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Abstract

Coinfection with hepatitis C virus (HCV) and human immunodeficiency virus (HIV)

increases immune activation, inflammation, and oxidative stress that could lead to

premature senescence. Different HCV infections, either acute or chronic infection,

could lead to distinct premature cellular senescence in people living with HIV

(PLWHIV). Observational study in 116 PLWHIV under antiretroviral treatment

with different HCV status: (i) n = 45 chronically infected with HCV (CHC); (ii) n = 36

individuals who spontaneously clarify HCV (SC); (iii) n = 35 HIV controls. Oxidative

stress biomarkers were analyzed at lipid, DNA, protein, and nitrates levels, as well as
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antioxidant capacity and glutathione reductase enzyme. Replicative senescence was

evaluated by relative telomere length (RTL) measurement. Additionally, 26 markers of

Senescence‐Associated Secretory Phenotype (SASP) were analyzed by multiplex

immunoassays (Luminex xMAP technology). Differences were evaluated by general-

ized linear model (GLMs) adjusted by most significant covariates. The SC group had a

senescence signature similar to the HIV control group and slightly lower SASP

levels. However, significant differences were observed with respect to the CHC

group, where an increase in the nitrate concentration [adjusted arithmetic mean

ratio, aAMR= 1.73 (1.27–2.35), p < 0.001, q = 0.009] and the secretion of

13 SASP‐associated factors [granulocyte macrophage colony‐stimulating factor

(GM‐CSF), interferon‐β, interleukin (IL)‐1β, IL‐2, IL‐8, IL‐13, tumor necrosis

factor (TNF)‐α, IL‐1α, IL‐1RA, IL‐7, IL‐15, C‐X‐C motif chemokine ligand 10 (IP‐10),

stem cell factor (SCF); q < 0.1)] was detected. The CHC group also showed higher

values of IL‐1α, IP‐10, and placental growth factor 1 (PIGF‐1) than HIV controls. The

SC group showed a slightly lower senescence profile than the HIV group, which could

indicate a more efficient control of viral‐induced senescence due to their immune

strengths. Chronic HCV infection in PLWHIV led to an increase in nitrate and elevated

SASP biomarkers favoring the establishment of viral persistence.
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1 | INTRODUCTION

Hepatitis C (HCV) and human immunodeficiency virus (HIV) infec-

tions remain a serious public health problem. Coinfection affects

1/10 of the HIV‐positive population worldwide, exacerbating the

natural history of both viruses, accelerating liver fibrosis, and even

reducing life expectancy.1 After an acute infection, spontaneous

clearance may occur in approximately 20% of patients within

6 months of infection without any treatment,2 although it is a rare

phenomenon in the context of coinfection with HIV.3 Besides other

coinfections, genetic background, clinical and virological factors also

affect HCV spontaneous clearance. Thus, genetic variation at

interferon lambda 3 gene (IFN‐λ3), formerly named as IL28B, is

strongly associated with spontaneous clearance of HCV and also

response to treatment.4 Additionally, female gender also shows

better prognosis of HCV infection, with lower HCV RNA viral loads

and higher spontaneous clearance.5

Although many studies have tried to unravel the factors that

predispose to HCV spontaneous clearance, few studies have delved into

their clinical consequences. Some studies have pointed out that patients

that cleared the infection are at lower risk of mortality and liver‐related

death than patients who are chronically infected.6 Conversely, HCV

chronic infection showed similar impact on peripheral blood cells (PBMCs)

than an acute infection followed by spontaneous resolution.7 Therefore,

more studies are essential to understand the potential immune

consequences after HCV resolution.

