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1 

INTRODUCTI01J 

Rectangular loop antennas and ~hort electric dipoles 

are two of the olde:-:t antenn,::s in ex stance. In 1B88, 

twenty ye;Jrs after Maxwell invented h ~:, famous Maxwell' r-

equations, Hertz used these two C',ntenn s to prove that 

high frequency electric energy sourc0 could radiate electro-

m:tgnetic waves. 

1 
The "Cubical Quad" or, simply, "Quad" antenna is a 

development of the rectangular 1002 ~ntenna. It consi:'~t1=: 

of a pair of Equare loops, one-quarter wavelength on a 

side or one wavelength around the periphery; one loop 

being driven and the other used a~ a parasitic reflector. 

The separation between the two is usuc1lly of the order of 

0.15 to 0.2 wavelength, with the plane~ of the loops parallel. 

While c::tudying the properties of this untennu, it 

was discovered thQt little had been done to develop it 

from a theoretical 2.spect. The purpose of this thcPis is 

to obtain V3lues of the self und mutuLJl impedances exiFting 

in such 2.n 2ntenn21 2.rray. The values c1re obto.ined frrn rn:ith-

omatical analysis and experimental me2surements and may be 

used in field pattern and qain calculations. 

1 The R0dio Am~~ tcur' ~: Handbook, American Radio Relay LC:a(]ue, 
39th Edition, 1962. 
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CHAP'l'ER I 

Cl'LCULATiotr or MUTUl\L 

Defore doing any rn lhcmc1t Lc: 1 1 ,,naly~·ic, ~,ome i,s:: ions, 

that cannot be realized in the pr :cticc1l ::·yf:'tc,m, mtH t be 

described. They arc: 

(1) The 2ntenna i~ locJteJ at a Dee which i!:' 

completely free from obstructions in all directions. 

(?) The gc1p between the two :nput tE>rrn inal s i E 

infinitely sm~ll. 

( 3) The ohmic los~ e~. ,.-ilong the ,.mtenn.:i arc neg 1 

The following c."\nalysis is bctsed on icle.:11 situat ionE o 

In the derivation of the mutual impedcnce between two 

loops it is neccs first of all, to derive an expre ion 

for the current dist tion along one loop. Then, the:: inc.h1ce<1 

electric field intens at any point P 2lonq the Fee nd 

loop, which if' produced by the ret<1rded charges and c irrcntr 

on the fir~t loop, can be determined. The po',ver reau ired 

to produce current against the opposition of the induc0d 

emf on the first loop is computed for each ir,finite 

small element. The tot 1 po·.r.'ET i~ obt.::ined by intec,r tir,·0 

over the whole length of the first loop. Thie. gives tot. 1 

power, real and reactive, required to et t 2~bli sh the c,,ir rent 

aga the induced emf ~nd from this the mutui:il impedance 

may be calculJted. 

emf method". 

This method is well known as the "ind'.,lCed 



1-1 Current Distribution on the Radiating Loop of the 
Cubic;::.l Quad Antenna 

The square radiating loop is one-auarter wavelenqth 

on a side or one wavelength around the periphery. If it 

is fed by a balanced two wire line, the potential of one 

wire must be equal and opposite to that of the other with 

r to the ground and equal out-a ase currents must 

flow at the feed point. 1 Assuming the conductivity of the 

loop is infinite, it can be viewed as a los'.;lesic tram"-

3 

mission line Ehort-circuited at the point "e" (see f . 1-1}. 

Moreover, if the balanced two wire 1 transmits a sinusoidal 

wave to the input terminals of the loop the current of the 

incident wave may be expressed as 

I·ej(wt+aD} 
1. 

where Ii=maximum incident r.m.s. current. 

:2~/~ phase constant 

D =reference distance. Taken as zero 
at the short circuit point. 

The expression for current of the reflected wave will be 

I 9 j(wt-aD} 
r 

where Ir=<maximum reflected r.m.s. current. 

1 
Skilling, Electric TrcmsmisEion Lines, McGraw-Hill Book 
Company, Inc., p. 93, 1961. 

(1-2} 

Krause, Anten~as, McGraw-Hill Book Compuny, Inc., p. 415, 
1950. 
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At the short circuited point "e", Ii= Ir hence, the total 

current will be 

j (1,1t+,8D) + I e:j (wt-JBD) 
r 

J·wt 
2I.COf' (~D) e 

J_ 
(1-3) 

Equation (1-3) shows thut the incident and reflected wave~ 

4 

combine to produce a ~tanding wave which does not progress. 

The current distribution curves are Ehown in fig. 1-1 and 

. 1-2. 

L2 
I 

r . 
f 

L3 L, \ c. g 

! 
l t 

b 

I I I 

L4..- L1~L2-I-- L3-+-~ 

L4 

Fig. 1-1 F . 1-2 

In fig. 1-1, the four sides of the loop are marked L1 , 

L2 , L3 , L4 respectively. The c:irrows indicate the in­

stantaneous current directions and the dots indicate the 

locationE of the current minima. For convenience, it is 

better to shift the D=o ooint from "e" to "n" Euch that: 

D = ,f_ - .?';. 
2 

I(.f.) = 2IiCos~{l- -9--Dcijwt 
wt 

(1-4) 

R.. (or D) 

' 
1 
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Where R., is the distance <.1long the r.::idL:1ting loop 

measured from point "a", defined as lows: 

n = 0, 1, 3, 5, 7, 9 ----

Referring to fig. 1-1 and fig. 1-2, n is equal to 1, 3, 

5, 7 for L, L
2

, L, L respectively. The distance h, 
l 3 4 

in wavelengths is measured from the point b, d, for i in 

the clockwise direction. 

1-2 Retarded Scalar Potential 

The electr scalar potential due to a point charge 

is a linear function of the value of its charge. It follows 

that the potentials of more than one point charge are 

linearly superposable by scalar addition. In stat 

tric fields, the potential at P (~, y, z) due to distribu-

tion charges along a line is 

where 

value. 

v = --1-JLdh 41TE0 r 
(1-6) 

~=linear charge density {coulomb/meter) 

E0 = permittivity (dielectric constant for vacuum) 

::::: 

r =Jx2 
+ y 2 + (z-h)

2 

(farad/ t ) me er 

(meter) 

dh = element of length of line in meters 

The integration is carried out wherever fL has 

1 

j 

~ 

I 
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~P(X,Y}Z) 
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f 
h 

l y 
.... 
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'J 

Fig. 1-3 

In time-changing fields, fL is changing with time. 

Its expression can be deduced from the continuity relation 

between current and charge density. The continuity of 

current states that a net flow of current out of a v0lume 

(positive current flm·1 '. must be equal to the nego.tive r:1te 

of change of charge with respect to time. 

[ J-a-~ = - x.,w 
cit 

(1-7) 

or V·J == - ..M 
at 

Now I is everywhere in the h direction (in fig. 1-3, z o.nd h 

are in the same direction). 

= _Q.!b 
(}h 

The above expression become:: 

( 1-8) 

J 

~ 
' j 

·I 
/ 



or 

f!. = - ~Rb dt 

where Ih = current in the wire (amps) 

f(_ ~ linear charge density along the antenna 
(coulomb/meter) 

Substituting equation (1-4) into equation (1-10) 

{;_ = 2Ii f --k { cos [iil.l!,f- +h)] ejwt } dt 

= - 21J sin[~(..!\f- +h)J ajwt dt 

2 jii sin~(~i\+h)] . = :Ji. eJWt + C 
w 

The constant of integration C indicates . t 1 inear 

charge density independent oft could be present. Since 

such a charge distribution, if i:_ ·~8v. . . 11 ex.!.~L., w_L noL 

tribute to radiation its existance will be ignored. 

Hence 
Pi_ :: 2 1 i sin [.B ( .n.g- + h) J e j ( wt + + ) 

The space charge distribution curve is shown in fig. 1-4. 

C 
I 
I 

I 

LrT- L,---- L2 ~ 

Fig. 1-4 

7 

(1-9) 

(1-10) 

(1-11) 

1. 

' ( 

' ~ 
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~ 
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In time-ch0ngin0 fields the effect of charge is not felt 

instantaneously Qt the point P, but only after an interval 

equal to the time required for the disturbance to propQgate 

over the diEtnnce r; this time interval is 

r 
C 

seconds 

where c = velocity of light 3xlo 8 meters/sec.) 

We can introduce this time of propagation, called the 

time of retardation, Jnd write 

If 
0 ] = - 2I

1
.t,~in18(n

8
1\ +h)J- ejw(t- c~ ) dt 

LIL J; -

= -----···-----------·-·--- (1-12) 
w 

[fL] is called the retarded charge density. Substitut 

into equation (1-6) gives 

[v] 
. j wtf . r" ( n ~ 1 )'1 Jiie r sin~ -n+1~ ·~ J 

= 2 '1T E: oW l ------r=------ e - J r dh 

e -j~r 

[v] is called the retarded scalar potential. 

1-3 Ret~rded Vector Magnetic Potentiol 

dh (1-13) 

In stc1tic ic fields, the vector potential can 

2 
be exprePsed in the form 

2 - -Jordan derives A from the m,., · ~t intensity H, hence the 
expression for A does not invul ·)1.0 ; while (1-14) is 
derived from B. 



-- /.1') JJ.JJ A= -- -- dv 
4 '1T r 

(Webers/ meter) (1-14) 

Where 
_ ... 

magnetic pot.enti0.l at point A = vector p 

µo= p~rmeability of vacuum (henrys/ meter) 

- density J = current at volume element (amp/mete/) 

dv = volume element 3 (meter) 

r = distance from each volume element to the 
point P (meters). 

If J is confined in a thin wire as stated in § 1-2, J is 

everywhere in some particular direction hand also is 

uniform. Thus 

Then 

Where ~=unit vector in h direction 

ds = area element 

dh = length element 

I= Jha = current in wire 

Substituting (1-15) into (1-14) gives 

-.. 3i1J0 J I A = 4 'TI ---'r" dh 

(1-15) 

(1-16) 

As sti:lted in § 1-2, in time-changing field,:, the 

cf of current son the antennQ 3re not felt 

9 

I 

l 
I 
'~ 
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instantaneously at the point P, but only after an interval 

equal to the time required for the radiated wave to reach 

a distance r from the radiating element. This time 

internal is 

r 
seconds 

C 

Hence, equation (1-16) must be modified by a time factor. 

[ A] = a~ %._,__ J-r_e_-...,,}=-· "_' _( ~-> - dh (1-1"7) 

[--AJ is called the retarded vector magnetic potential. 

