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Measuring utility with diffusion models
Renato Berlinghieri1†, Ian Krajbich2,3,4†*, Fabio Maccheroni5†, Massimo Marinacci5†,
Marco Pirazzini6†

The drift diffusion model (DDM) is a prominent account of how people make decisions. Many of these decisions
involve comparing two alternatives based on differences of perceived stimulus magnitudes, such as economic
values. Here, we propose a consistent estimator for the parameters of a DDM in such cases. This estimator allows
us to derive decision thresholds, drift rates, and subjective percepts (i.e., utilities in economic choice) directly
from the experimental data. This eliminates the need to measure these values separately or to assume specific
functional forms for them. Our method also allows one to predict drift rates for comparisons that did not occur in
the dataset. We apply the method to two datasets, one comparing probabilities of earning a fixed reward and
one comparing objects of variable reward value. Our analysis indicates that both datasets conform well to the
DDM. We find that utilities are linear in probability and slightly convex in reward.
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INTRODUCTION
There is a growing consensus that many decisions are made using a
process where decision-makers accumulate noisy evidence about
the options until the net evidence exceeds a predetermined thresh-
old (1–3). This decision process is captured by the diffusion deci-
sionmodel (4), also known as the drift diffusionmodel (DDM). The
DDM explains both choice and response time (RT) data on tasks
including perceptual decisions (5)—e.g., recognition memory,
brightness discrimination, and dot motion direction—and eco-
nomic (value-based) decisions—e.g., consumer choice (3, 6–10),
risky choice (11–16), intertemporal choice (13, 15, 17, 18), and
social preferences (15, 19, 20).

The DDM provides a mapping from subjective evidence to
choice probabilities and RT distributions. It is, however, agnostic
about the mapping from objective characteristics of the options/
stimuli to subjective evidence. This poses a problem for modelers
who do not know what decision-makers perceive, only what they
are shown. To get around this issue, modelers typically take one
of two approaches.

The ideal approach is nonparametric (21). Here, modelers iden-
tify trials that they think are roughly equivalent, bin them together
into different conditions, and then use the DDM to estimate the
average evidence (i.e., drift rate) for each condition separately
(22). This requires researchers to make assumptions about what
should or should not affect drift rate and needs large amounts
of data.

Other researchers sometimes assume functional forms of how
stimulus features should affect drift rate (3). In economics, this
amounts to imposing a particular utility function. This can be prob-
lematic as it may not be obvious what kind of function is appropri-
ate. For example, numerosity representation can be logarithmic or
linear depending on whether there is a single array or a comparison

of two arrays (23). Ideally, one would not need to make such as-
sumptions but rather let the data speak for itself.

In contrast to the above approaches, we propose a more funda-
mental take on the problem. Baldassi et al. (24) provide a way to test
the hypothesis that individuals follow a DDM in which the drift rate
is based on the difference of perceived stimulus magnitudes—a dif-
ference-based DDM. We build on their ideas by constructing con-
sistent estimators for DDM parameters, which allow us to derive the
subjective evidence from behavior rather than assuming it. This is a
semiparametric approach in that we assume a difference-based
DDM and the restrictions that come along with it, but we put no
other restrictions on the drift-rate function.

With these estimators, we are able to obtain drift rates for each
pair of options and test how those rates relate to the stimulus fea-
tures. An added bonus of this approach is that it allows us to derive
decision thresholds and subjective evidence directly from the data,
rather than using computationally heavy, model-fitting procedures.
Our estimator can be calculated in microseconds, rather than the
hours or days that it can take to fit the DDM to a group of
individuals.

We test this approach using two choice tasks taken from Cava-
nagh et al. (25) and Shevlin et al. (26). In both choice tasks, partic-
ipants were presented with two options and asked to choose the
preferred one. In the (25) task, every option had the same two out-
comes (win or lose) but varying probabilities. In the (26) task, every
option had different, but deterministic, cash values. In the (25) task,
option values were retrieved from memory, while in the (26) task
they were constructed on the spot.

We selected these two tasks because participants were trying to
maximize along a single dimension (probability or reward amount)
and we know the options’ objective values along those dimensions.
This allows us to estimate the mapping from objective stimuli to
subjective evidence. While these two tasks both involve economic
choice, our theory applies to any choice task where the drift rate
depends on perceived differences in stimulus magnitudes of any
kind. Our theory also applies to more standard economic choice
with options that vary along multiple dimensions but that can be
summarized using a single subjective value. While there are surely
some differences between subjective- and objective-value tasks,
there are also many commonalities. Both tasks have been shown
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to recruit the reward network (27, 28) and are well explained by dif-
ference-based DDMs (29). Also, many models in economics make
no distinction between objective and subjective values.

To preview the results, we find that in both datasets, our esti-
mates yield the expected relationships between drift rates, choice
probabilities, and RTs. We find remarkably linear relationships
between the estimated drift rates—i.e., the subjective evidence—
and the objective features of the stimuli, namely, the differences
in probabilities (Cavanagh) and in cash rewards (Shevlin). In
terms of the subjective evidence for individual options, we find
that they are, on average, linear in probabilities and approximately
linear, but slightly convex, in reward size. Our estimator displays
several advantages over existing methods for estimating utilities: It
is more accurate than logistic regression, it is much faster than stan-
dard DDM-fitting methods, and it is on more solid theoretical
ground than either.

RESULTS
Difference-based DDMs
Let A be a choice set consisting of at least three alternatives, with
typical elements a, b, c, and d. A DDM is a model of binary com-
parison between pairs of alternatives a and b. According to this
model, noisy evidence about alternatives is accumulated at
average rate μa,b = −μb,a, known as the drift rate, until an alternative
is selected when the evidence in its favor attains a posited threshold
level λ > 0, called decision threshold, boundary, or barrier.

Specifically:
1. The net evidence in favor of a against b is given, at each t > 0,

by

Za;bðtÞ ¼ μa;bt þ σBðtÞ ð1Þ

where B is a standard Brownian motion and σ is a noise coefficient
[see, e.g., Oksendal (30)].

2. Comparison ends when the Brownian motion Za,b reaches
either the barrier λ or −λ; so, the decision time (DT) is the
random variable

DTa;b ¼ minft : Za;bðtÞ ¼ λ or Za;bðtÞ ¼ � λg

Here, we equate DT and RT, a simplifying assumption that we
relax in the Supplementary Materials.

3. When comparison ends, at random time DTa,b, the agent
selects a if the upper barrier λ has been reached and selects b oth-
erwise; so, the decision rule is the random variable

DOa;b ¼
a if Za;bðDTa;bÞ ¼ λ
b if Za;bðDTa;bÞ ¼ � λ

�

As the parameters λ, μ, and σ are unique up to a common pos-
itive scalar multiple, noise can be normalized by setting σ ¼

ffiffiffi
2
p

.
Thus, a DDM is uniquely identified by two parameters λ and μ.
The barrier parameter λ is a number, while the drift parameter μ :
A × A → ℝ is an antisymmetric function that associates to each pair
(a, b) of alternatives the corresponding drift rate μa,b. These param-
eters allow us to express choice probabilities, log-odds, and mean

DT by

Pa;b ¼ P½DOa;b ¼ a� ¼
1

1þ e� λμa;b
ð2Þ

‘a;b ¼ ln
Pa;b

1 � Pa;b
¼ λμa;b ð3Þ

DTa;b ¼ E½DTa;b� ¼ λ2φð‘a;bÞ ð4Þ

where ϕ(x) = x−1 tanh(x/2) for all real numbers x.
Next, we introduce the class of DDMs that are relevant in differ-

ence-based decisions.
Definition 1. A DDMwith drift parameter μ is difference-based

if, and only if, there exists a function u : A → ℝ, called utility, such
that

μa;b ¼ uðaÞ � uðbÞ ð5Þ

for all a and b in A.
A difference-based DDM presupposes a transformation u of

physical stimuli—with u(a) being the perceived magnitude of stim-
ulus a—such that the rate of evidence accumulation μa,b depends
only on perceived magnitude differences u(a) − u(b). The function
u represents sensation intensities in perceptual discrimination tasks
and subjective values in economic tasks. The utility terminology
that we adopt reflects our original emphasis on value differences,
where the difference-based DDM is known as a value-based DDM.

The next simple characterization of difference-based DDMs
highlights the properties that will guide our estimation exercise.
In reading it, recall that a function f : A × A → ℝ is cyclic when it
satisfies the triangle equality

f a;b ¼ f a;c þ f c;b ð6Þ

for all alternatives a, b, and c. For an antisymmetric function f : A ×
A → ℝ, the function ~f : A� A! R given by

~f a;b ¼
1
jA j

X

c[A
ðf a;c þ f c;bÞ

is the least-square cyclic approximation of f (see Proposition 5 of
the Supplementary Materials). For instance, ~‘ is the least-squares
cyclic approximation of the log-odds function ‘.

Proposition 1. For a DDM with drift parameter μ, the following
conditions are equivalent:

i. the DDM is difference based;
ii. the drift parameter μ is cyclic;
iii. the log-odds function ‘ coincides with ~‘;
iv. for all a ≠ b

λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jA j ðjA j � 1Þ

X

c=d

DTc;d

φð~‘c;dÞ

v
u
u
t and

μa;b ¼
~‘a;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jAjðjAj� 1Þ
P

c=d
DTc;d

φð~‘c;dÞ

r

ð7Þ
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Thus, only the drift parameters that satisfy the triangle equality
(Eq. 6), i.e., cyclicity, admit a difference-based representation. The
next corollary shows that the relation between drift rates and utilities
is indeed explicit. When μ is cyclic, we can then retrieve u from
choice probabilities and mean DT via (Eq. 7).

Corollary 2. If a DDM is difference based with drift parameter μ,
then, given any d in A, the function defined by

uðaÞ ¼ μa;d 8a ð8Þ

is, up to an additive constant, the only utility uwhich realizes (Eq. 5)
for μ.

