; P < 0.05), before decreases 403 

in TQ and PGC were observed (Figure 3). For larger areas such as golf courses, numerous 404 

thermal images would be required because of the limited footprint area per image and viewing 405 

angle effects among images, and thermal orthomosaics would need to be generated (van der 406 

Merwe et al., 2017, 2020). To evaluate changes over time, the timing of canopy temperature 407 

acquisition should be consistent and documented (e.g., data collected at approximately the same 408 

hour on each measurement day) (Mauri, et al., 2021) and atmospheric conditions should be 409 
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comparable among days (e.g., cloud-free) (Hong et al., 2019a). More research is needed to 410 

develop standard sampling and processing protocols for measuring canopy temperature with 411 

thermal cameras mounted on sUAS (Chandel et al., 2020; Sangha et al., 2020; Tmušić et al., 412 

2020). There are tradeoffs regarding camera resolutions, sensitivities to viewing angle effects, 413 

and appropriate flying heights when selecting thermal sensors with different lenses, that are 414 

beyond the scope of this discussion (Sangha et al., 2020). 415 

 416 

5.1.1  Relationships between aerial and ground-based measurements 417 

Most remote sensing research in turfgrass has been ground-based in regard to using spectral 418 

reflectance to detect drought stress. However, recent sUAS studies have indicated moderate to 419 

strong correlations between ground- and sUAS-based measurements of spectral reflectance in 420 

turfgrass. Correlations between ground- and sUAS-based NDVI ranged from r=0.63 to 0.97 in a 421 

number of turfgrass studies (Caturegli et al., 2016; Hong et al., 2019b; Zhang et al., 2019b; Friell 422 

and Straw, 2021; Bach et al., 2022a, 2022b). Hong et al. (2019b) also reported strong 423 

correlations (r=0.69 to 0.87) between sUAS-based broadband NIR (about 680-780 nm) and 424 

ground-based narrowband NIR (around 780 nm) in drought-stressed turfgrass. Therefore, 425 

ground-based measurements of drought-sensitive VIs, as well as individual wavebands would 426 

likely be applicable to their counterparts measured with sUAS-mounted sensors, although more 427 

research is required. 428 

 429 

An example of a VI that is highly sensitive to drought but has only been evaluated using ground-430 

based measurements in turfgrass is the PRI, which utilizes green and blue wavebands (Table 1). 431 

The PRI may have advantages over NDVI in detecting minor drought stress because of certain 432 
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phytochemical changes that may occur before changes in biomass and color become evident 433 

(Zarco-Tejada et al., 2012; Gago et al., 2015; Barbedo, 2019). For example, stomatal 434 

conductance and water potential were more strongly correlated with PRI than with NDVI in a 435 

sUAS study conducted over an orange tree canopy (Zarco-Tejada et al., 2012). In turfgrass, 436 

initial results are promising from ground-based PRI applications in monitoring drought stress 437 

(Baghzouz et al., 2007; Table 1). Additional VIs obtained from ground-based RGB images have 438 

also been shown to be sensitive indicators of drought stress (Marín et al., 2020). The soil 439 

adjusted VI (SAVI; Table 1), which uses the NIR broadband in its calculation, statistically 440 

detected drought stress in ground-based measurements of low vs. high irrigation treatments 441 

(Taghvaeian et al., 2013). In the future, drought-sensitive VIs that have only been evaluated in 442 

ground-based turfgrass studies need to be tested in sUAS research (Badzmierowski et al., 2019; 443 

see additional VIs summarized by Baghzouz et al., 2007). 444 

 445 

Other ground-based research has identified specific narrowbands and broadbands in the visible to 446 

NIR spectrum that were indicators of drought stress in several turfgrass species and cultivars 447 

under field settings. For example, narrowbands (2-5 nm) that indicated drought stress ranged 448 

from 660 to 672 nm in several popular C3 turfgrasses, and from 555 to 870 nm in C4 turfgrasses 449 