Substituting equation (1-4}, the current in the antenn~. 

into equation (1-17) gives 

-I. ~1 )l = l 1 0 

2 Tr 

[sc 4 +h)] cjw(t-~)dh 

r 

J cos i,B(D.7\ -1-h}l i(,,,t-Br) 
t. 8 ...J e dh 

r 

1-4 The Induced EMF on the Reflecting Loop 

(1-ln) 

Set the cubical antenna in rcctJngular coordin2tes 

with the two identical loops par,,llel and ·..,;,ith their 

centers on the same axis, as shown in fig. 1-5. The four 

sides of the radi3ting loop are marked L
11 

L
2

, L
3

, L
4 

respectively, while the four sides of the reflecting loop 

' I 
l , 
' ' l 
l 
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Fig. 1-5 

The current and charge di'.':tribution on the r;.idiat 

loop have been shown inf . 1-1 and fig. 1-4. The point[' 

a, b, c, d, e, f, g 2nd i on the loop are the same s thor·e of 

fig. 1-1 and fig. 1-4. 

Knowin<J the current and charge c]b,tribution, the 

retarded vector potential A and the retarded ~calar 

potential V m:,y be obtained by equations (1-1.3) and (1-1~;) 

Knowing tne retarded sc~lar potenti~l and retarded vector 

potential, the electric field is every,vhere obtain,tble 

from the relation 

-E :::: -VV -

where V 

?JA 
ot 

in rectangular coordinates. 

(1-19) 

I 
j 

l 
i 
I 

~ 
I 
! 

l 
J 

i 
j 
J 
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Since the intensities arc superposable by 

vector addition, the four sides of radiating loop can 

be treated as four radiating elements. E3ch element 

induces an emf at a point on the re in(J loop. The 

vector sum of the four emfs will be the total c~f due 

to the radiating loop. ~1e following sections deal with 

this kind of der ion. 

1-5 The Inc'iuced EMF in the z Dir0ction Due to the 

Current Element in the z Direction 

In the following deriv::i.tion let the current clement 

be coincident with the z-axis. A point on the current 

element is desisnated h. A point in space is given in 

rectangular coordinates by P(x,y,z). The electric field 

where 

sity at P(x,y,z) is 

-E == -vv oA - at (1-19) 

'v V = The gradient of re scRlar potential 
at. point P(x,y,z) 

vv = ~ ..a.3.- + - iY. + ...ll a ···x ax y ?J y l)Z 

~=The retarded vector potential at point 
P(x,y,z) 

Wl1en only the z component of the electric field is required 

equation (1-1~) reduces to 

::: - (1-20) 

~ 
! 
j 

l 
I 
.~ 
J 

I 

I 
l 
1 

' ( 
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T7 
H Lr 

dh 

L 'f 
h 

Fig. 1-6 

Introducing the retarded scalar potential V u.nd the 

retarded vector potential A into equation (l-20) 

. I. jwt 1 ~ { sin [@( ~ 7\ +hti -J· ~r} _ J 1 e _u_ - P. dh 
2~~c az r 

.l..::L. = 
2) z 

jwii & f cos jp(!lfr- +hDej (wt-/3r) dh 
2 'Tr r - oAz = at 

1 [ · a ( n A ) - j a ( ~ 7' + h )1 
sin[a( ~ A+h)}= ~ eJ"' 8 +h - e 8 J 

1 
[ 

. a ( ni\ h) -J· a (..ll.." +h)J 
cos~(~A +h)] = - e]P 8 + + e P 8 

8 2 

. . - _o_v = -I jwtf_Q_ [ ej B (.i.-r) -e -j8 (l. +r)ldh 

-a z 4 Ti t 0 C 2> z r j 

jWiiffe Jwt e + e dh 
, J j/Hl-r) -jB (l +r) 

41T e r 

(1-21) 

(1-22) 

Substituting equations (1-21) and (1-22) into equation 

(1-20) yields 

E 
z 

13 
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l 
j 



dh 

where i = n: +hit is defined in equation (1-5) 

W,J.lo = 27ff.. l - 2 7f 
c2 Eo - AC €0 = 

€0 C 

Substituting equation (1-24) into equation (1-23) 

E 
z = 

+ 

Iiejwtf....L. ej .B (i-r) -e -j~ (.i +r) 
4'1rE0 C a z r 

dh 

Iie e dh J
. . J. wt! j /3 (t -r) +e -j~(i +r) 

4'71"E0 C r 

14 

(1-23) 

(1-24) 

yields 

(1-25) 

Equation (l-25) represents the field intensity at P due to 

the retarded charges and current. The integration of 

equation (1-25) is carried out everywhere along the Z axis. 

The total field intensity due to all the retarded charges 

and current distributed on the element of length H will be 

= Iiejwt {1~ r e-jf:3(£+r)_e+j~(.e-r)J 
Ez + 4 1T €

0 
C ~ L r dh 

One can 

E 
z 

() 

{

H _ j ~ ( f. + r) j ~ (l - r ) '\ 
e +e I 

+ ·~ dh ', 
J r j 

3 0 
prove 

[ 
e].a(i-r) - e-jf,(t-+-r)-,H 

= Iiejwt - '"' 
4'1TE0 C r r -0 

( 1-26) 

(1-27) 

r is a function of x, y, z, and h; ~ is a function of n and h. 

r = r(x,y,z,h) 

e = e (n, h) = ~ + h 

When h = H, set r = r(x,y,z,TI) = rH -------------3 
Appendix. I 

Ii 
l 
j 
I 

1 
! 

l 
J 

' I 
l 
1 



and € = £ (n, H) = lH 

when h = 0, set 

r = r(x,y,z,o) = r 0 

f.. = t ( n , o ) = .£0 

Expanding e~1ation (1-27) yields 

E z 
= Iiejwt [ ej~ (lH-rH) - e -jG (LH+rH) 

4 'ITEoC rH rH 

-J·Sr e · o 
ro 

·I·ejwt[-j'3r8 -j~r _ 
or E = J 1 e r sin( B [H)- e O sin(~i

0
)-l 

zLl 27fEoC n 'J 

r = ;;2--i~-y2 

~H = ~ + H 

+ (z-h) 2 

A 
8 

Li 

1 
i 
i 

l 
( (1-28) 

J 

(l-29) 

E is the induced emf in z direction due lo the current and 
ZLl 

charqes on L
1

• Now if the point Pis brought to the surface 

of L1 or LIII' equation (l-29) represents the tanqential eld 

intensity at P due to time-changing current distributed on L
1

. 

For the field intensity due to current element L
3

, it 

is necessary to consider the field due to the charges and the 

field due to the current separately. 

Fis. 1-7 

4 

ll 

' I 
l 
1 



Looking back to the equation (1-26), is understood 

that the first integr was the result of the retarded 

charges, while the second integral was the result of the 

retarded current. son the side L
3 

were given by the 

equation (1-11) which 

2Ii~ sin~(~ +h}] ej {wt+-;.) 

w 

where the positive h direction is in the negative z 

direction when the antenna is located as shown in fig. 1-7. 

Now if the positive h direction is changed to the positive 

z direction, the charge distribution on L
3 

can be expre 

as 

(1-30) 

Hence, if .l = ~ - h the first integral of the equation 

{1-26) represents the field intensity due to the charges on 

the side L
3

• 

In Fig. 1-2, the current on the side i-g-f is flowing in 

the same direction as in b-c-d. However, in fig. 1-1, the 

current in i~g-f is flowing in the reverse direction to 

that in b-c-d. Hence equation (1-4) requires a sign change 

when it is used in conjunction with L3 • 

I { l ) = 2 Ii co, [a ( ~ + h) J e j wt 

16 

where the positive "h" direction is in the negative z direction. 

Now if the positive "h" direction is changed to the posit 

z direction, the current expression on can be expressed as 

l 

~ 
! 
I 

1 
J 

. 

I 
' 



( 1-31) 

For the z direction field intensity due to the current 

element L3 , equation (1-26) can be used if 

f =-" 
7 ?\ -h 

8 

and the sign of the second integral i~, chanacd 

H 

I. jwt 1" E =lC L -z 4'Tf1:: 0 C 
0

'c}z r . i~-j,9 (R. .;.r) +ej 8 (£.-r) 
-Jp r 

D 

It can be proved that 4 

I. jwt [ jj, (i -r) E = i e _e ___ _ 
z 4 7ie.0 C r 

e-ji((l+r) --H 
--,..---- i r ...;o 

rH 

_ e-i P Clo +ro)J 1 
ro J 

or -11' r 
(' 0 0 l . Fin(~-(.o) 

-' 

where r = ,.J (x-H) 2 + y 2 + ( z-h) 2 

n 7 i\ h -{. - 8 -

(l-32) 

(1-33) 

17 

E is the induced 
zL3 

in t:ic z c~i:::rv:tion due to the c:ir:--0nt 

If point P is brought to the Furface of LI or LIII' 

equation (1-33) represents the inc;uced 

due to the charges 

4 
Appendj ~< I 

and current on L. 
3 

J 

~ 
I 
! 

l 

' I 
l 
1 

l 
I 
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1-6 The Induced EMF in X Direction Due to. the Current Element 

in X Direction. 

---·---- r 
--- Iii ------ -----. 

~p 
~+ ------+-~-,.. y 

T 
z 
l_ 

Fig. 1-8 

The induced emf at point P has been given by 

o°A 1! = -Vv - 3T 

Pc:rticularly, if only the x component_ of l.he electric field is 

required 

Exactly following the clerivation of the last section, 

equation (1-34) can be expressed in the following form 

E 
X 

= Iiejwt {1~ [e-j,'(i+r) - eiti(i-r) 
4 1TE0 C ,X r 

0 

i H -jf3(( -r) + e +j~(Q -r) } 
+ · 0 e dh J"' . r 

0 

J dh 

(1-34) 

(1-35) 

Where the first integral is the result of the retarded scalar 

potential and the second integral is the result of the retarded 

vector potential. As was shown in§' 1-5, equation (1-35) 

becomes: 

~ 
I 
I 

l 



-, j I. jwt I -j/.3r -jBr 
l.C e H 

sin{~QH)-
e o 

sin ( ~ fc)J E = l xL 2 1T E0 C rH ro _J 
2 

2 2 2 
where r = x-h) + y + ( z-I1) 

fH = .2_/\ + H .f.o = .2..i\ 
8 8 

If the point Pis brought to the surface of LII or LIV' 

equation (1-36) represents the tangential induced emf on 

LII or LIV due to the current and charges on L
2

. 

19 

l 
(1-]6} 

J 

For the field intensity due to the current element L4 

equation (1-35) can be used, but requires some changes. 

Charges on the side L
4 

were given by equation (1-11) which is 

Where the positive h direction is in the negative x direction. 