Chronic HCV coinfected with HIV increases immune activation,

which favors the progression of HIV infection and the development

of liver disease leading to premature senescence.8 Senescent cells

often exhibit high levels of various forms of damage accumulation

overtime in an old organism, including DNA damage and oxidative

modifications.9 In addition, coinfection can lead to T‐cell exhaustion,

mainly in chronic infections.10 Progressive loss of immunological

memory correlates with reduced proliferative capacity and telomere

shortening in T cells. In fact, telomere shortening has been observed

in circulating lymphocytes from both HCV+11 and HIV+ patients.12

Telomeres are nucleoprotein structures located at the end of

eukaryotic chromosomes formed by repeated DNA sequences

(TTAGGG), which maintain the integrity of the chromosome. In each

round of replication, telomeres become progressively shorter and

when they reach a critical length, cell cycle arrest, cellular

senescence, and apoptosis occur.13 Thus, telomere length is a

hallmark of cellular aging associated with the progression of several

diseases14,15 and an increased risk of infection.16

HIV and HCV infections produce an indistinguishable form of

cellular senescence that shares features of chronic inflammation in

aging,17 accompanied by a pro‐inflammatory phenotype called the

Senescence‐Associated Secretory Phenotype (SASP).18 This pheno-

type includes the production of cytokines, extracellular matrix

factors, and coagulation mediators,19 which acts as an antiviral

mechanism of the senescent cell and allows limitation of viral

replication.20 However, whatever its primary function, SASP can have
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both beneficial effects and detrimental consequences.19 Some of

these parameters improve after HCV elimination, but there is

increasing evidence that inflammatory markers are not restored after

HCV elimination.21 This may result in increased comorbidities and

mortality in patients who have overcome chronic HCV infection after

successful treatment,22 but there is very little information on patients

recovered from spontaneous clearance and even fewer studies

focused on the assessment of senescence in these patients.

Therefore, we propose a comprehensive approach to assess

inflammation, aging, and senescence‐related markers in people living

with HIV (PLWHIV) after HCV spontaneous clearance with respect to

HCV chronically infected (CHC) and HIV controls. The aim of this

work is to analyze the impact of an acute HCV infection followed by a

spontaneous clearance and chronic infection on senescence markers

which may help to identify patients at risk of developing premature

senescence‐related diseases and thus anticipate therapeutic inter-

ventions in PLWHIV under long ART.

2 | METHODS

2.1 | Study design

We carried out a prospective observational multicenter study from

the COVIHEP cohort (Supporting Information: File 1) from five Public

Spanish Hospitals in Madrid Autonomous Community: Hospital

Universitario La Paz, Hospital Universitario 12 de Octubre, Hospital

Universitario Infanta Leonor, Hospital Universitario La Princesa and

Hospital Puerta de Hierro. Samples were processed at the National

Center for Microbiology, Institute of Health Carlos III, Madrid, Spain.

The study was conducted in accordance with the Declaration of

Helsinki; all patients gave their written consent before enrollment,

and an Institutional Review Board approved this study approved

study (CEI PI 81_2017‐v3).

One hundred sixteen PLWHIV with different statuses to HCV

infection were enrolled: (1) 45 patients with active HCV‐chronic

infection naïve to any HCV treatment (CHC group) [positive

polymerase chain reaction (PCR) and positive HCV antibodies];

(2) 36 HIV patients who spontaneously cleared HCV within 6 months

of HCV infection [spontaneously clarifiers (SC) group] (negative PCR

and positive HCV antibodies, in the absence of anti‐HCV treatment);

(3) 35 HIV monoinfected patients without evidence of previous HCV

infection (HIV control group) (negative PCR and negative HCV

antibody). All patients received suppressive antiretroviral treatment

(ART) during at least 1 year and were undetectable for HIV during the

previous year, with CD4+ T‐cells counts ≥ 500 cells/mm3 since at

least 1 year before sample collection. Patients were followed up

every 6 months to monitor HIV infection and HCV screening

according to clinical guidelines.23 Exclusion criteria were pregnancy,

individuals below 18 years old, previously HCV treatment, advanced

liver fibrosis (>F3), clinical evidence of hepatic decompensation,

active drug or alcohol addiction, alcohol‐induced liver injury, hepatitis

B virus (HBV) active infection, opportunistic infections, and other

concomitant diseases such as diabetes, neoplasia, autoimmune

disease, among others. Clinical and epidemiology data were obtained

from medical records.