(Table 2). The water band index (WBI), centered around 970 nm and 900 nm, has proven 450 

effective for estimating drought stress in creeping bentgrass and hybrid bermudagrass [Cynodon 451 

dactylon (L.) Pers × Cynodon transvaalensis Burtt Davy], as well as in other crops (Peñuelas et 452 

al., 1993; McCall et al., 2017; Caturegli et al., 2020; Roberson et al., 2021). Also, individual 453 

broadbands centered at 830 nm (NIR) and 1650 nm (short-wave infrared, SWIR) responded to 454 

drought stress, to a lesser extent than visible bands, in several turfgrass species (Taghvaeian et 455 
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al., 2013). Field studies are warranted to use sUAS to leverage information obtained from 456 

ground-based remote sensing research regarding drought-sensitive wavebands that predict 457 

drought stress across different turfgrass species and cultivars. 458 

 459 
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Table 2. Narrow spectral wavebands with high correlations to drought stress in C3 (top) and C4 (bottom) turfgrasses from ground-based 460 
field studies. 461 

Species Wavelength 
(nm) 

Linear relationships with 
variables References 

C3 Turfgrasses 

Tall fescue (Festuca arundinacea Schreb.) 671 
Turf quality (TQ): r = -0.39 
to -0.60; Leaf firing: r = 0.44 to 
0.67 (3 cultivars) 

(Jiang and Carrow, 2005) 

Kentucky bluegrass (Poa pratensis L.) 672 Leaf water content: R2 = 0.71 to 0.96 (Suplick-Ploense et al., 2011) 

Hybrid bluegrass (Poa pratensis L. x Poa 
arachnifera Torr.)  664, 668 Leaf water content: R2 = 0.78, 0.80 (Suplick-Ploense et al., 2011) 

Perennial ryegrass (Lolium perenne L.) 660, 664 Leaf water content: R2 = 0.88, 0.84 (Suplick-Ploense et al., 2011) 

Annual ryegrass (Lolium multiflorum Lam.) 693 Tissue moisture: R2 = 0.71 (Baghzouz et al., 2007) 

C4 Turfgrasses 

Zoysiagrass (Zoysia japonica Steud.) 687 TQ: r = -0.49;  
Leaf firing: r = 0.54 (Jiang and Carrow, 2005) 

St. Augustinegrass [Stenotaphrum 
secundatum (Walt.) Kuntze] 

687  TQ: r = -0.23  
(Jiang and Carrow, 2005) 

693 Leaf firing: r = 0.23 

Hybrid bermudagrasses [Cynodon dactylon 
(L.) Pers. × C. transvaalensis Burtt Davy] 

555  
Tissue moisture, color, soil matric 
potential, leaf xylem water potential: 
R2 = 0.66 (multiple regression 
predicting R555) 

(Baghzouz et al., 2007) 

667-693 TQ: r = -0.15 to -0.48; Leaf firing, r = 
0.32 to 0.62; (4 cultivars) (Jiang and Carrow, 2005) 

Seashore paspalum (Paspalum vaginatum 
Swartz) 750, 775, 870 TQ, r = 0.15 to 0.48; Leaf firing, r 

= -0.40 to -0.47 (3 cultivars) (Jiang and Carrow, 2005) 

462 
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Three to five broadbands, mostly from the absorption regions of chlorophyll (660-700 nm) and 463 

water (810-1480 nm), were used to develop optimum regression models for TQ (R2 = 0.33 to 464 

0.78) and leaf firing (R2 = 0.16 to 0.83) under drought stress in 11 cultivars of five turfgrass 465 

species (Jiang and Carrow, 2007). Besides using multiple regressions of several bands 466 

(Baghzouz et al., 2006, 2007; Jiang and Carrow, 2007), the utilization of ground-based 467 

narrowbands across the entire visible and NIR spectrum and their derivatives has also shown 468 

advantages over VIs in the early detection of drought stress in pasture grass via the use of 469 

machine learning algorithms (Dao et al., 2021). Given the availability of sUAS-mounted 470 

hyperspectral sensors, selecting wavebands across wide regions, or taking advantage of the full 471 

spectrum from visible to mid-infrared wavebands instead of merely a few wavebands for VIs 472 

may provide a more robust solution for detecting drought stress, and warrants further research in 473 

turfgrass field studies. 474 

 475 

5.2  Strategic cultivar selection in turfgrass breeding programs 476 

Turfgrass breeders are limited in their field phenotyping capability due to its high requirement of 477 

time and labor. Being able to collect comprehensive data during the early stages of selection and 478 

then later in advanced trials would benefit cultivar selection and improvement in turfgrass 479 

breeding programs. As technology advances, the use of sUAS in high throughput phenotyping 480 

has increased rapidly in the past five years (Tattaris et al., 2016; Holman et al., 2016; Yang et al., 481 