If the positive h d ion is changed to the positive x 

d ion, the charge distribution on L
4 

can be expressed as 

Hence, if 

"'A 

8 
- h 

the first integral of equation (1-35) represents the x 

direction field intensity due to the 

In fig. 1-2 it was shown that the current on sides 

d-e-f and b-a-i flow in the opposite directions; while in 

fig. 1-1 the currents flow in the same direction, II»nce, the 

~ 
! 
I 

l 
j 

l 
1 



20 

expression for current on L
4 

must be changed in sign. 

where the positive h direction is in the negative x direction. 

If the positive h direction is changed to the positive x 

direction, the current expression on L4 can be expressed as 

If the sign of the second integral of equation (1-35) 

is changed and~ is specified as 

The second integral of equation (1-35) represents the x 

direction field intensity due to the current on L
4

. The 

x direction field intensity due to the current element L4 

will be 

f JH ,... e-j.8(€+r)_ejtl(f'.-r) lj 
l o : x L----r----- dh 

Iiejwt = -,-----4 7f E0 C 

l ~-j e (f. +r) + 
-j~ r 

0 

eji9(l-r) h 1 
J 

2 

y 

Fig. 1-9 

37) 

1 
I 

l 
j 
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Observing that equations (1-32) and (1-37) are of the same 

form. 

(1-38) 

If the point Pis brought to the surface of LII or LIV 

the equation {1-38) sents the tangential induced emf 

on LII or LIV 

1-7 The Induced EMF in the x Direction at Point P Due to 

Charges Distributed along the z direction. 

z 
• 

~L, LYI 
- ! ; I 

- -,- - - ~ - - / i 

r - -::::jl\P 
,,-, / I 

-r'.'...-+-----+~--< ... 
I 

y 7---··· -- ;.7 :-::_. 

"'':, / /fo 1-
l 

I ,Y 

:_; 

l L12 

F'ig. 1-10 

The induced emf at a point Pis given by equation (1-19). 

In rectangular coordinates: 

1 

~ 
! 
I 

j 
J 



E!" = - err ~ + 
X ~X 
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~ +a~) - ...Q.... (a A + a A + a A ) o y z c, z i, t x--x y y z z 

If only the x direction field intensity is required, 

E = -
X 

~ = 0, since the current element is in the z direction. 

Hence :::: - (1-39) 

Equation (1-39) shows that the x direction field intensity 

at Pis a function of only the charges on the current element. 

Introducing equation (1-13) into equation (1-39) with the 

limits of the integration from h=o to h=H yields. 

where 

= - ). Ii. ejwtlH -:. r sin ra(nJ\ + hD . ' _!L I __ LJ_..,_tr-____ e -J i:i r ! dh 
2 'iT €0 C ~ x L r J 

0 

.r.eJw ~ ni\ 
::: - J 1 sin : ~ (-- + 

. tlH 
2 '1T Eo c L..! 8 

. rocn 7\ 
Sl.DLP -

8 

0 

+ h)] = sin(at) 

ci~i_e -jl!i 

2j 

dh (l-40) 

(1-41) 

( 1-42) 

Substitut.inq equations (1-41) and (1-42) into equation (l-40) 

(x-x1~ -j~r dh 
+ r3 :.J8 
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H 

+ 1 )ah-J.-ifi(.t+r} (jl_ + 1 )ahl "? e ~-;1..J 
0 . lH r·eJwt [ ·,dllL ·~ 

= l, {x-x1 ) eJt- 8 (-1..e. + 
4 '1TE0 C r2 

H o 

-e-jfl1f[<j_L + 1 )e-jt3(h+r} 
2 ~ o r 

1 ) ej ,8 (h-r) dh 
r 

Equation (1-43) represents the x direction field intens 

at P due to time-changing charges distr ted on the 

current element of length H set in the z direction. 

(1-43) 

The first integrand of equation (1-43) turns out to be 

a perfect differential of the form5 : 

d eji3{h-r) 
dh r (r-h+z} 

(1-44) 

Also the second integrand of equation (1-43) turns out to 

be a perfect differential of the form6 : 

_£ 1- e:j/3(h+r)] 
dh L r (r+h-z) 

Thus equation (1-43) becomes 

+ 
-jt,u..a._ [ e-·if3 (II+rII) 

e 8 rH(rH+H-z} 

re ing to f icJ. 1-9 

r = F-xl} 2 + y2 + (z-H) 2 
H 

r = (x-x1 ) 
0 

+ y2 + 22 

5, 6, Appendix: I1 

(1-45) 

- -j8r } 
~o (ro~z)J 

(1-46) 

(1-47) 



Now if the current element is brought to coincide with 

L
1

, in equation (1-46), n and x
1 

must be: 

n == l 

x1 = 0 

E = riejwt(xl 
xL1 4 '1T € 0 C 

-j~ll [ e-jJ3(H-trH) -j'3ro J} 
+e _8 r 8 CrH+H-z)- ~o <1t> -z) 

where r =,)x2 + y 2 +(z-h) 2 

If the point Pis brought to the surface of LII or LIV of 

the reflecting loop, equation (1-48) represents the 

tangential induced emf on LII or LIV due to charges on L
1

• 

If the current element is brought to coincide with 

L3 as shown in fig. 1-11 equation (1-43) is still valid, 

but x 1 and r must be changed to 

xl = H 

r = j (x-H) 2 +y2 +(z-h) 2 

and l. must be changed to 

'- =lll..- h 
8 

as was stated in section 1-5. 

T 
h 
j_ 

y.. / 

z 

F' l C;. 1-11 

y 
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Ilence cquzition (1-43) becomes: 

jwt (' 

wil.._ f His E 
lie 

(x-II) 
I 1 if3( 11tr) = i C d ( -, )c . dh 

xL3 4 11T E0 C o r r-

-c -j8 7~ f ~j/J ~) 
0
_)t3 (h-r) l ., dh ( ( I -43;,) 

D r 2 r.,) 

The first integrand of the equalion (1-43a) turns out to 

to be a perfect differential of the form7: 

~r-dh I..., 

ejis(h+r)l 
I 

r (r+h-z) ...J 
( 1-49} 

and the second integrand of the equation (1-43a) turns ant 

to be a perfect differential of the form6: 

Thus 

or 

..:i r- 1· D. ( h - r ) -1 
~ I e'"' I 
dh Lr (r-h+z) J 

equation {l-43a} becomes 

1 . 0 jwt [ -~7~ r 
Ex= 4\E.,,c (x-H) L eJ 8 L-

. jwt 
E = lie (x-H) 

xL3 4 T!f 0 C 

where r (·,-II) 2 + y 2 + (z-h) 

-jf3(h+r)""1H 

;(r+h-z) Jo 

-jl?>'JJ\ [ej/3 (h-r)1H ~ 
e 8 - I j r (r-h+z)J 0 

(1-50) 

j/3(I1+r!T) 

rH (rH+H-z) 

- j/, r 1 
C O I 

-t I 
r(r-h+zLJ 

. ~ 1 -J r -1 1 
C O l \ 
r (r +zJ J ( 

0 0 - J 
(1-51) 

If the point Pis brouqht to the su1 ce of Lrr or LIV' 

7, n 1\ppendix I I 

... 
" 

..... 



the cquat ion (l-51) represents the tangential induced 

emf on LI I or LIV due to the charges on L3 . 

1-8 T1,c Induced EMF in the z Direction al Point P Due to 

Charncs Distributed Along the x Direction 

11'i1e 

z 
• 

/ 
/ i L / . 

2./ 

Fiq. 1-12 

induced emf at point Pis given by 

E= -vv OZ\ - --2, t 

= - (:'l ~ + -rr ~ + a h) - L ca A +a A +~ A > x ax y ay z az ~t xx y y z z 

If only the z direction field intensity is required 

E z 

Since A = o z 

.Q.:L 
oz 

2G 

E = _h_ 
z 'Z)z 

(1-52) 

Equation (1-52) shows that the z direction field intensity 

is caused by charqcs only. Introducing equation (1-13) 

into equation ( 1-5 2) 

:, 

"'l I 

':·~ ! 

,) 

)'! 
"' ........ 

--



where 

. I . j wt J ,. c - j £1, r 
E : - J l C s i_ n '~ ( lli..\. I 1 )J ~ ;, ( ---- ) dh 

z 2 'IT E. 0 C "- U r 

J·o(z - z1) -'f.r 
1--' e 

= sin ((3{) 

ejt,P. -c-j~t 
= --2-J ..... ---

r 
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(1-53) 

(1-54) 

(1-55) 

Substitutinq equations (1-5-1) and (1-55) into equc1tion (1-SJ) 

yields 

. .,__ (z-z1{Jej~ (l-r) j (3 r·cJWL 
+ 1 ) dh -

~ 4 'iTEoc ~ 

J- j~(l fr) - e jp__ 
( 2 

r 
+ _1_) 

r3 
dh] (1-SC~) 

The field intensity due to the time-changing charges distri-

buted on the current element of length H will be 

E 
-jwt ( · M f H; Q · ' Ii e _ ( _ ) J 113 (k- + _l_) l ~ ( : 1 - r) cll·i 

41f1'- z 7,1 \ C U 2 J C 
,,c l. u r r z 

~) l'- j f3 (h+r) 
r3 

l 
dh '> 

The first :,,HI l he 2cconcl inl, gr~ir;c1 s of equc1.l:ion ( l-'i7) 

arc two pcrfc,ct c1iffc~rcnti~d, ,~s c;ho',TI in sect.ion 1-(J 

Hence, equation (1-S7) becomes 

(1-57) 

:, 

i') 
-. ',',\ 
'' .. 

,-. 
a\ 

l ....... 

