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Abstract

Nowadays, we are witnessing changes in the traditional clinical trial landscape: many methods

have been proposed as a compromise between uncontrolled trials and randomized trials and a

large number of adaptive randomization procedures have been developed for various studies, in-

cluding multi-arm trials, dose-finding trials and platform trials. Adaptive designs often require

time-consuming and computationally intensive Monte Carlo simulations to establish operating

characteristics, particularly type I error probability and power. These statistical properties should

be thoroughly investigated in order that the designs achieve regulatory approval. In particular,

the estimated operating characteristics need to cover different scenarios, varying key parameters,

such as enrollment rates and treatment effects. This makes routine applications of adaptive de-

signs challenging. Also, at present new data sources are becoming available that can supplement

data generated in standard randomized clinical trials. Externally-controlled clinical trials designs

incorporate existing data about the control treatment available from external sources as external

controls. So far, these designs have been evaluated mainly according to qualitative arguments or

simulation studies.

In the first part of this PhD thesis, we focus on asymptotic properties of the designs of response-

adaptive clinical trials, that is characteristics of these designs obtained under the assumption that

the number of patients enrolled in the studies is large. Approximations of the operating charac-

teristics, beyond simulations, leveraging asymptotic properties, could allow a fast comparison of

designs across plausible scenarios.

In the second part of this PhD thesis, we investigate the statistical properties of externally-

controlled randomized clinical trial designs, adopting a quantitative approach, and question

whether these designs could shorten study length and benefit more patients being treated with a

better treatment.

The aims of our research are threefold: to determine appropriate methodology that can be used

in the assessment of asymptotic properties of the designs of response-adaptive clinical trials; to
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develop a quantitative framework to compare externally-controlled randomized clinical trial de-

signs to standard randomized clinical trial designs; and finally to examine the identified methods

and verify our results via simulation studies, across a variety of scenarios and endpoints.

The key contributions of this work are:

. proposing a novel methodology to derive asymptotic results for the randomization proba-

bilities and allocation proportions of patients to various arms in a broad class of Bayesian

response-adaptive randomized clinical trials designs, by combining tools from the classical

foundations of statistical inference and probability theory with mathematical techniques

such as stochastic approximation.

. showing that asymptotic analyses of adaptive procedures simplify the design of clinical trials

and reduce the need for time-consuming simulations to evaluate operating characteristics

across potential trial scenarios.

. proving that externally-controlled clinical trials can increase power compared to random-

ized clinical trials by leveraging additional information from outside the trial rather than

committing resources to an internal control.
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Outline of the thesis

This PhD thesis is organized as follows.

In Chapters 1 and 2, we study asymptotic characteristics of Bayesian Uncertainty directed trial

Designs (BUDs), proposed by Ventz et al. [88]. These designs are an example of adaptive clinical

trial designs using a Bayesian methodology. BUDs use information measure u(Σt) - functions

of the data Σt observed up to the t-th enrollment - to quantify accumulated informations on

pivotal outcome summaries, such as the mean response to treatments. The goal is to minimize

uncertainty at completion of the study.

In Chapter 3, we discuss the statistical properties of designs of clinical trials that use data from

external studies to augment concurrent information generated during a standard clinical trial.

We propose mixed effects models to account for the between-studies variability in the design

of externally-controlled randomized clinical trials with different endpoints and we translate our

findings to practical guidelines for the design of future clinical trials.

Supplementary insights are given in the Appendices at the end of these chapters.

Lastly, a discussion and a conclusion will deepen certain limits, perspectives and potential further

research directions of our work.

A brief summary of the main chapters is provided below.

Chapter 1

Since the first work on the topic by Robbins and Monro [67], stochastic approximation has found

applications in diverse areas, such as signal processing and finance, and new techniques have

been developed for proofs of convergence and rate of convergence. However, the application of

stochastic approximation methods in clinical trials is not common. In this chapter, after introduc-

ing BUDs in their general formulation, we bridge the stochastic approximation and the modern

response-adaptive designs literatures to investigate asymptotic properties of BUDs. We assume

that the distribution of patients’ responses is in the natural exponential family with quadratic
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variance function and that the information measure u is the sum of the (negative) posterior vari-

ance of the mean of the outcomes across different arms. We rewrite the updating rule of the

randomization probabilities of a BUD as a classical recursive stochastic procedure and we study

the properties of the ordinary differential equation associated with the stochastic approximation.

This allows us to prove asymptotic normality of the randomization probabilities. Then, we derive

a Central Limit Theorem type result for the allocation proportions by applying Delta method

and Slutsky theorem. Finally, we illustrate through examples the accuracy of asymptotic approx-

imations using Monte Carlo simulations and show that our analyses justify the use of asymptotic

arguments for power calculations.

Chapter 2

Little research has been done on asymptotic characteristics of the design of response-adaptive

randomized clinical trials with general endpoints: most studies present in literature focus on

Bernoulli and Gaussian outcomes. In this chapter, we fill this gap by studying the asymptotic

properties of BUDs when we relax the assumption made in Chapter 1 that the distribution of

the outcomes is in the natural exponential family. We prove strong consistency of the allocation

proportions and randomization probabilities under some mild requirements. Also, we derive the

almost sure convergence of the allocation proportions when the information measure that char-

acterize the BUD is the sum of the (negative) entropy of the posterior probability of the mean of

the outcomes in the different arms. Numerical examples are provided.

Chapter 3

Recently, the idea of using external data to replace or complement data from current clinical trials

is gaining attraction and researchers advocate the introduction of external controls in the design

of clinical trials to augment the control arm. However, the statistical properties of externally-

controlled randomized clinical trials have not been deepened. In this chapter, we address the

following research question: “in testing the the null hypothesis of no treatment effect against the

one-sided alternative of positive treatment effect, once the type I error is fixed at a certain nom-

inal level, what is the most powerful option between designs of trials characterized by different

randomization ratios and that could include external information on the control treatment from

external studies?”

We derive closed-form expression of power of externally-controlled and standard randomized clini-

cal studies and we provide a procedure to identify the optimal randomization ratio when responses
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are Gaussian. For Bernoulli and time-to-event outcomes, instead, we propose an overall procedure

based on simulation and bootstrap method to estimate power. We show that externally-controlled

randomized clinical trials can increase power compared to standard randomized clinical trials by

leveraging additional information from outside of the trial rather than committing resources to

the internal control, provided that the between-studies variability is small.
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Chapter 1

Asymptotic properties of Bayesian

Uncertainty directed trial Designs

1.1 Introduction

Randomized clinical trials are essential to demonstrate the efficacy of novel experimental therapies

[25]. The landscape of clinical studies has changed during the last decades, with an increasing

number of trials that utilize adaptive designs, in some cases to evaluate several experimental

treatments in biomarker-defined subpopulations [11, 87]. The primary aims vary across studies,

ranging from dose optimization [31, 39] to the development of effective combination of synergistic

therapeutics [81]. Adaptive designs are attractive to reduce the duration of the study and to

allocate efficiently limited resources [16].

Most adaptive designs use data generated during the clinical trial for interim decisions [16], for

example to vary the randomization probabilities during the study [11, 18, 87, 102] or to discontinue

the evaluation of an experimental treatment [87]. In multi-arm studies adaptive randomization

algorithms unbalance the randomization probabilities, in most cases, towards the most promising

treatments. This can increase power compared to balanced randomization, or it can reduce

the overall sample size necessary to test experimental treatments [95]. Adaptive randomization

procedures have been developed for several designs, including multi-arm studies [18, 21], platform

and basket studies [11, 87, 102].

The decision theoretic paradigm has been used to develop trial designs [15, 19, 30]. The study

aims and costs are represented by a utility function u(·) of the data Σ generated during the trial

and the study design d. Using a Bayesian joint model for patient profiles, outcomes and other key
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1.1. Introduction

variables, candidate designs d can be compared by computing their expected utility E(u(Σ, d)).

The optimal design maximizes E(u(Σ, d)) among all candidate designs.

Several approximations of the described optimization have been proposed. For example, [88]

discussed Bayesian Uncertainty directed trial Designs (BUDs), a class of approximate decision

theoretic designs. The utility function u in BUDs coincides with an information metric. In

different words, the goal is to minimize uncertainty at completion of the study. BUDs for dose-

finding and basket trials have been discussed in [31] and [84]. Previous work, related to BUDs,

proposed information-based sampling schemes [20, 59, 73].

There is a rich literature on large sample analyses of adaptive designs. For example [8, 96]

studied the behavior of sequential urn schemes. See also [9, 36, 68, 100] for a summary on

large sample results for urn schemes. The limiting behavior of adaptive biased coin designs

have been investigated, among others, by [34, 43] and [44]. Relevant work connecting stochastic

approximation with response-adaptive clinical trials include [12] and [52].

In this Chapter we focus on the asymptotic characteristics of BUDs. The design of adaptive

clinical trials requires the estimation of several operating characteristics. In most cases these

estimates are based on time consuming Monte Carlo simulations, conducted for different candi-

date designs and varying key parameters, including sample sizes, enrollment rates, and outcome

distributions.

The need for computationally efficient approximations of design-specific operating characteristics

motivates our study. We show the almost sure convergence and asymptotic normality of the rela-

tive allocation of patients to the experimental and control arms in BUDs. We first derive analytic

results assuming that the arm-specific outcome distributions are within the natural exponential

family [29], and later relax this assumption. In our analysis, we represent BUD randomization

procedures as stochastic approximations (SAs). We study the ordinary differential equations as-

sociated with the resulting SAs and the stability of the stationary points, following the framework

developed in [13] and using results of [51, 52]. We illustrate through examples the accuracy of

asymptotic approximations by comparing asymptotic estimates of operating characteristics and

Monte Carlo simulations. Our asymptotic results allow investigators to quickly approximate, for

scenarios of interest, the distribution of the number of patients that will be assigned to each arm.

Understanding the asymptotic behavior of BUD policies is useful to ascertain if the proportions

of patients allocated to different arms converges to a nearly optimal limit. Additionally, our

analyses justify the use of asymptotic arguments for power calculations.
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1.2. Trial Design

1.2 Trial Design

We consider a clinical experiment that assigns n patients sequentially to K arms. We use

At ∈ A = {0, · · · ,K − 1} to indicate the assignment of individual t = 1, · · · , n to arm At,

Yt ∈ R is the response to treatment At, and the accumulated data up to enrollment t is summa-

rized by Σt = {(A`, Y`) ; ` ≤ t}. The BUD [88] is defined by first specifying a Bayesian model.

Outcomes are conditionally independent Yt | At = a ∼ fθa(y|a) and identically distributed within

each arm a, θa ∼ π(θa) indicates the prior for the unknown parameter θa. The vector of param-

eters θ = (θ0, . . . , θK−1) has joint distribution θ ∼ π(θ) =
∏K−1
a=0 π(θa).

We quantify the information accrued by the experiment through the accumulated data Σt until

stage t by considering an utility function u(Σt). Large values of u(Σt) correspond to low un-

certainty levels. The function ũ translates the posterior distribution π(θ | Σt) into an utility.

In particular, we define u(Σt) = ũ(π(θ | Σt)). The information metric ũ is specified by a con-

vex functional over the convex space of distributions of the parameters: ũ (ωπ1 + (1− w)π2) ≤
wũ(π1) + (1− ω)ũ(π2) for every pair of probability measures π1 and π2, when ω ∈ [0, 1].

By Jensen’s inequality, the information, on average, increases with each enrollment,

∆t(a) := E (u(Σt+1)|At+1 = a,Σt)− u(Σt) ≥ 0, (1.1)

for every a ∈ A. The myopic and deterministic policy At+1 = arg maxa∈A∆t(a), which is often

inappropriate for clinical experiments [18] is relaxed in BUDs by a randomized version, with

probabilities

pt,a := p(At+1 = a | Σt) ∝ ∆t(a)h. (1.2)

where h ≥ 0 is a tuning parameter. The randomization probabilities coincide with the myopic

policy when h → ∞, while with h = 0 the randomization probabilities become identical across

arms.

Outcome distributions within the natural exponential family

We focus on outcome distributions fθa in the natural exponential family (NEF) [14],

fθa(y|a) = fψa(y) ∝ exp{yψa − b(ψa)}, (1.3)
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1.2. Trial Design

where ψa ∈ R is the canonical parameter and b(·) is the cumulant transform.

We indicate the mean and the variance of the responses to treatment a with θa = Eψ(Yt|At =

a) =
∫
yfψa(y)dy = b′(ψa) and σ2

a = Varψ(Yt|At = a) =
∫
y2fψa(y)dy −

(∫
yfψa(y)dy

)2
= b′′(ψa),

respectively. We use the equivalent parametrization fψa and fθa interchangeably and we consider

independent conjugate prior distributions [29] for ψa,

π(ψa | n0,a,y0,a) ∝ exp{n0,aỹ0,aψa − n0,ab(ψa)}, (1.4)

with hyper-parameters n0,a > 0 and ỹ0,a ∈ R. The posterior distribution for ψ = (ψ0, · · · , ψK−1)

is π(ψ | Σt) =
∏K−1
a=0 π(ψa | Σt), where π(ψa | Σt) has the same form as (1.4) with updated

parameters nt,a = n0,a + tp̂t,a and ỹt,a =
(
n0,aỹ0,a +

∑t
s=1 Ys1(As = a)

)/
nt,a. Here p̂t,a is the

proportion of patients assigned to treatment a by time t and 1(As = a) = 1 if patient s received

treatment a and zero otherwise. Throughout Chapter 1, we consider

u(Σt) = −
K−1∑
a=0

Var(θa|Σt). (1.5)

The expected information increment (1.1) becomes

∆t(a) = Var(θa | Σt)− E (Var(θa | Σt+1) | At+1 = a,Σt) . (1.6)

We recall a useful result from the literature on conjugate Bayesian models [14, 29], ỹt,a = E(θa |
Σt). Since At+1 and θa are conditionally independent, given Σt, the information gain equals

∆t(a) = Var(E(θa | Σt+1) | At+1 = a,Σt)

= Var

(
n0,a + ỹ0,a +

∑t+1
s=1 Ys1(As = a)

n0,a + tp̂t,a + 1
| At+1 = a,Σt

)

= Var

(
Yt+1

n0,a + tp̂t,a + 1
| At+1 = a,Σt

)
,

where the first equality follows from the law of total variance and the second equality is a conse-

quence of the properties of the natural exponential family. We can therefore write

∆t(a) =
σ2
t,a

(n0,a + tp̂t,a + 1)2
,

where σ2
t,a = Var(Yt+1 | At+1 = a,Σt).

14



1.3. Asymptotic properties

1.3 Asymptotic properties

In this section, we discuss asymptotic properties of BUDs with sum of the (negative) posterior

variances of θa, a = 0, . . . ,K − 1, as information measure u(Σt).

In [88] a criterion is given for the allocation proportions to have a limit. Based on this result,

we first prove convergence of allocation proportions and randomization probabilities under the

assumption that the outcome distributions belong to the natural exponential family. We then

investigate the rate of convergence of these quantities in the case K = 2.

1.3.1 Almost sure convergence of randomization probabilities and allocation

proportions

Proposition 1 shows that the allocation proportion and randomization probability related to one

of the two arms in two-arm BUDs converge almost surely to the same limit, which is proportional

to a power of the variance of the outcomes related to that arm.

Proposition 1. Consider a two-arm BUD, K = 2, with outcome distribution belonging to the

NEF (1.3), conjugates prior (1.4) and information metric u(Σt) in (1.5). Then, as t→∞,

(i) the allocation of patients to treatments a = 0, 1 converges almost surely (a.s.),

p̂t,a −→ ρa :=
σ

2h
2h+1
a

σ
2h

2h+1

0 + σ
2h

2h+1

1

a.s. as t→∞. (1.7)

(ii) The randomization probability converges a.s. to the same limit as t→∞,

pt,a −→ ρa a.s. (1.8)

Proof. (Proposition 1) It is enough to prove (1.7) and (1.8) for a = 1. First, define

Ft = −p̂t,1 +

(
σ2
t,1

(t0+tp̂t,1+1)2

)h
(

σ2
t,0

(t0+tp̂t,0+1)2

)h
+

(
σ2
t,1

(t0+tp̂t,1+1)2

)h
and

F̃t = −p̂t,1 +
p̂−2h
t,1 σ2h

1

p̂−2h
t,0 σ2h

0 + p̂−2h
t,1 σ2h

1

.
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1.3. Asymptotic properties

As a function of p̂t,1, F̃t is strictly decreasing.

The unique root of F̃t = 0 is

ρ1 :=
σ

2h/(2h+1)
1

σ
2h/(2h+1)
0 + σ

2h/(2h+1)
1

(1.9)

Now, we show that Ft − F̃t converges to zero a.s. as t→∞.

The proof is based on the following elementary facts:

a If an, bn, a′n and b′n are sequences of positive numbers, then∣∣∣∣ an
an + bn

− a′n
a′n + b′n

∣∣∣∣ ≤ min

(∣∣∣∣anbn − a′n
b′n

∣∣∣∣ , ∣∣∣∣ bnan − b′n
a′n

∣∣∣∣) .
Indeed ∣∣∣∣ an

an + bn
− a′n
a′n + b′n

∣∣∣∣ =

∣∣∣∣ 1

1 + bn/an
− 1

1 + b′n/a
′
n

∣∣∣∣
=

∣∣∣∣ b′n/a
′
n − bn/an

(1 + bn/an)(1 + b′n/a
′
n)

∣∣∣∣
≤| b′n/a′n − bn/an |

and ∣∣∣∣ an
an + bn

− a′n
a′n + b′n

∣∣∣∣ =

∣∣∣∣1− an
an + bn

− 1 +
a′n

a′n + b′n

∣∣∣∣
=

∣∣∣∣ bn
an + bn

− b′n
a′n + b′n

∣∣∣∣
b If an, bn, a′n and b′n are bounded sequences of numbers such that an−a′n → 0 and bn−b′n → 0,

then anbn − a′nb′n → 0. Indeed,

| anbn − a′nb′n |≤| anbn − a′nbn + a′nbn − a′nb′n |≤| bn || an − a′n | + | a′n || bn − b′n |

c If an and a′n are bounded sequences such that an− a′n → 0 and r is a positive real number,

then arn − a′rn → 0. The thesis is obvious if r = 1. If r > 1, and M is an upper bound for

both sequences, then

| arn − a′rn |≤ 2rM r−1 | an − a′n |
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If r < 1, then

| arn − a′rn |≤| an − a′n |r

Let us now prove that Ft − F̃t → 0 a.s.

By (a),

| Ft − F̃t |≤ min

(∣∣∣∣∣σ2h
t,0((n0,1 + 1)/t+ p̂t,1)2h

σ2h
t,1((n0,0 + 1)/t+ p̂t,0)2h

−
σ2h

0 p̂2h
t,1

σ2h
1 p̂2h

t,0

∣∣∣∣∣ ,
∣∣∣∣∣σ2h
t,1((n0,0 + 1)/t+ p̂t,0)2h

σ2h
t,0((n0,1 + 1)/t+ p̂t,1)2h

−
σ2h

1 p̂2h
t,0

σ2h
0 p̂2h

t,1

∣∣∣∣∣
)
.

Hence

| Ft − F̃t | ≤

∣∣∣∣∣σ2h
t,0((n0,1 + 1)/t+ p̂t,1)2h

σ2h
t,1((n0,0 + 1)/t+ p̂t,0)2h

−
σ2h

0 p̂2h
t,1

σ2h
1 p̂2h

t,0

∣∣∣∣∣ 1(p̂t,0>1/2)+

+

∣∣∣∣∣σ2h
t,1((n0,0 + 1)/t+ p̂t,0)2h

σ2h
t,0((n0,1 + 1)/t+ p̂t,1)2h

−
σ2h

1 p̂2h
t,0

σ2h
0 p̂2h

t,1

∣∣∣∣∣ 1(p̂t,0≤1/2)

≤

∣∣∣∣∣σ2h
t,0σ

2h
1 ((n0,1 + 1)/t+ p̂t,1)2hp̂2h

t,0 − σ2h
0 σ2h

t,1((n0,0 + 1)/t+ p̂t,0)2hp̂2h
t,1

σ2h
t,1σ

2h
1 ((n0,0 + 1)/t+ p̂t,0)2hp̂2h

t,0

∣∣∣∣∣ 1(p̂t,0>1/2)+

+

∣∣∣∣∣σ2h
t,1σ

2h
0 ((n0,0 + 1)/t+ p̂t,0)2hp̂2h

t,1 − σ2h
1 σ2h

t,0((n0,1 + 1)/t+ p̂t,1)2hp̂2h
t,0

σ2h
t,0σ

2h
0 ((n0,1 + 1)/t+ p̂t,1)2hp̂2h

t,1

∣∣∣∣∣ 1(p̂t,1≥1/2).

Thus,

| Ft − F̃t | ≤ σ−2h
t,1 σ−2h

1 24h | σ2h
t,0σ

2h
1 ((n0,1 + 1)/t+ p̂t,1)2hp̂2h

t,0−

− σ2h
0 σ2h

t,1((n0,0 + 1)/t+ p̂t,0)2hp̂2h
t,1 | 1(p̂t,0>1/2)+

+ σ−2h
t,0 σ−2h

0 24h | σ2h
t,1σ

2h
0 ((n0,0 + 1)/t+ p̂t,0)2hp̂2h

t,1−

− σ2h
1 σ2h

t,0((n0,1 + 1)/t+ p̂t,1)2hp̂2h
t,0 | 1(p̂t,1≥1/2)

By (c), for every a = 0, 1, (
p̂t,a +

n0,a + 1

t

)2h

− p̂2h
t,a → 0

Now, if ω ∈ (At = 0 i.o.) ∩ (At = 1 i.o), then σ2
t,0 → σ2

0 and σ2
t,1 → σ2

1 as t → ∞. By (b),

Ft − F̃t → 0.

On the other hand, if ω ∈ (At = 0 ultimately), then for t large enugh, σt,1 → σ1, σt,0 → σT,0 for

a finite stopping time T , p̂t,1 → 0 and p̂t,0 → 1.

Thus, 1(p̂t,1≥1/2) → 0. Therefore, Ft − F̃t → 0. Analogously, if ω ∈ (At = 1 ultimately), then
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1.3. Asymptotic properties

Ft − F̃t → 0.

Now, let c be such that F̃t < −2c if p̂t,1 > ρ1 + ε and F̃t > 2c if p̂t,1 < ρ1 − ε. Since Ft − F̃t → 0,

there exists a random time T such that | Ft − F̃t |< c for all t ≥ T . For every t ≥ T , Ft < −c
if p̂t,1 > ρ1 + ε and Ft > c if p̂t,1 < ρ1 − ε. Based on basics of stochastic approximation (Lemma

A.1 in the Appendix), it follows that p̂t,1 → ρ1 almost surely.

Additionally, by definition of pt,1, we have

pt,1 =
1

1 +

(
n0,1 + tp̂t,1 + 1

n0,0 + t(1− p̂t,1) + 1

)2h σ2h
t,0

σ2h
t,1

. (1.10)

Hence, applying continuous mapping theorem (Theorem 2.3 of [85]), we have

pt,1 −→
t→∞

ρ1 a.s. .

The extension of the result presented in Proposition 1 to multi-arm BUDs is formalized in Corol-

lary 1.

Corollary 1. Under the same assumptions of Proposition 1, if K > 2, then, as t→∞, the alloca-

tion of patients to treatments (p̂t,0, . . . , p̂t,K−1) and the randomization probabilities (pt,0, . . . , pt,K−1)

converge a.s. to (ρ0, . . . , ρK−1), where

ρa =
σ

2h
2h+1
a∑K−1

i=0 σ
2h

2h+1

i

for a ∈ {0, . . . ,K − 1}. (1.11)

Proof. (Corollary 1) First, we show that At = a infinitely often for any a = 0, . . . ,K − 1, that is

for an infinite number of indices the assignment of patients to arm a holds true.

There exists a partition {Bi}K−1
i=0 of the sample space Ω such that in Bi arm i is visited i.o.

Consider i ∈ {0, . . . ,K − 1}, j ∈ {0, . . . ,K − 1} − {i} and reason iteratively as follows. Choose

ω ∈ Bj . Then, define the sequences Tij (ω) of times where arm i or arm j is chosen in the multi-

arm BUD. Given the sequence of BUD assignments of patients to arm i or j, the probability of
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1.3. Asymptotic properties

assigning a patient at time Tij (ω) to arm i is given by

pTij ,i(ω) := P (ATij (ω) = i | {Tij})(ω)

that equals

pTij ,i(ω) =

(
σ2
Tij

,i

(t0+Tij p̂Tij ,i
+1)2

)h
(

σ2
Tij

,i

(t0+Tij p̂Tij ,i
+1)2

)h
+

(
σ2
Tij

,j

(t0+Tij p̂Tij ,j
+1)2

)h .

Now we reason by contradiction: if arm i is visited a finite number of times, then p̂Tij ,i would

converge to zero. But this implies that pTij ,i(ω) would converge to one and, indeed,

P (ATij = i i.o. | {Tij})(ω) ≥ lim supP (ATij = i | {Tij}) = 1.

This contradicts the assumption that arm i is visited a finite number of times.

As a consequence, arm i is visited i.o. ∀ω ∈ Bj .
Since this holds true for ∀j ∈ {0, . . . ,K − 1} − {i}, we conclude that arm i is visited i.o. for

∀ω ∈ Ω. Since this holds true for i ∈ {0, . . . ,K − 1}, we conclude that each arm is visited i.o. in

all the sample space.

Therefore, for any pair of arms (a1, a2), we can consider the sequence (Tk)k of times for which the

assignment of a patient falls on arm a1 or arm a2. The related subsequence of samples assigned

to these two arms is equivalent to a two arm BUD.

Proposition 1 implies that almost surely

p̂Tk,a1
p̂Tk,a1 + p̂Tk,a2

−→
k→∞

ρa1,a2 :=
σ

2h
2h+1
a1

σ
2h

2h+1
a1 + σ

2h
2h+1
a2

and, indeed, the general sequence
p̂t,a1

p̂t,a1 + p̂t,a2
converges to the same limit. Then, the allocation

proportions (p̂t,0, . . . , p̂t,K−1) converge to a limit (ρ0, . . . , ρK−1), which is the unique solution to

K−1∑
a=0

ρa = 1 and ρa1 = ρa1,a2(ρa1 + ρa2) for all {a1, a2} ⊂ {0, . . . ,K − 1}.
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1.3. Asymptotic properties

The solution of the above linear system is given by

ρa =
σ

2h
2h+1
a∑K−1

i=0 σ
2h

2h+1

i

for a ∈ {0, . . . ,K − 1} (1.12)

Analogously, (1.12) defines the limit (ρ0, . . . , ρK−1) of the randomization probabilities of the BUD

in the multi-arm setup.

Notice that the asymptotic allocation of BUDs, is the target of well-known powered Neyman al-

location, which reduces to standard Neyman allocation when h→∞. This allocation minimizes

the sample size when power is fixed [6, 56]. Observe also that the limit of allocation proportions

in BUDs is the same as the limit of randomization probabilities. This is a characteristic that is

common to other adaptive designs. For instance, the asymptotic equivalence between allocation

proportions and randomization probabilities of procedures based on generalized Polya urn models

has been proven in [4, 5].

Before we state the main results for the rate of convergence and asymptotic distributions of the

randomization probabilities and allocation proportions in BUDs, we recall that the NEFs with

quadratic variance function consist of all NEFs such that the variance is a polynomial function

of order 2 or lower of the mean , i.e.

σ2
a = v0 + v1θa + v2θ

2
a

for some constants v0, v1, v2. This class contains popular statistical models, such as the normal,

Poisson, gamma, negative binomial and binomial distributions. We refer to Morris [57, 58] for a

detailed study of this class of distributions.

1.3.2 Asymptotic normality of randomization probabilities and allocation pro-

portions

Here, we prove asymptotic normality of the randomization probabilities pt,a and of the allocation

proportions p̂t,a in two-arm BUDs characterized by the utility criteria u(Σt) = −
∑1

a=0 Var(θa|Σt)

when the statistical model fθa is a NEF with quadratic variance.
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1.3. Asymptotic properties

First, for a = 0, 1, we define

∆σ2
t,a = Var(Yt+2 | At+2 = a,Σt+1)−Var(Yt+1 | At+1 = a,Σt),

v(ỹt,a) =
(
v0 + v1ỹt,a + v2ỹ

2
t,a

) 1
2 ,

Wt = [pt,1, ỹt,1, ỹt,0]′

and

ka(Wt) =

[
1 +

(
pt,a
pt,1−a

) 1
2h v(ỹt,1−a)

v(ỹt,a)

]
,

where pt,0 can be written as 1− pt,1.

We also write X(t) = OP (t−α), where α > 0, to intend that ∀ ε > 0 ∃ T,M > 0 finite such that

P (|X(t)| > Mt−α) < ε∀t > T .

Lemma 1 approximates, for a ∈ {0, 1} the variables σt,a and ỹt+1,a with functions of (ỹt,a, pt,1)

and (Yt+1, At+1).

Lemma 1. If the outcome distributions fψa , a = 0, 1 of a two-arm BUD belong to the NEF with

quadratic variance function, then

(i) σt,a = v(ỹt,a) +OP (t−1)

(ii) ỹt+1,a = ỹt,a + (Yt+1 − ỹt,a)
1(At+1 = a)

t
ka(Wt) +OP (t−2)

(iii) ∆σ2
t,a = (v1 + 2v2ỹt,a)(Yt+1 − ỹt,a)

1(At+1 = a)

t
ka(Wt) +OP (t−2).

Proof. (Lemma 1) We make use of the following properties of OP (·)

OP (a(t))OP (b(t)) = OP (a(t)b(t))

OP (a(t)) +OP (a(t)) = OP (a(t)), (1.13)

for any sets of constants a(t), b(t) indexed by t.

