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Abstract

My first paper studies how firms’ environmental performances affect cross-sectional ex-
pected stock returns and investments. Using a third-party ESG score, I find that greener
stocks have lower expected returns. This greenium remains significant after controlling
for systematic and idiosyncratic risks. Green stocks hedge climate-related disasters, con-
tributing to the greenium. A macro-finance integrated assessment model featuring time-
varying climate damage intensity, recursive preferences, and investment frictions quanti-
tatively explains the empirical findings. The model implies a positive covariance between
climate damages and consumption, which justifies a high discount rate and a low present
value of carbon emission.

The second paper is a joint work with Shasha Li, a former colleague at Bocconi
University who is now an assistant professor at the Halle Institute for Economic Research.
We study how the attention allocation of green-motivated investors changes information
asymmetry in financial markets and thus affects firms’ financing costs. To guide our
empirical analysis, we propose a model where an investor with green taste endogenously
allocates attention to market or firm-specific shocks. We find that more green-motivated
investors tend to give more attention to green firm-level information instead of market-
level information. Thus higher green taste leads to less category learning behavior and
reduces the information asymmetry. Furthermore, it suggests that higher green taste
results in lower leverage and lower cost of capital of green firms.

The last paper is a proposal that applies the information theory on climate change. I
study how a better information about climate evolution and feedback in the future affects
current actions to mitigate carbon emissions. This proposal improves previous studies
on the precautionary principal, by extending the traditional method to rank information
structures by Blackwell (1966) to a less strict but more versatile method by Lehmann
(1988). This study could help policymaker better decide the timing of climate mitigation
when facing decreased future uncertainty.
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Chapter 1

Explaining Greenium in a
Macro-Finance Integrated
Assessment Model

ABSTRACT

How do firms’ environmental performances affect cross-sectional expected stock returns?

Using a third-party ESG score, I find that greener stocks have lower expected returns. This

greenium remains significant after controlling for systematic and idiosyncratic risks. Green

stocks hedge climate-related disasters, contributing to the greenium. A macro-finance

integrated assessment model featuring time-varying climate damage intensity, recursive

preferences, and investment frictions quantitatively explains the empirical findings. The

model implies a positive covariance between climate damages and consumption, which

justifies a high discount rate and a low present value of carbon emission.

Keywords: Climate finance, macro-finance, asset pricing
JEL classification: G12, Q43, Q5.
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4 Chapter one

1.1 Introduction

Climate change has been accelerating over the last decades. As shown in Figure 1.1,

global temperature has increased around one degree Celsius over the previous forty years,

accompanied by an increasing frequency of climate-related disasters. Nordhaus (2019)

considers climate change the “ultimate challenge" for economics, as it affects many aspects

of human society. Despite a growing literature that studies the socioeconomic impact of

climate change, little is known about how climate disasters affect the cross-section of the

asset market. Understanding the answer to this question is vital for individual investors

to self-insure against climate risk.
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Figure 1.1: Global temperature anormaly and economic losses due to climate
disasters, 1980-2021: Economic losses are monthly aggregated across more than 10,000
individual disasters related to climate change. Data collected from the International
Disaster Database

This paper addresses two questions. First, given the recent global trend of investing

sustainably,1 what are the asset pricing implications of climate change consequences, such

1For example, the Global Sustainable Investment Review shows that sustainable investing assets in
Europe, the U.S., Japan, Canada, Australia, and New Zealand grow from USD 13.3 trillion in 2012 to
USD 35.3 trillion in 2020, a 165% increase.
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as disasters, on green and brown stocks? I find that, relative to brown stocks, green stocks

are less exposed to climate disaster shocks. Thus, a strategy that longs the green and

shorts the brown hedges against climate risk. This finding explains the negative greenium,

i.e., lower expected returns of green stocks, documented by recent literature (Bolton and

Kacperczyk, 2021a). Second, how to model climate feedback into the asset market? Cur-

rent literature on climate economics usually relies on the Integrated Assessment Modeling

(IAM), such as Nordhaus (1992)’s Dynamic Integrated Climate Change (DICE) model.

However, traditional IAM cannot price climate risk in the stock market. To bridge the

gap, I provide a unified study that links IAM and production-based asset pricing models

to provide a macro-finance IAM (MFIAM). The model simultaneously explains macroeco-

nomic and environmental quantities and asset prices. In sum, my paper offers a detailed

study on how climate risks materialize in the cross-section of the stock market.

To begin with, I present evidence of the negative greenium, which identifies the re-

lationship between a firm’s greenness and expected stock return. Specifically, I use the

environmental pillar score (ENSCORE) from Refinitiv ASSET4 ESG Dataset as a mea-

sure of greenness (Miroshnychenko et al., 2017; Tarmuji et al., 2016). The ENSCORE

covers nearly four thousand global firms as of 2019 and provides a comprehensive measure

of firms’ environmental responsibilities reflecting three main categories: emission, innova-

tion, and resource use. I sort firms with available ENSCOREs into quintile portfolios from

2003 to 2019. The sorting method eliminates the industry effect and look-ahead bias. I

find that the portfolio of stocks in the highest quintile (the green one) has, on average,

3.83% (t = 2.76) lower annualized return compared to the portfolio of stocks in the lowest

quintile (the brown one). This difference remains significant after controlling for global

asset pricing factors such as the CAPM (Sharpe, 1964), the Fama-French three (FF3)

and five (FF5) factors (Fama and French, 1993, 2015). Results are robust to alternative

greenness measures. These findings indicate a negative premium associated with green

stocks, a “greenium."
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To eliminate the possibility that firms’ idiosyncratic risks drive the greenium, I im-

plement double-sortings with respect to the ENSCORE and firms’ financial (such as the

size, book-to-market, investment over asset, etc.) and geographic (such as latitude, dis-

tance to the sea, exposure to drought risk) characteristics.2 The greenium survives all

double-sortings. Moreover, it is concentrated within big firms. To further illustrate the

predictive power of the ENSCORE, I run Fama-Macbeth regression (Fama and MacBeth,

1973) of individual stock return on ENSCORE and various sets of control variables. The

result shows that, ceteris paribus, a one-standard-deviation increase of a firm’s ENSCORE

decreases its annual stock return by 0.86% - 1.37% in the next year.

I explain the greenium by showing that greener stocks are less exposed to physical

climate risks. That is, green stocks appreciate during climate-related disasters relative

to brown stocks. Specifically, I regress risk-adjusted stock return on the time series of

climate damages in Figure 1.1, and an interaction between the firm’s ENSCORE and the

damage series. The result shows that both green and brown stocks depreciate during a

disaster shock. However, green stocks experience 13% less depreciation than brown stocks.

Further investigation shows that it is the firms in the brownest quintile that depreciate

the most. To study the real effect of climate risk, I run a similar regression with firm-level

investment as the dependent variable. I find that green (brown) firms experience increased

(decreased) investments when a climate disaster shock happens. These results are robust

with alternative measures and event studies on individual disasters, such as Hurricane

Katrina. The evidence presented here clearly shows that green stocks provide insurance

against climate-related disasters. Thus investors demand a lower premium from them in

equilibrium.3

2Geographic characteristics control firms’ direct exposures to physical climate risks. I show that the
greenium is not driven by the fact that green and brown firms locate in areas with different exposures
to disasters. In fact, Addoum et al. (2020) find that geographic locations do not matter much when
accounting for climate-related damages.

3One may argue that the responses of asset prices to disasters reflect investors’ expectations of reg-
ulatory change (i.e., transition risk). However, previous papers (e.g., Hsu et al., 2020) usually model
transition risk as exogenous regulation change and neglect the climate feedback. In this respect, the
regulation change induced by disaster is still part of the physical risk. In a follow-up paper, I study the
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I provide a simple, analytically solvable model to rationalize the above findings. In

a two-period production economy, a representative agent optimally allocates investments

between a green sector (G) and a brown sector (B). Investing in sector B leads to pollution

and climate damage. I assume that an exogenous disaster increases the perception of

climate severity and the perceived marginal damage from pollution (i.e., the damage

intensity). This assumption results from the representative agent’s learning process using

disasters as signals (Hong et al., 2020; Ortega and Taspınar, 2018; Gibson et al., 2017).

In sum, a disaster shock leads to higher perceived marginal costs of investing in sector

B. It is then socially desirable to refrain from using fossil fuels and invest more in green

energy. Under convex investment frictions from standard q-theory (Hayashi, 1982), this

reallocation causes green stocks to appreciate. Consequently, sector G offers insurance

for climate disasters and carries a lower premium than sector B. This model qualitatively

explains the empirical findings in a simple setting. The main objective is to present a

clear underlying mechanism that enables the MFIAM, a more generalized framework, to

explain the data quantitatively.

The novelty of my MFIAM compared to traditional IAM lies in three aspects. First, as

a dynamic stochastic general equilibrium (DSGE) model, my model accounts for shocks

in productivity growth and damage intensity. These shocks are essential to generate the

equity premium and the greenium. Second, borrowing insights from the macrofinance

literature, I assume agents have recursive preferences (Epstein and Zin, 1989; Weil, 1990).

These preferences generalize constant relative risk aversion (CRRA) preferences and are

useful in capturing aversions toward long-run climate risks (Bansal et al., 2016a).4 Third,

investment incurs an adjustment cost following standard q-theory (Jermann, 1998; Zhang,

2005). This cost, along with recursive preferences and long-run productivity risk, justifies

endogenous policy response to natural disasters and consider both transition risk and physical risk in a
decentralized economy.

4This model is based on Bansal et al. (2016a) but differs from theirs in several aspects. First, I
introduce carbon-free energy with endogenous R&D. Second, I extend their endowment economy to a
production economy. These aspects enable me to shed light on the dynamics of cross-sector investment
allocations and stock returns.
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equity premium in production economies (Croce, 2014).

My model provides rich implications for investment flows and stock valuations. I

provide a novel and comprehensive examination of economic quantities and asset prices’

responses to exogenous shocks that degrade environmental conditions (i.e., shocks that

increase damage intensity). Specifically, I find that such a shock (i) increases the stochas-

tic discount factor (SDF), indicating a higher marginal utility of consumption or a bad

economic state; (ii) promotes a reallocation of both labor and investment toward sector

G, indicating that our economy relies more on green energy; (iii) causes Tobin’s q in

sector G (B) to increase (decrease) due to reallocation adjustment costs, meaning that

sector G (B) becomes more (less) valuable. As a result, green stocks appreciate relative

to the brown stocks. These findings imply that sector G is safer since it is less exposed

to ecological disasters. Thus, green stocks carry lower premium in equilibrium, consistent

with my empirical evidence.

While capable of explaining key asset pricing facts in the stock market, my model also

answers an important open question: what is the sign of the climate beta. The climate

beta measures the covariance between the future damage flow caused by marginal carbon

emission today and future consumption (Giglio et al., 2020). In other words, climate beta

captures the riskiness of damage flows and the discount rate to get the shadow cost of

carbon emission. The sign of the climate beta is not clear ex-ante, with two forces moving

in the opposite direction. On the one hand, climate change would cause greater damage in

a world with higher GDP or consumption. Thus climate beta tends to be positive. On the

other hand, great climate damage causes economic downturns and lowers consumption,

leading to a negative climate beta. Which force dominates the other remains an open

question. Calibrated using economic data and asset prices, my model implies a positive

climate beta (Dietz et al., 2018; Gollier, 2021), that is, the risk stemming from economic

activities overwhelms the risk stemming from the climate process. As such, future climate

damages caused by marginal carbon emission are risky and command a positive premium.
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With given damage flow, this premium depresses the shadow price of carbon substantially

(27%) compared to the deterministic equilibrium with zero climate beta. Jaccard et al.

(2020) show that the shadow cost of carbon in a centralized economy equals the social

cost of carbon (SCC), a Pigouvian tax that corrects the market distortion caused by

negative externality due to carbon emission. Therefore, my model implies that it is

socially desirable to start with a relatively low carbon tax.5

Traditional IAMs usually adopt CRRA preferences due to mathematical tractability.

However, CRRA implicitly assumes that agents’ risk aversion is reciprocally related to

their intertemporal elasticity of substitution (IES). Therefore, a high risk aversion, implied

by the equity premium, indicates an unwillingness to substitute across time and thus a

counterfactual high risk-free rate. Recent studies used recursive preferences to evaluate

the SCC and climate policy from an asset pricing perspective (Ackerman et al., 2013;

Jensen and Traeger, 2014; Daniel et al., 2016; Bansal et al., 2016b,a; Lemoine and Rudik,

2017; Lemoine, 2021; Jaccard et al., 2020). These preferences extend CRRA ones by

separating the risk aversion from the IES. In line with the long-run risks literature about

coping with the equity premium puzzle, I choose an IES larger than the reciprocal of

the risk aversion, suggesting that agents prefer early resolution of uncertainty. My model

shows that CRRA preference leads to under-reaction of investments and returns to the

disaster shock, thus failing to generate a sizeable greenium.

The rest of the paper is organized as follows. In Section 1.2, I discuss my contribution

to related literature. Section 1.3 provides a concise but informative empirical analysis of

the greenium and how green and brown firms respond to climate disaster shocks. Section

1.4 illustrates the economic intuition of the mechanism through a simplified two-period

model. In Section 1.5, I present the MFIAM and solve the social planner’s optimiza-

tion problem. Section 1.6 discusses the quantitative results. Section 1.7 summarizes my
5Following mainstream calibration on the magnitude of climate damage, my model implies an SCC

equal to 40.4 U.S. dollars per metric ton of carbon (tC). This is about 9 cents per gallon of gasoline.
Previous IAMs, which do not account for climate beta, usually generate higher SCC estimates. For
example, $135/tC in Nordhaus (2019) and $60/tC in Golosov et al. (2014).
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findings.

1.2 Contribution to Literature

This paper contributes to the growing literature in the field of climate economics

and finance. Existing literature has already found that climate risk materializes in the

cross-section of economic sectors (Colacito et al., 2018) and stock market (Bansal et al.,

2016a). In addition, stocks with different levels of greenness can be used to hedge climate

risk (Engle et al., 2020). However, the literature presents mixed evidence regarding the

relationship between a firm’s expected stock return and greenness. While one strand

of literature finds that being “eco-friendly" is associated with a lower expected return

(see, for example, Chava, 2014; Bolton and Kacperczyk, 2021a,b; Hsu et al., 2020), the

other reaches an opposite conclusion (see, for example, Guenster et al., 2011; Cai and He,

2014; In et al., 2017). In line with the first strand of literature, I document a negative

greenium using a comprehensive greenness measure and a large sample of global firms.

The novelty in this paper is to reveal a new channel through which physical climate risks

drive cross-section investment flows and asset prices, along with both empirical supports

and theoretical considerations.

The literature chiefly explains the green premium through non-pecuniary utility from

holding green (Pastor et al., 2019) or environmental policy uncertainty (transition risks).

For example, Hsu et al. (2020) find that green stock carries a low premium because

it is positively exposed to environmental policy shocks (policies that restrain emission).

However, their model considers exogenous policy shocks and neglects the climate feedback.

Thus it is unclear whether an environmental policy shock is a good or bad shock: in the

short run, it could be a bad shock due to higher production cost, while in the long

run, it could be a good shock since it alleviates climate-change issues. Other papers

that are closely related to mine include Barnett (2017) and Hong et al. (2021). Barnett
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(2017) explains greenium through aversion to model uncertainty in a production economy.

Hong et al. (2021) attribute greenium to firms’ endogenous choice of decarbonization

due to sustainable finance pledges. My paper offers a new approach to explaining the

greenium through green stocks’ potential to hedge physical risks.6 Compared to the

works mentioned above, my model stands out in two aspects. First, it matches a wide

range of economic and environmental quantities and asset prices. Second, it sheds light

on how various macro-finance elements affect the SCC.

Finally, this paper contributes to the literature of IAM, pioneered by the seminal work

of Nordhaus (1992) with his DICE model. Other examples of IAMs, to list a few, include

WITCH (Bosetti et al., 2006), MERGE (Manne et al., 1995), DEMETER (Van der Zwaan

et al., 2002), and ENTICE-BR (Popp, 2006). I provide a first “handy" model to link the

literature of IAM with investment-based asset pricing models (Jermann, 1998; Zhang,

2005; Croce, 2014). The model simultaneously matches the cross-sectional asset prices as

well as economic and climate dynamics.

1.3 Empirical evidence

This section documents a greenium in the cross-section of the global stock market

and provides evidence that the greenium is not absorbed by common asset pricing factors

or firms’ idiosyncratic risks. To this end, I first sort firms according to their greenness

levels, measured by the environmental pillar score from the Refinitiv (formerly known

as Thomson Reuters) ASSET4 ESG dataset.7 The ENSCORE covers three major cat-

egories of firms’ environmental responsibility: emission, innovation, and resource use.
6Several papers have explored this potential (e.g., Choi et al., 2020; Engle et al., 2020; Faccini et al.,

2021), but none of those studies address the mechanism through which green stock appreciates upon
climate-related disasters.

7Refinitiv Asset4 ESG score covers around 70% of the world capitalization with over 450 ESG metrics,
of which the 186 most comparable measures are sorted into ten category scores (e.g., emission, human
rights, management, etc.) and three pillar scores (environmental, social, and governance). The informa-
tion is mainly collected by Refinitiv from public information, e.g., firms’ annual reports, corporate social
reports (CRS), company websites, etc. There are over 9000 firms in the Asset4 universe as of July 2020.
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The score ranges from 0 to 100 and is updated annually. Firms with higher scores are

more environmental-friendly. The available data begins in 2002, and the number of firms

expanded from 925, in 2002, to 3927 in 2019.

In each year, I sort firms into quintile portfolios, using their ENSCOREs of the last

year and relative to their industry peers according to the Fama-French 49 industries

classifications.8 Thus the sorting is based on relative greenness within industries and there

is no look-ahead bias. Furthermore, I exclude firms in the finance industry following Hsu

et al. (2020) and small firms, i.e., firms with market values smaller than the bottom 20%

of all NYSE listed firms, following Engle et al. (2020). I then construct the monthly value-

weighted stock returns for all quintile portfolios. I also collect various firm characteristics

from the Refinitiv Eikon. I winsorize all variables at the 1% level to mitigate the impact

of outliers.

In the rest of this section, I provide several pieces of evidence showing the existence

of the greenium. First, I regress portfolio returns on global asset pricing factors to see

whether priced systematic risks drive the return differences across portfolios. Second, I

implement double sorting to test whether the return difference exists within sub-samples

divided by specific characteristics. Third, a Fama-Macbeth regression confirms that the

predictive power of ENSCORE on stock return does not depend on firms’ idiosyncratic

risks, captured by both financial and geographic characteristics. Finally, I show green

stocks hedge climate disaster shocks using evidence from panel regression and event studies

on major natural disasters. In Appendix A, I implement several robustness tests. First,

I show that the greenium exists when focusing on specific aspect of ENSCORE. Second,

greenium is not driven by a certain sample period, and exists in a subsample with only U.S.

firms. Third, I provide evidence of greenium when using alternative greenness measures,

such as the emission intensity and MSCI E-score. In addition, I verify a greenium using

8The cutoff points are specific for each industry to ensure that each quintile portfolio has a similar
number of firms. In addition, I remove industry-year pairs where the number of firms with distinctive
ENSCOREs is smaller than 5.
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ENSCORE before its revision.9 Fourth, I use a factor-mimicking portfolio to show that the

greenium is priced in a broad cross-section of global testing portfolios. This demonstrates

that a greenium exists beyond my chosen sample.

1.3.1 Portfolio characteristics

Table 1.1 shows the time-series average of the cross-sectional mean of firm character-

istics in the overall sample and in each quintile portfolio. The table covers both financial

characteristics (Panel A) and geographic characteristics (Panel B). The sample period is

from 2002 to 2019.

Panel A of Table 1.1 shows the financial characteristics including market value, book-

to-market ratio, investment over asset,10 revenue over asset, R&D over asset, PPE over

asset, and leverage. Except for market value, all financial characteristics are in an annual

frequency. Panel B shows the geographic information, including the latitude, distance

to the nearest coast (Dist2Sea), and the trend of Palmer Drought Severity Index (PDSI)

(Palmer, 1965) for the cities where firms’ headquarter are located. Latitudes are obtained

by double matching firms’ address cities and countries with those in the World Cities

Database.11 Dist2Sea is collected from NASA.12 Finally, I follow Hong et al. (2019)

to calculate the time trend in the PDSI as a measure of each city’s vulnerability to

droughts.13 A lower value in the PDSI means higher vulnerability to droughts. Geographic

characteristics are time-invariant during the sample period. The goal of introducing these

9Berg et al. (2020) find substantial rewritings of Refinitiv ESG scores in April 2020, due to changes
in scoring methodology. They show that such changes affect tests related to ESG ratings. Therefore, I
investigate the greenium using ENSCORE downloaded in February 2020, before the change happens. I
thank Quentin Moreau for providing the data.

10Investment at year t is defined as change in total asset from year t to year t+ 1 following Fama and
French (2015).

11https://simplemaps.com/data/world-cities. Firms with missing or multiple matches are as-
signed to the capital of their country of domicile.

12https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
13PDSI uses temperature and precipitation data to estimate relative dryness. It is constructed by

Dai et al. (2004) and collected from the National Center for Atmospheric Research (NCAR): https:
//rda.ucar.edu/datasets/ds299.0/index.html#!description.

https://simplemaps.com/data/world-cities
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://rda.ucar.edu/datasets/ds299.0/index.html#!description
https://rda.ucar.edu/datasets/ds299.0/index.html#!description
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characteristics is to control the direct exposure of each firm to physical climate change

risk, so that the result is not driven by firms’ geographic proximity to disasters.