., 

J't',, 
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n}~ -jB(h-frht-'I 
o C ~ 

(r+h-x) 10 I 
..) 

re -j /3 (H+rII) 
+·-----

Lr [1 (r1ri-II-x) 
(1-58) 

Now if the: current element is brour:ht to coincide with 

L
2 

and the point P is brought to the :,urfacc of LI 

equation (l-Sc3) becomes 

E L z 2 

where 

r · a 3)\ J,...,--
1 ~i 
1 C 

L 

rcji3(H-rH) o-·jf3ro ·1 
LrHCrH-IHx)- r 0 {r0 +x)J 

or I I I 

(l-50) 

Equation (1-59) represents the tangential induced emf on or 

L due to the ci1arges distributed along L
2

• 
III 

Now if the current clement is broue;ht to coincide with L4 , 

as shown in fig. 1-9, equation (1-57) is ~till valid, but I and 

z1 must be specified to 

+ z2 

and R. must be chan0ed to 

l - h 

as wa~ st<ltcd in section 1-G. 
equation (1-57) yield~ 

Substitutino these conditions into 

~,. A 1H 
·wt r JG-8, 'R 

E = f ~LC ( z) ~ e (-J t-'_ 
ZL4 l o r2 

-w~1~~ -c (-
r2 

0 

1 
r3 J 

C -j(3 (h+r) dh 

(1-C,O) 

:, 

) 

,,J"'i 
i 

: t 



·1 

H I 
r· iq(,--1·)- I 
I , 'µ - l 
' l. ' ;, 
i - _ 1 • , _) , , 
L 

1 
\ ; - • ~ , Jc 1 

('-w ro ··1 

ro Cco-=~JJ 

.J 

(1-Gl) 

( 1-62) 

If the point Pis brought to the surface of LI or LIII' 

equation (l-62) represents the tangentiQl inciuced enf on 

LI or L due to the charges on LA. 
III - '± 

1-9 'I'hc 'l'otal T; nqential Induced EMF at a Point P on L 
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Rcfc,rrinu to fig. 1-1=~. the (~istzmccE:; r 1 , r
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where II ?-. - 4 for the cubical quad antenna. 

Define E = the induced emf on the side L due to the 
IILl charges and the current Ll 

I on 

ELIL2 = the induced emf on the side LI due to the 
charges on L2 

ELIL3 = the induced emf on the side LI due to the 
charges and the current on L3 

charges on L
4 

0 ,, ~ 1,e C'l. r'n L 
.1..1. l...l, -- .. _-, ..... : -..~ I i...o Lhe 

The expression for ELILl is given by equation (1-29). In 

. . 
. I. jwt 

= J le 

2 '7T E0 C 

-j~r 
e 2 sin(p:}) e-j S rl l 

rl .J 

Separating the real and the imaginary pc1.rts 

sin(~lfr--)cos(~r2) sin(~)cos(/3r1) 

rl 

The 

In this 

·I·ejwt = J l 
2 1T E. 0 C { 2 

+{-sin(~t)sin(~r 2 ) + sin(~:sin(~r 1)]} 

Iiejwt J("'.in(/3~) sin(,er 2) sin(~)sin(~rl) 

- 2'iTEcC L r2 rl 

+ j [ sin(~~) cos (/Ir 2 ) _ sin(~: cos(~ r 1 )] } (1-64) 

expression for E 
LIL3 

is given by equation (l-J_;). 

case X - O, rH = r4, r = r 
0 3 

Separatinq the real and the imaginary parts 

~ 
1._/_ 

·• 
' 

:, 

a 

t• .. 
,;. t 

Jc "'; 
.i 
tij 
.,;. 
J'·J J 

.JII~ 
<,U 

~ ~-

... I 
·'. 
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jWt 
= IiC 

2 7T E
0 

(, 

The expression for E is given by equation (1-50). 
LIL2 

In this cc·::::c 

( 
E)S(H-~4) _ c-j~r2 ) 

r4 (r4- H) r2 
2 

0 -iBr') l 
---~) ;> 

r2 J 
2 

-j(3(57\ + rLL.) 
C 8 

2 e - i/3 r2 3 ;\ il 
r2 cos <~T)J 

2 r 'l r: ~ 

31 

:, 

• 
( I - (,S) i' >l 

-,... 
' .. ~ 

t_ .... 

I , 

.j .• ,g.::11' r Q ·g.·J/\ r· U-

l fJ-. r l- i II -1,.,-- .. r 4 11J 
(~e_· __ ~:_:l~L-...-~--l·c_·~-G-._~~~~~-) 

r 1 (r _ n2) 
., , "I 

''.j .. , 4 

2c-iSr2 3~/\1. 
CO S --;,;--- ( 

--2 0 
L2 J 

-



I. 0 i ,,rt J 
= .L ( •-Il) . 

2 'Tf c,, C L 

' •) ,. 

. (~'·) ,../ ' Hs1n - COq/31: '1) 
. ( 8 •, 

5 j,i'\ 
- r 4 cos ( - ) sin(~ r) 

8 "± 
+J 

+ 

(r2 -
4 

(1-66) 

The expression E is 0iven by equation (1-62). 
LIL4 

In th i ~: case 

I . c i wt r jJ3 }i - j ~ ( H tr 3 ) 
.!..J...::.-( .. ) < e· 8 Lr ~e ____ _ 
4 Tf E0 C !_ - r 3 ( r 3 HT) 

..+-() 

· a A -,,.,­) n 
u 

jt3(H-r~) 
1: '\ ~I - ------

-1Br 1 ' 1 
+ ------1 > 

x:2 _J ! 
1 ..J 

I 
. ..j wt r - j f3 ( r 

3 
+ ~ ) 

i" ( j ( 0 

= 4 '7TEoC ·) L - r3 (r3+II) 

.,, 
.. ~.;I 

''i it: 
ff ' 
.; 

i , ~ 

,. ' 

), 
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r sin(pr 3 ) cos{f3
8
A) -H cos{I?, )sin(/3?.

8
) +j f-3 ___________________ _ 

r3(r2 - n2} 
3 

33 

sin (f:1r1) cos (f3~>11 
r2 :J J {l-67) 
2 

E the total tangential induced emf at a point Pon LI 
LI 

(l-68) 

1-10 The Tot al •ranaenticu Induced EMF c1.t a Point P on LII 
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Referrinr to fig. 1-14, the dist~nccs r 5 , 

r are given by the followinq cc~ations. 
8 

Define 

I ~ 2 2 
l ( x-II) L, + y + II 

/',J 

the tangential induced emf on L 
II 

clue to 
ch~crgc s on L 

1 

the tangential induced ernf on L due to 
sand the current on L

2 
II 

the tanqential 
son L

3 

cmi on L due to 
II 

= the tangential induced emf on L 
sand the current on L

4 
II 

due to 

'!'he expres~-ion for is given by cqu:,tion (1-48) vhcrc 

Scporo t. 

E 

z = 

:;;:: 

LIILl 

II, rn - rs, r = 
0 

Iiejwt 
4'7T- (x) 

t:o C 

r . ~.:l 
< e 1 8 
L 

+e 

• P. i\ 
-J,-,8 

r- C 
1 (, (II-r5) 

l 
L ? :r;:..~ 

J 

~ -1'/3(H+r.) 
IC :, 

L- r2 
5 

the real ;:md the mia0inary s 

r -jar 

r (r .Ln) : 7 7 I•• ~ 

-j~r.7 - ' 
" I > 
r7( -H)--'j 

I. cjv,t 
= ,i . (x) 

0, 1fE0 C 

I 2e f--' 5 i\ 
<L r;, cos [£3_( tr + H}j 

_ - j /3 r 7 rl2 r 7 cos ( ~ i) -2 j H s in ( f ~) 
1 e r f 2 2 7 . r., - II ) -· 

I 

co F ( e i}} -1 H sin ( B;. )_
1 
l 

r7 (r;/ - u2) J J 

If 

.,J.·· 

'•' 
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cos ( ~ r 7 ) cos ( /3 3 :\ ) 
----------C.-8 \ r~ - - ) + 

'.) 

_
1
·:.r

7
sin(~r7 )cos,(~%)+ H cos(~r7)sin(~~) _ sin(~r5~cos(~-W)ll> .,.~ 

._ r7 (r~ - H2) ri ,~ :-·~ 
--------------------------------

\·1here 

where 

The expreEsion for E is given by equation (l-3G) 
LIIL2 

""' "l ' . (.) I\ Q ) I 
Slil gt-1 r1 

j 

·I·ejwt 
- 2 l 

r sin(~
5
~)cos(~r0) 

~ ( r 6 

sin (/3¥) cos ((3r5 ) \ 
) 2 "Tr 1;:0 C 

L 

-sin (/3~) sin (/3 rl>) 
+j(---~-----. r 6 

sin(/3
3
l)sin(~rJ 1 

+ --------,-__ '.J ) > 
-s J 

1 . 0 jwt r sin(~~) sin (~r() 

= 2 l'Tf Ee C t ( 6 

. sin(~~)cos(,Br6 ) 
+J (--------r r 

0 

sin (~1f,) sin (B1· 5 ) 
\ ----------) rs 

sin (13'~) cos (/3 rs) 1 
--------);, 

rs .I 

(1-70) 

'l'hc expres,·ion for E is c;iven by equation (1-51) 
LIIL3 

-(. 

I , ·~ 
·-I 

)\1-
..• t ,--~ 
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jwt r 
-- IiC' ( ; x-H) <. -

2 1T Ee C L 

+j ( 
cos (.B~) sin (13r

6
) 
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H) -j~ 7/i l 
c 8 ..., i 

2) J ;' 
H .J 

7(1 1G 
- r._8 _c~ E" ( B _'_) _s_i n_(~_r_8_>_-_r_1 _:_i-· n_(_s_;-_" ) cos (;3 r 8.) )} 

r8 (132 - u2) 

.'t 

'i~ ,,. 
;j ;'. 
'1f ·' 

~ 
·61\ 
·(· 
j~ 

.J.t~ 
~u _.., 
~I 

(1-71) J.C, 
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2 7T E0 C 

I
L .. , 

,. s c'ivon b·: cqua1- inn (l-38) 
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r 

r8 

. (78?1) 
S ].! I 

. sin (fl 7
8
>i) cos (/3 ~~) 

+ J (--------........ rg 

+ 

sin ( /3i\ ) } 

sin(8f)cos(f37), 

r,., 
I 

} 

_ sin ca~) sin(~ r7)_)} 

sin(~ tr:) sin(~ r 7 ) 
r7 

sin(~i-)cos{~r7 ) ,l 
r

7 
I ( 

.) 

( 1- 2) 

(1-73) 

1-11 The 'l'otal T ,nncnt ial Induced EMF at u. Point P on LIII 
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Define E = the induced emf on 
~III 

due to t:1c cho.rae:::~ 

where 

where 

LIIILl and the curr0nt on 
L 

EL L = the induced CJTlf on L due to U,c c:1c1.rr;es 
III 2 L2 

III 

E = the induced erni. on L due Lo tl1e ch,=1_rcrc~: 
LIIILJ and the current on LIII 

3 

E - the induced emf on LIII due t:o the charges 
LIIIL4 on L4 

The expression for E is sivcn lY\' equation (1-29) 
LIIILl 

X = II, 

I·ejwt 
]_ 

r4 

[co::(~r 3 ) - j E,in(;3r 3 ~ ~ 
r_., 

J 

- / 
I, 

3A i\ 

{ 

sin (~a) cos (f3r4) sin (fl-g--) cos (f3 rJ 
( 4 -~~--.J--,--~~-) 

. s in ( 13 ~ ) f:. in ( ~ i: 4 ) _ s in ( ~_%) s in ( f3 r 5 ) ) } 
-J(~~--~--~~~-

r4 .1. 3 J 

{ 

sin(B~)sin(l:3r,1 ) sin(/3~ )sin(f3r3) 
( 0 - (, ) 

rl r3 

. ,,sin(B~)co~;(/3-S,J) sin(f3TI)roc;a~r-:;) l 
-J\ ~~--~----~~)> 

r4 r.3 J 

on 

(1-7~) 

The expression for EL L is (J i.ven b" equation ( 1-S 9) 
III 2 

X = H, r 
0 

:, 

' i . .~ 

.J.·· 

'' '~.1 



where 

. ,3 3 i\ 
10- 1-rr-

jwt r . Ije -J~r2 
= 4 7r;c (z-H) Le 

'... 