It is important to remark that the choice of the reference alter-
native d in (Eq. 8) is immaterial because our result implies that a
change in the reference alternative can only shift u by an additive
constant.

In contrast, if a drift parameter μ is not cyclic, then there is no
function u : A → ℝ such that (Eq. 5) holds. In this case, the func-
tions defined by (Eq. 8) for different reference alternatives d might
rank alternatives in different ways. Thus, they cannot be interpreted
as utilities (see Example 1 in the Supplementary Materials).

Value-consistent estimators
Consider an analyst who observes agents’ pairwise choices several
times, say n. The available observations produce empirical mean de-
cision times DTn

a;b, empirical choice frequencies P
n
a;b, and empirical

log-odds ‘na;b, for all a ≠ b in A. Baldassi et al. (24) have shown that
through these statistics, the analyst can test the hypothesis that data
are generated by a difference-based DDM.Here, we assume that this
hypothesis has not been rejected, and we consider the problem of
building an estimator of the parameters of the difference-based
DDM that generates the data.

Definition 2. An estimator ðλ̂
n
; μ̂nÞ of a DDM (λ, μ) is:

• statistically consistent if, and only if, ðλ̂n; μ̂nÞ ! ðλ; μÞ almost
surely as n → ∞.
• value consistent if, and only if, μ̂n is cyclic for all n.
The previous analysis demonstrates that estimators that are not

value consistent are not conceptually appropriate for difference-
based DDMs. Specifically, when an estimator is not value consis-
tent, it may be the case that the estimated value μ̂na;b of μa,b is differ-
ent from the sum μ̂na;c þ μ̂

n
c;b of the estimated values of μa, c and μc,b,

for some alternatives a, b, and c. However, this means that the esti-
mated DDMðλ̂

n
; μ̂Þ is not difference based, contradicting the hy-

pothesis that the DDM being estimated is difference based. In
other words, when an estimator is value inconsistent, there is no
utility that represents the estimated drifts, so it does not produce
the parameters of a difference-based DDM.

For instance, starting from Eq. 3 and assuming for simplicity that
the analyst knows that λ = 1, she could estimate μ by replacing (the-
oretical) choice probabilities with empirical choice frequencies.
This idea leads to the plug-in estimator [see, e.g., Wasserman (31)]

μ̂na;b ¼ ‘
n
a;b ¼ ln

Pna;b
1 � Pna;b

ð9Þ

This estimator is statistically consistent but value inconsistent as
empirical log-odds are in general not cyclic (see Example 2 in the
Supplementary Materials).

To address this issue, we consider the empirical adjusted log-
odds function ~‘

n
: A� A! R given by

~‘
n
a;b ¼

1
jA j

X

c[A
ð‘na;c þ ‘

n
c;bÞ

¼
1
jA j

X

c[A
ln

Pna;c
1 � Pna;c

þ ln
Pnc;b

1 � Pnc;b

 !

ð10Þ

for all a and b inA. This function, proposed by Baldassi et al. (24), is
the least-square cyclic approximation of ‘n and can be computed by
using empirical choice frequencies. We can then plug-in empirical
mean decision times DTn

a;b and empirical adjusted log-odds ~‘
n
a;b into

Eq. 7 to obtain a new plug-in estimator.
Definition 3. The cyclic estimator ð~λ

n
; ~μnÞ of a difference-based

DDM is given by

~λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jA j ðjA j � 1Þ

X

c=d

DTn
c;d

φð~‘
n
c;dÞ

v
u
u
t and

~μa;b ¼
~‘
n
a;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jAjðjAj� 1Þ
P

c=d
DT

n
c;d

φð~‘
n
c;dÞ

r 8a= b
ð11Þ

The next proposition shows that this estimator has the desired
properties and yields an immediate utility estimation.

Proposition 3. The cyclic estimator is both statistically and value
consistent. Moreover, given any d in A, the function defined by

~unðaÞ ¼ ~μna;d 8a ð12Þ

is, up to an additive constant, the only function that satisfies

~μna;b ¼ ~unðaÞ � ~unðbÞ 8a; b

The resulting utility estimation builds on the theoretical founda-
tion given by the triangle equality as well as on the joint use of em-
pirical choice frequencies and empirical DT, as suggested by the
approaches of Clithero (8) and Webb (32). Again, as observed im-
mediately after Corollary 2, the choice of the reference alternative d
in (Eq. 12) is immaterial because of the cyclicity of ~μn.

We close with an important remark. The computation of the
cyclic estimator seems to require, prima facie, a complete choice
dataset in which all possible pairwise comparisons of distinct alter-
natives in A are observed. Yet, in the Supplementary Materials, we
provide a simple iterative scheme that extends the estimator to in-
complete datasets by leveraging on the premise that observations
are generated by an underlying difference-based DDM and an esti-
mator for such a DDM must satisfy the triangle equality (Eq. 6).

Empirical analysis
In this section, we complete the analysis of the cyclic estimator by
applying it to behavioral data from two independent experiments,
one with comparisons between all pairs of options (complete) and
the other with missing comparisons (incomplete). In both cases, we
obtain very good fits and a “surprise.” The surprise is that the util-
ities that we estimate mostly conform with those predicted by the
most basic decision theoretic model of (expected) payoff
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maximization. The goodness of fit confirms the efficiency of esti-
mating rather than postulating the drift parameters.
Datasets
The first dataset comes from Cavanagh et al. (25) and is complete.
In this study, participants chose between all pairs of six alternatives,
eight times each, for a total of 120 trials per session. The alternatives
were represented byHiragana characters, each with a different prob-
ability (0.2, 0.3, 0.4, 0.6, 0.7, and 0.8) of yielding a constant reward.
These probabilities were a priori unknown to the participants but
learned through experience in a prior training phase. Participants
completed two sessions, each with a different set of six characters.

The second dataset comes from Shevlin et al. (26) and is incom-
plete. In this study, participants chose between hundreds of unique
alternatives. Each alternative was a 3 × 2 array of colored squares,
with each color worth a different amount of money. There were
12 possible colors, each one worth a different amount of money;
the values increased linearly across the color spectrum. The value
of each array was the sum of the values of its six colored squares;
this resulted in 27 possible array values. These arrays were divided
into three value tiers: low, medium, and high value. In each trial,
participants chose between two alternatives in the same tier. Like
the Cavanagh et al. (25) study, the rewards for each color were a
priori unknown to the participants but learned in a prior training
phase. Before exclusions [as implemented by Shevlin et al. (26)],
there were 135 trials per participant in the data we analyzed, or 45
trials per tier.

Both studies consisted of two parts: a training phase where the
participants learned either the probabilities (Cavanagh) or the
rewards (Shevlin) and a test phase where they chose from pairwise
combinations of the alternatives. Training stopped when there was
sufficient discrimination between correct and incorrect choices. In
the test phase, participants chose between pairs of alternatives
without receiving any feedback, so that choice was purely based
on what had previously been learned. Here, we only analyze the
test-phase trials. See Fig. 1 for further details on the tasks in these
two experiments.

In summary, we study two tasks where participants learned the
value of different alternatives. We chose these datasets because they
present the proof of two concepts: the cyclic estimator works for
both complete and incomplete datasets and for both probabilistic
and deterministic rewards. They also allow us to test how the utili-
ties reflect the objective values.
Analysis
The cyclic estimator (Eqs. 11 and 12 and their generalizations pro-
vided in the Supplementary Materials) allows us to directly estimate
the drift rates (utility differences) and boundary separation (thresh-
old) of a DDM from observable choice and RT data. In the Supple-
mentary Materials (figs. S3 and S4), we provide evidence that the
cyclic estimator accurately recovers drift rates and boundary sepa-
rations in synthetic data simulated from aDDMwith typical param-
eters. Next, we investigate the performance of the cyclic estimator
on the empirical data.

The first behavioral quantity predicted by the DDM is the choice
probability for each alternative pair (psychometric function). The
estimated model seems to capture the psychometric behavior of
the participants from both experiments with great precision (Fig. 2).

The second behavioral quantity predicted by the model is the
mean DT for each binary choice (chronometric function). Before
investigating the chronometric function goodness of fit, we need

to deal with a systematic bias, pointed out in the literature [see,
e.g., (25, 26, 33)], that high overall-value decisions (“win-win” com-
parisons) are faster than predicted by the vanilla DDM. In the Cav-
anagh et al. (25) task, these are the three comparisons between
{0.8, 0.7}, {0.8, 0.6}, and {0.7, 0.6}. In the Shevlin et al. (26) task,
these are the two comparisons between the highest valued arrays
within each of the three value tiers. In the plots, we highlight
these higher-value trials. With this caveat, the chronometric func-
tion predicted by the estimated model fits the behavioral data from
both experiments nicely, as Fig. 3 shows. In the Supplementary Ma-
terials (fig. S5), we additionally present fits of the DDM to quantiles
of the RT distributions, conditional on correct and error responses.

Cavanagh et al. (25) model the DDM using the difference of
reward probabilities—or, equivalently, of expected payoffs—of
the alternatives as drift for the binary comparisons. Analogously,
Shevlin et al. (26) model the DDM using the difference of monetary
payoffs as drift. We do not make these assumptions. To compare the
two approaches, in Fig. 4 we examine the relationship between the
objective differences in reward probabilities/monetary payoffs that
they use as drifts (Δv) and our differences in estimated utility (Δu).
The data show a linear relationship between these two quantities in
the Cavanagh data and a slightly convex relationship in the
Shevlin data.

This linear relationship between differences in payoffs and dif-
ferences in estimated utilities is perhaps the most notable empirical
finding of the paper. This discovery, made possible by the introduc-
tion of the cyclic estimator, suggests that the participants in the ex-
periment actually learned the (expected) payoffs and maximized
them. This optimizing behavior was assumed as an hypothesis by
Cavanagh et al. (25) and Shevlin et al. (26). Our finding thus sup-
ports their assumptions.