2.2 | Biological material

Peripheral venous blood samples were collected in ethylenediami-

netetraacetic acid tubes. PBMCs were isolated by density gradient

centrifugation method with Lymphoprep™ and SepMate™ tubes

(Stemcell Technologies) and stored at viability until use. Plasma was

obtained after density gradient centrifugation, clarified, and storage

at −80°C until use.

2.3 | Senescence biomarkers in plasma

The cellular senescence was assessed by reactive oxygen species

(ROS) markers levels, total antioxidant capacity, glutathione, and

SASP levels.

2.4 | Oxidative stress

2.4.1 | ROS markers

ROS damage

At DNA level: We measured the 8‐hydroxydeoxyguanosine (8‐OHdG)

DNA levels which reflect the DNA damage response (DDR), with the

DNA Damage Competitive ELISA kit (Thermo Fisher Scientific).

At protein level: We analyzed the oxidation of proteins with the

protein carbonyl content (PCC) assay kit (Sigma‐Aldrich) and Pierce

BCA Protein Assay Kit (Thermo Fisher Scientific). The carbonyl

content was determined by the derivatization of protein carbonyl

groups with 2,4‐dinitrophenylhydrazzine (DNPH) leading to the

formation of stable dinitrophenyl (DNP) hydrazine adducts.

At lipid level: We evaluated lipid peroxidation, with the Lipid

Peroxidation (MDA) Assay Kit (Sigma‐Aldrich), which measured the

formation of malondialdehyde (MDA) combined with thiobarbituric

acid (TBA) by absorbance. The manufacturer's instructions were

followed, with the slight exception that the butanol was removed by

overnight evaporation at room temperature.

Oxidant molecules

Nitrate levels. We assessed nitrate by the Nitric Oxide Assay Kit

(Thermo Fisher Scientific), following manufacturer instructions.

2.4.2 | Antioxidant capacity

The total nonenzymatic antioxidant capacity (TAC) was evaluated

with the Total Antioxidant Capacity Assay Kit (Sigma‐Aldrich)

without Protein Mask, which account for lipid‐soluble (tocopherols,
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carotenes, vitamin A) and water‐soluble (glutathione) antioxidants

indicative of their ability to counteract oxidative stress‐induced

damage in cells.

We determined the reduced glutathione (GSH), and oxidized

glutathione (GSSG) by the GSH Colorimetric Detection Kit (Thermo

Fisher Scientific).

2.5 | SASP

We assessed a selection of 26 markers associated to SASP, including

cytokines, chemokines, and growth factors18,24 (complete list is

available in Supporting Information: File 2). All markers were analyzed

with a multiplex immunoassay (Luminex xMAP technology).

2.6 | Senescence biomarkers in PBMCs

2.6.1 | Replicative senescence

DNA was extracted from PBMCs using the DNA Purification System

Kit (PromegaWizard). We performed the quantification of replicative

senescence by monochromatic multiplex real‐time quantitative PCR

(MMqPCR) as previously described.25 To normalize and control the

number of telomere copies/sample we used the single‐copy gene

(β‐globin). Relative leukocyte telomere length (RTL) was expressed as

the ratio of the telomere amplification product (T) to that of a single

copy gene (S).