2017; Han et al., 2019; Li et al., 2020). Unlike many other agronomic crops, yield is not a 482 

breeding goal for turfgrass. Superior turfgrass lines are selected based on their phenotype, 483 

commonly known as phenotypic selection (Islam et al., 2014), which is ideal for evaluating with 484 

sUAS-based imagery. Zhang et al. (2019b) assessed the use of sUAS-based RGB and 485 
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multispectral imageries on variety trials of two warm-season turfgrass species – bermudagrass 486 

(Cynodon spp.) and zoysiagrass (Zoysia spp.), using a low-cost sUAS platform. In the study, 487 

ground truth measurements were compared with sUAS-based measurements, and out of the top 488 

ten entries identified using ground measurements, 92% (bermudagrass) and 80% (zoysiagrass) 489 

overlapped with those using sUAS-based imagery. A collaborative project was initiated in late 490 

2019 to equip turfgrass breeding programs in the southeastern U.S. with sUAS-based high-491 

throughput phenotyping tools (Zhang et al., 2019a). This ongoing project aims to enhance the 492 

phenotyping capability of turfgrass breeders and further the application of sUAS in turfgrass 493 

breeding programs.  494 

 495 

Despite the subjectivity of visual TQ ratings (Horst et al., 1984), it has been the primary 496 

evaluation method for many years (Karcher and Richardson, 2013). Digital image analysis (DIA) 497 

was implemented as a research tool starting around the 1980s and turfgrass scientists adapted it 498 

into routine data collection with standardization in relevant equipment and image processing 499 

(Richardson et al., 2001). Equipment usually includes a “light box”, which is a metal box with 500 

light bulbs and wheels to be pushed across test plots. A camera is inserted on the top of the metal 501 

box to take pictures. Various turfgrass parameters are derived from DIA such as PGC, turf color, 502 

turfgrass establishment, drought stress, divot analysis, wear tolerance, and disease analysis 503 

(Patton et al., 2007; Steinke et al., 2010; Trappe et al., 2011a, 2011b; Karcher and Richardson, 504 

2013; Zhang et al., 2018; Bach et al., 2022a, 2022b). This method has worked well in turfgrass 505 

research except that it remains time consuming for turfgrass breeders to collect pictures on 506 

thousands of field plots in a timely manner. Based on previous validation work, a sUAS can 507 
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collect images covering thousands of small plots (0.9 x 1.5 m) in a few minutes versus days of 508 

collecting data with a light box, during which time PGC could be changing among plots.  509 

 510 

The general workflow of sUAS was described earlier, but briefly includes image acquisition 511 

using sUAS, image processing and orthomosaic generation, and plot-level data extraction. In 512 

addition, consideration of data analytics is needed because larger amounts of data are generated 513 

from sUAS than with traditional phenotyping methods. Image acquisition involves sUAS and 514 

sensor selections as well as best practices in flight operations (described earlier). Image 515 

processing is carried out by commercial software such as Pix4DMapper (Pix4D SA, Lausanne, 516 

Switzerland) and Agisoft metashape (Agisoft LLC, St.Petersburg, Russia) to generate 517 

orthomosaics. Plot-level data extraction can be done using ArcMap or QGIS (Wilber et al., 518 

2021). But for large data extraction, faster workflows can be built in different programming 519 

languages such as R (R Core Team, 2021) and python (Van Rossum and Drake, 2011). 520 

Commercial software such as PhenixTM (Progeny Drone Inc., Lafayette, IN, USA) and TurfScout 521 

