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INTRODUCTION

Rectangular loop entennas and rhort electric dipoles
are two of the oldest antennas in existance, In 1888,
twenty yeors after Maxwell invented his famous Maxwell's
equations, lertz used these two ontennas to prove that
high frequency electric energy sourcc. could radiate electro-
magnetic waves.
The "Cubical Quad"l or, s=imply, "Quad” antenna is a
develooment of the rectangular loow ontenna. It consists
of a pair of =square loops, one-qguarter wavelength on a
side or one wavelength around the periphery: one loop
being driven and the other used as a parasitic reflector.
The separation between the two 1s usually of the order of
0.15 to 0.2 wavelength, with the plance of the loops parallel.
While studying the properties of this antenna, it
was discovered that little had been done to develop it
from a theoretical aspect. The purpose of this thesis is
to obtain values of the celf and mutual impedances existing
in such an antenna array. The values are obtained {rom math-
ematical analyvsis and experimental mecsurements and may be

used in field pattern and gain calculationes,

Ithe Radio Amcteur's Handbook, American Radio Relay League,

39th Edition, 1962.
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CHAPTER I

CALCULATION GF MUTUAL IMPLEDALICE

Before doing any malhemat ico2l tnalysis come srumptione,

e e

that cennot be realized in the proctical systom, mart be

described. They are: 4

(1) The antenna isr locuted at a plece which irf *
completely free from obstructions in all dircctions.

(?) The gap between the two .nput terminals i¢

infinitely small.
(3} The ohmic loscses along the antenna are negligible.

The following analysis is based on ideual situations,

In the derivation of the mutual impedonce between tw
loops it is necesesary, first of all, to derive an expression
for the current distribution along one loop. Then, the induced

electric field intensity at any point P a2long the sec-nd

loop, which ir produced by the retarded charges and curreonts

on the firscst loop, can be determined. The power reaqulired

to produce current against the opposition of the induced
emf on the first loop is computed for each infinitely-~

small element. The tot:l power ic obtoined bv intearatin:

over the whole length of the first loop. Thig gives total
power, real and reactive, recuired to ectuablish the current
against the induced emf .nd from this the mutual impedance

may be calculated. This method is well known as the "induced

U, W W TR B W WROWR WM W IR e,

emf method”.




1-1 Current Distribution on the Radiating Loop of the
Cubical Quad Antenna

The square radiating loop 1s one-dcuarter wavelength

on a side or one wavelength around the periphery. If it

B

is fed by a balanced two wire line, the potential of one
wire must be equal and opposite to that of the other with

regspect to the ground and equal out-of-phase currents must

-

flow at the feed point.l Assuming the conductivity of the
loop ig infinite, it can be viewed as a losuless trans-
mission line short-circuited at the point "e" (see fig. 1-1).
Morecover, 1f the balanced two wire line transmits a sinusoidal

wave to the input terminals of the locop the current of the

incident wave may be exprescsed as

where immaximum incident r.m.s. current.

=27/» phase constant

D =reference distance. Taken as zero
at the short circuit point.

The expression for current of the reflected wave will be

Irej (wt-8D) (1-2)

where Ir=maximum reflected r.m.s. current.

Skilling, Electric Transmiscion Lines, McGraw-Hill Book
Company, Inc., p. 93, 1961.

Krause, Antennas, McGraw-Hill Book Company, Inc., p. 415,
1950,

!



At the short circuited point "e", I; = I_. hence, the total

1 r

current will be

Bl

1.0J (wt+8D) _ ; _J(wt-8D)
1 r

Iy (£)

i

21, Cos (BD) eI ¥t (1-3)

Equation {l1~3) shows that the incident and reflected wavecs

combine to produce a standing wave which does not progress.

The current distribution curves are chown in fig. 1l-1 and

fig. 1-2.
Lz
, ~ 1 Iy
a € f {
( A
3
Li< cé 25 L3
] r i T
i | i P
A w,{/// ‘ | |
. }_f;a L/ Lyobe L;—*—Lz—*m L3—*L‘
Ls
Fig., 1-1 Fig. 1-2

In fig. 1-1, the four sides of the loop are marked Ly,
L,, L3, L, respectively. The arrows indicate the in-
stantaneous current directions and the dots indicate the
locatione of the current minima. For convenicnce, it is
better to shift the D=gp point from "e" to "a" such that:

D :£~;

Ny

1(8) = 2IicOs@(2—-%Lﬂeth {1-4)

=—?IiCOS(B£)93Wt
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Where ¢ 1is the distance along the radiating loop

measured from point "a", defined as follows:

na
= =
5 = h
n=090,1, 3, 5, 7, 9 ===

Referring to fig. 1-1 and fig. 1-2, n is equal to 1, 3,

5, 7 for Ll, L L, L4 respectively. The distance h,

2" 73
in wavelengths is measured from the point b, d, £ or i in

the clockwise direction.

1-2 Retarded Scalar Potential

The elecfric scalar potential due to a point charge
is a linear function of the value of its charge. It follows
that the potentials of more than one point charge are
linearly superposable by scalar addition. In static elec-
tric fields, the potential at P (x, v, z) due to distribu-

tion charges along a line is

! n |
v = Weof L dh (1-6)
where f = linear charge density (COUlomb/meter)

€, = permittivity (dielectric constant for vacuum)

1
T 36 ¢r109 (farad/meter)
r =M/;2 + y2 + (z-—h)2 (meter)
dh = element of lenath of line in meters

The integration is carried out wherever f£ has
value.

|
1
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| Fig. 1-3
In time~changing fields, f; is changing with time.
Its expression can be deduced from the continuity relation

between current and charge density. The continuity of

(positive current flow K must be equal to the negative rate
of change of charge with respect to time.

fj’.dé,’:: - ‘—g‘éév (1-7)

S

or vF=- 2P
2t

Now I is everywhere in the h direction {in fig. 1-3, z and h

are in the same direction). The above expression becomes

V'I = __g.%h F=J—. —%—@* (1'8)

}
current gctates that avnet flow of current out of a volume {
(
[}
f
4
f
?
i




or 2l - - _g.{;g_ (1-9)

£ =- -%}-I{b-dt (1-10) %

where I, = current in the wire (amps)

ﬁ_= linear charge density along the antenna
(coulomb/meter)

Substituting equation (1-4) into equation (1-10)

It

—21J sin[B(LA- +n)] eIVt gt

23Ti sin[B(H-A +n)] jwt
7 e

+ C

The constant of integration C indicates .. lineaxr
3 charge density independent of t could be present. Since
such a charge distribution, if it Joc¢. exic., will nol <on-

tribute to radiation its existance will be ignored.

ﬁ_ _ 213 sin[ﬁgd-n-g— +h)] ej (wt + _%,-_ ) (1-11)

Hence

The space charge distribution curve is shown in fig. 1-4.




Ig time-chunging fields the effect of charge is not felt
instantaneously at the point P, hut only.after an interval
equal to the time required for the disturbance to propagate
over the dictance r; this time interval is

{%. seconds

where c = velocity of light ( = 3%108 moters/sec.)
We can introduce this time of propagation, called the

time of retardation, and write

i3

- 3¢ — r
) “i"“,l‘?""“@% ]t E)

231,8 sin[ﬁ(llg’"‘- +ny] eIW (t- %)

W

(1-12)

B%J is called the retarded charge density. Substituting

it into equation (1-6) gives
Fwt

n
ine r sin@(*w—%~ﬂmﬂ ~iBr
) i [ [ - e

3 th < {5 -33.‘. —
_dIje sin{8( 5 A +h8 o BT
2mMEC

dh (1-13)

r

[\/] is called the retarded scalar potential.

1-3 Retarded Vector Magnetic Potentiol

In static magnetic ficlds, the vector potential can

be expressed in the form2

2 .

Jordan derives A from the mic ~tic intensity H, hence the
expression for A does not invol i, : while (1-14) 1is
derived from B.

W e e W S M, At AT, g, —mnparsismons. i O TR e Wi L G I et G, sl <. .o SR
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- ﬂ? :]? .
A = 4Wfff? dav (Webexs/meter) {(1-14)

Where A = vector magnetic potential at point P
Mp= pormeability of vacuum (henrys/meter}
T = current density at volume element (amp/meter2)
dv = volume element (metorB)

r = distance from each volume element to the
point P (meters).
If J is confined in a thin wire as stated in §1-2, J is
everywhere in some particular direction h and alsoc is

uniform. Thus

3
o
[
=
L‘-‘
?
jon
<
il

ahffth ds dh = ‘5hf1 ah (1-15)

Where 35 = unit vector in h direction
ds = area element
dh = length element
I = J,a = current in wire

Substituting (1-15) into {(1-14) gives

5 _ _hko
A = Wf —%-dh (1-16)

As stated in §l—2, in time-changing fields, the

n

effect of current changes on the antenna are not felt

e e

T e W "l A . A oo A O N W L G AR 2 A . i —ibliraetrali it ~ e .. oD un
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10
instantaneousgly at the point P, but only after an interval
equal to the time regquired for the radiated wave to reach

a distance r from the radiating element. This time

- — -

internal is
r
7; seconds

Hence, equation (1-16) must be modified by a time factor.

- . (X
T~ Fhi AL -
Bl= 5 = dh (1-17)

[3] is called the retarded vector magnetic potential.

Substituting equation (1-4), the current in the antenna,

I i GNP S T PR

into equation (1-17) gives

s

gl

.o . r
[’A‘] = ~5i %k cos [g( B%. +h)] oJw(t=2)
2T —- . dh

_I‘ET] /LLO cos {_ _21_7\ 1} \ | j(\\lf“Br)
o f = T e an  (1-18)

1-4 The Induced EMF on the Reflecting Loop

Set the cubical antenna in rectancular coordinates
with the two identical loops parallel and with their
centers on the same axis, as shown in fig. 1-5. The four
sides of the radiating loop are marked Ll, L2, L3, L4

respectively, while the four sides of the reflecting loop

are marked L L L , L

I 1 TIT vs
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Z
3
d
La / Lx
¢l L by
£
b - Y
L |’ = Ly
&
st
A .
Fig. 1-5

The current and charge distribution on the radiating

loop have been shown in fig. 1-1 and fig. 1-4., The pointe
a,b,c,d,e. £f,g and i on the loop are the same as thore of
fig. 1-1 and fig. 1-4.

Knowing the current and charge distribution, the

retarded vector potential A and the retarded scalar

potential V moy be obtained by equations (1-13) and (1-10).

Knowing the retarded scalar potential and retarded vector
potential, the electric field is evervwhere chtainable

from the relation

— 2R
E=-¥YVv - EYS {1-19)
where Vx”a’x—g-x-+”é’y%+gz_§.§

in rectangular coordinates.

.

p———

e TN S A . Rt st Obrl . . e Bl s
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B A
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Since the field intensities are superposable by
vector addition, the four sides of the fadiating loop can
be treated as four radiating elements. Each element
induces an emf at a point on the reflecting loop. The
vector sum of the four emfs will be the total enf due
to the radiating loop. The following sections deal with
this kind of derivation.