We derive absolute utilities from relative utilities by fixing the
lowest payoff alternative as a reference (Fig. 5). In the Cavanagh
et al. (25) task, the relation between utilities and true probabilities
is notably linear. This is consistent with the expected utility maxi-
mization hypothesis. In the Shevlin et al. (26) task, the relation is
piecewise linear, with the slope slightly but significantly increasing
with objective value. This increasing slope is consistent with the
findings of Shevlin et al. (26). We established this with a linear re-
gression of the utilities on the value range (0 to 8) within each value
condition interacted with the value condition (low = −1, medium =
0, high = 1). The interaction between value and condition was sig-
nificantly positive [t(23) = 3.32, P = 0.003].

We can also compare the utilities from the cyclic estimator to the
utilities obtained from other methods. The traditional approach is
to estimate the utilities using a logistic regression on the choice data,
with dummy variables for each option. A newer and more compu-
tationally involved approach is to run an analogous regression for
drift rates within the DDM. This is accomplished using the software
package HDDM, which is a Bayesian hierarchical method that uses
group-level choice and RT data to fit the DDM (34). Comparing the
cyclic estimator to the logistic and HDDM estimators on the empir-
ical data, we find that there is good agreement between all three
methods, but that the cyclic estimator seems to be more linear,
i.e., less prone to overfitting, than the logistic estimator (Fig. 6).

Last, we also analyzed the data from individual participants in
each study. As expected, there is heterogeneity in the linearity of
the relation between utilities and true values, particularly in the
Cavanagh et al. (25) data.
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The individual-level analyses reveal an advantage of our cyclic
estimator over other estimators like logistic regression and
HDDM. If we assume that the correct estimates should be linear,
then we can calculate the mean absolute error of the utility estimates
for the different estimators. Our cyclic estimator has a significantly
lower mean absolute error than a logistic regression estimator for
the Shevlin et al. (26) dataset (P = 10−10, P = 10−12, P = 10−13)
though not for the Cavanagh et al. (25) dataset (P = 0.18). In addi-
tion, while the cyclic estimator does not outperform the HDDM es-
timator in mean absolute error, it uses a lot less data (single
participant and choice data only) and runs in a matter of microsec-
onds. See the Supplementary Materials (figs. S1 and S2) for
more details.

DISCUSSION
Here, we used a principled approach to consistently estimate the pa-
rameters of a difference-based DDM. This allowed us to investigate
how reward probabilities and amounts affect evidence accumula-
tion (i.e., drift rates). We observed almost linear relations between
differences in utilities and differences in both reward probabilities
and amounts. More specifically, we observed that utilities are linear
in probability and slightly convex in reward amount.

Our approach yields trial-level drift rates that show a consistent
relationship with choice probabilities and RTs, as expected with the
DDM. Throughout the paper, we have equated RT and DT. In
reality, RT usually consists of DT as well as a non-decision time.
In the Supplementary Materials (fig. S6), we show that accounting
for non-decision time does indeed improve the quality of our fits.
We also present an estimator that, while untested, might provide an
alternative way to estimate non-decision times; we leave the

validation of that estimator to future research. It is important to
note that the fitting of the DDM often includes other parameters,
such as starting point and across-trial variability in drift rate and
starting point. Without these parameters, our estimators may
suffer on datasets with substantial non-decision times, response
biases, or slow/fast errors. Here, we assume that the modeler has
concluded that a simple difference-based DDM is appropriate for
their data. Our theory cannot be used to estimate other models or
to compare them to the DDM. If the modeler wants to establish
whether the DDM is appropriate for their data, then they can use
the test proposed by Baldassi et al. (24).

Our method is appealing because it is free from both a priori be-
havioral and statistical assumptions (aside from the assumption that
data are generated by a difference-based DDM) but still fits both
choice probabilities and RTs well. Rather than estimating drift
rates for a set of conditions, which are based on assumptions
about which trials are similar, our approach estimates a unique
drift rate for each comparison. Moreover, it is able to do so out-
of-sample, using other comparisons in the dataset. One can even
extrapolate the drift rates for comparisons not present in the data,
as we did for the data of Shevlin et al. (26).

The ability to estimate drift rates for individual comparisons is a
major advantage, particularly in economic choice, where drift rates
depend on subjective values. Modelers typically need tomeasure the
stimulus features in their experiments. In perceptual decisions, this
is not too burdensome: typically, these features are objective and
controlled by the experimenter (e.g., number, size, and brightness).
In economic decisions, however, the features are often subjective
and a product of the individuals’ preferences. As a result, many of
these experiments involve lengthy rating/evaluation tasks, in addi-
tion to the comparison tasks, to measure the subjective values of the

Fig. 1. Description of the experiments. (A) In the Cavanagh et al. (25) task, participants chose between pairs of six Hiragana characters that were trained to be associated
with reward probabilities as indicated on the left. (B) In the Shevlin et al. (26) task, participants chose between 3 × 2 arrays of colored squares. Each color represents an
integer point value from 1 to 12. The point values increased from blue to pink or pink to blue; this was counterbalanced across participants.
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stimuli (9, 29, 35, 36). Moreover, these value measurements are at
odds with a “preference discovery” interpretation of the value-based
DDM in which decision-makers accumulate noisy evidence about
the options’ subjective values that, ex ante, they only imperfectly
know (37). By using our method, researchers might be able to
avoid collecting independent evaluations of all the stimuli in their
experiments. However, it is important to note that for this method
to work, one must have choice probabilities (not 0 or 1) for at least
some comparisons. In other words, some comparisons must be pre-
sented multiple times within an experiment, or data must be aggre-
gated across individuals facing overlapping comparisons.

Our empirical analysis of the Cavanagh et al. (25) dataset re-
vealed a linear function from reward probabilities to drift rates,
on average. This contrasts with some of the literature on nonlinear
probability weighting, where explicit probabilities are generally

inverse-S weighted (overweighting of small probabilities and under-
weighting of large probabilities) as in prospect theory (38), or where
learned probabilities are generally S weighted (39) (overweighting of
large probabilities and underweighting of small probabilities). In
most of this work, decision-makers face trade-offs between proba-
bility and reward size. Thus, it is possible that the linear relationship
that we identified is due to the fixed rewards in the Cavanagh et al.
(25) task (or perhaps the extensive training). It is also worth noting
that the functions were typically not linear at the individual level
(see the Supplementary Materials, fig. S1). This is consistent with
the literature using this task (40).

Our findings are also consistent with the previous findings in the
work of Shevlin et al. (26): The slightly convex utility function is
consistent with their findings that drift rates are higher at higher
values. At the same time, when focusing within a value level (low,

Fig. 2. Observed and estimated choice probabilities. The probability of choosing option A over option B as a function of the difference in their estimated utilities, for
(A) the Cavanagh et al. (25) data and (B) the Shevlin et al. (26) data. The estimated utilities are calculated from Eqs. 10 to 12, using all comparisons {a, c} and {c, b}. The
choice probabilities are either the average empirical probabilities from all direct comparisons {a, b} (black dots), or the DDM predicted probabilities calculated from Eq. 2
(red line) using the estimated parameters.

Fig. 3. Observed and estimated mean response times. The mean response time (RT; in milliseconds) in choices between option A and option B as a function of the
difference in their estimated utilities, for (A) the Cavanagh et al. (25) data and (B) the Shevlin et al. (26) data. The estimated utilities are calculated from Eqs. 10 to 12, using
all comparisons {a, c} and {c, b}. The RTs are either the average RT from all direct comparisons {a, b} (black dots) or the DDM predicted DT calculated from Eq. 4 (red line)
using the estimated parameters. The orange dots indicate “win-win” trials, trials with the highest valued pairs of alternatives.
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medium, or high), we find a quite linear function from objective
value differences to drift rate.

There is one notable way in which the data deviate from our es-
timated DDM. Comparisons between the highest-value alternatives
are systematically faster than expected. This is a well-documented
phenomenon (25, 41, 42). There are several explanations for this
phenomenon, including increased dopamine activity for high-
value options and greater drift-rate variability due to attentional
shifts between high-value options (42, 43). These are deviations
from the standard “vanilla" DDM that affect RT more than choice
probabilities (see the Supplementary Materials, fig. S11). For this
reason, they are highlighted only in the figures concerning RT,
where they are labeled as “win-win comparisons.”

Our empirical tests of the cyclic estimator were limited to objec-
tive-value tasks where options differ along a single stimulus dimen-
sion, namely, reward size and probability. We do not believe that

this limits our contribution, as the conditions apply to any differ-
ence-based DDM, and we know that difference-based DDMs work
well in subjective-value tasks as well. The reason that we chose to
focus on objective-value tasks is because there is a ground truth
that we can compare our utility estimates to. In subjective-value
tasks, there is no ground truth. If we found non-linear relations
between estimated and reported utilities, then we would not know
whether that was an issue with the estimator or with the reports. So,
while we advocate for using our estimator to infer utilities in sub-
jective-value tasks, we did not think it was appropriate to use these
tasks to validate the estimator in this article. That is a next step.

The use of DDM and other sequential sampling models has a
long history in statistics (44) and cognitive psychology (4). There
is also a growing literature applying such models to economic
choice, most notably with decision field theory (14). Recent work
in economics has explored the optimality of sequential sampling

Fig. 4. Differences in objective value and estimated utility. The difference in objective value (v) as a function of the difference in estimated value (u) for each pair of
options in (A) the Cavanagh et al. (25) data and (B) the Shevlin et al. (26) data. The estimated utilities are calculated from Eqs. 10 to 12, using all comparisons {a, c} and {c, b}.
The objective values are the probabilities of reward in the Cavanagh et al. (25) task and the point values in the Shevlin et al. (26) task. This figure contains additional points
(in blue) for comparisons {a, b} that were not in the experiment, but for which we could still estimate Δu had they occurred, based on other comparisons.