& AgSpect (TurfScout, LLC. Greensboro, NC, USA) is available for combining image 522 

processing and data extraction together.  523 

 524 

Similar to the aforementioned DIA using a light box, sUAS-based image analysis can extract 525 

traits such as turfgrass cover in both dormant and green vegetation and plot-based average 526 

vegetation and color indices. There are different methods to obtain PGC from sUAS-based 527 

imagery. For multispectral imagery, PGC can be calculated by thresholding NDVI. For RGB 528 

imagery, two different methods can be used: one is thresholding color index from RGB imagery, 529 

and the other is converting RGB imagery to Hue/Saturation/Brightness and using threshold 530 
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values for Hue and Saturation to extract green pixels. Wang et al. (2022) evaluated a 531 

comprehensive combination of approaches for estimating turfgrass PGC using sUAS imagery. 532 

These approaches, varying in levels of complexity, were based on VIs, supervised and 533 

unsupervised machine learning classification, and image processing methods. They found that 534 

both RGB image-based PGC estimation methods, including the Hue-Saturation-Value method 535 

and the support vector machine agreed with ground-measurements of PGC (R2 = 0.86-0.96).  536 

 537 

Turfgrass cultivar field trials can be monitored monthly for these traits with or without biotic and 538 

abiotic stress. Secondary traits such as rates of turfgrass establishment can be derived from 539 

repetitive measurements of turfgrass cover during establishment (Figure 4). Each breeding 540 

program may vary in its process of compiling the information and making selections. For 541 

instance, one widely used mechanism is to rank the genotypes based on the number of times a 542 

given genotype enters the top statistical group over multiple traits of interest or/and multiple 543 

dates; this is known as the turf performance index (Wherley et al., 2011; Zhang et al., 2019b). As 544 

large amounts of comprehensive data are being collected using high-throughput phenotyping, 545 

more sophisticated algorithms for genotypic ranking or/and for identifying stress tolerant 546 

genotypes is needed.  547 

 548 
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 549 

Figure 4. Boxplots of percent green cover (PGC, %) of two hybrid bermudagrass cultivars 550 
(‘TifTuf’ and ‘Tifway’) during establishment in Tifton, GA, USA. 551 

 552 

One of the challenges in analyzing sUAS-based imagery for field phenotyping in turfgrass 553 

variety trials is weed contamination. Weeds can be problematic in the early stages of breeding 554 

selection (for instance, single plant space nursey) when management practices are less proactive 555 

compared to advanced trials. Supervised classification can be incorporated to exclude weeds in 556 

the workflow (Rockstad et al., 2020), which slows down the process due to the need for human 557 

input. In the future, it will likely be possible to implement machine learning models to mask 558 

weeds, but that would require a large number of labelled images to be collected in order to train a 559 

model.  560 

 561 

5.3  Predicting/managing turfgrass pests 562 

Much of this chapter has provided a strong overview of the factors to consider when using sUAS 563 

and associated aerial imagery from a variety of sensors across turfgrass systems. The use of these 564 
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tools provides a unique opportunity for monitoring and managing pest outbreaks across large 565 

surfaces that have been previously impractical because of time constraints and overlooked 566 

because of not being able to scout all areas effectively. While the use of sUAS to monitor and 567 

predict pest outbreaks is still in its infancy, there are a few examples that show promise as a shift 568 

towards precision turfgrass management. 569 

 570 

5.3.1  Spatial distribution of pests 571 

Most pest outbreaks are aggregated or occur in clusters, rather than being uniformly distributed 572 

across larger surfaces (Campbell and Noel, 1985). This is particularly true on maintained 573 

turfgrasses, though documentation through peer-reviewed research is limited. A better 574 

understanding of the spatial variability and distribution of pest outbreaks provides the 575 

opportunity for targeted pesticide applications, providing both economic and environmental 576 

benefits. 577 

  578 

Henry et al. (2009) concluded that two common paspalum species, dallisgrass (Paspalum 579 

dilatatum Poir.) and bahiagrass (Paspalum notatum Flügge), are not uniformly distributed across 580 

bermudagrass golf course fairways or roughs. Rather, they tended to cluster in areas with 581 

underlying issues, such as compacted soils. The authors reported that bahiagrass was impacted 582 

by mowing height, as it was more commonly found in roughs than in fairways, whereas 583 

dallisgrass grew in both shorter (fairway) and taller (rough) heights-of-cut. The understanding of 584 

underlying edaphic and environmental factors that drive paspalum outbreaks provides a unique 585 

opportunity for targeted cultural management strategies to alleviate these conditions. 586 