1~5 The Induced EMF in the z Direoction Due to the

Current Element in the 2z Direction ¥

In the following derivation let the current clement
be coincident with the z-axis. A point on the currcnt
element is designated h. A point in space is given in
rectangular coordinates by P(X,v,z). The electric field

intensity at P(x,v,z) is

T - 2 -
E=-VV - 5T (1-19)
where VV = The gradient of retarded scalar potential

at point P{x,v,z)

VV =357 * 4, Sv*t & 5%

R = The retarded vector potential at point
P(x,v,2)
When only the z component of the electric field is required
equation {(1-1¢) reduces to

= - QY _ 2rz -
Ez 0z 7t (1-20)

e T A AN . At ittt it ~ st ~, . BB e,

o,

e e ., e Qe . A

-~

. —
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Fig. 1-6
Introducing the retarded scalar potential V and the

retarded vector potential-x into eguation (1-20)

. | .
- 2Y L j_EieJWtf 2 { sin [A(5 A *‘h)]e-jsr} -

2z 2ME,C 2z T

}

-

an, _ jwlilly [cosBCE +ned (we-bn)

at 2™ -
. n

+h) _ e-ﬁ(-—g-}—?\m)]

*

: na
. e sin[s(—;-‘-zwmj:%. [ejﬂ(—g—-

2 n?\ —- .L
cos@(-g»jk +h)] = _l_[ejﬁ(—g— +h) | o 38 ( o A +h)]

. AV ~Ijed 35“ -r)_ ‘38(£+r)J
" 0z ATi€EcC faz [ dh (1-21)
(£-r), -jB(£+r)
- aaA: B JWIJ’;&’ thf ]B r dh (L-22)

Substituting equations (1-21) and (1-22) into eguation

(1-20) vyields
E "-..?..X 0Bz

- e

z 2z 2t
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oWt M B -1) =3B +T)
B =”'I'~l7'?eocfaaz{_e - A dh

jwliuoejwtfejﬁ(l—r)+e-j9(Z +1)

+

4T T dh (1-23)

e -~

where £ = EgL + h it is defined in equation (1-5) ,
A
1 27 B 3
= f - =S = -
WALy 27 CAEO % CE, ZT (1-24) |
Substituting equation (1-24) into equation (1-23) yields i
: 8 (4§ ~ -3B (£ +r)
R jwt £ oJBE-1) _o 3B an |
z 41 e, C 2z r :
i1iedwt JJBWU-T) | ~3B+r) |
+ 1e dh (1-25)
“4MTe,C r
Eguation (1-25) represents the field intensity at P due to ;
1

the retarded charges and current. The integration of
equation (1-25) is carried out everywhere along the Z axis.
The total field intensity due to all the retarded charges

and current distributed on the element of length H will be

H ,
. Jwt -8 (L+r)_ tiB(€~-x)
B = +%.£ﬁe,_3...c.{, 2 { e3B! e th {
0

r is a function of x, y, z, and h:; ¢ is a function of n and h.

2 €0 22 r
H_ . 1B (L-x)
~38 (€+1) 38 ( 3
+ jB.[e :e dhj (1-26) ;
0 |
One can prove y :
. . - -jB (€ +r) 7
riodwt [ jB{-r) e 38 S
E_= 4l;eac S - = Jo (1-27) |
!
[
/

r = r(Xchz'h)
]
t
é = ,h 3n7\ + h |
€(n,h) == + E
'
When h = H, set r = r{x,y,z,I) =r '

H

3
Apprendix I




and £= {(n,H) =Ly

when h = (0, set
(1-28)

i

r r(x,y,2z,0) = r4

e

{

It

£ (n,0) =4,

Expanding equation (1-27) vyields

B Uit 3B U -8 Ugr)

- +

_ Iiejwt[ ejﬁ (iﬂ-rH)
r

E, = - -
Z 4Te,C 2| rH o i)
jwt - ~3Br, . . -38r . )
_Le [@ Hi By _~3Bly) , e "o (-8l _ iRl
4Te,Cl Ty e © o (e e )
ST jwt —jﬁr ""j@l' -
or E = 17187 [?-——;-—-—-}—{ sin{gf - ?—-—»——gsin(ﬁﬁ )J -
zLy 2ME, C i H Yo ©
r =,/x2 +- y2 + (z—h)2
? (1-29)
= ._Z‘.\_. BN fooer _7-\—
E is the incduced emf in 2z direction due to the current and

ZLl

charges on Ll' Now if the point P is brought to the surface

of L, or L

I equation (1-29) represents the tangential field

111’
intensity at P due to time-changing current distributed on Ll'

For the field intensity due to current element L3, it

is necessary to consider the field due to the charges and the

field due to the current separately.

]

Tt

—— e R . W . S

-y

— e —— o— O
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Looking back to the equation (1-26), itvis understood
that the first integral was the result of the retarded

charges, while the second integral was the result of the

o st

retarded current. Charges on the side L3 were given by the

equation (1-11) which is
P = 211f3“”‘[5<28* ] o3 (vt
L

where the positive h direction is in the negative =z

direction when the antenna is located as shown in fig. 1-7.
Now if the positive h direction is changed to the positive
z direction, the charge distribution on L3 can be expressed

as

B e s it TS N S S ..

-h)] e (Wt-i—%—)

(1-30)

P o= 2Ilﬁsln[3(*g'
=

Hence, 1if ‘Z==Z§L - h the first integral of the ecquation
(1-26) represents the field intensity due to the charges on ‘

the side L3.

In Fig. 1-2, the current on the side i-g-f is flowing in
the same direction as in b-c-d. However, in fig. 1-1, the
current in i-g-f is flowing in the reverse direction to
that in b-c-d. Hence equation (1-4) requires a sign change
when it is used in conjunction with L.

I(4) = 214 COV[S(igL +h[]eth

where the positive "h" direction is in the negative z direcction.

— i ——— — —_—

Now if the positive "h" direction is changed to the positive

z direction, the current expression on L3 can be expressed as
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I({) = 211008@(2§~ —hi]eth . (1-31)

For the z direction field intensity due to the current

PR R

element Ly, equation (1-26) can be used if

::.?—_?-\u...h
8

and the sign of the second integral is chanaed

H .
. — B8(L~x)
po_ LicdVE rl o e 18 r) - o) ~— dh
z - 4T7Teg,C 2z X
0

Ho -
_aB(L+T), 58(L-1)
—jﬁfe j te an] (1-32)
fol

r

: It can be proved that 4
3 L LIWE L gBlE-T) gTIRWIE)

E = 1_g [ i
Z rﬁé‘:oc r r ~io

N I

g AL U P A T N . gt s St . . .., Tl K,

e vt j’r.ejﬁ((}i"‘lﬁ) e—jﬁ(«‘i’H+ L)

] = e g L - ]
% 4 TTELC L 5 Y
3 } [ejﬁ(@o"fo) ) e-“'lf’(@o*ro)]l
I, %3 J ‘
3 cpieiwt - -iBrg 3BT
i = %?f?“eoc LT sin(flyp) - "‘fg""""‘"m(“o)]
' or : AT ~9Br
. L1:eJWt  Fe—IBTH o o {
: = I € i y o - s st ] Bﬁ(
! EZL3 J_LZ'HEGC L 7 sin(flp) s in( ))]
I o i
2 wvhere r = A'j(x—-H)Z + y2 + (z—h)2 (1-33)
72 }
‘ trweon t
EZL3 is the induced emf in the z direcrtion duc to the current }
!
i
f

! o and chaiges on L.

If point P is brought to the surface of Ly or Lppp.

equation (1-33) represents the induced emf on LI or LIII

due to the charges and current on L

4

Appendix I
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1-6 The Induced EMF in X Direction Due to the Current Eloment

in X Direction.

Particularly, if only the x componcnt of tLhe electric ficld is

required
. oV 0 Ax
B.= - s~ T (1-34)

Exactly following the derivation of the last section,

equation (1l-34) can be expressed in the following form

H
— Iieth 9 {je—jﬁ(£+r) - ejﬂ(ﬁ'r) ]
x 4 TE,C 0—5? s ‘ dh

Ho_<g(o - +38(8 -1)

-jB(¢ -r) J

+j5f, e M dh} (1-35)
(4]

Where the first integral is the result of the retarded scalar

=

potential and the second integral is the result of the retarded
vector potential. As was shown in §l—5, equation (1-35)

becomes:

P

e N

D e WO W ST ————




i9

1. Jwt ¢ -JBrx -3Br -
_J*ie I e H 5 e o . p
ExL2 T Twec L Ty sin(84y) T, 51“(5265
where r :J (X“h)z + y2 + (2—11)2 . (].“'36)
= 2. = 3
EH = 8 A+H . -gg—— 3 A

¥

If the point P is brought to the surface of LII or LIV'

equation (1-36) represents the tangential induced emf on

due to the current and charges on L_.

L or L 2

II iv
For the field intensity due to the current element L4

equation {1-35) can be used, but requires some changes.

Charges on the side L4 were given by egquation (1-11) which is

wer T
fl = 218 s infp(- +njed 7D
W

Where the positive h direction is in the negative x direction.
If the positive h direction is changed to the positive x

direction, the charge distribution on L, can be expressed as

4
- Jjwt
P . 231;8¢infB(-F= ~n)]e’

Hence, if

the first integral of equation (1-35) represents the x
direction field intensity due to the charges on L,-

In fig. 1-2 it was shown that the current on sides
d-e-f and b-a-i flow in the opposite directions; while in

fig. 1-1 the currents flow in the same direction, Honce, the

o -

W e B

e

—— Y AU NS ™ T W 0 AN I Bt

o —— -
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expression for current on L4 must be changed in sign.

B

(L) = 21:3._(:05[?(1%‘. 4 ny] edut

where the positive h direction is in the negative x direction,

The second integral of equation (1-35) represents the x

direction field intensity due to the current on L4. The

4
If the positive h direction is changed to the positive x %
direction, the current expression on L4 can be expressed as ,
- . jwt
I(g) = ZIiCOS@(-—g— - h)] e’ §
;' If the sign of the second integral of equation (1-35) i
is changed and { is specified as
g = D
8
;

X direction field intensity due to the current element L,

will be H
o - IiejWt j 2 r e-j5(2+r)_e]5(£”f) ] dh
xgi 4T EC L A ox L r J

r ]

H .
-58 (£ +r) B (L -1)
_jBf = b cml (1-37)
0
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Observing that equations (1-32) and (1-37)  are of the same

form. g can be written:
XLA

S S e

iIielwt [ e~ IBTY

r
- . - m—__g g 5
Exta = 377 e, ¢ ry siniBly) - 5 sin(Bls) |

i
[T SRR W v~ Y

where ¥ = N/Kx-h)z + y2 + z2 (1-38)

and | = 4%— - h

3 If the point P is brought to the surface of LII or LIV

the equation (1-38) represents the tangential induced emf

O
n LII or LIV'

1-7 The Induced EMF in the x Direction at Point P Duec to

B I ity —

Charges Distributed along the z direction.

e e — -

Fig. 1-10

The induced emf at a point P is given by equation (1-19).

In rectangular coordinates:




22

= (T XY 2V .z 2V _ 2. =
T (lxbx+gyay+azaz) Ax+a‘ +'5A)

If only the x direction field intensity is required,

E:-ﬂ—l—z}x
b4 Fe I 4 2t

Ax = , since the current element is in the =z direction.

v
H E = - £X -3
ence 2 (l 9)

Equation (1-39) shows that the x direction field intensity
at P is a function of only the charges on the current element.

Introducing equation (1-13) into equation (1-39) with the

limits of the integration from h=o to h=H yields.