Moreover, we invoke the following properties that are peculiar characteristics of the members of
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1.3. Asymptotic properties

the NEF class of distributions (see [29])

Eψa(Yi) = b′(ψa)

Varψa(Yi) = b′′(ψa)

E(b′(ψa) | Σt) = ỹt,a (1.14)

for i ∈ N, a ∈ {0, 1}.
From the law of total variance and the characterization of the distributions in the NEF with

quadratic variance function, we have

σ2
t,a = E(Varψa(Yt+1) | Σt) + Var(Eψa(Yt+1) | Σt)

= E(v0 + v1b
′(ψa) + v2b

′(ψa)
2 | Σt) + Var(b′(ψa) | Σt)

= v0 + v1ỹt,a + (v2 + 1)E(b′(ψa)
2 | Σt)− E(b′(ψa) | Σt)

2

= v0 + v1ỹt,a + (v2 + 1)(E(b′(ψa)
2 | Σt)− E(b′(ψa) | Σt)

2) + v2ỹ
2
t,a (1.15)

for a ∈ {0, 1}.
Now, from Theorem 5.3 of Morris [58], it holds that

E(b′(ψa)
2 | Σt)− E(b′(ψa) | Σt)

2 =
1

n0,a + tp̂t,a − v2
(v0 + v1ỹt,a + v2ỹ

2
t,a) (1.16)

and (1.15) becomes

σ2
t,a = v0 + v1ỹt,a + v2ỹ

2
t,a +OP (t−1). (1.17)

Equation (1.17) is a consequence of the convergence of p̂t,a and of the properties (1.13).

By taking the square root of (1.17), (i) follows. Also, by inverting (1.10), we obtain

p̂t,1 =
1

1 +

(
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+
1

t

(n0,0 + 1)

(
1− pt,1
pt,1

) 1
2h σt,1
σt,0
− (n0,1 + 1)

1 +

(
1− pt,1
pt,1

) 1
2h σt,1
σt,0

=
1

1 +

(
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+OP (t−1). (1.18)
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1.3. Asymptotic properties

Therefore,

p̂−1
t,1 = 1 +

(
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+OP (t−1). (1.19)

We have

ỹt+1,1 = At+1

(
ỹt,1 +

Yt+1 − ỹt,1
tp̂t,1 + 1

)
+ (1−At+1)ỹt,1

= ỹt,1 +At+1
Yt+1 − ỹt,1

tp̂t,1
+OP (t−2) (1.20)

= ỹt,1 +At+1
(Yt+1 − ỹt,1)

t

[
1 +

(
pt,1

1− pt,1

) 1
2h σt,0
σt,1

]
+OP (t−2) (1.21)

= ỹt,1 +At+1
(Yt+1 − ỹt,1)

t

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]
+OP (t−2). (1.22)

Equation (1.21) is obtained by plugging (1.19) into (1.20); instead, equation (1.22) is a conse-

quence of (i).

So, the generalization of equation (1.22) to arm a ∈ {0, 1} is given by

yt+1,a = ỹt,a + 1(At+1 = a)
(Yt+1 − ỹt,a)

t

[
1 +

(
pt,a
pt,1−a

) 1
2h v(ỹt,1−a)

v(ỹt,a)

]
+OP (t−2) (1.23)

and this proves (ii).

Finally, by using (ii), we get

∆σ2
t,1 = v0 + v1ỹt+1,1 + v2ỹ

2
t+1,1 − (v0 + v1ỹt,1 + v2ỹ

2
t,1)

= (v1 + 2v2ỹt,1)At+1
(Yt+1 − ỹt,1)

t

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]
+OP (t−2) (1.24)

and, analogously,

∆σ2
t,0 = (v1 + 2v2ỹt,0)(1−At+1)

(Yt+1 − ỹt,0)

t

[
1 +

(
1− pt,1
pt,1

) 1
2h v(ỹt,1)

v(ỹt,0)

]
+OP (t−2). (1.25)

This completes the proof of (iii).

The next lemma is similar in spirit to the previous result and illustrates that pt+1,1 can be ap-
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proximated by a function of Wt, Yt+1, At+1 with an OP (t−2) error term.

Lemma 2. Let the outcome distributions fψa , a = 0, 1 of a two-arm BUD belong to the NEF

with quadratic variance function. For the sequence of randomization probability pt,1, t ≥ 1 it holds

that

pt+1,1 = pt,1 + hpt,1(1− pt,1)

{[
(v1 + 2v2ỹt,1)(Yt+1 − ỹt,1)

v(ỹt,1)2
− 2

]
At+1

t
k1(Wt)

+

[
2− (v1 + 2v2ỹt,0)(Yt+1 − ỹt,0)

v(ỹt,0)2

]
(1−At+1)

t
k0(Wt)

}
+OP (t−2).

(1.26)

Proof. (Lemma 2) Throughout this proof, we consider a first-order approximation of pt+1 − pt.
First, by definition of the randomization probabilities of the BUD in terms of the information

increments, we have

pt+1,1 − pt,1 =

[
σ2
t+1,1

(n0,1 + (t+ 1)p̂t+1,1 + 1)2

]h
[

σ2
t+1,0

(n0,0 + (t+ 1)p̂t+1,0 + 1)2

]h
+

[
σ2
t+1,1

(n0,1 + (t+ 1)p̂t+1,1 + 1)2

]h−

−

[
σ2
t,1

(n0,0 + tp̂t,0 + 1)2

]h
[

σ2
t,0

(n0,0 + tp̂t,0 + 1)2

]h
+

[
σ2
t,1

(n0,1 + tp̂t,1 + 1)2

]h
=

1

1 +
σ2h
t+1,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h
−

− 1

1 +
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
(1.27)

=


σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

1 +
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
− (1.28)
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−

σ2h
t+1,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h

1 +
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

×

×

[
1 +

σ2h
t+1,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h
]−1

(1.29)

=


σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

[
1 +

σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
]2 −

−

σ2h
t+1,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h

[
1 +

σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
]2


(
1 +OP (t−1)

)
. (1.30)

To obtain (1.30) we have noticed that the two factors of the denominator in the right-hand-side

of (1.29) share the same asymptotic behavior. Thus, we have isolated the principal part of the

denominator in (1.29) and we have identified a remainder term which appears as OP (t−1) since,

due to Proposition 1, p̂t,1 converges almost surely to a limit which is different from 0 and 1 and

σ2
t,a converges to a finite limit different from 0 almost surely for a ∈ {0, 1}.

Now, we split the right-hand-side of (1.30) into two parts, referring to the possible assignements

of treatment (t+ 1) and using the fact that At+1 takes value 1 when treatment (t+ 1) is assigned

to arm 1 and 0 otherwise. So, when the response Yt+1 comes from arm 1, σ2
t+1,0 = σ2

t,0 and,

instead, when the (t+ 1)th treatment is assigned to arm 0, σ2
t+1,1 = σ2

t,1.

We get

pt+1,1 − pt,1 =


At+1

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1)

)2h
]

[
1 +

σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
]2 +

(1.31)
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+(1−At+1)

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t+1,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h
]

[
1 +

σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
]2


×

×
(
1 +OP (t−1)

)
. (1.32)

Next, we invoke the following result, stated as a separate Lemma, whose proof is given in the

Appendix at the end of this Chapter.

Lemma A.1. Under the assumptions of Lemma 2, we have

At+1

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1)

)2h
]

= At+1h
σ2h
t,0p̂

2h
t,1

σ2h
t,1(1− p̂t,1)2h

[
∆σ2

t,1

σ2
t,1

− 2

tp̂t,1

]
+OP (t−2) (1.33)

and

(1−At+1)

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t+1,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h
]

= (1−At+1)
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h

h

[
−

∆σ2
t,0

σ2
t,0

+
2

t(1− p̂t,1)

]
+OP (t−2). (1.34)

Thus, we replace the numerators of the two addenda in (1.32) with the right-hand-side of equa-

tions (1.33) and (1.34) and we write

pt+1,1 − pt,1 =

h
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h[

1 +
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h
]2

[
At+1

(
∆σ2

t,1

σ2
t,1

− 2

tp̂t,1

)
+

+(1−At+1)

(
−

∆σ2
t,0

σ2
t,0

+
2

t(1− p̂t,1)

)
+OP (t−2)

] (
1 +OP (t−1)

)
. (1.35)
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Retaining the dominant part of the denominator in equation (1.35), it follows that

pt+1,1 − pt,1 =

h
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h(

1 +
σ2h
t,0

σ2h
t,1

(
p̂t,1

1− p̂t,1

)2h
)2

[
At+1

(
∆σ2

t,1

σ2
t,1

− 2

tp̂t,1

)
+

+(1−At+1)

(
−

∆σ2
t,0

σ2
t,0

+
2

t(1− p̂t,1)

)
+OP (t−2)

] (
1 +OP (t−1)

)
. (1.36)

Furthermore, noting that

(
1− pt,1
pt,1

) 1
2h σt,1
σt,0

=
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)
, (1.37)

it holds that(
1− pt,1
pt,1

) 1
2h σt,1
σt,0

=
p̂t,1

1− p̂t,1
+

n0,1 + 1

n0,0 + 1 + t(1− p̂t,1)
− p̂t,1(n0,0 + 1)

(t(1− p̂t,1) + n0,0 + 1)(1− p̂t,1)

=
p̂t,1

1− p̂t,1
+OP (t−1) (1.38)

and

(
p̂t,1

1− p̂t,1

)2h

=

[(
1− pt,1
pt,1

) 1
2h σt,1
σt,0

+OP (t−1)

]2h

=
1− pt,1
pt,1

σ2h
t,1

σ2h
t,0

+OP (t−1). (1.39)

Plugging (1.39) and (1.18) into (1.36) yield to

pt+1,1 − pt,1 =
(
hpt,1(1− pt,1) +OP (t−1)

){
At+1

[
∆σ2

t,1

σ2
t,1

− 2

t

((
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+ 1

)]

+(1−At+1)

[
−

∆σ2
t,0

σ2
t,0

+
2

t

((
1− pt,1
pt,1

) 1
2h σt,1
σt,0

+ 1

)]
+OP (t−2)

}(
1 +OP (t−1)

)
.

(1.40)
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In order to derive equation (1.40) we have used the following equations

h
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h(

1 +
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h

)2 = hpt,1(1− pt,1) +OP (t−1),

p̂−1
t,1 = 1 +

(
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+OP (t−1) (1.41)

and

(1− p̂t,1)−1 = 1 +

(
1− pt,1
pt,1

) 1
2h σt,1
σt,0

+OP (t−1).

Indeed, by properties (1.13), (1.40) becomes

pt+1,1 − pt,1 = hpt,1(1− pt,1)

{
At+1

[
∆σ2

t,1

σ2
t,1

− 2

t

((
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+ 1

)]

+(1−At+1)

[
−

∆σ2
t,0

σ2
t,0

+
2

t

((
1− pt,1
pt,1

) 1
2h σt,1
σt,0

+ 1

)]}
+OP (t−2)

= hpt,1(1− pt,1)

{[
∆σ2

t,1

σ2
t,1

− 2At+1

t

((
pt,1

1− pt,1

) 1
2h σt,0
σt,1

+ 1

)]

+

[
2(1−At+1)

t

((
1− pt,1
pt,1

) 1
2h σt,1
σt,0

+ 1

)
−

∆σ2
t,0

σ2
t,0

]}
+OP (t−2) (1.42)

= hpt,1(1− pt,1)

{[
∆σ2

t,1

σ2
t,1

− 2At+1

t

((
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)
+ 1

)]

+

[
2(1−At+1)

t

((
1− pt,1
pt,1

) 1
2h v(ỹt,1)

v(ỹt,0)
+ 1

)
−

∆σ2
t,0

σ2
t,0

]}
+OP (t−2), (1.43)

where (1.42) follows from At+1∆σ2
t,1 = ∆σ2

t,1 and (1−At+1)∆σ2
t,0 = ∆σ2

t,0 and (1.43) is a conse-

quence of (i) of Lemma 1.

Finally, the statement of Lemma 2 is obtained by plugging the expression for σ2
t,1,∆σ

2
t,1, σ

2
t,0 and

∆σ2
t,0 given in Lemma 1 into (1.43) and by invoking properties (1.13).

Lemmas 1 and 2 suggest how to approximate ỹt+1,a − ỹt,a for a ∈ {0, 1} and pt+1,1 − pt,1.
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Therefore, we are able to determine the random vector G̃t+1 = [Gt+1, Gt+1,1, Gt+1,0]′, whose

components are approximations of t(pt+1,1 − pt,1) and t(ỹt+1,a − ỹt,a), respectively.

Let

Gt+1 := hpt,1(1− pt,1)

{[
(v1 + 2v2ỹt,1)(Yt+1 − ỹt,1)

v(ỹt,1)2
− 2

]
At+1k1(Wt)+

+

[
2− (v1 + 2v2ỹt,0)(Yt+1 − ỹt,0)

v(ỹt,0)2

]
(1−At+1)k0(Wt)

}
,

and Gt+1,a := 1(At+1 = a)(Yt+1 − ỹt,a)ka(Wt) for a = 0, 1.

By computing the conditional expectations g̃(Wt) = −Eψ(G̃t+1 | Σt), we define the map g̃(·) =

[g(·), g1(·), g0(·)]′, whose components are

g(Wt) :=− 2h
v(ỹt,1)

v(ỹt,0)

(1− pt,1)
2h+1
2h

p
1−2h
2h

t,1

k1(Wt)
2

(
1

k1(Wt)
− pt,1

)
−

−
[
pt,1

(v1 + 2v2ỹt,1)(b′(ψ1)− ỹt,1)

v(ỹt,1)2
k1(Wt)−

− (1− pt,1)
(v1 + 2v2ỹt,0)(b′(ψ0)− ỹt,0)

v(ỹt,0)2
k0(Wt)

]
hpt,1(1− pt,1),

ga(Wt) := −pt,a(b′(ψa)− ỹt,a)ka(Wt) for a ∈ {0, 1}.

In Proposition 2 we rewrite t(Wt+1−Wt) as the sum of (i) a function of Wt, (ii) a Σt-martingale-

difference sequence ∆M̃t+1 and (iii) a Σt+1-measurable sequence of remainder terms. In particu-

lar, ∆M̃t+1 = [∆Mt+1,∆Mt+1,1,∆Mt+1,0]′ is defined by G̃t+1 + g̃(Wt).

Proposition 2. Let the outcome distributions fψa , a = 0, 1, of a two-arm BUD belong to the

NEF with quadratic variance function. Then, we have

Wt+1 = Wt −
1

t
g̃(Wt) +

1

t
(∆M̃t+1 + r̃t+1), (1.44)

where the reminder terms r̃t+1 := [rt+1, rt+1,1, rt+1,0] are three OP (t−1) sequences.

Proof. (Proposition 2) In Lemma 2 we have simplified the expression for pt+1,1−pt,1, highlighting

its principal part. Relying on this result, we verify that the updating rule for the randomization
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probabilities of a BUD can be written as a stochastic approximation of the following form

pt+1,1 = pt,1 +
1

t
(Gt+1 + rt+1)

= pt,1 −
1

t
g(pt,1, ỹt,1, ỹt,0) +

1

t
(∆Mt+1 + rt+1), (1.45)

for a specific process Gt+1, where g(pt,1, ỹt,1, ỹt,0) = −Eψ (Gt+1 | Σt), rt+1 = OP (t−1) and ∆Mt+1

is a Σt-martingale difference sequence.

In particular, Lemma 2 suggests us to define Gt+1 as

Gt+1 :=hpt,1(1− pt,1)

{[
(v1 + 2v2ỹt,1)(Yt+1 − ỹt,1)

v(ỹt,1)2
− 2

]
At+1

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]

+

[
2− (v1 + 2v2ỹt,0)(Yt+1 − ỹt,0)

v(ỹt,0)2

]
(1−At+1)

[
1 +

(
1− pt,1
pt,1

) 1
2h v(ỹt,1)

v(ỹt,0)

]}
. (1.46)

With this definition of Gt+1, the randomization probabilities of a BUD meet the above properties

of the stochastic approximation (1.45).

Now, g(pt,1, ỹt,1, ỹt,0) = −Eψ (Gt+1 | Σt) implies that

g(pt,1, ỹt,1, ỹt,0) = −hpt,1(1− pt,1)

{
−2pt,1

[
1 +

(
pt,1

1− pt,1

)1/(2h) v(ỹt,0)

v(ỹt,1)

]
+

+2(1− pt,1)

[
1 +

(
1− pt,1
pt,1

)1/(2h) v(ỹt,1)

v(ỹt,0)

]}
−

− hpt,1(1− pt,1)

{
pt,1

(v1 + 2v2ỹt,1)(b′(ψ1)− ỹt,1)

v(ỹt,1)2

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]
−

(1.47)

− (1− pt,1)
(v1 + 2v2ỹt,0)(b′(ψ0)− ỹt,0)

v(ỹt,0)2

[
1 +

(
1− pt,1
pt,1

) 1
2h v(ỹt,1)

v(ỹt,0)

]}
. (1.48)

Rearranging the right-hand-side of (1.48), it follows that

g(pt,1, ỹt,1, ỹt,0) =− 2h
v(ỹt,1)

v(ỹt,0)
(1− pt,1)

2h+1
2h p

2h−1
2h

t,1

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]2

×

×


[

1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]−1

− pt,1

− (1.49)
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− hpt,1(1− pt,1)

{
pt,1

(v1 + 2v2ỹt,1)(b′(ψ1)− ỹt,1)

v(ỹt,1)2

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]
− (1.50)

− (1− pt,1)
(v1 + 2v2ỹt,0)(b′(ψ0)− ỹt,0)

v(ỹt,0)2

[
1 +

(
1− pt,1
pt,1

) 1
2h v(ỹt,1)

v(ỹt,0)

]}
. (1.51)

Nonetheless, ∆Mt+1, defined as

∆Mt+1 := Gt+1 + g(pt,1, ỹt,1, ỹt,0), (1.52)

is a Σt-martingale difference sequence, since, by construction, its expectation with respect to Σt

is zero.

Additionally, t−1rt+1, defined as (pt+1,1 − pt,1)− t−1Gt+1, determined from (1.26) and (1.46), is

OP (t−2), due to Lemma 2. As a consequence, rt+1 = OP (t−1) .

Analogously, we derive the stochastic approximation for ỹt+1,a for a ∈ {0, 1}: equation (ii) of

Lemma 1 suggests us to define

Gt+1,a := 1(At+1 = a)(Yt+1 − ỹt,a)

[
1 +

(
pt,a
pt,1−a

) 1
2h v(ỹt,1−a)

v(ỹt,a)

]
(1.53)

and

ga(pt,1, ỹt,1, ỹt,0) := −Eψ(Gt+1,a | Σt) = −pt,a(b′(ψa)− ỹt,a)

[
1 +

(
pt,a
pt,1−a

) 1
2h v(ỹt,1−a)

v(ỹt,a)

]
,

so that ỹt+1,a satisfies the following recursive rule

ỹt+1,a = ỹt,a +
1

t
(Gt+1,a + rt+1,a)

= ỹt,a −
1

t
ga(pt,1, ỹt,1, ỹt,0) +

1

t
(∆Mt+1,a + rt+1,a), (1.54)

where ∆Mt+1,a = Gt+1,a + ga(pt,1, ỹt,1, ỹt,0) is a Σt-martingale difference sequence and rt+1,a,

defined as t(ỹt+1,a − ỹt,a)−Gt+1,a from (1.23) and (1.53), is OP (t−1).

Indeed, joining the above results, we get the stochastic approximation for the vector [pt,1, ỹt,1, ỹt,0]′

presented in Proposition 2.

Using Proposition 2 we leverage the theory of stochastic approximation [13, 51, 63] and tackle
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the convergence analysis of Wt within this framework. This is done by relating equation (1.44)

with an ordinary differential equation (ODE) of the following form

dWt

dt
= −g̃(Wt), (1.55)

where t ∈ (0,+∞) denotes continuous time. The ODE has arbitrary initial conditions.

Note that if we ignore the residual term r̃t+1, the difference Wt+1 − Wt in (1.44) is equal to

−1
t g̃(Wt) plus a Σt-martingale-difference sequence.

We describe the distribution of Wt for large values of t, by analyzing the asymptotic behaviour

of the ODE (1.55). By identifying the stationary point [ρ1, b
′(ψ1), b′(ψ0)] of the ODE, assessing

its stability and some regularity conditions on ∆M̃t+1 and r̃t+1, we prove a Central Limit type

result for Wt.

In particular, Theorem 1 indicates the asymptotic normality of the randomization probability pt,1.

Theorem 1. Under the same assumptions of Proposition 2, we have

t1/2(pt,1 − ρ1)→ N
(

0,
Γ

1 + 4h

)
,

where

Γ = h2ρ21(1− ρ1)2
[

(v1 + 2v2b
′(ψ1))2

ρ1σ2
1

+
(v1 + 2v2b

′(ψ0))2

(1− ρ1)σ2
0

+
4

ρ1
+

4

1− ρ1

]
. (1.56)

Proof. (Theorem 1) The ordinary differential equation associated to the stochastic approximation

of Proposition 2 has the following form
dp
dt = −g(p, ỹ1, ỹ0)
dỹ1
dt = −g1(p, ỹ1, ỹ0)
dỹ0
dt = −g0(p, ỹ1, ỹ0)

(1.57)

with initial condition 
p(0) = p0

ỹ1(0) = ỹ01

ỹ0(0) = ỹ00

(1.58)

where [p0, ỹ01, ỹ00] ∈ (0, 1)× R2 and g̃ = [g, g1, g0]′ is defined in the main text. Refer to [13] and
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[51] for a presentation of the mathematical results and theory on stochastic approximation.

Thus, the result of Theorem 1 follows from Theorem on asymptotics of stochastic approximation

by Laruelle and Pagès in [52] (see Theorem A.2 in the Appendix at the end of this Chapter),

once we have proven that the required hypotheses of the Theorem are satisfied by the stochastic

approximation given in Proposition 2.

The assumptions are the following:

A1) the point [ρ1, b
′(ψ1), b′(ψ0)] is a stationary point of the ordinary differential equation (1.57);

A2) g̃ is differentiable and Λ := Re(λmin) >
1

2
, where λmin denotes the eigenvalue of of

Dg̃(ρ1, b
′(ψ1), b′(ψ0)) with the lowest real part;

A3) Eψ(∆M̃t+1∆M̃ ′t+1 | Σt) converges a.s. to a symmetric and definite positive matrix Γ̃ and,

in particular, Varψ(Gt+1 | Σt) = Eψ(∆M2
t+1 | Σt) −→

t→∞
Γ = Γ̃1,1 a.s.;

A4) for some δ > 0, sup
t
Eψ

(
‖∆M̃t+1‖2+δ | Σt

)
<∞;

A5) for an ε > 0, (t+ 1)Eψ
(
‖r̃t+1‖21{‖[pt,1,ỹt,1,ỹt,0]−[ρ1,b′(ψ1),b′(ψ0)]‖<ε}

)
−→
t→∞

0.

Then, we can conclude that

t1/2


pt,1 − ρ1

ỹt,1 − b′(ψ1)

ỹt,0 − b′(ψ0)

 −→t→∞ N (0,
1

2Λ− 1
Σ̃), (1.59)

where

Σ̃ :=

∫ ∞
0

(
e−(Dg̃(ρ1,b′(ψ1),b′(ψ0))− I3

2
)u
)′

Γ̃e−(Dg̃(ρ1,b′(ψ1),b′(ψ0))− I3
2

)udu. (1.60)

In the following steps we verify that assumptions A1)-A5) are satisfied, we apply the above The-

orem and we compute the asymptotic variance of pt,1.

STEP 1: Assumptions A1)-A2), ODE, stationarity and stability

The unique stationary point of the ODE (1.57) is [ρ1, b
′(ψ1), b′(ψ0)], since

g̃(pt,1, ỹt,1, ỹt,0) = 0 if and only if [pt,1, ỹt,1, ỹt,0] = [ρ1, b
′(ψ1), b′(ψ0)]. (1.61)

Moreover, standard computations show that the differential of g̃ evaluated at the equilibrium
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point takes value

Dg̃(ρ1, b
′(ψ1), b′(ψ0)) =


1 + 2h 0 0

0 1 0

0 0 1

 . (1.62)

Thus all the eigenvalues of Dg̃(ρ1, b
′(ψ1), b′(ψ0)) are real and the minimum eigenvalue is Λ =

1 >
1

2
.

STEP 2: Assumption A3), finiteness of the limiting variance

In order to prove that the matrix Γ̃ = limt→∞Eψ(∆M̃t+1∆M̃ ′t+1 | Σt) is positive definite it is

sufficient to show that the diagonal elements of the matrix obtained by the triangularization of Γ̃

are positive. In fact, by Sylvester’s criterion, Γ̃ is positive definite if and only if all the kth leading

principal minor of the matrix are positive for k = 1, 2, 3.

Now, by using elementary row operations, this matrix can be reduced to an upper triangular

matrix and, since the kth leading principal minor of a triangular matrix is the product of its

diagonal elements up to row k, Sylvester’s criterion is equivalent to checking whether its diagonal

elements are all positive.

The components of the matrix Γ̃ can be determined combining the explicit expression of the con-

ditional expectation of the pairwise products of the components of ∆M̃t+1, which are functions

of G̃t+1 and g̃, and the following remarks:

a) Eψ1(At+1(Yt+1 − ỹt,1) | Σt) −→
t→∞

0 and Eψ0((1 − At+1)(Yt+1 − ỹt,0) | Σt) −→
t→∞

0 since

ỹt,a =

∑t
s=1 Ys1(As = a)

tp̂t,a
+ OP (t−1) for a ∈ {0, 1} and the law of large numbers can be

applied to the outcomes of the two arms;

b) Eψ1(b′(ψ1)− ỹt,1 | Σt) −→
t→∞

0 and Eψ0(b′(ψ0)− ỹt,0 | Σt) −→
t→∞

0 due to a similar reasoning as

above;

c) the conditional expectation of products containing At+1 and (1−At+1) as factors vanishes;

d) pt,1, ỹt,1, ỹt,0 converge.

Thus,

Γ̃1,1 = Γ = lim
t→∞

Varψ(Gt+1 | Σt)

= h2ρ2
1(1− ρ1)2

[
(v1 + 2v2b

′(ψ1))2

ρ1σ2
1

+
(v1 + 2v2b

′(ψ0))2

(1− ρ1)σ2
0

+
4

ρ1
+

4

1− ρ1

]
, (1.63)
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Γ̃2,2 = lim
t→∞

Varψ(Gt+1,1 | Σt)

=
σ2

1

ρ1
, (1.64)

Γ̃3,3 = lim
t→∞

Varψ(Gt+1,0 | Σt)

=
σ2

0

1− ρ1
, (1.65)

Γ̃1,2 = Γ̃2,1 = lim
t→∞

Eψ(∆Mt+1∆Mt+1,1 | Σt)

= h(1− ρ1)(v1 + 2v2b
′(ψ1)),

Γ̃1,3 = Γ̃3,1 = lim
t→∞

Eψ(∆Mt+1∆Mt+1,0 | Σt)

= −hρ1(v1 + 2v2b
′(ψ0)),

Γ̃2,3 = Γ̃3,2 = lim
t→∞

Eψ(∆Mt+1,1∆Mt+1,0 | Σt)

= 0. (1.66)

To triangularize Γ̃, it is sufficient to substitute the first row by a linear combination of the second

and third rows, so that the elements (1,2) and (1,3) of the matrix vanish. In particular the entry

(1, 1) becomes

Γ̃3,3(Γ̃2,2Γ̃1,1 − Γ̃2
1,2)− Γ̃2

1,3Γ̃2,2 = 4h2σ2
0σ

2
1

> 0. (1.67)

Since the above inequality holds and Γ̃2,2 > 0, Γ̃3,3 > 0, we can conclude that the matrix Γ̃ is

positive definite.

STEP 3: Assumption A4), finiteness of (2 + δ)th-moment

To prove A4) it is sufficient to prove the finiteness of sup
t
Eψ(∆M2+δ

t+1 | Σt), sup
t
Eψ(∆M2+δ

t+1,1 | Σt)

and sup
t
Eψ(∆M2+δ

t+1,0 | Σt) separately. But this follows from the convergence of [pt,1, ỹt,1, ỹt,0] and

the finiteness of the moments of distributions in the natural exponential family with quadratic

variance function.

STEP 4: Assumption A5), remainder term

Assumption A5) is a consequence of the construction of the remainder term r̃t+1.

Recall that rt+1, rt+1,1 and rt+1,0 are OP (t−1) as stated in Proposition 2 and they have been ob-
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1.3. Asymptotic properties

tained by isolating the dominant terms in the expression for t(pt+1,1−pt,1), t(ỹt,1−b′(ψ1)), t(ỹt,0−
b′(ψ0)) and subtracting the components of G̃t+1, respectively.

Thus, if ‖[pt,1, ỹt,1, ỹt,0] − [ρ1, b
′(ψ1), b′(ψ0)]‖ < ε for some ε > 0, then also | σ2

t,1 − σ2
1 |< δ1,

| σ2
t,0−σ2

0 |< δ2 for some δ1, δ2 and p̂t,1 ∈ K, where K is a compact subset of (0, 1), since it can be

computed as in (1.18). Under this conditions, for ∀w, t2‖r̃t+1‖2 is, by construction, an algebraic

function of random variables that have small variability around their limits, which are different

from zero and are finite, and, therefore, it is bounded. This implies that

(t+ 1)Eψ
(
‖r̃t+1‖21{‖[pt,1,ỹt,1,ỹt,0]−[ρ1,b′(ψ1),b′(ψ0)]‖<ε}

)
−→
t→∞

0. (1.68)

STEP 5: SA theorem

From the above steps, we have shown that Theorem A.2 on asymptotics of stochastic approxi-

mation by Laruelle and Pagès in [52] holds: it follows that t1/2(pt,1 − ρ1) −→
t→∞

N (0,Σ), where Σ

is the entry (1, 1) of the matrix Σ̃, defined in (1.60). Thus, we have

Σ̃ =

∫ ∞
0

∞∑
k=0

1

k!