In this paper, I define the portfolio with the highest (lowest) quintile of ENSCORE

as the green (brown) portfolio. According to Table 1.1, each quintile portfolio has a

similar number of firms. ENSCORE increases monotonically from Quintile 1 to Quintile

5. Portfolios differ in terms of some financial characteristics. The most obvious difference

is that greener firms tend to be bigger, which may not be surprising since bigger firms

care more about their environmental profiles, and therefore put more emphasis on curbing

emissions and utilizing clean energies. Thus they tend to achieve better environmental

profiles. In addition, greener firms have smaller investments and R&D over asset. For

geographic characteristics, I find that green firms, on average, are located in areas with

higher latitude, nearer to the sea, and more vulnerable to droughts. A possible explanation

is that green firms tend to settle in relatively developed areas, which have high latitudes

and often are near the sea. These facts indicate that green firms may intrinsically have

different exposures to physical climate risks, due to their geographic locations. However,

I control all these characteristics in the later analyses, i.e., double sorting, Fama-Macbeth

regression, and event studies, to ensure that these characteristics do not drive my results.

Finally, Table 1.2 shows the first few industries with the highest weights in the green

and brown portfolios. The weight is the fraction of firms in a specific industry among

all the firms in that portfolio. The top-weighted industries are similar for both brown

and green portfolios, indicating that the sorting captures the relative greenness within

industries.

1.3.2 Factor regressions

The first row of Table 1.3 reports the annualized value-weighted excess returns of the

quintile portfolios. The portfolio with the highest ENSCORE (the green portfolio) has,

on average, 3.83% lower annual return than the one with the lowest ENSCORE (the
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Table 1.1: Portfolio summary statistics

Quintiles All L 2 3 4 H
ENSCORE 30.50 0.13 12.57 27.55 45.09 68.99
Observations 2396 475 479 481 479 482

Panel A. Financial characteristics
MV (billion $) 12.68 6.23 5.79 10.07 15.04 26.53
BV/MV (%) 58.93 53.77 62.43 60.16 60.06 60.41
I/A (%) 3.30 4.44 4.01 3.21 2.68 1.90
REV/A (%) 87.94 84.36 82.46 86.78 92.26 87.60
R&D/A (%) 3.70 6.07 2.91 3.41 3.16 3.12
PPE/A (%) 31.86 27.09 36.88 34.19 32.29 31.45
Lev (%) 38.88 38.35 39.50 38.69 38.91 40.68

Panel B. Geographic characteristics
Latitude 36.12 34.25 34.48 34.78 37.36 39.98
Dist2Sea (km) 147.90 152.98 181.16 149.68 135.63 120.87
PDSI -1.19 -0.89 -1.01 -1.22 -1.39 -1.57

Note: The table shows time-series averages of cross-section means of firm characteristics
in the overall sample and in each of the quintile portfolios. All financial characteristics
are annual except for market value (which is monthly). Geographic characteristics are
static. Sample period is from 2002 to 2019.

Table 1.2: Industry decomposition

High ENSCORE portfolio Low ENSCORE portfolio
Top-weighted industry FF49 code Top-weighted industry FF49 code
Retail 43 Business Services 34
Utilities 31 Computer Software 36
Petroleum and Natural Gas 30 Retail 43
Communication 32 Communication 32
Business Services 34 Pharmaceutical Products 13
Transportation 41 Petroleum and Natural Gas 30

Note: The table shows the industry decomposition of high and low ENSCORE portfolios.
The weight is the number of firms in a specific industry over the total number of firms in
that portfolio. FF49 code is the Fama-French 49 industry classification code

brown portfolio). To see whether this return difference is driven by priced systematic

risks, I apply time-series regression of these portfolio returns to global asset pricing factor
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models.14 I use the CAPM (Sharpe, 1964), FF3 (Fama and French, 1993), FF5 (Fama

and French, 2015) and FF5 plus the momentum factor to get the abnormal returns (α),15

Ri,t = αi + βi
′ · Ft + vi,t

where Ft is the list of factors listed above and Ri,t equals the return of the quintile portfolio

i at month t. The abnormal returns α are reported in panels A to D in Table 1.3. The

last column of this table also shows the α of the strategy that longs the brown portfolio

and shorts the green one (i.e., the low-minus-high portfolio on ENSCORE).

After controlling for these factors, the abnormal returns of the low-minus-high portfo-

lio remain significantly positive. The α is 2.43% (t=2.06) for the CAPM, 2.17% (t=2.21)

for the FF3, 3.91% (t=3.20) for the FF5, and 3.98% (t=3.18) for the FF5 plus momen-

tum factor models. The results show that portfolios with higher ENSCORE carry lower

expected returns after controlling for various global asset pricing factors that account for

systematic risks. Figure 1.2 shows the cumulative abnormal return of the low-minus-high

portfolio. When using the CAPM and FF3 factors, part of the greenium is absorbed. This

is mainly because of the size effect since green firms tend to be bigger. However, when

we broaden our examination to a more comprehensive set of asset pricing factors, i.e., the

FF5 and FF5 plus momentum, the greenium becomes even more pronounced. Overall,

the evidence presented here clearly shows that priced systematic risks cannot explain the

greenium. In the next subsection, I investigate whether this return predictability remains

after controlling for firm characteristics.

14Appendix A shows that the result is robust among U.S. firms when using a set of U.S. risk factors.
15The global asset pricing factors are downloaded from Kenneth French’s data library: https://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1.3: Factor regressions

L 2 3 4 H L - H
E[Rex] 10.87 8.84 9.33 9.00 7.04 3.83∗∗∗

(4.16) (4.24) (4.2) (3.58) (3.25) (1.39)
SR 0.20 0.17 0.18 0.20 0.16 0.17

Panel A. CAPM
α 2.84 0.89 1.52 2.11 0.41 2.43∗∗

(1.31) (1.3) (1.3) (0.9) (0.97) (1.18)
Panel B. FF3

α 3.02 0.93 1.78 2.48 0.86 2.17∗∗

(1.02) (1.3) (1.32) (0.81) (0.84) (0.98)
Panel C. FF5

α 4.99 0.78 2.21 2.72 1.07 3.91∗∗∗

(1.16) (1.4) (1.36) (1.02) (0.86) (1.22)
Panel D. FF5 & MOM

α 5.04 0.79 2.17 2.66 1.06 3.98∗∗∗

(1.16) (1.39) (1.39) (1.05) (0.87) (1.25)

Note: The table shows the excess returns and abnormal returns (α) of the quintile port-
folios using the following time-series regression:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum. Returns are value-weighted and annualized. Newey-West adjusted standard
errors are reported in the parenthesis. One, two, and three asterisks indicate that the
L-H return is positive at 10%, 5%, and 1% significance levels.

1.3.3 Double sorting and Fama-Macbeth regression

Since the firm characteristics of green versus brown portfolios differ in several aspects

as shown in Table 1.1, I implement two exercises to see whether these differences account

for the greenium. In the first exercise, I double-sort the stocks using ENSCORE and

another firm characteristic. For example, I first sort firms into big and small groups

according to their market value in the last year relative to their industry peers.16 Then,

16I use the median of market value as the cutoff point. Thus a firm with a market value smaller than
the median of its industry peers is classified as “small" and vice versa.
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Figure 1.2: Risk adjusted cumulative returns

within the big and small groups, I sort firms into quintile portfolios according to their last

year’s ENSCOREs relative to their industry peers. Thus I create ten portfolios. I then

compare these portfolios’ annualized returns to see whether the lower expected return

of the green portfolio exists within the big and small subsamples. I then repeat this

double-sorting for all other characteristics.

Table 1.4 shows the results. None of the firm characteristics affect the positive re-

turn obtained from a low-minus-high portfolio. In addition, the greenium is significant

for all double-sortings except within small firms. This fact indicates that the greenium

concentrates in big firms, consistent with In et al. (2017). A possible explanation of this

phenomenon is that investors may not consider small firms as major contributors to cli-

mate change issues so that the risks associated with climate externality are attenuated in

small firms.

In the other exercise, I run the Fama-Macbeth regressions of firm-level stock returns
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on their ENSCOREs and other characteristics, i.e.,

Ri,t = β0,t + β1,tENSCOREi,t−12 + β2,tXi,t−12 + ϵi,t.

Where Ri,t is the stock return of firm i at month t, X includes various sets of the firm

characteristics listed before. All independent variables in the regression are standardized

to have zero mean and unit variance for better inference on the coefficient. The estimation

process consists of two steps. In the first step, I run the cross-sectional regression for each

month to get the estimated slopes β̂i,t; in the second step, I take the average of the slopes

over the whole sample period. Table 1.5 shows that a one-standard-deviation increase in

the ENSCORE decreases a firm’s annualized stock return in the next year by 0.86% to

1.37%, under different subsets of control variables. In other words, given that the sample

standard deviation of ENSCORE is 28.4, an increase of ENSCORE from 0 (the lowest

possible level) to 100 (the highest possible level) decreases the firm’s annual stock return

next year by 3.03% to 4.82%. This result is in line with the 3.83% greenium documented

in the previous analysis.

In sum, these two exercises provide valid evidence that the greenium is not attributable

to firms’ idiosyncratic risks, as captured by both financial and geographic characteristics.

1.3.4 Green stock hedges physical risks

Panel regression

In this section, I explain the greenium through the standard risk-return paradigm.

Specifically, I investigate whether green stock provide a hedge against climate-related

disasters. If green stock appreciates after a positive disaster shock, then investors demand

a lower return for holding it. To implement this, I use granular data on firm-level return

and a monthly measure of economic losses due to climate-related disaster. To begin with,

I collect a list of global disasters from the International Disaster Database, and pick out
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Table 1.5: Fama-Macbeth regression on ENSCORE and other firm character-
istics

(1) (2) (3) (4) (5)
ENSCORE -1.37∗∗ -1.02∗ -0.96∗ -0.86∗∗ -0.86∗∗

(0.56) (0.55) (0.49) (0.40) (0.42)
MV -0.94∗ -0.52 -0.52 -0.51

(0.53) (0.47) (0.37) (0.35)
BV/MV 1.06 1.65 2.82∗ 2.89∗∗

(0.80) (1.11) (1.59) (1.43)
I/A -0.50 -0.88 -0.82

(0.55) (1.08) (1.13)
REV/A 1.09∗∗∗ 1.37∗∗ 1.48∗∗

(0.38) (0.64) (0.64)
R&D/A 2.14∗∗ 2.03∗∗

(0.99) (0.98)
PPE/A -1.30∗ -1.06

(0.72) (0.68)
Lev 0.85 0.83

(0.81) (0.80)
Latitude 0.30

(0.70)
Dist2Sea -0.42

(0.42)
PDSI 1.42∗

(0.81)
Industry FE Yes Yes Yes Yes Yes

Adj. R2 0.110 0.118 0.118 0.147 0.165
Obs. 475128 446232 435264 203316 188712

Note: This table shows the results of the Fama-Macbeth regression

Ri,t = β0,t + β1,tENSCOREi,t−12 + β2,tXi,t−12 + ϵi,t.

All independent variables are standardized with a zero mean and unit variance. I first
run cross-section regression for each month. Then I report the average of the estimated
slope. Newey-West adjusted standard errors of the average slopes are reported in the
parentheses. One, two, and three asterisks indicate that the coefficient is significant at
10%, 5%, and 1% levels.

disasters that are related to climate change.17 I then construct a monthly index of climate

17See https://www.emdat.be/. The database provides a long list of disasters (climatic or non-climatic)
with rich information such as time, location, and economic losses. Climate-related disasters are defined
by the following types: flood, wildfire, storm, extreme temperature, drought, and glacial lake outbreak.

https://www.emdat.be/
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economic damage by aggregating economic losses (in U.S. dollars) due to global climate

disasters that happened in each month. To my knowledge, I am the first to construct a

time-series of physical climate risk using real economic losses caused by climate disasters.

I then run a panel-data regression of firm-level returns on this climate damage index.

To explore whether climate disasters impact green and brown firms differently, I introduce

the interaction between climate damage and a firm’s greenness. The specification is given

by

ARi,t = αi + (β1 + β2 · ENSCOREi,t−12) · logdamaget + γXi,t−1 + ϵi,t (1.1)

where ARi,t is the risk-adjusted return of firm i in month t. αi is the firm fixed effect

term, thus the specification exploits the time-series variation across firms. logdamaget =

log(damaget + 1) where damaget is the economic losses due to climate disasters in month

t, measured in thousand of U.S. dollars. For the control variable Xi,t, I include firm

characteristics that are known to affect stock returns, such as the market value, book-

to-market, momentum (cumulative returns of the last twelve months), investment over

asset, revenue over asset, tangibility, and leverage. The parameter of interest is β2. A

significantly positive β2 means that green stocks appreciate relative to brown ones upon a

positive shock on climate disasters. To facilitate comparison between parameters β1 and

β2, I normalized ENSCORE between zero to one.

To have clear picture on how stocks in each quintile of ENSCORE response to disas-

ter shock, I run an alternative regression where the continuous measure, ENSCORE, is

replaced by a set of dummies indicating which greenness quintile the firm belongs to, i.e.,

ARi,t = αi + (β1 + β2 ·Quintilei,t−12) · logdamaget + γXi,t−1 + ϵi,t (1.2)

Column 1 and 2 of Table 1.6 present the result from the equations (1.1) and (1.2),

respectively. The result shows that the CAPM-adjusted return of a firm with zero EN-

During my sample period, there are 5,892 disaster event, where more than 85% are storms and floods.
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SCORE (i.e., the brownest) decreases by 0.28 b.p. when the climate damage increases

by 1%.18 However, the coefficient of the interaction term is significantly positive. This

indicates that, relative to brown firms, green firms suffer less damage from disasters.

Specifically, the decrease in returns of green firms is 13% (0.038/0.282) less than that of

the brown ones. A test on the sum of the two coefficients show that green stocks still

depreciate significantly due to climate disasters, but to a less degree. Column 2 indicates

that it is the brownest firms that depreciate the most, where firms in higher quintiles

depreciate significantly less than the firms in the first quintile.

Column 3 and 4 of table 1.6 show that the result is robust when using raw return as

dependent variable and adding market return as a control. In Figure 1.2, the return on the

BMG portfolio decreases significantly during the financial crisis. As such, to eliminate the

possibility that the result is driven by that period. I run the same regressions but exclude

the financial crisis episode (July 2017 to March 2019). Column 5 and 6 show that the

result is consistent. Finally, Column 7 and 8 show result of a placebo test where I replace

the series of climate damages using damages due to earthquakes, which is unrelated to

climate change. Intuitively, returns depreciate significantly due to earthquakes. However,

the interaction terms is now negative and weakly significant, and the coefficients for

different quintiles are not significant. This means that only climate-related disasters lead

to the relative appreciation of green stocks.

In a similar exercise, I investigate how investments of green/brown firms respond to

climate damage shocks. I study investment to see whether there is a real effect (e.g., an

investment reallocation) caused by climate shocks. Specifically, I replace the dependent

variable in regressions (1.1) and (1.2) by firm-level investment. I follow literature to define

investment by log changes in the (i) total asset (Fama and French, 2015), (ii) net PPE

(Thomas and Zhang, 2002), and (iii) capital expenditure (CAPX) (Lev and Thiagarajan,

1993). Data is collected from Global Compustat and matched with Datastream. I change

18Result is consistent with returns adjusted using Fama-French factors.
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Table 1.7: Investments and climate damage

I ≡ ∆A I ≡ ∆PPE I ≡ ∆CAPX
(1) (2) (3) (4) (5) (6)

logdamage -0.110∗∗∗ -0.121∗∗∗ -0.065∗∗ -0.071∗ -0.339∗∗∗ -0.444∗∗∗

(0.027) (0.035) (0.029) (0.012) (0.082) (0.103)
ENSCORE × logdamage 0.289∗∗∗ 0.161∗∗ 0.499∗∗∗

(0.062) (0.067) (0.143)
Quintile 2 0.037 -0.001 0.004

(0.038) (0.047) (0.110)
Quintile 3 0.095∗∗ 0.045 0.271∗∗

(0.042) (0.048) (0.111)
Quintile 4 0.163∗∗∗ 0.094∗ 0.455∗∗∗

(0.044) (0.049) (0.110)
Quintile 5 0.231∗∗∗ 0.148∗∗∗ 0.565∗∗∗

(0.048) (0.053) (0.119)
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes
Obs. 105,265 104,563 105,184 104,484 87,993 87,462
Adj. R2 0.32 0.32 0.33 0.33 0.08 0.08

Note: This table shows the results of the regression of investments on economic losses due
to climate disasters. ENSCORE is normalized between zero and one. Coefficients are in
percentages. Standard errors are clustered at the firm level.

the frequency of the regressions to quarterly to match the frequency of investment.19

Finally, control variables include lagged total asset and PPE, revenue over asset, book-

to-market, and leverage. All variables are winsorized at the 99% level.

Table 1.7 shows the result. According to column 1 where investment is defined as

change in the total asset, a shock of 1% increase in the climate damage decreases in-

vestment of the brownest firm by 0.11 b.p. However, the coefficient of the interaction

term is significantly positive, indicating that green firms experience increased investment

relative to brown firms. A test shows that the sum of the two coefficients is significantly

positive. This means the green firms experience increased investment during climate dis-

asters. Column 2 shows a monotonically increasing relationship between the investment
19To get rid of seasonality, investment is measured by the log change of the variables (asset, PPE, or

CAPX) in the current quarter with respect to the same quarter of the last year.
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and the greenness, consistent with result in column 1. Finally, the result is robust with

other measures of investment. In sum, the evidence presented in Table 1.7 clearly shows a

reallocation of investment from brown firms to green firms when facing a positive climate

damage shocks.

Event studies

The previous section exploits time-series variation to explore the responses of returns

and investments toward climate disaster shocks. In this section, I implement an event

study and uses firms’ cross-sectional variation to see how stocks with different greenness

respond to specific natural disasters during the sample period. First, I identify three ma-

jor natural disasters during the sample period: Hurricane Katrina, the 2012 US drought,

and the 2018 California wildfires. These three events are considered the most devastat-

ing hurricane/drought/wildfires by the National Oceanic and Atmosphere Administration

(NOAA) during the period 2002-2019.20

I implement the following cross-sectional regression for each of the three disasters,

Ri,t→t+M = α + β ·Browni,t + γXi,t−12 + ϵi,t,

where t is the month when the disaster happens.21 Ri,t→t+M is the (annualized) cumulative

return from month t to month t + M of firm i; Browni,t is a dummy variable equal

to 1 (0) if firm i is in the lowest (highest) quintile of ENSCORE; Xi,t−12 are control

variables including the industry dummies, firm size, momentum (cumulative return of past

12 months), book-to-market of the year prior to the disaster, and the three geographic

characteristics previously identified. The variable of interest is β. A negative β indicates

20See https://www.ncdc.noaa.gov/billions/events/US/2003-2019, Hurricane Katrina costs 170
billion US dollars and 1833 lives, 2012 US drought leads to 34.8 billion US dollars and 123 deaths, 2018
California wildfires cause 25 billion US dollars and 106 deaths.

21For the Hurricane Katrina, t is August 2005; For the drought and wildfires, t is the July of 2012 and
2018, respectively.

https://www.ncdc.noaa.gov/billions/events/US/2003-2019
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Table 1.8: Event study on stock returns

M 1m 2 m 3m 6m 12m
Panel A. Hurricane Katrina

β -19.61∗∗ -17.93∗∗∗ -9.10∗ -8.76∗∗ -8.79∗∗∗

(8.48) (6.18) (5.19) (3.74) (2.34)
Adj. R2 0.14 0.20 0.09 0.19 0.18

Obs. 721 721 721 721 721
Panel B. 2012 US drought

β -22.61∗∗ -11.83∗ -6.53 -5.11 -7.18∗∗∗

(10.81) (6.62) (4.89) (3.14) (2.54)
Adj. R2 0.16 0.13 0.12 0.04 0.22

Obs. 844 844 844 844 844
Panel C. 2018 California wildfires

β -24.50∗∗∗ -6.12 -5.49 -2.92 -0.62
(6.88) (5.2) (4.37) (3.44) (2.41)

Adj. R2 0.06 0.06 0.05 0.13 0.12
Obs. 1475 1475 1475 1475 1475

Note: This table shows the results for the event study

Ri,t→t+M = α + β ·Browni,t + γXi,t−12 + ϵi,t,

where Ri,t→t+M is the annualized cumulative return of firm i from month t to month t+M .
Browni,t is a dummy variable indicating whether firm i is brown or not. Xi,t includes the
industry dummies, firm size, momentum (cumulative return of past 12 months), book-
to-market, and the geographic characteristics. Newey-West adjusted standard errors are
reported in the parentheses. One, two, and three asterisks indicate that the coefficient is
significant at 10%, 5%, and 1% levels.

that brown stocks depreciate upon a natural disaster relative to green stocks. Thus longing

green stocks and shorting brown stocks could offer insurance against climate change, which

explains the negative greenium documented previously.

Table 1.8 shows that the estimated β are significantly negative for the horizon from one

month to one year following Hurricane Katrina. Compared to green stocks, annualized

cumulative returns of brown stocks decreased 19.6% in the first months after Hurricane

Katrina. The effect fades out in one year but still induces a significant reduction in

cumulative return (9%). For the 2012 US drought and 2018 California wildfires, the
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decreases of brown stock returns are more pronounced in the first month (22.6% and

24.5%, respectively). But the effects seem to be less long-lasting than those of Hurricane

Katrina. Note that the regression controls firms’ geographic proximity to disasters. Thus

the responses are not driven by, for example, brown firms are more damaged due to

disasters. In sum, the result confirms the role of green stocks as a hedge against climate-

related natural shocks.