Fig. 5. Estimated utility functions. Utility vs. probability for (A) the Cavanagh et al. (25) data vs. (B) the Shevlin et al. (26) data. Analogous to Fig. 4, the estimated utilities
are calculated from Eqs. 10 to 12, using all comparisons {a, c} and {c, b}, while the objective values are the probabilities of reward in the Cavanagh et al. (25) task and the
point values in the Shevlin et al. (26) task. In the Shevlin et al. (26) task, we plot the data for the three different value tiers separately. Because utilities are on an arbitrary
scale, we fix the lowest utility within each set to zero.
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models and their link to strength of preference (8, 15, 37, 45–50).
One advantage of the DDM is that it jointly predicts choice proba-
bilities and RT. Thus, the analysts’ access to RT data should improve
their ability to infer preferences or beliefs (8, 15, 32, 46, 49, 51, 52),
as we also observed here with the HDDM estimator. The DDM can
also be used to decompose the decision process into evaluations of
the alternatives, prior biases, speed-accuracy motivation, and so on
(53, 54). In more recent years, these models have become very
popular in cognitive neuroscience and in decision neuroscience
(1, 55). They can also account for eye-tracking and brain-imaging
data (3, 20, 35, 56–60). Our ability to estimate trial-level drift
rates provides researchers with more precise inputs for modeling
these data (61). We hope that these findings fuel further work on
the DDM in economic choice (and beyond) and that these
methods will be used to better understand the relation between ob-
jective and subjective evidence.

MATERIALS AND METHODS
Cavanagh task
The first dataset comes from Cavanagh et al. (25). The study includ-
ed 20 participants (12 male, mean age of 20 years) from the Brown
University community, who were rewarded with either 20 USD or
extra course credit.

Participants performed the task twice using different nonover-
lapping character sets. Themapping from characters to probabilities
was randomized across participants. The data were combined across
the two sessions.

Each session began with a training phase in which the probabil-
ities were learned through reinforcement. During the training
phase, participants were presented with one of three stimulus
pairs with the following reinforcement probabilities 0.8/0.2, 0.7/
0.3, or 0.6/0.4. Participants went through one to six blocks of train-
ing (60 stimuli each) until they made the correct choice on 0.65, 0.6,
and 0.5 of the trials in the 0.8/0.2, 0.7/0.3, and 0.6/0.4 pairs, respec-
tively. Participants who did not satisfy all these requirements by the
sixth block proceeded to the test phase regardless.

In the test phase, participants chose between all pairs of six al-
ternatives, eight times each, for a total of 120 trials per session, or

Fig. 6. Model comparison of the estimated utility functions.Utility versus probability for the (A) Cavanagh et al. (25) data, and versus value for the (B toD) Shevlin et al.
(26) data in low-, medium-, and high-value conditions respectively. These plots display a linear relationship (diagonal black line) as well as the fits from our cyclic estimator,
HDDM, and a logistic regression. Because utility is on an arbitrary scale, we forced the lowest and highest utilities to be on the diagonal and then measured the relative
locations of the remaining estimates. For the logit and cyclic estimators, the bars are 95% confidence intervals; for the HDDM, the bars are 95% highest density intervals.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Berlinghieri et al., Sci. Adv. 9, eadf1665 (2023) 23 August 2023 8 of 10

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 24, 2023



240 trials total. Trials began with a fixation cross for 1000 ms.
Stimuli were presented for a maximum of 4000ms, and disappeared
as soon as a choice was made. Participants then saw a blank black
screen for 1000 ms. There was no feedback in the testing phase.

Shevlin task
The second dataset comes from Shevlin et al. (26). The study includ-
ed 70 participants from the Ohio State University community, who
were rewarded with a show-up fee of 5 USD as well as a bonus
payment based on their performance (30 points per 1 USD; mean
earnings: 9.81 USD).

Participants completed two phases of the study. In the first
phase, participants viewed a spectrum of 12 distinct colors. Partic-
ipants were told that the value of these colors was either increasing
or decreasing from left to right. Participants then completed a train-
ing phase, in which they chose between two arrays, each composed
of six colored squares. The values for each colored square ranged
from 1 to 12. After each choice, participants saw the values of
both arrays (equal to the sum of the colored squares), as well as
their total earnings. Participants first completed a block of 30
trials. If they reached or surpassed 0.70 accuracy, they proceeded
to phase 2; otherwise, they completed another block of 30 trials.
This process was repeated until each participant achieved 0.70 accu-
racy or completed six training blocks.

In phase 2, participants faced 270 binary-choice trials. Trials
were constructed by first creating stimulus pairs for the middle-
value condition and then subtracting or adding a constant value
of 4 to every square. The arrays were constructed so that the
colored squares were never all the same color, but there were no
other restrictions. In addition, the value difference in each trial
was always between 1 and 5 points.

In the original study, there were blocks of 15 trials, some with
trials all from the same tier and some with trials from different
tiers (5 from each). Here, we only analyze the latter blocks as they
are the most natural. In the Supplementary Materials (figs. S7 to
S10), we also examine the other blocks.

To properly constrain participants’ earnings, they started out
with a deficit of 10,500 points. Participants who ended the study
with a negative balance only received the show-up fee. Participants
were informed of this deficit and the conversion rate at the begin-
ning of the study.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S11
References
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5 Supplementary material

5.1 Proofs and related analysis

The following lemma is classic (see, e.g., Theorem 1 on page 223 of Aczel [62]).
Lemma 4. A function f : A⇥A ! R is cyclic if, and only if, there exists v : A ! R such that

fa,b = v (a)� v (b) 8 (a, b) 2 A⇥A (13)

In this case, the function v is unique up to an additive constant. Moreover, given any d 2 A, the function

vd (a) = fa,d 8a 2 A

represents f in the sense of (13).

The proof is immediate once one notes that fa,b + fb,d = fa,d for all a, b, d 2 A, so that

fa,b = fa,d � fb,d = vd (a)� vd (b)

To see the irrelevance of the choice of d, consider another alternative c and the corresponding vc (a) = fa,c for all
alternatives a. The triangle equality implies fa,c+fc,d = fa,d for all a in A, and so vc (a)�vd (a) = fa,c�fa,d = �fc,d,
that is, vc = vd � fc,d. In words, vc and vd are equal up to a constant.

On the notation side, we use the matrix expression fa,b instead of the usual f (a, b) because our most important
examples are the drift parameter (a, b) 7! µa,b and the log-odds function (a, b) 7! `a,b. The same matrix perspective
justifies the definition of antisymmetry of f by

fa,b = �fb,a 8 (a, b) 2 A⇥A

Proposition 5. Let f : A⇥A ! R be an antisymmetric function, the only solution of

min
g2G

P
a,b2A (fa,b � ga,b)

2 (14)

where G is the collection of all cyclic functions, is given by

f̃a,b =
1

|A|
P

c2A (fa,c + fc,b)

for all a, b 2 A.

Proof By Lemma 4,
min
g2G

P
a,b2A (fa,b � ga,b)

2
= min

v2RA

P
a,b2A (fa,b � va + vb)

2

Define
F (v) =

P
a,b2A (fa,b � va + vb)

2

and note that for all c 2 A,

F 0
c (v) =

P
a2A2 (fa,c � va + vc) +

P
b2A � 2 (fc,b � vc + vb)

=
P

a2A2 (fa,c � va + vc) +
P

b2A2 (�fc,b + vc � vb)

=
P

a2A2 (fa,c � va + vc) +
P

b2A2 (fb,c � vb + vc)

=
P

a2A4 (fa,c � va + vc)

Since F is convex, then v is a solution of

min
v2RA

P
a,b2A (fa,b � va + vb)

2
= min

v2RA
F (v) (15)

if and only if, for all c 2 A,
P

a2A (fa,c � va + vc) = 0
P

a2Avc =
P

a2A (�fa,c) +
P

a2Ava

vc =
1

|A|
P

a2Afc,a +
1

|A|
P

a2Ava
| {z }
independent of c

(16)

16



Claim The set of all solutions (15) is
{v? + k : k 2 R}

where
v?x =

1

|A|
P

y2Afx,y

for all x 2 A.

Proof Note that
1

|A|
P

a2Av
?
a =

1

|A|
P

a2A

1

|A|
P

y2Afa,y = 0

because f is antisymmetric. Therefore,

v?c =
1

|A|
P

y2Afc,y +
1

|A|
P

a2Av
?
a 8c 2 A

and v? satisfies (16), so it is a is a solution of (15). Moreover, if v# = v? + k for some k 2 R, then

1

|A|
P

a2Av
#
a =

1

|A|
P

a2A (v?a + k) = k +
1

|A|
P

a2Av
?
a = k

and so, for all c 2 A,

v#c = v?c + k =
1

|A|
P

y2Afc,y + k =
1

|A|
P

a2Afc,a +
1

|A|
P

a2Av
#
a

and v# satisfies (16), so it is a is a solution of (15).

Conversely, if v# is a solution of (15), then v# satisfies (16), that is,

v#c =
1

|A|
P

a2Afc,a
| {z }

v?
c

+
1

|A|
P

a2Av
#
a

| {z }
constant

8c 2 A

and so v# 2 {v? + k : k 2 R}. ⇤

With this, if g⇤ is a solution of (14), then fixing d 2 A and setting

v⇤a = g⇤a,d 8a, b 2 A

it follows that
g⇤a,b = v⇤a � v⇤b 8a, b 2 A

and P
a,b2A (fa,b � v⇤a + v⇤b )

2 
P

a,b2A (fa,b � va + vb)
2 8v 2 RA

Therefore, v⇤ is a solution of (15), and so v⇤ = v? + k for some k in R . It follows that

g⇤a,b = v⇤a � v⇤b = v?a � v?b

=
1

|A|
P

y2Afa,y �
1

|A|
P

y2Afb,y

=
1

|A|
P

y2A (fa,y + fy,b) = f̃a,b

for all a, b 2 A.