((
−Dg̃(ρ1, b

′(ψ1), b′(ψ0)) +
I3

2

)k)′
ukΓ̃

∞∑
j=0

1

j!

(
−Dg̃(ρ1, b

′(ψ1), b′(ψ0)) +
I3

2

)j
ujdu.

(1.69)

and, in particular, the entry (1,1) equals Σ =
Γ

1 + 4h
, where Γ has been computed in (1.63).

Therefore we obtain the multivariate Central Limit type result (1.59) for [pt,1, ỹt,1, ỹt,0]′ , where

the asymptotic variance-covariance matrix given in (1.60) becomes (1.69). This completes the

proof of the Theorem.

The idea of fitting the evolution of treatment allocation proportions or probabilities of adaptive

procedures into a Stochastic Approximation rule, in order to derive their asymptotic normality,

has been already adopted in [3, 52]. However, it is not possible to infer Theorem 1 directly from

the asymptotic results presented in these works, since they apply to adaptive procedures based on

the generalized Friedman urn model or to adaptive procedures where the probability of assigning

a patient to arm a, based on data accumulated up to time t, is a function of p̂t,a and not also of

history of outcomes of patients enrolled in the study previously to that time.

The following corollary illustrates asymptotic normality of the allocation proportion p̂t,1 of a

two-arm BUD. This result is a consequence of Theorem 1, Delta method and Slutsky Theorem.
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1.3. Asymptotic properties

Corollary 2. Under the assumptions of Theorem 1, it holds that

t1/2(p̂t,1−ρ1) −→ N
(

0,
Γ

4h2(1 + 4h)
+
ρ1(1− ρ1)2

4σ2
1

(v1+2v2b
′(ψ1))2+

ρ2
1(1− ρ1)

4σ2
0

(v1+2v2b
′(ψ0))2

)
.

Proof. (Corollary 2) First, by inverting the definitory equation

pt,1 =
1

1 +
σ2h
t,0

σ2h
t,1

(
t0,1 + 1 + tp̂t,1

t0,0 + 1 + t(1− p̂t,1)

)2h
, (1.70)

and by (i) of Lemma 1, we have

p̂t,1 =
1

1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

+OP (t−1). (1.71)

Second, starting from the asymptotic result (1.59) with (1.69), we can apply a multivariate Delta

Method and Slutsky Theorem (see 5.5.17 and 5.5.24 of [23]) to deduce the asymptotic normality

of the allocation proportion of a BUD.

In particular, we use the principal part of (1.71), that is the function f that maps (pt,1, ỹt,1, ỹt,0)

into

[
1 +

(
pt,1

1− pt,1

) 1
2h v(ỹt,0)

v(ỹt,1)

]−1

, to conclude that

t1/2(f(pt,1, ỹt,1, ỹt,0)−f(ρ1, b
′(ψ1), b′(ψ0))) −→

t→∞
N (0,∇f(ρ1, b

′(ψ1), b′(ψ0))′Σ̃∇f(ρ1, b
′(ψ1), b′(ψ0))),

where Σ̃ is the matrix given computed by (1.69).

Standard calculations show that f(ρ1, b
′(ψ1), b′(ψ0))) = ρ1 and that

∇f(ρ1, b
′(ψ1), b′(ψ0))′ =

[
1

2h
,
ρ1(1− ρ1)

2σ2
1

(v1 + 2v2b
′(ψ1)),−ρ1(1− ρ1)

2σ2
0

(v1 + 2v2b
′(ψ0))

]
.

Thus, the asymptotic variance of the allocation proportion p̂t,1 is equal to

Γ

4h2(1 + 4h)
+
ρ1(1− ρ1)2

4σ2
1

(v1 + 2v2b
′(ψ1))2 +

ρ2
1(1− ρ1)

4σ2
0

(v1 + 2v2b
′(ψ0))2,
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that can be re-written as
ρ2

1(1− ρ1)2

4

[(
(v1 + 2v2b

′(ψ1))2

ρ1σ2
1

+
(v1 + 2v2b

′(ψ0))2

(1− ρ1)σ2
0

)(
1 +

1

1 + 4h

)
+

+
4

ρ1(1 + 4h)
+

4

(1− ρ1)(1 + 4h)

]
.

1.4 Applications and examples

We apply the results presented in Section 1.3 to the design of clinical trials. We consider three

common outcomes, binary, time-to-event and continuous.

Binary outcomes. For Yt ∈ {0, 1}, we use the Bernoulli model fψa(1) = 1 − fψa(0) = θa,

θa = 1/(1 + e−ψa), and conjugated prior θa ∼ Beta(α0,a, β0,a). The outcome variance σ2
a in

expression (1.7) is θa(1− θa), and the parameters of the quadratic variance function in (1.56) are

v1 = 1 and v2 = −1. Therefore, t1/2(p̂t,1 − ρ1) converges in distribution to a mean zero Gaussian

variable with variance

ρ2
1(1− ρ1)2

4

[(
(1− 2θ1)2

ρ1σ2
1

+
(1− 2θ0)2

(1− ρ1)σ2
0

)(
1 +

1

1 + 4h

)
+

4

ρ1(1 + 4h)
+

4

(1− ρ1)(1 + 4h)

]
.

The top panel of the second column of Figure 1.1 shows a trajectory p̂t,1, t = 1, · · · , 10, 000 for

a single simulated two-arm BUD trial (black curve). The response probabilities (θ0, θ1) are set

equal to 0.2 and 0.4. We used α0,a = β0,a = 2 and h = 5. The shaded area shows (point-wise at

each t) upper and lower 2.5% quantiles of the distribution of p̂t,1 across 1,000 simulations. The

second row, illustrates the distribution of t1/2(p̂t,1 − ρ1) across 1000 simulations of the two-arm

BUD trial. The empirical distribution of t1/2(p̂t,1 − ρ1) has been smoothed with a kernel density

estimator. The panel compares the N (0, 0.097) density (asymptotic approximation) to the em-

pirical distribution of t1/2(p̂t,1 − ρ1) across simulations, when t = 100, 1000 and 10, 000. The last

row compares the empirical distribution distribution of t1/2(pt,1−ρ1) to theN
(

0,
Γ

1 + 4h

)
density.

Time-to-event outcomes. We consider an exponential model fψa(y) = exp{−yψa}ψa, y ≥ 0 with

mean θ0 = 1/ψa, and we use the conjugated gamma prior ψa ∼ Gamma(α0,a, β0,a). The outcome

variance σ2
a in expression (1.7) is 1/ψ2

a, the parameters of the quadratic variance function in (1.56)

are v1 = 0 and v2 = 1 and the parameter h is equal to 5. Therefore, the asymptotic variance of
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1.4. Applications and examples

t1/2(p̂t,1 − ρ1) is

ρ2
1(1− ρ1)2

(
1

ρ1
+

1

1− ρ1

)(
2

1 + 4h
+ 1

)
.

The third Column of Figure 1.1 compares, as we discussed the Binary model, the asymptotic and

empirical distributions of t1/2(p̂t,1−ρ1) and t1/2(pt,1−ρ1), based on 1000 simulations of the BUD

trial. In this example (θ0, θ1) = (5, 7).

Continuous outcomes. We consider a normal outcome model N (θa, σ
2
a) with known variance σ2

a.

We use a conjugated prior θa∼N (0, v2
0,a). In this case v1 = v2 = 0, h = 5, and

t1/2(p̂t,1 − ρ1) −→
t→∞

N (0,
ρ1(1− ρ1)

1 + 4h
). (1.72)

Column 1 of Figure 1.1 illustrates the empirical distribution of t1/2(p̂t,1 − ρ1), t = 100, 1000 or

10000, and the normal approximation.

Power analysis and sample size selection. We explore the application of the results in Section

1.3 to select the sample size of BUD studies accordingly to the targeted type I and II error rates

α and β. We approximate the power function of the BUD under several scenarios leveraging

on Theorem 1 and Corollary 2. We assume that the primary aim is to test the null hypothesis

H0 : θ0,1 = θ0,0. The alternative hypothesis is H1 : θ0,1 > θ0,0. We verified (Appendix) that

the maximum-likelihood estimates θ̂t,a of the unknown true mean response to treatment a = 0, 1

within the NEF of outcome models, under the sequential BUD design, have the same limiting

distribution as the maximum-likelihood estimator of a study design with fixed and matched arm-

specific sample sizes,

t1/2

θ̂t,0 − θ0,0

θ̂t,1 − θ0,1

 −→
t→∞

N (0, Diag(η0,0, η0,1)) , (1.73)

where η0,a :=
(
ρaIθ0,a

)−1
and Iθ0,a is the Fisher information.

We use a standard Wald-statistics, Za =

√
t× (θ̂t,1 − θ̂t,0)√
η̂t,a + η̂t,1

, where η̂t,a = 1/(ρ̂a × I
θ̂t,a

), and

the maximum-likelihood estimates σ̂2
a for ρ̂a = ρa(σ̂

2
a) in (1.7) to test H0,a. The power func-

tion is approximated by Φ
(
z1−α −

√
t(θ0,1 − θ0,0)
√
η0,1 + η0,0

)
where Φ(·) is the cumulative distribution

function of a standard normal random variable and Φ(z1−α) = 1 − α. Therefore t̂1−α,1−β =
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(z1−α − z1−β)2(η0,0 + η0,1)

(θ0,1 − θ0,0)2
approximates the sample size of the BUD study to achieve a power

equal to 1-β.

Figure 1.2 compares, for three BUD designs (binary, continuous and time to event outcomes),

power estimates based on asymptotic approximations (blue dotted lines) and on standard Monte

Carlo simulations (1000 simulated trials, blue solid lines).

The computational time for the simulation-based calculations is orders of magnitude larger.

We also show the targeted type I error rate (α = 0.05, brown dotted lines) of the outlined test-

ing procedure, which leverage asymptotic results, and empirical estimates of the type I error

rates obtained with Monte Carlo simulations (brown solid lines). For the normal outcome model,

σ2
0 = 1, σ2

1 = 3, and θ0 = θ1 = 0 (null scenario, brown dotted line) or (θ1, θ2) = (0, 1) (positive

treatment effect, blue lines). Similarly, for the Bernoulli and Exponential models the parameter

values θ that defined null (brown lines) and alternative scenarios (blue lines) are indicated in the

panels of Figure 1.2 .
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Figure 1.1: The panels in the first row compare p̂t,1 with the limit ρ1 (red line) in each of the three
examples (binary, continuous and time to event outcomes). The other panels compare asymptotic
and empirical distributions of randomization probabilities pt,1 and allocation proportions p̂t,1.
The empirical distributions in each of the three examples (binary, continuous and time to event
outcomes) are based on 1000 simulations of the two-arm BUD trial.
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Figure 1.2: Power (blue lines) and type I error (red lines): comparison of estimates based on
asymptotic approximations (dotted lines) and standard Monte Carlo simulations (1000 simulated
trials, solid lines), for binary, continuous and time-to-event outcomes.

Reference Bonsaglio, M., Fortini, S., Ventz, S., Trippa, L. (2021+), Approximating the Operating

Characteristics of Bayesian Uncertainty Directed Trial Designs, http://arxiv.org/abs/2105.11177
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Appendix A

Supplement to Chapter 1

A.1 Additional results and proofs

In this section we provide statement and proofs complementary to the content of Chapter 1.

Proof of Lemma A.1

Proof. (Lemma A.1) We have

At+1

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t,0

σ2h
t+1,1

(
n0,1 + 1 + tp̂t,1 +At+1

n0,0 + 1 + t(1− p̂t,1)

)2h
]

= At+1

σ2h
t,0

(n0,0 + 1 + t(1− p̂t,1))2h

[
(n0,1 + 1 + tp̂t,1)2h

σ2h
t,1

− (n0,1 + 1 + tp̂t,1 + 1)2h

σ2h
t+1,1

]

= At+1

σ2h
t,0t

2hp̂2h
t,1

(n0,0 + 1 + t(1− p̂t,1))2h


(

1 +
n0,1+1
tp̂t,1

)2h

σ2h
t,1

−

(
1 +

n0,1+2
tp̂t,1

)2h

σ2h
t+1,1

 (A.1)

= At+1

σ2h
t,0p̂

2h
t,1

(1− p̂t,1)2h


(

1 +
n0,1+1
tp̂t,1

)2h

σ2h
t,1

−

(
1 +

n0,1+2
tp̂t,1

)2h

σ2h
t+1,1

(1 +OP (t−1)
)

(A.2)

= At+1

σ2h
t,0p̂

2h
t,1

(1− p̂t,1)2h

σ2h
t+1,1 − σ2h

t,1 + 2h
n0,1+1
tp̂t,1

σ2h
t+1,1 − 2h

n0,1+2
tp̂t,1

σ2h
t,1

σ2h
t,1σ

2h
t+1,1

+OP (t−2)

×
×
(
1 +OP (t−1)

)
(A.3)
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= At+1

σ2h
t,0p̂

2h
t,1

σ2h
t+1,1σ

2h
t,1(1− p̂t,1)2h

[(
1 + 2h

n0,1 + 1

tp̂t,1

)(
σ2h
t+1,1 − σ2h

t,1

)
−

− 2h

tp̂t,1
σ2h
t,1 +OP (t−2)

]
×
(
1 +OP (t−1)

)
(A.4)

= At+1

σ2h
t,0p̂

2h
t,1

σ2h
t+1,1σ

2h
t,1(1− p̂t,1)2h

[(
σ2h
t+1,1 − σ2h

t,1

)
− 2h

tp̂t,1
σ2h
t,1

]
+OP (t−2) (A.5)

= At+1

σ2h
t,0p̂

2h
t,1

σ2h
t+1,1σ

2h
t,1(1− p̂t,1)2h

[(
σ2
t,1 + ∆σ2

t,1

)h − σ2h
t,1 −

2h

tp̂t,1
σ2h
t,1

]
+OP (t−2) (A.6)

= At+1

σ2h
t,0p̂

2h
t,1

σ2h
t+1,1(1− p̂t,1)2h

(1 +
∆σ2

t,1

σ2
t,1

)h
− 1− 2h

tp̂t,1

+OP (t−2) (A.7)

= At+1h
σ2h
t,0p̂

2h
t,1

σ2h
t,1(1− p̂t,1)2h

[
∆σ2

t,1

σ2
t,1

− 2

tp̂t,1

]
+OP (t−2). (A.8)

The first equality is obtained leveraging the fact that the left-hand-side doesn’t vanishes only

when At+1 = 1. In (A.1) we collect the term t2hp̂2h
t,1 and we retain the dominant part to obtain

(A.2). The remainder term appears as OP (t−1) since σ2
t,a converges to a finite limit different

from 0 almost surely for a ∈ {0, 1} and, due to Proposition 1, p̂t,1 and (1− p̂t,1) converge almost

surely to a limit which is different from 0: indeed, we can bound (1− p̂t,1) in a compact set which

doesn’t contain 0 with arbitrarily high probability. The terms
(

1 +
n0,1+1
tp̂t,1

)2h
and

(
1 +

n0,1+2
tp̂t,1

)2h

in the left-hand-side of equation (A.2) can be approximated by Tailor expansion:

(
1 +

n0,1 + 1

tp̂t,1

)2h

= 1 + 2h
n0,1 + 1

tp̂t,1
+OP (t−2)

and (
1 +

n0,1 + 2

tp̂t,1

)2h

= 1 + 2h
n0,1 + 2

tp̂t,1
+OP (t−2).

Therefore (A.2) equals (A.3). The OP (t−2) in (A.4) is justified by invoking Lemma 1 and not-

ing that ∆σ2
t,a = OP (t−1) for a ∈ {0, 1}. The term 2h

n0,1+1
tp̂t,1

(
σ2h
t+1,1 − σ2h

t,1

)
in (A.4) enters the

remainder term in (A.5). In (A.6) we have rewritten σ2
t+1,1 as σ2

t,1 + ∆σ2
t,1. The equality in (A.7)

follows from a Taylor expansion of

(
1 +

∆σ2
t,1

σ2
t,1

)h
.
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With similar arguments we can prove (1.34). We have

(1−At+1)

[
σ2h
t,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1)

)2h

−
σ2h
t+1,0

σ2h
t,1

(
n0,1 + 1 + tp̂t,1

n0,0 + 1 + t(1− p̂t,1) + 1−At+1

)2h
]

= (1−At+1)
(n0,1 + 1 + tp̂t,1)2h

σ2h
t,1

[
σ2h
t,0

(n0,0 + 1 + t(1− p̂t,1))2h
−

−
σ2h
t+1,0

(n0,0 + 1 + t(1− p̂t,1) + 1)2h

]

= (1−At+1)
(n0,1 + 1 + tp̂t,1)2h

σ2h
t,1t

2h(1− p̂t,1)2h

 σ2h
t,0(

1 +
n0,0+1
t(1−p̂t,1)

)2h
−

σ2h
t+1,0(

1 +
n0,0+2
t(1−p̂t,1)

)2h


= (1−At+1)

p̂2h
t,1

σ2h
t,1(1− p̂t,1)2h

 σ2h
t,0(

1 +
n0,0+1
t(1−p̂t,1)

)2h
−

σ2h
t+1,0(

1 +
n0,0+2
t(1−p̂t,1)

)2h

(1 +OP (t−1)
)

= (1−At+1)
p̂2h
t,1

σ2h
t,1(1− p̂t,1)2h

[(
σ2h
t,0 − σ2h

t+1,0

)
+

2h(n0,0 + 2)

t(1− p̂t,1)
σ2h
t,0−

−2h(n0,0 + 1)

t(1− p̂t,1)
σ2h
t+1,0 +OP (t−2)

] (
1 +OP (t−1)

)

= (1−At+1)
p̂2h
t,1

σ2h
t,1(1− p̂t,1)2h

[(
σ2h
t,0 − σ2h

t+1,0

)
+

2h

t(1− p̂t,1)
σ2h
t,0

]
+OP (t−2)

= (1−At+1)
p̂2h
t,1σ

2h
t,0

σ2h
t,1(1− p̂t,1)2h

h

[
−

∆σ2
t,0

σ2
t,0

+
2

t(1− p̂t,1)

]
+OP (t−2). (A.9)

This concludes the proof of this auxiliary Lemma.

Supplementary Result

Lemma A.2. Consider a two-arm BUD where patients are assigned to arms A = {0, 1} and the

information metric is u(·). Define Ft = −p̂t,0 +
∆t(0)h

∆t(0)h + ∆t(1)h
, where ∆t(a) = E(u(Σt+1) |

At+1 = a,Σt) − u(Σt) for a ∈ {0, 1}. If on a set of probability 1, for any ε > 0, there is a

random time T and number c > 0 such that Ft < −c wherever p̂t,0 > ρ0 + ε, and Ft > c wherever

p̂t,0 < ρ0 − ε for all t > T , then p̂t,a −→
t→∞

ρa a.s.
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Proof. (Lemma A.2) We show that for any ε > 0, the process of allocation proportions p̂t,0 visit

the interval [ρ0+ε, 1] finitely often. A symmetric argument can be applied to intervals lying below

ρ0. Define St = p̂t,0−
∑t

i=1E(p̂i,0−p̂i−1,0 | Σi−1). This is a martingale. Since St+1−St ≤ Op(t−1),

then St → S∞ <∞ a.s. Furthermore, it holds that

E(p̂t+1,0 − p̂t,0 | Σt) = − p̂t,0
t+ 1

+
1

t+ 1

∆h
t (0)

∆h
t (0) + ∆h

t (1)
=

Ft
t+ 1

.

In order to prove that p̂t,0 = St+
∑t

i=1E(p̂i,0− p̂i−1,0 | Σi−1) only visits [ρ0 +ε, 1] finitely often we

use the convergence of the first term and the fact that the summands in the second term define

a drift toward ρ0 for large values of i. On a set of probability 1, there is a number N such that

for any t > N , | St − S∞ |> ε
4 and Ft < −c < 0 when p̂t,0 ∈ [ρ0 + ε

2 , 1]. Therefore, the trajectory

(p̂N+k,0)k≥1 cannot increase more than ε
4 while staying in [ρ0 + ε

2 , 1]. As
∑∞

t=1(t + 1)−1 = ∞,

every time the process enters this interval, it will eventually exit below ρ0 + ε
2 . Finally, | Ft |≤ 2

and thus | Ft
t+1 |→ 0. So, for t large enough, the process cannot reenter the interval [ρ0 + ε

2 , 1]

above ρ0 + 3ε
4 , but it can only enter [ρ0 + ε, 1] finitely often.

Behavior of the MLE of θa in BUD

The maximum-likelihood estimates θ̂t,a of the unknown true mean response to treatment a = 0, 1

within the NEF of outcome models, derived under the sequential BUD design at time t, have

the same limiting distribution as the maximum-likelihood estimator of a study design with fixed

sample size. Whilst we are considering a response-adaptive procedure, a version of the central

limit theorem for the maximum-likelihood estimator arising in the classical setting of independent

and identically distributed random variables is preserved. For the proof of this result we refer to

[42] that presents and proves it in a more general framework (see Theorem 3.1).
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A.2 Tools of Stochastic Approximation

In this section we give some of the most important results on the convergence of stochastic

approximation algorithms present in literature.

In general terms, we consider the following recursive procedure defined on a filtered probability

space (Ω,A, (Ft)t≥0, P )

∀t ≥ t0, γt+1 = γt −
1

t
g(γt) +

1

t
(∆Mt+1 + rt+1), (A.10)

where g : Rd → Rd is a locally Lipschitz continuous function (for every x in Rd there exists a

neighborhood U of x and a real constant KU ≥ 0 such that, for all x1 and x2 in U , ‖g(x1) −
g(x2)‖ ≤ KU‖x1 − x2‖) and γt0 is an Ft0-measurable finite random vector.

Also, for every t ≥ t0, (∆Mt) is a sequence of (Ft)-martingale increment and (rt) is an (Ft)-
adapted sequence of remainder terms.

Theorem A.1 is a statement on the almost sure convergence of γt.

Theorem A.1. Assume that g is locally Lipschitz, that

rt → 0 a.s. as t→∞ and sup
t≥t0

E(‖∆Mt+1‖2 | Ft) <∞ a.s.

Then the set Γ∞ of its limiting values as t → ∞ is a.s. a compact connected set, stable by the

flow of the ordinary differential equation (ODE)

γ̇ = −g(γ). (A.11)

Furthermore, if γ∗ ∈ Γ∞ is a uniformly stable equilibrium on Γ∞ of this ODE, then

γt → γ∗ a.s. as t→∞.

Notice that by uniformly stable we mean that

sup
γ∈Γ∞

|γ(γ0, t)− γ∗| → 0 as t→∞

where γ(γ0, t)γ0∈Γ∞,t∈R+ is the flow of the ODE (A.11) on Γ∞. Now, the vector field g is η-
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A.2. Tools of Stochastic Approximation

differentiable at γ∗ if

g(γ) = g(γ∗) +Dg(γ∗)(γ − γ∗) + o(‖γ − γ∗‖1+η) as γ → γ∗ for some η > 0. (A.12)

Theorem A.2 assesses the rate of convergence of γt to γ∗.

Theorem A.2. Let γ∗ be an equilibrium point of {g = 0}. Assume that the function g is

differentiable at γ∗ and all the eigenvalues of Dg(γ∗) have positive real parts. Assume that for

some δ > 0,

sup
t≥t0

E(‖∆Mt+1‖2+δ | Ft) <∞ a.s., E(∆Mt+1∆M ′t+1 | Ft)→ Γ̃ a.s. as t→∞, (A.13)

where Γ̃ is a deterministic symmetric definite positive matrix. Suppose also that for an ε > 0,

(t+ 1)vtE(‖rt+1‖21({‖γt − γ∗‖ ≤ ε}))→ 0 as t→∞, (A.14)

where vt is a positive sequence.

(a) If Λ := Re(λmin) > 1
2 , where λmin denotes the eigenvalue of Dg(γ∗) with the lowest real part

and (A.14) holds with vt = 1, t ≥ 1, then, the above a.s. convergence is ruled on the convergence

set {γt → γ∗} by the following Central Limit Theorem

t
1
2 (γt − γ∗)→ N(0,

1

2Λ− 1
Σ) as t→∞ with Σ :=

∫ ∞
0

e−(Dg(γ∗)′− Id
2

)uΓ̃e−(Dg(γ∗)− Id
2

)udu.

(A.15)

(b) If Re(λmin) = 1
2 , g is η-differentiable at γ∗ with diagonalizable Dg(γ∗) and (A.14) holds with

vt = log t, t ≥ 2, then (
t

log t

) 1
2

(γt − γ∗)→ N(0,Σ) as t→∞

with

Σ := lim
T→∞

1

T

∫ T

0
e−(Dg(γ∗)′− Id

2
)uΓ̃e−(Dg(γ∗)− Id

2
)udu.

(c) If λmin ∈ (0, 1
2), Dg(γ∗) is as above and (A.14) holds with vt = t2λmin−1+ε, t ≥ 1, for some

ε > 0, then tλmin(γt − γ∗) converges almost surely as t→∞ towards a finite random variable.
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A.3 Literature review: asymptotic analysis of adaptive clinical

trials designs

Adaptive procedures in clinical trials use the cumulative information of ongoing trials to adjust

treatment assignments to coming patients. Much of the past literature on adaptive designs has

focused on proposing new designs and evaluating properties of these designs. In particular, the

behavior of patients’ allocation proportions and randomization probabilities is of interest. Dif-

ferent response adaptive randomization procedures can be directly evaluated in terms of power

and they can be compared by studying their asymptotic distributions, especially their asymptotic

variabilities. In fact, the variability of allocations affects power. This has been demonstrated by

simulation studies in [54, 70] and theoretically in [41], where the relationship between the power

of a test and the variability of the randomization procedure for a given allocation proportion is

assed: the average power of a randomization procedure is a decreasing function of the variability

of the procedure.

We present below the existing literature about asymptotic analysis of adaptive designs in clinical

trials.

In adaptive designs based on randomized urn models, each patient’s treatment assignment is

determined by drawing a ball from an urn containing different types of balls, and the urn compo-

sition is updated by adding/dropping a number of balls of the same type and/or of the opposite

type, often according to patients’ responses. Results on strong consistency and asymptotic nor-

mality of the treatment allocation proportions (proportions of balls of each type drawn) and

randomization probabilities (proportions of balls of each type in the urn) of many designs based

on urn models have been determined under certain assumptions on the drawing rule, mainly

depending on the eigenstructure of the limiting generating matrices, which determine how balls

are added to the urn. The first theoretical analysis of randomized urn models can be traced back

to the work of Athereya and Karlin [5] and other early works on the topic includes [8] and [80]

about Generalized Pólya Urn models.

Early studies of urn models have a number of drawbacks: they are usually proposed for binary

or multinomial outcomes, the urn process usually has higher variability than other types of pro-

cedures [41] and thus it is less powerful in statistical inferences. Also, the formulation of the

asymptotic variability is usually quite complex and it is difficult to derive a reasonable estimate.
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Finally, the models are designed mainly for the comparison of two treatments, so there is a short-

age of methodology to handle cases with multiple treatments.

Later, alternative urn designs have been developed to overcome the aforementioned drawbacks

and their asymptotic properties have been studied intensively: law of large numbers and central

limit theorems for the number of sampled balls of these models have been estabilished. Relevant

examples consist of the works of Ivanova [46] on drop-the-loser model, Zhang, Hu et al. [101] on

immigrated urn model and Ghiglietti, Vidyashankar and Rosenberger [36] on an adaptive ran-

domly reinforced urn model. Asymptotic properties of this type of designs are mainly studied

by using theory of stochastic processes, often invoking martingale arguments. Alternatively, a

similar technique to that used in Chapter 1 - based on stochastic approximation - could be em-

ployed to derive asymptotic characteristics of urn models. Laruelle and Pagès [52] outlined the

link between stochastic approximation and response-adaptive clinical trials in the case of binary

responses with randomization procedure based on the Generalized Friedman Urn; instead, L.X.

Zhang [100], inspired by stochastic approximation techniques, estabilished the asymptotic prop-

erties of the same model under weaker conditions.

Other important contributions to the literature about adaptive randomized designs, have focused

on target driven randomization procedures. These designs are constructed in such a way that

the sample allocation proportion converges to a target allocation proportion defined as a function

of the unknown parameters of the response model, often identified due to some optimality prop-

erty. The ensuing optimal allocation depends in general on the unknown model parameters and,

therefore, these designs are based on the sequential estimation of unknown parameters in order

to allocate sequentially subjects to treatments. In literature, a number of asymptotic results for

these designs is reported: Melfi and Page [55] studied the sequential maximum likelihood ap-

proach, Hu, Zhang and He [44] investigated the efficient response adaptive randomization design

and earlier Eisele and Woodroofe [34] and later Hu and Zhang [43] examined the doubly adaptive

coin design. More recently, Baldi Antognini and Zagoraiou [2, 3] proved results on the almost

sure convergence and asymptotic normality of a vast class of adaptive allocation procedures based

on randomization functions. Although the large majority of the literature is focused on the es-

timation of the treatment effects, recent efforts has been directed in developing multipurpose

design methodology which maximizes the power of statistical tests to detect correct conclusions

about the treatment effects under a suitable ethical constraint reflecting the effectiveness of the
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treatments [10].

Finally, there is a considerable literature on Bayesian adaptive designs, whose allocation rules com-

bine prior knowledge with the information provided by accumulating patient responses through

Bayesian principles. Advantages of Bayesian designs over classical designs of clinical trials in-

clude the ability to incorporate prior information regarding treatment efficacy into the analysis;

the ability to make multiple interim analysis of accumulating data without increasing the error

rate of the study; the ability to calculate the probability that one treatment is more effective

than another; and the ability to deal with missing data with great flexibility, using predictive

probabilities. Nevertheless, from the statistical point of view, the frequentist paradigm has dom-

inated the field of clinical trials over the past sixty years. Two major barriers have prevented

Bayesian methods from becoming popular: the inherent computational demands and the use of

subjective information [47]. Asymptotic properties of Bayesian adaptive designs are often derived

through simulation studies. In fact, it is a state of affairs that in general there is no sounder way

to analyse and evaluate the performance of Bayesian designs other than by simulations. As far

as we know, few researchers have derived analytic results on the asymptotic properties of these

designs. We mention the work on Bayesian doubly adaptive randomization [98].