Finally, I examine the dynamics of investment flows across brown and green firms

upon natural disasters. Specifically, I do the same event study on investments. Because

the investment data is low-frequency, I focus on long-lasting natural disasters, the 2012

U.S. drought/heatwave and the 2018 California wildfires:

∆(I/A)i,t = α + β ·Browni,t + γXi,t−1 + ϵi,t,

∆(I/A)i,t is the change of the investment-over-asset of firm i from year t − 1 to year t.

The investment is defined by change in total assets (∆A) and change in PPE (∆PPE).

The control variable Xi,t includes industry dummies, revenue over asset, leverage, and the

geographic characteristics.

Table 1.9 shows that during the 2012 U.S. drought (the 2018 California wildfires),

the investment-over-asset ratio of brown firms decreases by 4.6% (4.3%) relative to green

stocks. Results are consistent when the investment is defined by the change in tangible

capitals (PPE). The different investment responses of green versus brown firms are not

driven by their direct exposures to natural disasters, captured by geographic characteris-

tics. The result indicates that upon climate-related disasters, investments flow from the

brown sector to the green one.

The above findings are consistent with recent literature on how investors react to

climate events by changing their trading behaviors. For example, Choi et al. (2020)

find that investors revise their beliefs about climate change upward when experiencing
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Table 1.9: Event study on investment

I ≡ ∆A I ≡ ∆PPE
Panel A. 2012 US drought

β -4.62∗∗ -6.73∗∗

(2.18) (2.74)
Adj. R2 0.02 0.01

Obs. 829 827
Panel B. 2018 California wildfires

β -4.28∗∗ -5.19∗∗

(2.02) (2.25)
Adj. R2 0.03 0.01

Obs. 1381 1374

Note: This table shows the results for the event study

∆(I/A)i,t = α + β ·Browni,t + γXi,t−1 + ϵi,t,

where ∆(I/A)i,t is the change of the investment-over-asset of firm i from year t−1 to year t.
The investment is defined in two ways: (1) change in total assets, and (2) change in PPE.
Browni,t is a dummy variable indicating whether firm i is brown or not. The control
variable Xi,t includes industry dummies, revenue over asset, leverage, and geographic
characteristics. Newey-West adjusted standard errors are reported in the parentheses.
One, two, and three asterisks indicate that the coefficient is significant at 10%, 5%, and
1% levels.

extremely warm temperature. They find that (i) attention to climate change, as proxied

by Google search volume, increases when temperature is abnormally high, and (ii) retail

investors oversell carbon-intensity in such weather, leading to a depreciation of brown

stocks. In a recent paper by Huynh and Xia (2021), they also find that investor react to

natural disasters by overselling stock and bond when a firm is exposed to disaster, but

greener firms experience lower selling pressures. Consistent with this literature, I find

brown stocks depreciate more than green stocks during climate disasters. In addition, I

find that green firms experience increased investment than brown firms. Under investment

friction, this reallocation of investment increases the green sector’s value and thus lead to

higher returns. Based on this intuition, I provide a simple and analytically solvable model

in the next section to build a causal link between climate disasters and investment/return
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movements.

1.4 A two-period model

This section presents a simple two-period model that qualitatively explains the empir-

ical findings. At t = 0, a representative agent invests in two production sectors: one uses

fossil fuel which causes pollution (sector B); the other uses non-fossil fuel/green energy

(sector G) which has no pollution issues. At t = 1, the agent observes an exogenous nat-

ural disaster shock ϵ and again makes investment decisions on the two sectors. At t = 2

the agent consumes all goods, and the economy is closed. I introduce climate damage as

a mapping from time-1 investment in sector B and the shock to the time-2 output.

Agents have Epstein and Zin recursive preferences (Epstein and Zin, 1989) . For

mathematical tractability, I assume the IES equals to one and take the logarithm of the

utility:

ut =


(1 − β) logCt + β

1−γ logEt
[
exp

{
ut+1(1 − γ)

}]
γ ̸= 1

(1 − β) logCt + βEt [ut+1] γ = 1

where ut+1 is the continuation utility at time t+1, β ∈ (0, 1) and γ > 0 are the subjective

discount factor and relative risk aversion, respectively.

This model may be unrealistic and oversimplified in terms of climate-economy inter-

actions from the perspective of standard IAM literature. However, the goal of this section

is to provide a glimpse into the mechanism through which green stocks rise upon climate-

related disasters, while maintaining analytical tractability. In the rest of this section, I

show how investments and stock returns at time 1 respond to the shock, and the assump-

tions imposed on the damage mapping that enable the model to qualitatively match data.

Details of the derivation are presented in Appendix B.
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Utility At t = 1, the agent’s utility becomes certain since all uncertainties are resolved.

Thus,

u1 = (1 − β) log(C1) + β log(C2). (1.3)

Production I assume, for simplicity, Cobb-Douglas production function depending on

the capital stocks of two sectors with full capital depreciation. I remove labor input and

the productivity process. In addition, I include climate damage mapping D, such that

C2 = Y2 =
(

1 −D(IB,1, ϵ)
)
IαB,1I

1−α
G,1 , (1.4)

where α ∈ (0, 1) is the weight of sector B in the production function; IB,1 (IG,1) is the

time-1 investments in sector B (G); and ϵ ∼ N(0, σ2) is the shock of natural disaster. D

is the climate damage, which depends on both the investment in sector B and the natural

disaster shock. I assume that D′
1 > 0, D′

2 > 0, and D′′
12 > 0. The last assumption is

essential to making the model consistent with the data, thus generating a lower premium

for the green stocks. It says that the marginal climate damage caused by pollution

increases with the shock of natural disasters. For analytical convenience, I assume the

following multiplicative functional form for the climate damage D(·, ·):

D(IB,1, ϵ) =


λ(ϵ) log(IB,1/Ī), IB,1 > Ī

0, IB,1 ≤ Ī

(1.5)

where Ī is a scaling parameter, such that when the investment of sector B, IB,1, is smaller

than Ī there is no climate damage. λ(ϵ) is the damage intensity, which determines the

marginal cost of investing in sector B. It is assumed that both λ(ϵ) and Ī are sufficiently

small. In addition, λ(ϵ) is increasing on the disaster shock ϵ. Here is the micro foundation

for this setting: Since the damage intensity parameter λ is intrinsically uncertain, agents

learn the true value of λ from the noisy signal ϵ. When a natural disaster happens, agents
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revise their belief about λ upward. Thus, in a reduced form, the perceived value of λ is

an increasing function on the shock ϵ. This assumption is consistent with the ideas in

Ortega and Taspınar (2018) and Gibson et al. (2017) that perceived climate risks become

more salient after the realization of climate-related natural disasters. Hong et al. (2020)

provide details about how investors increase belief regarding the adverse consequences of

global warming due to unexpected disaster arrivals.

Optimization The assumptions mentioned above simplify the mathematics and gener-

ate linear solutions. The social planner’s problem at Time 1 is

max
IG,1,IB,1

u1 = (1 − β) logC1 + β logC2, (1.6)

subject to the constraints in equations (1.4), (1.5), and the market clear condition Y1 =

IB,1 + IG,1 + C1.

Solving the first order conditions (F.O.C.) of problem (1.6) gives the investment and

consumption solutions. The solutions are linear functions of the state variable Y1, where

the coefficients depend on the damage intensity λ,

IB,1 = β(α− λ)
1 − βλ

Y1, (1.7)

IG,1 = β(1 − α)
1 − βλ

Y1. (1.8)

In general, climate damages are small, so we can safely assume α > λ and ensure that

investments are always positive. Note that ∂IB,1
∂λ

< 0 and ∂IG,1
∂λ

> 0. Thus a natural disaster

shock (a positive ϵ), which is translated into an increase in the damage intensity λ, will

lead to a higher (lower) investment in the sector G (B). Specifically, we can approximate
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the investment as a linear function of the steady-state investment and the shock,

IB,1 = ĪB,1 + θBϵ, (1.9)

IG,1 = ĪG,1 + θGϵ, (1.10)

where ĪB,1 (ĪG,1) is a steady-state investment which does not depend on the shock, θB =

−β 1−αβ
(1−βλ)2 λ̄

′ and θG = β2 1−α
(1−βλ)2 λ̄

′ with λ̄′ = ∂λ
∂ϵ

∣∣∣∣
ϵ=0

. Since λ′ > 0, then θB < 0 and θG > 0.

We reach the following proposition.

Proposition 1. Under the assumption that climate damage intensity increases after a

natural disaster, a positive shock of natural disaster decreases investment in the fossil fuel

sector and increases investment in the non-fossil sector.

The intuition is quite simple: a natural disaster leads to a higher perceived damage

intensity, or a higher marginal cost of production using fossil fuel. As a result, a social

planner would lessen the use of fossil fuel. This leads to a lower investment in sector B.

Linear approximation of the utility Using the Envelope Theorem, the partial deriva-

tive of utility to the shock is given by

∂u1

∂ϵ
= ∂u1

∂λ
λ̄′ = −β log(IB,1/Ī)λ̄′ < 0. (1.11)

Thus utility decreases when there is a positive shock of natural disaster.

Stochastic discount factor The SDF at t = 1 is expressed as

M1 = ∂u0/∂C1

∂u0/∂C0
= β

C0

C1

exp
(
u1(1 − γ)

)
E0
[
exp

(
u1(1 − γ)

)] (1.12)
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Taking the logarithm to equation (1.12) and applying a linear approximation,

m1 = m̄1 + θmϵ, (1.13)

where the m̄1 is the steady-state SDF and θm = β
[
(γ − 1) log(ĪB,1/Ī) − 1

1−βλ

]
λ̄′.

The sign of θm depends on two terms. The first term is caused by the disutility due to

the shock, which increases the SDF. The second one decreases the SDF due to increase

in the time-1 consumption since agents refrain from investing in sector B. How the SDF

changes with respect to the shock depend on the interaction of these two terms.

Proposition 2. When the agent is risk averse enough, so that γ > 1 + 1
(1−βλ) log(ĪB,1/Ī) , a

positive disaster shock increases the SDF.

When λ << 1 and Ī << ĪB,1 the condition in the above proposition is easily satisfied

for risk-averse agents.

Stock returns Hayashi (1982) shows that introducing adjustment cost into a firm’s

optimal investment problem rationalizes Tobin’s conjecture that investment is a function

of marginal q. A convex investment adjustment cost indicates that Tobin’s marginal q

is positive related to investments. Therefore stock returns, which equal levered invest-

ment return, are linked with investment flows (Zhang, 2005). Specifically, I change the

assumption regarding the capital accumulation process to the following (still maintaining

the assumption on full depreciation):

Ki,t+1 = Ii,t −G(Ii,t, Ki,t), ∀i ∈ {B,G},

where G(I,K) reflects a convex adjustment cost, which satisfies G′
I > 0, G′

K < 0 and

G′
II > 0. The adjustment cost G is generally much smaller compared to the invest-

ment, so the optimal investments derived in equations (1.7) and (1.8) remain good linear

approximations.
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The stock returns equal to the investment return under no leverage (Cochrane, 1991)

(I neglect index i for simplicity):

Rt+1 =
−Qt+1G

′
K,t+1 +MPKt+1

Qt

, (1.14)

where MPK is the marginal product of capital. Q = 1
1−G′

I
is Tobin’s q, which captures the

unit of current consumption required to generate one additional capital in the next period.

I assume the adjustment cost takes the following functional form G(I,K) = I− a
1−ξI

1−ξKξ

following Jermann (1998) and Croce (2014), where ξ > 0. 1/ξ represents the elasticity of

investment rate with respect to Tobin’s q.

To see how stock returns respond to the shock ϵ, note that the log return for sector i

can be expressed as

ri,1 = r̄i,1 + κiθiϵ, ∀i ∈ {B,G}, (1.15)

where κi = ∂ri,1
∂Ii,1

> 0. r̄i,1 is the steady-state log stock return at time 1. θB and θG are

given in equation (1.9) and (1.10). Note that κB and κG are both positive, θB < 0 and

θG > 0. Then,

Proposition 3. A positive shock of natural disaster increases the stock return in sector

G and decreases that in sector B.

Note that both stock returns and the SDF are conditionally log-normal. Thus the risk

premium is E0[rexi,1] = −Cov0(m1, ri,1) − 1
2Var0(ri,1). Namely,

E0[rexi,1] = −κiθiθmσ2 − 1
2κ

2
i θ

2
i σ

2, ∀i ∈ {B,G},

when the agent is risk averse enough, so that the condition of Proposition 2 is satisfied

and θm > 0, the natural disaster shock carries a negative price of risk, as captured by

−θmσ2. With a negative exposure to the shock, i.e., κBθB < 0, sector B carries a positive

risk premium. In contrast, sector G carries a negative risk premium due to the positive
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exposure, i.e., κGθG > 0. In summary, sector G provides insurance against global warming

and thus carries a lower risk premium, consistent with the data.

1.5 The macro-finance integrated assessment model

This section presents a DSGE model with infinite horizon, which unifies the standard

IAM and production-based asset pricing models in the macro-finance literature. The

model is based on, but differs significantly from, the model by Bansal et al. (2016a,b).

First, I extend their endowment economy into a production economy with two production

sectors using fossil and non-fossil fuels, respectively. Second, I include investment frictions,

which explicitly relates investment decisions to stock returns. Third, I specify a time-

varying damage intensity that depends on the shock of natural disasters. These model

setups enable me to elicit moments of macroeconomic variables and stock returns and

match them with the empirical facts. In the rest of this section, I describe the economic

sector, climate change dynamics, preferences, and the welfare optimization problem.

1.5.1 Economic sector

Production function I assume a constant elasticity of substitution (CES) aggregation

between the outputs of the two sectors, since the elasticity of substitution between the

two energy sources is important for the equilibrium allocations (Acemoglu et al., 2012).

Yt =
(
ωY

ε−1
ε

B,t + (1 − ω)Y
ε−1
ε

G,t

) ε
ε−1

, (1.16)

where YB and YG are outputs from sector B and G, respectively. ω is the fraction of final

output from sector B. ε is the elasticity of substitution between the two sectors. When

ε > 1 (ε < 1), outputs in the two sectors are substitutes (complements). A benchmark

calibration indicates ε > 1 (Acemoglu et al., 2012; Van der Zwaan et al., 2002), suggesting
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that fossil and non-fossil fuels are usually substitutes.22

Outputs from the brown sectors are produced through Cobb-Douglas function using

capital and labor as inputs:

YB,t = Kα
B,t(AtlB,t)1−α, (1.17)

where Kt and lt are the capital stock and labor input, At is productivity. Output in sector

G is determined by both physical and intangible capital (human knowledge):

YG,t = Hν
t

(
Kα
G,t(AtlB,t)1−α

)1−ν
, (1.18)

where Ht is human knowledge of non-fossil fuel, accumulated through R&D which will be

discussed later.

The inclusion of intangible capital for sector G reflects the empirical fact that the

green sector is investing more R&D than the brown sector in dollar values. Moreover,

recent literature in climate economics suggests that technical change on non-fossil fuel is

essential for accurate policy analysis (Acemoglu et al., 2012), since it provides a growth

option toward emission reduction in the future.

Unlike Popp (2006) and Golosov et al. (2014), I do not include energy as a direct input

into the production function. Instead, output depends on the capital level, i.e., the quan-

tity of machines that extract, transport, and convert energy sources into final products.23

As in Van der Zwaan et al. (2002), raw energy inputs in each sector are proportional to

the level of corresponding capital stocks. This approach has two advantages: first, energy

extraction and conversion costs are usually hard to quantify. I transform this cost to

the depreciation of capital and investments. Second, through this approach I explicitly

22For example, both renewable energy and fossil fuel are widely used to produce electricity nowadays.
In this case, these two inputs are highly interchangeable. Solar and geothermal energies are hard to
replace fossil fuels in high-temperature heating systems, due to equipment cost constraints (IRENA,
2015). In this case, these two energy sources are imperfect substitutes.

23This paper assumes infinity supply of raw energy sources. Thus production is only limited by the
capital installation of the two sectors. Future extension of this paper could consider the exhaustibility of
fossil fuel, as in Acemoglu et al. (2012).
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derive the investment flows between two production sectors, thus shedding light on the

cross-sector stock returns.

Capital accumulation For sector i ∈ {G,B},

Ki,t+1 = (1 − δK)Ki,t + Ii,t −Gt(Ii,t, Ki,t), (1.19)

where δK is the rate of depreciation of the capital and Ii,t is the investment in sector i

at time t. Gt(·, ·) introduces the adjustment cost for capital accumulation. As in section

1.4, I assume a convex adjustment cost following Jermann (1998) and Croce (2014):

Gt(Ii,t, Ki,t) = Ii,t −
(

a1

1 − ξ
I1−ξ
i,t Kξ

i,t + a0Ki,t

)
, (1.20)

where ξ > 0, a1 and a0 is chosen to satisfy the restriction that G = ∂G
∂I

= 0 at steady

state.

Research & development Human knowledge capital is accumulated through R&D,

Ht+1 = (1 − δH)Ht + h(RDt, Ht), (1.21)

where δH is the depreciation of human knowledge capital and RDt is the R&D investment

directed to the sector G. h(RDt, Ht) is the innovation possibility frontier. I follow Popp

(2004), with a modification to ensure constant return to scale, to specify the following

functional form for h:

h(RDt, Ht) = b

1 − η
RD1−η

t Hη
t , (1.22)

where η is between 0 and 1. This setting supports two standard assumptions in the liter-

ature about technological change: (1) a diminishing return for research in accumulating



1.5. THE MACRO-FINANCE INTEGRATED ASSESSMENT MODEL 39

human knowledge, and (2) the positive externality of human knowledge.24 It can also be

considered as introducing an adjustment cost to the accumulation of intangible capital.

Sector stock returns Unlevered stock returns equal investment returns, which are

derived from the Euler equation by solving the first order conditions of the intertemporal

optimization problem:

Ri,t+1 =
Qi,t+1(1 − δK −G′

Ki,t+1
) +MPKi,t+1

Qi,t

, ∀i ∈ {B,G}

where Qi,t = 1
1−G′

Ii,t

is the Tobin’s q of sector i and MPK is the marginal product of

capital. Note that the return of sector B is the return on physical capital, whereas the

return of sector G is a composite return on both physical and intangible capital.

Productivity growth and climate damage I separate productivity growth into

short-run fluctuations and a long-run trend following the long-run risks literature (Bansal

and Yaron, 2004). Specifically,

log(At) = log(At−1) + µ+ xt + σϵA,t, (1.23)

xt = ρxxt−1 + φxσϵx,t, (1.24)

where µ is the unconditional mean of productivity growth rate; xt is the long-run trend;

ϵA,t and ϵx,t are short- and long-run productivity shocks, which are assumed to be i.i.d.

standard Gaussian.

Following Golosov et al. (2014), I assume that climate damage is a mapping from

carbon concentration to total output. Specifically,

Ỹt = exp
(
−λt(Mt − M̄)

)
Yt, (1.25)

24The more human knowledge capital, the higher the marginal return of R&D. This is consistent with
the public-good nature of innovation (Romer, 1990).
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where Ỹt (Yt) is the post- (pre-) climate damage output. Mt and M̄ are atmospheric

carbon concentrations at time t and at the pre-industrial era. λt is the damage intensity

parameter which governs the marginal cost of pollution, i.e., the additional damage caused

by a one unit increase in carbon concentration. I assume the following AR(1) process for

λt:

λt = (1 − ρλ)λ̄+ ρλλt−1 + σλϵλ,t, (1.26)

where ϵλ,t ∼ N(0, 1) is a shock that affects the perceived value of λ. This could be

a natural disaster that causes people to revise upward their beliefs in climate damage

intensity.

Market clearing The labor market clearing condition requires that the total labor

demand be less than the total labor supply, which is normalized to one,

lB,t + lG,t ≤ 1. (1.27)

The market clearing condition for consumption is given by

Ct = Ỹt − IB,t − IG,t − k ·RDt. (1.28)

As discussed in Nordhaus (2002) and Popp (2006), the opportunity cost of research in re-

newable energy is multiple times its dollar cost. The parameter k reflects this opportunity

cost.
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1.5.2 Climate-change dynamics

Climate-change dynamics is a reduced form of that in the DICE model (Nordhaus,

1992):25

Tt+1 = (1 − ρT )T̄ + ρTTt + χ log
(
Mt+1

M̄

)
+ σT ϵT,t+1 (1.29)

Mt+1 = (1 − ρM)M̄ + ρMMt + Et + σMϵM,t+1 (1.30)

where Tt is the temperature anomaly (i.e., temperature above the pre-industrial level). Mt

is the carbon concentration level. T̄ and M̄ are the equilibrium levels of Tt andMt under no

anthropogenic CO2 emissions. The mapping from carbon concentration to temperature is

represented by the radiative forcing term log
(
Mt+1
M̄

)
, according to Arrhenius’s greenhouse

law (Arrhenius, 1896). Et is the endogenous carbon emission caused by human activities.

ϵT , ϵM are exogenous variations which are i.i.d. standard Gaussian. Finally, to close the

climate feedback loop, I assume Et depends on the standardized capital in sector B:

Et = ζ
KB,t

At
, (1.31)

where ζ is the constant carbon intensity.26 The idea behind this specification is that Et

depends on fossil fuel combustion and is thus determined by sector B’s capital stock. In

addition, as productivity increases, less fossil fuel is required to produce a certain amount

of output, either because of higher burning efficiency or power recycling. I thus rescale

capital by productivity. This setup is also necessary because it ensures a stationary path

25The DICE model uses a two-dimensional vector to represent the temperature: a vector of temperature
in the atmosphere and in the lower level of the ocean. Here I simplify the dynamics of temperature
using a one-dimensional temperature, the combined land-surface air and sea-surface water temperature
anomalies.

