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Scalable and high-throughput electrophysiological measurement systems are
necessary to accelerate the elucidation of cardiac diseases in drug development.
Optical mapping is the primary method of simultaneously measuring several key
electrophysiological parameters, such as action potentials, intracellular free
calcium and conduction velocity, at high spatiotemporal resolution. This tool
has been applied to isolated whole-hearts, whole-hearts in-vivo, tissue-slices
and cardiac monolayers/tissue-constructs. Although optical mapping of all of
these substrates have contributed to our understanding of ion-channels and
fibrillation dynamics, cardiac monolayers/tissue-constructs are scalable
macroscopic substrates that are particularly amenable to high-throughput
interrogation. Here, we describe and validate a scalable and fully-automated
monolayer optical mapping robot that requires no human intervention and with
reasonable costs. As a proof-of-principle demonstration, we performed
parallelized macroscopic optical mapping of calcium dynamics in the well-
established neonatal-rat-ventricular-myocyte monolayer plated on standard
35 mm dishes. Given the advancements in regenerative and personalized
medicine, we also performed parallelized macroscopic optical mapping of
voltage dynamics in human pluripotent stem cell-derived cardiomyocyte
monolayers using a genetically encoded voltage indictor and a commonly-used
voltage sensitive dye to demonstrate the versatility of our system.
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Introduction

Cardiovascular diseases remain a major cause of death globally. Basic research using

optical mapping to measure action potentials, calcium concentrations and conduction

velocity at high spatiotemporal resolution has had a major impact on our understanding

of such diseases (1–5). And because this tool permits the investigation of cardiac

electrophysiology at a macroscopic spatial scale, much has been learned about cardiac

excitation wave dynamics during fibrillation. In addition, the use of drugs to perturb
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normal functioning of ion-channels and gap junctions provides

mechanistic insights into pathophysiological behavior (6, 7).

However, studies involving the use of existing and new drugs at

various concentrations and combinations requires the use of

scalable cardiac substrates and scalable measurement

technologies. This requirement is further underscored when

considering the immense time and money invested in early drug

discovery (8, 9).

Currently, optical mapping/imaging is the only multi-

parameter measurement technology that is scalable. It has been

applied to whole-hearts (ex vivo and in vivo), tissue-slices and

cardiac monolayers/tissue-constructs (1–5). Cardiac monolayers/

tissue-constructs (also known as engineered heart tissues) are

scalable macroscopic substrates that permit the measurement of

several key electrophysiological parameters (10–14). Although

many recent advances have been made in optical mapping

technologies for these substrates (15–21), there is a scarcity of

published work on fully-automated optical mapping systems that

not only perform optical mapping, but also perform fluid-

handling, electrical/optical stimulation and mechanical

positioning, all inside an incubator. To truly increase

measurement throughput, all tasks involved in an optical

mapping experiment must be automated without human

intervention, similar to what has been done in the production

and maintenance of human pluripotent stem cell-derived cultures

(22, 23) and the analysis of optical mapping data (24).

As a formative project, we aimed at developing a barebones,

scalable and fully-automated monolayer optical mapping robot

that requires no human intervention, specifically for

macroscopic cardiac monolayer substrates large enough to study

excitation wave dynamics. High-throughput optical mapping

systems for “point” measurements of cardiac cell cultures plated

in 96-well plates, for example, have already been developed (16,

25). In effect, each well yields one action potential/calcium

transient measurement point (26). Here, we describe and

validate the robot using the well-established and inexpensive

neonatal-rat-ventricular-myocyte (NRVM) monolayer substrate

(27) plated on standard 35 mm dishes by loading cells with dye

and treatment and then performing macroscopic optical

mapping, all in a parallelized fashion inside a 37°C incubator.