. 135i\ 

[ 
J-

e 8 

-j~r
4 

r (r -H) J. ~3 1\ 
I 4 c 8 + 

-e L r 4 (r '2 -
4 

{ 2e -j~::cos c~iil.) 

('-j~r4 -, ") 
----1' 

r:1 Cr.1 -m ) 

-e-jf3r4 r2r
4

cos (¥) -2jH sin (~Jl) J} 
L r4(rl - H2) 
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Iiejwt I 
= 4 'TT~C ( z-H) t ( r4 (rj - H2) 

H sin(t.,r4 )sin(~ 3~) 

Si\ 
cos ((3 r 2 ) cos (f,lr) 

+ ) 
r2 

+j {+ sin (,914) cos(~#) +H cos (~-3 r.1 ) sin(~ if) 
r,1 (r4 - H2) 

(1-75) 

The expression for E is given by equation (1-33) 
LIIIL3 

X = H, rH = r 2 , 

:, 
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jwt r I·e l. 

2 T; E'o C l. 

s 
- i ( 

r2 

sin(~~} ,·in (13r2) 
(--------r2 

r 1 

s :i. n u/J) sin ( A r l ) } ._, r . ) 
rl 
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The expression for E is given b 0
.' equation (l-G2) 

LIIIL4 
'.vhcre 

[ 
e-jl3r3 e-i/3(rl+II) 

r3 (r3-H) - r1 (r1) J 

I . jwt r .. 
= .1.e (·,) , -J/3r..., 

4 E 
•. < e _) 

1T oC l 

Iiejwt {z) { r 3cos(~r 3 )co, (P3) + !i sln(~r 3 )si~(f~) 

21TE,,C r 3 ( 1j2_ II2) 

_ cos{j3r 1 )cos(~~) 

1i2 

.'t 

'' ,t 

-,·, ,:f 

~·t 
f • 
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+j(Hcos(prJ)sin(¥) - r 3 si1(f3r 3)coe(~fr) 

r3 {r{ - H2) 

+ sin (13r 1 ) co::: (0f) )l~ 

1i J 
(1-77) 

E = the total tangential induced emf at a point Pon LIII 
LIII 

(l-78) 

1-12 The Total Tan<]ential Induced EMF at a Po.int Pon L -------------------------------Iv 

/ 

Define E = the induced 
LIVLl 

E = the induced 
LIVL2 current on 

E = the induced 
LivL3 

E = the induced 
LIVL4 current on 

z 
t 

' ' 
._..._.....----· ----- - -rS'- - ---

It. - - - ----

Fig. 1-16 

emf on L 
IV 

emf on L 
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where 

or 

The expression for E is <::riven by equation (1-48) 
L L 

IV 1 

Z==O ,· rII = r , r 
7 0 

= 

E 
LrvL1 

E 
LIVLl 

= 

j·wt 
lie -= 41TE

0
C(x) 

jwt 
::::: Iie h) 

4 'ITE0 C 

{ . j., ,\ j~(H-r7 ) -j~rr: 1 
J -e 8 

[ ;7 (r7-H) 
e :) I 
r 5 (rs) -l 

-j~.d.[ e-j'3(H+r7) e-j~rs]} +e 8 
r2 r 7 (r7+H) 
5 

r jf3(3i -r) . I?> ( 3 i\ + r7) -J -l (~ 7 e 8 + 
r7 (r7-H) r7(r7 -f II) 

-jpr 
cos(J3l)1 

2e 5 
.I;: 2 8 J ;,) 

2e-j~rr; 

r2 
5 

( 2r7COS (~) +2jHsin (~) 

r7 <rj _ u2) 
I 

;3 i\ l 
cos(~)> 

d I 
J 

I·ejwt 
l 

r 
(x) \ ( 

cos(t,r7 )cos(~) +Hsin(~r7 )sin(~iP-> 

r7 (r2 _ H2) 
7 

cos(~ rs) cos(~~) 

r2 
5 

) 

(1-79) 

-----·-------------------------,~~ ... ,,,, .. ______ ~-- ~'-~~' 

where 

The expression for EL L is given by equQtion (l-36) 
IV 2 
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(1-30) 

'rhe expression for E is given by cqu~:tion (1-51) 
LIVL3 

r +·(311 < e J 8 
I 
L 

-jell_ 
+e 8 \-

L 

c-j /3 (mrfl) 

r 8 (rn+H) 

+i ,S (H-r,,) 
C - u 

r B ( xJ -H :,- + 

-jBr ,, 
+ 2e 8 _ (a Ti\) · 

2 cos i-'- '> 
~ 8 J 

i~ 3 

= 
I '

jwt r -jJ3 r cos (/3 ~."') -2jII s ( ~ '\('- ) 
· (' · 8 (') 1 1 

( x-H) <1 -e (-----......... -------' -) 
.1'ifEoC ) r0 (~ - 112) 

- i...) l) 

-j~r -, -, 
+ 2c 2 (i CO:: (e ;?\) ;, 

1G ' 8 ' 

:, 

'. 
,,J 

', 1 

''! '' 

' ! 



~- ------- ------------------------------------

44 

( 1-81) 

The expression for E is given by equation (l-38) 
LIVL4 

where 

sin (13~>] 

sin c-W) cos (pr5) , 

r )J 
5 

{1-82) 
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EL = The total tangential induced emf at a point on LIV 
IV 

(1-83) 

1-13 The derivation of the Mutual Impedance 

Fig. 1-17 

The mutual impedance of the cubical qu3d antennn is 

defined as 

z 
21 

{1-84) 

where V 21 ·is the open-circuit voltage z.:t the t 

reflect loop due to a base current, r
1

, in the radiating 

loop. Now, the electric field intensity at all points alonry 

the reflectinq loop has been calculated, c1nd the problem is 

that of determining the open-circuit voltage ,0 t the terminals 

of the reflectinq loop. 'l'his voltage is the result2rnt of the 

voltages induced i11 all tho elemental lengths of the loop. The 

result may be obtained by an application of the reciprocity 

theorem. 
'' "l 



Con ider the reflecting loop with the radiating loop in 

place, but not radiating. A voltage v
2 

= r
2

(o)z
2 

applied 

46 

at the terminals will produce a terminal current 1
2

(0) and a 

current at any point, designated as I (i). 
2 

The impedance 

z
2 

is the impedance looking into the terminals of the 

reflecting loop. The reciprocity theorem states that if a 

voltage r
2

(o)z
2

, applied at the terminuls, produces a current 

r
2

(f) at a point along the reflecting loop, then a voltage 

EU.) dh, induced at 1. , will produce a short circuit current 

at the terminals. 

dI 
so = E (£} dh 

(1-85) 

The total short-circuit current at the terminals, due to the 

induced emf along the ent length of the refl,'.cting loop, 

will be 

I = l J, E ( i) I 2 ( 0 dh 
SC 1

2
(o)z 2 

By Thevenin' s theorem the opcn-circui t voltage c1.t the 

terminnls will be 

v
21 

= - I Z 
SC 2 

= -=-1-f, E (£) I (-l} dh 
1 2 (o) 2 

(l-Bb) 

(1-87) 

the minus sign results from the fact that either I or v
21 SC 

will be opposite to the ssumcd positvc direction when Uw 

reflecting loop is f;hort-circuited. 'I'he cxpres: ion for the 

mutuz:il impedance of the cubic,11 quad antcnn is 

:, 

. ~_l 
'·1 



(l-88) 

where r
1 

(o) = the terminc1l current of the radiutinc-; loop 

r
2

(o) = the tcrminQl current of the reflecting loop 

r
2

(t) = the current distribution along the reflecting 

loop when fed by a voltage at the terminals 

and with the terminals of the radiating loop 

open-circuited. 

E(f) = the induced emf along the reflecting loop 

due to the time-changing current in the 

radiatin<:f loop. 

Since the radiating and the reflecting loops are identical, 

r
2

(£) may be expressed as 

I
2 
(0 = -2I~ cos~t; + h)j ejwt ( 1-8~)) 

In equation (1-89), his equal to z when the current 

element is set in the z direction; h will be equ2l to x when 

the current element is set in the x direction. As waE stated 

in section 1-5, the current in L
111 

may be expressed as 

= 2 I '. cos :a ( 7 A - z ) 1 e j wt 
1 ~ 8 'J 

and the current in L may be expressed or 
IV 

EU) has been given by equations (l-68), (1-73), (1-78) and 

(1-83). Introducinq thc!::e expressions into cquc1.tion (1-88) 

yields 

47 
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. fJH 2I~c]Wt -
= i E cosiB( 

I1 {o) r 2 (o) j L L 
+z)J + [H : 0 (311 )-,1 cos LP 8 +x J dx 

I_ O I I 

l l
H 

7 /\ -
- EL cos [t3 ( -c-) - z) j dz 

o III 
0 

-1: cos ip(-4.-L L fl 
o IV 

dx J {1-90) 

where 

I ( 0) = 2 I jwt .e 
1 l 

I
2

(o) ::::: 2 I~ejwt 
L 

Equation (l-90) can be simplified to the form 

z 
21 

rlH = l < E co~ ! $ ( ~ 
I (o) I L L 8 

l ~ o I IH 
l - 3 /\ +6)jdZ + E cos \S(-.-
- L L E3 + x)j clx 

o II 

dz - I
H 

EL cos c~ ( 2:_ 
o IV 8 

- x)] dx (1-91) 

The integrals of equQtion (l-91) can best be evaluated 

by means of numerical integration. 

1-14 A Comnutcr Pro0r::,m For Evu.luat inc The Mutual Impedance 

A fortran II program was used to evaluate equation (1-91). 

'l'he approximation method used in the pro0ram is c;dled 

Simpson's rule. In the proqram the interval, !I - v1as 

divided into 50 equal pnrts. Ec::.ch part was O. 005 ,vavelenc:;th, 

0.5 cm, long. The output of the program represents the real 

part and the irnacrinarv purt of the mutual impedunce. 