2.6.2 | Statistical analysis of epidemiological data

For the descriptive study of clinical and epidemiological data of

the patients, continuous variables were summarized as median,

and categorical as frequency and percentage. Concentration

values are used for oxidative stress markers and raw fluorescence

intensity as a relative quantification of the analyte abundances

for SASP markers, as previously described.26 Significant differ-

ences between categorical data were calculated using the χ2 test

or Fisher's exact test. Kruskal–Wallis and Mann–Whitney U tests

were used to compare continuous variables among independent

groups. Univariate and multivariate analysis with generalized

linear models (GLM), gamma distribution (log‐link), were carry out

to estimate differences in senescence biomarkers levels and RTL

among groups. The GLM was adjusted for the most significant

variables (age, gender, body mass index [BMI], transmission route,

duration of HIV infection, HIV clinical stage, HIV treatment,

interferon lambda 4 (IFNL4) genotype, HCV genotype, and CD4 T

nadir) with a stepwise approach. q Value ≤ 0.1 [p value corrected

for the false discovery rate (FDR) by Benjamini–Hochberg

correction] were considered significant. IBM® SPSS Statistics

(v.19) and statistical software R (v 3.2.0) (www.r-project.org)

were used for all statistical analyses.

3 | RESULTS

3.1 | Epidemiological and clinical characteristics of
the patients

Epidemiological characteristics are shown in Table 1. Overall, the median

age was 50 years, and 44.8% were female. Both weight and BMI showed

significant differences between groups, with the coinfected group

showing the lowest values. The median number of years of HIV infection

was significantly lower in the control group than CHC. Most of patients

included in the SC and CHC groups acquired both HIV and HCV at the

same time, except for a small percentage who were already HIV+ when

they acquired HCV (7/36 in the SC group; 14/45 in the CHC group), but

differences were not significant (p=0.234). Patients who had been in

contact with HCV were mainly prior intravenous drug users (p<0.001).

SC group showed higher frequency of favorable allele (CC) at IFNL4 (p=

0.001). Regarding lymphocyte count, we observed a higher CD4+T cells

count (p=0.04) and lower nadir CD4+T cells (p=0.02) in the SC group

compared to the HIV+ group.

Regarding metabolic characteristics, biochemical parameters related

to liver function were significantly increased in CHC group (Table 2).

3.2 | Senescence profile analysis among different
HCV statuses in PLWHIV

The senescence profile between groups was evaluated by a GLM

model adjusted by age, sex and IFN‐λ3 genotype, which were selected

by a stepwise procedure.

3.2.1 | Senescence‐associated markers after HCV
acute infection (SC) versus HIV

Overall, we did not find any differences in oxidative stress levels and

replicative senescence between SC and HIV groups (Figure 1,

Supporting Information: File 3). However, in relation to the SASP,

the SC group showed significantly higher concentrations of interleu-

kin (IL)‐1α [adjusted arithmetic mean ratio, aAMR = 1.31 (1.04–1.64),

p = 0.02, q = 0.23] and lower levels of tumor necrosis factor‐alpha

(TNF‐α) [aAMR = 0.83 (0.70–0.98), p = 0.09, q = 0.25], IL‐7 [aAMR=

0.87 (0.77‐0.98), p = 0.03, q = 0.25] and C‐X‐C motif chemokine

ligand 10 (IP‐10) [aAMR = 0.77 (0.60–0.99), p = 0.04, q = 0.25]

compared to HIV control group (Figure 2, Supporting Information:

File 4), although none of these markers retained statistical signifi-

cance after adjustment for FDR (q < 0.1).

3.2.2 | Senescence‐associated markers in HCV long‐
term infection (CHC) versus HIV

CHC patients showed a tendency to increase higher nitrate levels

[aAMR = 1.40 (1.07–1.84), p = 0.02, q = 0.14] and similar replicative
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senescence compared to the HIV group (Figure 1, Supporting

Information: File 5). However, regarding the SASP, CHC showed

significantly higher levels of IL‐1α [aAMR = 1.90 (1.42–2.55),

p < 0.001, q = 0.02], IP‐10 [aAMR = 1.46 (1.14–1.87), p = 0.003,

q = 0.03] and placental growth factor 1 (PIGF‐1) [aAMR = 1.36

(1.11–1.67), p = 0.003, q = 0.03] in comparison to HIV control group

(Figure 2, Supporting Information: File 6).