E = - ineth r51n{p(“§" + hﬂ ~jBr|dh

I.edWt fH -jBr

= =11 . Tp A J e - -

= _%—fﬁ_é;?fSln Lﬁ( + h}:i e ) dh {1~40)
0

where r iJ%x—xl)z + y2 +(z-h)2

-iBr jB(x-x1) e~1Pr —x1) BT
2 (=)= - 2 - Lemle (1-41)

r r2 rs

sin[p(llgi‘— + h)] = sin(B4)

LiPL -3
= 33 {(1-42)

Substituting equations (1-41) and (1-42) into equation (1-40)

L Jwt B(x -Xq)
g - L) 79‘1 o~ JBL [ | o, x- X1ﬂ -3iBr 4
X ATEC (e A

PSS

B . ey

i A I O O NI . st
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. 4 H
I.ejwt B (4 - T 1 , _ 1
Bx "ﬁ'é;f:“‘x'xl’[fejﬁ(, ? (“3'2 P 3lan-fe js(ur)(‘i? " ?)dh]
(4] 0

{
T;el%t ;3-l- 3 1 jB(h-r) §
Z%ﬁgz.(x~xl)[jej ( + ~;§)ej dh ;
- 353? (lé_ + ‘“g)e 3B(h+r) dﬂ] (1-43) é
N
Equation (1-43) represents the x direction field intensity )
!
at P due to time-changing charges distributed on the
current element of length H set in the z direction. 3
] The first integrand of equation (1-43) turns out to be
i a perfect differential of the formS:
a ejB(h-r) :
dh r(r-~h+z) (1-44) \
1 ?‘ Also the second integrand of equation (1-43) turns out to
E E be a perfect differential of the formG: ‘
| g
o~3B (h+r)
8 - ] (1-45)
dh L r2r+h-zs
Thus equation (1-43) becomes
i
.alwt qDA 3B (H-Ygp) iBr
By = %%?A‘” (x=xp) ¢ 375 [i €3 —sz} -7 { O+ ) i
X £€,C H\TH Igltg™T2 i
|
_agh -8 (I4xr -j8r |
v o738 E YB +H-H)Y - = (1-46) |
rylry z rolrg A ‘
referring to fig. 1-9 '
i
rH = /\/—('X"Xl)z + yz -+ (Z—H)z ;
o 7 N/(X“Xl)z + Y2 + 22 {(1~-47) |
5,6, Appendix II
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Now if the current element is brought to coincide with

L in equation (1-46}), n and x, must be:

1’ 1 ‘
f n =1 I‘
X, =0 }
S <P LTS W LT L el
A xLy” 4TE,C {EE 8 rH(rH~H+Z) - rdTro+Z)] |
_sgA ~-jB(Hiry) -JjBr
% +e Jéa [ iH(rH+H.Z)' io(ijfzi]} (1-18)

where r :N/x2 + y2 +(z-h)2

If the point P is brought to the surface of LII or LIV of

the reflecting loop, equation (1-48) represents the

R At e L=, X W

tangential induced emf on LII or L due to charges on L

Iv 1

If the current element is brought to coincide with

Ly as shown in fig. 1-11 equation (1-43) is still valid,
but X1 and r must be changed to ‘
p14

1 =R

N/(X—H)z +y2 +(2vh)2

and £ must be changed to

il

r

£=1§-—h

as was stated in section 1-5. Z
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llence eceguation (1-43) becomes:
jwt - H
E = -—--—-»-——Iie} {x~11) [ Ojﬂ% (3 4 L )c’—js(h‘-ér)d}; ]
xL3 4T EC i ’ o rl Kl R
H : 3
i
cn TA : : 1
Y A h-r
Il f(lﬁ_ L Ly e S (1-43n)
G r2 r‘) - o
ks
H he first integrand of the ecquation (1-43a) turns out to *3
i ~
] to be a perfect differential of the form':
4
: d jB (htr) 7 -
: — | - & | (1-49) <
dh L r{r+th-z)d 3
: and the sccond integrand of the equation (1-43a) turns out ~2
: K
i to be a perfect differential of the form®: L.
3 P
"y

a reiﬁ(h'l’)»‘
ah Lr (r-h+z)

)
t
[
-
e

Thus equation (1-43a) beccomes ‘é’
. . 2y

el H)I jplA [ omiB(hHE)of g

LT e I - - —————————————— ol

IHEnc ¢8 r(rt+h-2) 4o %

-3 R B () 4

e r(’r-—h%—z)_,!oj ifﬁ

L

or 5 r .. 7A B (I, ~ipr =
. jwt AAANES BN r 1P B ;

= Lot e £ MPTE L C L A -

xL3 4 Te,C L L ry(ryti-z) r{r-h+z). n;‘

. - . -] e

_.352.2.\._ {"‘ e]ﬁ(ﬂ rp) e jﬁro 0 . i

+C 8 I ( s v (r +'5 i {> (l"‘)l) n

Lo T \ryp-t+z) oltoT? 3 .

where r =/\/(‘<—H)2 + y2 + (z-h)? ‘;E
Wt

If the point P is brouaght to the sul face of Lyg Oof Ly o
lki

7,8 Appendix 11 '
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the equation (1-51) represents the tangential induced

emf on L or L due to the charges on L

IT INY 3°

1-8 The Induced IEMF in the z Dircction at Point P Due to

Charges Distributed Along the x Direction

* Fig. 1-12

The induced emf at point P is given by

2K

B £
ot

-VV -

- R AY = .ﬂ] 4+ 3 -2\—] - —;J— 3 r. F: :
(T, = + 4, v +a, 23) T (aXA.X+1yay+%ZAZ)

N

If only the z direction field intensity is required

. - _ gv _ OAZ
b, 2z ot
Since Az = 0
E = _LV (1‘52)
Z Dz

Equation {1-52) shows that the z direction field intensity
is caused by charges only. Introducing equation (1-13)

into equation (1-52)

—nd md

-
.

L N S
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Jjwt - ~-jbr
oL jlielT - ...". Py 2 (Sl -5
[, 2
where ::A/(w—h) + y + (L—Al)
3 -JBr iB(Z - Zl) Fr (2=21) o jBr (1-54)
27 r - r2 - 3 -
51n@(2§— + hﬂ = sin(B¢)
J8L -JBL
- el -eT)F (1-55)
2]

Substituting equations (1-54) and (1-55) into equation (1-53)
vields

ejwt

I‘2 r

E = L__f(ejeﬂ_e—]QZ) ( jB(Z'Zl)e_jBr . (Z—Zlée—jsr)dh

Z 4TMEC

D TR LA I IS T-ICA) ] 1. o
(z zl) e ( + —;3) 1

B
Tr2
-fe'jﬁ(i Hr) (if5—2 + *'Lg) d‘n] (1-56)
Y s

The field intensity due to the time-changing charges distri-

buted on the current element of length H will be

P A [ ;
E = I-l-—-—ejw (z7)<’ ejamf(i+———- JB(h=r) gy

,  ATeC .

H
- 1123_ - 1
e IBT lﬁ + ———) IBMFT) qn

A L3 (1-57)

The first cnd the second integrands of equation (1-57)
are two pertfoect differentials ags shon in section 1-6

Ilence, cqguation {(1-57) becomes

VIRV
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fioiwt ro9e22  teg-r) aw -ieGe- “'ig(h‘*r)_"ﬂs
E e ¢ (" ! e '(‘.;":........_.._-.....«..----y
z Trec(77) e (T-n=) ), © Lr (rvh=x) Iy |

L

[ DA i 2 (H- -

. lLie —]\2(?"/ JE L [ij (H-x) _ e 7o ]
4TMEC Sl L ry {ry-T14 %) ro{rgx)

. . ;a0
| "”JES(H‘HTH) ""]‘pro - —Jﬁn""j

Lle e 8 L (1-58)

LT (rypHI-x) Lo{ro-<)J

L2 and the point P is brought to the surface

equation (1-38) bccomes

3

w

Now if the current element is brouaht to coincide with

of LI or LIII'

L due to the charges distributed along L
Now if the current eclement is broucht
1-92, (1-57) is =ti

as shown in fig. cquation

2y must be specified to

T

/ 2 2
=3 } P - —
r W, {(x-h) y + z ; zy

and £ must be changed to

A
£'—‘-~“‘§""h

as wage stated in section 1- Substitutinga

equation (1-57) leld“

i e H
3 _ Iijeiwt B ] ‘
} B, = Prge (2@ f““té

5

i

, b .
-jed- 3B (h-
&
- f(l—‘%—- -+ _.J.‘-..:)(\
p 2 2

Jwt [ 3f== . J8(H-1ry) —9ipr
E = ;‘[“Lq‘%““’“(z—-ff) (e © e e - i : o ]
] .y
- 114 - . 32,
L reldBlhE) I L SRR
LrH(rH ““h5 ro(rg-x)4 ; 1-50
where /(X”h)2 w2 (z-m) 2

Equation (1-59) represents the tangential induced emf on L_ or

I

111 T2

to coincide with Ly,

11 valid, but 5 and

these conditions

—j[f‘ (h+r) dh

r)
dh} (1-00)

into

VW



, r5 a(n ) H _
g - LiodYt oy 0 3R - pe )W _(;;BCA, Lo
JZL4 A e,C 1 ’ L r{rn-) JO ) e
t = N g -
S IR I T ¥ Wkl iiins Ui
zL, I E,C L | ‘:HTrHIAI—r-:) g (ro=%) |
.. - 20
—Jﬁ_i;\"r ejB(H—rH) e UBro -
te 8 \T T 1T RN G = i
L Falfp-Hix)  rolrotx)i

If the point P is brought to the surface of LI

(1-62)

or L

111’

equation (1-62) represents the tangential induced enf on

L. or L

due to the charges on L,.
I IIT 9 4

1-9 The Total T:ingential Induced EMF at a Point P on LI

%’

Fic. 1-13

Referrinag to fig. 1-12, the distances r

are given bv Lthe followina equations:

N a2 S
vy ET v, =fve oA (~~11)
Yoo= 2 o+ oy? o+ z? 4 2 4 y? o (1-z)

(1~-07)

und b



where II = -%— for the cubical guad antenna.

Define E = the induced emf on the side L_ due to the
charges and the current on Ll

= the induced emf on the side L., due to the

i I
charges on L2
ELIL = the induced emf on the side LI due to the
3 charges and the current on L3
ELIL4 = the induced emi on the side Li due (o the
charges on L4
The expression for ELILl is given by equation (1-29). 1In
this case x = o, Ty = Ty Ty = rl
: . 3A -jBr .
t — 1 i i
. LyLg 2TE,C r, ry |

Separating the real and the imaginary parts

i . A ,
: leJWt Sln(BzéL)COS(Brz) 51n(£%—)c09(8rﬁ
BE = -
LiLy  2Te,C s T,
. A .
[ -sin( Q )c1n(5r2) 51n(£%—)51n(arl)~}
5 . ]
) 1
: 3A - . Ay
Iic]wt I(sin(B—g-) 51n(5r2) Sln(’; )51n(ﬁrl)
T 2Tec | I, T
. A ~
°1n(ﬁ )(ou(Br ) 51n(B )cos(ﬁrl)] (1-64)
(p[ ity ry) e
The expression for EL I, is given by equation (1-3.).
I-3
In this casc X =0, Iy = Iy, ro = r3
E = inQJWt e~jBr4 sin (B )~ e—jBr3 oin(ﬂza_
L;Lj 2MEC L 1, ) 8 rj TTUYR

Separatinag the rcal and the imaginary parts



A )[bos(ﬁr4)—j sin(ﬂr4{]

]Ilcj‘f’t JSin( ﬁ

ELIL3 T 2WET | Ta
sin(822) | _"!
- ¥ 8- cos(ﬁr3)—j Sih(Br }
jI Ijelwt 51n(55%l)coq(3r ) sin( ﬁ;A)cor@r;
= “’Tfé ( r4 - ]_"3 )
n(gx ) q]n(ﬁ———) 111(Br )
-] ~ )
i Ta t3
I JWL sin(BééL)sin(ﬁr4)' sin(BzéL)sin(Brj)
- Li€ 3
= e [ = - = )
sin(EjSA )cos(ﬂr,) sin( B7A) cos (Br.,)
, 8 4 3 59T
+J( r4 ) ’ B r3 4
(1=05)

The expression for E

is given by equation (1-59).