The computer program is shown O.c 'he .;:0110,.,i,'t(; pc1gc . 
'l1 .. , 
\.,1. 

'. ·1 

:, 
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C REAL Pl\RT 01·' 'l'HE M:U'l'UAL IMPED!,NCE OF 'rIIE CUB ICi\L QUAD All'l'ENNA 
C IMAGINARY PART OF 'l'HE MUTUAL IMPEDANCE OF THE CUBICAL QUAD 
C ANTENNA 

DIMENSION VRl (51), VR2 (51), VR3 (Sl), VR4 (51) 
DIMENSION Vll(Sl), VI2(51), Vl3(51), Vl4(51) 
Y=O. 01 

1 X=O.O 
z=o.o 
DO 2 I~l, 51 
A=SINF(0.7854) 
B=SINF ( 3. 92698) 
C=COSF(0.7854) 
D=COSF ( 2. 35 619) 
Q=6. 28318 
Rl=sQRTP(Y**2+Z**2) 
R2=SQRTF(Y**2+(Z-0.25}**2) 
R3=SQRTF(O .0625+Y**2+Z**2} 
R4=SQRTF(0.0625+Y**2+(Z-0.25)**2) 
R5=SQRTF(X**2+Y**2) 
R6=SQRTE ( (X-0.25) **2+Y**2) 
R7=SQRTF (X·~*2+Y**2+Y**2+0.0625) 
R8=SQRTF((X-0.25)**2+Y**2+0.0G25 
Qli:::Q*Rl 
Q2=Q*R2 
Q3=Q*R3 
Q4=Q*R4 
Q5=Q*R5 
Q6==Q*R6 
Q7=Q*R7 
Q8=Q*R8 
SQl=SINF(Ql) 
SQ2=SINF(Q2) 
S03=SINF(Q3) 
SQ4=SINF(Q4) 
SQ5=SINF(Q5) 
SQ6=SINF (Q6) 
SQ7=SINF(Q7) 
SQ8=SINF(Q8} 
CQl=COSF ( Ql) 
CQ2=C0SF ( Q2) 
CQ3=C0SF (Q3) 
CQ4=C0SF(Q4) 
CQ5=C0SF(Q5) 
COG=COSF { Q(,) 
cQ7=cosF(Q7) 
CQ8=C0SF(QD) 

,.:, 

' :( 
,/ 

:, 
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OVRl(I)=+30.0*(+SQ2*A/R2-SQl*A/Rl+I3*SQ4/R4-B*SQ3/R3+(Z-0.2S) 
* ( (+R4 

l*C04*D+0.25*SQ4*B)/(R4*(Rt1**2-0.0625))-CQ2*D/R2**2)+Z*((-R3* 
2CQ3*C-0.25*SQ3*A)/(R3*(R3**2-0.0G25))+CQl*C/Rl**2)) 
3*C0SF(0.7854+Q*Z) 
OVR2(I)=+30.0*(-SQ7*A/R7+R7+SQ8*B/R8-SQ5*A/R5+SQ6*B/R6+X*((-R7 

*CQ7*C 
l+0.25*SQ7*A)/(R7*(R7**2-0.0625))+CQ5*D/R5**2)+(X-0.25)*((+R8 
2*CQ8*C+0.25*SQ8*B)/(R8*(R8**2-0.0625))-CQ6*D/R6**2)) 
3*C0SF(2.356l9+Q*X) 
OVR3(I)=-30.*(A*(SQ4/R4-SQ3/R3)+B*(SQ2/R2-SQ1/Rl)+Z*((0.25*A 
l*SQ3+c*R3*CQ3)/(R3*(R3**2-0.0625))-C*CQ1/Rl**2)+(Z-0.25)*((-D*R4 
2*CQ4+0.25*A*SQ4)/(R4*(R4**2-0.0625))+D*CQ2/R2**2)) 
3*C0SF(5.49778-Q*Z) 
OVR4(I)=-30.0*(B*SQ6/R6-SQ5*A/R5-A*S07/R7+B*SQ8/R8+X*((+R7*CQ7*D 
l+0.25*SQ7*A}/(R7*(R7**2-0.0625)}-CQS*C/R5**2)+(X-0.2S)*((-R8* 
2CQ8*D+0.25*SQ8*B)/(R8*(R8**2-0.0625))+cQ6*C/R6**2))* 
3C0SF(0.7854-Q*X) 
OVIl(I)=+30.0*(A*(+CQ2/R2-CQl/Rl}+B*(CQ4/R4-CQ3/R3)+(Z-0.25)* 
l ( (O. 25*B*CQ4-D*R4*SQ4 }/ (R4 * (R4 ** 2-0. 0625)} +D*SQ2/R2 ** 2) 
2+Z*((+C*R3*SQ3-0.25*A*CQ3}/(R3*(R3**2-0.0625)}-SQl*C/Rl**2)}* 
3C0SF(0.7854+Q*Z) 
OVI2(I)=+30.0*(B*CQ6/R6-A*CQ5/R5-A*CQ7/R7+B*CQ8/RO+(X-0.25)*((-C* 
1R8*SQ8+0.25*B*CQ8)/(RO**R8**2-0.0625)}+D*SQ6/R6**2)+X*((+C*R7 
2*SQ7+A*0.25*CQ7)/(R7*(R7**2-0.0625))-D*SQ5/R5**2))* 
3C0SF(2.356l9+Q*X) 
OVI3(I)=-30.*(A*(CQ4/R4-CQ3/R3)+B*(-CQ1/Rl+CQ2/R2)+Z*((-C*R3*SQ3 
l+0.25*A*CQ3)/(R3*(R3**2-0.062S)}+C*SQ1/Rl**2)+(Z-0.25)*( (+D*R4 
2*SQ4+0.25*A*CQ4)/(R4*(R4**2-0.0625))-D*SQ2/R2**2)}* 
3C0SF(5.49778-Q*Z) 
OVI4(1)=-30.0*(B*CQ6/R6-A*CQ5/R5-A*CQ7/R7+B*CQG/R8+(X-0.25)*((0.25* 
1B*CQ8+D*SQ8)/(R8*(R8**2-0.0625))-C*SQ6/RG**2)+X*((+0.25*A* 
2CQ7-D*R7*SQ7)/(R7*(R7***2-0.0625))+c*SQ5/R5**2)) 
3*C0SF(0.7854-Q*X} 
X=X+0.005 
Z=Z+0.005 
CALL ZMVR (VRl) 
ZMVRl=ZMVR(VRl) 
ZMVR2=ZMVR (VR2} 
ZMVR3=ZMVR (VR3) 
ZMVR4=ZMVR(VR4) 
REZM+ZMVRl+ZMVR2+ZMVR3+ZMVR4 
PUNCH 4, y, ZMVRl, ZMVR2, ZMVR3, ZMVR,1, REZM 
FORMAT (F6.3, 5Fl3.5) 
CALL ZMVI (VII) 
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5 

6 

29 

3 

4 

7 

8 

ZMVIl=ZMVI (VII) 
ZMVI2=ZMVI (VI2) 
ZMVI3=ZMVI (VI3) 
ZMVI4=ZMVI(VI4) 
ZMI=ZMVI1+ZMVI2+ZMVI3+ZMVI~ 
PUNCH 9, Y, ZMVI1, ZMVI2, ZMVIJ, ZMVI4, ZMI 
FORMAT (FS.2, 5Fl2.5) 
Y+Y+0.02 
IF(Y-0.05) 1, 1, 5 
Y+Y+0.03 
!F(Y-0.1) 1, 1, 6 
Y+Y+0.05 
IF (Y-1. 0) 1, 1, 29 
STOP 
END 
FUNCTION ZMVR(VRl) 
DIMENSION VR1(51), VR2(51), VR3(51), VR4(51) 
ODD=O.O 
EVEN:.0.0 
DO 3 I=2, 50, 2 
EVEN=EVEN+VRl(I) 
DO 4 J=3, 49, 2 
ODD=ODD+VRl (I) 
ZMVI=0.001666*(VI1(1)+4.0*EVEN+2.0*0DD+VI1(51)) 
RETURN 
END 

ZMVI(VIl) FUNCTION 
DIMENSION 
ODD=O.O 

VI1(51), VI2(51), VI3(51), VI4(51) 

EVEN=J.O 
DO 7 I=2, 50, 2 
EVEN=EVEN+VIl (I) 
DO 8 I=3, 49, 2 

ODD=ODD+VIl(I) 
ZMVR=0.001666*(VRI(l)+4.0*EVEN+2.0*0DD+VR1(51) 
RETURN 
END 

51 

-
1 
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The output data is as follows: 

Distance~- Br:~tween MutuiJ.l Impecli:,ncef-, ( ohmf') 
Two LoopE: 

y {cm) Rectanoulo.r Form Polar Form 

0.01 116.419-jl37.876 180 ; -49.s0 

0.03 ll5.SG7-jll9.440 166 [ -45. 90 

0.05 113.870-jl05.523 155 I -42.9° 

0.10 106.074-j85.784 136 / -39° 

0.20 77.432-jB0.953 112 /-46.2° 

0.30 37.954-j84.963 92.9/-65.9° 

0.40 -2.493-j78.030 78.l /_::-91. gO 

0.50 -34.350-j56.949 GG.S /-121.1° 

i 0.60 -50,989-j26.733 57.4 /-152.4° 

I 
/-184.8° 

I 
0.70 -50.396+j 4.232 50.2 

0.80 -35.415+j27.755 45.0 /-218.1° I 
0.90 -12,545+j38.575 40.5 L__=251.9° L 1.00 10.25l+i35.278 36.R /-286._2° 

------ - . --- -- ---~---···-------

Table 1-1 

Curves of the mutual impedance will be shown in the 

next chapter as a comparison with those obtained from measure-

ments. 

";I 
I ' ..,, 

1 

·"I 
t 
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CHAPTER II 

EXPERIMENTAL MEASUREMENT OF THE MUTUAL IMPEDANCE 

The mutual impedance of the quad antenna was analyzed 

mathematically using a few assumptions that can not be 

realized in the practical system. The mathematical treat-

ment, as was discussed in the previous chapter, is an 

approximation. The validity and usefulness of this 

approximation can best be determined by experimental means. 

Therefore, measurements of the mutual impedances were made 

to compare the results established in Chapter I. 

2-1 General Considerations 

Referring to fig. 2-1 the terminal impedances of two 

identical antennas are 

..!L Z2 =- Zself + 
12 

Zmutual 

where 2 self = the self-impedance of loop #1 or loop #2 

z = the terminal impedance of loop #1 when loop #2 
1 is in place. 