To demonstrate future applicability to human pluripotent stem

cell-derived cardiomyocyte (hPSC-CM) monolayers/tissue-

constructs (28), we performed parallelized macroscopic optical

mapping of voltage dynamics in hPSC-CM monolayers also

plated on standard 35 mm dishes using a relatively fast

genetically encoded voltage indicator (GEVI) and a commonly-

used voltage sensitive dye (VSD) (25, 29–31). The total cost of

the system components is <$15,000 USD for the oblique

excitation configuration and <$20,000 USD for the

perpendicular excitation configuration, which requires the use of

more components. The total cost of the system is lower than the

cost of one optical mapping camera system typically used in the

field. By overcoming the limitations of cost and human

intervention, we believe the fully-automated high-throughput

electrophysiological measurements of macroscopic cardiac

constructs can be operated seamlessly.
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Methods

Optical mapping robot design

The optical mapping robot developed for this study automates all

tasks involved in a monolayer/tissue-construct optical mapping

experiment. It is referred to as a formative system because it will

help pave the way to more complex systems based on specific

experimental needs. Figure 1 shows the system and sample NRVM

calcium data from one of the four cameras during paced and

fibrillatory activity. The top portion of the system is the Incubator

that maintains the environmental temperature at 37°C (Figure 2A

and Supplementary Figure S1A). The aluminum base-plate and

the air are temperature controlled with stand-alone feedback

controllers. The Incubator houses 16 monolayers plated on

standard 35 mm dishes, multi-port syringe pumps for adding a

precise volume of liquid into the dishes, a 2-axis XZ Cartesian

robot for positioning the perfusion and stimulation heads, a

refillable ultrasonic bath for cleaning the graphite stimulation

electrodes, perfusion inlets and outlets. In addition, all the solutions

used were placed in the incubator to keep them warm (Figure 2A).

High-flow peristaltic pumps (not shown in the figure) were used to

refill the ultrasonic bath and low-flow peristaltic pumps

(Figure 2B) were used to remove all the liquid from the 35 mm

dishes. Graphite electrodes were used to electrically stimulate a

small region of cells on one side of the monolayers (32).

The bottom portion of the system is the Imager, which performs

parallelized optical mapping with 4 cameras recording simultaneously

(Figure 2B and Supplementary Figure S1B). The imaging head is

made up of 4 modules, which are in turn made up of a high-speed

complementary metal-oxide semiconductor (CMOS) camera,

camera lens, emission filter (EM), dichroic mirror (DC), excitation

filter (EX), high-power light-emitting-diode (LED) and a

collimating lens for the LED light (Figure 2B). The more costly

perpendicular excitation configuration is shown in Figure 2B,

which was used to optically map calcium dynamics in NRVM

monolayers. To reduce the cost of the system, we took advantage of

recent advances in low-cost high-speed CMOS cameras (33, 34).

The camera used in this study (part #: UI-3060CP-M-GL; IDS

Imaging Development Systems GmbH, Obersulm, Germany) was

configured to record either 240 × 300 or 180 × 180 superpixels (2 ×

2 binning mode; 2 × 2 pixels per superpixel) at 300 frames-per-

second (fps) or 400 fps, respectively. A 1-axis X Cartesian robot

positions the optical mapping cameras below one of 4 columns of

monolayers. To reduce the cost of tests, we used NRVM

monolayers for the bulk of the robot development. The inexpensive

rhod-2AM calcium dye was used to measure calcium transients

and conduction velocity in the NRVM monolayers. Supplementary

Movie S1 demonstrates the optical mapping robot in action.
Optical mapping robot components and
cost

A detailed list of the components, part numbers, suppliers and

costs can be found in Supplementary Table 1. The total cost of the
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FIGURE 1

Cardiac monolayer optical mapping robot. (A) Major components of the robot and their connection to a standard desktop computer. The temperature
controllers operate independently. (B) A picture of the optical mapping robot, showing the Incubator (top) and Imager (bottom). The custom electronics
and 2 high-flow peristaltic pumps are not in the field-of-view. (C) Sample NRVM calcium data from one of the cameras during 3 Hz electrical pacing and
fibrillation. The normalized fluorescence intensity maps at one time point captures the propagation of the activation fronts. The fibrillating monolayer was
formed from older neonatal rats (3–4-day-old).
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system components is <$15,000 USD for the oblique excitation

configuration and <$20,000 USD for the perpendicular excitation

configuration. The cost can be significantly reduced further, for

example, by in-house engineering of the perfusion system. For

instance, one can build the multi-port syringe pumps instead of

purchasing off-the-shelf units.