Conversely, the previous computations show that

f̃a,b =
1

|A|
P

y2A (fa,y + fy,b) = v?a � v?b

for all a, b 2 A. But then

P
a,b2A

⇣
fa,b � f̃a,b

⌘2
=

P
a,b2A (fa,b � v?a + v?b )

2 
P

a,b2A (fa,b � va + vb)
2 8v 2 RA
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and f̃a,b is a solution of (14). ⌅

Proof of Proposition 1 (i) implies (ii) is obvious.

(ii) implies (iii). For all a, b 2 A,

˜̀
a,b =

1

|A|
X

c2A

(`a,c + `c,b) =
1

|A|
X

c2A

(�µa,c + �µc,b) =
1

|A|
X

c2A

�µa,b = �µa,b = `a,b

as wanted.

(iii) implies (iv). By (iii) and (4),

1

|A|(|A|� 1)

X

c 6=d

DTc,d

'
⇣
˜̀
c,d

⌘ =
1

|A|(|A|� 1)

X

c 6=d

DTc,d

' (`c,d)
=

1

|A|(|A|� 1)

X

c 6=d

�2
= �2

and the first part of (7) holds. By (3), (iii), and the above equation

µa,b =
`a,b
�

=

˜̀
a,b

�
=

˜̀
a,br

1
|A|(|A|�1)

P
c 6=d

DTc,d

'(˜̀c,d)

for all a 6= b in A.

(iv) implies (i). By the convention µa,a = `a,a = 0 for all a 2 A, and the fact that µa,b = �µb,a for all a 6= b in a
DDM, it follows that both ` and µ are antisymmetric. By Proposition 5, ˜̀ is cyclic. By the second part of (7), µ is cyclic
too. Finally, Lemma 4 guarantees that the DDM is difference-based. ⌅

Proof of Corollary 2 Proposition 1 yields cyclicity of µ and Lemma 4 implies that (8) holds. ⌅

The triangle equality is easily seen to be equivalent to the product rule for the binary choice probabilities Pa,b (for
this rule, see Axiom EZ.2 in the Supplementary Appendix 5.2.2, and Baldassi et al. [24]). Therefore, a DDM is
difference-based if and only if its binary choice probabilities satisfy the product rule. This rule is thus a further
characterization, besides the triangle equality, of difference-based DDMs among general DDMs.

Proof of Proposition 3 Recall that data are generated by a difference-based DDM with parameters �, µa,b = u (a)�u (b)
for all a, b 2 A, and � =

p
2. We first show that the cyclic estimator is statistically consistent.

By the Strong Law of Large Numbers, the sample means of a (sequence of i.i.d. copies of a) random variable converge
almost surely (a.s.) to its true mean. For each n, and all a 6= b in A, Pn

a,b is the n-th sample mean of a Bernoulli random
variable with parameter

Pa,b =
1

1 + e��(u(a)�u(b))

and DT
n
a,b is the n-th sample mean of a random variable with mean

DTa,b =
�

u(a)� u(b)
tanh

✓
�
u(a)� u(b)

2

◆

Therefore, as n ! 1,
Pn
a,b

a.s.�! Pa,b and DT
n
a,b

a.s.�! DTa,b (17)
Since the logarithm is a continuous function, by the continuous mapping theorem we have

`na,b
a.s.�! `a,b = �(u(a)� u(b))

Thus,

˜̀n
a,b =

1

|A|
X

c2A

�
`na,c + `nc,b

� a.s.�! 1

|A|
X

c2A

(`a,c + `c,b)

=
1

|A|
X

c2A

�(u(a)� u(c) + u(c)� u(b)) = �(u(a)� u(b)) = `a,b
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By continuity of ', we also have

�̃n
=

vuut 1

|A|(|A|� 1)

X

c 6=d

DT
n
c,d

'
⇣
˜̀n
c,d

⌘ a.s.�!

vuut 1

|A|(|A|� 1)

X

c 6=d

DTc,d

' (`c,d)

=

s
1

|A|(|A|� 1)

X

c 6=d

�2 = �

and

µ̃n
a,b =

˜̀n
a,b

�̃n

a.s.�! `a,b
�

= µa,b

More formally, the limits of the sequences in (17) hold pointwise in sets of probability 1. Since there are 2|A|(|A|� 1)

such sets, the almost sure convergence of ˜̀n, �̃n, and µ̃n follows from the pointwise convergence of all the sequences
in (17) on the intersection of the 2|A|(|A|� 1) aforementioned sets, which is an event with probability 1.

Now that statistical consistence has been taken care of, we show that the cyclic estimator is value-consistent. In so
doing, we restrict our attention to the case in which Pn

a,b > 0 for all a 6= b. In practice, when this is not the case
Pn
a,b = 0 is replaced with a very small positive value " and Pn

b,a with 1� ".

First observe that, by construction, Pn
a,b = 1� Pn

b,a for all a 6= b, but then

`na,b = ln
Pn
a,b

Pn
b,a

= �`nb,a

and `n is antysimmetric. Proposition 5 implies that

˜̀n
a,b =

1

|A|
X

d2A

�
`na,d + `nd,b

�

is cyclic and so is µ̃n
= ˜̀n/�̃n.

This proves that the cyclic estimator is value-consistent. The final part of the statement follows immediately from
Proposition 1. ⌅

The next example shows that when the triangle equality is violated, the utility functions defined in (8) by fixing different
reference alternatives d rank alternatives in different, so inconsistent, ways.
Example 1. Take a non-cyclic drift parameter µ, say with three alternatives, c, d, and d0 such that

µc,d > 0 > µc,d0 + µd0,d (18)

By taking d and d0 as reference alternatives, we can define, as in (8), the utility functions

u (a) = µa,d 8a 2 A

w (a) = µa,d0 8a 2 A

Since µc,d > 0 = µdd, then
u (c) > u (d)

On the other hand, from µc,d0 + µd0,d < 0, it follows that µc,d0 < �µd0,d = µd,d0 , and so

w (c) < w (d)

Therefore the two utility functions rank the alternatives c and d differently.

The next example shows that empirical log-odds may be not cyclic, thus leading to the value-inconsistency of the
plug-in estimator (9) described in Section 2.2.
Example 2. Consider a difference-based DDM with � = 1 and u (c) = 1, u (d) = 3/4, and u (d0) = 1/2. The
theoretical choice probabilities are

Pc,d = Pd,d0 ⇡ 0.56 and Pc,d0 ⇡ 0.62

Assume that the empirical probabilities realized by such a DDM over n trials satisfy

Pn
c,d > 1/2 and Pn

c,d0 < Pn
d,d0
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This is not unlikely because of the relative small difference between the theoretical probabilities Pc,d0 and Pd,d0 . We can
now consider the plug-in estimator µ̂n

: A⇥A ! R defined by

µ̂n
a,b = `na,b 8 (a, b) 2 A⇥A

Observe that
µ̂n
c,d > 0 and µ̂n

c,d0 < µ̂n
d,d0

Therefore µ̂n
c,d > 0 > µ̂n

c,d0 + µ̂n
d0,d because µ̂n

d0,d = �µ̂n
d,d0 , and so the empirical log-odds are not cyclic. In particular,

the triangle equality is violated as in (18) of Example 1. As a result, like in that example the estimated utility functions
û (a) = µ̂n

a,d and ŵ (a) = µ̂n
a,d0 for all a 2 A, are inconsistent (so fallacious) because

û (c) > û (d) and ŵ (c) < ŵ (d)

5.2 Extensions of the cyclic estimator

5.2.1 Incomplete datasets

In this section we extend the cyclic estimator in order to deal with an incomplete dataset, as in Shevlin et al. [26]. We
first discuss an example and then move to the general case. Throughout, we write lx,y instead of `nx,y to ease notation,
and when needed, we set Pn

x,x = 1/2, so that lx,x = 0.

An example Assume that A consists of four alternatives a, b, c, d and that only the comparisons {a, b}, {b, c}, and
{c, d} are observed, say in the lab, as depicted in the graph below

a d
l l
b $ c

(19)

This is an instance when the observed choice behavior produces an empirical dataset of mean decision times DT
n
x,y,

choice frequencies Pn
x,y, and log-odds lx,y = logPn

x,y/P
n
y,x for some but not all x 6= y in A. For example, the

comparison {a, c} is missing in the dataset, hence la,c is not defined. Thus, the adjusted log-odds formula (10), that is,
⇠
l x,y =

1

|A|
X

z2A

(lx,z + lz,y)

cannot be computed. Yet, this formula can be extended to our incomplete dataset once we apply it to all pairs x, y
for which there exists z in A such that both lx,z and lz,y are defined in the dataset. Formally, we have a generalized
log-odds formula

⇠
l x,y =

1

|Zx,y|
X

z2Zx,y

(lx,z + lz,y) (GLF)

where Zx,y is the set of all z such that lx,z and lz,y are defined in the dataset. In particular, the GLF is undefined when
Zx,y is empty and, more interestingly, it reduces to (10) when the database is complete. So, it is a bona fide extension
of the earlier formula.

We now apply the GLF to all pairs of alternatives appearing in graph (19). We will see that:

• for some connected pairs (like a, b) the GLF formula has no effect;
• for some disconnected pairs (like a, c) the GLF formula generates new adjusted log-odds and adds a link to the

graph;
• for some disconnected pairs (like a, d) the GLF formula has no bite because the set Zx,y is empty.

Let us start with the pair a, b. The only elements z for which both la,z and lz,b are defined are z = a and z = b
themselves. By the GLF,

⇠
l a,b =

1

2
(la,a + la,b) +

1

2
(la,b + lb,b) = la,b

By coloring in purple the links which we have applied the GLF to, we obtain

a d
l l
b $ c

20



Moving to the pair a, c, the element z = b is the only one for which both la,z and lz,c are defined in the dataset of the
original graph (19). In this case, by applying the GLF we define the adjusted log-odds

⇠
l a,c = la,b + lb,c

This amounts to adding a new link a $ c to the graph
a d
l &- l
b $ c

This addition of a link is impossible for the pair a, d because there is no z in the original graph (19) for which both la,z
and lz,d are defined – i.e., the set Za,d is empty.