= the terminal impedance of loop #2 when loop #1 
is in place. 

' ·' ,,,' ~ 
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z 
self is further de ned as the limit of z

1 
as the 

current r2 approaches zero at the terminals of the other loop. 

Zself will in general depend on the spacing between the antennas 

since the current is not necessarily zero everywhere in the 

1 
second loop, even though the current is zero at its terminals. 

2mutual may be obtained by short-circuiting loop #2 and 

measuring the terminal impedance z1 of loop #1. Thus 

-
I2 Z z1 = 2 self + mutual 
I1 

(2-1) 

From equation (2-1) the value of the mutual impedance 

can be calculahed from a knowledge of only the terminal 

impedance and tho self-impedance. However, when takincJ .::mtenna 

measurements, it is impossible to connect a measuring meter 

or a signal generator directly to the terminals of the antenna: 

a tr ssion line must be used, With the transmission line 

in place, the impedances read in the meter are not necessarily 

the terminal impedances the antenna. If the transmission 

line is lossless and has no attenuation, the terminal impedances 

can be found from the meter readings by use of a Smith chart. 

1Jasik, Antenna Enr,incerin,( I!dndbook, McGruw-Hill Book 
Company, Inc., N.Y., 1961. 
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If the transmission line parameters are known, transmission line 

equations can be used. If the line parameters are not known, 

other techniques should be used. One of the possible techniques 

treats the line as a four terminal network. 

2-2 Four Terminal Network 

A transmission line can be represented by a circuit 

cons is ting of two terminals where power enters the ci1· cui t 

and two terminals where power leaves the circuit. The circuit 

is said to be passive, 1 c::tnd bilateral. It is passive 

because it contains no sources of electric energy, linear 

because impedances of its elements are independent of the 

amount of current passing through them, and bilateral because 

the impedances are independent of the direction of current. 

It can be shown that any linear, passive, and bilateral four­

terminal network can be represented by either an equivalent 

"T" or a "'TT" circuit so far as measurements at the input or 

output terminals are concerned. 

To find the relations between the sending-end and the 

receiving-end quantities, of a four terminal network, let 

us determine the vol and current at the sending end of 

the unsymmetrical T circuit of fig. 2-2 in terms of the 

voltage and current at the receiving end. 

'; 

.~ 

' . 



+ 
! 

I 
Vs 

Is -
y 

Fig. 2-2 

The current at the sending end is 

The voltage at the receiving end is 

vs = VR + IRZi, + IsZa 

= VR + IR~ + ZaYVR + IRZa + 

+ 

IRYZa~ 

= {l + YZa) VR + (Za +4) +YZa2b) IR 

The above equations are simplified in form by letting 

A = 1 + YZa C :::: y 

If the network is symmetrical, 

and hence A= D 

and substituting equation (2-4) into equation (2-3) 

Substituting equation (2-4) into equation (2-2) 

(2-2) 

( 2-3) 

(2-4) 

(2-5) 

(2-6) 

Since the unsymmetrical T circuit is valid for measur­

ing the end conditions of any passive, linear and bilateral 

56 
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four terminal network, equations (2-5) and (2-6) are valid 

for any c'uch network. The constants A, B, C, D are called 

the generalized circu constants. 

57 

Solving equations (2-5) and (2-6) for VR and IR 

DV8 - Bis 
V = (2-7) 

R AD - BC 

AI 8 - CV 
= Iii 

AD - BC 
(2-8) 

It can be shown that AD BC= 1. Substituting this relation 

into equations (2-7) and (2-8) 

VR = DV
5 

(2-9) 

(2-10) 

When a transmission line is chosen, the generalized 

circuit constants can be computed by making a few impedances 

measurements on the line. The impedances to be measured are: 

Zso = the sending-end impedance with the receiving­
end open-circuit 

= the sending-end impedance with the rcceiv 
end short-circuit 

ZRo = the receiving-end impedance with the sending-
end open-circuit 

ZRs = the receiving-end impedance with the send 
end short-circuit 

'l'he impedance mec1sured from the sending-end can be determined 

in terms of A, B, C, D constants from equations (2-S) and 

( 2-6) . With IR==O the equations sri ve 

Z = ~ c:= A 
so c Is 

(2-11) 

,,; 

< :> 



and with VR = 0 

c.: V_.s 
zss ~ 

I3 ==-
D 

(2-12) 

To find the impedances measured from the receiving-end, 

equat s (2-9) und (7-10) must be modif ch2nging the 
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signs of all current terms. This cho.nge is necessary because, 

with the voltaqc applied at the receiving-end rather than ut 

the sending-end, the direction of current flow af"iumed to be 

positive when measuring impedance is opposite to the din~c 

. 2-2 to which equations (2-9) and (2-10) apply. 

The equations become 

From equntions (2-13) and (2-14) with I s 

VR = D 
IR C 

and when Vs= O 

::.:1:::: B 
IR A 

0 

(2-13) 

( 2-V\.) 

(2-15) 

( 2-16) 

the v~lues of the ABC D constants in terms of meusured 

imped,mccs are found as follows: 

A 

0 

AD-BC 
AC 

r------· 

Zso 
- ·-------

"' 2 Ro-ZRs 

_l._ 
AC 

(2-17) 

After "A" is computed, the other constants may bl~ found by 

equations (2-11), (2-12) and {2-1S); and then nct\10rk element:" 

.) 
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Za' 2b and Y can be computed by equation (2-4)o The accuracy 

of such a network depends on how closely the measured data 

approaches the actual conditions. 

2-3 Equipment Used 

The antenna under test was made of copper wire with a 

diameter of 0.133 cm. It wc1s formed into two sqnc1rc loop~; 

mea~,urins 25 cm per side, in other worclr·, itf'. circ...~::nfe1--enc(! i: 

'"" '"'I 
I ·-~~; 

'I • 

:~ 
.~1 

100 cm which ir:: one wc1·1e-len J th for an e lectromasn ct ic wave of 300 ) 

megacycles propagating in vacuum. The antenna was fixed on 

a wood frame to make sure the two loops were parallel and had 

their centers on the same axis. 

The radiating loop, which was a balanced device, was 

fed by a 300-ohm balanced transmission line. The other 

end of this line was connected to a balun transformer, 

which transforms the balanced system to an unbalanced detecting 

system. 

The balun transformer was adjusted for proper operation 

at 300MC by means of adjustable stubs. This was done with 

the aid of an admittance meter. 

The b2lun transformer and the admittance meter were 

linked by the type 874-LK constant-impedance adjustable line 

adjusted to an odd multiple of a quarter wavelength. Therefore, 

the admittance meter measured the resistance and reactance of 

, 
j 
',,, 

.,1 
•,/1 

;f 

1 



the balanced circuit. 

A crystal mixer was used to combine the 300 M.C. and 

330 M.C. signals to produce a signal of 30 M.C. which was 

measured by the i-f amplifier. The block diagram of the 

system is shown in Fig. 2-3. 

2-4 Experimental Results and the Corresponding Culculations 

The impedances measured on the admittance meter of 

fig. 2-3 are the impedances appearing across the balun 

terminals; i.e. the impedances looking into the 300 ohm 

twin lead. 

It was shown in section 2-2 that the equivalent circuit 

of the transmission line could be obtained by a few impedance 

measurements. They are: 

Impedances in ohms 

zso 105 + j 475 

z 40 - j 175 
ss 

z 100 + j 467.5 
Ro 

ZRs 37.5 - j 175 

Table 2-1 

The generalized circuit constant "A" may be obtained from 

equation (2-17) 
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r 
I 

i 
I 

/1 
l/ v 

300 ohm 
Twin Lead 

~=l 
~MC 

,---- ··-
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I 30 MC 300 MC 
jI.F. Amplifier -+--· - :Admittance 

r·----·-
300 Mc I Local J 

~--foscillator #11 LDetector ---~I ---1 Meter 
Combination .....__ _____ _, 

- -~ ---, ,-_.__.___ 
Local I lcrysta11 

Oscillator# 2 ~--~ Mixer I 
330 Mc I L I 

[j_oo MC 1 

I 

1=d~y1 

Fig. 2-3. Block diagram of circuit arrangement for 
impedance measurements 
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and 

,---
/ 485 / 77. 5° 

A =,)62.5 + j642.5 

=Jo. 754 /-6.92° 

= 0.87 

C = 

= 

A 

Zso 

o. a1 L-3. 460 

485 /77. 50 

= 0.869 - j0.0525 

= 0.00179 1-80.96° 

= 0.000282 - j 0.00177 

D = C·Z 
Ro 

= 0.001191 -80.96°. 411 L 11.9° 

= 0.854 

= 0.852 - j 0.0461 

B = D • Zss 

= 0.854 l.:i. · 119 L-:-.7-7_._1 ° 

= 152.7 80.16° 

Elements of the equivalent circuit may be obtained by 

substituting A, C, D constants into equation (2-4). Thus, 

y = C 

- 0.000282 - j 0.00177 mho 
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z 
a 

A-1 
=-y---

= -0.131 - j0.0525 
0.00119 L -80.96° 

= 78.8 

= 17.5 - j 76.9 

= D-1 
y 

ohm~:: 

-0.148 - j 0.0461 
0.00119 L-so.96° 

= 86.6 / 278.26° 

= 12.45 - j 85.75 ohms 

The equivalent circuit diagram is shown as follows: 

z =11.s-j16.9 n Z =12.45-jBS.75 Sl ----,I~ ---iif--~ + T- - _,,·--~--

[~ 
! 