0 )
In this coce
x= 0, rH = r4, ry = r2
r 3A . -
g 7B (H-1y -jBr,
E = 13 (z-H) | e’ 5 < ) - £ )
L.L, 4TELC La(ry- H) r2
- 3A —a T . -jBx -’
L oTIRE ( e_JB(“rrq) _e’) 2) 5
r4(r4-rH) 3"2 J
2
. a5 ~5g (24
Tielwt ,[QJB(‘éL - r,) 1B o)
4 Te,C ) Ty lry-H) ra(rg+H)
20_-]Br2 .
ST oo (B35

5 A - -
ot 1B e 41 -jBe=- l'r, - H
et . i By o], mi8% [xy - 1]

Elz.__(z H){; jﬁr4 <e ] = )

1 TEC ?4“4 - T2)
-3 1
_2c ‘Brz 382
N '-5*—(
2

VIR I
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T.edut f 21:4(:05(65-‘-;1} + 23H°1n{€»5’2}
E . = A ( ~H)) o~dBry & )

Tyl j Ty co&(sr4)soc(~§-)+ H qln(ari)kL“(~—~)
= 3 -1y 4 |

2Te C B }_ r4(3§i'h o )

3BA
coc(—ﬁ—)=1n(ﬁrz)
- ?
)
5 s t‘ A *
Hsin(i@-i)cos(ﬁz: - r cos()a )sin(Br )
' Ty(r2 - H2)
4
38A .
cos(-é»-)s;tm(@r:z) -
+ )
r? |
2 o
The cxpression for E is siven by equation (1-62).
L.L -
174
In this case
X = 0, Yy = Ty, Yy =Ty
E = I]'Oth( )xgejﬁ'% 1 e—jﬁ(I§+r3) . ! ]
A . .
-85 . JB(H-r )  -3fr,
TR o O 1
- Tary-m f -]
Jwt r 9B (r .+ D) Jﬁ(-— ~r)
Iic '()j_“(o 3 8 ! 3 “a)
4 MEC \L ¥3(r3+) T3 (l -}
-JBry
+ 2¢ 2 'coc{ ﬁm}j
r.
1
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Lje Jwt [ -gBr [@3'4”rfj8é%4~(r3-wnejﬁ%—
L =W(z){—e 3 .....r(_§ P g
174 L 3y - 1 )
-jBr
* 2_@___;_2___1_ C‘os(ﬁ??)}
1 wt
1 A . KO ﬁ:’\
- 1193‘~~’t(2) i'_ -3Br, 2r COS(%) + 2H3 sz_n(-f:f)
4'”60(: € = r ( Y
3x 114)
"’jﬁrl
+ 28 F—= COE (ﬁ%)l
r1 j
1 r BA , . BA
- fie i T A ey
¢ L 3(;3 - 12y
COS(ﬁﬁ}c05(ﬁg)
,+,
rf
X sin(Br;) cos(%%) -H cos(Bpj)sin(ﬁ%J
+j{} —
3(rf - n2)
. A
Sln(ﬁrl)cos(ﬁg)JT
r? i (1-67)
2
EL = the total tangential induced emf at a point P on LI
I
A TS S I 52 P

1-10 The Total Tangential Induced EMF at a Point P on LII
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Referrine to fig. 1-14, the distonces

r, are given by the following

(&)

ccuations.

, ) S1=x) 2
~N o 5 IN;

H
(%]

li
B
.+
.{:
1

]

.
1

2

Y

r., and

i

/ / 2
vy = /% 4 vZ + u? ry o= [/ (x-1)?

Define the tangential induced emf

charges on Ll

=
fl

the tangential induced emf
charges and the current on

the tangential induced emf
charges on L3

fl

the tangential induced emf

E
Ll charges and the current on

IT74

on

on

on L

on

Ly

L

due to

due to

due to

IT

to
IT

The expression for E ig given by equation {(1-48) wherc
LipoL
II™1
Z = I, rH = rs, ro = r?
pedve [ 8 poiBlITs) TR
EL L AT E (%) < e SEN 5 (T
I1°1 o L %f AR A
LA ‘ N .
RS LAC TV L SR
e | = >
%2 7{r7-H)~ |

Scparotbting the real and thejmaoinary parts

ELIILl 4’WGOC(A)\L”_~.7"— CO%[B("Q- H)
-0 Ay_osrp <1 ’.\.. !
jpr7r2r7cos(68) 23H .J.n(ﬁg)]§>
-
7{e2 - u?) 4
.
3 i *]51’.’
Iie]Wt /e 3A
= 3 o (B =
27&(:(“)3 7 con )
. < ‘5_".3..- - 28 SA
_miRTy [r7 cos (B4) -] :T ¢in( -gr).,i‘{
7l - u?) /]




R AP R

. Iiojwt(y) ‘f(r7(~o:~: (Br-)cose (g.é,) s (Br) sin (ﬁ%)
4 S me————— v <
LIILl 27e,C L ro( ;? _ H?)
cos (B r7)cos(ﬁ;§L)\
) <z g
5
. (g Y. : os (B34
_j~£191n(ﬁr7)cos(ﬁé)+ H cos(Bry)sin(Pg) <cin(Prs)cos(B=£)
. ry(rd - ud) ré
(1-6
The expression for E is given by eqguation (1-30)
L
I172
where
Zz = H, rH = r6, X, = r5
IQJWt ,'jBr - - —jBrr - 9
E = %’T;E = {e = 6 singﬁ(%— +H)| - = 2 Sin(‘)é\ﬁ):,\
Lrrlo o= L 76 - 5 J
I.edwt '»(Béﬂ)cos(ﬁr ) <1 (B3A) s{Brc)
i ;e f(51n 8=5 6 ) sin(B3) cos (Pry .
-sin(ﬁ%l)sin(ﬁr(,) Sin(ﬁ%)sm(ﬁf )
+3 ( + - =)
- r6 _'_5
jwt 0 (2D si in(832) sin (Bre)
I;¢7Y [ ein(P=y) sin(fr) s Bx) sin 5)
T 2TeEC | TS - g /
. 5 .
. 51n(57§)cos(ﬂr6) sin(B%?)cos(ﬁrS) g ’
5 ( = - ) (1-70)
(¢} g u

The exprescion for I

where

LII

L

is ¢given by equation (1-51)
A
2




. 1t - v A — T -
D = 7;—---—~Ilpwt(«< . oja’g—[ Pl L P ]
Lol TEe O Y rairg-H)
. H~-r ~8r
r6? 3’:8(}5‘8.,“1;{)_1‘: r
- . 51 52 4
Iiejw . fﬁjarﬁr ojﬂ”é— +e—jamé 1 K
S I e,C (XWI’)QLG - B |
6
. ca 7 : in 7 o’
_jﬁrap(rsﬂi)ejﬁ'—% + (K’S‘*H)e—jﬁvélﬂ“% oS
we 7] - <
fun r8(r82 _ Ii2) j‘) M
c _ o7 5BA L o
_ Iie]wt(x-m 2 cor{-=5=) ~iBr i
Aqre,c r2 «ﬁ
. ) A . , *
~jpry zrgcos(ﬁ—é«-) + 2jH &in (ﬁ%z‘-) 3
+ 0 ( s . ){ {
8irg ~ He) - ..ff:i
57 . | :
Iiojwt( H);‘ cos(ﬂ%)cogfﬁr6)~j cos(ﬁ%)sz.n(,@,rc)) ‘;g
= B (x~1) ¢~ Es
2TeC ;\ rf)2
7A C TR T
N ry, cos (B-é-)cos(ﬁrg) +H slnxszg-)srm (Brg) ‘:;M-
i, r8(%2 - H2) ) ;}
_rscos(ﬁv-é-)sin(grg)-kﬂ sin(ﬁ—é)cos(ﬁr8) ) EX
”I’“( ) #{
J rg(r82 - 1?) j\) ”a“
jwi 5A ﬁﬁ
_Iic‘JWt - (’T cos (B) cos (Brg) £
Tamec T 2 -
"5
< 7?\ o e 1 J7A 3 - ]
\ l’f8co.~(8~g~)cos(3r8) vHosin (847) sin(Brg) i
r8(r82 - u9) g"
cos (%2 sin(pr,) .
N FEE 6 ~,
Cos(ﬁﬁ)sin( Yo) ~H cin (877\)<:os( re)
g e 8 §:a 8 } ’
Talr2 _ y2) - <
(1-71) g
!
]




T cwprassion for E is civen v oeguat ion {1-38)
Ly L '
whore
Z < M,org =g, v =
iTjedwt FTIRY gy a=lBT,
By 5 T 3wme;c f Tro shnlst) - g sin (m)f
II °T L 3 /
' B
o= jI]Qj"’t / 8i1n “?T— f-.(“OC( r )-"Q.Vl( ke )-‘
STME, ¢ | Ty o pro)—isin(Bry)]
ain (B
- =3l ( me(er )-jsin(Br-v)]}
7 ! J
ot 7A : A
_ grzedvr { Sin(Bﬁ;)cas(6r8) sin(Bg)cos(PT)
- - }
2mMe,C | Ty r,
: g A . 3 A .
“j(Sln( g )sin(Brg) _ sin( Qy)SLn(Bnﬂ )}
s r7 |
1icdwt [ ocin(Bf) sin(Pry)  sin(Bg)sin (Bry)
2TEC ) s Ty
y n(8Z)cos(Br)  sin(Bf) cos(Brs) )
*J = - ;
r8 r7 /_}i
(1-72)
EL = E 4 EL + E 4 EL {1-73)
L e ] ¥ 2 Lrrls 11
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Define E = the induced emf on L due to *the charges
L L q III
ITII71 and the current on LL
E = the induced emf on L due to the cnarcges on
L L III
IIT 2 L
2
EL L = the induced emi on L due to the charges
ITI3 and the current on L%II
E = the induced emf{ on L duec to the charges
L L III
IIT 4 on L,
The expression for E L is given by equation (1-29)
IIT1
where
X = II, rH = r4, or ro = r3
" _ -
3T elwt ~ -JjBr, 3IA cTIBT, A
E = = sin (B ) - 5= sin (Fg) |
LIIIL]_ 2W€0C [ 4 J ~2 o
_ 3T4 ejwt r C1n(-éT—) [CO (ﬂ - fCin(Blgi
2 MELC “L

sin(zr) Ecos(8r3) - 3 Sin(5r3g b
i i

[y

. 3A
i . Iiej\ft sin (B'—é‘) cos (Br4 ) sin (B‘Q’) cos (B r}) )
T 2TE, C Ta - L

2

) sin(Bgﬁ)sin(BI4) Sin(ﬁgﬁsin(3r3)
-3 ( r‘z - T )
4 J

Iieth sin(B%?-) sin(BY,) sin (37 cin (BT )
2 ’-’TEOC { r: - r3

.,sin(Bzé)cos(agi) Lﬂ(ﬁg)FO‘(ﬂr“)j
=J\ T, - w3 U
(1-74)