Emerging new designs such as Bayesian platform trials [75] and basket designs [87] have great

potential to accelerate the development of new drugs, assigning more patients to promising arms

relative to many traditional randomized designs [17]. While the use of Bayesian designs becomes

more frequent [37], there also appears to be a trend in the literature towards more complex de-

signs. This trend toward adaptive designs that become increasingly complex and tailored to end

points and clinical hypotheses might have positive effects in terms of statistical efficiency, time,

and resources to develop new treatments, but it also poses the challenge to establish procedures

that are appropriate for quantifying power and other operating characteristics of relatively simple

designs, such as controlled balanced designs, but inappropriate for these modern adaptive designs.

All the more reason, asymptotic properties of these adaptive designs could be derived exclusively

through simulation studies.
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Chapter 2

Asymptotic properties of Bayesian

Uncertainty directed trial Designs for

general outcomes and utilities

A variety of response-adaptive randomization procedures have been proposed in literature assum-

ing Bernoulli and Gaussian outcomes. Literature on asymptotic properties of these procedures is

quite well developed, refer to [68, 99] for summary results. On the other hand, the list is not so

long when the distribution of the outcomes is not in the natural exponential family.

In this Chapter we extend the result presented in Proposition 1 about the strong consistency

of allocation proportions and randomization probabilities of a BUD to outcomes distributions

outside the natural exponential family. Also, we study some asymptotic properties of BUD based

on utilities different than (1.5).

2.1 Almost sure convergence of randomization probabilities and

allocation proportions: beyond natural exponential family

We first exhibit in Lemma 3 approximations of the information increment (1.1) of BUDs with sum

of the (negative) posterior variances of the parameters θa, a = 0, 1, as information measure when

the outcomes distributions are not restricted to be in the natural exponential family. Throughout

this section θa is not necessary required to be the mean of the outcomes as in Chapter 1. We

write X(t) = oP (a(t)) to intend that X(t)/a(t) converges to zero in probability as t→ +∞.
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beyond natural exponential family

Lemma 3. Let us consider two-arm BUDs with information metric u(Σt) in (1.5). Assume that

the parameter space Θ ⊂ R is a bounded open interval, that the true value of the parameter θ0,a

is an interior point of Θ for a ∈ {0, 1} and that the prior is the uniform distribution on Θ. If

(i) infy,θa fθa(y) > 0

(ii) supy,θa fθa(y) <∞

(iii) supy,θa

∣∣∣∣∂kfθa(y)

∂θka

∣∣∣∣ <∞ for k = 1, 2, 3,

then

∆t(a) = I−1
θ0,a
× (tp̂t,a)

−2 + oP ((tp̂t,a)
−2), (2.1)

where Iθ0,a is the Fisher information.

Note that (i) implies that the space of observations is bounded. Regularity conditions of Lemma

3 are more restrictive than what is necessary to prove (2.1), but they are simpler. We provide

below a less stringent set of conditions under which the approximation of the information gain

(2.1) holds and, by leveraging on an additional Lemma 4, we prove Lemma 3 in this setup.

Regularity conditions (Lemma 3)

For simplicity, we consider responsess Y1, . . . , Yn observed in a single arm. Let us denote by Fn
the sigma algebra generated by them.

Assume that the parameter space Θ ⊂ R is a bounded open interval, that the true value of

the parameter θ0 is an interior point of Θ and that the prior is the uniform distribution on Θ.

Let f(y, θ) and l(y, θ) denote the density function and the log-likelihood of the observations,

respectively. Denote by

ḟ(y, θ) =
∂

∂θ
f(y, θ), f̈(y, θ) =

∂2

∂θ2
f(y, θ)

and by θ̂n the MLE based on a sample of size n. Also, let

f(y, θ, ρ) = sup
|θ−θ′|≤ρ

f(y, θ′), Q(y, r) = sup
|θ|>r

f(y, θ)

for ρ, r > 0.

We require regularity conditions of Johnson in [49] to hold:
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a) f is three times continuously differentiable with respect to θ.

b) For every θ ∈ Θ̄ and ρ, r > 0, f(y, θ, ρ) and Q(y, r) are measurable functions of y and for

sufficiently small ρ and sufficiently large r,

Eθ0 [log f(Y, θ, ρ)]+ <∞, Eθ0 [logQ(Y, r)]+ <∞.

c) There exists Gk for k = 1, 2 satisfying | ∂k
∂θk

l(y, θ) |≤ Gk(y) for θ in a neighborhood of θ0 and

Eθ0Gk(Y ) <∞.
In addition to assumptions a)-c) we assume that the following conditions are satisfied:

d) There exists G3 such that sup|θ−θ̂n|<δ |
∂3

∂θ3
l(y, θ)| ≤ G3(y) and Eθ0G3(Y ) <∞.

e) For some δ > 0 ∫
sup

|θ−θ̂n|<δ
|f̈(y, θ)|dy = OP (1), (2.2)

∫
sup

|θ−θ̂n|<δ
|f̈(y, θ)| |ḟ(y, θ̂n)|

f(y, θ̂n)
dy = OP (1), (2.3)

∫
sup

|θ−θ̂n|<δ

f̈(y, θ)2

f(y, θ̂n)
dy = OP (1), (2.4)

∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ

|ḟ(y, θ1)|
f(y, θ2)

f(y, θ̂n)dy = OP (1), (2.5)

∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ,|θ3−θ̂n|<δ

ḟ(y, θ1)2|ḟ(y, θ2)|
f(y, θ3)f(y, θ̂n)

dy = OP (1). (2.6)

Additional Lemma (complementary to the proof of Lemma 3)

Lemma 4. Let Y1, Y2, . . . be a sequence of random variables satisfying the regularity conditions

of the previous section. For every n, let Fn be the sigma algebra generated by Y1, . . . , Yn. Then,

∆n := Var(θ | Fn)− E(Var(θ | Fn+1) | Fn) = I−1
θ0
n−2 + oP (n−2).

Before proving Lemma 4, let us introduce some further notation and preliminary results.

First, notice that, for every θ, ∫
ḟ(y, θ)dy = 0. (2.7)

Let

ak,n(θ) =
1

n

n∑
i=1

∂k

∂θk
log f(Yi, θ).
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By definition a1,n(θ̂n) = 0.

Moreover

a2,n(θ̂n)→ −Iθ0 a.s.

as n→∞, where Iθ = Eθ(
∂
∂θ log f(Y, θ))2 = −Eθ( ∂

2

∂θ2
log f(Y, θ))). Also,

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
= exp(

1

2
na2,n(θ̂n)φ2 +

1

6
na3,n(θ∗n)φ3),

for some θ∗n = θ∗n(φ) that satisfies |θ∗n − θ̂n| < φ.

By the change of variable u =
√
nφ, we obtain

n∏
i=1

f(Yi, θ̂n + u/
√
n)

f(Yi, θ̂n)
= exp(a2,n(θ̂n)u2/2 + a3,n(θ∗n)u3/(6

√
n)),

for some θ∗n = θ∗n(u) that satisfies |θ∗n − θ̂n| < u/
√
n.

Let Cn(u) = a2,n(θ̂n)u2/2 + a3,n(θ∗n)u3/(6
√
n), then

n∏
i=1

f(Yi, θ̂n + u/
√
n)

f(Yi, θ̂n)
= eCn(u). (2.8)

By Lemma 2.2, Lemma 2.3 and (2.5) in [49] there exist ε, δ and N0 such that, P -a.s.,

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
≤ exp(−φ2/12) for |φ| ≤ δ and n ≥ N0 (2.9)

and
n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
≤ exp(−nε) for |φ| > δ and n ≥ N0. (2.10)

By the change of variable u =
√
nφ, we obtain

n∏
i=1

f(Yi, θ̂n + u/
√
n)

f(Yi, θ̂n)
≤ exp(−u2/(12n)) for |u| ≤ δ

√
n and n ≥ N0 a.s. (2.11)

and
n∏
i=1

f(Yi, θ̂n + u/
√
n)

f(Yi, θ̂n)
≤ exp(−nε) for |u| > δ

√
n and n ≥ N0 a.s.. (2.12)
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The first inequality can be rewritten as

eCn(u) ≤ exp(−u2/(12n)) for |u| ≤ δ
√
n and n ≥ N0 a.s. (2.13)

Proof. (Lemma 4) First, in STEP 1, we show that

∆n =
1∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy −

−

(∫
φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

 .
Then, we provide a useful approximation of ∆n: let δ be defined such that inequalities (2.11) and

(2.12) hold, and let

∆̃n =
1∫ δ

−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy −

−

(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

 .
The proof proceeds by proving in STEP 2 that ∆̃n = I−1θ0 n

−2 + oP (n−2) and then in STEP 3 that

∆n = ∆̃n + oP (n−2). (2.14)

By extending the above approximation of the information increment to the two arm setting, we

conclude the proof of Lemma 4.

STEP 1: Expression of ∆n

Since

Var(θ | Fn+1) = E(θ2 | Fn+1)− E(θ | Fn+1)2,

then

E(Var(θ | Fn+1) | Fn) = E(θ2 | Fn)− E(E(θ | Fn+1)2 | Fn).
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Thus,

∆n = E(E(θ | Fn+1)2 | Fn)− E(θ | Fn)2

= E(E(θ − θ̂n | Fn+1)2 | Fn)− E(θ − θ̂n | Fn)2.

It holds

∆n =

∫ (∫
φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

(∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−

(∫
φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

(∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

=

∫ (∫
φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
dy −

(∫
φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

(∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

=
1∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−

(∫
φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ



STEP 2: ∆̃n = I−1
θ0
n−2 + oP (n−2)

We have

∆̃n =
1∫ δ

−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−

(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

 (2.15)
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=
1

n

1∫ δ√n
−δ
√
n
eCn(u)du

∫
(∫ √nδ
−
√
nδ
uf(y, θ̂n + u/

√
n)eCn(u)du

)2

∫ √nδ
−
√
nδ
f(y, θ̂n + u/

√
n)eCn(u)du

dy−

−

(∫ √nδ
−
√
nδ
ueCn(u)du

)2

∫ √nδ
−
√
nδ
eCn(u)du

 , (2.16)

where (2.15) is the definition of ∆̃n and (2.16) is a consequence of the change of variable u =
√
nφ

and (2.8).

Thus,

∆̃n =
1

n

1∫ δ√n
−δ
√
n
eCn(u)du

∫
(∫ √nδ
−
√
nδ
uf(y, θ̂n + u/

√
n)eCn(u)du

)2

∫ √nδ
−
√
nδ
f(y, θ̂n + u/

√
n)eCn(u)du

dy−

−

(∫ √nδ
−
√
nδ
uf(y, θ̂n)eCn(u)du

)2

∫ √nδ
−
√
nδ
f(y, θ̂n)eCn(u)du


=

1

n

1∫ δ√n
−δ
√
n
eCn(u)du

∫ (
A′n(y)2

B′n(y)
− An(y)2

Bn(y)

)
dy, (2.17)

where

A′n(y) =

∫ √nδ
−
√
nδ
uf(y, θ̂n + u/

√
n)eCn(u)du

B′n(y) =

∫ √nδ
−
√
nδ
f(y, θ̂n + u/

√
n)eCn(u)du

An(y) =

∫ √nδ
−
√
nδ
uf(y, θ̂n)eCn(u)du

Bn(y) =

∫ √nδ
−
√
nδ
f(y, θ̂n)eCn(u)du.

Therefore, we can rewrite (2.17) as follows

∆̃n =
1

n

 1∫ δ√n
−δ
√
n
eCn(u)du

2 [
2

∫
An(y)(A′n(y)−An(y))

f(y, θ̂n)
dy +

∫
(A′n(y)−An(y))2

f(y, θ̂n)
dy−

−
∫
A′n(y)2

B′n(y)

B′n(y)−Bn(y)

f(y, θ̂n)
dy

]
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We will show that ∆̃n = I−1
θ0
n−2 + oP (n−2), by showing that:

1.
∫ An(y)(A′n(y)−An(y))

f(y,θ̂n)
dy = oP ( 1

n)

2.
∫ (A′n(y)−An(y))2

f(y,θ̂n)
dy = 1

n2πI−2.
θ0

+ oP ( 1
n)

3.
∫ A′(y)2

B′(y)
B(y)−B′(y)

f(y,θ̂n)
dy = oP ( 1

n).

4.
∫ √nδ
−
√
nδ
eCn(u)du = (2π)1/2I

−1/2
θ0

+ oP (1).

1. Let us show that
∫ An(y)(A′n(y)−An(y))

f(y,θ̂n)
dy = oP ( 1

n).

There exists θ
(1)
n such that |θ(1)

n − θ̂n| < δ and∫
An(y)(A′n(y)−An(y))

f(y, θ̂n)
dy

=

∫ [∫ √nδ
−
√
nδ
ueCn(u)du

∫ √nδ
−
√
nδ
u

(
ḟ(y, θ̂n)

u√
n

+ f̈(y, θ(1)
n )

u2

n

]
eCn(u)du

)
dy

=

∫ √nδ
−
√
nδ
ueCn(u)du

∫ ∫ √nδ
−
√
nδ
f̈(y, θ(1)

n )
u3

n
eCn(u)dudy (2.18)

≤ 1

n
sup
θ

∫
|f̈(y, θ)|dy

∫ √nδ
−
√
nδ
ueCn(u)du

∫ √nδ
−
√
nδ
u3eCn(u)du, (2.19)

where in (2.18) we have used (2.7) and the fact that
∫
u2eCn(u)du <∞.

Furthermore,

∫ √nδ
−
√
nδ
ueCn(u)du =

∫ √nδ
−
√
nδ
uea2,n(θ̂n)u2/2+a3,n(θ∗n)u3/(6

√
n)du

=

∫ √nδ
−
√
nδ
uea2,n(θ̂n)u2/2

(
1 + (ea3,n(θ∗n)u3/(6

√
n) − 1)

)
du

=

∫ √nδ
−
√
nδ
uea2,n(θ̂n)u2/2(ea3,n(θ∗n)u3/(6

√
n) − 1)du

≤
∫ √nδ
−
√
nδ

u4

6
√
n
|a3,n(θ∗n)|ea2,n(θ̂n)u2/2+a3,n(θ∗n)u3/(6

√
n)du (2.20)

≤ 1√
n

∫ √nδ
−
√
nδ

u4

6
|a3,n(θ∗n)|eCn(u)du
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≤

(
1

n

n∑
i=1

G3(Yi)

)
1√
n

∫ √nδ
−
√
nδ

u4

6
eCn(u)du

= OP

(
1√
n

)
, (2.21)

where (2.20) follows from ex − 1 ≤ xex for any x ∈ R and equation (2.21) is a consequence of

assumption d), equation (2.13) and dominated convergence theorem.

On the other hand, by (2.13), ∫ √nδ
−
√
nδ
|u|3eCn(u)du <∞. (2.22)

Thus, combining (2.19) and (2.22) with (2.2), we get∫
An(y)(A′n(y)−An(y))

f(y, θ̂n)
dy = OP (

1

n
√
n

).

2. Let us show that
∫ (A′n(y)−An(y))2

f(y, θ̂n)
dy = 1

n2πI−2
θ0

+ oP ( 1
n).

There exists θ
(2)
n such that |θ(2)

n − θ̂n| < δ and

∫
(A′n(y)−An(y))2

f(y, θ̂n)
dx =

∫ (∫ √nδ
−
√
nδ
u

(
ḟ(y, θ̂n)

u√
n

+ f̈(y, θ(2)
n )

u2

2n

)
eCn(u)du

)2
1

f(y, θ̂n)
dy

=
1

n

∫
ḟ(y, θ̂n)2

f(y, θ̂n)2
f(y, θ̂n)dy

(∫ √nδ
−
√
nδ
u2eCn(u)du

)2

+
1

4n2

∫ (∫ √nδ
−
√
nδ
f̈(θ(2)

n )u3eCn(u)du

)2
1

f(y, θ̂n)
du+Rn

with

|Rn| ≤
1

n
√
n

∫
sup

|θ−θ̂n|<δ
|f̈(y, θ)| |ḟ(y, θ̂n)|

f(y, θ̂n)
dy

(∫ √nδ
−
√
nδ
u4eCn(u)du

)2

= OP (
1

n
√
n

),

by (2.3) and (2.13).
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On the other hand,

1

n

∫
ḟ(y, θ̂n)2

f(y, θ̂n)2
f(y, θ̂n)dy

(∫ √nδ
−
√
nδ
u2eCn(u)du

)2

∼ 1

n
Eθ̂n

(
ḟ(Y, θ̂n)2

f(Y, θ̂n)2

)
I−2
θ0

2π

Iθ0
∼ 1

n
2πI−2

θ0
.

Furthermore,

1

n2

∫ (∫ √nδ
−
√
nδ
f̈(θ(2)

n )u3eCn(u)du

)2
1

f(y, θ̂n)
dy

≤ 1

n2

(∫ √nδ
−
√
nδ
u3eCn(u)du

)2 ∫
sup

|θ−θ̂n|<δ
f̈(x, θ)2 1

f(y, θ̂n)
dy

= oP

(
1

n

)
,

where last equality follows from (2.4).

3. Let us show that
∫ A′(y)2

B′(y)
B(y)−B′(y)

f(y,θ̂n)
dy = oP ( 1

n).

There exist θ
(3)
n and θ

(4)
n such that |θ(3)

n − θ̂n| < δ, |θ(4)
n − θ̂n| < δ and

∫
A′(y)2

B′(y)

B′(y)−B(y)

f(y, θ̂n)
dy =

∫ (∫ √nδ
−
√
nδ
uf(y, θ̂n + u√

n
)eCn(u)du

)2

∫ √nδ
−
√
nδ
f(y, θ̂n + u√

n
)eCn(u)du

×

×

(∫ √nδ
−
√
nδ
f(y, θ̂n + u√

n
)− f(y, θ̂n)

)
eCn(u)du

f(y, θ̂n)
dy

=

∫ (
f(y, θ̂n)

∫ √nδ
−
√
nδ
ueCn(u)du+

∫ √nδ
−
√
nδ
ḟ(y, θ

(3)
n ) u

2
√
n
eCn(u)du

)2

∫ √nδ
−
√
nδ
eCn(u)f(y, θ̂n + u√

n
)du

∫ √nδ
−
√
nδ
ḟ(y, θ

(4)
n ) u√

n
eCn(u)du

f(y, θ̂n)
dy

≤ 4

∫ f(y, θ̂n)2
(∫ √nδ
−
√
nδ
ueCn(u)du

)2
+
(∫ √nδ
−
√
nδ
ḟ(y, θ

(3)
n ) u

2
√
n
eCn(u)du

)2

∫ √nδ
−
√
nδ
eCn(u)f(y, θ̂n + u√

n
)du

×

×

∫ √nδ
−
√
nδ
ḟ(y, θ

(4)
n ) u√

n
eCn(u)du

f(y, θ̂n)
dy (2.23)

≤ 4

(∫ √nδ
−
√
nδ
ueCn(u)du

)2 ∫ ∫ √nδ
−
√
nδ
ḟ(y, θ

(4)
n ) u√

n
eCn(u)du∫ √nδ

−
√
nδ
eCn(u)f(y, θ̂n + u√

n
)du

f(y, θ̂n)dy+
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+ 4

∫ (∫ √nδ
−
√
nδ
ḟ(y, θ

(3)
n ) u

2
√
n
eCn(u)du

)2 ∫ √nδ
−
√
nδ
ḟ(y, θ

(4)
n ) u√

n
eCn(u)du

f(y, θ̂n)
∫ √nδ
−
√
nδ
eCn(u)f(y, θ̂n + u√

n
)du

dy

≤ 4
1√
n

(∫ √nδ
−
√
nδ
ueCn(u)du

)3

∫ √nδ
−
√
nδ
eCn(u)du

∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ

|ḟ(y, θ1)|
f(y, θ2)

f(y, θ̂n)dy+

+ 4
1

n
√
n

(∫ √nδ
−
√
nδ
u2eCn(u)du

)2 ∫ √nδ
−
√
nδ
ueCn(u)du∫ √nδ

−
√
nδ
eCn(u)du

∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ,|θ3−θ̂n|<δ

ḟ(y, θ1)2|ḟ(y, θ2)|
f(y, θ3)f(y, θ̂n)

dy

=
1

n2
OP (1)

(∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ

|ḟ(y, θ1)|
f(y, θ2)

f(y, θ̂n)dy +

+

∫
sup

|θ1−θ̂n|<δ,|θ2−θ̂n|<δ,|θ3−θ̂n|<δ

ḟ(y, θ1)2|ḟ(y, θ2)|
f(y, θ3)f(y, θ̂n)

dy

)
(2.24)

= oP (
1

n
), (2.25)

where in (2.23) we have used (a + b)2 ≤ 4(a2 + b2) and in (2.24) we have invoked (2.13) and

(2.21). Equation (2.25) follows from (2.5) and (2.6).

4. Let us show that
∫ √nδ
−
√
nδ
eCn(u)du→ (2π)1/2I

−1/2
θ0

.

We have, for | θ∗n − θ̂n |< δ,

∫ √nδ
−
√
nδ
eCn(u)du =

∫ √nδ
−
√
nδ
ea2,n(θ̂n)u2/2+a3,n(θ∗n)u3/(6

√
n)du

=

∫ √nδ
−
√
nδ
ea2,n(θ̂n)du+ R̃n

with

| R̃n | ≤
∫ √nδ
−
√
nδ
ea2,n(θ̂n)

(
ea3,n(θ∗n)u3/(6

√
n) − 1

)
du

≤
∫ √nδ
−
√
nδ
ea2,n(θ̂n)a3,n(θ∗n)

u3

6
√
n
ea3,n(θ∗n)u3/(6

√
n)du

≤ 1√
n
| 1

n

n∑
i=1

G3(Yi) |
∫ √nδ
−
√
nδ
u3eCn(u)du

= oP (1).
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Since

ea2,n(θ̂n)u2/2 → e−Iθ0u
2/2 a.s.

then ∫ √nδ
−
√
nδ
eCn(u)du = (2π)1/2I

−1/2
θ0

+ oP (1).

STEP 3: Asymptotic behavior of ∆n − ∆̃n

Let us show that ∆n − ∆̃n = oP ( 1
n2 ). It holds that

∆n − ∆̃n =
1∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−

(∫
φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

−

− 1∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
(∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−

(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ


≤

∫
[−δ,δ]c

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

|∆̃n|+
1∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
×

×


∣∣∣∣∣∣∣
∫ (∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy−

−
∫ (∫ δ

−δ φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy

∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
(∫

φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

−

(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∣∣∣∣∣∣∣
 .
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By STEP 2

∫
[−δ,δ]

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ =

1√
n

∫ √nδ
−
√
nδ
eCn(u)du =

1√
n

(2π)1/2I
−1/2
θ0

+ oP (
1√
n

).

On the other hand, by (2.10),

∫
[−δ,δ]c

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ ≤ C ′e−nε.

Thus, ∫ n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ = C

1√
n

+ oP (
1√
n

)

and ∫
[−δ,δ]c

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

|∆̃n| = oP (
1

n2
).

Moreover,∣∣∣∣∣∣∣
∫ (∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy −
∫ (∫ δ

−δ φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ (∫

φf(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2
−
(∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫
f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

dy

∣∣∣∣∣∣∣+

+

∫ 
∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ δ

−δ f(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ


2 ∫

[−δ,δ]c
f(y, θ̂n + φ)

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφdy

≤ 2

∫ ∫
|φ|f(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫

f(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
[−δ,δ]c

φf(y, θ̂n + φ)
n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφdy+

+

∫ 
∫ δ
−δ φf(y, θ̂n + φ)

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ δ

−δ f(y, θ̂n + φ)
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ


2 ∫

[−δ,δ]c
f(y, θ̂n + φ)

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφdy

≤ C ′′e−nε,

where last inequality comes from (2.10).
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Analogously, ∣∣∣∣∣∣∣
(∫

φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

−

(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ δ
−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
(∫

φ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2
−
(∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ
)2

∫ ∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∣∣∣∣∣∣∣+

+


∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ δ

−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ


2 ∫

[−δ,δ]c

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ

≤ 2

∫
|φ|
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ ∏n

i=1
f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ

∫
[−δ,δ]c

φ

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ+

+

∫ 
∫ δ
−δ φ

∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ∫ δ

−δ
∏n
i=1

f(Yi,θ̂n+φ)

f(Yi,θ̂n)
dφ


2 ∫

[−δ,δ]c

n∏
i=1

f(Yi, θ̂n + φ)

f(Yi, θ̂n)
dφ

≤ C ′′′e−nε.

This concludes the proof of STEP 3 and, thus, of Lemma 4.

We are now in a position to prove Lemma 3.

Proof. (Lemma 3) Assumptions of Lemma 3 imply regularity conditions (a)-(e) given above. The

result follows from Lemma 4.

Reasoning as in the proof of Proposition 1, we can provide the following result, representing its

improvement and generalization.

Proposition 3. Under the assumptions of Lemma 3, it holds that, as t→∞, for a ∈ {0, 1}

p̂t,a −→ ρa :=
I
− h

2h+1

θ0,a

I
− h

2h+1

θ0,0
+ I
− h

2h+1

θ0,1

a.s. as t→∞. (2.26)

and

pt,a −→ ρa a.s. as t→∞. (2.27)
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2.1.1 Application

To illustrate the result of Proposition 3, we consider a truncated Weibull model for y ∈ (0, t0)

fθa(y) =
e−(yr)θa (ry)θa−1rθa

1− e−(t0r)θa

with unknown shape parameter θa and known rate r parameter. Panels A and B of Figure 2.1,

show, similar to Figure 1, a trajectory of pt,1, t = 1, · · · , 6000 (Panel A) and p̂t,1, t = 1, · · · , 6000

(Panel B) for a single simulated two-arm BUD trial with r = 1, θ0 = 1, θ1 = 1.5 (black curve).

The shaded area shows (point-wise at each t) upper and lower 2.5% quantiles of the distribution

of pt,1 and p̂t,1 across 1,000 simulations.
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p̂ t
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(B) relative allocation

Figure 2.1: Allocation proportions and randomization probabilities of a two-arm BUDs. The
primary outcomes are modeled with a truncated Weibull distribution and the information metric
is the sum of the (negative) variance of the posterior distribution of the shape parameter of the
outcomes in the different arms. The average allocation proportion and randomization probability
across 1000 simulations (blue lines) are close to their limit (t→∞, red lines).
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2.2. Almost sure convergence of allocation proportions: other utilities than variance

2.2 Convergence of allocations proportions: other utilities than

variance

In this section we compute the limit of the allocation proportions (ρ0, ρ1) related to a two-arm

BUD based on information metric

u(Σt) = −
∑

a∈{0,1}

H(π(θa | Σt)) =
∑

a∈{0,1}

E(log(π(θa | Σt)) | Σt), (2.28)

where H indicates the entropy and π(θa | Σt) denotes the posterior probability of the parameter

θa given previous history Σt. For clarity of notation, we denote a random variable distributed as

the posterior probability of θa given previous history of outcomes for a ∈ {0, 1} by θ̃a. We use

properites of Gâteaux differentiable functions, defined in the Appendix. To anticipate the main

heuristic result, confirmed by simulations, about the asymptotic behavior of pt,a, in Lemma 5 we

rewrite the information increment ∆t(a) (defined in equation (1.1)) relative to utility (2.28) and

we provide an analogous of the Taylor’s formula for H(fθ̃a(y)).

Lemma 5. For a two-arm BUD whose information measure is specified in terms of the entropy

of the posterior distribution of θa, for arm a ∈ {0, 1}, we have

∆t(a) := H(π(θa | Σt))− E(H(π(θa | Σt+1)) | Σt, At+1 = a)

= E(H(E(fθ̃a(y) | Σt, At+1 = a))−H(fθ̃a(y)) | Σt, At+1 = a) (2.29)

and

H(fθ̃a(y)) = H(E(fθ̃a(y) | Σt, At+1 = a))+

+H ′(E(fθ̃a(y) | Σt, At+1 = a))(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a))+

+
1

2
H ′′(E(fθ̃a(y) | Σt, At+1 = a))(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a))+

+
1

2
R3, (2.30)

where H ′, H ′′, H ′′′ are the 1st, 2nd and 3rd order Gâteaux derivatives of H at

E(fθ̃a(y) | Σt, At+1 = a) in the direction fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a) and R3 equals
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H ′′′(E(fθ̃a(y) | Σt, At+1 = a)+ε∗(fθ̃a(y)−E(fθ̃a(y) | Σt, At+1 = a)))(fθ̃a(y)−E(fθ̃a(y) | Σt, At+1 = a)),

for some ε∗ ∈ (0, 1).

Proof. (Lemma 5)

It holds

E(H(π(θ̃a | Σt+1)) | Σt, At+1 = a) = E(E(− log π(θ̃a|Σt+1) | Σt+1) | Σt, At+1 = a) (2.31)

= E(E(− log

(
π(θ̃a | Σt)fθ̃a(Yt+1)∫
π(θa | Σt)fθa(Yt+1)dθa

)
| Σt+1) | Σt, At+1 = a) (2.32)

= E(E(− log π(θ̃a | Σt)− log fθ̃a(Yt+1) | Σt+1) | Σt, At+1 = a)+

+ E(E(log(

∫
π(θa | Σt)fθa(y)dθa) | Σt+1) | Σt, At+1 = a) (2.33)

= −E(log π(θ̃a | Σt) | Σt, At+1 = a)− E(E(log fθ̃a(Yt+1) | θ̃a,Σt) | Σt, At+1 = a))+

+ E(log π(y | Σt, At+1 = a) | Σt, At+1 = a) (2.34)

= H(π(θ̃a | Σt)) + E(H(fθ̃a(y)) | Σt, At+1 = a)−H(π(y | Σt, At+1 = a)) (2.35)

= H(π(θ̃a | Σt)) + E(H(fθ̃a(y)) | Σt, At+1 = a)−H(E(fθ̃a(y) | Σt, At+1 = a)).