26The DICE model introduces the de-carbonization process (i.e., the transition from coal to oil, and
oil to gas). That is, the carbon emission to output ratio is decreasing over time. For example, Nordhaus
(2019) shows that the global average carbon intensity has decreased by 1.6 percent every year over the
last six decades. This fact is consistent with my specification of a constant ζ. Note that Et = ζ

At
KB,t,

thus the emission-output ratio decreases as productivity increases.
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of CO2 emission and temperature at equilibrium, where capital is growing at the same

speed of productivity.

1.5.3 Preferences

A representative agent has the EZ preferences following Epstein and Zin (1989) and

Weil (1990),

Ut =

(1 − β)C1− 1
ψ

t + β
(
Et
[
U1−γ
t+1

]) 1− 1
ψ

1−γ


1

1− 1
ψ

(1.32)

where β is the discount rate, γ is the relative risk aversion, and ψ is the IES. When

ψ = 1/γ, the utility function collapses to the CRRA utility, which is commonly used in

standard IAMs (Nordhaus, 2010; Pindyck, 2012).

1.5.4 Optimization problem

Define the state variable vector as S = {H,M,KB, KG}. The problem is

max
Ct,RDt,IB,t,IG,t,
lB,t,lG,t,St+1

(1 − β)C1− 1
ψ

t + β
(
Et
[
Ut+1(St+1)1−γ

]) 1− 1
ψ

1−γ


1

1− 1
ψ

(1.33)

subject to the dynamics and constraints from equation (1.16) to (1.31). I solve the F.O.C.

of the problem. The rest of the model dynamics is solved through perturbation methods

using the MATLAB Dynare++ package.

1.5.5 Social cost of carbon

One of the most important concepts widely reported in the climate economics literature

is the SCC. SCC measures the present value of the damage caused by one additional unit

of CO2 emission, as expressed in consumption units. My model provides a straightforward
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way to estimate the SCC by using the Envelope Theorem,

SCCt = −∂Ut
∂Et

/
∂Ut
∂Ct

= −∂Lt

∂Et

/
∂Lt

∂Ct
,

where L is the Lagrange function. The SSC is explicitly captured by the negative ratio

between the shadow price of CO2 emission and that of consumption.

1.6 Quantitative results

This section shows the quantitative performance of the MFIAM. I first describe the

calibration and the simulation results. Then I estimate the impulse response functions

(IRF) to shocks that alter the damage intensity, i.e., ϵλ. Third, I calculate the SCC and

show its determinants. Finally, I implement sensitivity analysis of the key parameters on

the steady-state results.

1.6.1 Calibration

I calibrate the model to match aggregate and sectoral statistics of U.S. economic

quantities and asset prices on a yearly frequency. The parameters and their descriptions

are presented in Table 1.10.

First, I calibrate most of the parameters of productivity dynamics, following macro-

finance literature. The parameter µ is set to match the 1.8% average growth rate of

the U.S. economy. Short-run volatility σ = 3.35% follows Croce (2014). The long-run

component of the productivity growth, xt, is set to be persistent (ρx = 0.96) and has

a small volatility that is one-fifth of the short-run volatility (φx = 0.2), following the

calibration of Bansal et al. (2016a). These calibrations ensure that the model roughly

matches the standard deviation of output growth rate, market excess return, and risk-free

rate simultaneously.
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On the production side, the elasticity of substitution between green and brown sectors

is 3 following Acemoglu et al. (2012). The fraction of brown sector (fossil fuel) is 0.59

following Golosov et al. (2014). Capital share in production is around 1/3. Depreciation

of physical capital is 6% annually (Croce, 2014) and that for human knowledge capital

is 10%, following Popp (2006). The opportunity cost of R&D is 4, following Nordhaus

(2002). Finally, the equilibrium damage intensity λ̄ is set to equal the average estimate by

Golosov et al. (2014).27 Under this damage intensity, the proportional damage on output

when temperature anomaly reaches 2 ◦C is 1.28%, which is similar to the estimate of

1.12% by Nordhaus and Sztorc (2013).28

On the preference side, the IES and risk aversion are set at 2 and 10, respectively, so

that 1
ψ
< γ and agents prefer early resolution of uncertainty. In the following subsections,

I also explore the case where 1
ψ

= γ and the preference reduces to CRRA. The subjective

discount factor is set at β = 0.974 to match the risk-free rate.

Second, I calibrate the climate-change parameters through regressions using data on

global temperature anomaly, carbon concentration, and anthropogenic CO2 emission. For

example, the autocorrelations and residual volatility of temperature and carbon concen-

tration are estimated according to equations (1.29) and (1.30). T̄ and M̄ are estimated

using average pre-industrial temperature and carbon concentration from AD 1 to 1750.

All environment data is collected from NOAA, NASA, and the World Bank dataset.

Finally, I estimate the remaining parameters using GMM to match model-implied

moments with those from the data. These include seven parameters: autocorrelation

and residual volatility of damage intensity ρλ and σλ; investment adjustment cost ξ;

parameters related to the human knowledge capital accumulation ν, b, and η; and the

carbon intensity ζ. I choose the moments as follows: standard deviations of growth

rates for output, consumption, carbon emission, and R&D; stock market premium; green
27Golosov et al. (2014) calculates an average damage intensity of 2.379×10−5. Note that they use GtC

(Gigatonnes of Carbon) as the unit of carbon concentration, while this paper uses particle per million
(ppm). Given the relation 1 ppm = 2.124 GtC, my calibration would be λ̄ = 5.05 × 10−5.

28Their climate damage function is given by D(T ) = 1 − 1
1+θT 2 , where θ = 0.0028388.
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premium; and the risk-free rate. Specifically, let Θ denote the set of these parameters, I

choose Θ to minimize the following function:

min
Θ

(
M − f(Θ)

)′
W−1

(
M − f(Θ)

)
,

where M is a vector of moments from data, W is the weighting matrix of the moments,29

and f(Θ) are those same moments implied by model simulation. Panel C of Table 1.10

shows the point estimates.

1.6.2 Simulation

I provide two exercises based on the model simulation to show how my model replicates

real-world observations. In the first exercise, I extract shocks from data and feed the

model with the extracted shocks. Specifically, I extract short- and long-run productivity

shocks following Croce (2014), and shocks on temperature and carbon concentration using

equations (1.29) and (1.30). The shock on damage intensity is set as random noise.

Figure 1.3 shows simulations of three series: (1) GDP growth rate, (2) temperature,

and (3) carbon concentration. The simulated series closely matches those from the data,

indicating that calibrated parameters lie in reasonable areas that are neither magnifying

nor attenuating the shocks’ effects.

In a second exercise, I calculate a number of moments from the simulations. These

moments include standard deviations and autocorrelations of macroeconomic and climate

variables as well as financial market moments. I simulate the model under the benchmark

case, and a case where agents have CRRA utilities ( 1
ψ

= γ), which is the standard specifi-

cation under previous IAMs. For both cases, I simulate the model for 60 time steps with

29I follow Jermann (1998) in using the identity matrix. There are two reasons for this choice. First,
these moments have different sample periods and frequencies. Thus it’s impractical to draw their variance-
covariance matrix. Second, economic moments usually have much smaller variances than financial mo-
ments. The identity weighting matrix ensures that all moments are equally weighted, so we will not lose
too much fitting performances of financial moments.
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Table 1.10: Calibration

Description Parameter Value
Panel A: Literature based calibration

Unconditional mean of productivity growth µ 1.8%
Short-run growth volatility σ 3.35%
Autocorrelation of long-run growth ρx 0.96
Long-run growth volatility φx 0.2
Fraction of brown sector ω 0.59
Elasticity between two sectors ε 3
Physical capital depreciation rate δK 0.06
Share of capital in production α 0.34
Subjective discount factor β 0.974
Risk aversion γ 10
IES ψ 2
Equilibrium damage intensity λ̄ 5.05×10−5

Opportunity cost of R&D k 4
Depreciation of human knowledge capital δH 0.1

Panel B: Regression based calibration
Autocorrelation of CO2 concentration ρM 0.98
Autocorrelation of temperature ρT 0.17
Residual volatility of CO2 concentration σM 0.45
Residual volatility of temperature σT 0.092
Sensitivity of temperature to CO2 concentration χ 3.088

Panel C. GMM based calibration
Autocorrelation of damage intensity ρλ 0.92
Residual volatility of damage intensity σλ 2.5 × 10−5

Investment adjustment cost ξ 1.71
Share of human capital knowledge ν 0.074
R&D parameter η 0.67
R&D parameter b 7.99
Carbon intensity ζ 1.64

1,000 repetitions, consistent with the data length.

Table 1.11 compares these model-generated moments with the data. The simulated

moments under the benchmark calibration closely resemble the volatilities of most macroe-

conomic variables and environmental variables in the data. The model-implied volatility

of consumption growth is slightly higher than that in the data. The model captures au-
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Figure 1.3: Model simulation and data: I simulated 60 time steps of the model as in
the data. All the shocks are extracted from the data and are fed to dynare++ to get the
simulation. Shocks on climate dynamics are extracted using equations (1.29) and (1.30).
Short-run and long-run productivity shocks are extracted following Croce (2014):
∆at+1 = µ+ β1r

f
t + β2pdt︸ ︷︷ ︸

xt

+ϵa,t, xt = ρxxt−1 + ϵx,t.

Where at, rft and pdt is the log TFP, risk-free rate and price-dividend ratio in U.S. ϵa,t and
ϵx,t are extracted from short- and long-run shocks. Temperature and CO2 concentration
are detrended. Shaded areas indicate the NBER based recessions for the U.S.

tocorrelations in the output, consumption, and temperature growth rate. In terms of the

asset returns, the model quantitatively captures the greenium. A zero-cost strategy that

longs the green stocks and shorts the brown ones delivers an expected annualized return

of 3.83%. The model simulated return is 3.22%, which lies within the confidence interval

of the data. The model-implied standard deviation of excess returns is lower compared

to the data. This may be due to other unsystematic risks that are not captured in this



48 Chapter one

model. The model-implied market return, which is constructed by averaging the stock

returns of the two sectors weighted by their market values, replicates the average market

return and its high volatility in the data.30 Finally, the model generates a risk-free rate

that is low enough to match that observed in the data.

In the other case, where agents have CRRA preferences instead of recursive ones,

model-implied moments on economic quantities and asset prices fail to align with the

data. For example, the investments and R&D become excessively volatile; autocorrela-

tion of output and consumption is small. In addition, the difference between green and

brown stocks becomes less pronounced. Finally, the most apparent discrepancy between

a model with CRRA utilities and the data, as addressed in Bansal and Yaron (2004) and

Croce (2014), is that the model-generated risk-free rate is extremely high and the market

premium is too low. This is because CRRA agents do not price long-run shocks about

productivity, so consumption risk is too low to justify a low risk-free rate and a high

enough market premium.

1.6.3 Impulse response functions to a shock on damage intensity

I estimate the IRFs to a positive shock on the climate damage intensity parameter

λ. The shock can be interpreted as an exogenous natural disaster that revises upward

people’s beliefs in the marginal damage caused by pollution. As a result, the externality

of investing in fossil fuel increases, and agents refrain from using fossil fuel. These effects

are all elaborated in Figure 1.4.

The solid blue lines in Figure 1.4 show the IRFs under the benchmark calibration

when the IES is bigger than one and agents prefer early resolution of uncertainty. First, a

positive shock on λ generates a temporary decline in the current consumption growth and

an increase in the SDF, which indicates a higher marginal utility from consumption and

a bad state of the world. Second, labor, investments, and Tobin’s q in sector G increase
30Appendix C presents a detailed description of how to construct sectoral and market stock returns.
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Table 1.11: Simulated moments and data

Moments Data Model
Estimate SE Benchmark CRRA

Panel A. Macroeconomic variables
σ(∆y) (%) 2.43 (0.31) 2.42 2.25
σ(∆c) (%) 2.05 (0.25) 2.77 2.57
σ(∆iB) (%) 3.32 (0.51) 2.98 6.24
σ(∆iG) (%) 6.52 (0.80) 6.40 23.27
σ(∆RD) (%) 5.29 (0.63) 3.76 16.89
AC1(∆y) 0.36 (0.10) 0.40 0.26
AC1(∆c) 0.48 (0.10) 0.34 0.22
AC1(∆iB) 0.00 (0.17) 0.25 0.05
AC1(∆iG) 0.11 (0.31) 0.28 0.05
AC1(∆RG) -0.06 (0.07) 0.22 0.00

Panel B. Climate variables
σ(∆T ) (◦C) 0.12 (0.01) 0.13 0.13
σ(∆M) (ppm) 0.65 (0.06) 0.53 0.55
σ(∆E) (ppm) 0.06 (0.01) 0.07 0.04
AC1(∆T ) -0.33 (0.09) -0.49 -0.49
AC1(∆M) 0.53 (0.13) 0.38 0.51
AC1(∆E) 0.34 (0.17) 0.08 0.44

Panel C. Asset prices
E(RB −RG) (%) 3.83 (1.54) 3.22 0.49
σ(RB −RG) (%) 6.37 (0.49) 2.62 1.19
E(Rex

MKT ) (%) 6.68 (1.90) 6.43 -0.72
σ(Rex

MKT ) (%) 17.20 (1.47) 15.32 25.06
E(rf ) (%) 0.85 (0.51) 0.79 19.86
σ(rf ) (%) 2.12 (0.28) 0.63 8.93

Note: ∆y is the output growth rate, ∆c is the consumption growth rate, ∆iB (∆iG) is
the investment growth rate of sector B (G), and ∆RD is the R&D growth rate in sector
G. ∆T is the temperature increment, ∆M is the carbon concentration increment, and
∆E is the carbon emission increment. RB − RG is the difference between stock returns
in sector B and G. Rex

MKT is the market excess return. Rf is the risk-free rate. I simulate
the model under the benchmark calibration and a case that the IES equals 1/γ (CRRA
case). For both cases, I simulate 60 steps with 1000 repetitions. Excess returns have a
leverage of two in the simulation. Annual data on ∆y, ∆c, ∆T , ∆M , Rex

MKT , and rB is
from 1960-2018. ∆iB and ∆iG are calculated using the bottom and top quintile portfolios
in Section 1.3, respectively. E(·), σ(·) and AC1(·) are mean, standard deviation, and first-
order autocorrelation, respectively. Numbers in the parentheses are Newey-West adjusted
standard errors obtained through GMM. All statistics are in annual term.
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Figure 1.4: Impulse response functions to a positive shock on the damage in-
tensity parameter λt: This figure shows the impulse response functions (IRF) of a
one-standard-deviation positive shock on the damage intensity λ. The shock happens
at t = 1. The blue solid lines show the IRF under the benchmark case with recursive
preference. The red dashed lines show the IRF under the case with CRRA utility.

relative to sector B. As a result, the green sector appreciates relative to the brown one.

This result is consistent with that in the two-period model, again showing that green

stocks hedge a disaster shock and offer insurance against global warming. Specifically, a

one-standard-deviation shock on λ increases the return difference between green versus

brown stocks by around 50 b.p. This result explains the lower simulated return of sector

G in Table 1.11. Third, as shown in the last panel of Figure 1.4, market return decreases

significantly after a positive disaster shock. Thus the disaster shock helps explain the

market premium, consistent with the rare disaster models (Barro, 2006; Nakamura et al.,

2013)
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The red dotted line shows the alternative case when agent has CRRA utility (IES

being equal to the reciprocal of risk aversion). In this case, the difference between the

responses of green versus brown sectors are much less pronounced. This phenomenon

means that agents care less about the bad news and are reluctant to reallocate resources.

As a result, under the CRRA case, a strategy that longs the green and shorts the brown

cannot generate a sufficient hedge against a disaster shock. Therefore, the greenium is

less pronounced, consistent with the simulation results in Table 1.11.

At last, I implement a quantitative exercise to compare the IRFs implied by the

model and those estimated from the data. Our model abstracts away various firm-level

idiosyncratic risks and noises that may overwhelm the data. Therefore I focus on the

return and investment differentials between green and brown firms, the two key variables

that my model tries to capture. Figure 1.5 shows the result. The blue lines show the

empirical IRFs of the investment differential (IG-IB) and return differential (RG-RB) to

a one-standard-deviation positive shock on the log of real climate damage. I find that

a positive climate damage shock increases green firms’ investment by 0.23% relative to

brown firms, and appreciates green stocks by 8% (annualized) relative to brown stocks.

These effects are significant at the 10% level. The red lines show the model counterpart,

where I impose a climate damage shock with the same magnitude as the data. I find it

reassuring that the model generates IRFs consistent with the data, which shows a strong

quantitative performance of my model.

1.6.4 Steady-state results

This subsection reports the SCC, and conducts sensitivity analysis of macroeconomic

and climate variables on several key parameters.

Social cost of carbon The SCC measures the present value of the future damages

caused when one additional unit of carbon emission is released into the atmosphere. In
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Figure 1.5: Impulse response functions to a positive climate damage shock:
Model vs. Data This figure shows the impulse response functions (IRF) of the return
and investment differential between green and brown firms to a one-standard-deviation
positive shock on the log of real climate damage. The blue solid (dotted) lines show
impulse response functions (90% confidence intervals) from the data. Investment is defined
by log changes in the total asset. The red solid lines show the model counterpart. All
responses are annualized. The shock happens at t = 1.

other words, it captures the marginal rate of transformation between carbon emission and

consumption. In environmental economics, the SCC is an essential concept for evaluating

the benefits of climate mitigation policies or technologies. A higher SCC indicates higher

benefits from implementing these policies or technologies and thus motivates early actions

of climate interventions. However, the framework here already presented a first-best

optimum, so there is no role played by policies. I interpret SCC in an asset pricing

manner: if there is a security with cash flow that exactly offsets the future damage caused

by one additional unit of carbon emission (a climate hedge), the SCC would be the price

that investors are willing to pay for it.

To calculate the SCC for one metric ton of carbon, I implement the following trans-
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formation,

SCC = −1
s

QM

Ỹ
· Y real, (1.34)

where Ỹ is the model-implied steady-state output, Y real is the real-world output in U.S.

dollars, and s is a rescaling factor, indicating the number of tonnes of carbon in one

particle per million (ppm) equivalent of CO2.31 Finally, QM is the steady-state shadow

price of emission. The F.O.C. in Appendix C shows that QM follows the Euler equation:

1 = Et

Λt+1
ρMQM,t+1 − λỸt+1

QM,t

 (1.35)

where Λt+1 is the SDF. Define RSCC,t+1 = ρMQM,t+1−λỸt+1
QM,t

as the return on QM .

From equation (1.34) and (1.35) we can clearly see that the determinants of the SCC

are (i) the depreciation of carbon concentration, ρM , (ii) the damage intensity, λ, and

(iii) the stochastic discount factor. The first two determine the cash-flow channel, and

the third one accounts for the discount-rate channel.

In my model, the stochastic steady-state QM
Ỹ

is 9.78 × 10−4. In other words, all

else being equal, a one-unit increase in the carbon concentration is equivalent to a 9.78

b.p. decrease in current GDP. Given that the world GDP was 8.77×1013 U.S. dollars in

2019 (measured in current U.S. dollars, as reported by the World Bank), then one ppm

equivalent CO2 emission has a present cost of 85.77 billion U.S. dollars. This number

means that the SCC is, on average, about 40.38 U.S. dollars per tonne of carbon. In

other words, the market price of a climate hedge is 40.38 U.S. dollars. Of course, one

should interpret this value with caution or consider this value as a lower bound, as the

model only considers the economic cost of climate change while neglecting, for example,

its damage to human health.

31According to Le Quéré et al. (2018), one part per million of carbon dioxide in the atmosphere
corresponds to 2.124 gigatonnes of carbon. Thus s = 2.124 × 109.
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Risks, endogenous R&D, and green sector This section shows that climate dam-

age is strongly procyclical, which leads to a positive risk premium and drives down the

shadow cost of carbon emission, i.e., the SCC. Specifically, I compare the SCC under

both stochastic (benchmark) and deterministic (no risks) steady states. The first case

accounts for risks (i.e., the covariance between damages and the SDF), and the second

only includes first-order moments and no risks whatsoever.

The first and second columns of Table 1.12 show the cases with and without risks,

respectively. The SCC under the benchmark case is 27% lower (40.4 vs. 55.6) than the

case without risks. Note that the SCC is determined by the present value of future climate

damage. The negative covariance between damage and the SDF leads to a positive risk

premium in the return of QM , illustrated by the second row of the first column. The

return that investors used to discount climate damage is rSCC = 4.71%, which indicates

a nearly 4% premium given that the risk-free rate is only 0.83%. This is because the cash

flow being proportional to the output, climate damage is higher exactly when the economy

performs better (hence higher consumption and lower marginal utility). In other words,

climate damage is strongly procyclical. Therefore it is highly risky and will be discounted

at a positive premium.

Under the deterministic steady state with no risks, the discount rate for climate hedge

is the risk-free rate, which is counter-factually high (3.53%). This is due to the lack of a

precautionary saving term to drive down the risk-free rate. Nevertheless, the return on

SCC is lower due to a zero risk premium, leading to a higher SCC estimate. In sum, the

result shown here sheds light on the role of risks in determining the SCC, which is often

neglected in previous deterministic IAMs (Nordhaus and Sztorc, 2013). Finally, welfare,

measured by utility over productivity ratio, is much higher compared to the benchmark

case. This is because agents are particularly averse to long-run risks under recursive

preference. Therefore, a higher present value of climate damage does not necessarily

mean a lower social welfare: discount rate channel matters.
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Table 1.12: Counterfactual analyses

Benchmark No risks No Green R&D No Green energy
SCC 40.38 55.61 40.31 40.40
rSCC 4.71% 3.53% 4.72% 4.71%
Risk-free rate 0.83% 3.53% 0.66% 0.65%
Change in welfare 0.00% 1933% -48.66% -58.83%
Share of green energy 62.80% 61.13% 25.43% 0.00%
Temperature 0.95 1.19 1.09 1.16

Note: This table shows the counterfactual analyses. Welfare is measured as the propor-
tional change of utility-over-productivity ratio with respect to the benchmark case. SCC
is calculated using world GDP in 2019 and is in units of U.S. dollars. Temperature is in
unit of degree Celsius.