 587 
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Annual bluegrass weevil (ABW) is an economically important pest in the northeastern United 588 

States that causes damage in a predictable pattern. Damage from ABWs typically first appear 589 

closest to tree-lines and other out-of-play areas where the adults overwinter (Diaz and Peck, 590 

2007). Similarly, another economically important turfgrass insect pest, the hunting billbug 591 

(Sphenophorus venatus vestitus Chittenden), was shown to also have an aggregate (clustered) 592 

distribution across sod farms in Georgia, USA (Gireesh et al. 2021). Spurlock (2009) reported 593 

that large patch, caused by Rhizoctonia solani (Kühn) re-occurred in the same location of golf 594 

courses from year-to-year. This reoccurrence suggests an opportunity for strategic fungicide 595 

applications through disease incidence mapping. 596 

 597 

Horvath et al. (2007) showed a strong and stable spatial aggregation of dollar spot on creeping 598 

bentgrass and annual bluegrass (Poa annua L.) across seasons, even as overall disease pressure 599 

continued to increase. While the geospatial location of dollar spot aggregates changed from year 600 

to year, the clustering relationship remained the same across seasons. This suggests that 601 

historical disease incidence maps may not be useful for site-specific management of dollar spot 602 

but aerial maps generated within season may provide valuable monitoring.  603 

 604 

Most of the research to date that defines the spatial distribution of pests has been collected from 605 

intensive, time-consuming field sampling. While ground validation is critical for any confidence 606 

in pest estimations, much of the information could be collected rapidly and remotely using 607 

sUAS. 608 

 609 
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5.3.2  Pest mapping with aerial analysis 610 

The most extensive use of sUAS to map a turfgrass pest for monitoring and management has 611 

been for assessing spring dead spot (caused by Ophiosphaerella spp.) of bermudagrass (Booth et 612 

al., 2021, Henderson, 2021). Booth et al. (2021) reported that spring dead spot developed in 613 

aggregates across golf course fairways in Virginia, USA. The authors demonstrated that spring 614 

dead spot frequently occurs in the same patches year after year, despite full bermudagrass 615 

recovery during the growing season. This understanding of the spatial and temporal dynamics of 616 

spring dead spot provided an opportunity for targeted fungicide applications. The authors 617 

reported using spring dead spot incidence maps to treat the disease site-specifically using a high 618 

spatial resolution global positioning system (GPS) sprayer without compromising efficacy. The 619 

result led to a decrease of 51% and 65% in fungicide use for the first and second years of the 620 

study, respectively. 621 

 622 

The successful reduction of fungicides inputs using sUAS and targeted applications described by 623 

Booth et al. (2021) was not without challenges. Intensive manual selection of all spring dead spot 624 

within aerial imagery was not feasible for practical implementation by turfgrass professionals. 625 

Subsequent research provided a framework for automated detection without the need for manual 626 

selection or high-output computing (Henderson, 2021). The author also reported a detection 627 

accuracy with a 1 m buffer ranging from 53% to 93% compared to hand-validated pest maps. 628 

The author reported the diseased area with buffers covered between 4% and 21% of the fairways 629 

tested, providing the opportunity for substantial fungicides savings even greater than those 630 

reported by Booth et al. (2021). Follow-up research using spring dead spot mapping for targeted 631 

fungicide applications is ongoing. 632 
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 633 

The use of aerial pest mapping via sUAS provides a unique perspective on understanding the 634 

spatial and temporal dynamics of disease outbreaks or pest infestations. The disease incidence 635 

maps described above were used to help understand the underlying factors that drive spring dead 636 

spot epidemics. Hutchens et al. (2021) used the methods described by Henderson (2021) to 637 

compare zones of high, moderate, and low disease intensity. Results from this study suggested 638 

that the most influential factors to disease development included thatch accumulation and soil 639 

moisture, along with several key macro- and micronutrients. New research addressing the factors 640 

that drive dollar spot epidemics using the described strategies is ongoing (Henderson and 641 

McCall, 2021). Similar strategies using sUAS may be applied to numerous other diseases, 642 

weeds, and insect infestations to better understand their spread across turfgrass systems. 643 