3.2.3 | Senescence‐associated markers in chronic
HCV long‐term infection versus HCV acute infection

(Significant increased levels of nitrate [aAMR=1.73 (1.27–2.35),

p<0.001, q=0.008] were observed in the CHC group compared to the

SC group (Figure 1, Supporting Information: File 7), as well as significant

higher levels of 13 soluble biomarkers related to immune senescence

(Figure 2, Supporting Information: File 8). In particular, cytokines related

to the Th1/Th2 response, as granulocyte macrophage colony‐stimulating

factor (GM‐CSF) [aAMR=1.30 (1.14–1.52), p=0.002, q=0.01], IFN‐γ

[aAMR=1.33 (1.05–1.71), p=0.02, q=0.05], IL‐1β [aAMR=1.30

(1.07–1.58), p=0.009, q=0.03], IL‐2 [aAMR=1.20 (1.02–1.42),

p=0.03, q=0.06], IL‐8 [aAMR=1.11 (1.01–1.22), p=0.03, q=0.06],

IL‐13 [aAMR=1.21 (1.01–1.44), p=0.04, q=0.08], and TNF‐α [aAMR=

1.42 (1.17–1.72), p<0.001, q=0.006]; and inflammatory cytokines,

such as IL‐1α [aAMR=1.64 (1.16–2.32), p=0.005, q=0.02], IL‐1RA

[aAMR=1.57 (1.16–2.13), p=0.004, q=0.02], IL‐7 [aAMR=1.26

(1.10–1.43), p<0.001, q=0.006] and IL‐15 [aAMR=1.40 (1.18–1.65),

p<0.001, q=0.006]. The chemokine IP‐10 [aAMR=1.71 (1.34–2.20),

p<0.001, q=0.006] and the stem cell factor (SCF) [aAMR=1.17

(1.03–1.34), p=0.02, q=0.05].

4 | DISCUSSION

Our data show similar senescence profile between PLWHIV who

spontaneously clarify HCV and HIV monoinfected individuals, but

slightly lower levels of SASP. On the other hand, chronic HCV

infection in PLWHIV showed higher nitrate concentration and

increased plasma levels of SASP biomarkers.

Prior knowledge has shown that HCV infection, together with

HIV,27 promote oxidative stress and senescence,28,29 especially

during chronic infection and increasing with fibrosis progression,30

probably to facilitate HCV persistence.31 However, it was unknown

how the acute infection and subsequent spontaneous clearance

could affect the senescence profile or whether the immune strengths

of spontaneous clearance patients allow them to better manage the

senescence parameters.

Virus‐induced senescence has been previously described for a

variety of viruses,32 as part of an antiviral response mechanism to

limit viral replication.20,33 However, the importance of senescence in

acute inflammatory conditions such as respiratory viral infections has

been less approached until the COVID‐19 outbreak, as it has been

mainly addressed in chronic infections. There is evidence thatT
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senescence contributes to the pathophysiology of respiratory viral

infections,34 and a recent report has observed that viruses may

convergently contribute to the evolution of human aging.35 Thus, we

assumed that all patients suffered from viral infections in a similar

proportion and all of them were recruited previous COVID‐19

pandemic.

The SC group showed similar levels of oxidative stress markers to

the HIV group, which indicates a normalization of oxidative stress

after HCV spontaneous resolution. Oxidative stress is an important

key in HCV pathogenesis during both acute and chronic stages of

inflammation, but little is known about long‐term effects after

spontaneous resolution in either HCV monoinfected patients or

PLWHIV. HCV‐induced oxidative stress significantly contributes to

hepatic disease, playing a critical role in hepatic fibrogenesis and

carcinogenesis.36 However, patients in our cohort did not show

advanced liver fibrosis, and probably the HCV‐related oxidative

stress has not been fully activated. Previous studies showed that

HCV acute infection is characterized by decreased GSH in

erythrocytes and increased ROS, viral replication, and apoptotic

death.37 Our data show that these makers are restored after HCV

resolution, achieving similar redox environment that those PLWHIV

who have never been infected by HCV.