In another exercise, I investigate the role of endogenous R&D and green energy. Specif-

ically, I add two counterfactual scenarios where endogenous R&D and the green sector are

absent, respectively.32 The third and fourth columns in Table 1.12 show the two cases.

Both cases have very similar SCC compared to the benchmark case. This result shows

that green R&D and green energy have little impact on SCC. The risk-free rates for the

two cases are lower, because agents are less able to smooth intertemporal consumption.

As a result, higher consumption risk leads to a more volatile SDF, driving up the premium

and suppressing the risk-free rate. Welfare is greatly reduced under the two counterfac-

tual cases. It is 48.7% (58.8%) lower when green R&D (energy) is absent. In addition,

the share of green energy, calculated by the share of physical capital in the green sector,

decreases when R&D is absent. Finally, equilibrium temperatures are higher under the

two counterfactual cases due to more use of fossil fuels. The result shows that the green

energy and endogenous R&D represent a vital growth option, improving economic activity

and welfare significantly at the equilibrium.

32The first case is represented by a re-calibrated model where the share of human capital knowledge ν
is equal to zero. Thus R&D plays no role in improving the production efficiency of the green sector. For
the second scenario, I set the labor supply in the green sector at zero. In this way, the marginal product
of the green sector’s physical capital is zero, leading to zero green investment in equilibrium.
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The role of damage intensity Damage intensity, λt, follows an AR(1) process with

an equilibrium value equal to λ̄. This value is calibrated according to Golosov et al.

(2014) and matches the damage magnitude in Nordhaus and Sztorc (2013). It is a key

parameter in determining the tightness of the interactions between economic growth and

climate change. Given that there is a high uncertainty regarding the true value of this

parameter, the economic and environmental effects are worth investigating whenever the

value of this parameter changes.

Figure 1.6 shows the results. The horizontal axis is re-scaled to represent the damage

as a proportion of GDP, when the temperature anomaly exceeds two degrees Celsius

(the benchmark case is 1.28%). First, an increase in the damage intensity decreases

welfare: when the equilibrium damage intensity increases from 0 to 2.5%/2◦C, welfare

decreases 4%. This is due to the increase in equilibrium climate damage. Second, an

increase in damage intensity leads to higher marginal costs for investing in the brown

sector relative to the green sector. Thus shares of investment, labor, and R&D in the

green sector all increase. As a result, temperature decreases in equilibrium. Finally, as the

climate-economy interaction becomes tighter, it drives up the risk premium. Therefore,

the expected return on climate hedge increases, and SCC is discounted at a higher rate.

Still, the cash flow channel dominates the discount rate channel, leading to an increased

SCC.

Sensitivity analysis on key parameters This part implements sensitivity analysis

on several key parameters. Table 1.13 shows how model-implied variables change with

respect to these parameters. Starting from the subjective discount rate and the IES.

When the subjective discount rate is lower (0.95 vs. 0.974 in the benchmark case), the

model generates a higher risk-free rate (4.67% vs. 0.83%). The return on SCC is higher

than the benchmark case (6.56% vs. 4.71%), resulting in a lower SCC estimate (30.2 vs.

40.4). On the other hand, when the IES is equal to 0.1, which reduces the preference to
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Figure 1.6: The role of damage intensity. The figure shows the stochastic steady-state
values under different equilibrium damage intensity λ̄. The x-axis is re-scaled to show the
damage as a proportion of GDP when the temperature anomaly exceeds 2◦C. U/A shows
the percentage change in the welfare-over-productivity ratio. SCC is in the unit of U.S.
dollars; temperature is in the unit of ◦C.

the CRRA utility, the risk-free rate is counterfactually high (15.91%). This is because

the agent does not have enough desire to smooth consumption across time, leading to

present-day higher consumption and less saving, thus driving up the risk-free rate. As a

result, the climate damage is discounted at a higher rate, and the SCC becomes much

lower than the benchmark case (11.8 vs. 40.4). In addition, due to agents’ unwillingness

to sacrifice current consumption for better future environmental conditions, the shares of

investment and R&D in sector G are smaller than the benchmark case.
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Table 1.13: Sensitivity analysis

Subjective
Benchmark discount rate IES Substitution R&D efficiency

β = 0.95 ψ = 0.1 ε = 1.5 ε = 10 ν = 0.05 ν = 0.1

SCC 40.38 30.24 11.82 40.65 39.44 40.34 40.43
Return on SCC 4.71% 6.56% 15.91% 4.69% 4.80% 4.72% 4.71%
Risk-free rate 0.83% 4.67% 17.37% 0.78% 0.94% 0.75% 0.95%
Climate damage 0.51% 0.41% 0.18% 0.70% 0.03% 0.55% 0.45%
Temperature 0.95 0.80 0.36 1.24 0.07 1.01 0.86
IG/Itotal 62.80% 59.84% 55.49% 45.17% 98.36% 48.64% 76.81%
lG 61.38% 59.11% 55.32% 44.47% 98.09% 47.58% 75.29%
R&D/Y 0.89% 0.53% 0.20% 0.65% 1.36% 0.47% 1.46%

Note: This table shows the stochastic steady-state values of different cases. SCC is
calculated using world GDP in 2019 and is in units of U.S. dollars; temperature is in
units of ◦C.

Another important parameter is the elasticity of substitution between the green and

brown sectors in the production function (ε). I compare two cases where ε is either lower

(=1.5) or higher (=10) than the benchmark case (=3). The results show that when the

degree of substitution is higher, the economy relies much more on the green sector, as

the share of green investment, labor and R&D are all higher. This is intuitive: suppose

brown and green energy are perfect substitutes; all resources should be directed to green

energy since it is free from negative climate feedback. In equilibrium, this leads to a lower

temperature (close to zero) and less climate damage. However, the substitution coefficient

has little impact on the risk-free rate, discount rate, and the SCC. Thus it mainly affects

the equilibrium allocation of resources.

Finally, when decreasing the weight of human knowledge capital in the production (ν),

the agent decreases R&D, green investment, and labor, as the marginal product of green

investment becomes lower. The temperature is higher. Effectively the discount rate and

SCC are quantitatively unchanged.
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1.7 Conclusion

This paper documents a negative risk premium of green stocks compared to brown

stocks. The greenium cannot be explained by various systematic risks and firms’ idiosyn-

cratic risks. Further investigation of the sources of risk shows that green stocks appreci-

ate after climate-related disasters relative to brown stocks, thus offering a hedge against

climate-change physical risks. The empirical finding is then qualitatively explained in

a simple two-period model and quantitatively matched in a MFIAM with time-varying

damage intensities, recursive preferences, and investment frictions. This paper chiefly

contributes to providing a first benchmark MFIAM that considers elements from both

IAM and macro-finance literature, while suggesting implications for climate risks in the

stock market.

I study the problem using a first-best approach (a planner’s problem) because it offers

a handy and transparent way to start analyzing environmental feedback in the macro-

finance literature. An important limitation of my approach is that this approach cannot

fully reflect externalities. Nevertheless, I show that the greenium can be rationalized in

such an economy. Further extension of this paper should consider a decentralized economy

where investments and R&D are distorted (Romer, 1990). It would be interesting to study

a second-best distortionary taxation that corrects the externalities and how green/brown

firms are exposed to endogenous regulatory changes.
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1.8 Appendices

1.8.1 Additional results

Decomposition of ENSCORE

In this section, I use the three category scores of ENSCORE to sort portfolios. This

exercise shows which components of ENSCORE are most powerful in explaining the gree-

nium. In other words, this shows which aspect of firms’ environmental performance mat-

ters most for investors. Recall that ENSCORE is a weighted average of three categories:

emission, innovation, and resource. The emission category measures firms’ responsibil-

ity in emitting greenhouse gases. This score is constructed by metrics such as carbon

emission. The innovation score captures firms’ ability to develop environmentally friendly

products, such as patents to produce green energy or control wastes. Finally, the resource

score measures firms’ use of renewable energy versus fossil fuel.

I implement the same time-series study as in the main part of the paper. First, I

sort firms into quintile portfolios using one of the three category scores of the last year

relative to industry peers. Then I regress the excess returns of the quintile portfolios and

the low-minus-high portfolio on asset pricing factors. Table A1 shows the results. The

abnormal (α) of the low-minus-high portfolio remains positive for all three cases. After

controlling for FF5 and FF5 plus the momentum factor, these abnormal returns are all

significant. The result here is consistent with those obtained using ENSCORE. Moreover,

the greenium seems to be most significant for emission scores. This shows that investors

care more about the emission profile when evaluating firms’ greenness.
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Table A1: Abnormal return of portfolios according to category scores

L 2 3 4 H L − H
Panel A. Emission score

E[Rex] 10.59 9.05 9.16 7.48 7.78 2.81∗∗

(4.03) (4.18) (4.16) (3.62) (3.25) (1.23)
CAPM α 2.63 1.05 1.53 0.77 1.10 1.54∗

(1.22) (1.53) (1.47) (1.03) (0.87) (1.06)
FF3 α 2.82 1.14 1.95 1.07 1.54 1.28∗

(0.99) (1.55) (1.39) (1.01) (0.77) (0.91)
FF5 α 4.74 0.78 2.21 0.82 1.99 2.74∗∗

(1.15) (1.69) (1.47) (1.1) (1) (1.31)
FF5 & MOM α 4.76 0.76 2.27 0.76 1.95 2.81∗∗

(1.16) (1.71) (1.44) (1.12) (1.05) (1.38)
Panel B. Innovation score

E[Rex] 10.11 10.42 9.04 10.79 8.81 1.30
(4.46) (5.36) (4.36) (4.37) (4.16) (1.13)

CAPM α 2.17 0.68 1.32 3.55 1.57 0.60
(1.52) (1.75) (1.87) (2.19) (1.37) (1.09)

FF3 α 2.39 0.89 1.64 3.70 1.90 0.49
(1.51) (1.65) (1.85) (2.14) (1.41) (1.14)

FF5 α 4.99 2.86 2.17 4.92 3.11 1.88∗

(2.07) (1.51) (2.12) (2.72) (2.05) (1.32)
FF5 & MOM α 5.09 3.05 2.33 4.93 3.23 1.86∗

(2.02) (1.52) (2.05) (2.68) (2.05) (1.32)
Panel C. Resource score

E[Rex] 9.81 9.38 9.09 8.11 7.56 2.25∗

(4.29) (4.52) (3.52) (4.02) (3.18) (1.44)
CAPM α 1.60 1.29 2.00 0.89 0.94 0.66

(1.14) (1.44) (1.04) (1.21) (1.02) (1.1)
FF3 α 1.74 1.18 2.30 1.18 1.43 0.31

(0.98) (1.45) (1) (1.25) (0.81) (0.96)
FF5 α 3.68 2.58 3.21 0.80 1.70 1.98∗∗

(1.12) (1.78) (1.16) (1.13) (0.91) (1.07)
FF5 & MOM α 3.72 2.66 3.08 0.77 1.68 2.04∗∗

(1.1) (1.73) (1.22) (1.12) (0.93) (1.12)

Note: The table shows the excess returns and abnormal returns (α) of the quintile and
low-minus-high portfolios sorted by the three category scores of ENSCORE: emission,
innovation, and resource. Abnormal return is obtained using the following time-series
regression in monthly frequency:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum. Returns are value-weighted and annualized. The sample period is 2003-
2019. Newey-West adjusted standard errors are reported in the parenthesis. One, two,
and three asterisks indicate that α is positive at 10%, 5%, and 1% significance levels.
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Table A2: Sub-sample investigation of the greenium

E[Rex] CAPM α FF3 α FF5 α FF5_MOM α

Full sample 3.83∗∗∗ 2.43∗∗ 2.17∗∗ 3.91∗∗∗ 3.98∗∗∗

(1.39) (1.18) (0.98) (1.22) (1.25)
2004-2019 3.80∗∗∗ 2.45∗∗ 2.46∗∗∗ 4.77∗∗∗ 4.98∗∗∗

(1.48) (1.21) (0.97) (1.17) (1.21)
2005-2019 3.42∗∗ 2.19∗∗ 2.22∗∗ 4.56∗∗∗ 4.71∗∗∗

(1.58) (1.29) (1.03) (1.21) (1.24)
2006-2019 3.71∗∗ 2.51∗∗ 2.51∗∗∗ 4.51∗∗∗ 4.58∗∗∗

(1.67) (1.34) (1.07) (1.33) (1.36)
2007-2019 4.04∗∗ 2.97∗∗ 2.71∗∗∗ 4.84∗∗∗ 4.86∗∗∗

(1.76) (1.35) (1.14) (1.41) (1.43)
2008-2019 4.39∗∗∗ 3.37∗∗∗ 2.79∗∗ 4.89∗∗∗ 4.88∗∗∗

(1.86) (1.42) (1.23) (1.57) (1.58)
2009-2019 5.98∗∗∗ 4.12∗∗ 2.31∗∗ 3.56∗∗ 3.52∗∗∗

(2.1) (1.99) (1.37) (1.55) (1.5)

Note: The table shows the excess returns and abnormal returns (α) of the low-minus-high
portfolio sorted by ENSCORE. The sample period is from year y to 2019. y is shown in
the first column of the table. Returns are value-weighted and annualized. Newey-West
adjusted standard errors are reported in the parenthesis. One, two, and three asterisks
indicate that α is positive at 10%, 5%, and 1% significance levels.

Subsample analysis

In this section, I investigate the greenium in a shrinking window. Specifically, I repeat

the same investigation of Table 1.3 but using a sample period from some starting year

(2003-2009) to the end year (2019) of the sample, which ensures coverage of at least half

the sample. This exercise shows (1) whether the greenium is driven by specific sample

periods and (2) how the greenium changes when we focus on a shorter and more recent

sample. To save space, I only show αs of low-minus-high portfolio for different asset

pricing factors. Further results are available upon request.

Table A2 show the results. First, the greenium exists also in a shorter and more recent

sample. All the abnormal returns remain significant at 5% level. In addition, the excess

return of the low-minus-high portfolio seems to increase when focusing on a more recent

sample. This demonstrates an increasing trend that investors are becoming more and
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Table A3: Sub-sample investigation of the greenium (fixed firms)

E[Rex] CAPM α FF3 α FF5 α FF5_MOM α

2003-2019 2.33∗ 0.90 0.71 1.73∗ 1.78∗

(1.66) (1.68) (1.43) (1.34) (1.35)
2004-2019 2.06 0.67 0.69 2.10∗ 2.26∗

(1.76) (1.7) (1.4) (1.36) (1.38)
2005-2019 3.31∗∗ 1.98∗ 2.05∗∗ 4.16∗∗∗ 4.41∗∗∗

(1.64) (1.37) (1.07) (1.18) (1.22)
2006-2019 3.12∗∗ 1.99∗ 2.06∗∗ 3.66∗∗∗ 3.74∗∗∗

(1.61) (1.4) (1.13) (1.33) (1.35)
2007-2019 3.32∗∗ 2.29∗ 2.20∗∗ 3.84∗∗∗ 3.87∗∗∗

(1.73) (1.48) (1.23) (1.4) (1.43)
2008-2019 3.91∗∗ 2.83∗∗ 2.48∗∗ 4.01∗∗∗ 3.98∗∗∗

(1.99) (1.6) (1.3) (1.36) (1.38)
2009-2019 4.94∗∗∗ 3.20∗∗ 2.18∗ 2.91∗∗ 3.00∗∗

(1.81) (1.81) (1.41) (1.39) (1.39)

Note: The table shows the excess returns and abnormal returns (α) of the low-minus-
high portfolio sorted by ENSCORE. The sample period is from year y to year 2019 and
focusing on firms with ENSCOREs at year y − 1. y is shown in the first column of the
table. Returns are value-weighted and annualized. Newey-West adjusted standard errors
are reported in the parenthesis. One, two, and three asterisks indicate that α is positive
at 10%, 5%, and 1% significance levels.

more concerned about climate change issues over the last two decades.

In a similar exercise, I investigate the subsample but focus on the group of firms with

ENSCORE at the starting years. Specifically, I focus on the sample from year y to 2019

and only use the companies with a score in year y − 1. This eliminates the endogenous

issue that firms strategically time the release of information. Table A3 shows the results.

As before, abnormal returns of the low-minus-high portfolio remain positive and, in most

cases, significant for different subsamples and asset pricing factor sets.

Finally, I investigate whether greenium exists in a sample with only U.S. firms. Specif-

ically, I run the same factor regressions with quintile portfolios sorted by U.S. firms. For

the asset pricing factors I choose those from the U.S. market: CAPM, FF3, FF5, and

q5 factor (Hou et al., 2021). The q-factor model is an important workhorse in empirical

asset pricing literature, as it subsumes the Fama-French six factors (Hou et al., 2015).
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Table A4: Abnormal return of quintile portfolios in U.S. subsample

L 2 3 4 H L − H
E[Rex] 12.73 12.05 10.66 11.22 8.37 4.36∗∗

(4.55) (4.58) (3.92) (3.64) (3.26) (1.88)
CAPM α 2.61 1.79 1.47 2.26 0.07 2.54∗

(1.45) (1.79) (1.64) (1.31) (0.95) (1.64)
FF3 α 2.25 1.88 1.36 2.20 0.05 2.20∗

(1.18) (1.84) (1.62) (1.32) (1) (1.6)
FF5 α 2.97 0.81 0.62 1.25 -0.40 3.37∗∗

(1.24) (1.64) (1.82) (1.39) (1.16) (1.49)
q5 α 4.33 3.98 2.71 1.76 -0.82 5.15∗∗∗

(1.54) (1.39) (1.48) (1.29) (1.03) (1.47)

Note: The table shows the excess returns and abnormal returns (α) of the quintile and
low-minus-high portfolios using the U.S. subsample. Abnormal return is obtained using
the following time-series regression in monthly frequency:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and q5. Returns are
value-weighted and annualized. The sample period is 2003-2019. Newey-West adjusted
standard errors are reported in the parenthesis. One, two, and three asterisks indicate
that α is positive at 10%, 5%, and 1% significance levels.

Table A4 shows the result. Using only U.S. firms does not qualitatively change the result.

In particular, when controlling the q5 factor, the abnormal return of a low-minus-high

ENSCORE portfolio is 5.15%, which is higher than that from the global sample.

Alternative greenness measures

Berg et al. (2019) show substantial divergences among different ESG ratings. As such,

I use alternative greenness measures to sort portfolios and check whether a greenium still

exists. Specifically, I first use the emission intensity following Bolton and Kacperczyk

(2021a,b). The emission intensity is calculated using firms’ carbon emission levels (scope

3) divided by the total asset or revenue.33 We do not consider the level of carbon emissions

33Scope 3 emissions come from the operations and products of the company but occur from sources not
owned or controlled by the company. I consider scope 3 emission because it is the most comprehensive
measure of a firm’s carbon emissions.
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because it is innately related to firms’ size, thus it may not be representative for firms’

greenness (e.g., a big green firm can have higher emissions than a small brown one).

Emission intensity is obtained from Refinitiv Eikon.

I follow the same process in section 1.3.2. I first sort firms into quintile portfolios

according to their emission intensity of the last year relative to their industry peers.

Then I obtain the return on the portfolio of the quintile portfolio and a low-minus-high

portfolio. I run regressions of these returns on asset pricing factors, including CAPM,

FF3, FF5, and FF5 plus the momentum factor. Table A5 shows the results for carbon

intensity. The estimated greenium remains significant, and it is in the right direction, i.e.,

a portfolio with higher emission intensity has higher abnormal returns.

Second, I use another popular ESG ratings, the MSCI ESG score. This rating score is

binary. It evaluates whether a firm fulfills its environmental responsibilities over sixteen

positive subcategories or satisfies certain conditions over nine negative subcategories. I

follow Engle et al. (2020) to subtract the total score of negative subcategories from that of

positive subcategories to get the overall environmental score of each firm. The higher the

score is, the more eco-friendly the firm is. I collect MSCI scores from WRDS of a sample

period from 1996 - 2016. Table A6 shows the result using MSCI E-scores. The MSCI

E-score is an integer ranging from -5 to 5 over the sample period. Each year, I include

firms with the highest and second-highest E-scores (e.g., 5 and 4) in a high portfolio.

Firms with the lowest and second-lowest E-scores (e.g., -5 and -4) are included in a low

portfolio. I also construct a portfolio that longs the low portfolio and shorts the high one.

Table A6 shows the factor regression results. The L-H portfolio always delivers a positive

return. It is also significant at 10% after controlling for asset pricing factors. The result

confirms that greenium exists when using the MSCI E-score.