The expression for E is riven by cquation (1-59)
A Lrprte

where

Y INY
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832 | .
E - e,y ] SR reiflime ) miBy )
4 | ~e T (. pTY A
Lppgl, 4 T&C L L I (v at1)
2 —T rr. . )-]gr "\
b )....'3_‘.3{,5. Toe 9-(. §"2) ¢ : 4 -1:
L "VQZ rg (rd -11) i }
i - 85A .B5A
rt R E24 - B2
= ;_i_e_i‘:...(z_H) ye-'}BrZ [ @j 8 + e 8 —}
4 TE,C 3 2 B
- - B3A 4 N
T I 4 (mae 39“@"]
. Falr® - w2 j
oWt -jpr cos (B21)
Ll?.........( H) 2
T amec o,
° 2
—o ~Jpry (zr cos(£§~9 ~23jH 51n(~¢~)J
r4(172 - H2)
Iiejwt r -r4coc(Br )COS(Eﬂ—) + H SLn(Qr4)°1n(g3A)
1 ;
P ] ...H ¢
Tmec (T ER )
cos(ﬁrz)c05(6%§)
+ 3
« r
2
+j(r sxn(Bﬁ,cos(B ) +H cos(Br, )qln(g%?)
4(1:‘ — H2)
5A
Sln(Br2)00~(B ==) }
- i ) (1-75)
g
The expression for E is given by equation (1-33)
Lrrzhs
where
X = H, g = r2, ro =
3L e f =BT . 5pA iBry 2
E = - sin (2 ¢ 78A
Lo1tly TELC i I, ( ) = Sln(-gn)f

f»
Fe Zalen T A
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) 5A ~ o -
Tedwt rsin (Bg) [ cox (Brz) -3 sxzi(grz)J

<

=, C : . ¥y
sin (ﬂ—é) [ cos(Bry)—=isin (,Brl)} 1

T

gt f?j,ﬂ(B%‘;)C‘OF‘(SL’?) ?ir}(ﬁ?%)cos(arl)
2T ELC ) Ty T 1
sin(ﬁ%a‘)si,n (Bro) sin(ﬁ»%)sin(ﬁrl)

-4

IijWt r sin(ﬁ%;}yin(3r2) sin(ﬁ%@)sin(ﬁrl)

2MEC | T - r, )

sin (5%2&) cos(fry) sillfﬁfg;})‘?os(ﬁr}) 1
( 5 - 1 )

(1~70)

The exprossion for E is given b eguation (1-52)
I C/ K :
I1I°4
‘ ] where

. A . —iB(r 4
~ Iie]wt( ) 9388 [ o 8T, e ]ﬁ(rl+i)
I3 (r3~H) ry (rl)

oy A
m};:;;..‘- — . — -
8 [ o3BT, ) GTIB(H-1ry) 1
r3(r3+H) r% f
. iy A Y-
- LieT () f o IBT ((3'-‘3+H)eja—8' v {ry -y 1B 8)
4 TEC L r3(rg - §2)

+0

jwt

. jwt L A , .
Ijed () {r o~ BT 5 (2r3cos(ﬁ“8') + ZUHSln(Bé\")

4'TTEOC L r3(r32 — }12)

20—y cos (B%—)
=

i

1ieth . r4cos (ar_-g)co:'(ég) 4+ b S'Ln(ﬁw‘B) si‘n(ﬁ%)
2 TE,C h

cos(Brq)cos (B%)
HQ

il J‘_} %

¥

y!- N
o Al L

&0

e

S

bt g

s ¥

T

e Rt

e
PR PO S

30 e

3k

& o
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+j(Hcos(Br3)sin(%§) - rjy siW(Brg)cos(ﬁ%;)

r3(r32 - g%

sin(Brl)cos(ﬁé}) }
] + 5 ) (1-77)
5 J
E = the total tangential induced emf at a point P on LIII
Lr11
= EL L + E + EL L + E (1-78)
IT1™1 Lrrrls 1113 Lrrrlg

1-12 The Total Tangential Induced EMF at a Point P on L

v

Define E = the induced emf on L due to the charcer:s on 1L
L v 1
vl
EL L = the induced emf on L due to tho charges and the
Iv=2 current on L2 v
E = the induced emf on L due to thc charges on L
Livls v
EL L= the induced emf on L due to tho crarqes and the
Iv4 current on L v

a

PYINY
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The expression for EL L is aiven by equation (1-48)
v 1
where
z=0, ¥y = r?, r, = Ig
i Ilcjwt(%) JB“'E 3ﬁ(H-r7) ~J8r5}
vl 4 TMegy C Ty (r7-H) Lg(rg) -
. _j;;__ 39(H+r7} o 1PTC
€ J_r?{r7+H} 2 “]
, - 3A .o, 3A
or t s e - - 24
. 15l - LB ~x)) JR(= + 1)
Liyl, 4TE& r7{ry-n) r7{r; + 1)
28-38r5 1
- == cos(f—)
5
, ) 3
1 eVt -1Br, 237@08(?‘@2) +2jz;sin(ﬁ%7l)
= (%) ( - )
T
| 2eﬁjﬁrﬂ 3A 1
- 5 COS(—-Q— 2
| " ,
l 5
| jwt [ r,cos(pr )cos(&ﬁéﬁ-+Hsin( r }sin(ﬁ?—?l
| Ije () ¢ 7 7 BTy 0
£ e (X
2WEQC i r?(r?2 - HZ)
A
cos(ﬁr@cos(ﬁg} )
- =
5
Hecos (g )sin(éﬁﬁ)—r sin(By )cos(é%?%
i ( 7 8 7
. 1’_'7 (rz ~ Hz)
7
£ 8 A "‘}
, sin(Bry ) cos ( ?;))< _
rs f (1-79)
5
The cxpression for EL L is given by equation (1-36)
v 2
where
Z =0, Ty = g, I = Iy

e
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- jIiedwt

. ‘jﬁrsl I 7 2
| e B L aBSAy e i (g
T sin (P=5) po—sin (P

_ 582, cin (222 coe (
ineth - cin (78 cos(ﬁrg) £1n{~F=) cos

-ad 8f"

-

T I E,C b Ty v
V Sin(égé)sin(ar,d) cin(2228) cin(r,)
-3 ( 5 - “r_; )
ppedut ein (282 sin(pr,) ) sin (3 sin(ar,)
ZTELC | r, t7
sin(ﬁé@)cos(ﬁrg) si (ﬁ3ﬂ)co (Br-)
3 (g - — 3

The expression for E

is given by cquution (1-51)

LIVLB
Tn T Ty Yo T T
IioJ E jB—l O*jB(H+r8 G-jgrA?
——— (x-H) < - = v e
FTEC L Tglrg+m v
-38% ”"jB(H—rB) “36}:6?
+e - ..ﬂ,j___f_ N |
b rS (I-B - H f r62 i
. , 52
Iiejw‘( ) ¢ TIBrg rlrg M 3BT 4 (rgam) e
et () &) RN Yo' §
s . - ez - md)
2e
’ “‘“r“g“‘”m‘“fﬁ”‘>
1" roTiBrg 2rg cos (B22) 211 sin (B2
L ! Or
e (=1} ¢ ~e ( d
TTeC L To (5 - n2?)
- AT . -
2¢ J O (a‘,'_z\_) !
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B B Iiejwt( - ~rgcos (Brg) cos (B=g) +HSJ_n(Br8)—5ln(a_§)
LoL, 2TEC N
Iv-3 o g5 12)
s ZA
N cos (Br ) cos (BL8)
2
6
‘ 1s, , .5A
+3 (IBSln(Brg)COS( §) +H cos(Brg)s=in(f7)
] . ’ s (8
fa (5’ _ u2)
sin(ﬁrB)cos(g%)
B 2 ) (1-81)
s}
The expression for E is given by equation (1-38)
L
V-4 v
where
zZ =0, rH“r6, ro-_—-..rs
3 . "Vt P r -j&r
E - jIje’ e IBT . sin(ﬁ?—é) _ e 5 «in (ﬁ%)]

_ jIjedwt [cos(ﬁrG) sin (.ﬁ‘—g\f) cos (Brﬁsin(&%))

T 2TE,C rg - T

5
_ sin(Prg) sin (B%) sin(grs)sin(ﬁ-’%—)
-3 4 T - T ).]
6 5
. ‘ o TA . aA
_ Ijedwt sin(Brg) Sln-,w‘B-x) sin(Brs) sin(fz-)
T ITWE,c LT T - TS )
sin(7ﬂ8?\ )cos(Bré) sin(%?-\-)cos(prs) -
+3 T - T )

(1-82)
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) = The total tangential induced emf at a point on LIV

= E + E + +

L..L L...L EL L, EL L
vl V2 v

1-13 The derivation of the Mutual Impedance
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Fig. 1-17

The mutual impedance of the cubical guad antenna is

defined as

\Y
= 21
=t 1-84
where VZl'is the open-circuit voltage ot the termicals of the

reflecting loop due to a base current, Il, in the radiating
loop. Now, the electric field intensity at all points along
the reflecting loop has been calculated, a2nd the problem is
that of determining the open-civcuit voltage ot the terminals
of the reflecting loop. “his voltage is the resultant of the
voltages induced in all the elemental lengths of the loop. The
result may be obtained by an application of the reciprocity

theorem.

V™4 (1-83)
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Concider the reflecting loop with the radiating loop in

place, but not radiating. A voltage vy = 12(0)22 applied i
at the terminals will produce a terminal current 12(0) and a ?
current at any point, designated as 12(2}. The impedance "
3
22 is the impedance looking into the terminals of the 4
reflecting loop. The reciprocity theorem states that if a Jé
A
N
voltage 12(0)22, applied at the terminals, produces a current !
12(2) at a point along the reflecting loop, then a voltage ‘f
E(¢)dh, induced at {, will produce a short circuit current %;
at the terminals. ,
E(.)dh i

\ i, = tleldh I, (0 (1-85)
The total short-circuit current at the terminals, due to the 5
]
g
induced emf along the entire length of the reflocting loop, gg
will be )
1 Vi
= e (B T ) T, () dN 1-86 .
Lo = TTerEy PO T2 (1-86) =
. . e
By Thevenin's theorem the open-circuit voltage at the ;“
terminals will be ag
X
E—J 7 T
V21 Isc 2 .
| =22 _drwi (van (1-87)
| Iz(O) 2 :"té
EYA

the minus sign resulte from the fact that either I.. or VZl

will be opposite to the ussumed positve direction when the
reflecting loop is short-circuited. The expres:ion for the

mutual impedance of the cubical guad antenna is 3
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\Y
21 1
Z = = = e E()YI,(£)dh {1-88)
21 1y (o) Il(O)Iz(O)f 2
. o 3
where Il(o) = the terminal current of the radiceting loop '
[l
12(0) = the terminal current of the reflecting loop
12(5) = the current distribution along the reflecting ;g
loop when fed by a voltage at the terminals ;
and with the terminals of the radiating loop &k
vl
open-circuited. h
E({) = the induced emf along the reflecting loop Q§>
due to the time-changing current in the o
radiating loop. 5
Since the radiating and the reflecting loops are identical, l@
HG’
I2(€) may be expressed as 54
$
na ~1 1wt f:ﬁu
{) = -21’cos[p(== + J -89 ‘
I2(L) 2 lcoe@( 5 h)j e (1-89) k§
In eguation (1-89), h is equal to z when the current fg
i
element is set in the z direction; h will be equal to x when i
bl
the current element is set in the x direction. As was stated e
-,
i
in section 1-5, thc current in LIII may bhe expressed as é‘
R
Y = ! Rl , jwt =
IQ(E) = 2 Ii cos iB( 5 z[]e z

and the current in LIv may be expressed or

- A -1 Jwt o
I2(£) = 2 I; cos[}(—g— - X)je

E({/) has becn given by equations (1-68), (1-73), (1-78) and L

(1 -83). Introducing thceoe expressions into eguation (1-88)

yields i
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21h cwt j H H .
VA = 1 E i *_“ . N oo | - ";
21 Iy (o) 12(0) i cos 6( Z':I L co LB( T +X).,’ dx
*e 0 11