The situation for the pairs b, c and c, d, in the original graph (19) is similar to that of a, b. Instead, the pair b, d can now
be connected as we did for a, c. Specifically,

⇠
l b,c =

1

2
(lb,b + lb,c) +

1

2
(lb,c + lc,c) = lb,c

⇠
l c,d =

1

2
(lc,c + lc,d) +

1

2
(lc,d + ld,d) = lc,d

⇠
l b,d = lb,c + lc,d

This leads to a new augmented graph
a d
l &-%. l
b $ c

(20)

with (adjusted) choice frequencies
⇠
P x,y =

1

1 + e�
⇠
l x,y

for all the connected pairs of alternatives.

Graph (20) is still incomplete since the comparison {a, d} is missing. But, a second application of the GLF, this time to
⇠
l rather than to l, leads to a complete graph and, correspondingly, to a dataset in which all log-odds

⇡
l x,y are defined.

Specifically, in graph (20) there are two elements z such that
⇠
l a,z and

⇠
l z,d are defined: z = b and z = c. By the GLF,

⇡
l a,d =

1

2
(

⇠
l a,b +

⇠
l b,d) +

1

2
(

⇠
l a,c +

⇠
l c,d)

These adjusted log-odds provide the missing link a $ d. Graphically,
a $ d
l &-%. l
b $ c

Now the GLF must be applied for a second time to all remaining pairs in (20). For example,
⇡
l b,c =

1

4
(

⇠
l b,a +

⇠
l a,c) +

1

4
(

⇠
l b,b +

⇠
l b,c) +

1

4
(

⇠
l b,c +

⇠
l c,c) +

1

4
(

⇠
l b,d +

⇠
l d,c)

By proceeding in this way, the new augmented graph
a $ d
l &-%. l
b $ c

(21)

is obtained, with
⇡
P x,y =

1

1 + e�
⇡
l x,y

Graph (21) is complete, with
⇡
l x,y defined for all x, y in A. Yet,

⇡
l may not satisfy the triangle equality. A third

application of the GLF, now equivalent to formula (10) thanks to completeness, leads to adjusted log-odds
⇡⇡
l x,y =

1

|4|
X

z2{a,b,c,d}

✓
⇡
l x,z +

⇡
l z,y

◆

for all x, y in A. As these log-odds satisfy the triangle equality, the completion procedure is finished.
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The general case Given the set A of alternatives, an experiment is a collection of choice episodes

{({xi, yi}, zi, ti) : i = 1, ...,m}

where {xi, yi} is the unordered pair of distinct alternatives in A compared in episode i of the experiment, zi 2 {xi, yi}
is the observed outcome of the comparison, and ti is the observed DT. The graph G defined by this experiment is the
collection of all pairs {a, b} that are directly compared

a $ b

in some episode. This graph is the general counterpart of the graph (19) of the previous example.

For each {a, b} in G, the set of episodes featuring comparison a $ b is

Ia,b = {i 2 {1, ...,m} : {xi, yi} = {a, b}}

We have

P
|Ia,b|
a,b =

1

|Ia,b|
X

i2Ia,b

�zia ; P
|Ia,b|
b,a =

1

|Ia,b|
X

i2Ia,b

�zib ; DT
|Ia,b|
a,b =

1

|Ia,b|
X

i2Ia,b

ti

where �xy is the Kronecker delta taking value 1 if x = y and value 0 otherwise.

We can extend formula (10) by maintaining the simplified notation lx,y for `|Ia,b|
x,y and by setting

⇠
l a,b =

1

|Za,b|
X

z2Za,b

(la,z + lz,b) (GLF)

for all a, b in A such that the set Za,b of all z for which la,z and lz,b are defined in the dataset is not empty. By iterating

k-times the GLF, we impute values
⇠
l
k

a,b to all pairs a, b in A for which there is at least a chain of comparisons

a = c0 $ c1 $ ... $ ck+1 = b

Therefore, if the original graph G is connected, in at most |A| iterations we obtain an imputation
⇠
l
|A|

a,b of adjusted
log-odds that satisfy the triangle equality (when G is not connected, the same analysis applies to all of its connected
components).

Having extended formula (10), we can extend the definition of cyclic estimator to incomplete datasets.
Definition 4. The cyclic estimator of a difference based DDM is given by

�̃ =

vuuuut
1

|G|
X

{c,d}2G

DT
|Ic,d|
c,d

'

✓
⇠
l
|A|

c,d

◆ and µ̃a,b =

⇠
l
|A|

a,b

�̃
(22)

for all alternatives a and b in A.

5.2.2 Nondecision times

In behavioral experiments the analyst typically does not observe a DT but, rather, a RT which is the sum of the DT and
of the time needed to encode the stimuli and execute the response, called latency or nondecision time.

An augmented DDM, called EZ-DDM by Wagenmakers et al. [63], permits to tackle this difficulty. For all a 6= b in A,
it considers the random variables Za,b (t), DTa,b, and DOa,b introduced in the main text, as well as a latency Ta,b � 0

that permits to define a reaction time
RTa,b = Ta,b +DTa,b

We denote by EZ (u,� , T ) an EZ-DDM with parameters u : A ! R, � > 0, and T : A2
6= ! [0,1), where Ta,b = Tb,a

is the nondecision time of comparison {a, b}. Specifically, the set A2
6= is the collection of all ordered pairs of distinct

alternatives in A; moreover, it is convenient to directly use a utility u rather than a cyclic drift parameter µ, having
established the equivalence of the two approaches. To extend the cyclic estimator to the EZ-DDM, we first need to
extend the DDM axiomatic analysis of Baldassi et al. [24] by finding necessary and sufficient conditions on “asymptotic
observables” which characterize a EZ (u,� , T ) generating them. For all a 6= b in A, these observables are:
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• P1
a,b the (limit) frequency with which a is chosen over b;

• MRT
1
a,b the (limit) average RT in the comparison of a and b;

• VRT
1
a,b the (limit) variance of RT in the comparison of a and b.

More formally, we call asymptotic observables any triplet (P1,MRT
1,VRT

1
) of square matrices

n⇥
P1
a,b,MRT

1
a,b,VRT

1
a,b

⇤
a 6=b

: 8a 6= b, P1
a,b + P1

b,a = 1,MRT
1
a,b = MRT

1
b,a,VRT

1
a,b = VRT

1
b,a

o

Again, we set P1
a,a = 1/2 and leave undefined MRT

1
a,a and VRT

1
a,a. The idea of using these limit quantities to analyze

forced choice tasks dates back to Cattell [64].

To ease notation, we denote the (limit) log-odds for a against b by `1a,b = logP1
a,b/P

1
b,a. The following axioms, in the

spirit of Baldassi et al. [24] and informed by Wagenmakers et al. [63], are required to hold for all distinct a, b, c 2 A.
EZ. 1 (Positivity). P1

a,b > 0, MRT
1
a,b > 0, and VRT

1
a,b > 0.

EZ. 2 (Product rule). P1
c,aP

1
b,cP

1
a,b = P1

b,aP
1
c,bP

1
a,c.

EZ. 3 (Invariance). VRT
1
a,b

⇣
e`

1
a,b + 1

⌘2 ⇣
`1a,b

⌘3

e2`
1
a,b � 2`1a,be

`1a,b � 1
= VRT

1
a,c

⇣
e`

1
a,c + 1

⌘2 �
`1a,c

�3

e2`
1
a,c � 2`1a,ce

`1a,c � 1
.

EZ. 4 (Solvability). 2
�
MRT

1
a,b

�2 � VRT
1
a,b

⇣
e`

1
a,b � 1

⌘2
`1a,b

e2`
1
a,b � 2`1a,be

`1a,b � 1
.

Axioms EZ.1 and EZ.2 are classical psychometric axioms, while axioms EZ.3 and EZ.4 are technical and inspired by
the non-axiomatic analysis of Wagenmakers et al. [63].
Theorem 6. The following statements are equivalent:

(i) the asymptotic observables (P1,MRT
1,VRT

1
) satisfy EZ.1, EZ.2, EZ.3, and EZ.4;

(ii) there exist a function u : A ! R, a threshold � > 0, and a symmetric function T : A2
6= ! [0,1) such that

P1, MRT
1, and VRT

1 are the choice probabilities, mean RT, and RT variances of EZ (u,� , T ).

In this case, � is unique, and u is unique up to an additive constant. In particular,

� =
4

vuuutVRT
1
a,b

2

⇣
e`

1
a,b + 1

⌘2 ⇣
`1a,b

⌘3

e2`
1
a,b � 2`1a,be

`1a,b � 1
and u (a)� u (b) =

`1a,b
�

for all a 6= b in A. Moreover, T is unique and given by

Ta,b = MRT
1
a,b �

vuuutVRT
1
a,b

2

⇣
e`

1
a,b � 1

⌘2
`1a,b

e2`
1
a,b � 2`1a,be

`1a,b � 1

for all a 6= b in A.

Clearly, the DDM is the special case when Ta,b = 0 for all a 6= b. Thus, this theorem provides a characterization of
the DDM based on reaction times’ means and variances which is alternative to that of Baldassi et al. [24]. The axiom
delivering the DDM is obtained by replacing the inequality in EZ.4 with an equality.

Proof (i) implies (ii). By EZ.1, we have that `1a,b 2 R, for all a 6= b in A. Arbitrarily choose c 2 A, set v (c) = 0 and

v (a) = `1a,c (23)

for all a 6= c in A. Then, for all a 6= b in A \ {c}, by EZ.2, we have

`1a,b = `1a,c � `1b,c = v (a)� v (b)
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and direct application of (23) delivers the same result for a = c 6= b and for b = c 6= a. Then P1
a,b = 1/

⇣
1 + e�`1a,b

⌘

implies

P1
a,b =

1

1 + e�[v(a)�v(b)]

for all a 6= b in A.