Third, Faccini et al. (2021) find that firms with the biggest improvement in their

ENSCORE have lower expected returns. As such, it is worth investigating whether sorting

based on the annual change in ENSCORE, instead of ENSCORE levels, also induces a
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Table A5: Abnormal return of portfolios according to emission intensity

L 2 3 4 H L − H
Panel A. Carbon emission/Total asset

E[Rex] 4.70 6.64 7.41 6.85 9.23 -4.53∗

(5.74) (4.49) (4.76) (4.09) (3.53) (3.41)
CAPM α 0.07 2.43 3.00 2.71 5.44 -5.38∗∗

(2.95) (2.14) (2.07) (2.43) (2.57) (3.25)
FF3 α -0.12 2.51 2.94 2.96 5.59 -5.71∗∗

(2.89) (2.15) (2.07) (2.41) (2.48) (3.22)
FF5 α -0.81 3.11 2.77 2.07 4.75 -5.57∗∗

(2.85) (2.5) (2.13) (2.64) (2.39) (3.02)
FF5 & MOM α -0.77 3.05 2.77 2.05 4.74 -5.51∗∗

(2.85) (2.39) (2.13) (2.59) (2.35) (2.91)
Panel B. Carbon emission/Revenue

E[Rex] 4.96 8.07 6.88 7.13 9.06 -4.10∗

(5.27) (4.48) (4.72) (4.25) (3.53) (2.99)
CAPM α 0.80 3.43 2.54 2.85 5.32 -4.53∗

(2.68) (1.82) (2.32) (2.25) (2.58) (3.02)
FF3 α 0.87 3.39 2.46 3.02 5.50 -4.63∗

(2.67) (1.71) (2.32) (2.25) (2.51) (3.03)
FF5 α 0.44 3.59 1.52 2.47 4.78 -4.34∗∗

(2.45) (2.21) (2.41) (2.51) (2.41) (2.61)
FF5 & MOM α 0.41 3.51 1.57 2.46 4.76 -4.34∗∗

(2.43) (2.06) (2.46) (2.48) (2.34) (2.6)

Note: The table shows the excess returns and abnormal returns (α) of the quintile portfolio
and a low-minus-high portfolio, sorted by the emission intensity. Emission intensity is
measured by carbon emission (scope 3) divided by total asset or revenue. Abnormal
return is obtained using the following time-series regression in monthly frequency:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum. Returns are value-weighted and annualized. The sample period is 2007-
2019. Newey-West adjusted standard errors are reported in the parenthesis. One, two,
and three asterisks indicate that α is positive at 10%, 5%, and 1% significance levels.

greenium. Table A7 shows the result. Surprisingly, I find no evidence of greenium when

sorted based on the annual changes on ENSCORE. Faccini et al. (2021) construct a proxy

of climate transition risk through textual analysis. They find that the portfolio with the
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Table A6: Abnormal return of portfolios sorted by MSCI E-score

L H L − H
E[Rex] 10.02 7.73 2.29

(3.59) (4.19) (2.54)
CAPM α 4.21 0.47 3.74∗

(2.45) (1.82) (2.45)
FF3 α 3.16 -0.74 3.89∗

(2.54) (1.44) (2.68)
FF5 α 1.33 -2.89 4.22∗

(2.44) (1.53) (2.59)
FF5&MOM α 1.57 -2.37 3.94∗

(2.37) (1.61) (2.6)

Note: The table shows the excess returns and abnormal returns (α) of the low, high, and
low-minus-high portfolio sorted by the MSCI E-score. Abnormal return is obtained using
the following time-series regression in monthly frequency:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum. Returns are value-weighted and annualized. The sample period is 1996-
2016. Newey-West adjusted standard errors are reported in the parenthesis. One, two,
and three asterisks indicate that α is positive at 10%, 5%, and 1% significance levels.

lowest exposure (which has a low expected return) to this risk factor has the biggest

improvement in ENSCORE. However, when I sort portfolios directly based on changes in

ENSCORE, the return differences between the high and low portfolios are not significant.

This indicates that changes in ENSCORE may not fully capture the exposure to transition

risk.

Fourth, Berg et al. (2020) find substantial rewritings of Asset4 ESG ratings due to

the changes of scoring methodology in April 2020. That is, the data collected before and

after April 2020 are different. They suggest researchers using the updated data to verify

the result with the initial data. Therefore, I construct a low-minus-high portfolio using

the ENSCORE downloaded in February 2020, before the rewritings. Table A8 shows

that sorting based on the initial ENSCORE leads to positive abnormal returns of the

low-minus-high portfolio. However, the result is only significant for FF5 and FF5 plus the
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Table A7: Abnormal return of quintile portfolios sorted by annual changes in
ENSCORE

L 2 3 4 H L − H
∆ENSCORE -7.30 -1.11 1.06 5.40 18.26 -25.57
ENSCORE 33.22 32.22 22.71 28.43 40.66 -7.44
E[Rex] 7.62 8.76 8.49 7.70 7.02 0.60

(3.48) (3.75) (4.37) (3.43) (3.64) (0.8)
CAPM α 1.55 2.48 1.79 1.60 0.78 0.77

(1) (0.74) (1.35) (0.79) (0.88) (0.82)
FF3 α 1.59 2.50 1.80 1.63 0.82 0.77

(0.96) (0.73) (1.4) (0.77) (0.74) (0.82)
FF5 α 1.76 2.94 1.50 0.73 1.46 0.30

(1.12) (0.94) (1.37) (0.97) (0.85) (0.93)
FF5&MOM α 1.72 2.91 1.43 0.57 1.43 0.29

(1.15) (0.98) (1.33) (1.12) (0.86) (0.95)

Note: The table shows the excess returns and abnormal returns (α) of the quintile and
low-minus-high portfolios sorted by annual changes in ENSCORE. Abnormal return is
obtained using the following time-series regression in monthly frequency:

Ri,t = αi + βi
′ · Ft + vi,t,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum factor. Returns are value-weighted and annualized. The sample period is
2003-2019. Newey-West adjusted standard errors are reported in the parenthesis. One,
two, and three asterisks indicate that α is positive at 10%, 5%, and 1% significance levels.

momentum factors. When using equal-weighted return, the result becomes much more

significant. The result suggests that a negative greenium exists, although less significantly,

when using the initial ENSCORE.

Price of risk in a wide cross section of testing portfolios

This section tests whether the return predictability of a firm’s greenness exists in a

broad cross-section of global stock portfolios. This exercise shows that the greenium is

priced in a cross-section of global testing portfolios. One problem with this test is that we

do not have ENSCORE for the entire cross-section of stocks. To cope with this problem,

I construct a BMG factor corresponding to the return of a portfolio that longs the brown
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Table A8: Abnormal return of low-minus-high portfolios sorted by ENSCORE
before rewritten

Factors Constant CAPM FF3 FF5 FF5&MOM
VW 1.87 0.82 0.55 1.86∗ 2.01∗

(1.51) (1.45) (1.31) (1.33) (1.36)
EW 3.58∗∗∗ 2.81∗∗∗ 2.52∗∗∗ 2.33∗∗ 2.4∗∗

(1.22) (1.18) (1.08) (1.14) (1.15)

Note: The table shows the value-weighted (VW) and equal-weighted (EW) excess returns
and abnormal returns (α) of the low-minus-high portfolio sorted by ENSCORE down-
loaded in February 2020, before the rewritings. Abnormal return is obtained using the
following time-series regression in monthly frequency:

RLMH
t = α + β′ · Ft + vt,

where Ft is the list of asset pricing factors in the CAPM, FF3, FF5, and FF5 plus
momentum factor. Returns are value-weighted and annualized. The sample period is
2003-2019. Newey-West adjusted standard errors are reported in the parenthesis. One,
two, and three asterisks indicate that α is positive at 10%, 5%, and 1% significance levels.

stocks and shorts the green ones. This so-called mimicking portfolio captures the relative

risk of brown versus green stocks. Suppose a portfolio with positive exposure to this

factor also has a higher expected return after controlling other systematic risks, then we

can conclude that such a factor is priced in a broad cross-section of stocks and carries a

positive price of risk.

For the testing portfolios, I use six sets of global portfolios from Kenneth French’s

data library.34 These are two-way sorted by size and book-to-market (B/M), investment

(INV), operating profit (OP), momentum, and reversal.

Following Cochrane (2009), I use the two-pass regression to identify the price of risk.

Specifically, I first run the time series regression of returns on testing portfolios

Rp
t = β0,p + β1,p · Ft + βBMG,p ·BMGt + vp,t,

34The testing portfolio returns are collected from https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html. I thank Kenneth French for providing returns on the testing
portfolios.

https:// mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https:// mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


70 Chapter one

where Rp
t is the annualized monthly gross return of testing portfolio p, and Ft is the FF5

factor. In a second step, I do the cross-sectional regression of time-series average portfolio

returns on the estimated exposure β̂ from the first step,

E[Rp
t ] = λ0 + λ1 · β̂1,p + λBMG · β̂BMG,p + up.

The price of risk of the BMG factor is given by λBMG

Table A9 reports the estimated price of risk for the BMG factor. I report the t-

statistics using corrected standard errors according to Shanken (1992) and Newey and

West (1987). The estimated price of risk of the BMG factor is positive for all cases

and, in most cases, significant. These results show that the empirical results in the

previous subsections are not driven merely by luck on the sample I selected. The lower

expected returns of green stocks also exist in a wide cross-section of testing portfolios

where ENSCORE is not available.
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Table A9: Estimation of λBMG

Portfolio sets λMKT λSMB λHML λRMW λCMW λBMG

Size & BV/MV (25) 8.58∗∗ 1.92 0.89 1.24 2.55 3.55
(4.34) (1.69) (1.75) (1.29) (1.72) (2.29)

Size & INV (25) 8.52∗∗ 1.31 8.57∗∗∗ -0.94 1.31 5.11∗

(4.34) (1.69) (2.38) (1.42) (1.34) (2.76)
Size & OP (25) 8.57∗∗ 2.24 0.65 2.89∗∗∗ 2.16 6.87∗∗∗

(4.34) (1.69) (2.13) (1.07) (1.96) (2.43)
Size & BV/MV & INV (32) 8.70∗ 2.01 -0.07 3.74∗∗∗ 1.05 7.41∗∗∗

(4.34) (1.69) (1.75) (1.26) (1.34) (1.93)
Size & BV/MV & OP (32) 8.35∗∗ 2.15 0.63 3.64∗∗∗ -1.11 7.84∗∗∗

(4.34) (1.69) (1.75) (1.09) (1.61) (1.91)
BV/MV & INV & OP (32) 8.67∗∗ 1.88 6.61∗∗∗ 3.10∗∗∗ 1.16 0.28

(4.34) (1.69) (1.89) (1.07) (1.33) (1.96)

Note: The table shows the factor risk premium of the BMG factor from following two-pass
regressions:

Rp
t = β0,p + β1,p · Ft + βBMG,p ·BMGt + vp,t

E[Rp
t ] = λ0 + λ1 · β̂1,p + λBMG · β̂BMG,p + up

where Rp
t is the annualized monthly gross returns of portfolio p in the testing portfolio

sets, two-way sorted by size and book-to-market (BV/MV), investment (INV), operating
profit (OP), momentum (MOM), and reversal. Ft is FF5 factor. t-statistics uses standard
errors adjusted according to Newey and West (1987) and Shanken (1992). One, two, and
three asterisks indicate that the coefficient is significant at 10%, 5%, and 1% levels.
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1.8.2 Full derivation of the two-period model

This section shows the derivation of optimal investments, utility, SDF, and stock

returns in Section 1.4. Given the assumptions, the optimization problem at t = 1 is

written as

max
IG,1,IB,1

u1 = (1 − β) log(C1) + β
(

(α− λ) log(IB,1/Ī) + (1 − α) log(IG,1)
)
, (B.1)

where C1 = Y1 − IG,1 − IB,1. It exploits the production function and the fact that

log(1 −D) = −D when D is small enough (in general, the climate damage is small).

Optimal investments Solving the following F.O.C.

− 1 − β

C1
+ β(α− λ)

IB,1
= 0 (B.2)

− 1 − β

C1
+ β(1 − α)

IG,1
= 0 (B.3)

which, together with the market clear condition, yields the following solutions:

IB,1 = β(α− λ)
1 − βλ

Y1 (B.4)

IG,1 = β(1 − α)
1 − βλ

Y1 (B.5)

C1 = 1 − β

1 − βλ
Y1 (B.6)

Thus optimal investment is just a fixed proportion of output at time 1. The proportion is

positive when the assumption α > λ holds. It is evident that ∂IB,1
∂λ

= −β 1−αβ
(1−βλ)2Y1 < 0 and

∂IB,1
∂λ

= β2 1−α
(1−βλ)2Y1 > 0. This indicates that, in equilibrium, the investment in the brown

(green) sector is decreasing (increasing) with the climate damage intensity parameter.

Finally, we can write the investment in a linear approximation when the damage intensity
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is a function on the shock ϵ:

Ii,1 = Īi,1 + θiϵ, ∀i ∈ {G,B} (B.7)

where Īi,1 is the steady-state investment that does not depend on the shock, θB =

−β 1−αβ
(1−βλ)2 λ̄

′ and θG = β2 1−α
(1−βλ)2 λ̄

′ with λ̄′ = ∂λ
∂ϵ

∣∣∣∣
ϵ=0

. If λ̄′ > 0 then θB < 0 and θG > 0: an

environmental shock that increases damage intensity leads to a higher (lower) investment

in sector G (B).

Linear approximation of the utility I approximate the time-1 utility as a function

of steady-state utility and the shock

u1 = ū1 + θuϵ

where ū1 is the steady-state utility when the shock is zero. The coefficient θu is given by
∂u1
∂ϵ

which can be obtained through the Envelope Theorem,

∂u1

∂ϵ
= ∂u1

∂λ
λ̄′ = −β log(ĪB,1/Ī)λ̄′

Stochastic discount factor The SDF at t = 1 is expressed as

M1 = ∂u0/∂C1

∂u0/∂C0

where u0 is the utility at time 0,

u0 = (1 − β) logC0 + β

1 − γ
logE0

[
exp

{
u1(1 − γ)

}]
.

Then

M1 = β
C0

C1

exp
(
u1(1 − γ)

)
E0
[
exp

(
u1(1 − γ)

)]
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Taking the logarithm

m1 = log(β) + log(C0) − log(C1) + (1 − γ)u1 − logE0
[
exp

(
u1(1 − γ)

)]

and substituting u1 and C1 with the solutions in the previous part we have

m1 = m̄1 + β

[
(γ − 1) log

(
ĪB,1/Ī

)
− 1

1 − βλ

]
λ̄′ϵ

where the m̄ is the steady-state SDF which does not depend on the shock.

Stock returns First I introduce the investment adjustment cost, which relates the

investment rate to Tobin’s q, and also to the stock returns. This adjustment cost does

not have a first order effect on the investment decisions derived in the previous subsections.

Thus I make use of the solutions derived under no adjustment cost to calculate the stock

returns under the adjustment cost.

For i ∈ {G,B},

Ki,t+1 = Ii,t −G(Ii,t, Ki,t)

where G(I,K) = I − a
1−ξI

1−ξKξ, and 1
ξ

captures the elasticity of investment with respect

to the Tobin’s q, which is given by Q = 1
1−G′

I
= 1

a

(
I
K

)ξ
(Croce, 2014). Investment return

is related to the marginal q following Cochrane (1991)

Ri,1 = −Qi,1GKi,1 +MPKi,1

Qi,0
= 1
Qi,0

(
ξ

1 − ξ

Ii,1
Ki,1

+ α
Y1

Ki,0

)
, ∀i ∈ {G,B} (B.8)

From equation (B.8) we can see that investment return at time 1 is positively related to

the investment at time 1 under convex adjustment cost.

Taking the log of equation (B.8) yields,

ri,1 = log
(

ξ

1 − ξ

Ii,1
Ki,1

+ α
Y1

Ki,0

)
− qG,0
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Noting that only Ii,1 is related to the environmental shock ϵ, we can then write the return

into a linear approximation as

ri,1 = r̄i,1 + κiθiϵ,

where κi = ∂ri,1
∂Ii,1

> 0, θi is given in equation (B.7). Given that θB < 0 and θG > 0, I reach

the conclusion that a positive environmental shock, which can be translated to an increase

in damage intensity, increases (decreases) stock returns in the green (brown) sector.
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1.8.3 Solution details of the Macro-finance IAM

Denote S = {H,M,KB, KG} as the state variables. I neglect the time subscript t and

denote the variables with a prime symbol as those in the next period. The optimization

problem can be written in the following optimization problem with constraints:

max
C,RD,IB ,IG,
lB ,lG,S′

W
(
C,U ′(S ′)

)
=

(1 − β)C1− 1
ψ + β

(
E
[
U ′(S ′)1−γ|S

]) 1− 1
ψ

1−γ


1

1− 1
ψ

s.t. C = e−λ(M−M̄)

ω [Kα
B(AlB)1−α

] ε−1
ε + (1 − ω)

[
Hν

(
Kα
G(AlG)1−α

)1−ν
] ε−1

ε


ε
ε−1

−IG − IB − kRD (C.1)

K ′
B = (1 − δK)KB + a1

1 − ξ
I1−ξ
B Kξ

B + a0KB (C.2)

K ′
G = (1 − δK)KG + a1

1 − ξ
I1−ξ
G Kξ

G + a0KG (C.3)

H ′ = (1 − δH)H + b

1 − η
RD1−ηHη (C.4)

M ′ = (1 − ρM)M̄ + ρMM + ζ
KB

A
+ ϵ′

M (C.5)

1 = lB + lG (C.6)

with the following stochastic processes:

log(A′) = log(A) + µ+ xt + σϵ′
A (C.7)

x′ = ρxx+ φxσϵ
′
x (C.8)

λ′ = (1 − ρλ)λ̄+ ρλλ+ σλϵλ (C.9)

where

ϵA, ϵx, ϵλ ∼ i.i.d.N(0, 1).

The Lagrange multipliers for equations (C.1) to (C.5) are denoted by λC , λB, λG, λH , and

λM , respectively. For constraint (C.6), the F.O.C. condition is manually derived. Denote
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the Lagrange function as L. Then the first order conditions are

∂L
∂C

= W1 − λC = 0 (C.10)

∂L
∂RD

= −λCk + λHb

(
H

RD

)η
= 0 (C.11)

∂L
∂IB

= −λC + λBa1

(
KB

IB

)ξ
= 0 (C.12)

∂L
∂IG

= −λC + λGa1

(
KG

IG

)ξ
= 0 (C.13)

∂L
∂H ′ =

∑
ω′
W ′

2
∂U ′

∂H ′ − λH = 0 (C.14)

∂L
∂K ′

B

=
∑
ω′
W ′

2
∂U ′

∂K ′
B

− λB = 0 (C.15)

∂L
∂K ′

G

=
∑
ω′
W ′

2
∂U ′

∂K ′
G

− λG = 0 (C.16)

∂L
∂M ′ =

∑
ω′
W ′

2
∂U ′

∂M ′ − λM = 0 (C.17)

where

W1 = ∂W

∂C
W ′

2 = ∂W

∂U ′

∣∣∣∣∣
ω′

and ω′ denotes a state of the world in the next period.

Now we can use the Envelope Theorem to recover ∂U ′

∂H′ to ∂U ′

∂M ′

∂U ′

∂H ′ =
(
∂L
∂H

)′

= λ′
H

1 − δH + bη

1 − η

(
RD′

H ′

)1−η
+ λ′

CMPK ′
H (C.18)

∂U ′

∂K ′
B

=
(
∂L
∂KB

)′

= λ′
B

1 − δK + a1ξ

1 − ξ

(
I ′
B

K ′
B

)1−ξ

+ a0

+ λ′
CMPK ′

B + λ′
M

ζ

A′(C.19)

∂U ′

∂K ′
G

=
(
∂L
∂KG
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where MPK is the marginal production of capital,

MPKB = αω
YB
KB

(
Y

YB

) 1
ε

e−λ(M−M̄)

MPKH = ν(1 − ω)YG
H

(
Y

YG

) 1
ε

e−λ(M−M̄)

MPKG = (1 − ν)α(1 − ω) YG
KG

(
Y

YG

) 1
ε

e−λ(M−M̄)

Y (Ỹ ) is the total output before (after) accounting for climate damages.

Note that the ratio between λH , λB, λG, and λC is the marginal rate of substitution be-

tween new capital and consumption, i.e., marginal Tobin’s q. I thus denote λH
λC
, λB
λC
, λG
λC
, λM
λC

as QH , QB, QG, QM respectively. Then equations (C.10) to (C.17) are written as

QH = k

b

(
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H

)η
(C.23)
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Note that the intertemporal marginal rate of substitution (IMRS) is
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2W

′
1
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/
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] 1
1−γ


1
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where Λ is the SDF. We can now write the Euler equations (C.26) to (C.29) in the form

of asset pricing equations,

E[Λ′R′
i] = 1, ∀i ∈ {H,B,G,M},

where
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The optimality condition for the constraint of labor market clearing is derived by

equaling the marginal product of labor in the two sectors:

∂Y

∂lB
= ∂Y

∂lG
⇒ ω

Y
1− 1

ε
B

lB
= (1 − ν)(1 − ω)Y

1− 1
ε

G

lG
. (C.34)

This system has fourteen endogenous variables,

C,RD, IB, IG, lB, lG, H,M,KB, KG, QB, QH , QG, QM .
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with fourteen equations: six constraints (C.1 - C.6) and eight F.O.C. (C.23 - C.29 and

C.34). Thus the model is closed.

Stock returns Stock returns on sector B are related to the return on physical capital,

RB. Since in reality excess stock returns are levered with idiosyncratic risks, the levered

excess return in sector B is

Rlev
B,t+1 = lev ∗ (RB,t+1 −Rf,t) + ϵdt+1

where lev is the average leverage in the data and Rf is the risk-free rate. ϵdt ∼ N(0, σ2
d)

is the dividend payout shocks.