Oxidative stress is a hallmark of chronic HCV infection38 and is

characterized by extensive production of reactive species, resulting in

protein, lipid, and DNA damage that ultimately leads to liver injury.39

The CHC group showed similar oxidative stress to SC individuals,

except for an increase in nitrate concentration. IFN‐1 stimulate the

nitric oxide (NO) synthase enzyme that is expressed in hepatocytes

F IGURE 1 Oxidative stress and replicative senescence in people living with HIV with different HCV infection. Values are expressed as
adjusted aAMR, obtained using a generalized linear model; *, p < 0.05 and q < 0.1. aAMR, adjusted arithmetic median rate; CHC, PLWHIV
chronically infected with HCV; GSH, reduced glutathione; GSSG, oxidized glutathione; HCV, hepatitis C virus; HIV, human immunodeficiency
virus mono‐infected patients; LP, lipid peroxidation; PCC, protein carbonyl content; q, corrected level of significance by false discovery rate;
RTL, relative telomere length; SC, PLWHIV who spontaneously clarify HCV; TAC, total antioxidant capacity.
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F IGURE 2 (See caption on next page).
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and macrophages as the isoform inducible NO synthase.40 The role of

NO in HCV, is still unclear, but previous studies have reported higher

concentrations in patients with chronic HCV infection than general

population and HCV‐seropositive patients,41 being associated with

the progression of liver cirrhosis.42 However, it has been demon-

strated that NO does not directly impact on HCV replication. NO

impairs antivirals responses by suppressing type 1 helper T cell

responses, favoring the viral persistence in liver cells.43,44 In general,

our results agree with previous findings where a re‐establishment of

the reduced environment, reduced ROS and increased GSH in

chronic phase to promote viral persistence.37

Cell damage can also promote replicative senescence through

telomere attrition. Overall, our results showed a tendency

towards a shorter telomere length in PBMCs from HCV‐

infected individuals (either SC or CHC) compared to the HIV

group, suggesting that HCV infection increases the replicative

senescence in PBMCs, a phenomenon that may be due, in part, to

the replication of both viruses in these cells.45,46 This increased

replicative senescence seems to be more pronounced in the CHC

group, which is in accordance with previous studies that reported

a decrease in telomerase activity in chronic infection, even

though telomerase activity increases with the activation of the

PBMCs in normal conditions.47 Furthermore, a positive correla-

tion between telomere shortening and fibrosis progression during

chronic HCV infection have been found,48 which could explain

the absence of pronounced telomeric alteration in our study since

fibrosis was an exclusion criterion in our cohort.

Telomere length on coinfected patients has been scarcely

approached but in different populations and biological material.

Grady et al. observed that telomere length in CD4 and CD8 T cells

were reduced in CHC patients in comparison to healthy controls,49

which seem to occur early during infection. After HCV elimination,

telomere size recovery of PBMCs was observed, but only in patients

with advanced fibrosis,25 particularly in compensated patients.

However, when patients with different liver fibrosis status were

accounted, no significant increase of telomere length was observed

after HCV elimination,50 but telomere size was still lower than HIV

controls.

In addition, oxidative stress and telomere shorting could lead to

SASP associated with cellular aging.51 Our data showed similar profile

of SC and HIV groups, with a general tendency toward a reduction of

plasma markers of immune senescence in the SC group. The more

robust immune system of these subjects could explain the observed

reduction of the inflammatory environment and suggest a more

efficient resolution of HCV infection.