(2.36)

Equations (2.31) and (2.32) are a consequence of the definition of the entropy and of the properties

of posterior analysis. (2.33) is obtained by applying properties of the logarithm, while (2.34) is

derived from the Σt+1-measurability of the arguments of the inner expectation in (2.33) and law of

total expectation. Equations (2.35) and (2.36) follow from the definition of the entropy and from

rewriting H(π(y | Σt, At+1 = a)) as H(E(fθ̃a(y) | Σt, At+1 = a)) due to properties of posterior

analysis.

By definition of ∆t(a) and due to (2.36), we get

∆t(a) = H(π(θ̃a | Σt))− E(H(π(θ̃a | Σt+1)) | Σt, At+1 = a)

= H(E(fθ̃a(y) | Σt, At+1 = a))− E(H(fθ̃a(y)) | Σt, At+1 = a)

= E(H(E(fθ̃a(y) | Σt, At+1 = a))−H(fθ̃a(y)) | Σt, At+1 = a), (2.37)

where (2.37) follows from the Σt-measurability of H(E(fθ̃a(y) | Σt, At+1 = a)).
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By Taylor’s formula for Gâteaux differentiable functions

H(fθ̃a(y)) = H(E(fθ̃a(y) | Σt, At+1 = a))+

+H ′(E(fθ̃a(y) | Σt, At+1 = a))(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a))+

+
1

2
H ′′(E(fθ̃a(y) | Σt, At+1 = a))(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a))+

+
1

2
R3,

where H ′, H ′′, H ′′′ are the 1st, 2nd and 3rd order Gâteaux derivatives of H at E(fθ̃a(y) | Σt, At+1 =

a) in the direction fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a) and R3 equals

H ′′′(E(fθ̃a(y) | Σt, At+1 = a)+ε∗(fθ̃a(y)−E(fθ̃a(y) | Σt, At+1 = a)))(fθ̃a(y)−E(fθ̃a(y) | Σt, At+1 = a)),

for some ε∗ ∈ (0, 1). In the Appendix we recall the definition of Gâteaux derivative and Tay-

lor’s formula for Gâteaux differentiable functions. In particular, we recall that the 2nd order

Gâteaux derivative of the entropy at E(fθ̃a(y) | Σt, At+1 = a)) in the direction fθ̃a(y)−E(fθ̃a(y) |
Σt, At+1 = a) is given by

−
∫

[fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a)]2[E(fθ̃a(y) | Σt, At+1 = a)]−1dy,

the 3rd order Gâteaux derivative of H at E(fθ̃a(y) | Σt, At+1 = a) + ε(fθ̃a(y) − E(fθ̃a(y) |
Σt, At+1 = a)) in the direction fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a) equals∫

[fθ̃a(y)−E(fθ̃a(y) | Σt, At+1 = a)]3[E(fθ̃a(y) | Σt, At+1 = a) + ε(fθ̃a(y)−

− E(fθ̃a(y) | Σt, At+1 = a))]−2dy.

The results of Lemma 5 allow us to state the conjecture that in the limit, as t→∞, the allocation

of patients to the two treatments in a two-arm BUD is equal. This is formally stated below and

seems confirmed by simulation studies.

Conjecture 1. Let us consider a two-arm BUD with information measure specified in terms of

the entropy of the posterior distribution of the mean θa and let the outcomes distribution be in
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the NEF. Then, for a ∈ {0, 1},

p̂t,a −→ ρa :=
1

2
a.s. as t→∞. (2.38)

The heuristics is as follows.

(Heuristic proof) Conjecture 1

Let us take conditional expectation of (2.30): the first order term of the expansion cancels out

since

E(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a) | Σt, At+1 = a) = 0.

Indeed, if E(R3 | Σt, At+1 = a) is a negligible term with respect to the term

E(H ′′(E(fθ̃a(y) | Σt, At+1 = a))(fθ̃a(y) − E(fθ̃a(y) | Σt, At+1 = a)) | Σt, At+1 = a), then (2.29)

turns into

E(H(E(fθ̃a(y) | Σt, At+1 = a))−H(fθ̃a(y)) | Σt, At+1 = a)

≈ 1

2
E

(∫
(fθ̃a(y)− E(fθ̃a(y) | Σt, At+1 = a))2

E(fθ̃a(y) | Σt, At+1 = a)
dy | Σt, At+1 = a

)

≈ 1

2

(∫ ∫
fθa(y)2π(θa | Σt)dθa∫
fθa(y)π(θa | Σt)dθa

dy − 1

)
. (2.39)

Also,∫
fθa(y)π(θa | Σt)dθa ≈

∫ [
fE(θ̃a|Σt)(y) + f ′

E(θ̃a|Σt)
(y)(θa − E(θ̃a | Σt))

]
π(θa | Σt)dθa+

+
1

2

∫
f ′′
E(θ̃a|Σt)

(y)(θa − E(θ̃a | Σt))
2π(θa | Σt)dθa

≈ fE(θ̃a|Σt)(y) +
1

2
f ′′
E(θ̃a|Σt)

(y)Var(θ̃a|Σt). (2.40)

Similarly, ∫
fθa(y)2π(θa | Σt)dθa ≈ fE(θ̃a|Σt)(y)2 + f ′

E(θ̃a|Σt)
(y)2Var(θ̃a|Σt)+

+ fE(θ̃a|Σt)(y)f ′′
E(θ̃a|Σt)

(y)Var(θ̃a|Σt). (2.41)
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Thus, invoking (2.29) and plugging (2.40) and (2.41) into (2.39), we get

∆t(a) = E(H(E(fθa(y) | Σt, At+1 = a))−H(fθa(y)) | Σt, At+1 = a)

≈ 1

2

∫ fE(θ̃a|Σt)(y)2 +
(
f ′
E(θ̃a|Σt)

(y)2 + fE(θ̃a|Σt)(y)f ′′
E(θ̃a|Σt)

(y)
)

Var(θ̃a|Σt)

fE(θ̃a|Σt)(y) + 1
2f
′′
E(θ̃a|Σt)

(y)Var(θ̃a|Σt)
dy − 1


≈ 1

2

∫ fE(θ̃a|Σt)(y)2 +
(
f ′
E(θ̃a|Σt)

(y)2 + fE(θ̃a|Σt)(y)f ′′
E(θ̃a|Σt)

(y)
)

Var(θ̃a|Σt)

fE(θ̃a|Σt)(y) + 1
2f
′′
E(θ̃a|Σt)

(y)Var(θ̃a|Σt)
dy

−
− 1

2

∫
fE(θ̃a|Σt)(y)dy (2.42)

≈ 1

2

∫
(
f ′
E(θ̃a|Σt)

(y)2 + 1
2fE(θ̃a|Σt)(y)f ′′

E(θ̃a|Σt)
(y)
)

Var(θ̃a|Σt)

fE(θ̃a|Σt)(y)
dy

 (2.43)

≈ 1

2
Var(θ̃a|Σt)

[∫ (
d log fθa(y)

dθa
|θa=E(θ̃a|Σt)

)2

fE(θ̃a|Σt)(y)dy +

∫
f ′′
E(θ̃a|Σt)

(y)dy

]
(2.44)

≈ 1

2
Var(θ̃a | Σt)

∫ (
d log fθa(y)

dθa
|θa=E(θ̃a|Σt)

)2

fE(θ̃a|Σt)(y)dy (2.45)

≈ 1

2
Var(θ̃a | Σt)IE(θ̃a|Σt). (2.46)

To obtain (2.42) we have used the fact that a probability density function integrates to 1. In

(2.43) we have computed the common denominator.

Simplifying equation (2.43) and noting that

f ′
E(θ̃a|Σt)

(y)2

fE(θ̃a|Σt)(y)2
=

(
d log fθa(y)

dθa
|θa=E(θ̃a|Σt)

)2

we have assessed (2.44). Equation (2.45) follows from the fact that
∫
f ′′
E(θ̃a|Σt)

(y)dy = 0 and it is

equal to (2.46) due to the definition of Fisher information. Now, Bernstein-Von Mises Theorem

(Theorem 10.1 of [85]) and Delta method imply that for arm a ∈ {0, 1}

Var(θa | Σt) = Var(b′(ψa) | Σt)

≈ b′′(ψ0,a)
2Var(ψa | Σt)

≈ b′′(ψ0,a)
2(tp̂t,aIψ0,a)−1 (2.47)
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and

IE(θa|Σt) ≈ Iθ0,a
= Ib′(ψ0,a)

= Iψ0,ab
′′(ψ0,a)

−2, (2.48)

where ψ0,a, θ0,a denote the fixed true values of the natural parameter and of the mean of the

outcomes, respectively.

Thus, the approximate information gain ∆t(a) -computed in (2.46)- becomes (2tp̂t,a)
−1 and an

approximate one-step-ahead randomization probability is p̃t,a :=
(2tp̂t,a)

−h

(2tp̂t,1)−h + (2tp̂t,0)−h
.

Now, we use a fast algorithm to determine the limit of the allocation proportion.

The starting point is Proposition 1, suggesting that the convergence point is a fixed point where

arm-specific proportions and expected randomization probabilities coincide.

So, the limit ρa is the solution of p̃t,a|p̂t,a=ρa = ρa.

By requiring that
ρ−h1

ρ−h1 + (1− ρ1)−h
= ρ1, (2.49)

it follows ρ1 = 1
2 .

If conjecture 1 is true, then the entropy 2.28 is not a good metric since the allocation proportions

converge to 0.5.

2.2.1 Simulation study

We investigate with simulations the asymptotic behavior of the allocation proportion of BUDs

characterized by utility (2.28).

We consider Bernoulli model fψa(1) = 1− fψa(0) = θa, θa = 1/(1 + e−ψa), with conjugated beta

prior θa ∼ Beta(α0,a, β0,a). Figure 2.2 illustrates the distribution of p̂t,1 across simulations, when

t = 100, 1000 and 10000. The response probabilities (θ0, θ1) are set equal to 0.2 and 0.4 and a

beta prior with parameters αa = 1.5 and βa = 3.5 is used. The randomization parameter h is

fixed to 3. The panel compares the empirical distribution of t1/2(p̂t,1 − 1
2) with a normal density

with mean 0 and empirical variance.
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Figure 2.2: Comparison of gaussian density and empirical distributions of allocation proportions.
We provide an example (binary) of the two-arm BUD trial with information metric the entropy
of the posterior distribution of the mean of the outcomes.

Reference Bonsaglio, M., Fortini, S., Ventz, S., Trippa, L. (2021+), Approximating the Operating

Characteristics of Bayesian Uncertainty Directed Trial Designs, http://arxiv.org/abs/2105.11177
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Appendix B

Supplement to Chapter 2

B.1 Functional derivative

In this section we briefly discuss the concept of differentiation in function spaces. More precisely,

we introduce the notions of Gâteaux and Fréchet derivatives and their analogues of Taylor’s for-

mulae, that we have used in the proof of Lemma 5. For a thorough account of the properties of

these derivatives see Chapter 5.2 of [79].

Gâteaux derivative

Let X1 and X2 denote Banach spaces over R, and let F denotes an operator on X1 into X2. Let

f and h be given elements of X1 and

lim
ε→0

∥∥∥∥F (f + εh)− F (f)

ε
− F ′(f)h

∥∥∥∥ = 0. (B.1)

for every h ∈ X1, where ε → 0 in R. F ′(f)h ∈ X2 is called the value of the Gâteaux derivative

of F at f in the direction h, and F is said to be Gâteaux differentiable at f in the direction h.

Thus, the Gâteaux derivative of an operator F is itself an operator denoted by F ′(f).

The Gâteaux derivative of an operator F satisfies the following properties:

. It is unique provided it exists.

. If F is a linear operator, then F ′(f)h = F (h) for all f ∈ X1.
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B.1. Functional derivative

. If F is a real-valued functional on X1 and F is Gâteaux differentiable at some f ∈ X1, then

F ′(f)h =
d

dε
F (f + εh)|ε=0,

and for each fixed f ∈ X1, F ′(f)h is a linear functional of h ∈ X1.

. The nth order Gâteaux derivative of F atf in the direction h is

Fn(f)h =
dn

dεn
F (f + εh)

∣∣∣∣
ε=0

. (B.2)

Rather than a multilinear function, this is a homogeneous function of degree n in h.

. If F is Ck, f1, f2 ∈ U ⊂ X1 and [f1, f1 + f2] is a closed segment in U , the analogous of the

Taylor’s formula with remainder is

F (f1 + f2) = F (f) + F ′(f)f2 +
1

2!
F ′′(f1)f2 + · · ·+ 1

(k − 1)!
F k−1(f1)f2 +Rk (B.3)

with Rk =
1

(k − 1)!
F k(f1 + ε∗f2)f2 for some ε∗ ∈ (0, 1).

Fréchet derivative

Let X1 and X2 denote Banach spaces over R. A continuous linear operator S : X1 → X2 is called

the Fréchet derivative of the operator F : X1 → X2 at f ∈ X1 if

lim
‖h‖→0

‖F (f + h)− F (f)− S(h)‖
‖h‖

= 0. (B.4)

The Fréchet derivative of F at f is denoted by F ′(f). F is called Fréchet differentiable on its

domain if F ′(f) exists at every point of the domain.

The Fréchet derivative of an operator F satisfies the following properties:

. In finite-dimensional spaces it is the usual derivative. In elementary calculus, the derivative

at a point is a local linear approximation of the given function in the neighborhood of

the point. Similarly, the Fréchet derivative can be interpreted as the best local linear

approximation.

. If F is linear, then F ′(f) = F (f), that is, if F is a linear operator, then the Fréchet derivative

of F is F itself.
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B.1. Functional derivative

. Every Fréchet differentiable operator is continuous and linear.

. If F is Fréchet differentiable, then it is also Gâteaux differentiable, and its Fréchet and

Gâteaux derivatives agree. The converse is not true, since the Gâteaux derivative may fail

to be linear or continuous. In fact, it is even possible for the Gâteaux derivative to be linear

and continuous but for the Fréchet derivative to fail to exist.

Therefore, Fréchet derivative is unique.

. The nth order Fréchet derivative of F of f in the direction h is obtained by iteration of the

first order derivative.

. If F is k-times-differentiable, f1, f2 ∈ U ⊂ X1 and [f1, f1 + f2] is a closed segment in U , the

analogous of the Taylor’s formula is

F (f1 + f2) = F (f1) + F ′(f1)f2 +
1

2!
F ′′(f1)f2 + · · ·+ 1

k!
F k(f1)f2 + ‖f2‖kε(f2) (B.5)

with limf2→0 ε(f2) = 0.
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B.2. Applicability to actual clinical trials

B.2 Applicability of BUDs to actual clinical trials

As shown in Chapters 1 and 2, BUDs can accomodate different information measures u tailored

to different aims of a trial. The unifying element of these measures is the use of functionals of

the posterior distribution of a parameter of interest to quantify information.

Here we provide some examples of utilities that enable the application of BUDs to biomarker-

stratified clinical trials, trials with co-primary endpoints, dose-finding trials and trials with de-

layed responses.

Biomarker-Stratified clinical trials

In modern clinical trials information on a large number of covariates is often collected in addition

to information on the primary outcome. For instance, genetic profiles of patients are sometimes

available when running a novel trial. As a consequence, the interest in the development of treat-

ments that target specific genetic alterations is increasing. Biomarker-stratified clinical trials

enroll patients with multiple genomic abnormalities in single multi-arm trials, and identify sub-

groups of patients that respond to experimental treatments.

The goal is testing K treatments for patients with and without a genomic alteration.

Indeed, it is possible to define BUDs with the primary aim to test the presence of effects within

subgroups and in the overall population. For each patient t, we use Xt ∈ {0, 1} to denote the

patients biomarker profile. We assume that the trial measures binary outcomes with parameters

θx,a for subgroups x = 0, 1 and treatments a = 0, . . . ,K − 1. We test the presence of effects

within subgroups Ex,a = 1(θa > θ0) and in the overall population Ea = 1(θa > θ0). We define

θa = βθ1,a + (1− β)θ0,a and we denote the prevalence of the biomarker by β ∈ [0, 1].

After specifying a Bayesian model, we can use a summary metric that weights convex function-

als of interpretable posterior probabilities of Ea, E1,a, E0,a, given previous history Σt, as utility

function u of the BUD. Then, allocation probabilities could be calculated on the basis of previous

responses and the current and past values of certain known covariates of the patients. In fact, it

may be not acceptable to base the allocation probabilities only on responses of previous patients

if those patients have different characteristics. This is particularly true when ethical demands

are cogent and the patients have different profiles that induce heterogeneity in the outcomes.

Starting from the pioneering work of Rosenberger et al. [71], there has been a growing statistical

interest in designs that change at each step the probabilities of allocating treatments by taking

into account all the available information, namely previous responses, assignments and covariates,

as well as the covariate profile of the current subject, with the aim of skewing the allocations
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B.2. Applicability to actual clinical trials

towards the superior treatment or, in general, of converging to a desired target allocation depend-

ing on the covariates. Therefore, BUD assigns a patient with biomarker profile x to treatment a,

for a = 0, . . . ,K − 1, at time (t+ 1) with probability

p(At+1 = a | Xt+1 = x,Σt) ∝ [E(u(Σt+1 | Xt+1 = x,At = a,Σt)− u(Σt)]
h.

Trials with co-primary endpoints

In several contexts, such as Alzheimers disease, a single endpoint has been shown to be insufficient

to capture patients’ response to treatments adequately. Several authors recommend to evaluate

new treatments using multiple clinical endpoints [32].

It is possible to adapt the formulation of BUDs to the design of multi-arm trials with several

co-primary endpoints.

As an example, we consider a controlled multi-arm trial that evaluates K experimental treat-

ments using two binary endpoints Yt = (Yt,1, Yt,2). For each treatment a, we set p(Yt = y|At =

a) = θy,a ≥ 0, with y ∈ {0, 1}2, and
∑

y∈{0,1}2 θy,a = 1. We assume independent Dirichlet prior

distributions for the arm-specific parameters θa = (θ(1,1),a, θ(1,0),a, θ(0,1),a, θ(0,0),a), where the pa-

rameters θa specify the marginal probabilities (µ1,a, µ2,a) of the two endpoints.

We indicate with γl,a = µl,a − µl,0,= 1, 2 the treatment effects for both endpoints.

In this setting, the utility function characterizing the BUD is specified by

u(Σt) = −
K−1∑
a=1

{V ar(γa | Σt) + ω[V ar(γ1,a | Σt) + V ar(γ2,a | Σt)]} with ω ≥ 0,

where γa is the difference between arm a > 0 and the control arm in the probability of an

individual positive response on both endpoints.

Dose-finding trials

In a dose-finding clinical trial different doses of a drug are tested against each other to establish

which dose works best and/or is least harmful.

More formally, the aim is to select one of K candidate dose levels a ∈ {0, . . . ,K−1} using binary

efficacy and toxicity outcomes. We let θE,a and θT,a denote the probabilities of response and

toxicity at dose level a. For each dose level a, a score weights efficacy θE,a and toxicity θT,a, say

Sa(θ) = ωθE,a + (1 − ω)(1 − θT,a) with 0 ≤ ω ≤ 1 and dose level A∗ = argmaxaSa(θ) has the
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B.2. Applicability to actual clinical trials

highest score. In Bayesian modeling (θE,a, θT,a)a, as well as Sa(θ) and A∗, are random variables.

The posterior distribution p(A∗ = a | Σt) = p(
⋂
a′{Sa(θ) ≥ Sa′(θ)} | Σt), a = 0, . . . ,K − 1,

changes over time as more information becomes available. The utility function of the BUD can

be defined as

u(Σt) = −
K−1∑
a=0

F (p(A∗ | Σt),

for a convex functionals F .

Trials with delayed responses

Treatment outcomes are not always complete and available immediately: clinical trials often

involve delayed responses, i.e., outcomes that are observed with a substantial time delay after

assigning a treatment or enrolling a patient. Such lagged responses create challenges for clinical

trial designs when a treatment allocation requires outcomes from earlier enrolled patients. For

BUDs and for general Bayesian designs, dependence on earlier outcomes is formalized by basing

current decisions on the posterior distribution conditional on all previous outcomes. The princi-

pled nature of Bayesian inference offers an easy solution to the problem of delayed responses. The

relevant posterior distribution could simply include the responses from already enrolled patients

and/or partial responses from already enrolled patients with missing final response.
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Chapter 3

Incorporating external data in the

design of novel trials

3.1 Introduction

Randomization has been employed for decades in clinical trials to limit selection bias and con-

founding. These are the main potential drawbacks of the use in clinical practice of single-arm

trials, where there is no control group receiving the standard treatment and the treatment is com-

pared to historic benchmarks. Generally, single-arm trials require smaller sample sizes to achieve

targeted power and they have more attraction for patients compared to randomized clinical tri-

als. Clinical researchers have discussed the relative merits of single-arm versus randomized trial

design extensively. In [35, 38, 65, 72, 74, 82, 97] the authors argue and explore the performance

of single-arm trials versus randomized clinical trials: the scientific debate is still controversial and

both single-arm and randomized trials are advised in some scenarios.

Often recommendations for randomization have been proposed based on qualitative arguments,

ending up with a set of generic guidelines to aid in the choice of clinical trial designs [35, 77]. Also,

comparisons between the characteristics of different designs are derived through simulations for

specific scenarios and under some particular assumptions so that they may not hold in situations

outside the range considered. Better choices may be made by adopting a quantitative approach,

which translates into informed decisions in the design of future trials. Providing quantitative evi-

dence of the role of randomization in modern clinical trial designs and incorporating information

from external data sources in the design of novel trials are some of the main challenges currently

faced by researchers.
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3.1. Introduction

Several methods for historical borrowing of existing information about the control treatment from

an external study into a novel study have been proposed in literature [40, 60, 64, 93]. Most of these

works adopt a Bayesian perspective. Bayesian paradigm offers a formal statistical framework for

incorporating all sources of knowledge; in particular external information can be incorporated

into the design and analysis of a novel randomized clinical trial through prior distributions for

the parameters of interest, such as the control response rate.

Recently, the idea of taking advantage of real-world data and data from completed clinical trials

to replace or complement data from current clinical trials is emerging [78] and the availability of

data collected from electronic health records, patient registries and other clinical trials at scale

has increased the interest in using existing data on the control treatment as an external control

[1, 24, 50]. Meanwhile, data from previous clinical trials can be integrated in the design and

analysis of single-arm trials rather than using a single published estimate of the standard of care

primary outcome distribution to specify a benchmark.

The potential benefits of externally-controlled clinical trials designs are advocated by many re-

searchers: in [86] the authors emphasize the need of a quantitative and theoretical evaluation of

procedures to use external control data in the analysis of randomized clinical trials, in any disease

indications, and they suppose that externally controlled single-arm studies may provide robust

inference on treatment effects as randomized designs. In [89] the authors compare the perfor-

mance of externally-controlled designs to randomized and single-arm designs using as criterium

the sample size to achieve a targeted power for fixed type I error rate. Using a collection of clinical

studies in glioblastoma and adopting a model-free approach, they show that externally-controlled

clinical trials can increase power compared to randomized clinical trials by leveraging additional

information from outside the trial than committing resources to an internal control.

We address the same research problems of the above works in an attempt to give a precise quan-

tification of the value of randomization in standard and externally-controlled randomized clinical

trials and to give an objective procedure to design a trial that is optimal, in the way it maximizes

power among a set of candidate designs. In this context, the concept of power refers to the prob-

ability of detecting a statistically significant positive treatment effect of the experimental therapy

compared to the control therapy when the experimental therapy is really superior to the control

one. We hold the overall sample size fixed to reflect the following decision problem: ”in testing

the null hypothesis of no treatment effect against the one-sided alternative of positive treatment

effect, once the type I error is fixed at a certain nominal level, what is the most powerful option

between designs of trials characterized by different randomization ratios with enrollment up to
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3.2. Statement of the problem

a fixed number of patients and that could include external information?” Therefore, our goal is

to recommend how to design a forthcoming study, given external data on the control therapy:

should the trial be run close to a single arm trial or to a randomized clinical trial? Is it worth

using external sources of information?

Under the assumption of known within-study and between-studies variabilities, when responses

are Gaussian, we provide closed-form expression of power of the hypothesis test for the treatment

effect related to different designs and we give a way to identify the optimal randomization ratio.

We show that randomized externally-controlled clinical trials with optimal randomization ratio

are superior to standard randomized clinical trials. Then we relax the assumptions that the two

sources of variability are known but we require that the number of available external studies is

quite large: in this case in order to estimate power it is sufficient to plug-in the estimates of

the within-study error variance and between-studies variance, which are obtained from one-way

random-effect anova theory or random-effect meta-analysis, into the expressions of power ob-

tained theoretically under the assumption of known sources of variability.

We verify through simulations the correctness of our findings, when the within-study and the

between-studies variabilities are unknown, but estimated with external data, and the size of the

internal study is large. Also, simulation studies show that the design guidelines that one should

consider when clinical trials endpoint follows a Bernoulli distribution are similar to those provided

in the Gaussian case.

Finally, we propose an overall procedure based on bootstrap algorithm to estimate power of the

test of the treatment effects in general outcomes model associated to the design of externally-

controlled randomized clinical trials when the sources of variability are unknown without any

requirements on the number of external studies, controlling type I error at desired level. An

application of this algorithm to Gaussian and time-to-event data is provided, which suggests that

also in the case of small number of available external studies, the use of existing data to design

clinical studies could have the potential to accelerate drug development process, provided that

the between-studies variability is small compared to some magnitude dependent on the actual

scenario.

3.2 Statement of the problem

We assume that n patients are enrolled in a clinical trial, aimed at comparing the effect of a

novel treatment with a standard control treatment. We denote by 0 < ρ ≤ 1 the randomiza-

tion ratio that characterizes the design of the trial, so that the participants will be splitted into
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3.2. Statement of the problem

an experimental group and a control group of expected size ne = round(ρn) and nc = n − ne,
respectively. Also, we assume that data from K previous studies addressing the same research

question on the control treatment are available when designing the forthcoming trial. We suppose

initially that the evaluation of treatment for a patient can be summarized by a single quantitative

measurement, which can be thought of as an observation from a Gaussian random variable.

If we design the forthcoming study as a standard randomized clinical trial, regardless of the in-

formation provided by external studies about the control treatment, we assume that the response

of the j-th patient follows

yj = β0 + β1Tj + εj for j = 1, . . . , n (3.1)

or, if we also take into account the effect of an additional covariate on the response,

yj = β0 + β1Tj + β2xj + εj for j = 1, . . . , n (3.2)

where in (3.1) and (3.2)

εj
i.i.d.∼ N(0, σ2

1).

In models (3.1) and (3.2), β0 is the average effect of the control therapy, β1 is the treatment

effect, β2 is the effect of the additional covariate, Tj denotes a binary random variable which

takes value 1 if the patient is assigned to the experimental group and 0 if the patient is assigned

to the control group, xj has general continuous or discrete distribution. We have that Tj = 0 for

j = 1, . . . , nc and Tj = 1 for j = nc + 1, . . . , n.

On the other hand, if we design the forthcoming study as a randomized or single-arm clinical

trials aided by external controls, we assume a linear mixed model for the response of the j-th

patient in the i-th study in the form

yij = β0 + β1Tij + bi + εij for i = 1, . . . ,K + 1, j = 1, . . . , ni (3.3)

or, if we add the effect of an additional covariate on the response,

yij = β0 + β1Tij + β2xij + bi + εij for i = 1, . . . ,K + 1, j = 1, . . . , ni (3.4)
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3.2. Statement of the problem

where in (3.3) and (3.4)

εij
i.i.d.∼ N(0, σ2

1) (3.5)

bi
i.i.d.∼ N(0, σ2

2). (3.6)

In models (3.3) and (3.4), β0 is the average effect of control therapy across studies, β1 is the

treatment effect, bi is the random effect of the i-th study, Tij denotes a binary random variable

which takes value 1 if the patient is assigned to the experimental group and 0 otherwise, xij

has general continuous or discrete distribution. We have that in external studies Tij = 0 (∀i =

1, . . . ,K, ∀j = 1, . . . , ni); instead, in the internal study TK+1j = 0 if j = 1, . . . , nc and TK+1j = 1

if j = nc + 1, . . . , nK+1. We assume that the values of the covariates xij are known for every

i = 1, . . . ,K and for every j = 1, . . . , ni, and we denote si =
∑ni

j=1 xij , sK+1 =
∑nK+1

j=1 xK+1j and

seK+1 =
∑nK+1

j=nc+1 xK+1j .

Random-effects models (3.3) and (3.4) are suitable choices for modeling externally-controlled

clinical trials, since we have a representation of what the random effects are. In fact, it is true

that a degree of variability in study estimates is present because of within-study sampling error,

but additional variability might occur for many reasons such as differences in the way studies are

conducted and how the treatment effects are measured. This additional variability is modelled

using the between-studies variance parameter σ2
2.

For convenience and simplicity, throughout the Chapter we assume that all the external studies

have the same size (i.e. ni = next∀i = 1, . . . ,K) and that the internal study has size n (i.e.

nK+1 = n). Also, due to randomization, we can assume that the additional covariate introduced

in models (3.2) and (3.4) is equally distributed in the control and experimental group of the

forthcoming study.