Excess return on sector G is a composite of return on physical capital RG and return

on human knowledge capital RH weighted by the market values. Namely

Rlev
G,t+1 = lev ∗

(
QG,tKG,tRG,t+1 +QH,tHtRH,t+1

QG,tKG,t +QH,tHt

−Rf,t

)
+ ϵdt+1

Finally, the market excess return is given by

RMKT,t+1 =
QB,tKB,tR

lev
B,t+1 + (QG,tKG,t +QH,tHt)Rlev

G,t+1

QB,tKB,t +QG,tKG,t +QH,tHt
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Green Investing, Information

Asymmetry, and Category Learning

Shasha Li1 Biao Yang2

ABSTRACT

We investigate how the attention allocation of green-motivated investors changes informa-

tion asymmetry in financial markets and thus affects firms’ financing costs. To guide our

empirical analysis, we propose a model where an investor with green taste endogenously

allocates attention to market or firm-specific shocks. We find that more green-motivated

investors tend to give more attention to green firm-level information instead of market-

level information. Thus higher green taste leads to less category learning behavior and

reduces the information asymmetry. Furthermore, it suggests that higher green taste

results in lower leverage and lower cost of capital of green firms.
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2.1 Introduction

Information processing is costly, and human attention is a limited cognitive resource.

As such, rational investor needs to optimally allocate limited attention to various sources

of information to resolve uncertainty optimally. The attention allocation will then affect

the information asymmetry in the financial market. In addition, in recent years sustain-

able investments using environmental, social, and government (ESG) investing strategies,

especially green investments, has been growing dynamically3. Despite the natural link

between investors’ attention and a firm’s information asymmetry, few studies investigated

how the relationship between these two terms interacts with the rising green preference.

In this paper, we aim to answer how investors’ taste for green investing and limited

attention affects information asymmetry of firms with different “greenness”. Specifically,

we investigate the impact of greater public attention on environmental issues, measured

by the Google Search Volume (GSV) on the keyword “Climate Change”, on green firms’

information asymmetry.

To guide the empirical analysis, we propose a model based on Kacperczyk et al. (2016)

and incorporate green preference into the framework. A representative investor chooses

to invest into a group of risky assets where she derives non-pecuniary benefit from holding

green assets, i.e., a “green taste” following Pástor et al. (2020) and Pedersen et al. (2020).4

Investors have to make two kinds of decisions, asset allocation, and attention allocation.

Because the investor faces attention constraints, she has to allocate attention to firm-level

or market-level information optimally.

The model predicts that higher green taste induces investors to learn more about the

3According to the 2020 Report on US Sustainable and Impact Investing Trends released by the US
SIF foundation, there’s a rising popularity of sustainable investments among institutional and private
investors and the total US-domiciled assets under management using ESG investing criteria grew from
$12.0 trillion in the beginning of 2018 to $17.1 trillion in the beginning of 2020.

4We consider green taste of a representative investor as an analog of GSV in the data. The rationale
is, a higher GSV indicates more investors become green-motivated (Pedersen et al., 2020). In a model
with a representative investor, this is equivalent to an increase in the green taste.
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green firm. Specifically, the investor puts more attention on learning the shock that is

specific to the green asset. This is not surprising given that investors now care more about

holding green, and reducing the uncertainty related to the green asset is more rewarding.

As a result, the information asymmetry of green firms decreases. Given that the total

amount of attention is limited, less attention is allocated to the brown firms, leading to

a higher information asymmetry of brown firms. In addition, increased learning on green

firms leads to a lower price co-movement between green stock and the market, which

explains the reduction of category learning (Peng and Xiong, 2006). Finally, the model

also implies a reduction in the cost of equity capital for green firms when climate attention

is greater.

To test the predictions from the model, we follow Bharath et al. (2009) to extract

the first principal component of seven information asymmetry measures to get our major

measure on information asymmetry. These seven measures are based on component of

bid-ask spread due to adverse selection (Roll, 1984; George et al., 1991); return momen-

tum/reversal (Llorente et al., 2002; Pástor and Stambaugh, 2003); illiquidity (Amihud

et al., 1997; Amihud, 2002); and probability of informed trading (Easley et al., 1996).

To define the greenness of firms, we apply the environmental pillar score (ENSCORE)

from the Refinitive Asset4 ESG database. We calculate the correlation between individual

stock return and the market return as a measure of firm-level category learning (Huang

et al., 2019). Finally, we retrieve the Google Search Volume (GSV) of keyword Climate

Change as the measure of green taste.5 Our sample covers more than 2,500 U.S. firms

that span from 2004 (when GSV is first available) to 2020 on a quarterly frequency.

Consistent with the model predictions, our main empirical results show that an in-

crease in the growth rate of GSV on climate change decreases green firms’ information

asymmetry relative to the brown ones. To better estimate the causal effects, we use

temperature as the instrumental variable for growth rate of GSV on the keyword cli-
5We follow the literature to use this keyword. The result also holds using alternative keywords such

as “Global Warming".
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mate change. We find a one-standard-deviation increase in the GSV growth rate decrease

27.8% of information asymmetry for green firms compared to brown ones. In addition,

we find that the same increase in GSV decreases category learning of green firms by 5.6%

compared to brown firms.

As documented in the previous literature, lower category learning benefits both the

stock market and the real economy. For example, Durnev et al. (2003) shows that stock

prices are less informative in industries with more synchronous returns (i.e., higher cate-

gory learning). Wurgler (2000) shows that capital allocation is less efficient in countries

with higher stock return comovement. An example that a high degree of category learning

can hurt effective information spread is the Internet Bubble during the early 2000. Firms

earned significant positive returns just by changing their name to dot.com (Cooper et al.,

2001). In other words, investors treat a special group of firms as a single category and

completely ignore information about the firm’s fundamentals. Our results indicate that

green taste affects attention allocation and thus affects information asymmetry.

Why does information asymmetry matter? A lower information asymmetry means less

uncertainty about the firm’s fundamental and more transparent future cash flow from the

investor’s perspective. Less uncertainty benefits investors, given that they are usually risk-

averse. From the standpoint of firm managers, a lower information asymmetry means a

lower cost of equity since the market penalizes stocks with less transparent fundamentals,

i.e., equity is information-sensitive. Thus information asymmetry will affect firms’ capital

structure decisions, an idea first illustrated by the pecking order theory (Myers, 1984).

Consistent with Easley and O’hara (2004), we find that information asymmetry signifi-

cantly affects the cost of equity capital. A high-minus-low portfolio based on firms sorted

by our information asymmetry measure delivers a positive abnormal return of 1.06% after

controlling for CAPM. In addition, we test the pecking order theory by regressing firms’

leverage on information asymmetry and find significant positive effects. The fact that our

result replicates that from previous literature (Bharath et al., 2009) validates our mea-
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sure of information asymmetry. The informational channel of pecking order theory also

implies that when the public’s green taste is higher (greater GSV on “climate change”),

firms with high ENSCORE is less likely to choose debt as a financing source due to lower

information asymmetry.

The rest of the paper is organized as follows. Section 2 reviews the literature. Section

3 presents our model. Sections 4 and 5 are data construction and empirical analysis. The

last section concludes.

2.2 Literature Review

First, this paper contributes to the literature on the consequences of investors’ ESG

preferences in financial markets (Pedersen et al., 2020; Pástor et al., 2020; Goldstein et al.,

2021). A growing body of research has discussed the impact of ESG on firms’ financial

performance. Previous studies show that ESG could raise (Hong and Kacperczyk, 2009;

Baker et al., 2018) or lower the implied return (Edmans, 2011). Pedersen et al. (2020)

model ESG in a way that ESG affects both the investor’s preference and firm fundamen-

tals, bridging the gap between the opposite findings. In our paper, investors also gain

non-pecuniary utility from holding green assets but differently face endogenous informa-

tion acquisition with attention constraint. This interaction between taste and attention

allocation sheds light on how public attention on climate change affects firms’ information

asymmetry and category learning.

Second, our paper is related to the literature on endogenous information acquisi-

tion and investor’s limited attention. The rational inattention model by Sims (2003)

introduced information processing capacity into standard control problems in the field of

macroeconomics. Van Nieuwerburgh and Veldkamp (2010) build a framework to solve

jointly for investment and information choices. They find that allowing endogenous in-

formation acquisition leads an investor to hold concentrated portfolios. Kacperczyk et al.
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(2016) investigate how mutual fund managers change attention allocation with respect to

the business cycle, which predicts patterns of portfolio investments and returns. Other

papers in this field include Peng (2005), Peng and Xiong (2006), and Peress (2010). Our

model differs from previous studies in two aspects. First, we introduce a taste param-

eter in the investor’s portfolio choice problem and examine how information acquisition

changes with the taste. Second, we innovate by introducing a convex cost of information

processing, such that the more attention allocated, the more difficult it is to reduce noise

further. This approach is not only more intuitive but also generates interior optimal at-

tention allocation. Peng and Xiong (2006) find that investors exhibit category learning

behavior with limited attention. Our result shows that this phenomenon is lessened with

a higher taste.

Third, this paper contributes to the relationship between asymmetric information

and capital structure by emphasizing the attention allocation channel. There are several

approaches to estimate the information disparity between outside investors and firm man-

ager (or insider traders), including the bid-ask spread component due to adverse selection

(George et al., 1991), return reversal or momentum (Llorente et al., 2002; Pástor and

Stambaugh, 2003), illiquidity (Amihud et al., 1997; Amihud, 2002), and probability of

informed trading (Easley et al., 1996; Easley and O’hara, 2004). Bharath et al. (2009)

take the first principal component of all these measures and find information asymmetry

indeed plays a significant role in determining the capital structure as implied by pecking

order theory. We contribute to the literature by providing a rigorous examination of the

relationship between investor attention and information asymmetry with empirical and

theoretical evidence. To our knowledge, this issue remains largely unexplored (Gao et al.,

2018; Ding and Hou, 2015; Sankaraguruswamy et al., 2013).
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2.3 Model: Green Investing and Attention Alloca-

tion

To show how green taste affects attention allocation and information asymmetry, we

present a theoretical framework based on Kacperczyk et al. (2016) and Van Nieuwerburgh

and Veldkamp (2010). The model has three periods t = 0, 1, 2. At t = 0, a representative

investor chooses to allocate her attention across different assets. Allocated attention

reduces the variance (or, in other words, improves the precision) of the asset fundamentals.

At t = 1, the investor chooses the portfolio of risky and riskless assets. At t = 2, asset

payoffs are realized. The decision problem of the investor is a two-step optimization. In

the first step (at t = 1), she chooses the portfolio to maximize expected utility conditional

on her information set. In the second step (at t = 0), she optimally allocates attention

across assets to maximize the unconditional expected utility.

2.3.1 Setup

Assets There are one riskless and three risky assets. The riskless asset (bond) is nor-

malized to have unit return and infinity supply. Risky assets (stocks) have net positive

supplies, which are normalized to one. Stock i ∈ 1, 2, 3 has a random payoff fi with the

following factor structure:

f1 = µ1 + m̃+ z̃1

f2 = µ2 + m̃+ z̃2

f3 = µ3 + m̃

where m̃ is an aggregate shock to all stocks. z̃i is firm-specific shock to stock i. We

interpret asset 3 as a composite asset (the market) and asset 1 (2) as the green (brown)



96 Chapter two

stock, These shocks are independent of each other and follow normal distributions with

zero means and variance-covariance matrix

Σ =


1
τz,1

0 0

0 1
τz,2

0

0 0 1
τm

 ,

where τz,1, τz,2 and τm are the inverse of variances of the shocks z̃1, and z̃2, and m̃

respectively. These parameters denote the precision of investor’s prior to these shocks. We

can write the payoff vector in the following matrix form: f = µ+Γf̃ , where f = [f1, f2, f3]′,

µ = [µ1, µ2, µ3]′, f̃ = [z̃1, z̃2, m̃]′, and Γ =


1 0 1

0 1 1

0 0 1

.

Preference Following Kacperczyk et al. (2016) we assume the investor has a mean-

variance utility over the final wealth at t = 2. In addition, following the literature on

green finance (Pástor et al., 2020; Pedersen et al., 2020) we assume investors derive non-

pecuniary utility form holding green stock.

Let W0 and W as the initial and final wealth. We use E0 and V0 to denote the

mean and variance conditional on the prior beliefs, and E1 and V1 to denote the mean

and variance conditional on information obtained through attention allocation. Thus, at

t = 1, the investor chooses the holding of stocks, X, to maximized the expected utility

U1 = E1 [W ] − γ

2V1 [W ] +X ′b

where γ is the risk aversion coefficient. The budget constraint is W = W0 + X ′(f − p),

where X and p are the 3 × 1 vector of stock holdings and prices. b is the 3 × 1 vector

of non-pecuniary benefit from the stock holdings. For simplicity, we assume b has a

positive number g at the first element and zeros otherwise. This number g measures the
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representative investor’s “green taste”.

At t = 0, the investor choose attention allocations, κ, across stocks to maximize her

unconditional expected utility, E0 [U1]. The following part describes how learning affects

the precision of fundamental shocks.

Learning The investor can attentively learn each stock, but the total amount of atten-

tion is limited (Peng and Xiong, 2006). Learning improves the precision of stock payoffs

through a Bayesian way. Specifically, the investor receives signals of the fundamental

shocks from learning,

sm = m̃+ εm, εm ∼ N

(
0, 1
ρ(κm)

)

sz,1 = z̃1 + εz,1, εz,1 ∼ N

(
0, 1
ρ(κz,1)

)

sz,2 = z̃2 + εz,2, εz,2 ∼ N

(
0, 1
ρ(κz,2)

)
,

where the signal noises εm, εz,1, and εz,1 are independent. The noisiness of signals depend

on the attention κm, κz,1, and κz,2 that investor allocated to each shock. ρ(·) is the

learning function, which determines how much precision improvement can be obtained

for a given amount of attention. In general, ρ(·) is an increasing function, indicating that

the more attention allocated to a shock, the more precise the signal becomes. Given the

signal structure, the posterior mean and variance of the market shock will be

µ̂m ≡ E
[
m̃|sm

]
= ρ(κm) · sm
τm + ρ(κm) , Σ̂m ≡ 1

τm + ρ(κm)

The posterior means (µ̂z,1 and µ̂z,2) and variances (Σ̂z,1 andΣ̂z,2) of the two firm-specific

shocks are similarly defined. We get µ̂ ≡ E1
(
f̃
)

= [µ̂z,1, µ̂z,2, µ̂m]′ and Σ̂ ≡ V1
(
f̃
)

=

diag
([

Σ̂z,1, Σ̂z,2, Σ̂m

])
, where diag is the function that converts a vector to a diago-

nal matrix. From the time-0 perspective, Σ̂ is deterministic depending on the atten-
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tion allocation; µ̂ is normally distributed with zero mean and variance-covariance matrix

V0 [µ̂] = Σ − Σ̂ according to the law of total variance.

The investor’s learning capacity is subject to the attention constraint as follows

κm + κz,1 + κz,2 ≤ K, κm, κz,1, κz,2 ≥ 0 (C.1)

where K is the exogenous total attention span of the investor. The non-negativity con-

straint ensures that the investor cannot reduce the prior precision of the shocks, i.e., she

cannot “unlearn” what she already knows.

Clearly, the optimal allocation of attention depends on the functional form of ρ(·).

Previous studies usually assume either a linear learning strategy, where ρ is a linear

function, or an entropy-based learning strategy, where ρ is an exponential function. In

this paper, we assume that the learning function is concave. This approach is intuitive

in the sense that the marginal return of learning should be decreasing. That is, more

attention is needed to gain one additional unit of precision when the signal is already very

precise. This setting is equivalent to introducing a convex learning cost, as in Peress (2010)

and Goldstein and Yang (2015). Moreover, decreasing return is necessary to generate an

interior solution where the investor allocates nonzero attention to each shock, which is

more likely for real investors. Under linear or entropy-based learning function, increasing

return induces the investor to allocate attention to only one shocks (Van Nieuwerburgh

and Veldkamp, 2010).

To generate closed-form solutions, we assume a square root learning function ρ(x) =
√
x. The conclusion will hold for any increasing concave function.
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2.3.2 The equilibrium

First we solve for the optimal portfolio allocation at t = 1 as follows:

max
X

E1 [W ] − γ
2V1 [W ] +X ′b

s.t. W = W0 +X ′(f − p)

The solution is given by

X = 1
γ
V1(f)−1 (E1(f) − p+ b

)
which is the standard solution in a Grossman-Stiglitz economy (Grossman and Stiglitz,

1980) taking into account the taste. In equilibrium, the market-clearing condition is

X = I, where I is a 3 × 1 vector of ones. Thus the price is given by

p = E1(f) + b− γV1(f) · I (C.2)

At t = 0, the investor chooses attention vector κ to maximize time-0 expected utility,

taking price and green taste as endogenously given. Appendix A shows that the time-0

expected utility can be written as a linear function on the posterior precision on the three

factors

U0 = W0 + 1
2γ

 3∑
i=1

Σ̂−1
ii

(
Σii + θ2

i

)
− 3

 (C.3)

where θ =


µ1 − p1 + g − µ3 + p3

µ2 − p2 − µ+ p3

µ3 − p3

, which is the synthetic expected excess payoffs for

the three factors. The optimization problem is to maximize Equation (C.3) subject to the

constraint in Equation (C.1). Given that the objective function is increasing and concave

and the budget constraint is linear, the solution will equalize the marginal benefit of

κm, κz,1, κz,2 while making the constraint binding.
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Proposition 4. There is one unique interior solution to the investor’s attention allocation

problem, where attention to the factor i (i = 1: market factor, i = 2, 3: firm-specific

factor) equals

κi =

(
Σii + θ2

i

)2

∑3
j=1

(
Σjj + θ2

j

)2K

From proposition 4, we find that the investor will allocate attention to the factors

that she knows less (with higher prior variance). This is because learning has a decreasing

return, so it is optimal to devote more attention with less prior knowledge. In addition, the

investor will allocate more attention to factors with higher expected excess payoffs, which

is intuitive since increasing the precision of highly profitable stock is more rewarding. At

last, we find that when the investor has a higher green taste g, this increases the synthetic

excess payoff of the specific factor of the green firm, which is θ1. As a result, she allocates

more attention to that factor.

Corollary 1. An increase in the green taste increases an investor’s attention to the specific

shock of the green firm, and decreases attention to the market shock and firm-specific shock

of the brown firm.

2.3.3 Information asymmetry, price co-movement, and cost of

equity capital

Information asymmetry We measure the information asymmetry of a firm as the

fraction of the investor’s posterior variance divided by the prior variance on the firm’s

fundamentals IAi = V1(fi)
V0(fi) for i = 1, 2, 3. This value is bounded between zero and one. If

it is close to one, it implies almost a zero learning about the firm and a high information

asymmetry; if the fraction is close to zero, it means investor know the fundamental with

very high precision, thus inducing a smaller discrepancy between the investor’s information

and the manager, who presumably knows exactly the fundamental value. Thus, if an

investor process more information of a firm, her posterior about the fundamental will
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become more precise, and the firm experience less information asymmetry. In sum,

IA =

 1
τm+√

κm
+ 1

τz,1+√
κz,1

1
τm

+ 1
τz,1

,

1
τm+√

κm
+ 1

τz,2+√
κz,2

1
τm

+ 1
τz,2

,
τm

τm + √
κm


′

When there is an increase in the green taste, g, κz,1 increases, and κm and κz,2 decrease.

This leads to a decrease in the information asymmetry of green firms.

Proposition 5. An increase in the green taste decreases the green firm’s information

asymmetry and increases that of the brown firm and the market.

Price co-movement According to the Equation (C.2), we can calculate the variance-

covariance matrix of the price vector as

V0(p) = V0
(
E1(f)

)
= ΓV0 (µ̂) Γ′ = Γ

(
Σ − Σ̂

)
Γ′

Substituting the expressions of these variables into the expression, we get the correla-

tion between prices of green stock and the market

Corr(p1, p3) =

√√√√ Σ33 − Σ̂33

Σ11 − Σ̂11 + Σ33 − Σ̂33
=

√√√√√ 1
τm

− 1
τm+√

κm
1
τm

− 1
τm+√

κm
+ 1

τz,1
− 1

τz,1+√
κz,1

According to proposition 2. An increase in the green taste increases the denominator

inside the square root, i.e., the green firm gains greater reduction in the variance, and

decrease the numerator inside the square root, i.e., market gain less variance reduction.

Thus an increase in green taste will reduce the price correlation between the green firm

and the market. On the contrary, the correlation between the brown firm and the market

increases. Intuitively, this is because investors learn more about the firm-specific shock

of the green firm, so that its price reflects more information of that shock, and co-moves

less with the market.
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Cost of equity capital We define the cost of capital as the unconditional expected

value of the payoff minus the price E0(f − p). Thus

CoC = E0
[
f − E1 (f) − b+ γV1(f) · I

]
= −b+ γΓΣ̂Γ′ · I

The cost of capital of the green firm is given by

CoC1 = −g + γ

 3
τm + √

κm
+ 1
τz,1 + √

κz,1



An increase in the green taste affects the cost of equity capital of green firm through

two channels: a price channel and a variance channel. In the price channel, increased

taste leads to higher demand for the stock, which increases price in equilibrium. Thus

this channel serves to decrease the cost of capital. In terms of the variance channel,

higher green taste shifts attention towards the green firm, making its fundamental less

noisy. As a result, this increases the demand and reduces equilibrium price. In sum, the

two channels both work to decrease the cost of capital of the green firm when green taste

increases, consistent with the empirical result.

2.4 Data and empirical methods

Our main sample of empirical analysis consists of LA4CTYUS firms, U.S. firms in-

cluded in Refinitiv Asset4 database, for which we could get ESG scores between 2004

to 2020. We exclude financial firms (SIC codes 6000-6999). We also remove the firms

with the underlying stock price lower than 5 dollars to avoid the impact of penny stocks.

The final sample consists of 2844 U.S. firms. We obtain the data of firm financials from

COMPUSTAT North America Fundamentals Quarterly database.