Tedious verification shows that axiom EZ.3 guarantees that

VRT
1
a,b

⇣
e`

1
a,b + 1

⌘2 ⇣
`1a,b

⌘3

e2`
1
a,b � 2`1a,be

`1a,b � 1
= VRT

1
a0,b0

⇣
e`

1
a0,b0 + 1

⌘2 ⇣
`1a0,b0

⌘3

e2`
1
a0,b0 � 2`1a0,b0e

`1
a0,b0 � 1

(24)

for all a 6= b and all a0 6= b0 in A; and not only if a0 = a as the axiom requires.

Specifically, define

f (a, b) = VRT
1
a,b

⇣
e`

1
a,b + 1

⌘2 ⇣
`1a,b

⌘3

e2`
1
a,b � 2`1a,be

`1a,b � 1
8 (a, b) 2 A2

6=

By EZ.3,
f (a, b) = f (a, c) 8 (a, b) , (a, c) 2 A2

6= : b 6= c (25)

Of course, the same holds when b = c. Moreover, for all (a, b) 2 A2
6=,

f (a, b) = VRT
1
a,b

⇣
e`

1
a,b + 1
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⌘3

e2`
1
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`1a,b � 1
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� (e�x
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2
x3

e�2x + 2xe�x � 1
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(ex + 1)
2 x3
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8x 2 R (26)

Thus,

VRT
1
b,a

⇣
e�`1b,a + 1

⌘2 ⇣
�`1b,a

⌘3

e�2`1b,a � 2

⇣
�`1b,a

⌘
e�`1b,a � 1

= VRT
1
b,a

⇣
e`

1
b,a + 1

⌘2 ⇣
`1b,a

⌘3

e2`
1
b,a � 2`1b,ae

`1b,a � 1
= f (b, a)

that is,
f (a, b) = f (b, a) (27)

Now, since f satisfies (25) and (27), then f is constant.

In fact, for all (a, b), (c, d) 2 A2
6=,

f(a, b) = f(a, c) = f(c, a) = f(c, d)

where the first equality follows from (25), the second from (27), and the third from (25) again.

Now, arbitrarily choose a0 6= b0 in A and define

2�4
= VRT

1
a0,b0

⇣
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1
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⌘2 ⇣
`1a0,b0

⌘3

e2`
1
a0,b0 � 2`1a0,b0e

`1
a0,b0 � 1

(28)

and u (a) = v (a) /� for all a in A, so that v = �u. It follows that, for all a 6= b in A,

P1
a,b =

1

1 + e�[v(a)�v(b)]
=

1

1 + e��[u(a)�u(b)]
= Pa,b

where Pa,b is the choice frequency induced by EZ(u,� , T ), irrespective of T . Then, recalling `1a,b = � [u (a)� u (b)] =
�� and using (24) and (28), it follows that, for all a 6= b in A,

VRT
1
a,b = 2�4

e2`
1
a,b � 2`1a,be

`1a,b � 1

⇣
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1
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⌘3 = 2�4 e
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2
(��)

3 (29)
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But Wagenmakers et al. [63] prove that, when EZ(u,� , T ) is considered,

VRTa,b =
2��2

2�3

2⇠e⇠ � e2⇠ + 1

(e⇠ + 1)
2

where ⇠ = �2��/�2 and, in our case, �2
= 2, so that ⇠ = ��� and

VRTa,b =
4�

2�3
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2
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3
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2
(��)

3

and (26) yields VRT
1
a,b = VRTa,b.

Moreover, defining

Ta,b = MRT
1
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for all a 6= b in A, it follows that Ta,b is positive thanks to EZ.4, and
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Using (29), this implies
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But, when EZ(u,� , T ) is considered,
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�
tanh

✓
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2

◆
= Ta,b +

�

�

e�� � 1
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showing that MRT
1
a,b = MRTa,b. Thus (ii) holds for the EZ-DDM with parameters u, �, and T .

(ii) implies (i), and uniqueness. Assume that there exist a function u : A ! R, a threshold � > 0, and a symmetric
function T : A2

6= ! [0,1) such that P1, MRT
1, and VRT

1 are the choice probabilities, mean RT, and RT variances
of EZ (u,� , T ). This means that, for all a 6= b in A,

P1
a,b = Pa,b =

1

1 + e��[u(a)�u(b)]
(and so �� = `1a,b)
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1
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Then P1
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1
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2 x3
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we also have MRT
1
a,b > 0 and VRT

1
a,b > 0, so that EZ.1 is satisfied.

Since

P1
a,b =

e�u(a)

e�u(a) + e�u(b)

the verification of EZ.2 is routine.

Moreover, given any a 6= b and c 6= d, and recalling � [u (x)� u (y)] = `1x,y , we have
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this yields, simultaneously, uniqueness of � and verification of EZ.3. But then

u (x)� u (y) =
`1x,y
�

yields uniqueness of u up to an additive constant.

Finally,
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implies that T is unique and that
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hence EZ.4 follows. ⌅

This theorem is the EZ-DDM counterpart of the DDM Theorem of Baldassi et. [24]. It allows us to generalize the
definition of the cyclic estimator to account for latency. Indeed, if we assume that the analyst observes the empirical
choice frequencies Pn

a,b, empirical mean reaction times MRT
n
a,b, and empirical variances VRT

n
a,b, then we can define

˜̀n
a,b by formula (10) and obtain an augmented estimator.

Definition 5. The augmented cyclic estimator of an EZ-DDM is given by
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vuuut 1

|A|(|A|� 1)
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e2
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for all distinct alternatives a and b in A.

The consistency properties of this estimator and the possibility of extending it to incomplete datasets are totally
analogous to the ones of the cyclic estimator.
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5.2.3 Biased DDMs

The DDMs that we considered in the previous sections have been assumed to be unbiased, with no prior inclination
towards one of the two alternatives. Mathematically, this means that the net evidence process (1) is assumed to start at 0.
The case of biased DDMs is a bit more involved, due to the fact that no closed form expression for their parameters as
functions of choice frequencies and RT moments is available. Nonetheless, we conjecture that a combination of our
ideas and those of Wagenmakers et al. [63] might lead to an extension of the cyclic estimator to this case too. This
approach is left for future research.

5.3 Model comparison

In the main text we presented the results of our cyclic estimator, as well as comparisons to two other methods.

The first alternative method that we considered was logistic regression. We regressed a binary choice variable (1 =
correct, 0 = incorrect) on dummy variables for each possible value (1 = value for correct option, -1 = value for incorrect
option, 0 = value not present). Like with the cyclic estimator, we assumed that all the data came from a single subject;
we did not include random effects or other cluster corrections.

The second alternative method that we considered was HDDM (version 0.8.0), a hierarchical Bayesian toolbox for
fitting the DDM to data [34]. The boundaries of the DDM were set to be upper = correct and lower = incorrect. Drift
rate was specified as a regression analogous to the logistic regression above, with dummy variables for each possible
value (1 = value for correct option, -1 = value for incorrect option, 0 = value not present). We set the drift-rate intercept,
starting-point bias, all across-trial variability parameters, and the outlier probability to zero. In summary, we estimated
boundary separation, non-decision time, and utilities for each option in the drift rate function. We used 4 chains, each
with 6000 samples after 4000 samples of warm-up. Priors were set to their default values. All R-hat values were less
than 1.01, indicating convergence.

In the following sections we compare these two alternative methods to our cyclic estimator for the subject-level data,
and simulated data.

5.3.1 Individual choice data

In the main text we presented the results of DDMs fit to data pooled across subjects. However, the DDM is often fit
to individual subjects. Here we present the results of DDMs fit to subject-level data in the Cavanagh et al. [25] and
Shevlin et al. [26] datasets. For the Cavanagh et al. [25] data we present the utility estimates for all 20 subjects (Fig.
S1). For the Shevlin et al. [26] data there are too many plots to include them all - there are 70 subjects with 3 value tiers
each, i.e., 210 plots total. Instead, we present 12 randomly selected plots, 4 from each value tier (Fig. S2).

We can also compare the estimators quantitatively. To do so, we calculated their average absolute deviation from the
diagonal line (i.e., linear utility) for each subject, and then tested whether they were significantly different from each
other using a non-parametric paired Mann-Whitney-Wilcoxon test (since these measures were not normally distributed).

In the Cavanagh et al. [25] data there was no significant difference between the cyclic and logistic estimators (p = 0.18).
This indicates that our estimator did no worse, but no better than, a standard logistic regression. The HDDM estimator
outperformed both the logistic estimator (p = 0.02) and the cyclic estimator (p = 0.003), presumably because it
included more data in the estimates; HDDM fits the DDM hierarchically using all the subjects’ data and it also uses RT
to infer drift rates. The Cavanagh et al. [25] dataset is also a case where every pair of options was presented the same
number of times in the experiment. In this case there may not be much advantage to enforcing the triangle equality.

In comparison, the Shevlin et al. [26] dataset is incomplete, and some pairs of values are presented many more times
than others. In this case, there may be an opportunity for our estimator to fill in gaps in the data. Indeed, when we
examined the Shevlin et al. [26] dataset we found that the cyclic estimator had significantly lower absolute deviations
(medians: Low = 0.72, Medium = 0.60, High = 0.66) than the logistic estimator (medians: Low = 2.73, Medium = 2.51,
High = 2.10), for all three value tiers (p < 10

�10, p < 10
�12, p < 10

�13). Thus, the cyclic estimator significantly
outperformed the standard logistic-regression approach.