H H ‘ﬁ
7A = -~ A - .} lar
- B, cos [B(-é—*z)_ldz - § B, cos (&~ -x)] axp (1-90) %
o) I1T1 a v : J 4
where
- Jwt 4
Il(o) 2 I.e %
— ? }Wt A'z
Iz(o) =2 Ie A
=
Equation (1-90) can be simplified to the form ;%
Y o H )
= —+_{ e coel 2 +2)ldz + cf -
21 T 3 (0)3 L LBl ) jaz EL cos | B ; J dx »
1 (s I fs} 131 d:
H pH i
-5y cos[p(Zd -2)] daz - | B, cos[p(d - xjlax (1-01) °
LI & - L 8
i1 e IV 4
1 |
] The integrals of equation (1-91) can best be evaluated el
by means of numerical integration. 3y
s
$
84
1-14 A Computer Proqgroam For Evaluating The Mutual Impedance éﬁ
A fortran II program was used to evaluate equation (1-91). ;%
\ i
The approximation method used in the program is called wl?
A e
Simpson's rule. 1In the program the interval, I = Tk was é“
divided into 50 equal parts. Each part was 0.005 wavelencth, %ﬁ
4
0.5 cm, lonag. The output of the prougram represents the real B
part and the imaginarv part of the mutual impedance. :
The computer program is shown oo thoe following pages. 3;
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C REAL PART Ol' TIE MUTUAL IMPEDANCE OF TIE CUBICAL QUAD AMNTENNA

IMAGINARY PART OF TIIE MUTUAL IMPEDANCE OF THE CUBICAL QUAD

ANTENNA

DIMENSION VR1(51), VR2(51), VR3(51), VR4(51)

DIMENSION V11(51), VI2(51), V13(51), V14(51)

v=0,01

1 X=0.0

7.=0.0 .
DO 2 I=1, 51 3
A=SINF (0.7854) 4
B=SINF (3.92698)
C=COSF (0.7854)
D=COSF (2.35619) “
0=6.28318 i
R1=s5QRTF (Y**2+Z%*%2) ¥
R2=SORTF (V**2+(Z~0, 25) **2) ’
R3=SORTF (0 .0625+Y**24+7%%2) tﬁ
R4=SORTF (0.0625+Y**2+ (3-0,25) **2) g
RS=SQRTF (X**2+Y**2) R
R6=SQRTE ( (X-0.25) **2+Y**2) s
R7=SORTF (X**2+Y**2+Y*%*2+0,0625) =
R8=SORTF ( (X-0.25) **2+¥*%2+0.0625

? Q1=0*R1
Q2=Q%*R2

Q3=Q*R3

Q4=Q*R4

Q5=0Q%R5

Q6=Q*R6

Q7=Q*%R7

08=Q*R8

SO1=SINF (Q1l)}) o

S02=SINF (Q2) 1

5Q3=SINF (Q3)

S04=8S INF (Q4) m

SO5=SINF (Q5) )

SQ6=SINF (Q6) :

SO7=SINF (Q7) :

SO8=SINF (08) .

cQl=COSF (Q1) ,

CQ2=COSF (Q2) ;

CQ3=COSF (Q2) .

CO4=COSF (Q4) ol

CO5=COSF (05) .

CO6=COSFE {Q6)

CQ7=CcoSF (Q7) o

CQ8=COSF (Q3) ‘

00

3
I
e

ey LAY ]
i Tt ;"}bdm o

ks

%

X

R UR
L.
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Og%%i§£=+30.0*(+SQ2*A/R2~SQI*A/R1+B*SQ4/R4-B*SQ3/R3+(2—0.25)
1*CQ4A*D+0.25*%504*B) / (R4A* (RA**2-0,.0625) ) =CQ2*D/R2*%*2) +Z% ( (~R3* : " 3
2CQ3%C~0,25%SQ3%A) / (R3* (R3**2~0.0625) ) +CQL*C/R1**2)) -
3*COSF (0.7854+Q*2) p
OVR2(I)=+30.0%* (-SQ7*A/R7+R7+SQB8*B/RB~-SQ5*A/R5+SQC*B/R6+X* ( (~R7

*CQ7*C »
140.25%5Q7*%A) / (R7*{R7**2~0.0625) ) +CO5*D/R5**2) +(X~0.25) * ( (+R8 4
2%CQ8*C+0 . 25*SQ8*B) / (R8* (R8**2-0.0625) ) ~CQE*D/RE**2) ) "4
3*COSF (2.35619+0Q*X) :
OVR3(I)=-30,* (A*(SQ4/R4-SQ3/R3) +B* (SQ2/R2-SQ1/R1)+2* ((0.25*A gg
1*SQ3+C*R3*CQ3) / (R3* (R3*%2-0.0625) ) =C*CQL/R1**2) +(2Z-0.25) * ( (~-D*R4 %4
2*CQ4+0,25*A*SQ4) / (RA* (RA**2-0.0625) ) +D*CQ2/R2**2)) il

3*COSF (5.49778~Q%2) 5
OVR4 (I)=-30.0% (B*SQ6/R6~SQ5*A/R5-A*S07/R7+B*S08/R8+X* ( (+R7*CQ7*D o
1+0.25*%SQ7*A) / (R7* (R7**2-0.0625) ) ~COS*C/R5**2) 4 (X~0.25) * ( (~R8* .
2CQ8*D+0,25*SQ8*B) / (R8* (R8**2-0,0625) ) +CQ6*C/RE**2) ) * f§
3COSF (0.7854~Q*X) , :
OVI1(I)=+30.0% (A*{+CQ2/R2~-CQ1/R1)+B* (CQ4/R4~CQ3/R3)+(2~0.25)*
1((0.25*B*CQ4-D*RA*SQ4) / (RA* (R4**2-0.0625) ) +D*SQ2/RZ**2)

| 2+2% ( (+C*R3*S03~0.25*%A*CQ3) / (R3* (R3*¥*2-0.0625) ) -SQL*C/RL**2) ) *

| 3COSF (0.7854+Q%2)

OVI2(I)=+30.0% (B*CQ6/R6~A*CQ5/R5-A*CQ7/R7+B*CO8/R3+ (X~0,25) % ( (-C*

i Y

Lo

& TN TR

1R8*SQ8+0.25*B*C08) / (RO**R8**2-0.0625) ) +D*SQ6/R6**2) +X* ( (+C*R7 B
2%¥SQ74+A*0 . 25%CQ7) / (R7* (R7**2-0.0625) ) -D*SQ5/R5%%2) ) * £
3COSF (2.35619+Q*X) §§
OVI3(I)=-30.*(A*(CQ4/R4~CQ3/R3)+B* (-CQ1/R1+CQ2/R2) +7* ( (-C*R3*SQ3 .
1+0.25*A*CQ3) /(R3*{(R3**2-0.0625) ) +C*SQ1/R1**2) +(2-0.25) * ( (+D*R4% :’i}
2*504+0. 25%A*CQ4) / (R4* (R4**2-0.0625) ) ~-D*SQ2/R2**2) ) * e
3COSF(5.49778-Q%*2) )
OVI4 (1)==30.0%* (B*CQ6/R6~A*CQ5/R5-A*CQ7/R7+B*CQO/R8+ (X~0.25)*((0.25%* Co
1B*CQ8+D¥*SQ8) / (R8* (RB**2-0,0625) ) ~-C*SQ6/RO*¥*2) +X¥* ( (+0.25%a% o
2C07-D*R7*SQ7) / (RT* (R7***2-0.0625) ) +C*SQ5/R5%%2)) o
3*COSF (0.7854-Q%X) é?
=X+0.005 1

> Z=7+0.005 b
CALL ZMVR(VR1) “

ZMVR1=ZMVR (VR1) !
ZMVR2=ZMVR (VR2) ]
ZMVR 3=ZMVR (VR3) A
ZMVR4A=ZMVR (VR4) .
REZM+ZMVR1+ZMVR 2+ ZMVR 3+ ZMVR4

PUNCH 4,y, ZMVRl,  2ZMVR2,  ZMVR3,  ZMVR%, REZM
FORMAT (F6.3, 5F13.5)

CALL 2ZMVI(VII)
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ZMVIl=2MVI{(VII)
ZMVI2=ZMVI(VI2)
ZMVI3=ZMVI (VI3)
ZMVI4=ZMVI(VI4)
ZMI=ZMVI1+ZMVI2+2ZMVI3+ZMVI4
PUNCII ©, Y, ©2ZMVI1l, 2ZMVI2, 2ZMVI3, 2MVI4, 2ZMI
9  FORMAT (F5.2, 5F12.5)
Y+Y+0.02
IF (Y-0.05) 1, 1, 5
5  Y+Y+0.03
Ir{y-0.1) 1, 1, 6
6  Y+Y+0.05
IF(Y-1.0) i, 1, 29
29 STOP
END
FUNCTION  ZMVR(VR1)
DIMENSION VR1(51), VR2(51), VR3(51), VR4(51)
oDD=0.0
EVEN=0.0 5
DO 3 i=2, 50, 2 3
‘ 3  EVEN=EVEN+VR1 (I)
| DO 4 =3, 49, 2
1 4  ODD=0ODD+VR1(I)
| ZMVI=0,001666* (VI1(1)+4.C*EVEN+2.0*0ODD+VI1(51))
I RETURN
| END
% FUNCTION ZMVI(VI1)
] DIMENSION  VI1l(51), VI2(51), vI3(51), VI4(51)
| oDbD=0.0
EVEN=7,0
Do 7 I=2, 50, 2
7 EVEN=EVEN+VI1(TI)
DO 8 1=3, 49, 2 u
8  ODD=ODD+VI1(I) P
ZMVR=0.001666* (VRI (1) +4.0*EVEN+2.0*0DD+VR1 (51) ;
RETURN i
END ;
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The output data is as follows:

Distancer Between ] Mutuol Impedances  (ohme) | "
Two Loops . g \Q
Y (cm) Rectangular Form g Polar Form | ?
0.01 116.419-7137.876 z 180 [ -49.8° i
0.03 115.567-7119.440 % 166 [ -45.9° »§
0.05 113.870-3105.523 E 155 [ -42.9° #i
: o
0.10 106.074-385.784 % 136 [ -39° ;ﬁ
0.20 77.432-380.953 112 [ -46.2° | ﬂf
0.30 37.954-984.963 92.9 /-65,9° | gi
0.40 ~2.493-378.030 78.1 [ -91.8° .
0.50 -34.350-356.949 66.5 /=121.1° A
0.60 -50,989-326.733 57.4 [-152.4° '*%
0.70 ~50.396+7 4.232 | 50.2 /-184.8° i%
0.80 | -35.415+327.755 % 45,0 [/-218.1° 3%
0.90 }-12,545+j38.575 i 40.5 [=-251.9° z%
i
1.00 | 102510335278 | see foae.2
| Table 1-1 %ﬂ
Curves of the mutual impedance will be shown in the ;
next chapter as a comparison with those obtained from measurc- i

ments.
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CHAPTER II

EXPERIMENTAL MEASUREMENT OF THE MUTUAL IMPEDANCE

3
The mutual impedance of the quad antenna was analyzed ‘ﬂ
[}
mathematically using a few assumptions that can not be

realized in the practical system. The mathematical treat- hi
ment, as was discussed in the previous chapter, is an Q
o
approximation. The validity and usefulness of this %ﬁ
-
approximation can best be determined by experimental means. A
Therefore, measurements of the mutual impedances were made “é
3
to compare the results established in Chapter I. .
2-1 General Considerations ;
Referring to fig. 2-~1 the terminal impedances of two #§

a

identical antennas are i
g

Iy ¥

Zl = Zgelf +'EI-Zmutual ﬂi

5

RS )

25 = Zself T 1, Zmutual i

2 2

where 2self = the self-impedance of loop #1 or loop #2 il
e

zy = the terminal impedance of loop #1 when loop #2 J;

is in place. -

1

2, = the terminal impedance of loop #2 when loop #1 K

Ery

is in place.
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self is further defined as the limit of Zl as the

current 12 approaches zero at the terminals of the other loop. .
2 3
self will in general depend on the spacing between the antennas %
since the current is not necessarily zero everywhere in the ,
second loop, even though the current is zero at its terminals. va
Zrutual may be obtained by short-circuiting loop #2 and K
N
measuring the terminal impedance 2, of loop #1. Thus ;%
1 e
7, = %2self + —2 Zmutual A
1 I, g
I l;i‘j‘é;
Z. =0 = Zself F— Zmutual |
2 I, ,
"y
Then (Zmutual)2 = Zgelf (Zself - Zl) (2-1) -
From equation {2-1) the value of the mutual impedance -t
can be calculated from a knowledge of only the terminal $g
L
impedance and the self-impedance. However, when taking antenna §£
W
measurements, it is impossible to connect a measuring meter ey
it
or a signal generator directly to the terminals of the antenna; @%
ol
a transmission line must be used, With the transmission line ﬁ*
¥
in place, the impedances read in the meter are not necessarily }
the terminal impedances of the antenna. If the transmission :
line is lossless and has no attenuation, the terminal impedances :

Gd s et

can be found from the meter readings by use of a Smith chart,

lJasik, Antenna Engineering Handbook, McGraw-Hill Book
Company, Inc., N.Y., 19061.
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If the transmission line parameters are known, transmission line
equations can be used. If the line parameters are not known,

other techniques should be used. One of the possible techniques ﬁ
‘ﬁg‘
oy
i

treats the line as a four terminal network.

2~2 Four Terminal Network

A transmission line can be represented by a circuit 4
) . , ) w
consisting of two terminals where power enters the circuit &ﬁ

and two terminals where power leaves the circuit. The circuit
is said to be passive, linear, and bilateral. It is passive e
g
because it contains no sources of electric enerqgy, linear i
because impedances of its elements are independent of the
amount of current passing through them, and bilateral because

the impedances are independent of the direction of current.

.,u
EEWR I

A 5.

It can be shown that any linear, passive, and bilateral four-

terminal network can be represented by either an equivalent

s e

"T" or a "q7 " circuit so far as measurements at the input or

B

3
=8

output terminals are concerned.

To f£ind the relations between the sending-end and the &‘
receiving-end quantities, of a four terminal network, let
ue determine the voltage and current at the sending end of |
the unsymmetrical T circuit of fig. 2-2 in terms of the

voltage and current at the receiving end.
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Is zﬂ. Zb IR
+‘ AAAAL, ANAMAL T -+
i
; |
Ve EY \
; >
_ L

Fig. 2=2
The current at the sending end is
Ig = I, +Y (Vg + Ig4)
= Yvp + (1 + YZ )1, (2-2)
The voltage at the receiving end is

v

it

s = Vg + IgZy + IgZ,

= Vg + Ip2, + 2,YVp + Ip2  + I Y2 7
= (1 + Yza) Vg * (za+zb+YZaZb) Ix (2~3)
The above equations are simplified in form by letting
A31+Yza C =Y
(2-4)
B = 25 t3 + Y25%p D = 1+YZ
If the network is symmetrical,
Zy = By
and hence A = D
and substituting equation (2-4) into equation (2-3)
Vg = Avp + BIp (2-5)
Substituting equation (2-4) into equation (2-2)
I = CVR + DIp (2-6)

I Since the unsymmetrical T circuit is valid for measur-

’ ing the end conditions of any passive, linear and bilateral
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four terminal network, equations (2-5) and (2-6) are valid
for any such network. The constants A, B, C, D are called .&
by
the generalized circuit constants, 1
Solving equations (2-5) and (2-6) for Vg and Iz o
3
. DVg - BI o
Vv, = -2 = (2-7) k|
R ap - BC
Alg - CV
I = —q—-§——-——--—v§ -8
R AD - BC (2-8)
It can be shown that AD — BC = 1. Substituting this relation 3
into equations (2-7) and (2-8) ;g
VvV, = DV BI ) 1
R “Vs 7 s (2-9) N
= e -+ — ‘?
Iy CVg + AL (2-10) |
When a transmission line is chosen, the generalized 3
circuit constants can be computed by making a few impedances '3
o
measurements on the line. The impedances to be measured are: Ei
Z., = the sending-end impedance with the receiving- B
end open-circuit #
i
2o = the sending-end impedance with the receiving- vﬂ
end short-circuit o
Zro = the receiving-end impedance with the sending- %’
end open-circuit 1
Zpe < the receiving-end impedance with the sending- 4

end short-circuit

S At

The impedance measured from the sending-end can be determined g
in terms of A, B, C, D constants from equations (2-5) and
(2-6) . With Iz=0 the equations give

v A
= el e -
Zgo e (2-11)
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and with VR = 0

. Vg _ B
2es "% T D (2-12)

YRV E

To find the impedances measured from the receiving-end,

equations (2-9) and {(2-10) must be modified by cheoncing the

¥

signs of all current terms. This change is necessary because, ﬁ
with the voltage applied at the receiving-end rather than at ;f
g
‘ |

the sending-end, the dircction of current flow ascumed to be i
positive when measuring impedance is opposite to the direction jﬁ
iy

BN

chown in fig. 2-2 to which equations (2-9}) and (2-10) apply. f%
The equations become A3
4

Vp = DVg + BIs (2~13) X

.3

s -1 A .

I = CVg + AL (2-14) :

. 1

From equations (2-13) and (2-14) with I, =0 %
IE v T ammes 2"‘1{3 .S

zRO Ir C ( ) .

Y

and when Vs = 0 ﬁ
B 44

‘e T Ig A ' (2-16) E

the values of the A B € D constants in terms of mcasured !ﬂ

=Y
e
e

1]

impedances are found as follows:

g

_ AD-BC _ ]

Ro ” Zrs T TAC AC )
ZRo”%rs _ 1 . .C _ 1 ‘
Zso ac AT 2 :
rw““'—'—'?"’;'g”“’ :

A= oo (2-17) :
N CROT%Rs i

After “A'" is computed, the other constants may be iound by

equations (2-11), (2~12) and (2-15); and then network elements 1
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Za' Zy, and Y can be computed by equation (2-4). The accuracy
of such a network depends on how closely the measured data
approaches the actual conditions.

2-3 Eguipment Used

The antenna under test was made of copper wire with a
diameter of 0.133 cm. It was formed into two squarc loop=
measuring 25 ¢m per side, in other words, 1ite circumference ic
100 cm which i one wave-lenath for an electromacnetic wave of 300
megacycles propagating in vacuum. The antenna was fixed on
a wood frame to make sure the two loops were parallel and had
their centers on the same axis.

The radiating loop, which was a balanced device, was
fed by a 300-ohm balanced transmission line. The other’
end of thies line was connected to a balun transformer,
which transforms the balanced system to an unbalanced detecting
system.

The balun transformer was adjusted for proper operation
at 300MC by means of adijustable stubs. This was done with
the aid of an admittance meter.

The balun transformer and the admittance meter were
linked by the type 874-~LK constant-impedance adjustable line
adjusted to an odd multiple of a quarter wavelength. Therefore,

the admittance meter measured the resistance and reactance of

a8 -

M
n
S
i
i

T

el

54

ram

‘“l:i“ﬂ

mELL

RN

=

- aA 1 Eees el

%

s
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the balanced circuit.
A crystal mixer was used to combine the 300 M.C. and ;ﬁ
330 M.C. signals to produce a signal of 30 M.C. which was ‘%
measured by the i-f amplifier. The block diagram of the N
system is shown in Fig. 2-3. 3

2-4 Experimental Results and the Corresponding Calculations

The impedances measured on the admittance meter of i

fig. 2-3 are the impedances appearing across the balun é
terminals; i.e. the impedances looking into the 300 ohm %
twin lead. B
4

It was shown in section 2-2 that the equivalent circuit u

of the transmission line could be obtained by a few impedance “%
measurementc. They are: %
Impedances in ohms ﬁ

Zeo 105 + j 475 &

ﬁ

4Q - =3 &

ZSS 10 3 175 o

W

- bt |

Z 100 + j 467.5 E

Ro e

Zrs 37.5 - j 175 @

p

Table 2-1 .

The generalized circuit constant "A" may be obtained from

equation (2-17)




300 MC

I.F. Amplifier 33w§F -~
Detector
Cpmbination
USUUES SO N
Local Crystal
Oscillatar#2 Mixer
330 Mc¢
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300 ohm
Twin Lead

Balun
} 300 Mc
r
300 MC
‘Admittance -~ Local
1 Meter . Oscillator #1
300 MC
Power
Supply

Fig. 2-3. Block diagram of circuit arrangement for
impedance measurements

e
~BE BT T
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A | 485 [77.5°

62.5 + 3642.5

3]0.754 [ -6.92°

and

i

il

it

i

It

; Elements of the equivalent circuit may be obtained by

Q substituting 2, C, D constants into equation (2-4).

Y =

06.87 [ ~3.46° = 0.869 - j§0.0525

ZSO

0.

g7 [3.46°

ags [77.5°

0.

0.

C.

0.

0.

OQ

0.

00179 /-80.96°

000282 - j 0.00177

A
Ro

00179 / -80,96° « 477 [ 77.9°
854 [ -3,06°

852 — j 0.0461

; 0
854 [-3.06% - 179 [ -77.1"

152.7 [-80.16°

C

0.000282 - § 0.00177 mho

Thus,

EEL .