With models (3.1)-(3.4) we refer to different ways of designing novel clinical trials, when data

from previous trials, where the control therapy have been administered to a group of patients,

are at our disposal. In fact, there is a continuum way of using existing information on the control

therapy in forthcoming trial: the spectrum ranges from single-arm trial aided by external controls

(model (3.3) or model (3.4), ρ = 1), where all the future patients are assigned the experimental

group, to hybrid trial (model (3.3) or model (3.4), ρ < 1), where we combine two sources of

control data (randomized and external control data), towards standard randomized clinical trial

with randomization ratio ρ (model (3.1) or model (3.2)), which doesn’t encompass the external

control data. The aim of our work is to determine what is the choice among the above designs
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maximizing power of the study and to identify optimal randomization ratio in any scenario.

In particular, the null hypothesis that we test is that the treatment effect in models (3.1) -

(3.4) is zero against the alternative hypothesis that it is positive. In other words, the statistical

hypotheses tested are

H0 : β1 = 0 vs H1 : β1 > 0, (3.7)

where β1 is

· the coefficient defined in model (3.1) [Hp RCT]

· the coefficient defined in model (3.2) [Hp RCT-COV]

· the fixed coefficient defined in model (3.3) [Hp ECT]

· the fixed coefficient defined in model (3.4) [Hp ECT-COV]

In all cases, we set β1 = ∆ > 0 as the minimum desired response for the experimental treatment

to constitute a clinically relevant benefit.

Finally, we will denote by ρRCT and ρECT the values of the randomization ratio ρ that maximize

power of the tests of statistical hypotheses [Hp RCT] and [Hp ECT], respectively.

3.3 Methods

3.3.1 Analytic results

We suppose initially that we know the two sources of variability in models (3.1)-(3.4), i.e. the

within-study variance σ2
1 and the between-studies variance σ2

2. Under this assumption, in Propo-

sitions 4 and 2 we provide closed-form expression of power of the test of hypothesis (3.7) based

on standard Least Squares estimators of the treatment effects of these models. In particular, we

denote the statistical test of [Hp RCT] ([Hp RCT-COV]) based on Ordinary Least Squares esti-

mator of the treatment effect in the linear model (3.1) ((3.2)) by [Test RCT] ([Test RCT-COV]).

Similarly, we indicate the statistical test of [Hp ECT] ([Hp ECT-COV]) based on Generalized

Least Squares estimator of the treatment effect in the linear mixed model (3.3) ((3.4)) by [Test

ECT] ([Test ECT-COV]). As we show in the proofs of Propositions 4 and 5 in the Appendix,

estimates of power of the above tests are affected by the inverse of the variances of the Least

Squares estimators whose closed-form expressions involve the following quantities:

d1 =
nenc
nσ2

1

, (3.8)

d2 =

ncne
∑n
j=1 x

2
1j − n

(∑n
j=nc+1 x1j

)2
+ ne

[
2
(∑n

j=nc+1 x1j

)(∑n
j=1 x1j

)
−
(∑n

j=1 x1j

)2]
σ2
1

[
n
∑n
j=1 x

2
1j −

(∑n
j=1 x1j

)2] , (3.9)
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d3 =
nextKne(σ

2
1 + ncσ

2
2)(σ2

1 + nσ2
2) + ne(nσ

2
1 + ncnσ

2
2 − neσ2

1)(σ2
1 + nextσ

2
2)

σ2
1 [nextK(σ2

1 + nσ2
2)2 + n(σ2

1 + nextσ2
2)(σ2

1 + nσ2
2)]

(3.10)

and

d4 =
c1 − c2 + c3

σ2
1c0

, (3.11)

where

c0 =

(
nextKσ

2
1

σ2
1 + nextσ2

2

+
nσ2

1

σ2
1 + nσ2

2

)[K+1∑
i=1

(σ2
1 + niσ

2
2)si − σ2

2s
2
i

σ2
1 + niσ2

2

]
−

(
K+1∑
i=1

siσ
2
1

σ2
1 + niσ2

2

)2

, (3.12)

c1 =

(
nextKσ

2
1

σ2
1 + nextσ2

2

+
nσ2

1

σ2
1 + nσ2

2

){(
neσ

2
1 + nencσ

2
2

σ2
1 + nσ2

2

)[K+1∑
i=1

(σ2
1 + niσ

2
2)si − σ2

2s
2
i

σ2
1 + niσ2

2

]
−

−
[

(σ2
1 + nσ2

2)seK+1 − σ2
2nesK+1

σ2
1 + nσ2

2

]2}
, (3.13)

c2 =
neσ

2
1

σ2
1 + nσ2

2

{
neσ

2
1

σ2
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c3 =

(
K+1∑
i=1

siσ
2
1

σ2
1 + niσ2

2

){
neσ

2
1

σ2
1 + nσ2

2

[
(σ2

1 + nσ2
2)seK+1 − σ2

2nesK+1

σ2
1 + nσ2

2

]
−

−
(
neσ

2
1 + nencσ

2
2

σ2
1 + nσ2

2

)(K+1∑
i=1

siσ
2
1

σ2
1 + niσ2

2

)}
. (3.15)

We also denote the cumulative distribution function of a standard normal distribution and the

(1− α) quantile of a standard normal distribution by Φ and zα, respectively.

Proposition 4. Assume that models (3.1) and (3.2) are selected to design a randomized clinical

trial. Assume that σ2
1 is known. Then, controlling type I error at level α in testing [Test RCT],

power equals

1− Φ
(
zα −∆

√
d1

)
(3.16)

and, controlling type I error at level α in testing [Test RCT-COV], power can be computed as

1− Φ
(
zα −∆

√
d2

)
, (3.17)

where d1 and d2 are defined in (3.8) and (3.9).
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Proposition 5. Assume that models (3.3) and (3.4) are selected to design an externally-controlled

randomized clinical trial. Assume that σ2
1 and σ2

2 are known. Then, controlling type I error at

level α in testing [Test ECT], power equals

1− Φ
(
zα −∆

√
d3

)
, (3.18)

and, controlling type I error at level α in testing [Test ECT-COV], power can be computed as

1− Φ
(
zα −∆

√
d4

)
, (3.19)

where d3 and d4 are defined in (3.10) and (3.11).

Optimal randomization ratios ρRCT and ρECT are the values of ρ that maximize (3.16) and (3.18),

respectively, when variables σ2
1, σ

2
2,K, next, n are assigned some specific values. In particular,

ρRCT is 0.5, whatever scenario is considered. Instead, the values assumed by ρECT depend on

the scenario under examination; by way of illustration, refer to Table 3.1.

By comparing expressions (3.16)-(3.19), we can determine the characteristics of the design max-

imizing power of test of hypothesis (3.7) in any fixed scenarios.

Based on the findings from this research, the following recommendations are considered to be

appropriate:

. For all values of σ2
2, running an externally-controlled randomized clinical trial with optimal

randomization ratio ρECT is the optimal choice between all types of designs considered in

this chapter.

. For small values of σ2
2, if the number of external studies is quite large and the size of the

internal study is small (for example σ2
2 ≤ 0.01 when σ2

1 = 1,K > 5 and n ≤ 50), the optimal

randomization ratio ρECT is approximately 1 (Table 3.1, Supplementary Figure C.4). In this

scenario, externally-controlled single-arm trial is preferable to standard randomized clinical

trial with balanced randomization; the situation reverses for larger values of variability

between external studies and larger sizes of the internal study (Fig. 3.1).

. As the value of σ2
2 increases, ρECT gets closer to 0.5, faster if the size of the internal study

is larger or the number of external studies is smaller (Table 3.1). Meanwhile, estimates of

power of the test [Test ECT] related to an externally-controlled randomized clinical trial

with optimal randomization ratio ρECT becomes closer to that one of power of the test [Test

87



3.3. Methods

RCT] related to a standard randomized clinical trial with balanced randomization (Figure

3.1, Supplementary Figures C.4/C.6). Therefore, for large values of σ2
2, it is not convenient

to use external data anymore.

. When the number of available external studies is small and the variability between studies

is quite small (for example K ≤ 5 and σ2
2 = 0.01 when n = 100 and σ2

1 = 1), estimates

of power of the test [Test ECT] related to externally-controlled randomized clinical trials

characterized by different randomization ratios in the interval (0.5, 1) are very close to each

other (Supplementary Figure C.5). Any randomization ratio in this range would guarantee

approximately optimal characteristics of the study.

. If ne = nc = n
2 , then (3.18) is approximated by (3.16) in the limit as n and next tend to ∞.

Also, if ne = n, then (3.18) is approximated by 1 − Φ

(
zα −∆

√
K

(K + 1)σ2
2

)
in the limit

as n and next tend to ∞ (Supplementary Figure C.7).

. If the additional covariate in model (3.2) ((3.4)) is binary or it has general continuous or

discrete distribution such that the sum of the covariate values in the internal study are of

the same order of magnitude of the sum of the covariate values in the external studies, then

the set of recommendations given above doesn’t change (Figure 3.1).

So far, we have assumed that the error term variance σ2
1 and the between-studies variance σ2

2 are

known: this assumption have allowed us to derive theoretically the expressions of power given in

Propositions 4 and 5. Nevertheless, σ2
1 and σ2

2 could be unknown to researchers and in this case

these parameters could be estimated through external data.

Since model (3.3) for i = 1, . . . ,K is an example of one-way random effect ANOVA model, then,

calling upon theory in [76], we can estimate the between-studies and within-study variances based

on external data as

σ̂2
1,A =

∑K
i=1

∑n.ext
j=1 (yij − ȳi)2

K(next − 1)
(3.20)

and

σ̂2
2,A =

∑K
i=1(ȳi − ȳ)2

K − 1
− σ̂2

1

next
, (3.21)

where

ȳi =

∑next
j=1 yij

next
and ȳ =

∑K
i=1

∑n.ext
j=1 yij

Knext
. (3.22)
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next = 30,K = 5

n = 30 n = 100

σ2
2 = 0.01 1 0.767
σ2

2 = 0.05 0.750 0.575
σ2

2 = 0.3 0.545 0.514

next = 30,K = 30

n = 30 n = 100

σ2
2 = 0.01 1 0.936
σ2

2 = 0.05 0.815 0.594
σ2

2 = 0.3 0.554 0.516

next = 30,K = 50

n = 30 n = 100

σ2
2 = 0.01 1 0.960
σ2

2 = 0.05 0.822 0.596
σ2

2 = 0.3 0.554 0.516

next = 100,K = 50

n = 30 n = 100

σ2
2 = 0.01 1 0.980
σ2

2 = 0.05 0.825 0.597
σ2

2 = 0.3 0.554 0.516

Table 3.1: The table shows the values of the optimal randomization ratio ρECT for running
externally-controlled randomized clinical trials. The parameters σ2

2, n, next and K of model (3.3)
are considered in different scenarios and σ2

1 equals 1. The sample size of the internal study listed
in the table, n = 30 and n = 100, are selected in order that power of a standard randomized
clinical trial is expected to be 0.707 and 0.990 when ∆ = 0.6.

The estimators (3.20) and (3.21) are minimum variance unbiased [76]. Alternatively, differ-

ent methods, both iterative and non-interative, have been proposed to estimate the sources of

variability through a random-effect meta-analysis. Among the meta-analysis methods used for

estimating the between-studies variance and its uncertainty described in [91], REstricted Max-

imum Likelihood (REML) method is recommended as the best approach in terms of bias and

efficiency [83] [92]. Also, REML estimates of variance components in mixed model ANOVA are

consistent [27]. In the following, we denote REML estimate of σ2
2 by σ̂2

2,REML. Unfortunately, a

quite big number of observations is needed to have some reasonably accuracy in estimating the

variances σ2
1 and σ2

2 even by using the above estimators. Typically, the number of observations in

the external studies next is sufficiently large to obtain an accurate estimate of σ2
1 by σ̂2

1,A defined

in (3.21), even when we have few external studies at our disposal. Therefore, we could treat the

estimates σ̂2
1,A as the true σ2

1 value and ignore any associated sampling error: we estimate power

of the test [Test RCT] by formula (3.16) evaluated at σ̂2
1,A. Instead, a large number of studies is

required to obtain an accurate estimate of the variance σ2
2 by σ̂2

2,A (or σ̂2
2,REML). For instance,

when the number of eternal studies is small, σ̂2
2,A can assume negative values and σ̂2

2,REML can

be skewed towards zero. In order to correct for this, we can consider a biased estimator of σ2
2,

such as σ̂2
2,B =

∑K
i=1(ȳi − ȳ)2

K − 1
, which indeed is positive (Supplementary Figure C.8).

89



3.3. Methods

Figure 3.1: First row: Comparison of estimates of the power related to externally-controlled
single-arm trials ([Test ECT], ρ = 1), externally-controlled randomized clinical trials with opti-
mal randomization ratio ([Test ECT], ρ = ρECT ) and standard randomized clinical trials with
balanced randomization ([Test RCT], ρ = 0.5). The parameter values are n = 100, next =
30,K = 30, α = 0.05, σ2

1 = 1 and σ2
2 = 0.01, 0.05. Second row, first column: Comparison of

estimates of power of [Test RCT] vs [Test RCT-COV], assuming xj ∼ Be(p)∀j = 1, . . . , n with
0 < p < 1 in model (3.2). Second row, second column: Comparison of estimates of power of [Test
ECT] vs [Test ECT-COV], assuming xij ∼ Be(pi) for 0 < pi < 1 ∀j = 1, . . . , ni, i = 1, . . . ,K
and xK+1j ∼ Be(p)∀j = 1, . . . , nK+1 for 0 < p < 1 in model (3.4). The parameter values are
n = 100, next = 30,K = 30, α = 0.05, σ2

1 = 1, ρ = 0.5 and σ2
2 = 0.05.

However, when K is large (e.g. K ≥ 30), we can consider the estimate σ̂2
2 (or σ̂2

2,REML) as

the true σ2
2 value: by plugging this estimate and σ̂2

1,A into formula (3.18) we estimate power

of the test [Test ECT]. We will show through Monte Carlo simulations that if σ2
1 and σ2

2 are

unknown, the sample size of the internal study is large (n ≥ 30) and the number of external

studies is large (K ≥ 30), then estimates of power of the Wald tests of hypotheses [Hp RCT]

and [Hp ECT] agree with expressions (3.16) and (3.18), respectively, both when these expressions
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are evaluated at the true values of the variances and when they are evaluated at σ̂2
1,A and σ̂2

2,REML.

3.3.2 Bootstrap algorithm

When the number of available external studies is small and the sources of varibility are unknown,

it’s not possible to obtain an accurate estimate of σ2
2. Additionally, as in the case where the

sample size of the forthcoming trial is small (e.g. n < 30) and the between-studies variability

is unknown, exact distributional results for Maximum Likelihood estimator of β1 in model (3.3)

are unavailable and inference of this parameter can’t be based on the asymptotic normal approx-

imation of the distribution of this estimator. In these situations where the approach of previous

section would fail, we propose a bootstrap algorithm to test hypothesis [Hp ECT]. We denote

by [Test ECT-BOOT] the test performed by this algorithm. The algorithm is a variation of the

bootstrap schemes proposed by Efron [33] and by Rosenberger [69] as a nonparametric tool for

estimating standard errors and biases and as a parameteric tool for computing confidence inter-

vals for the probability of success on a treatment in adaptive clinical trial designs, respectively.

We summarize the method below in Algorithm 1. The procedure takes as input data from in-

ternal and external studies. First, model (3.3) is fitted to these data by Maximum Likelihood

and the estimators of the parameters β0, β1, σ
2
1, σ

2
2 are jointly determined; in particular Maximum

Likelihood estimator β̂1 is computed. Next, replicates of data of internal and external studies

are generated by sampling from model (3.3), where parameters β0, σ2
1 and σ2

2 are evaluated at ȳ,

σ̂2
1,A and σ̂2

2,REML (or σ̂2
2,B if K < 30) based on external data and β1 = 0. For each replicated

dataset b, model (3.3) is fitted to data by Maximum likelihood and the estimators of the pa-

rameters β0, β1, σ
2
1, σ

2
2 are jointly determined, in particular Maximum Likelihood estimator β̂

(b)
1

is computed. Then, estimates β̂
(b)
1 for b = 1, . . . , B are compared to β̂1: an empirical p-value is

given by the proportion of bootstrap estimates which are greater than the actual estimate of β1.

Last, the null hypothesis is rejected if this p-value is less than or equal to targeted α level.

Therefore, we could estimate power of the test [Test ECT-BOOT] as the proportion of rejections

accrued by bootstrap algorithm when it is applied to different sets of input datasets, which can

be simulated from model (3.3), once β0, β1, σ
2
1 and σ2

2 are set to some values of interest.

Remark: extension to other outcomes models

Algorithm 1 can be easily generalized to different outcomes model, where exact distributional

results for any estimators of fixed effect coefficients in mixed models are not available. For
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example, if we assume outcomes distribution in the natural exponential family and a generalized

linear model where the inverse of the link function of the mean of the outcomes distribution

depends on a linear predictor of form β0 + β1Tij + bi for i = 1, . . . ,K + 1, j = 1, . . . , ni where

β0, β1, Tij , bi are defined as in (3.3), then the distribution of the Maximum Likelihood estimator

of the treatment effect β1 can not be approximated by a Gaussian distribution when the size of

the trial is small or the number of available external studies is small (e.g. n < 30 or K < 30) and

the variability between studies σ2
2 is unknown.

The same holds for the distribution of penalized Maximum Likelihood estimator of the fixed

effect coefficient β1 of a mixed effects Cox model with hazard function of form λ0(t)eβ1Tij+bi for

i = 1, . . . ,K + 1, j = 1, . . . , ni where β1 and Tij , bi are defined as in (3.3) and λ0(t) is a baseline

hazard function [66]. However, it is straightforward to adjust Algorithm 1 to test hypothesis

H0 : β1 = 0 vs H1 : β1 > 0, where β1 is the treatment effect of one of the mixed-effects models

above. By way of example, we will also assume these models to design externally-controlled

randomized clinical trials and we will provide estimates of power of the test of the treatment

effects based on bootstrap procedure or Wald-type testing and Monte Carlo simulations.

Remark: extension to model (3.4)

When the variability between studies is unknown but we suspect that there is substantial un-

accounted heterogeneity in the outcome of interest across studies assuming model (3.3), i.e. in

cases where the meta-analytic estimate σ̂2
2,REML of parameter σ2

2 in (3.3) is large, it may be

relevant to continue investigating whether such heterogeneity may be further explained by dif-

ferences in characteristics of the studies (methodological diversity) or study populations (clinical

diversity). For instance, we could suspect that one variable is related with the outcomes and,

indeed, explains a lot of responses variability. In this case, we could decide to include a covariate

in model (3.3), leading to model (3.4): there are several inherited methods from meta-analysis

that we could apply to estimate unknown parameters in model (3.4) using external data, see

[62]. Then, if the number of available external studies is large, estimates of power of test [Test

ECT-COV] are given by (3.19) evaluated at the estimates of parameters σ2
1, σ

2
2 obtained with

the just mentioned methods. Instead, when the number of available external studies is small, a

bootstrap algorithm similar to Algorithm 1 can be used to test hypothesys [Hp ECT-COV]. In

particular, bootstrap data could be sampled from model (3.4) where β0, β2 and σ2
1 are evaluated

at the estimates obtained by fitting this mixed-effects model (excluding parameter β1) on external

data, β1 takes zero value and σ2
2 equals the variance of the estimates of fixed-effect coefficients

92



3.4. Simulations

obtained by fitting a fixed-effect version of model (3.4) on external data.

Algorithm 1: A bootstrap algorithm for testing treatment efficacy (Plug-in estimates, test based
on p-value), Gaussian outcomes, model (3.3)

Input: Data from experimental study of size n and data from K external studies of size next
(covariates and realizations of model (3.3))

Output: Test hypothesis [Hp ECT] on the treatment effect parameter β1 of (3.3)
Fit model (3.3) to the input dataset by Maximum Likelihood;

Estimate the treatment effect by β̂1;

Estimate the variance of β̂1 by Var(β̂1);

Determine estimators β̂0 = ȳ, σ̂2
1 = σ̂2

1,A of β0, σ
2
1 based on external data;

if K < 30 then
Estimate σ2

2 by σ̂2
2 = σ̂2

2,B based on external data;

else
Estimate σ2

2 by σ̂2
2 = σ̂2

2,REML based on external data;

end
for i ∈ 1 to B do

Generate a new dataset of total size n+ nextK from model (3.3) where parameters β0, σ
2
2, σ

2
1

are evaluated at β̂0, σ̂
2
1, σ̂

2
2 and β1 = 0 ;

Fit model (3.3) to bootstrap dataset by Maximum Likelihood ;

Estimate the treatment effect by β̂
(b)
1 ;

Estimate the variance of β̂
(b)
1 by Var(β̂

(b)
1 );

end

Compute p̂ = 1
B

∑B
b=1 1

(
β̂
(b)
1√

Var(β̂
(b)
1 )

> β̂1√
Var(β̂1)

)
;

Reject H0 at level α if p̂ ≤ α;

3.4 Simulations

In all the numerical examples that we provide, we set α = 0.05.

Gaussian outcomes

First, we verify the analytic results of the previous section using Monte Carlo simulations: we

simulate data from model (3.1) ((3.3)) under the alternative hypothesis given in [Hp RCT] ([Hp

ECT]), we perform Wald test for the coefficient β1 and we estimate power of this test as the

proportion of statistically significant p-values across simulations.
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In the first subplot of Figure 3.2 we compare the estimates of power of Wald test of [Hp RCT]

based on 1000 simulations and expression (3.16). The sample size n is set equal to 100 and we

use σ2
1 = 1 and ρ = 0.5. Similarly, in the second subplot of Figure 3.2 we point out that the

graphic of power of Wald test of [Hp ECT] based on 1000 simulations overlaps with the graphic

of formula (3.18) evaluated at the true value of σ2
1 and σ2

2 (known variances) and with the graphic

of formula (3.18) evaluated at the average of estimators σ̂2
1,A and σ̂2

2,REML based on external data

across iterations. This is due to the fact that asymptotically Maximum Likelihood estimator of

treatment effect parameter in model (3.3) computed when the sources of variability are unknown

coincide with Generalized Least square estimator of the same parameter computed under the

assumption that the sources of variability σ2
1 and σ2

2 are known and they are equal to the true

parameter values or to the consistent and unbiased estimators σ̂2
1,A and σ̂2

2,REML based on exter-

nal data. In this example, n = 100, next = 30,K = 30, σ2
1 = 1, ρ = 0.5 and σ2

2 = 0.05.

Then, we validate the bootstrap Algorithm 1 proposed as a way to estimate power of the test [Test

ECT-BOOT] whatever number of external studies K are available. The second row of Figure

3.2 compares estimates of power based on bootstrap Algorithm 1 to expression (3.18) evaluated

at the true value of σ2
1 and σ2

2 (known variances). In this case n = 100, next = 30, σ2
1 = 1, ρ =

0.5, σ2
2 = 0.05 and K = 30, 5. We notice that estimates of power of test [Test ECT-BOOT] (based

on 600 iterations of bootstrap algorithm with B = 600 bootstrap datasets) are in accordance with

expression (3.18), also when the number of external studies is small (K = 5). However, for ran-

domization ratios different than 0.5, when we have few external studies at our disposal, estimates

of power of test [Test ECT-BOOT] are in general smaller or equal to that ones of test [Test ECT].

Both tests are testing hypothesys [Hp ECT], but the former is not assuming that the between-

studies and within-study variances are known.

Bootstrap estimates of the probability of type I error are coherent with the aim of controlling the

probability of type I error at level α, but when ∆ 6= 0 we encounter a loss of power in testing

[Test ECT-BOOT] compared to testing [Test ECT]. This phenomenon is more pronounced for

values of ρ close to 1. This is due to the fact that we are not able to estimate accurately the

between-studies variance σ2
2 when we have few external studies at our disposal and in Algorithm

1 we generate bootstrap data by sampling from model (3.3) evaluated at a positive but biased

estimate of σ2
2, that is σ̂2

2,B. Also, we are not able to identify precisely the contributions of the

random effect and of the treatment effect in the internal study when the randomization ratio is

close to 1.
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Figure 3.2: First row, first column: Comparison of theoretical expressions of power (3.16) and
estimates of power of Wald tests for hypotheses [Hp RCT] based on Monte Carlo simulations.
First row, second column: Comparison of theoretical expressions of power (3.18) and estimates
of power of Wald tests for hypotheses [Hp ECT] based on Monte Carlo simulations.
Second row: Comparison of estimate of power of test of hypothesis [Hp ECT] (formula (3.18)
evaluated at the true value of σ2

1 and σ2
2) and estimates of power of test [Test ECT-BOOT] when

ρ = 0.5.

By comparing the estimates of power of test [Test ECT-BOOT] to the estimates of power of test

[Test RCT] related to a randomized clinical trials with balanced randomization (Appendix), we

can conclude as follows: when we have few external studies at our disposal and the between-study

variability is unknown but low (for example σ2
2 ≤ 0.05 when n = 100 and K = 5) running an

externally controlled randomized clinical trial with randomization ratio close to 0.5 would still
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guarantee higher power than running a standard randomized clinical trial with balanced random-

ization: this gain in power is not present anymore when considering larger values of variability

between studies.

Bernoulli outcomes, large number of external studies

In many trials it is impossible to obtain a single quantitative measure of response to treatment for

a patient. Instead, a set of rules may be defined to determine if each patient achieved a response

or not and this can be thought as the mean of a binary variable scoring 1 for response and 0 for

no response. When outcomes of the patients enrolled in the forthcoming clinical trial and the

responses collected in K external studies of size next about the control treatment are Bernoulli

random variables, we assume logistic regression models and logistic regression models with ran-

dom intercepts, with same covariates and random effects as in models (3.1)-(3.4), in order to

design randomized clinical trials and externally-controlled randomized clinical trials, respectively

(see Appendix for further details).

Figure 3.3 compares the estimates of power of Wald test for the null hypothesis of no treatment

effect versus the alternative hypothesis of positive treatment effect in these models based on

Monte Carlo simulations (1000 simulated trials), when K and n are sufficiently large to consider

Gaussian approximation of Wald test statistics. If the optimality goal is to maximize the power

of the study, then the evidence-based recommendations about the design characteristics of the

forthcoming clinical trial with binary endpoints are similar to those stated in Section 3.3.1 in the

case of Gaussian endpoints, at least when a large number of external studies is available. For small

values of between-studies variability, the best choice is to design a single-arm trial supported by

external controls; instead for larger values of between-studies variability the optimal design is an

externally-controlled randomized clinical trial with balanced randomization even if for very large

values of between-studies variability it is not convenient to use external data anymore. Also, the

set of guidelines remains the same if we add in the models additional binary covariates. In fact,

if it is true that the additional covariate could explain variation in the outcomes and therefore

reduce the estimate of the between-studies or within-study variance parameters, but it is also

true that under the above assumptions on the distribution of the additional covariate, estimates

of power of the test related to the models without covariates coincide with estimates of power

of the test related to the models with additional covariate, as long as the parameters shared by

these models assume the same value.
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Figure 3.3: First row: Comparison of power of Wald test for the null hypothesis of no treatment
effect versus the alternative hypothesis of positive treatment effect related to design of RCT with
randomization ratio ρ = 0.5 and of ECT with randomization ratio ρ = 0.5, 0.7, 1 with binary
endpoints. We set the parameters values n = 150, next = 30,K = 30 and σ2

2 = 0.01, 0.2. Second
row: Comparison of power of Wald test for the null hypothesis of no treatment effect versus
the alternative hypothesis of positive treatment effects related to design of RCT (first column)
and ECT (second column) assuming models without an additional binary covariate (RCT and
ECT) and with an additional binary covariate (RCT-COV and ECT-COV) for fixed values of
between-studies and within-study variances. The parameters values are n = 150, next = 30,K =
30, ρ = 0.5, σ2

2 = 0.01 and p, pi’s are random numbers in the interval (0,1).

Time-to-event outcomes, small number of external studies

We assume that the outcomes of the patients enrolled in the forthcoming clinical trial and the re-
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sponses collected in K external studies of size next about the control treatment are time-to-event.

We consider Cox model and mixed effects Cox model with hazard function denoted by λ0(t) to

design randomized clinical trial and externally-controlled randomized clinical trials, with same

covariates and random effects as in models (3.1) and (3.3), but excluding the intercept term β0.

If we design the trial as a randomized clinical trial and our goal is to test the null hypothesis of

no treatment effect against the one-sided alternative of positive treatment effect, which is repre-

sented by the coefficient of a standard Cox model, then we use the log-rank test, which is the

most powerful testing method, when the proportional hazards assumption holds, to quantify or

measure the relative difference between the survival curves of different arms [45]. As we can see

from Table 3.2, the optimal randomization ratio for randomized clinical trials is 0.5.

On the other hand, if we design the trial as an externally-controlled randomized clinical trial and

our goal is to test the null hypothesis of no treatment effect against the one-sided alternative

of positive treatment effect, which is represented by one fixed-effect coefficient of a mixed-effect

Cox model, we apply a bootstrap algorithm similar to Algorithm 1, see Appendix. Table 3.2

shows estimates of power in some fixed scenarios, where the bootstrap procedure is iterated for

1000 times and the number of bootstrap samples is 600. Bootstrap estimates of type I error are

coherent with the aim of controlling type I error at level 0.05.

ECT σ2
2 = 0.01 σ2

2 = 0.05 σ2
2 = 0.1 RCT

ρ = 0.5 0.917 0.870 0.852 ρ = 0.5 0.900
ρ = 0.7 0.908 0.830 0.790 ρ = 0.7 0.827
ρ = 1 0.744 0.503 0.364 ρ = 0.3 0.838

Table 3.2: Power estimates of test of the treatment effect related to ECTs and RCTs with time-
to-event endpoints. The sample size of the internal study is 100, the number of external studies
is 5 and their size is 30. Also, the minimum desired response for the experimental treatment to
constitute a clinically relevant benefit is ∆ = 0.6.