We used a standard desktop computer running the Windows

operating system, but added a 4-port USB3.0 PCI express card

(AL00014; IDS Imaging Development Systems GmbH) for

camera communication and data acquisition. To communicate

with the syringe pumps, a USB to RS232 cable (CHIPI-X10;

Future Technology Devices International Ltd., Glasgow, UK) was

used in conjunction with a 4-Port USB data hub purchased at a

local computer shop.

Authors PL or DF-R can be contacted for further details on

components and robot assembly.
Software, electronics and mechanical
engineering

The custom camera and instrumentation software, as well as

the custom electronics are described in detail previously, with
Frontiers in Cardiovascular Medicine 03
minor modifications (35). Mechanical design and machining of

parts were performed in-house using stock aluminum,

polycarbonate plastic and acetal plastic. Fastening and joining

hardware were purchased either at local hardware shops or

McMaster-Carr Supply Company (Elmhurst, IL, USA).

Authors PL or DF-R can be contacted for further details on the

software, electronics and mechanical engineering.
Isolation and culture of NRVM monolayers,
dye loading and drug testing

All procedures were approved by the Institutional Ethics

Committee for Use and Care of Laboratory Animals at Merck &

Co., Inc., Kenilworth, NJ, USA. Timed pregnant Sprague-Dawley

rats were obtained from a vendor (Charles River Laboratories

Inc., Wilmington, MA, USA), housed individually, and

monitored until pups were given birth. The isolation and culture

techniques are described previously (36). Briefly, 1–2-day-old

neonatal rats were placed on ice with paper diapers to achieve

hypothermia for anesthesia purpose. Decapitation was used to

euthanize the rats. Hearts were removed and collected in D1

solution (Neomyt Kit; Cellutron Life Technologies, Baltimore,
frontiersin.org
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FIGURE 2

Incubator and imager. (A) Front-view picture of the Incubator (Supplementary Figure S1A shows the top-view schematic). The 16 monolayers are
arranged into 4 columns and a 2-axis XZ Cartesian robot positions the 4 perfusion & stimulation heads into one column of 4 dishes or into the
ultrasonic bath, which acts as both a cleaning station and a waste bin. The air heater on the right warms the air to 37°C while the heaters attached to
the bottom of the aluminum base-plate warms the plate to 37°C. The 4 multi-port syringe pumps add precise volumes of liquid into the dishes from
bottles containing the necessary solutions for the experiment. A close-up view of one of the perfusion and stimulation heads shows the 2 graphite
stimulation electrodes and the perfusion inlet and outlet. 4 low-flow peristaltic pumps (Figure 2B) remove solution from dishes via the perfusion
outlets. (B) Front-view picture of the Imager (Supplementary Figure S1B shows the top-view schematic). The imaging head comprises of 4 imaging
modules, each capable of imaging one monolayer. The imaging head is mounted on a 1-axis X Cartesian robot that positions the imaging head
below one of 4 columns of monolayers. A close-up view of an imaging head module (perpendicular excitation) shows that each module comprises
of a high-speed CMOS camera, camera lens, emission filter (EM), dichroic mirror (DC), excitation filter (EX), high-power LED and a collimating lens for
the LED light.
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MD, USA). Ventricles were then isolated and digested in D2

solution (Neomyt Kit; Cellutron Life Technologies, Baltimore,

MD). Two 45-minute pre-plating periods were used to avoid

noncardiomyocyte attachment. NRVM were cultured in NS

medium (Cellutron Life Technologies, Baltimore, MD) with 100

µM bromodeoxyuridine (Sigma-Aldrich, Burlington, MA, USA).