L o

LR By Wl

ik Bl -

i

WoE:

wa

LR e g W

P




_ =0.131 - §0.0525
0.00179 [/ -80,96°

_0.141 / 201.85°
0.00179 /-80.5.°

= 78.8 [ =-77.19°

= 17.5 - j 76.9  ohms

D-1

Z T it

b Y

_-0.148 ~ j 0.0%61
0.00179 [ -80.967

86.6 [ 278.26°

It

It

12.45 - § 85.75 ohms

The eguivalent circuit diagram is shown as follows:

zZ =17.5-376.9 Q1 Z =12,45-385.75 L
i
|14

,+,. T.._ e ARAAAS e ,_...“_Hm ] AAAAAA ] _i,_
t |
| | 1
|
! 0.000282 .
% Ej ~30.00177 1 f
; ‘ |
4 | -
Fig. 2-4

When the cubical quad antenna was connected to the
transmission line the impedances read from the admittance

meter were ag follows:

63
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rﬁistance Between Impedance
Two Loops (cm) Resistance | Reactance

{ohms) {ohms)

o0 228 -220

100 243 ~212

20 226 -206

80 210 ~216

70 226 -240

60 252 -250

50 263 ~-210

40 235 -165

30 190 ~-160

20 136 ~178

10 74 - 200

Table 2-2

Those impedances are the impedances appearing across

the balun terminals.

The impedances looking into the terminals

of the radiating loop may be obtained by the following calcula-

tions.

ab

Yab

Z, N Z,
i i
. i i
228-1220 Zab Zasi_
L8l B le
} |
§ ]
b d
Fig. 2-5
= 228-3220-2
a
= 228-322)-17.5 + j 76.9
= 210.5 - j 143.1
= 254.5 | -34.2°  ohms
==L = 0.003925 / 34.20
zab
mho

= 0,003242 + j 0.002205

z, N .I‘A

g E 2=
=l RE

i
A
dig

&

S

o wm os

—_——
Eow w D

2o gl e
R L e
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Yac = Yab - Y
= 0.003242 + 3 0.002205 ~ 0.000282 + 3 0.00177
= 0.002960 + j 0.003975 }ﬁ
4
= 0.00495 /53.35° mho
=1 o
Z ac 7 o :I
A
J .
= 202 [ =53.35°
R
. bd
= 121 - jl62 ohms b
zZ _ 3
self = Zae ~ Zb o
= 121 - §162 - 12.45 + j 85.75 g
= 108.55 -~ j 76.25 i
%
= 132.5 /[ =35,1° ohms
self if the self-impedance of the single loop. Other ‘
terminal impedances may be obtained in the same way. They ﬁ
are tabulated below: i
Distance Between iTerminal Impedancos? ﬁ
Two_Loops (cm) | (ohms) o "
i o0 . 108.55 - §76.25 | "
100 117.85 - §77.25 | 5
90 112.55 - j67.75 ! n
80 100.45 - §67.25 |
70 99,55 ~ j84.75
60 108.55 - j95.25
50 128.55 ~ §85.75
40 135.37 - j§50.40
30 109.0 - §12.65
20 69.67 -~ $19.90
10 22,35 - 420,45
Table 2-3

Knowing the self-impedance and terminal impedance, .

the mutual impedance between two loops of the antenna may 3
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be founded by equation (2-~1). The calculation of ZMBO is

typical, By equation (2-1)
(Zya) 2 = Zself (Pself - Z30)

Where 230 = the terminal impedance of the antenna when the
distance between two loops is 30 cm.

ZMBO = the mutual impedance between two loops when the
distance between them is 30 cm.
2 ] . .
self 30 = 108.55 -376.25 - 109.0 +312.65

= ~0.45 -363.6

il

63.60 [=90.42°  ohms

7 e

M30 = [132.5 . 63.60 /[ -35.1° - 90,42°

= /8446 [-62.76°

91.90 [ -62.76°

]

= 42,1 - j8l.6  ohms

Other mutual impedances may be founded in the same

way. They are tabulated on the next page.




e e g

Mutual Impedances

(ohms:)

Rectangqular Form

Polar Form

Zeelf

ZMlO

ZM20

ZM30

ZM40

ZM50

ZM60

ZM70

ZM80

|
ZM9O

%M100

108.55

96.60

67.40

42.50

6.08

-27.30

-44.5

-40.5

-31.4

13.88

§76.25
165.10
167.80
§81.6
370.1
146.8
j23.1
i 2.94
§26.6

j32.5

§33.4

Table 2-4

132.5 [=35.12

116.6 /[ -34°

95.6 [ -45.15°

92.0 [ -62.5°
70.4 / -85.05°

54.2 [ -120.25°

50.2 [/ ~-152.6°

40.6 [ -184.15°

40.1 [/ -221,55°
33.6 [ -255.12°

36.2 [ -292.56°

—_—
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curves of the mutual impedances obtained from calcula-

tions and from measurements are drawn in fig.

2-6 and fig.2-~7.
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2-5 Discussion

The matual impedance between two loops is a measure ‘
e
of the voltade induced at the termninals of the second loop %

for one ampere of current flow into the terminals of the

first loop. As the two loops are brought closer together,

& i

the voltage induced in the second loop becomes equal to the

back or self-induced emf acainst which the current in the

© ot raE

first loop must be driven., Therefore, it would bhe expected }
that the mutual impedance between two identical loops would

approach the cself-impedance of onc as the loop spacing

approaches zcro., Hence, 1f the space between two loops 1is %
put egual to zero, the real part of the mutual impedance is

equal to the radiation resistance. However, the recactance

o e,

of a loop with a wire diameter of zero will be infinity
(nole:  The last term of equation (1-64)}, I: is evident
that in computing the reactance of the antenna, its wirce

diameter will have to be considercd. A
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CHAPTER III

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY ,,,‘

3~-1 Conclusion and Discussion

The results of this thesis show that the measured
values follow closely the calculated values. The slight g

deviations are due to the following reasons:

(2) The antenna is not located at a place which is g
completely free from obstructions in all directions
(the antenna is not in free space).

(b) The gap between the two terminals is not
infinitely small.

(c) The ohmic losses in the antenna loops are not

z2exro,

(d) For an antenna loop with losses, the velocity
L, ;
NE7S

it changes with frequency. Hence, the one meter !

of wave propagation is not exactly Vp =

length loop is not exactly a full wavelength
around the periphery.

(e) The two loops are not exactly parallel and their
centers are not exactly on the same axis.

(f) The 300 ohm twin lead is an unshielded transmission

line; it effects the near fields of the antenna.
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(g} The current in the radiating loop is not
exactly a sinusoid.
(h) The equivalent T circuit does not exactly represent K

the 300 ohm line.

(A) Wwhen the line is ouen circuited, the fringing Fi
capacitance will effectively make the line
appear to be longer than it really is. In the
short circuited case, inductance in the short
circuit strap will cause a similar errorl.

(B) In measuring ZRO and ZRS the test equipment
should be located at the receiving end, where
the antenna is to be connected; and the open
circuit and the short circuit located at the
sending end. It is, however, impossible to
locate the test equipment at a height corres-
ponding to the antenna height. The data for
ZRO and 2Z s were, of necessity, measured before

the transmission line was put in place; the

result being a slight error in the equivalent

T circuit.

Some of the affects listed above can be avoided or reduced.

lNote: In U.H.F. type 874-WN short circuit termination and
type 874-W0 open circuit termination are used, but
they do not fit the 300 ohm twin lead and the terminale
of the balun.
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For instance, if a completely shielded balanced line is used,
errors due to terms (f) and (g) disappear. If a transmission
line with low characteristic impedance is used, the reading g

of the admittance meter will fall into the maximum accuracy

range; better results will be obtained. :

The line used does not appear to be exactly symmetrical

Z

. Z Z Z L ‘
i.e. "RO # SO and “RS # "SS. This is due to poor manufacture i

and capacity differences along the line to the ground. Since
Zz zZ Z

RO, "RS, 7SO and ZSS were measured this discrepancy does not

introduce any error.

3~2 Suggestions for Further Study %
The field pattern and the gain of the cubical antenna |
can be found with the knowledge of the pattern factor of the .
single loop and the data of this thesis.
The radiation resistance of a single loop was obtained
by the extension of the ZMR curve to the vertical axis. The
radiation resistance of a single loop could be obtained by
integrating the radical component of the Poynting vector over
a large spherical surface. Similarly, the radiation resistance
of the cubical gquad antenna could be obtained by integrating
the radical component of th¢ Poynting vector over a large
spherical surface.
The radiation loop need not necessarily be fed by a
single power source or the curr nt distribution along the

radiating loop need not nccessarily be a cosine wave. The kind




74
of the current distribution that will yield maximum radiation
or the kind of current distribution that will yield a desired

field pattern are worthy of study.

i
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APPENDIX I

Prove that

~ Iiejwt { [EL.“‘G*j3<£+r)“ejB€£*r)

7z 4TeE,C J 2z r dh
(o, H .
ejﬁ*(fi-r)+ ~3B (L +r) 3 i
0 J ,
. ~ . n = H N
) Iiejwt | ejB(ﬁ r) e 38 (L+r) 1 ﬂ
ame,c | BT s ra;}g
where r =/\/X2 + y2 4 (z-h)2 , 4= -%— +h
prootf:
)t e-jB(Z+r)_e+3B(£~r) :
2z L r
-4 (z-h) e-j8(£+r) (z-h) e-jﬁ(Hr)
- L2 B r3
3B (z-n)eIBU-T) 4y 5B (C-T)
+ > + -
r r
set

H : Al f
=3p (L+x) __3p(é-x)
- p) r a ] - .
bl _-I: 2z L * :]Qh

H N .\
. g (L -x) ~jB (e +r)
~h
=f25. (; ) e _ }dh
0

e
A jB (€L+x)
- ; - -J -
+f(zrh) [ejﬂ(ﬁ r)_e j dh (I)
o 3
H JB(¢-r) ~-3B (L+r)
set F, = B —%— [e +e :] dh (11)
0
\ — -jg(err) YT
but 3 (S}E\E Tr} y = "jﬁe ¥ jﬁ(z"’h)e ]6{‘6 r)
2h r ! r r?
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(z-n) o™ 18 (L+T)
3 {111)
r
. . B _ 3{
) ieJB(b-r)) ) jﬁejﬂ(ﬂ-r) . jﬁ(z_h)ow(ﬂ r)
dn~ T 3 22
- jp(L-x)
+ (z h)e3 (1v) i
r i
Comparing (I), (II), (III) and (IV) ;
H 58 (L - ~-jB (€+x) i
. N e35(£ ) ) o J - ;
P, E, —f‘Lbh( r T r )] dn
0
[ejﬁ(£~r) o~ i L+r) -H
D gwt [ 3B(-x) j8 (L+r)
Iic e - € HL 0.E.D.

or EZ=@W€0C4_L

-

r

X
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APPENDIX II

5 Expanding the perfect differential of equation (1-44)

q oiflhr) 1 [ Lz B (her)
dh r(r=h+z) = ré(r-n+z)% < jB(r-h+z)r(l+ —)e

BN e s BN RLIC }

ejﬁ(h"r) r 2 el
’"Wi]ﬂ(r—h»kz) + (r-h+z) (._?E)}

i

ejﬁ(h-r){iéz . _%3}

6 Expanding the differential of equation (1-45)

-8 (h+xr) e .
__”g_‘_ e J — 1 T T . V-2 ”73 (f! r'r)
dh r(r+h-z) rz(r+haz)2{%(r+h z) {~3B) (1+~§“)e

_[E%f(r+h-z) + r(gig s 1>}e—j3(h+r{}

- e“jﬁ(h'*'r) (Q-B(r+}_\“7)2 _ (l’”*“h"Z)z
rz(r+h~z)2 L J - T

- "‘jB(hﬁ'I‘) ’r l,é_ 1
) 1 r? ' 53}
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