Nevertheless, when we have few external studies at our disposal and the between-study variability

is unknown but low (for example σ2
2 ≤ 0.01 when n = 100 and K = 5) running an externally

controlled randomized clinical trial with randomization ratio close to 0.5 would still guarantee

higher power than running a standard randomized clinical trial with balanced randomization:

this gain in power is not present anymore when considering larger values of between-studies

variability. As we have noticed previously, similar considerations applied also in the case of

Gaussian outcomes.
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Remark: model misspecification

The testing procedures that we have introduced in Sections 3.3.1 and 3.3.2 above to evaluate the

treatment effect in externally-controlled randomized clinical trials with Gaussian endpoints are

based on model assumptions (3.3). A priori, these methods could fail if the model is misspecified:

model misspecification refers to all of the ways that the model might fail to represent the real

situation. For instance, the random effect distribution might be non-normal, or the error terms

might be heteroscedastic/non-normal.

In particular, our testing procedures rely on the classical likelihood theory statement that, when

the assumed model is correct (linear mixed model), the Maximum Likelihood estimators for fixed

effects and variance components are consistent and asymptotically normally distributed with the

inverse Fisher information matrix as asymptotic covariance matrix. Indeed, it has been been

shown that these estimators are consistent and asymptotically normally distributed, even when

the random-effects distribution is non-normal and general regularity conditions hold [48], but a

sandwich-type correction to the inverse Fisher information matrix is then needed in order to get

the correct asymptotic covariance matrix [90].

Nevertheless, research carried out in recent years illustrates that similar results do not hold when

responses are non-normal and we consider generalized linear mixed models [61, 53]. In particular,

when the random effect distributions are misspecified, the Maximum Likelihood estimators are

inconsistent and the type I error rate and the power of Wald test for treatment effect can be also

severely affected, depending on the shape and the variance of the random-effects distribution.

As a consequence, the testing procedure and power estimates that we have considered in Section

3.4 when endpoints are Bernoulli or time-to-event is strictly connected to the assumptions of the

model. Therefore, our approach should be incorporated into a more general sensitivity analysis

framework, where different random-effects distributions are considered and the inferences ob-

tained are compared. If the inferential procedures are similar, irrespective of the random effects

distribution used to obtain them (normal / non-normal), one could feel relatively confident about

the results. On the other hand, if the results vary considerably, caution is required.
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3.5 Discussion

In Chapter 3, we provide a quantitative framework to support the choice of using existing data

about the control treatment in the design of novel clinical trials. We use power as a metric to

compare standard randomized clinical trials and externally-controlled randomized clinical trials

designs.

When outcomes are Gaussian and the between-studies and within-study variances are known, we

provide closed-form expression of power of the test of the null hypothesis of no treatment effect

against the alternative hypothesis of positive treatment effect related to different designs and we

propose a way to determine the type of design of the forthcoming clinical trial and the associated

randomization ratio that are optimal. We show that if the between-studies and within-study

variances are unknown, but a large number of external studies is available, then the theory de-

veloped under the assumption that the variances are known still holds: it is sufficient to replace

in computation the two unknown variances by their estimates based on external data obtained

using one-way random-effect anova theory and random-effect meta-analysis. Simulation studies

are provided to confirm our findings, when the size of internal study is large.

Also, we propose a bootstrap algorithm that allows us to estimate power of the test of the treat-

ment effect related to externally-controlled randomized clinical trial designs when the between-

studies and within-study variances are unknown and a small number of external studies is available

or a small number of patients are enrolled in the forthcoming study. We emphasize that one can

apply a similar bootstrap procedure to estimate power of the test of the treatment effects (fixed-

effects coefficients) when outcomes have a distribution in the natural exponential family and we

consider a generalized linear mixed model where the inverse of the link function of the mean of

the outcomes distribution depends on a linear predictor similar to that one in (3.3) and we don’t

put any requirements on the number of external studies and size of the forthcoming trial. This is

true also when outcomes are time-to-event and we employ mixed-effect Cox proportional hazard

model.

According to our analysis, if the sources of variability are known or they are unknown but a large

number of external studies is available, then externally-controlled randomized clinical trials with

optimal randomization ratio ρECT are superior to standard randomized clinical trials with optimal

randomization ratio ρRCT . We show that the variability between studies plays a crucial role in

determining the choice of running a standard randomized clinical trial or an externally-controlled

single-arm trial. This comes as no surprise: it is intuitive that if the sources of variability are

known, or a large number of external studies is available, and both the heterogeneity between
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studies and the size of the forthcoming study are not very large, then it is preferable to design

a single-arm trial employing external controls instead of a standard randomized clinical trial

with equal randomization ratio. Instead, as the heterogeneity between studies increases, two-arm

studies should be preferred over externally-controlled single-arm studies, since in this case we

need additional and more precise information on the control treatment additional to that one

provided by external studies. Even if the sources of variability are unknown and the number of

external studies is small, then the magnitude of the between-studies variability is a key factor in

the decision of running a standard balanced randomized clinical trial or an externally-controlled

clinical trial with balanced randomization.

We consider power related to externally-controlled randomized clinical trials as the probability of

avoiding a type II error in testing the null hypothesis of no treatment effect versus the alternative

hypothesis of positive treatment effect. Similarly, the testing procedure presented here allows

us to control the probability of type I error at a targeted level. On the other hand, one could

consider the conditional probability of avoiding type II error and the conditional probability of

type I error of our testing procedure, given external data. In other words, we adopt a marginal

perspective, where we integrate out a level of variability given by external data in estimating

power and the probability of type I error. In particular, the choice of the optimal randomiza-

tion ratio is affected by the estimates of the parameters of mixed-effects models explaining the

data generating mechanism based on external data. Indeed, one could look at operating char-

acteristics marginally (before looking at external data, considering external data as random) or

conditionally (given external data). The estimate of the probability of type I error conditioned

on external data depends upon the specific collection of external data under examination: the

variability of the conditional probability distribution of type I error given external data decreases

as the sample size of the internal study, the number of external studies or the variance of the

random effects gets larger (Appendix, Figure C.3). Nevertheless, the conditional probability of

type I error does not generally differ much from targeted α level, except where the variance of the

random effects is very small. Similarly, when the incorporation of external information in a novel

trial is performed through historical borrowing mechanisms adopting a Bayesian perspective, this

could have harmful consequences on the trials’ frequentist (conditional) operating characteristics

in case of inconsistency between prior information and data collected in the novel trials [22, 93].

Indeed, to remedy this, one could point to a priori reduced fixed (nominal) significance level.

Of course, it is also possible to consider a Bayesian version of the models that we have consid-

ered. For instance, we could choose a hierarchical modeling by assuming prior distributions for
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the parameters β0, β1, β2, σ
2
1 and σ2

2 in (3.4).

In that case, the prior distribution for parameter β1 would have a large impact on inference and

this could be potentially harmful when few external studies are available.

To sum up, our recommendations can be applied to any disease and to general clinical trials

intended to demonstrate the efficacy of an experimental treatment: incorporating existing infor-

mation on the control treatment in the design of a novel clinical trial could lead to a more efficient

allocation of patients in the execution of clinical trials and accelerate the drug development pro-

cess.

Augmenting clinical trials with external data and borrowing strength from external control infor-

mation is particularly valuable in rare disease settings or in situations where there isn’t enough

time to conduct the study. The enhanced availability of external data sources have promise to

improve the execution of traditional clinical trials and strengthen the current ecosystem of data

supporting healthcare decisions.

Reference Bonsaglio, M., Fortini, S., Ventz, S., Trippa, L. (2021+), Incorporating external data

in the design of novel trials
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Appendix C

Supplement to Chapter 3

C.1 Proofs of analytic results

Proof of Proposition 4

Formula (3.16): randomized clinical trial in standard formulation, [Test RCT]

We can rewrite model (3.1) in form

y ∼ N(Xβ, σ2
1I), (C.1)

where X is an n × 2 design matrix of full rank with the j-th row (1, Tj); y is a n × 1 vector of

responses of the patients, β = (β0, β1)′ is the vector of the parameters; I is the identity matrix

of dimension n× n. We test hypothesis [Hp RCT] under the assumptions of Proposition 4.

We denote with β̂ the Ordinary Least Squares estimator of β. It has bivariate normal distribution

with mean β and covariance matrix

Var(β̂) = σ2
1(X ′X)−1 =

σ2
1

ncne

[
ne −ne
−ne n

]
. (C.2)

The variance of β̂1 equals the entry (2,2) of (C.2). The test statistic is Z :=
β̂1
√
nenc√
nσ1

∼

N(0, 1) under H0 and Z ∼ N

(
∆
√
nenc√
nσ1

, 1

)
under H1. We reject H0 if Z > zα, where zα is the

threshold to control targeted type I error rate at level α: P (Z > zα | H0 True) = α. Therefore,

power of the test [Test RCT] equals (3.16).
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Formula (3.17): randomized clinical trial in standard formulation, [Test RCT-COV]

We can rewrite model (3.1) in form

y ∼ N(Xβ, σ2
1I), (C.3)

where X is an n × 3 design matrix of full rank with the j-th row (1, Tj , xj); y is a n × 1 vector

of responses of the patients, β = (β0, β1, β2)′ is the vector of the parameters; I is the identity

matrix of dimension n× n.

We test [Hp RCT-COV] assuming that σ2
1 is known. We denote with β̂ the Ordinary Least

Squares estimator of β. It has bivariate normal distribution with mean β and covariance matrix

Var(β̂) = σ2
1(X ′X)−1 = σ2

1


n ne

∑n
j=1 xj

ne ne
∑n

j=nc+1 xj∑n
j=1 xj

∑n
j=nc+1 xj

∑n
j=1 x

2
j


−1

(C.4)

The variance of β̂1, denoted by Var(β̂1), equals the entry (2,2) of (C.4), that is

σ2
1

[
n
∑n
j=1 x

2
j −

(∑n
j=1 xj

)2]
n

[
ne
∑n
j=1 x

2
j −

(∑n
j=nc+1 xj

)2]
+ ne

[
−ne

∑n
j=1 x

2
j + 2

(∑n
j=nc+1 xj

)(∑n
j=1 xj

)
−
(∑n

j=1 xj

)2] .
(C.5)

Controlling targeted type I error rate at level α, power of the test [Test RCT-COV] equals

1− Φ

(
zα − ∆√

Var(β̂1)

)
, where Var(β̂1) is given in (C.5). This gives (3.17).

Proof of Proposition 5

Formula (3.18): externally-controlled randomized clinical trials, [Test ECT]

We can rewrite model (3.3) in form

yi ∼ N(Xiβ, σ
2
1I + σ2

21i1
′
i), (C.6)

where Xi is an ni × 2 design matrix of full rank with the i-th row (1, Tij); yi is a ni × 1 vector

of responses of the patients in the i-th study, β = (β0, β1)′ is the vector of the fixed effects; 1i is

a ni × 1 unit vector; I is the identity matrix of dimension ni × ni. The model is identifiable, see
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Chapter 3 in [28]. We test hypothesis [Hp ECT] under the assumptions of Proposition (1) and

we define

x̄i = n−1
i X

′
i1i, ȳi = n−1

i y
′
i1i.

The Generalized Least Squares estimator of β is

β̂ =

[
K+1∑
i=1

(
X ′iXi −

n2
iσ

2
2

σ2
1 + niσ2

2

x̄ix̄
′
i

)]−1 [∑
i

(
X ′iyi −

n2
iσ

2
2

σ2
1 + niσ2

2

x̄iȳi

)]
. (C.7)

It is unbiased and normal with covariance matrix

Var(β̂) = σ2
1

[
K+1∑
i=1

(
X ′iXi −

n2
iσ

2
2

σ2
1 + niσ2

2

x̄ix̄
′
i

)]−1


nextKσ

2
1

σ2
1 + nextσ2

2

+
nσ2

1

σ2
1 + nσ2

2

neσ
2
1

σ2
1 + nσ2

2
neσ

2
1

σ2
1 + nσ2

2

ne(σ
2
1 + ncσ

2
2)

σ2
1 + nσ2

2


−1

. (C.8)

Refer to [28] Chapter 2 for the statistical properties of estimator (C.7).

In particular, the variance of β̂1 (i.e. Var(β̂1)) equals the entry (2,2) of (C.8), that is

Var(β̂1) =
nextKσ

2
1(σ2

1 + nσ2
2)2 + nσ2

1(σ2
1 + nextσ

2
2)(σ2

1 + nσ2
2)

nextKne(σ2
1 + ncσ2

2)(σ2
1 + nσ2

2) + ne(nσ2
1 + ncnσ2

2 − neσ2
1)(σ2

1 + nextσ2
2)
. (C.9)

Now, Z := β̂1√
Var(β̂1)

∼ N(0, 1) under H0 and Z ∼ N
(

∆√
Var(β̂1)

, 1

)
under H1. Controlling type I

error at level α, power of the test [Test ECT] can be computed as 1−Φ

(
zα − ∆√

Var(β̂1)

)
, where

Var(β̂1) equals (C.9). This proves (3.18).

Formula (3.19): externally-controlled randomized clinical trials, [Test ECT-COV]

We can rewrite model (3.4) in form

yi ∼ N(Xiβ, σ
2
1I + σ2

21i1
′
i), (C.10)

where Xi is an ni×3 design matrix of full rank with the i-th row (1, Tij , xij); yi is a ni×1 vector

of responses of the patients in the i-th study, β = (β0, β1, β2)′ is the vector of the fixed effects; 1i
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is a ni × 1 unit vector; I is the identity matrix of dimension ni × ni.
We test hypothesis [Hp ECT-COV] and we denote with β̂ the Generalized Least Squares estimator

of β. Also, we define

x̄i = n−1
i X

′
i1i, ȳi = n−1

i y
′
i1i.

Then,

β̂ =

[∑
i

(
X ′iXi −

n2
iσ

2
2

σ2
1 + niσ2

2

x̄ix̄
′
i

)]−1 [∑
i

(
X ′iyi −

n2
iσ

2
2

σ2
1 + niσ2

2

x̄iȳi

)]
(C.11)

is unbiased and normal with covariance matrix

Var(β̂) = σ2
1

[∑
i

(
X ′iXi −

n2iσ
2
2

σ2
1 + niσ2

2

x̄ix̄
′
i

)]−1

= σ2
1
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−1

.

The variance of β̂1 equals the entry (2,2) of Var(β̂), that can be computed as Var(β̂1) = d−1
4

with d4 given in (3.11). Controlling targeted type I error rate at level α, power of the test [Test

ECT-COV] equals (3.19).

C.2 Bernoulli outcomes: models and inference

In Section 3.4 we consider the design of a novel trial with binary endpoints. In particular, when

we run it as a standard randomized clinical trial, regardless of external information, we assume

that the response of the j-th patient in the forthcoming study follows

P (yj = 1 | Tj) = πj

with (
πj

1− πj

)
= β0 + β1Tj , (C.12)
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or, if we take into account the effect of an additional covariate (binary) on the response in (C.12),

P (yj = 1 | Tj , xj) = πj

with (
πj

1− πj

)
= β0 + β1Tj + β2xj . (C.13)

In the above models β0 is the effect of the control therapy, β1 is the treatment effect, β2 is the

effect of the additional covariate, Tj denotes a binary random variable which takes value 1 if

the patient is assigned to the experimental group and 0 if the patient is assigned to the control

group, xj ∼ Be(p) for some 0 < p < 1. We assume that Tj = 0 for j = 1, . . . , nc and Tj = 1 for

j = nc + 1, . . . , n.

Instead, if we use external information provided by K external studies with binary endpoints and

we design the novel study as an externally-controlled randomized clinical trial, then we assume

a logistic regression model with random intercept for the response of the j-th patient in the i-th

study in the form

P (yij = 1 | Tij , bi) = πij

and (
πij

1− πij

)
= β0 + β1Tij + bi for i = 1, . . . ,K + 1, j = 1, . . . , ni (C.14)

or, if we add the effect of an additional covariate on the response,

P (yij = 1 | Tij , xij , bi) = πij

and (
πij

1− πij

)
= β0 + β1Tij + β2xij + bi. (C.15)

In models (C.14) and (C.15)

bi
i.i.d.∼ N(0, σ2

2),

β0 is the population-average intercept, β1 is the treatment effect, bi is the random effect of the

i-th study, Tij denotes a binary random variable which takes value 1 if the patient is assigned

to the experimental group and 0 otherwise, xij ∼ Be(pi) for some 0 < pi < 1. In the external

studies we have Tij = 0 (∀i = 1, . . . ,K, ∀j = 1, . . . , ni); instead, in the internal study we have
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TK+1j = 0 if j = 1, . . . , nc and TK+1j = 1 if j = nc + 1, . . . , nK+1 .

We assume that all the external studies have the same size (ni = next∀i = 1, . . . ,K) and that the

internal study has size n (nK+1 = n).

We test statistical hypotheses H0 : β1 = 0 vs H1 : β1 > 0 where β1 is

· the coefficient defined in model (C.12) [Hp RCT-BE]

· the coefficient defined in model (C.13) [Hp RCT-COV-BE]

· the fixed coefficient defined in model (C.14) [Hp ECT-BE]

· the fixed coefficient defined in model (C.15) [Hp ECT-COV-BE]

In all cases, we set β1 = ∆ as the minimal effect of the experimental arm compared to standard

of care that we wish to detect.

Estimating treatment effect in randomized clinical trial

If our goal is to test hypothesis [Hp RCT-BE] on the coefficient β1 of model (C.12) under the

assumption that n is large (e.g. n ≥ 30), then we consider Wald-type test ([Test RCT-BE]). The

large sample distribution of the Maximum Likelihood estimator β̂1 of β1 is normal with mean

β1 and variance Var(β̂1) which equals the entry (2,2) of the inverse of the Fisher information

of β = (β0, β1). This variance has a closed form expression, since the model is in the class of

Generalized Linear Models, see Chapter 7 of [28].

Simple computation shows that the information matrix equals

n∑
j=1

eβ0+β1xj

(1 + eβ0+β1xj )2

[
1 xj

xj x2
j

]
,

so that Var(β̂1) =

(∑n
j=1

eβ0+β1xj

(1 + eβ0+β1xj )2

)−1

. Therefore, the Wald test statistic is Z := β̂1√
Var(β̂1)

∼

N(0, 1) under H0 and Z ∼ N
(

∆√
Var(β̂1)

, 1

)
under H1.

Controlling targeted type I error rate at level α, power of the test [Test RCT-BE] can be com-

puted as 1−Φ

(
zα − ∆√

Var(β̂1)

)
. In simulations, we generate data following model (C.12), we fit

the model on simulated data by Maximum Likelihood estimation and we use Wald-like testing

procedure to estimate power as explained above. A similar approach would allow us to estimate

power of the Wald test for the hypothesis [Hp RCT-COV-BE] related to model (C.13).
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Estimating treatment effect in externally-controlled randomized clinical trials

If our goal is to test hypothesis [Hp ECT-BE] on the coefficient β1 of model (C.14) under the

assumption that K and n are large (e.g. n,K ≥ 30) and that σ2
2 is unknown, then we consider

Wald-type test ([Test ECT-BE]). We can assume that log-likelihood of (β, σ2
2), given observations

from model (C.14), takes the form

l(β, σ2
2) = −K + 1

2
log(2πσ2

2) + β′
K+1∑
i=1

ni∑
j=1

yijxij +
K+1∑
i=1

log

∫ +∞

−∞
ehi(β;u)du, (C.16)

where β = (β0, β1)′, xij = (1, Tij)
′ and hi(β;u) =

∑ni
j=1 yiju −

u2

2σ2
2
−
∑ni

j=1 log(1 + eβ
′xij+u).

In order to determine the Maximum Likelihood estimators of β and σ2
2, we are concerned with

the maximization of (C.16) over β and σ2
2. One could consider two different approaches to es-

timation. Iterative methods, such as Empirical Fisher scoring algorithm, maximize (C.16) and

involve several one-dimensional integration for each study. Likelihood approximation, such as

quadratic or Laplace, avoid integration. When the number of studies and the size of the studies

are large, the Maximum Likelihood estimator β̂1 of β1 is asymptotically unbiased and consistent,

asymptotically normal and efficient (see Chapter 7 of [28]). Therefore, in simulation studies, we

generate observations of internal and external studies from model (C.14) in fixed scenario and in

order to estimate power of the test of treatment effect β1 we use Wald testing, where the variance

of β̂1 can be estimated as in [28]. A similar approach would allow us to estimate power of the

Wald-test for the hypothesis [Hp ECT-COV-BE] related to model (C.15).

Guidelines

The evidence-based recommendations about the design characteristics of the forthcoming clinical

trial with binary endpoints are similar to those stated in Section 3.3.1 for Gaussian endpoints:

. For a small value of σ2
2, it is preferable to design a single-arm trial supported by external

controls than a randomized clinical trial with randomization ratio 0.5; the situation reverses

for a larger value of between-studies variability.

. As the value of σ2
2 increases, estimates of power of test [Test ECT-BE] related to externally-

controlled randomized clinical trials with balanced randomization get closer to estimates of

power of test [Test RCT-BE] related to randomized clinical trials with balanced random-

ization. Therefore, for large values of σ2
2 it is not convenient to use external data anymore.

. If our aim is to test the treatment effect of the experimental therapy and we consider a
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logistic regression model to design a randomized clinical trials, then estimates of power of

the Wald-tests for the hypotheses [Hp RCT-BE] and [Hp RCT-COV-BE], computed under

the same parameter values, are equal. Instead, if our aim is to test the treatment effect of

the experimental therapy and we consider a logistic regression model with random intercept

to design an externally-controlled randomized clinical trial, then power is not affected by

adding in the model an additional binary covariate as long as the value of the between-

studies variance σ2
2 remains the same: estimates of power of the Wald-tests for hypotheses

[Hp ECT-BE] and [Hp ECT-COV-BE] coincide (Fig. 3.3).

Closed-form expression for power related to externally-controlled randomized clinical trials with

binary endpoints and known between-studies variability

We provide a way to compute closed-form expression for power of the test of the null hypothesis

of no treatment effect versus the alternative of positive treatment effect in externally-controlled

randomized clinical trials with binary endpoints, assuming the mixed effect logistic regression

model (C.14). We suppose that the between-studies variance σ2
2 is known and the size of the

internal study is large (e.g. n ≥ 30) and we consider Wald test for hypothesis [Hp ECT-BE]

about the fixed-effect coefficient β1.

First, we use external data, which are collected in studies i = 1, . . . ,K, to estimate the intercept

β0. The likelihood of β0 is

L(β0) =

K∏
i=1

∫ ∞
−∞

ni∏
j=1

e(β0+bi)yij

(1 + eβ0+bi)2

e
− b2i

2σ22√
2πσ2

2

dbi

and the log-likelihood takes form

l(β0) = −K
2

log(2πσ2
2) + β0

K∑
i=1

ni∑
j=1

yij +

K∑
i=1

log

∫ ∞
−∞

ehi(β0,bi)dbi (C.17)

with

hi(β0, bi) =

ni∑
j=1

yij −
b2i

2σ2
2

−
ni∑
j=1

log(1 + eβ0+bi).

The Maximum Likelihood estimator β̂0 of β0 solves the score equation and maximizes the log-

likelihood function. This maximization can be done numerically using Empirical Fisher Scoring
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algorithm, as explained in [28] (Chapter 7). The generic form of the iterative algorithm is

β̂0,s+1 = β̂0,s + λsH
−1

(
dl

dβ0
|β0=β0,s

)
,

where 0 < λs ≤ 1 is a step length to provide a decrease of the log-likelihood and H is the expected

negative second-order derivatives (Fisher information). Indeed, H can be estimated as the sum

of product of the derivative

di =

ni∑
j=1

yij −

∫∞
−∞

[∑ni
j=1

eβ0+bi

1+eβ0+bi
ehi(β0,bi)

]
dbi∫∞

−∞ e
hi(β0,bi)dbi

.

Then iterations

β̂0,s+1 = β̂0,s + λs(

K∑
i=1

d2
i )(

K∑
i=1

di)

approximate β0. In practice, λs = 1 usually leads to an increase in l from iteration to iteration,

but sometimes it is necessary to decrease the step length to avoid divergence.

Next, we consider model (C.14) for i = K + 1 (internal study) and we assign the value β̂0

calculated above to the parameter β0. We have

P (yK+1j = 1 | xK+1j) = πxK+1j

and (
πxK+1j

1− πxK+1j

)
= β̂0 + β1xK+1j + bK+1 for j = 1, . . . , nK+1 (C.18)

with

bK+1
i.i.d.∼ N(0, σ2

2).

We denote with l(β1) the log-likelihood of a sample from model (C.18) for a fixed value of bK+1,

viewed as a function of β1 given bK+1. Conditioning on bK+1, model (C.18) is a logistic regression

model with intercept at β̂0 + bK+1. The Maximum Likelihood estimator of β1 has approximately

a normal distribution with mean equal to the true parameter value (β1 = 0 under H0 and β1 = ∆

under H1) and variance given by the inverse of the Fisher information (denoted by H(H0) or

H(H1) if it is computed under H0 or H1, respectively).
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By law of total expectation, the Fisher information equals

−E
(
E

(
d2l

dβ2
1

| bK+1

))
where, by properties of Generalized Linear Models,

E

(
d2l

dβ2
1

| bK+1

)
=

nK+1∑
j=1

eβ̂0+β1xK+1j+bK+1

(1 + eβ̂0+β1xK+1j+bK+1)2
x2
K+1j .

Therefore, Wald test statistic is Z := β̂1√
H(H0)

−1
∼ N(0, 1) under H0 and Z ∼ N

(
∆√

H(H1)
−1
, 1

)
under H1. Power can be estimated based on the asymptotic distributions of this test statistic.

C.3 Time-to-event outcomes: models and inference

In Section 3.4 we consider the design of a novel trial with time-to-event endpoints. In particular,

when we design the study as a randomized clinical trial in standard formulation, we assume Cox

proportional hazards model, so that the hazard function of the j-th patient in the forthcoming

study follows

λ(t | Tj) = λ0(t)eβ1Tj for j = 1, . . . , n (C.19)

where λ0(t) is the baseline hazard function, describing how the risk of event per time unit changes

over time at baseline level of the covariate, β1 is the treatment effect, Tj denotes a binary random

variable which takes value 1 if the patient is assigned to the experimental group and 0 if the

patient is assigned to the control group. We assume that Tj = 0 for j = 1, . . . , nc and Tj = 1 for

j = nc + 1, . . . , n.

Instead, when we design an externally-controlled randomized clinical trial, we assume a mixed-

effect Cox model, so that, for the response of the j-th patient in the i-th study, the hazard function

equals

λ(t | Tij , bi) = λ0(t)eβ1Tij+bi for i = 1, . . . ,K + 1, j = 1, . . . , ni (C.20)

where

bi
i.i.d.∼ N(0, σ2

2),

λ0(t) is the baseline hazard function, β1 is the treatment effect, bi is the random effect of the

i-th study, Tij denotes a binary random variable which takes value 1 if the patient is assigned
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to the experimental group and 0 otherwise. We set Tij = 0 ∀i = 1, . . . ,K, ∀j = 1, . . . , ni; in-

stead, TK+1j = 0 if j = 1, . . . , nc and TK+1j = 1 if j = nc + 1, . . . , nK+1. Again, ni = next for

i = 1, . . . ,K and nK+1 = n.

Model (C.20) can be seen as a proportional hazard shared frailty model with log-normal frailty

(see [7]), where units (patients) are clustered in a way that introduces association of survival

probabilities within a group (study). The within-cluster homogeneity may be induced by unmea-

sured cluster characteristics that affect the outcome or by unmeasured covariates at the subject

level that take a similar value for all subjects within the cluster. The event times are assumed to

be independent conditional on unobserved frailty terms and conditional unit-specific hazards are

proportional over time. The random effects in model (C.20) modify the baseline hazard function

and describe the excess risk or frailty for the patients in distinct studies: the idea is that in the

studies characterized by higher frailty the patients experiment the event (such as death) earlier

than the patients in other studies.

We test hypothesis H0 : β1 = 0 vs H1 : β1 > 0 where β1 is

· the coefficient defined in model (C.19) [Hp RCT-TE]

· the coefficient defined in model (C.20) [Hp ECT-TE]

In both cases, we set β1 = ∆ > 0 as the minimal effect of the experimental arm compared to

standard of care that we wish to detect. The goal is to determine statistical testing procedure to

test [Hp RCT-TE] and [Hp ECT-TE] in fixed scenarios and determine the type of design (stan-

dard randomized or externally-controlled clinical trial design) and its associated randomization

ratio, among a set of candidates, that maximize power of these tests.

Testing treatment effects

Cox proportional-hazards models are generally fitted by maximisation of the partial likelihood

[26] and the log-rank test is the most powerful testing method, when the proportional hazards

assumption holds, to quantify or measure the relative difference between the survival curves of

different arms in randomized clinical trials [45]. Therefore, we indicate the statistical test of [Hp

RCT-TE] based on log-rank test by [Test ECT]. In order to estimate power of this test, we sim-

ulate data of internal trial from model (C.19) for fixed λ0(t), we compute log-rank test statistic

and reject the null hypothesis if the p-value of the one-sided test (under normal distribution) is

less than α. The proportion of rejections across iterations is an estimate of power.

On the other hand, mixed effects Cox models are generally fitted by maximisation of a penal-

ized partial log-likelihood [66]. In order to test [Hp ECT-TE], we develop a bootstrap algorithm
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(Algorithm 2), which is the analogous of Algorithm 1 for time-to-event outcomes and rely on pe-

nalized Maximum Likelihood estimation of the treatment effect in model (C.20). We denote this

test by [Test ECT-TE]. In order to estimate power of this test, we simulate internal and external

data from model (C.20) in fixed scenario, we apply bootstrap Algorithm 2 on these data and we

estimate power as the proportion of rejections accrued across iterations by bootstrap procedure.

We summarize below Algorithm 2.