Finally, cardiomyocytes were plated in 35 mm tissue culture

dishes coated with SureCoat (Cellutron Life Technologies,

Baltimore, MD) at a density of 1.5 × 106 cells/dish for

monolayers. NRVM monolayers were cultured at 37°C, 5% CO2

for 3–4 days before optical mapping experiments.

NRVM monolayers were stained in Hanks’ balanced salt

solution (HBSS) (Waltham, MA) with 5 µM rhod-2AM (Biotium

Inc., Hayward, CA, USA) at 37°C for 45 minutes. For the drug

effect experiments, monolayers were immersed in HBSS

containing the drug under investigation (3 µM nifedipine,

N7634/0.6 µM flecainide, F6777; Sigma-Aldrich, Burlington,
Frontiers in Cardiovascular Medicine 04
MA). The vehicle was 0.1% DMSO. Monolayers were incubated

with treatment at 37°C for 15 minutes.
Generation of human embryonic stem cell
(hESC)-derived cardiomyocytes and Dye
loading

Wild type (WT) and accelerated sensor of action potential 1

(ASAP1)-expressing ESI-17 hESCs (Lineage Cell Therapeutics

Inc., Carlsbad, CA, USA) were expanded using mTeSR1 medium

(STEMCELL Technologies Inc., Vancouver, BC, Canada) and

differentiated into cardiomyocytes via a previously reported

growth factor-based guided differentiation protocol (31).

Generated hESC-derived cardiomyocytes had a mean cardiac

purity of 94.4% ± 1.8% based on flow cytometry for the

cardiomyocyte marker cardiac troponin T (Clone: REA400;
frontiersin.org
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Miltenyi Biotec North America, Waltham, MA, USA). All hESC

experiments were conducted with the approval from the

Canadian Institutes of Health Research (CIHR) Stem Cell

Oversight Committee (SCOC).

For acquisition of optical action potentials, WT and ASAP1+

hESC-CMs were seeded in a 35 mm tissue culture dish coated

with growth factor-reduced Matrigel (Corning; Sigma-Aldrich

Canada Co., Oakville, ON, Canada) at 1.2 × 105 cells/cm2 and

maintained with RPMI media supplemented with L-glutamine

(2 mM) and insulin containing B27 (Thermo Fisher Scientific
FIGURE 3

Calcium transient amplitude and conduction velocity changes (NRVMmonolay
Hz electrical pacing. The stimulation site is shown at the right side of the dish
vehicle (0.1% DMSO) and nifedipine (3 µM) treatment. There was a decrease
intensity maps at progressive time points during 3 Hz electrical pacing before
side of the dish. (D) Activation maps before and after flecainide treatment.
(0.1% DMSO) and flecainide (0.6 µM) treatment. There was a decrease in con
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Inc., Waltham, MA, USA). Four to six days after seeding cells,

optical action potentials were assessed using either the genetically

encoded fluorescent voltage sensor ASAP1 (29, 31) or the

synthetic VSD FluoVolt (Thermo Fisher Scientific Inc.). For the

latter, wild type cells were loaded with FluoVolt for 30 minutes

at 37°C. Cells were imaged under both spontaneous and paced

conditions while bathed in a modified Tyrode’s solution

containing (in mM) 140 NaCl, 5.4 KCl, 1 MgCl2, 1.8 CaCl2, 0.33

NaH2PO4, 5 glucose, and 10 HEPES, adjusted to pH 7.4 with

NaOH.
ers). (A) Sample calcium transients from 4 points in the monolayer during 2
. (B) A comparison of the calcium transient amplitude changes between

in amplitude following nifedipine treatment. (C) Normalized fluorescence
and after flecainide treatment. The stimulation site is shown at the right
(E) A comparison of the conduction velocity changes between vehicle
duction velocity following flecainide treatment.
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Results

Here we present data from a sample 16-monolayer

experimental run. The robot tasks were pipelined because of the

dye and treatment incubation times and the time needed to

perform fluid-handing and optical mapping tasks

(Supplementary Figure S2). For drugs, we used (1) nifedipine, a

calcium-channel inhibitor that reduces the calcium transient

amplitude (37) and (2) flecainide, a sodium-channel inhibitor

that reduces conduction velocity (38). The vehicle for both drugs

was DMSO. In this sample run, 5 out of 16 NRVM monolayers

entered spontaneous fibrillatory activity, which is a well-known

disadvantage of using NRVM monolayers plated on 35 mm

dishes. However, this disadvantage is tolerated because of the

simplicity and low-cost of this preparation.