0.000282 
-j0.00177 t.r 

Fig. 2-4 

When the cubical quad cntenna was connected to the 

transmission line the impedances read from the admittance 

meter were a~ follows: 

63 
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I Distance Bebveen Impedance 
T\vO Loops (cm) Rc:s !:'tance Reactance 

(ohms) (ohms) 

I 
I I I 228 -220 I I DO 

100 243 -212 

I 
90 226 -206 I 
80 

I 
210 -216 I 

I 70 226 -240 ! 
i 

60 I 252 -250 

l 50 263 -210 
40 235 -165 I 30 190 -160 I 

20 136 -178 
I 
I 

10 74 -200 I 

Table 2-2 

Those impedances are the impedances appearing across 

the balun tenninals. The impedances looking into the terminals 

of the radiating loop may be obtained by the following calcula-

tions. 
z~ zb ·---~~--A,,v\---~1~--.~~~,~~~~~~, 

Z«, : z.uc: Ji 228 -j 220 r.~~ +:--~~~~ t--------i1-

F ig. 2-5 

zab = 228-j220-Za 

= 228-j22)-17.5 + j 76.9 

= 210.5 - j 143.l 

= 254.5 ohms 

yab = _i_ = 0.003925 L 34. 2° 
Zab 

= 0.003242 + j 0.002205 

C 

mho 

' .~ 



z 

Yac == Yab - Y 

== 0.003242 + j 0.002205 - 0.000282 + j 0.00177 

self 

= 0.002960 + j 0.003975 

== 0.00495 

:::;: 202 

::::: 121 jl62 ohms 

= zac ~ 
::::: 121 jl62 - 12.45 

= 108.55 - j 76.25 

== 13 2. s L_:-1s .1 ° 

mho 

+ j 

ohms 

85.75 

Zself if the self-impedance of the single loop. Other 

terminal impedances may be obtained in the same way. They 

are tabulated below: 

Distance Between I Terminal Impedances! 
I Two Loops ( cm) · ( ohms) ; 

oo 108.55 - j76.25 ! 
100 117.85 j77.25 

90 112.55 - j67.75 
80 100.45 - j67.25 
70 99.55 j84.75 
60 108.55 - j95.25 
50 128.55 - j85.75 
40 135.37 - j50.40 
30 109.0 - jl2.65 
20 69.67 jl9.90 
10 22.35 - j20.45 

Table 2-3 

Knowing the self-impedance and terminal impedance,. 

the mutual impedance between two loops of the antenna may 
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be founded by equation (2-1). The calculation of zM
30 

is 

typical. By equation (2-1) 

(7'M30 ) 2 = Zself (2self - 2 30) 

66 

Where Z30 = the terminal impedance of the antenna when the 
distance between two loops is 30 cm. 

2
M30 = the mutual impedance between two loops when 

distance between them is 30 cm. 

z - z 
self 30 = 108.55 -j76.25 - 109.0 +jl2.65 

= -0.45 -j63.6 

= 63. 60 L:9o .1_f ohms 

13 2 • 5 • 6 3 • 60 -35 - 90 42° 

= fi44o- L -62. 76° 

= 91. 90 L=-~2. 76° 

= 42.1 - j81.6 ohms 

Other mutual impedances may be founded in the same 

way. They are tabulated on the next page. 

,.: 
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l ' Mutual Impedances { ohP1<;) 

l ' Rectangular Form Polar Form 
i 
I z self 108.55 j76.25 132.5 L-3'J~!o -

I 2
Ml0 96.60 j65.10 116.6 L:::_l4o -

I 
I 2M20 67.40 j67.80 95.6 L -45. 15° -
I 
I 2 ~130 42.50 - j81.6 92.0 ; -62.5° 
l 
i ZM40 6.08 j70.l 70.4 L -s5.os0 
I -
I 
i 

2M50 -27.30 - j46.8 54.2 L-12o_~ 25° 
! 

I ZM60 -44.5 - j23.l 50.2 L -152.6° 

ZM70 -40.5 j 2.94 40.6 L -1s4 .15° 

I 
I 

ZMSO -31.4 + j26.6 40.l L -221. 55° 

I 

ZM90 l::J_s5.12° I 

8.6 j32.5 I 33.6 

I 
- + 

I ------

ZMlOO 13.88 j33.4 I L-292. 56° 
i 

I + 36.2 I 
j_ ••• . ·--- -·-- -- _________ ____) 

Table 2-4 

Curves of the mutual impedances obtained from calcula­

tions and from measurements are drawn in fig. 2-6 and fig.2-7. 
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2-5 Discu£;sion 

'l'he mutual impedu.nce between t\vO loops is z1 measnre 

of the volt ,F:c induced at the tern inal s of the f:econd loop 

for one ampere of current flow into the terminals of the 

first loop. As the two loops are brought closer together, 

the voltage induced in second loop becomes equal to the 

back or self-induced emf ai:::ainst which the current in the 

first loop must be driven. Therefore, it would be expected 

that the mutual impedance between two cal loops would 

approach the [:elf-impedance of one as the loop spc1cin9 

z1pp:r::Oaches zero. Hence, if the space between two loops is 

put equal to zero, the real part of the mutual impedance is 

c:_~qual to the radiation resistance. However, the rcact.:mce 

of u loop with a wire dic1meter of zero will be infjnity 

{n'.): c; The last term of equation (l-G4)). I,_ is evident 

that in computing the reactnnce of the antenna, its wire 

diameter will have to be considered. 
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CHAPTER III 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

3-1 Conclusion and Discussion 

The results of this thesis show that the measured 

values follow closely the calculated values. The slight 

deviations are due to the following reasons: 

(a) The antennu is not located at a place which is 

completely free from obstructions in all directions 

(the antenna is not in free space). 

(b) The gap between the two tenninals is not 

infinitely small. 

(c) The ohmic losses in the antenna loops are not 

zero. 

(d) For an antenna loop with losses, the velocity 

of wave propagation is not exactly VP = k ; 
it changes with frequency. Hence, the one meter 

length loop is not exactly a full wavelength 

around the periphery. 

(e) The two loops are not exactly parallel and their 

centers are not exactly on the same axis. 

(£) The 300 ohm twin lead is an unshielded transmission 

line; it effects the near fields of the antenna. 
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(g} The current in the radiating loop is not 

exactly a sinusoid. 
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(h) The equivalent T circuit does not exactly represent 

the 300 ohm line. 

(l\) When the line is o,)en circuited, the fringing 

capacitance will effectively make the line 

appear to be longer than it really is. In the 

short circuited case, inductance in the short 

circuit strap will cause a similar error1 • 

(B} In measuring ZRO and ZRS the test equipment 

should be located at the receiving end, where 

the antenna is to be connected; and the open 

circuit and the short circuit located at the 

sending end. It is, however, impossible to 

locate the test equipment at a height corres­

ponding to the antenna height. The data for 

ZRO and ZRS were, of necessity, measured before 

the transmission line was put in place; the 

result being a slight error in the equivalent 

T rcuit. 

Some of the affects listed above can be avoided or reduced. 

1Note: In U.H.F. type 871-WN short circuit termination and 
type 874-WO open circuit termination are used, but 
they do not fit the 300 ohm twin lead and the terminals 
of the balun. 

'I~ 
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For instance, if a completely shielded balanced line is used, 

errors due to terms (f) and (g) disappear. If a transmission 

line with low characteristic impedance is used, the reading 

of the admittance meter will fall into the maximum accuracy 

range; better results will be obtained. 

The line used does not appear to be exactly synunetrical 

This is due to poor manufacture 

and capacity differences along the line to the ground. Since 

2Ro, 2Rs, 2so and 2ss were measured this discrepancy does not 

introduce any error. 

3-2 Suggestions for Further Study 

The field pattern and the gain of the cubical antenna 

can be found with the knowledge of the pattern factor of the 

single loop and the data of this thesis. 

The radiation resistance of a single loop was obtained 

by the extension of the 2
MR curve to the vertical axis. The 

radiation resistance of a single loop could be obtained by 

integrating the radical component of the Poynting vector over 

a large spherical surface. Similarly, the radiation resistance 

of the cubical quad antenna could be obtained by integrating 

the radical component of the Puynting vector over a larqe 

spherical surface. 

The radiation loop need not necessarily be fed by a 

single power source or the curr •nt distribution along the 

radiating loop need not necessarily be a cosine wave. The kind 
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of the current distribution that will yield maximum radiation 

. 
or the kind of current distribution that will yield a desired 

field pattern are worthy of study. 
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APPENDIX I 

Prove that 

J dh 

tHjl.Ht-r) -j/3 ({ +r) 
·a e . + 

+J,-, r 
0 

I . jwt I~ j/3({-r} -jp(t'.+r)1H} _ ie I e e , 
-· 4 rrr E

0 
c L r r J0 

' 
dh ~ 

J 

where r = fa2 y 2 + (z-h) 2 

proof: 

set 

set 

+ 

-j(3{.l+r) +j~(t-r) 
[ ~e -c J 

r 

-jd (z-h) e -jf3 (!+r) 

r2 

j (3 (z-h) cj /3 Cl-r) 
+ 

r 

(z-h) e -j~ ({'. +r) 

r3 

(z-h) ejl-' Ct -r) 

r 

l H r G -jf3 (~+r) _ej~({-r) 
F = _l_' ]ah 

1 3Z L 
{i 

+J~z-h} [ j/3 (i-r) -j/f (t. +r), 
~-~- e -e J dh 

o r 

1 ~{i ( z _ h) [ j ~ (l -r) - j i3 (t + r) J 
::::: ] C - e dh 

r2 
0 

jt3(€.-r) -jt,(l+r} 
[ e +e ] dh 

but 
-jt3(t1-r) 

-
d ,~i j3 {i +r) -j(3e 

I =------1) = __;.. ____ _ 
+ j~(z-h)e-j~{l+r) 

r2 oh r r 
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+ 
(Z-h) e- j f3 (l +r} 

r3 

'(.J j~(e-r} 
Jpe + 

r 
j~ (z-h) ('i~ (t-r) 

r2 

(z-h) ejf, (l-r) 
+ 

r 

Compuring (I), (II), (III) and (IV) 

1~a ,jt3(i.-r) "?J 
F +F I ("' ) 1 2 - Loh r - oh 

0 

Q
j~(l.-r) -j~(.l+r)~H 

e e J = r - r 
0 

-j/3{.e+r) 
(-c __ r ___ )j dh 
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{III) 

(IV) 

or 
. jwt r,.. j~(t:-r) ,, ja (l+r) H1 

I1c J ,e "" J Ez = 4 'IT E i ! - Q. E. D. 
0 C 1 ... r r o j 
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APPENDIX II 

5 Expanding the perfect differential of equation (1-44} 

d C 1 f, {h- r) 1 i z-h -\ f?, (h r) 
cl.n" r(r-h+z} = 2 1 <Lj~(r-h+z}r(l+ ~)e . -r (r-h+z) r 

- [<r-h+z) h- + r c;+h _l~ej ~ (h-r) } 

ej {3 (h-r) r. 2 
= r2(r-h+z)2JJ~(r-h+z) 

..--h+z} + (r-h+z} (~ r ) 
.... 

6 Expanding the differential of equation (1-45) 

d -je(h+r} 1 { h-z -j/:3C1+r) 
- e == - 2 r(r+h-z 1 (-jfa) ( l+-)e .. 
dh r(r+h-z} r2(r+h-z} · r 

-[h;z (r+h-z) + re~ + 1 )] e-i~ (h+r)} 

-j f3 (h+r) r 2 _ (r+hr-z) 2 } 
e2( )2\-jf3(r+h-z) 
r r+h-z L 

= -

= e 
jf3 (h+r) 1 

J 
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