Algorithm 2: A bootstrap algorithm for testing treatment efficacy (Plug-in estimates, test based
on empirical p-value), Time-to-event endpoints, model (C.20)

Input: Data from experimental study of size n and data from K external studies of size next

(covariates Tij and realizations yij of model (C.20), for i = 1, . . . ,K + 1, j = 1, . . . , ni)
Output: Test hypothesis [Hp ECT-TE] on the treatment effect parameter β1 of (C.20)
Fit model (C.20) to the input dataset by penalized Maximum Likelihood ;

Estimate the treatment effect by β̂1;

Estimate the variance of β̂1 by by Var(β̂1);

Determine Breslow estimator λ̂0(t) of λ0(t) based on external data;
if K < 30 then

Estimate σ2
2 by σ̂2

2 defined as the value of variance of the estimates of (b1, . . . , bK) obtained
by fitting a fixed-effect Cox model with covariates (b1, . . . , bK) to external data ;

else
Determine estimator σ̂2

2 of σ2
2 obtained by fitting model (C.20) to external data;

end
for i ∈ 1 to B do

Generate a new dataset of total size n+ nextK from model (C.20) where λ0, σ
2
2 are

evaluated at λ̂0(t), σ̂2
2 and β1 = 0 ;

Fit model (3.3) to bootstrap dataset by penalized Maximum Likelihood ;

Estimate the treatment effect by β̂
(b)
1 ;

Estimate the variance of β̂
(b)
1 by by Var(β̂

(b)
1 );

end

Compute p̂ = 1
B

∑B
b=1 1

(
β̂
(b)
1√

Var(β̂
(b)
1 )

> β̂1√
Var(β̂1)

)
;

Reject H0 at level α if p̂ ≤ α;

In practice, in order to perform Algorithm 2 it is required that we are able to compute the variance

of the Penalized Maximum Likelihood estimator of fixed effect coefficient β1 and this can be done

following the approach described in Ripatti and Palmgren [66].

114



C.4. Bootstrap algorithms for testing treatment effects, externally-controlled randomized
clinical trials with Gaussian endpoints

C.4 Bootstrap algorithms for testing [Hp ECT]

In Section 3.3.2, we propose and validate bootstrap Algorithm 1 as an instrument to test hypoth-

esis of no treatment effect versus positive treatment effect in externally-controlled randomized

clinical trials with Gaussian endpoints. This method can be defined as parametric, since boot-

strap data are generated from a well-defined statistical model (model (3.3)). On the other hand,

bootstrap data could be sampled with replacement from the input dataset, collecting data from

external and internal studies. In this case, the algorithm would be defined as non-parametric.

Also, the key step in testing [Hp ECT] in Algorithm 1 is to determine an empirical p-value based

on the comparison between the value of the Maximum Likelihood estimator of the treatment

effect in model (3.3) based on input data and the value that it would take if the null hypothesis

was true. Instead, the testing procedure could be also centred around approximate confidence

intervals for the treatment effect formed by sorted Maximum Likelihood estimators of the treat-

ment effect (fixed-effect coefficient in linear mixed model) based on bootstrap datasets.

Here we propose one non-parametric bootstrap algorithm (Algorithm 3) and one additional para-

metric bootstrap algorithm (Algorithm 4) to test [Hp ECT]. In both algorithms, quantiles of

appropriate order of a sorted sample of fixed-effect estimates based on bootstrap dataset are cho-

sen to form the approximate confidence interval for the treatment effect and the null hypothesis

is rejected if this doesn’t contain the value of the parameter defined in the null hypothesis.

Algorithm 3: A bootstrap algorithm for testing treatment efficacy (Plug-in estimates, test based
on confidence interval), Gaussian outcomes, model (3.3)

Input: Data from experimental study of size n and data from K external studies of size next

Output: Test [Hp ECT] on the treatment effect parameter β1 of (3.3)
Fit model (3.3) to the input dataset by Maximum Likelihood;

Determine estimators β̂0, β̂1, σ̂
2
1, σ̂

2
2 of β0, β1σ

2
1, σ

2
2;

for i ∈ 1 to B do
Generate a new dataset of total size n+ nextK from model (3.3) where parameters
β0, β1σ

2
2, σ

2
1 are evaluated at β̂0, β̂1, σ̂

2
1, σ̂

2
2 ;

Fit model (3.3) to bootstrap dataset by Maximum Likelihood ;

Estimate the treatment effect by β̂
(b)
1 ;

end

Identify the α quantile β̂∗1 of the ordered estimates β̂
(b)
1 for b = 1, . . . , B;

Reject H0 at level α if β̂∗1 > 0;
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Algorithm 4: A bootstrap algorithm for testing treatment efficacy (Resampling, test based on
confidence interval) , Gaussian outcomes, model (3.3)

Input: Data from experimental study of size n and data from K external studies of size next

Output: Test [Hp ECT] on the treatment effect parameter β1 of (3.3)
for i ∈ 1 to B do

Generate a new dataset of total size n+ nextK by resampling with replacement data from
the input dataset (collecting internal and external data) ;
Fit model (3.3) to bootstrap dataset by Maximum Likelihood ;

Estimate the treatment effect by β̂
(b)
1 ;

end

Identify the α quantile β̂∗1 of the sorted estimates β̂
(b)
1 for b = 1, . . . , B;

Reject H0 at level α if β̂∗1 > 0;

In order to estimate power of the tests based on Algorithms 3 and 4, we generate iteratively

simulated data of external and internal studies from model (3.3) where parameters β0, σ
2
1, σ

2
2

and β1 are set to some value of interest. Then, we apply these bootstrap algorithms on each

simulated complete dataset (internal and external data) and we estimate power as the proportion

of rejections accrued across bootstrap iterations. Algorithms 3 and 4 work well only when nc is

quite large (e.g. nc ≥ 30), since in this scenario it is possible to identify the contribution of the

treatment effect and of the random effect to the responses of the patients enrolled in the internal

study. Otherwise, in the limit, when nc = 0, fixed effects are confounded with random effects

in model (3.3) and Maximum Likelihood estimation could fail. Also, when we have few external

studies Maximum Likelihood estimate of σ2
2 can take zero value: in this case, Algorithm 3 should

be modified such that bootstrap data are generated from model (3.3) where the parameter σ2
2 is

not evaluated at Maximum Likelihood estimator σ̂2
2 but at the biased positive ANOVA estimator

σ̂2
2,B.

Figure C.1 compares estimates of power ot tests based on Algorithm 1, Algorithm 3 and Algorithm

4, expression (3.18) evaluated at the true value of σ2
1 and σ2

2 (known variances) and expression

(3.18) evaluated at the average of estimates σ2
1,A and σ2

2,REML across simulations (unknown

variances).
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Figure C.1: Comparison of theoretical expression of power (3.18) evaluated at the true value of
σ2

1 and σ2
2 (known variance), theoretical expression of power (3.18) evaluated at the average of

σ̂2
1A, and σ̂2

2,REML across simulations based on external data (unknown variance) and estimates of
power of the test of hypothesis [Hp ECT] based on bootstrap algorithms. The parameters value
are n = 100, next = 30, σ2

1 = 1, ρ = 0.5, σ2
2 = 0.05 and K = 30.
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C.5 Conditional probability of avoiding type II error and con-

ditional probability of type I error given external data and

random effect of the internal study in testing [Hp-ECT]

In Chapter 3, we have considered power related to externally-controlled randomized clinical trials

with Gaussian endpoints as the probability of avoiding a type II error in testing hypothesis [Hp

ECT]. Under this assumption, we have derived closed form expression of power when the between-

studies and within-study variabilities are known, we have proposed a strategy to estimate power

when the sources of variability are unknown and we have performed simulations to confirm our

results, mainly using Wald testing in large sample scenarios. On the other hand, one could

consider power as the conditional probability of avoiding a type II error in testing hypothesis

[Hp ECT], given external data and eventually also the random effect of the internal study. We

distinguish between the two above interpretations of power, by referring to marginal power and

conditional power given external data and eventually also the random effect of the internal study.

Similarly, one could be interested in the conditional probability of type I error in testing hypothesis

[Hp ECT], given external data and eventually the random effect of the internal study, instead

of the marginal probability obtained integrating out these two levels of variability. Indeed, the

conditional probability of avoiding type II error (probability of type I error) in Wald testing of

hypothesis [Hp ECT] can be estimated as the proportion of significant p-values across Monte

Carlo simulations, where internal data are generated under the alternative (null) hypothesis

from model (3.3), external data are generated from model (3.3), external data and eventually

the random effect of the internal study (bK+1 ∼ N(0, σ2
2)) don’t vary between iterations of the

simulation procedure.

The first subplot in Figure C.2 shows the power curve for Wald testing of hypothesis [Hp ECT]

as a function of the values of alternative hypothesis β1, obtained keeping fixed both external data

and the random effect of the internal study across 1000 simulations: each of the ten blue lines

refers to one particular combination of external data and random effect of the internal study. The

red line corresponds to the estimates of power given by (3.18) (marginal estimates) and the green

line is obtained by averaging the blue lines values. Instead, each point in the second subplot in

Figure C.2 represents the estimate of the conditional probability of type I error in Wald testing,

given one particular combination of external data and random effect of the internal study (bK+1),

obtained keeping fixed both external data and the random effect of the internal study across 1000

simulations. The red line corresponds to the value of targeted α level of the testing procedure
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(marginal) and the green line is the average value of the points. As the random effects increases,

the conditional probability of type I error increases.

We notice that the estimates provided in the subplots in the first row of Figure C.2 (blue lines

and black points) overestimate or underestimate the marginal probability of avoiding a type II

error and the marginal probability of type I error (red lines), but the averages of these estimates

(green lines) equal the marginal estimates. This is a consequence of the law of total probability.

As we can see from the second row of Figure C.2, the variability of the conditional probability

of type I error given random external data and random effect of the internal study decreases as

the between-studies variability gets larger or the size of the internal study increases. Also, as the

number of available external studies increases, the standard deviation and interquantile range of

this distribution reduce.

One could be also interested in the distribution of the conditional probability of avoiding type II

error and conditional probability of type I error in Wald testing of hypothesis [Hp ECT], fixing

the external dataset, conditioning on it and on the random effect of the internal study, where both

probabilities are seen as functions of the random effect of the internal study and a fixed external

dataset. The first row in Figure C.3 shows estimates of the conditional probability of avoiding

type II error (value of the alternative hypothesis β1 = ∆ 6= 0) and conditional probability of type

I error (β1 = 0), given one specific fixed external dataset: each of the ten blue lines refer to one

particular random effect of the internal study, kept fixed within 1000 simulations. The average

of these estimates (green line) can’t be approximated well by the marginal estimate (3.18) (red

line) and, in particular, the average conditional probability of type I error is not close to α. In

general, if the interest relies in the distribution of this average, seen as functions of external data,

then this is equivalent to consider the distribution of the probability of avoiding type II error and

probability of type I error conditionally only on external data (one level of variability).

The second row in Figure C.3 shows the conditional probability distribution of type I error

given external data, based on a sample of size 100, in different scenarios. The variability of the

distribution gets smaller as the sample size of the internal study, the variance of the random

effects or the number of external studies increases. Nevertheless, the conditional probability of

type I error does not generally differ much from targeted α level, except where the variance of the

random effects is very small. In this case we could point to a priori fixed (nominal) significance

level lower than α to have a guarantee of controlling the conditional probability of type I error

at targeted level. Although the actual estimate of the probability of type I error conditioned

on external data and random effect of the internal study depends upon the specific collection of
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external data and the random effect of the internal study, but the latter is unknown to researchers.

However, if several trials are run as externally-controlled randomized clinical trials in different

experimental conditions (e.g. hospitals) and they are based on different collections of external

studies, then on average the conditional probability of avoid type II error (probability of type I

error) in Wald testing for hypothesis [Hp ECT] equals the marginal probability of avoiding type

II error (probability of type I error) and this average can be approximated by (3.18) (α).
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Figure C.2: First row, first subplot: Comparison of the estimates of the conditional probability
of avoiding type II error (value of the alternative hypothesis β1 6= 0) and of the conditional
probability of type I error (β1 = 0) in Wald testing of [Hp ECT], given random external datasets
and random effect of the internal study, based on Monte Carlo simulations, and estimates of the
marginal probability given by (3.18). First row, second subplot: Comparison of the estimate of
the conditional probability of type I error in Wald testing of [Hp ECT] based on Monte Carlo
simulations and targeted α level. The value of the parameters are ρ = 0.5, next = 30,K = 30, n =
100, σ2

1 = 1 and σ2
2 = 0.05. Second row: Conditional probability distribution of type I error in

Wald testing of [Hp ECT], given random external data and random effect of the internal study.
The value of the parameters are ρ = 0.5, next = 30 and σ2

1 = 1.
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Figure C.3: First row: Estimates of the conditional probability of avoiding type II error (value of
the alternative hypothesis β1 6= 0) and of the conditional probability of type I error (β1 = 0) in
Wald testing of [Hp ECT] given a fixed external dataset and random effect of the internal study,
based on Monte Carlo simulations, are compared to the estimates of the marginal probabilities
given by (3.18). Each blue line refers to one particular random effect of the internal study and to
a common collection of external data. The value of the parameters are ρ = 0.5, next = 30,K =
30, n = 100, σ2

1 = 1 and σ2
2 = 0.05. Second row: Conditional probability distribution of type

I error in Wald testing of [Hp ECT], given external data. The values of the parameters are
ρ = 0.5, next = 30 and σ2

1 = 1. 122
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C.6 Supplementary Figures

Figure C.4 shows that if the number of external studies is quite large (K = 30) and outcomes

are Gaussian, then the optimal randomization ratio ρECT for running an externally-controlled

randomized clinical trial equals 1 when the between-studies variability is small and the size of the

internal study is not large. For instance, in the first and second subplots we consider the scenario

where the parameters in model (3.3) are σ2
2 ≤ 0.01, n ≤ 50 and σ2

1 = 1. Instead, as we can notice

in third and fourth subplots, ρECT decreases up to 0.5 when σ2
2 gets larger.

Figure C.4: Comparison of power of the test of treatment effects related to externally-controlled
single-arm trials ([Test ECT]) with Gaussian endpoints for different randomization ratios (ρ =
ρECT , 0.5, 0.7, 1) and variances of the random effects (σ2

2 = 0.005, 0.01, 0.05, 0.1). The parameters
are n = 50, next = 30,K = 30, σ2

1 = 1.
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In Figure C.5 we consider Gaussian outcomes and we show that if the sources of between-studies

and within-study variabilities are known and the number of external studies is small (K = 5),

then there’s almost no convenience in designing an externally-controlled single-arm trial than an

externally-controlled randomized clinical trials with randomization ratio in the range 0.5− 0.99,

when the variance of the random effects is small. For instance, the first and second subplots

refer to the scenario where σ2
2 ≤ 0.01, n = 100 and σ2

1 = 1, assuming model (3.3). Also, as we

can notice in third and fourth subplots, for larger values of σ2
2, externally-controlled single-arm

clinical trials should be avoided.

Figure C.5: Comparison of power of the test of treatment effects related to externally-
controlled single-arm trials ([Test ECT]) with Gaussian endpoints for different randomization
ratios ρ = 0.5, 0.7, 1, ρECT . The parameters are n = 100, next = 30,K = 5, σ2

1 = 1 and
σ2

2 = 0.005, 0.01, 0.05, 0.1.
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In Figure C.6 we consider Gaussian outcomes and we show that if the sources of between-studies

and within-study variabilities are known and the between-studies variance (σ2
2) and size of the

internal study (n) are small, then externally-controlled single-arm trial is preferable to standard

randomized clinical trial with randomization ratio 0.5 (first subplot). The situation reverses for

larger values of σ2
2 and n (other subplots). Moreover, as the value of σ2

2 increases, the power

of the test [Test ECT] related to an externally-controlled randomized clinical trial with optimal

randomization ratio ρECT gets closer to that one of the test [Test RCT] related to a standard

randomized clinical trial with balanced randomization (it is not convenient to use external data

anymore).

Figure C.6: Comparison of power of the test of treatment effects related to externally-controlled
single-arm trials ([Test ECT], ρ = 1), externally-controlled randomized clinical trials with opti-
mal randomization ratio ([Test ECT], ρ = ρECT ) and standard randomized clinical trials with
balanced randomization ([Test RCT], ρ = 0.5). The parameters are n = 100, next = 30, K = 30,
σ2

1 = 1 and σ2
2 = 0.01, 0.05, 0.1, 0.3.
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Figure C.7 shows that asymptotically, if n and next tend to infinity, outcomes are Gaussian and

ρ = 0.5, then power of test [Test ECT] coincide with power of test [Test RCT]. Instead, if n and

next tend to infinity, outcomes are Gaussian and ρ = 1, then power of test [Test ECT] can be

approximated by 1− Φ

(
zα − β1

√
K√

(K+1)σ2
2

)
.

Figure C.7: First row: Comparison of estimates of power of tests [Test ECT] and [Test RCT]
when ρ = 0.5 and n and next tend to infinity. Second row: Comparison of estimates of power

of test [Test ECT] and expression 1 − Φ

(
zα − β1

√
K√

(K+1)σ2
2

)
when ρ = 1 and n and next tend

to infinity. In both subplots the parameters are n = 1000, next = 1000,K = 30, σ2
1 = 1 and

σ2
2 = 0.05.
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Figure C.8 shows that when the size and number of external studies are small, the ANOVA

estimators σ̂2
2,A (unbiased) and σ̂2

2,B (biased) and the REML estimator σ̂2
2,REML of the between-

studies variance parameter σ2
2 in model (3.3) have large variability (first subplot). The variability

of the above estimators significantly reduces when the size of the external studies is large (second

subplot) or a quite large number of external studies is available (third subplot). Also, when the

number of external studies is small, σ̂2
2,A and σ̂2

2,REML can take non-positive values (first and

second subplots).
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Figure C.8: Distribution of ANOVA estimator σ̂2
1,A of σ2

1, ANOVA estimators σ̂2
2,B (biased) and

σ̂2
2,A (unbiased) of σ2

2 and REML estimator σ̂2
2,REML of σ2

2 based on external data. The parameters

in model (3.3) are σ2
1 = 1, σ2

2 = 0.05. In first subplot next = 30,K = 5; in the second subplot
next = 200,K = 5 and in the third subplot next = 30,K = 30.
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Chapter 4

Conclusions and discussion

4.1 Summary of research findings

The broad goal of this PhD thesis has been to thoughtfully tackle some fundamental statistical

issues in the design of clinical trials. The main objectives have been to investigate the asymptotic

properties of response-adaptive procedures and to assess the value of randomization in the design

of clinical trials using quantitative arguments.

The research questions that we have addressed arise from clinical practice, where it is essential

that the statistical properties of the designs of clinical trials are evaluated before the designs are

implemented. This is even more so for adaptive clinical trials, whose key trial characteristics (e.g.,

randomization probabilities, sample size, treatment arms, eligibility criteria) evolve according to

prespecified rules during the trial, in response to information accruing within the trial itself. For

simple adaptive designs, the statistical properties are well understood and can be determined

analytically; instead newer complex adaptive designs require Monte Carlo simulations to fully

understand the operating characteristics.

We showed that asymptotic analyses of adaptive procedures simplify the design of clinical tri-

als and reduce the need for time-consuming simulations to evaluate operating characteristics

across potential trial scenarios. In particular, we studied the asymptotic characteristics of BUDs.

BUDs seek to maximize the acquisition of information on the effectiveness of new experimental

treatments. These designs are an example of adaptive clinical trial designs using a Bayesian

methodology. These designs can be very flexible and the Bayesian approach naturally fits the
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adaptive paradigm. On the other hand, they are typically complex adaptive designs. The com-

puting time to simulate a BUD trial increases linearly with respect to the sample size and with

respect to the number of possible actions (see [88]).

In Chapters 1 and 2 we derived asymptotic results for the randomization probabilities and allo-

cation proportions of BUDs without the need of simulations by using stochastic approximation

techniques. BUD’s randomization procedure was expressed as a sequence of recursive equations

which allowed the application of techniques from classical stochastic approximation theory (see

Appendix A).

Potential applications of stochastic approximation theory in the analysis of clinical trial designs

have been previously discussed by [52]. The fact that stochastic approximation techniques have

seldom been used in actual clinical studies stands in stark contrast with their constant application

in engineering and finance. In this thesis, we showed that they allow to evaluate major operating

characteristics of BUDs. We considered for example the variability of the allocation proportions

during the trials and the power of the BUD with a fixed sample size under a parameter of interest.

Besides adopting a novel methodology to study asymptotic characteristics of response-adaptive

randomized clinical trials designs, the key contibution of this thesis has been to provide statistical

evidence to support the use of externally-controlled randomized clinical trials designs in clinical

practice. The interest in augmenting or replacing the concurrent control in a novel clinical trial,

using existing information on a control treatment as an external control, has increased expo-

nentially in last years, due to the growing availability of data collected from already completed

clinical trials and real-world data. However, there’s an almost total lack of discussion about

the statistical properties of externally-controlled randomized clinical trials designs in literature.

When considering evaluation of externally-controlled randomized clinical trials, this research has

provided some valuable insights, allowing key recommendations to be made.

In Chapter 3, we considered that it would be naive to use external control data from individual

patients directly as if these were from a concurrent control group. In fact, differences between

source and target with respect to patient populations or external factors are usually present:

variability between the source and the target data might occur for many reasons such as differ-

ences in the way studies are conducted and how the treatment effects are measured. Thus, we

incorporated the statistical heterogeneity into mixed effects models and we estimated power of
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the test of the null hypothesis of no treatment effect versus the alternative of positive treatment

effect assuming these models.

When outcomes are Gaussian we provided a closed form expression for power under the assump-

tion that the sources of variability are unknown or that a large number of external studies is

available. On the other hand, we showed the difficulties to assess a closed form expression for

power when outcomes are binary or time-to-event. In this case, we proposed an overall procedure

based on Monte Carlo simulations and bootstrap algorithm to test treatment effects and estimate

power of the study. Then, we compared estimates of power related to externally-controlled ran-

domized clinical trials with that one that we could obtain by running a randomized clinical trial in

standard formulation. Finally, we gave a set of recommendations to determine the characteristics

of the design of forthcoming trials that maximize power of the study in fixed scenarios.

According to our analysis, borrowing strength using relevant individual patient data on control

treatment from external trials may allow to reduce (externally-controlled randomized clinical tri-

als), or even eliminate (single-arm trial supported by external controls), the concurrent control

group. In particular, we exhibited that, under general conditions, externally-controlled random-

ized clinical trials with optimal randomization ratio are superior to standard randomized clinical

trials. This finding is particularly relevant, since it proves that the use of existing data to design

clinical studies could have the potential to enhance the assignment of patients in clinical trials.

However, when the heterogeneity between studies is large, it is not convenient to use external

data anymore and this is even more so if the number of external studies is small.

To sum up, the research presented in this thesis provides a number of contributions to the

development of statistical methodology in the context of clinical research and it enriches the

literature about response-adaptive and externally-controlled randomized clinical trials designs.

The theoretical approach used to evaluate asymptotic properties and operating characteristics of

modern designs of clinical trials gives a reliable mean, confirmed by simulation studies, that can

further benefit to clinical and statistical researchers attempting to improve and accelerate drug

development process.
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4.2 Further work

While this research leads to original findings in the evaluation of the statistical properties of

response-adaptive and externally-controlled randomized clinical trials designs, there are a num-

ber of potential areas for further research.

Most notably, the investigations within this research are limited to the goal of estimating or test-

ing treatment effects in clinical trials. On the other hand, the formulation of BUDs allows the

selection of information metrics that represent different primary aims of clinical studies: select-

ing therapies with positive effects, identifying relevant treatment effects on multiple endpoints,

choosing subgroups of patients that respond to experimental treatments, determining the right

dose of drugs (Appendix B).

Moreover, the asymptotic results given in Chapter 1 and Chapter 2 hold under some restrictive

assumptions:

. The information metric is (minus) the variance or the entropy of the posterior distribution

of the parameter of interest of the outcomes of the different arms. Extending asymptotic

results to other metrics is an open problem.

. Two-arm trials are considered. The results about the asymptotic normality of random-

ization probabilities and allocation proportions can’t be generalized to multi-arm trials by

using similar methods of proof.

. The model is a single parameter model. In applications, besides the parameter we are

interested in, there can be some nuisance parameters which are also unknown. For example,

in the normal response model, both the mean and variance are usual unknown.

. Conjugate priors are used. Based on the conjugate prior and the independence assumption,

most of the variances of the mean estimates in the exponential family have closed-form and

it is possible to derive an approximated sample size formula. However, this result is not

straightforward in the not-conjugate setting.

. The randomization probability is updated with the enrollment of each new patient. How-

ever, real trials don’t use a continuous update of the randomization probability. The limiting

behaviors need to be generalized to a context where decisions are made cohort-wise.
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The major avenue for future research that has been opened by this work is the way it is possible

to provide power estimates or sample size formulas for BUDs when the assumptions listed above

are relaxed or removed. We think that the stochastic approximation framework developed as part

of this research enables useful approximations of the operating characteristics of BUDs, but may

also offer advantages in the asymptotic analysis of other response-adaptive randomized designs.

The general strategy for the assessment of asymptotic properties of a generic response-adaptive

randomized clinical trials design would consist of writing the randomization probabilities or al-

location proportions as a stochastic approximation process of form (A.10) (Appendix A). Then,

the arguments used to prove Theorem 1 can be adapted to establish the asymptotic normality of

the just mentioned random variables; instead the procedure used in Section 1.3.2 can be adjusted

to approximate the operating characteristics, whereas any adequate characterization of the oper-

ating characteristics may need extensive simulations.

Also, even if our work complement from the informative point of view the majority of recent

Bayesian literature, which is focused on utility functions which combines inferential and ethi-

cal concerns, for example related to the maximization of total expected outcomes in a bandit

perspective [94], a comparison between the two approaches would be useful to understand the

potentiality of BUDs.

In this thesis we highlight the fact that availability of appropriate statistical methodology for

evaluating novel randomized clinical trials designs is generally a key contributing factor to their

eventual use. For example, understanding the possible context-specific benefit from the use of

external data in the design of novel trials is important for therapeutic development. However,

the existing literature discusses the advantages of incorporating external information in novel

randomized clinical trials by using mainly qualitative arguments.

In Chapter 3 we provide a quantitative and statistical framework to support the choice of using

existing data on the control treatment in the design of novel clinical trials, by using power as

a metric to compare standard randomized clinical trials and externally-controlled randomized

clinical trials designs. Our results indicate that externally-controlled randomized clinical trials

designs constitute a useful alternative to standard single-arms trials and randomized clinical trials

designs. In particular, in clinical settings and scenarios where randomization may be difficult or

not feasible (e.g. rare disease, small patient population, loss of equipoise), the use of external

controls represents an opportunity to potentially reduce the number of patients in the control
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arm and enhance data obtained from clinical trials.

The results of our work confirm the worthiness of additional research to extend our findings to

other clinical outcomes and to evaluate different study designs for using external controls.

In this thesis, consideration is given to the common setting in which randomized clinical trials with

normal, binary and time-to-event endpoints are analysed using simple linear model, generalized

linear model and proportional hazard Cox model, respectively. On the other hand, externally-

controlled clinical trials with normal, binary and time-to-event endpoints are analysed using

linear mixed model, generalized linear mixed model and mixed effect Cox model, respectively,

where the random effects variance represents the between-studies variability that is additional to

within-study sampling error and that might occur for many reasons such as differences in the way

studies are conducted and how the treatment effects are measured. In general, random effects

meta-analytic approaches take account of between-trial heterogeneity among the external trials

as well as between the external and the internal trials. The main strengths of these models are

their ability to account for unexplained between-studies heterogeneity, their flexibility to adapt

to different types of source data, and the possibility to integrate both individual patient data and

aggregate data from publications.

Whilst the use of these mixed effects models was used herein, it would be beneficial for further

work to be undertaken to determine whether considering extensions or alternatives to these mod-

els would lead to similar conclusions and design guidelines. For instance, models that can handle

interval censoring or non proportional hazards may be of interest, since in some clinical trials, the

treatment effect may not manifest itself right after patients receive the treatment. We think as

a general rule, it would be needed to investigate the robustness of sensitivities of the underlying

statistical methods for including external controls in novel trial designs.

Also, it is important to deepen the limitations associated with the various sources of external

data when designing and analyzing externally-controlled randomized clinical trials: robust exter-

nal controls should be selected to control for potential biases that can be encountered, such as

selection bias and allocation bias (confounding). Such biases should be mitigated where possible.

In particular, in the design phase, key baseline prognostics and confounding factors should be

identified and accordingly key inclusion/exclusion criteria for external cohort selection should be

pre-specified. Despite careful selection of the external cohort in alignment with the trial eligibility
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criteria, imbalances in key confounding factors may still exists that need to be further mitigated

through pre-specification of statistical methods, such as propensity score methods.

Even though a Bayesian perspective is used to combine external controls with concurrent con-

trols, using hierarchical modeling to borrow strength from previous studies, it is important to

assess whether the external studies are sufficiently similar to the current study to be considered

exchangeable. Exchangeability of trials is important in the development of realistic models for

combining trial data with prior information. To achieve study-level exchangeability, statistical

adjustments for certain differences in covariates may be necessary. However, to this point, the

selection and use of covariates in the borrowing of external data has seemingly limited investiga-

tion in the literature, revealing a potential research gap.

Finally, we recognize that the use of external control information from an historical trial in the

design of novel trials brings its own unique challenges with regards to generalisability of results,

interpretation and associated statistical methodology. Nevertheless, it is likely that there will

be an increasing number of clinical trials that use external information. In fact, regulatory au-

thorities have begun to endorse the use of external controls in certain circumstances, with some

positive outcomes for new drug approvals.

It is the sincere hope of us that this thesis will stimulate interest in further development of statis-

tical methodology to improve the design of clinical trials and will promote the use of stochastic

approximation techniques in clinical setting. Also, we wish that our work will provide the in-

centive for future research about the value of asymptotic analysis of randomized clinical trials

designs and also will give the impetus for the use of external controls in future clinical trials.
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