The 11 non-fibrillating monolayers were divided into 3

treatment categories: vehicle (0.1% DMSO, 4 monolayers),

nifedipine (3 µM, 3 monolayers) and flecainide (0.6 µM, 4

monolayers). Figures 3A,B shows sample results comparing the

effects of nifedipine and vehicle treatments on the calcium

transient amplitude during 2 Hz pacing. The calcium transient

amplitude was measured right before (control) and then 15

minutes after treatment using ΔF/F as a measure. The sample

traces in Figure 3A show a decrease in amplitude after

nifedipine treatment. The value of ΔF/F went from 0.1143 ±

0.0178 (control) to 0.0591 ± 0.0073 after nifedipine treatment (n

= 12; 3 dishes and 4 points per dish) whereas ΔF/F went from

0.1441 ± 0.0430 (control) to 0.1363 ± 0.0343 after vehicle

treatment (n = 16; 4 dishes and 4 points per dish). Figure 3B

shows the decrease in calcium transient amplitude after

nifedipine treatment compared to vehicle treatment.

Figures 3C–E shows sample results comparing the effects of

flecainide and vehicle treatments on the conduction velocity

during 3 Hz pacing. The conduction velocity was measured

right before (control) and then 15 minutes after treatment

along the diameter of the dish. We used the time fluorescence

rises to 50% of its peak change as the “activation time” for a

propagating wavefront. Figure 3C shows normalized

fluorescence intensity maps at progressive time points during

3 Hz electrical pacing and Figure 3D shows the corresponding

activation maps. It can be seen that flecainide slows the

propagation speed of the activation front. The conduction

velocity went from 22.9 cm/s ± 1.6 cm/s (control) to 17.9 cm/s

± 2.2 cm/s after flecainide treatment (n = 4; 4 dishes) whereas

conduction velocity went from 22.9 cm/s ± 2.4 cm/s (control) to

24.0 cm/s ± 2.1 cm/s after vehicle treatment (n = 4; 4 dishes).

Figure 3E shows the decrease in conduction velocity after

flecainide treatment compared to vehicle treatment.

Supplementary Movie S2 shows parallelized optical mapping

with 4 cameras recording simultaneously under one column of

NRVM monolayers during a control measurement.

As a proof-of-principle experiment for future development, we

performed parallelized macroscopic optical mapping of hPSC-CM

monolayers plated on 35 mm dishes using the GEVI ASAP1 (n = 4)

and the synthetic VSD FluoVolt (n = 8). Figure 4A shows the
Frontiers in Cardiovascular Medicine 06
lower-cost imaging head used (oblique excitation configuration).

This imaging head is made up of 4 modules, which are in turn

made up of a high-speed CMOS camera, camera lens, emission

filter (EM), excitation filter (EX), high-power LED and a

collimating lens for the LED light. Figure 4B shows sample

action potentials from an ASAP1-expressing hPSC-CM

monolayer paced at 3 Hz (Supplementary Movie S3). For a

higher ΔF/F and faster kinetics, we loaded wild type hPSC-CM

monolayers with a commonly-used synthetic VSD FluoVolt.

Figure 4C shows sample action potentials during 1 Hz paced

activity (Supplementary Movie S4).
Discussion

To accelerate the elucidation of disease mechanisms and

development of effective non-proarrhythmic drugs, high-

throughput and low-cost electrophysiological measurement

systems must be developed. This necessitates a scalable cardiac

substrate and a scalable measurement technology. Here, we

described and validated a robot using the inexpensive NRVM

monolayer substrate and the clinically-relevant hPSC-CM

monolayer substrate, plated on standard 35 mm dishes, by

automating all tasks involved in a basic optical mapping

experiment. With the total cost of the system components being

<$15,000 USD for the oblique excitation configuration, we

believe that fully-automated high-throughput electrophysiological

measurements of macroscopic cardiac constructs will become

more widespread and will enable the investigation of many

variations and combinations of drug perturbations in a

significantly reduced time frame.