 644 

5.3.3  Remote pest detection using remote sensing and/or aerial imagery 645 

The previous case studies have relied primarily on true-color imagery, using only red, green, and 646 

blue bands. However, there are many opportunities for detecting diseases and other pests using 647 

wavelengths outside of the visible light spectrum. As has previously been discussed in this 648 

chapter, the spectral properties of both uniform, healthy turfgrass stands and those 649 

physiologically altered from various stressors can be used for rapid assessments. However, there 650 

are few documented reports in the literature where light outside of the visible spectrum has been 651 

used to detect either pathogen activity or subsequent damage to turfgrass canopies. Green et al. 652 

(1998) reported a significant correlation between Rhizoctonia blight (aka brown patch) and 653 

several visible or NIR wavelengths, with 810 nm being the most closely related. However, the 654 

authors also pointed out that there were numerous extraneous factors that contributed to the 655 
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decline in canopy reflectance beyond simply disease degradation. Henderson (2021) reported 656 

that thermal image analysis could be a useful tool to detect brown patch in tall fescue and 657 

creeping bentgrass, and could detect changes in pathogen load during pre-symptomatic pathogen 658 

infection and colonization. 659 

 660 

5.3.4  Challenges with developing pest incidence maps 661 

Developing any type of pest incidence map is merely a prediction of where the pests are located 662 

and will likely never be a perfect proxy for manual scouting. As with any type of modeling, the 663 

prediction is only as strong as the information provided when developing the model. Some 664 

challenges that may limit the accuracy of pest maps include the uniqueness of spectral properties 665 

of both the targeted pest and the intended turfgrass, the spectral or image resolution, the spatial 666 

resolution of both the aerial imagery and the ground validation dataset, and perhaps most 667 

importantly, the accuracy of proper ground validation of pests. Many pests or associated 668 

turfgrass damage may look very similar, particularly from dozens of meters above the surface. 669 

Predicted pest distributions from above will be rendered useless without proper and accurate 670 

verification from trained experts on the ground. 671 

 672 

Another challenge with developing pest incidence maps for targeted management is that some 673 

expertise outside of the traditional fields of agronomy, plant pathology, entomology, and weed 674 

science are needed. This chapter includes excellent information on understanding spectral 675 

properties of plant canopies, mission planning, and data processing. A basic understanding of 676 

these core subjects is critical for proper adoption of remote pest mapping. Bock et al. (2010) 677 

discusses benefits, drawbacks, and opportunities of using hyperspectral image analysis, among 678 



37 
 

other things for plant disease detection. Wei et al. (2021) provides an additional overview of 679 

pathogen/disease detection of peanuts and other important agronomic crops with remote sensors. 680 

Many of the principles discussed apply to turfgrass pest detection. Additionally, a basic 681 

understanding of computer science will allow for a smooth transition into automated pest 682 

mapping. Useful strategies to automate pest mapping include simple computer coding to more 683 

complex types of image classification, simple machine learning, and more complex deep 684 

learning. Some of these strategies are discussed in a review by Henderson (2021). Researchers 685 

have used a convolutional neural network to successfully identify and map various broadleaf and 686 

grassy weeds, spurges, and sedges in bermudagrass (Cynodon dactylon L.) sod fields (Zhang et 687 

al., 2021). Improvements in sUAS technology and sensor development, along with decreasing 688 

costs of equipment and increased computer processing outputs, provide a plethora of new 689 

opportunities to monitor, manage, predict, and better understand the behavior of various turfgrass 690 

pests. 691 

 692 

6  Conclusions and future trends 693 

The use of sUAS in turfgrass research and applied turfgrass management is emerging and offers 694 

many novel possibilities and unique challenges. Although remote sensing imagery acquired with 695 

sUAS has been the primary focus of this chapter, it is only part of the digital landscape. One 696 

promising strategy is to integrate sUAS remote sensing measurements with other data stream 697 

sources such as weather, soil moisture, as-applied fertilizer and pesticide maps, topography and 698 

basic soil descriptions, labor, and product inventory to enhance turfgrass management 699 

(Taghvaeian et al., 2013; Aboutalebi et al., 2019; Chávez et al., 2020; Chandel et al., 2021).  700 