By contrast, when SASP plasma levels of SC and CHC patients

were compared, we observed a highly different profile. The CHC

group showed higher levels of several molecules associated with

immune senescence, such as IL‐6, IL‐8, and TNF‐α the most

prominent interleukins within the SASP24,52 and which are also

known to induce ROS.53 In particular, elevated concentrations of the

pro‐inflammatory cytokines IL‐1β, IL‐2, IL‐6, IL‐8, and TNF‐α were

found, cytokines that during normal healthy aging have been shown

to be significantly increased compared with younger individuals.54,55

This also agrees with previous studies, where increased cytokines of

Th1 response56,57 and IP‐1058 were also observed in CHC patients.

Likewise, the increase in factors associated with SASP has also been

observed in other viral infections such as hepatitis B59 and severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2).60 The

increase of these markers has been shown mainly in chronic viral

hepatitis, increasing with fibrosis progression30 and in hepatocellular

carcinoma,61 but there is no previous knowledge of these markers on

patients without advanced fibrosis.

CHC patients also showed slightly higher levels of IL‐1α, IP‐10,

and PIGF‐1 than HIV group. It has been proposed that the level of

some factors associated to SASP reflects the progression of liver

fibrosis in patients with chronic HCV.30 But the absence of large

differences in the SASP between CHC and HIV groups could be due

to the lack of advanced fibrosis present in our cohort, on contrary of

previous studies.50

To sum up, in SC individuals, short‐term exposure to SASP

factors drives the recruitment of immune cells to eliminate

premalignant and senescent cells, thereby preventing tumorigenesis.

However, the long‐term exposure to SASP experienced by CHC

generates chronic inflammation and could contribute to tumori-

genesis and age‐associated pathologies.62,63 Hence, the accumula-

tion of senescence cells in these CHC individuals may significantly

affect nonacquired immunodeficiency syndrome (AIDS) events via

the SASP. Therefore, although nonadvanced fibrosis was present in

CHC group, they could be prone to cancer development in the future.

To interpret our data correctly, we should bear in mind that some

clinical and epidemiological variables were statistically different

between groups, therefore, they were included in the full statistical

model as adjustment variables for accounting their effect on

senescence markers. The main limitation that should be considered

is the limited sample size which could have restricted the possibility

of finding statistical significance in some subgroups. Additional

factors not considered, such as common respiratory viral infections

may also play a role, but we assume that these events could impact

in the same way in all study groups. Future studies on long‐term

F IGURE 2 Quantification of senescence‐associated secretory phenotype in people living with HIV under different HCV infectious status.
Values are expressed as aAMR, obtained using a generalized linear model; *, p < 0.05 and q < 0.1. aAMR, adjusted arithmetic median rate;
CHC, PLWHIV chronically infected with HCV; GM‐CSF, granulocyte macrophage colony‐stimulating factor; Gro‐α, growth‐regulated oncogene‐
alpha; HCV, hepatitis C virus; HIV, human immunodeficiency virus monoinfected patients; IFN, Interferon; IL, interleukin; IP‐10, C‐X‐C motif
chemokine ligand 10; PIGF‐1, placental growth factor 1; q, corrected level of significance by false discovery rate; SC, PLWHIV who
spontaneously clarify HCV; SCF, stem cell factor; TNF, tumor necrosis factor.
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follow‐up would be essential to unravel the long‐time effects of

HCV‐related SASP in liver‐related comorbidities on PLWHIV. It also

would be interesting to evaluate whether similar results are observed

in non‐HIV patients, to have a better understanding of the negative

consequences of HCV infection and to address possible palliative

strategies.

5 | CONCLUSION

In conclusion, PLWHIV who spontaneously resolved an HCV acute

infection showed slightly lower senescence profile to monoinfected

HIV individuals. On the other hand, PLWHIV with chronic HCV

infection led to higher oxidative stress levels for plasma nitrate and

biomarkers related to the SASP, favoring the establishment of viral

persistence.
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