The cost difference between the two imaging head options was

significant and the oblique excitation configuration is

recommended in cases where there are no geometric constraints.

Perpendicular excitation is a more widely-used configuration in

fluorescence imaging and combines excitation and emission light

into a single optical path. Such a configuration is advantageous

in cases where there are geometric constraints on oblique

excitation but disadvantageous in certain multi-parametric

imaging scenarios where the excitation wavelength of a

fluorophore is longer than the emission of another (39–41). The

oblique excitation configuration avoids spectral congestion and

more easily takes advantage of multi-band emission optical filter

technology but has more geometric constraints because the

excitation light must illuminate the substrate at an angle.

To more thoroughly study cardiac electrophysiology

mechanisms, longitudinal measurements are needed. Such

measurements will require the integration of an off-the-shelf or

custom 5% CO2 incubator, which has become a more affordable

option with the development and availability of optical gas

sensors (42, 43). And with the addition of microscopy, we

believe that the next generation of optical mapping robots will

yield new observations important to both the drug-development

and basic science research communities.
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FIGURE 4

Imaging action potentials using a GEVI and a synthetic VSD in hPSC-CM monolayers. (A) A close-up view of a lower-cost imaging head module (oblique
excitation) shows that each module comprises of a high-speed CMOS camera, camera lens, emission filter (EM), excitation filter (EX), high-power LED and
a collimating lens for the LED light. (B) Sample action potentials (normalized signals) from 4 points in the monolayer during 3 Hz electrical pacing. The
stimulation site is shown at the right side of the dish. GEVIs have slower kinetics compared to synthetic VSDs. (C) Sample action potentials (normalized
signals) from 3 points in the monolayer during 1 Hz electrical pacing. The stimulation site is shown at the right side of the dish.
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Limitations

Our barebones system has limitations and can certainly be

improved upon based on experimental needs. Other parameters,

such as force/contractility can be measured acutely, or

longitudinally over several days and even weeks. As noted earlier,

longitudinal measurements will require the integration of an

incubator that maintains a 5% CO2 environment and a method

for maintaining high humidity over cell cultures while not

damaging surrounding electrical, mechanical and optical

instrumentation. With the emergence of relatively affordable

commercial sources of human induced pluripotent stem-cell-

derived cardiomyocytes (iPSC-CMs) (17) and the large-scale

production of mature hPSC-CMs (31), NRVM monolayers are

largely being replaced as a standard experimental cell culture

model (10, 14). Any future development of high-throughput

systems should focus on the use of human stem-cell-derived

cardiomyocytes. The use of brighter GEVIs, like ASAP3 (44),
Frontiers in Cardiovascular Medicine 07
and genetically encoded calcium indicators, like GCaMP (45, 46),

can also simplify longitudinal measurements by eliminating the

need for repeated dye loading.

To reduce the incidence of spontaneous fibrillatory activity

(Figure 1C), we also investigated the use of small-width rectangular

monolayers by gluing custom-made polydimethylsiloxane (PDMS)

channels to off-the-shelf tissue-culture-treated polystyrene slides

and found the incidence of fibrillation drastically reduced

(Supplementary Figure S3). Not only does this easily-

implemented geometry reduce the number of cells needed, but

it simplifies conduction velocity measurements and more

readily permits the imaging of multiple monolayers from a

single camera sensor (Supplementary Movie S5). Lastly, if

one has the capacity to generate hundreds or thousands of

hPSC-CM monolayers/tissue-constructs at a macroscopic scale,

a more advanced robot should be able to handle trays of cell

culture dishes to enable higher-throughput optical mapping

experiments.
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