 701 
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One example could include monitoring of drought stress by combining sUAS spectral 702 

reflectance or thermal measurements of the turf canopy with other critical data obtained from 703 

ground sensors or weather stations (e.g., soil moisture, forecasted reference ETo). This 704 

information could be used to prevent drought stress while conserving water by improving 705 

irrigation recommendations, which could be further leveraged by using variable rate irrigation 706 

technology (Straw et al., 2019; Chávez et al., 2020; Dyer, 2022). 707 

 708 

As we are able to acquire and create more data, “big data” management becomes increasingly 709 

important. The successful measurement, collection, and analysis of big datasets could promote a 710 

greater understanding of how and why a plant responds in a given way and allow us to better 711 

model and even predict expected outcomes. Such efforts will likely require algorithm 712 

development and cloud computing services, possibly by using artificial intelligence through 713 

machine learning neural networks, to efficiently process large data streams (Zhang et al., 2021). 714 

 715 

Harnessing and sharing digital data assets could be improved by the development of an 716 

integrated data management system (i.e., dashboard) that could offer a singular place where 717 

property managers, turfgrass practitioners, and agronomists can merge data from disparate 718 

sources and more effectively predict the impact of site-specific management choices (Figure 5). 719 

To date, no singular software service provider has been able to universally address the demands 720 

of an integrated, client facing dashboard management tool, although progress is being made by 721 

several organizations.  722 

 723 
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 724 

Figure 5. A potential vision of an integrated digital data hub, universally associating digital 725 
datasets within a singular, user-facing dashboard. 726 
 727 

Determining thresholds for triggering various treatments such as irrigation or pesticide 728 

applications are critical to management in turfgrass. However, thresholds using spectral or 729 

thermal data are difficult to develop across species, soils, and environmental conditions 730 

(Barbedo, 2019). This is, in part, because the degree of detected stress is relative, and non-731 

stressed reference areas may be needed for comparison purposes. Vegetation or thermal indices 732 

(e.g., NDVI, CWSI; Table 1) may be more robust than single spectral waveband or canopy 733 

temperature measurements alone in indicating stress (e.g., drought), with thresholds that could be 734 

calibrated for a given site and species (e.g., genetic color, texture) (Sullivan and Holbrook, 2007; 735 

Bremer et al., 2011a). Still, at present, ground truthing is needed to confirm the cause(s) of plant 736 

stress (e.g., drought vs disease or multiple stressors). For example, NDVI has been related to N 737 
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deficiency, salt stress, drought stress, and insect damage ( Baghzouz et al., 2006; Bell et al., 738 

2009; Johnsen et al., 2009; Xiang et al., 2017; Badzmierowski et al., 2019; Groover and 739 

Lawrence, 2020).  740 

 741 

A rapidly growing field is crop spraying with sUAS, which can utilize remote sensing maps to 742 

target specific areas infested with weeds, disease, insects, etc. This strategy may eventually 743 

provide effective control with reduced pesticide application amounts, but additional research is 744 

required in turfgrass (Koo et al., 2021). Autonomous flights are also becoming increasingly 745 

important and may become the standard, but attention to public safety and adherence to 746 

regulations are important considerations (van der Merwe et al., 2020). Detailed discussions of 747 

these and other topics are beyond the scope of this chapter, but it is expected that the use of 748 

sUAS will have novel and broad impacts on turfgrass science and management. 749 

 750 

7  Where to look for further information 751 

1. van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P., and Sharda, A. (2020). 752 

Chapter One—Drones in agriculture. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 753 

162, pp. 1–30). Academic Press. https://doi.org/10.1016/bs.agron.2020.03.001 754 

 755 

2. Code of Federal Regulations – Part 107, Small Unmanned Aircraft Systems. 756 

(https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107) 757 

 758 
3. Kansas State University – Unmanned Aircraft Systems Program. See “Resources” tab for 759 

latest free information for UAS pilots:  https://www.salina.k-state.edu/research-760 

training/applied-aviation-research-center/ 761 

https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107
https://www.salina.k-state.edu/research-training/applied-aviation-research-center/
https://www.salina.k-state.edu/research-training/applied-aviation-research-center/
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