Compared to the HDDM estimator (medians: Low = 0.63, Medium = 0.48, High = 0.72), the cyclic estimator was
equivalently good in the Low- and High-value tiers (p = 0.67, p = 0.92) but significantly worse in the Medium-value
tier (p = 0.0002). The HDDM estimator significantly outperformed the logistic estimator in all cases (p = 10

�9,
p = 10

�13, p = 10
�13). Thus, despite using much more data, the HDDM performed no better than our cyclic estimator

in most cases.
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Figure S1: Utility (u) vs. value (v) for each subject in the Cavanagh et al. [25] dataset. These plots display a linear relationship
(diagonal black line) as well as the fits from our cyclic estimator, HDDM, and a logistic regression. Because utility is on an arbitrary
scale, we forced the lowest and highest utilities to be accurate and then measured the relative locations of the remaining estimates.
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Figure S2: Utility (u) vs. value (v) for randomly selected participants in the Shevlin et al. [26] dataset, four each for the low (top
row), medium (middle row), and high (bottom row) value tiers. These plots display a linear relationship (diagonal black line) as well
as the fits from our cyclic estimator, HDDM, and a logistic regression. Because utility is on an arbitrary scale, we forced the lowest
and highest utilities to be accurate and then measured the relative locations of the remaining estimates.

5.3.2 Simulated data

Here we present results of parameter recovery exercises, carried out to ensure that our cyclic estimator can recover
parameters accurately. Unlike with the empirical data, here we know the ground truth.

We simulated datasets using three different mappings from value to utility, namely U(v) = vx where x is either 0.5,
1, or 2. For v we used all the integers from 1 to 10, yielding 45 unique pairs. For the other parameters like boundary
separation (�) and non-decision time, we used values estimated from similar value-based studies [3]. We produced two
versions of each dataset, one with data produced by a single "subject" (i.e., a single set of parameters) and another with
data produced by ten different "subjects" (with each parameter drawn from a Normal distribution; mean � = 71, mean
non-decision time = 350 ms). In total, we simulated 6 datasets.

Our primary concern is whether the model recovers the utility functions accurately. In Figure S3 we see that indeed the
cyclic estimator accurately recovers the true utilities. For comparison we also show the fits from HDDM and a logistic
regression.

The other parameter that we estimate is �, the boundary separation. The datasets were simulated with a boundary
separation of � = 71. The recovered � for the six datasets were: 80, 77, 80, 74, 78, 79 for the linear (1, 10 subjects),
quadratic (1, 10 subjects), and square root (1, 10 subjects) datasets respectively. As expected, our estimator slightly
overestimates the boundary separation since it does not account for the non-decision time contribution to the RT.

29



Figure S3: Utility (u) vs. true value (v) for the simulated data, using (A,D) linear utility, (B,E) squared utility, and (C,F) square root
utility. The top row (A-C) displays simulated datasets with a single set of parameters, while the bottom row (D-F) displays simulated
datasets with 10 sets of parameters (i.e., 10 simulated subjects). These plots display the true relationship (black line) as well as the
fits from our cyclic estimator, HDDM, and a logistic regression. Because utility is on an arbitrary scale, we force the lowest and
highest utilities to be accurate and then measure the relative locations of the remaining estimates.

Additionally, we sought to confirm our results in the previous section that the cyclic estimator outperforms a logistic
regression estimator for subject-level utility estimates. To do so, we simulated one additional dataset with the square-root
function from value to utility. For this exercise we used the same parameter distributions as before, but we simulated
100 "subjects", each with 0-4 observations per pair of items in the set (v = [1, 10]). The average "subject" had 90
trials. As before, we compared our cyclic estimator to the logistic regression estimator by calculating the mean absolute
deviation from the true values. Our cyclic estimator significantly outperformed the logistic regression estimator (median
error: cyclic = 1.60, logistic = 1.83; p = 0.04), using a paired Mann-Whitney-Wilcoxon test. This confirms our intuition
that the cyclic estimator can outperform standard logistic regression with imbalanced datasets.

At the same time, both the cyclic and logit estimators were substantially bested by the HDDM estimator (median error:
1.05, p < 0.001). The HDDM estimator has several advantages - it uses RT and is informed by HDDM’s priors. Our
cyclic estimator may outperform HDDM in cases where RT is distorted either because the DDM is not exactly the right
model or because RT is measured with a lot of noise. To examine this possibility, we took our 100 simulated subjects,
randomly permuted the RTs across trials, and then refit the HDDM (the cyclic and logit estimators are unaffected by the
RT permutation). In this case the cyclic estimator did indeed outperform HDDM – the median errors were Logit =
1.83, HDDM = 1.69, Cyclic = 1.60, though the differences between HDDM and the others were not significant (Logit:
p = 0.24, Cyclic: p = 0.19). Interestingly, HDDM still outperformed logit. We suspect that this is because the priors in
HDDM prevent the drift-rate estimates from becoming too extreme. In terms of computation time, the cyclic estimator
has a huge advantage over HDDM. The HDDM fits for these 100 simulated subjects took 577 minutes. The cyclic
estimator took 190 microseconds. That is an improvement in computation time of 8 orders of magnitude.

5.4 Goodness of fit

When fitting DDMs (or other models) to data, it is important to check their absolute goodness of fit. For the DDM, this
is typically done with quantile-probability (QP) plots, which compare choice probabilities and RT quantiles for the data
and model. Here we present QP plots for both the simulated (Fig. S4) and empirical data (Fig. S5).

It is worth noting that the model provides reasonable fits to the simulated data but struggles more with the empirical
data. The DDM consistently underestimates the lowest quantiles, presumably because we did not include a non-decision
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time parameter in the fits. Indeed, it would be surprising/troubling if the DDM was able to perfectly match the data in
the QP plots without that parameter. In the next section we address the non-decision time issue.
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Figure S4: Quantile probability plots for the simulated datasets. These plots show the relationship between RT and accuracy for
each condition (value-difference level). Each condition is represented twice, once for correct responses (accuracy: right of 0.5) and
once for errors (1–accuracy: left of 0.5). The solid dots denote the data, and the open circles denote the DDM fits. The cyan, green,
blue, red, and black symbols denote the 0.1, 0.3, 0.5, 0.7, 0.9 RT quantiles. Data were simulated with (A) linear utility, (B) squared
utility, and (C) square-root utility. Points at (0,0) represent conditions where there were fewer than 5 observations.

Figure S5: Quantile probability plots for the empirical datasets. These plots show the relationship between RT and accuracy for
each condition (value-difference level). Each condition is represented twice, once for correct responses (accuracy: right of 0.5) and
once for errors (1–accuracy: left of 0.5). The solid dots denote the data, and the open circles denote the DDM fits. The cyan, green,
blue, red, and black symbols denote the 0.1, 0.3, 0.5, 0.7, 0.9 RT quantiles. Data are from the (A) Cavanagh et al. [25] dataset, (B)
Low value tier, (C) Medium value tier, and (D) High-value tier of the Shevlin et al. [26] dataset. Points at (0,0) represent conditions
where there were fewer than 5 observations.
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5.4.1 Non-decision times

Here we ran an additional analysis where we estimated the non-decision time for each empirical dataset (using HDDM;
Cavanagh = 260 ms, Shevlin = 228 ms), subtracted it from each RT, and then refit the cyclic estimator on the resulting
decision times (DT). Below we present QP plots for the empirical data, fit this way (Fig. S6).

Figure S6: Quantile probability plots for the empirical datasets, accounting for non-decision time. These plots show the relationship
between RT and accuracy for each condition (value-difference level). Each condition is represented twice, once for correct responses
(accuracy: right of 0.5) and once for errors (1–accuracy: left of 0.5). The solid dots denote the data, and the open circles denote
the DDM fits. The cyan, green, blue, red, and black symbols denote the 0.1, 0.3, 0.5, 0.7, 0.9 RT quantiles. Data are from the (A)
Cavanagh et al. [25] dataset, (B) Low value tier, (C) Medium value tier, and (D) High-value tier of the Shevlin et al. [26] dataset.
Points at (0,0) represent conditions where there were fewer than 5 observations.

5.5 Shevlin et al. [26]: conditioning on group and instruction

In this section we repeat the analysis of the paper by splitting the Shevlin et al. [26] dataset into 6 sub-datasets. The
sub-problems are identified by jointly conditioning on the “Third” variable (which can be 1, 2, or 3 depending on
whether the corresponding decision problem contains a pair of alternatives coming from the low, medium or high payoff
group, respectively), and the “Instr” variable (which can be 0 or 1, depending on whether the subjects know to which
group the choice they face comes from).
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5.5.1 Third = 1 (low)

(a) Psychometric fit, Instr = 0 (b) Psychometric fit, Instr = 1

(c) Chronometric fit, Instr = 0 (d) Chronometric fit, Instr = 1

(e) Value vs utility, Instr = 0 (f) Value vs utility, Instr = 1

Figure S7: Comparison between instructed and non-instructed decision makers for the Group 1.
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5.5.2 Third = 2 (medium)

(a) Psychometric fit, Instr = 0 (b) Psychometric fit, Instr = 1

(c) Chronometric fit, Instr = 0 (d) Chronometric fit, Instr = 1

(e) Value vs utility, Instr = 0 (f) Value vs utility, Instr = 1

Figure S8: Comparison between instructed and non-instructed decision makers for the Group 2.
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5.5.3 Third = 3 (high)

(a) Psychometric fit, Instr = 0 (b) Psychometric fit, Instr = 1

(c) Chronometric fit, Instr = 0 (d) Chronometric fit, Instr = 1

(e) Value vs utility, Instr = 0 (f) Value vs utility, Instr = 1

Figure S9: Comparison between instructed and non-instructed decision makers for the Group 3.
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5.6 Shevlin et al. [26]: no group conditioning, only instructions

(a) Psychometric fit, Instr = 0 (b) Psychometric fit, Instr = 1

(c) Chronometric fit, Instr = 0 (d) Chronometric fit, Instr = 1

(e) Value vs utility, Instr = 0 (f) Value vs utility, Instr = 1

Figure S10: Comparison between instructed and non-instructed decision makers for the whole dataset.
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5.7 Cavanagh et al. [25]: whole vs. no win-win dataset

(a) Psychometric fit, whole dataset (b) Psychometric fit, no win-win outliers

(c) Chronometric fit, whole dataset (d) Chronometric fit, no win-win outliers

Figure S11: Comparison between whole and no win-win version of Cavanagh dataset.
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