2.4. DATA AND EMPIRICAL METHODS 103

2.4.1 Data Construction

Firm-level greenness indicator We use the environmental pillar score (Datastream

code: ENSCORE) from the Refinitiv (formerly known as Thomson Reuters) Asset4 ESG

universe. This database covers around 70% of the world cap with over 450 ESG metrics,

of which 186 most comparable measures are summarized into ten category scores (e.g.,

emission, human rights, management, etc.) and three pillar scores (environmental, social,

and governance). The information is mainly collected by Refinitiv from public informa-

tion, i.e., firms’ annual reports, corporate social report (CRS), company websites, etc.6

The ENSCORE covers three major categories in terms of firms’ environmental respon-

sibility: emission, innovation, and resource use. The score ranges from 0 to 100 and is

updated annually. Firms with higher scores are more environmental-friendly. We collect

all information of ENSCORE from Refinitiv Eikon, focusing on the U.S. universe from

2004 to 2020. Examples of green firms with high ENSCORE include Tesla and Amazon.

Green taste We collect the Google Search Volume (GSV) on the keyword Climate

Change as a measure of the investor’s green preference. GSV measure is based on real-

time search activities for the keywords on the Google search engine. It is scaled from 0

to 100. The key advantage of GSV is its flexibility in terms of both frequencies (from 8

minutes to one month) and granularity (from city- to country-level). It’s thus becoming

a popular measure of investors’ attention in the literature (Da et al., 2011; Ding and

Hou, 2015; Bank et al., 2011; Aouadi et al., 2013; Choi et al., 2020). In our context,

differently we interpret the GSV index as the measure of investors’ green preference. We

use the GSV in the United States as we focus on American firms. Furthermore, we take

Climate Change as the green keyword according to Djerf-Pierre (2012) and construct the

green taste measure with the GSV on this keyword. Djerf-Pierre (2012) found that the

6See https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/
esg-scores-methodology.pdf for more details.

https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/esg-scores-methodology.pdf
https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/esg-scores-methodology.pdf
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environmental issue category that has the greatest significant positive correlation with

other environmental issues is Climate Change and Global Warming. Thus we also use

Global Warming for the robustness test. In precise, we use the quarterly growth rate of

GSV on Climate Change as the measure of green taste. Figure C.1 plots monthly aggregate

Google Trends search frequency for both “climate change” and “global warming” starting

from 2014 January.

Figure C.1: Google Search Volume

Asymmetric Information In this paper, we follow Bharath et al. (2009) to construct

the measures of asymmetric information. We take the first component of seven measures

of information asymmetry and liquidity from the most well-known studies in the field of

market microstructure, corporate finance, and asset pricing as the main measure of asym-

metric information. These measures are based on (1) the adverse selection component of

the quoted and effective bid-ask spread, AD and RAD (George et al., 1991; Roll, 1984);

(2) stock’s volume return dynamics, C2 (Llorente et al., 2002); (3) probability of informed

trading, PIN (Easley et al., 1996); (4) price impact, ILL and LR (Amihud, 2002; Ami-

hud et al., 1997); and (5) interaction between stock return and order flow, GAM (Pástor

and Stambaugh, 2003). Appendix B shows the detailed construction of these measures

and explains how these measures capture the information asymmetry. We take the first
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principal component of these measures as our main measure of information asymmetry,

denoted as ASY . An increase in our measure ASY represents an increase in information

asymmetry.

Firm Financials Following Ferris et al. (2018) we construct the measures of quarterly

firm financials using the data from COMPUSTAT Fundamentals Quarterly database. We

are interested in the capital structure of the firms and its determinants. For the capital

structure, we use market leverage, which is calculated as total debt divided by market

value of total assets 7. Total debt is the sum of short-term debt DLCq and the long-

term debt DLTTq, and the market value of total assets is total debt plus market value of

equity (PRCCq×CSHPRq) plus preferred stock PSTKq (or PSTKRq if missing) minus

deferred taxes and investment tax credit TXDITCq. Quarterly sales (salesq) is scaled in

million dollars and represents the gross sales reduced by cash or trade discounts, returned

sales and allowances to customers. Tangibility is quarterly Property Plant and Equipment

Net (PPENTq) divided by the book value of total assets (ATq). And Profitability is

calculated by operating income before depreciation divided by the book value of total

assets (OIBDPq/ATq).

Summary Statistics We also obtain the closing price and markets value of firms at

the beginning of each quarter from Refinitiv Datastream. Table 1 reports the summary

statistics of the firm characteristics and the information asymmetric variables constructed

over the sample period from 2004Q1 to 2020Q4.

7We also check alternative capital structure measures such as book leverage.
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Table 1: Summary Statistics

Panel A. Firm Characteristics

count Mean p50 SD

market value (million dollars) 17522 12057.87 1557.997 58232.3

closing price 17754 185.0698 28.705 4464.139

ENSCORE 9684 .2577533 .1488 .2808584

mktlev 15194 .2270489 .162395 .2316988

qratio 15194 2.162429 1.419565 3.532211

tangibility 18950 .2612459 .1697085 .2517568

sales_q (million dollars) 19819 1553.13 289.418 5108.115

profitability_q 18623 -.0473825 .026711 3.855605

Panel B. Information Asymmetry Variables

count Mean p50 SD

AD 16037 -.2208391 -.0070152 1.321496

RAD 16034 4.11561 2.554354 4.105668

C2 17510 -.0559223 -.0229584 1.01088

PIN 17656 1.078089 .6959364 1.142027

ILL 17652 -1.620119 -1.389836 1.231184

LR 17760 .7363737 .3583898 .9760499

GAM 15590 2.888314 2.773041 1.244558

ASY 14707 -.1702508 -.2279681 1.482204

This table reports summary statistics of the firm characteristics and the information asymmetry variables

over the sample period 2004Q1-2020Q4.
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2.5 Empirical Analysis

2.5.1 Empirical strategy

To examinate the impact of green taste (GSV growth rate) on asymmetric information,

we run the following regression

InfoAsyi,q = αi +
(
β0 + β1 · ENSCOREi,q−4

)
∆GSVi,q + γXi,q + ϵi,q (1)

where InfoAsyi,q is our measure information asymmetry of firm i at quarter q, which is

the first principal component of the seven measures. ENSCOREi,q−4 is the ENSCORE of

firm i in the previous year, ∆GSVi,q is the growth rate of GSV of keywrod Climate Change

in U.S. Xi,q is the control variables, which include market value, stock return volatility,

analyst coverage, etc. The coefficient of interest is β1. We expect that β1 is negative and

significant, indicating that a higher climate attention reduces green firm’s information. In

addition to this OLS setting, we use the global temperature as an instrument variable for

∆GSVi,q to identify the casual relation. Choi et al. (2020) shows that higher temperature

increases climate change concern. Standard errors are clustered at firm level. And we

also have the year fixed effects to avoids the impacts from macroeconomic shocks.

To test the results of category learning, we follow Huang et al. (2019) to construct

firm-level category learning using the daily correlation between the firm’s stock return and

the market return. We do this for every firm in each quarter. In addition, we consider

also the R2 of univariate regression of the firm’s stock return on the market return as an

alternative measure of category learning. The latter is simply the square of the former.

Then, we run the following regression to test the category learning results:

Cati,q = αi + (β0 + β1 · ENSCOREi,q−4)∆GSVq + γXi,q + ϵi,q (3)
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where Cati,q is the category learning measure of firm i on quarter q. ENSCOREi,q−4 is

the ENSCORE of firm i at the previous year. Again, standard errors are clustered at firm

level and we have also year fixed effects.

The parameter of interest is β1. If β1 is negative and significant, it means that a higher

climate attention decreases category learning of green firms compared to brown ones.

2.5.2 Green taste and information asymmetry

We first test the impact of green taste on green firms’ information asymmetry, and the

results reported on Table 2 implies that greater green GSV reduces information asymme-

try.

Tables 2 reports the results of regressions using Climate Change as green keywords

when collect the GSV data to construct green taste measure and using principal com-

ponent of seven information asymmetry variables following Bharath et al. (2009) as the

main information asymmetry measure. Columns (1) and (2) are OLS regression esti-

mates, while columns (3) and (4) are the estimates with the temperature as instrumental

variable for green taste. This table shows that greater green taste from investors reduces

green firms’ information asymmetry. According to the result of column (4), when there’s

one standard deviation increase of green GSV growth rate, there’s 27.8& reduction in

information asymmetry of green firms.

We also test the results with alternative green keywords to capture green taste. Table

A1 shows the results of regressions using growth rate of GSV on Global Warming as green

taste measure. The positive and significant effects of green taste remain.
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Table 2: Green Taste and Information Asymmetry

OLS IV

(1) (2) (3) (4)

ASY ASY ASY ASY

ENSCORE × growthcc -0.174∗∗∗ -0.164∗∗∗ -0.677∗∗∗ -0.697∗∗∗

(-6.27) (-6.03) (-8.15) (-8.12)

ENSCORE -0.467∗∗∗ 0.00355 -0.474∗∗∗ 0.00422

(-5.39) (0.04) (-5.49) (0.04)

growthcc 0.101∗∗∗ 0.133∗∗∗ 0.180∗∗∗ 0.391∗∗∗

(8.48) (11.14) (4.61) (9.64)

logmkv -1.392∗∗∗ -1.180∗∗∗ -1.392∗∗∗ -1.188∗∗∗

(-42.33) (-32.75) (-42.32) (-32.92)

Firm FE Yes Yes Yes Yes

Year FE No Yes No Yes

Adjusted R2 0.321 0.408 0.231 0.149

Observations 48478 48478 48478 48478

This table reports estimates for the coefficients from the regression of Equation (1). Green taste growthcc

is measured by the growth rate of Google Search Volume (GSV) of keywords Climate Change. We do

not report the coefficient for the intercept. t statistics are reported in parentheses.∗ p < .10, ∗∗ p < .05,
∗∗∗ p < .01. The standard errors are clustered by firm to account for serial correlation in outcomes.

2.5.3 Green Taste and category learning

However, Table 3 suggests that higher green taste decreases category-learning in green

sector,
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Table 3: Green Taste and Category Learning

OLS IV

(1) (2) (3) (4)

cat_firm cat_firm_sq cat_firm cat_firm_sq

ENSCORE × growthcc -0.0139∗∗∗ -0.0223∗∗∗ -0.0192 -0.0525∗∗∗

(-3.22) (-5.60) (-1.33) (-3.78)

ENSCORE 0.0270∗∗∗ 0.0303∗∗∗ 0.0268∗∗∗ 0.0302∗∗∗

(2.71) (3.21) (2.70) (3.20)

growthcc -0.0155∗∗∗ -0.0176∗∗∗ -0.0421∗∗∗ -0.0373∗∗∗

(-8.80) (-12.02) (-6.76) (-6.63)

logmkv 0.0276∗∗∗ 0.0275∗∗∗ 0.0288∗∗∗ 0.0286∗∗∗

(9.47) (10.57) (9.81) (10.93)

Firm FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Adjusted R2 0.395 0.396 0.002 0.003

Observations 52829 52829 52829 52829

This table reports estimates for the coefficients from the regression of Equation (3). The regressions use

Climate Change as keywords when collect GSV data. We do not report the coefficient for the intercept. t

statistics are reported in parentheses.∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The standard errors are clustered

by firm.

Further more, we test whether the coefficient of green taste, β0+β1·AveENSCOREp,q−4,

is significantly different from than zero. The result of F-test rejects the null hypothesis

that the coefficient of ∆GSVq is zero, which implies green taste has significant impact on

category learning behaviour.
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2.5.4 Asset pricing implications

In this section, we examine the asset pricing implication of information asymmetry.

This investigation sheds light on how information asymmetry affect the cost of capital.

Specifically, in each quarter, we construct five portfolios based on each firm’s information

asymmetry in the last quarter. We then obtain the monthly value-weighted return for

each portfolio. We run time-series regression of all the portfolio returns on common asset

pricing factors,

rp,m = αp + βpFactorm + ϵp,m

where rp,m is the return of portfolio p at month m, Factorm includes the CAPM (Sharpe,

1964), Fama-french three and five factors (Fama and French, 1993, 2015).

Table 4: Asset pricing implication

L 2 3 4 H H-L

E(ri,t) 0.50 0.86 1.09 1.29 1.59 1.09

s.e. (0.42) (0.39) (0.37) (0.37) (0.38) (0.28)

CAPM

α -0.39 0.02 0.19 0.44 0.66 1.06

s.e. (0.13) (0.14) (0.11) (0.16) (0.22) (0.30)

FF3

α -0.51 0.02 0.28 0.53 0.83 1.34

s.e. (0.14) (0.13) (0.08) (0.13) (0.22) (0.31)

FF5

α -0.47 0.01 0.27 0.50 0.85 1.32

s.e. (0.13) (0.12) (0.09) (0.12) (0.23) (0.31)

No. of firms 443 445 444 444 443

Table 4 shows the abnormal returns α for all the five portfolios and a portfolio that
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long the top one and shorts the bottom one (a high-minus-low portfolio). First, we find

an increasing raw return from low information asymmetry portfolio to high ones. The

portfolio with the highest information asymmetry carries a significant 1.09% (s.e.=0.28%)

higher monthly return than that with lowest information asymmetry. This difference

remains significant and even becomes larger after controlling for common asset pricing

factor (1.06%, 1.34%, and 1.32% for CAPM, Fame-French three and five factors). This

result is consistent with Easley and O’hara (2004) that investors demand compensation

for holding stocks that are less transparent and more uncertain. Thus lower information

asymmetry benefit firms by lowering its cost of equity capital.

2.5.5 Capital Structure

In this section, we further justify the importance of asymmetric information in firms’

capital structure and explore how does the existence of category learning affect the capital

structure. Pecking order theory (Myers, 1984; Myers and Majluf, 1984) suggests that the

cost of financing and the ratio of debt to equity should increase with the asymmetric

information.

Following Bharath et al. (2009), we augment the model of Rajan and Zingales (1995)

to include the asymmetric information measures and run firm-quarter panel regression.

Leverageit = a+ µi + b1ASYit + b2Catit + b3Tangibilityit + b4Qratioit

+b5Firmsizeit + b6Profitabilityit + εit (C.4)

where Leverageit is firm i’s market leverage at quarter t, which is total debt divided by

market value of total assets, as in Ferris et al. (2018). Total debt is the sum of short-term

debt DLCq and the long-term debt DLTTq, and the market value of total assets is total

debt plus market value of equity (PRCCq × CSHPRq) plus preferred stock PSTKq
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(or PSTKRq if missing) minus deferred taxes and investment tax credit TXDITCq.

Firm size is log of sales scaled by the quarterly GDP deflator with baseline year 2012

(log(Sale)/GDPDeflator).Tangibility is quarterly Property Plant and Equipment Net

(PPENTq) divided by the book value of total assets (ATq). And Profitability is calcu-

lated by operating income before depreciation divided by the book value of total assets

(OIBDPq/ATq).

Table 5 reports estimates for coefficients from the above equation (C.4). It shows that

when there’s higher asymmetric information, there’s higher leverage of firms, which is in

line with the findings of Bharath et al. (2009).

Besides, column (3) of the table 5 suggests that investors’ category learning behaviour

decreases the leverage level of firms.

As higher green attention reduces information asymmetry, according to the results of

table 5, the leverage will decrease with lower information asymmetry.

For robustness check, we also test the results of alternative leverage measures. Table

A4 reports the results of book leverage. The main conclusions still hold.

2.6 Conclusion

In this paper, we investigate the impact of green taste on asymmetric information and

category learning. Using the GSV on Climate Change and asymmetric information mea-

sure developed by Bharath et al. (2009), we empirically find that greater public attention

on environmental issues reduces asymmetric information, especially for the green firms

which have high ENSCORE. In addition, higher green taste also leads to less category

learning behavior for green firms (Peng and Xiong, 2006). This is because more attention

is allocated to the specific information of green firms, making their price reflect more

firm-specific information. We document that such a decrease in information asymmetry

and category learning lowers the cost of equity capital and decreases leverage for green
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Table 5: Leverage, Asymmetric Information and Category Learning

(1) (2) (3)
mktlev mktlev mktlev

ASY 0.0194∗∗∗ -0.00185 0.0198∗∗∗

(0.00222) (0.00266) (0.00230)
tangibility 0.191∗∗ 0.163∗∗ 0.189∗∗

(0.0767) (0.0764) (0.0765)
qratio -0.0168∗∗∗ -0.0137∗∗∗ -0.0166∗∗∗

(0.00304) (0.00277) (0.00304)
firmsize 1.365∗∗ 1.720∗∗∗ 1.448∗∗

(0.551) (0.596) (0.560)
profit -0.364∗∗∗ -0.364∗∗∗ -0.377∗∗∗

(0.0848) (0.0907) (0.0906)
AD -0.00194∗

(0.00111)
RAD 0.0000849

(0.000793)
C2 0.000654

(0.000960)
PIN 0.0217∗∗∗

(0.00376)
ILL 0.0237∗∗∗

(0.00327)
LR 0.00331∗

(0.00185)
GAM 0.00363∗∗

(0.00143)
cat_firm -0.0202∗

(0.0105)
Firm FE Yes Yes Yes
Year FE Yes Yes Yes
N 11525 11274 11503
R2 0.821 0.826 0.819

This table reports estimates for the coefficients from the regression of Equation (C.4). We do not report
the coefficient for the intercept. t statistics are reported in parentheses.∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.
The standard errors are clustered by firm.

firms. We propose a model with green preference and attention allocation to explain the

empirical result. The model sheds new light on how the interaction between green taste

and attention allocation affects the cross-section of the stock market.
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2.7 Appendices

2.7.1 Appendix A. Derivation of time-0 utility

Put the expression of portfolio allocation X to U0,

U0 = E0

W0 + 1
γ

(
E1(f) − p+ b

)′ V1(f)−1 (E1(f) − p+ b
)

−γ

2

[
1
γ2
(
E1(f) − p+ b

)′ V1(f)−1V1(f)V1(f)−1 (E1(f) − p+ b
)] 

= W0 + 1
2γE0

[(
E1(f) − p+ b

)′ V1(f)−1 (E1(f) − p+ b
)]

Note that E1(f) = E1(µ+Γf̃) = µ+Γµ̂, E1(f) is normally distributed. Thus U0 is an

expectation of a non-central χ2-distributed random variable. According to Van Nieuwer-

burgh and Veldkamp (2010), this equals

U0 = W0 + 1
2γ

[
Trace

(
V1(f)−1V0

(
E1(f)

))
+ E0

(
E1(f) − p+ b

)′ V1(f)−1E0
(
E1(f) − p+ b

)]

= W0 + 1
2γ

[
Trace

((
ΓΣ̂Γ′

)−1
Γ(Σ − Σ̂)Γ′

)
+ (µ− p+ b)′

(
ΓΣ̂Γ′

)−1
(µ− p+ b)

]

= W0 + 1
2γ

[
Trace

((
Γ′
)−1 (

Σ̂−1Σ − I
)

Γ′
)

+
(
Γ−1 (µ− p+ b)

)′
Σ̂−1

(
Γ−1 (µ− p+ b)

)]

= W0 + 1
2γ

[
Trace

((
Γ′
)−1

Σ̂−1ΣΓ′
)

− 3 +
(
Γ−1 (µ− p+ b)

)′
Σ̂−1

(
Γ−1 (µ− p+ b)

)]

where Trace(·) is the trace of a matrix. Given the relation that Trace(AB) = Trace(BA),

Trace
(
(Γ′)−1 Σ̂−1ΣΓ′

)
= Trace

(
Γ′ (Γ′)−1 Σ̂−1Σ

)
= Trace

(
Σ̂−1Σ

)
. Note that both Σ̂ and

Σ are diagonal matrix, and considering that Γ−1 =


1 0 −1

0 1 −1

0 0 1

, we can rewrite the

objective function as
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U0 = W0 + 1
2γ

 3∑
i=1

Σ̂−1
ii

(
Σii + θ2

i

)
− 3


where the 3 × 1 vector θ is given by

θ = Γ−1 (µ− p+ b) =


1 0 −1

0 1 −1

0 0 1

 ·


µ1 − p1 + g

µ2 − p2

µ3 − p3

 =


µ1 − p1 + g − µ3 + p3

µ2 − p2 − µ+ p3

µ3 − p3



which is the synthetic expected excess payoffs for three factors, taking into account

the green taste. Essentially, the objective function is a linear function on the posterior

precision on the three factors, with the weights depending on the prior variances and

excess payoffs.

If we assume the learning function to be a square root function, the optimization

problem is

max
κm,κz,1,κz,2

(
Σ11 + θ2

1

)√
κz,1 +

(
Σ22 + θ2

2

)√
κz,2 +

(
Σ33 + θ2

3

)√
κm

s.t. κm + κz,1 + κz,2 ≤ K

2.7.2 Appendix B. Information asymmetry measures

This appendix explains how we construct the measures of information asymmetry.

• George et al. (1991); Roll (1984):

Using a simple price dynamics model, George et al. (1991) find that the proportion

of quoted spread due to adverse selection, πi, can be estimated with the following

regression for an individual stock i:

ŝit = αi + βisit + ϵit



2.7. APPENDICES 117

where sit is the relative quoted bid-ask spread of stock i at time t. ŝit is Roll (1984)’s

effective bid-ask spread measure calculated using the squared root of negative au-

tocovariance between consecutive returns,

ŝit =


2
√

−Cov(ri,t, ri,t−1) if Cov(ri,t, ri,t−1) < 0

−2
√
Cov(ri,t, ri,t−1) if Cov(ri,t, ri,t−1) ≥ 0

where the autocovariance is estimated using 60-day rolling windows. According to

George et al. (1991), ri,t could be: (i) the abnormal returns (i.e. the residuals of a

regression of raw returns on expected returns), and (ii) the raw returns net of the

bid returns. The unbiased estimation of πi will be 1− β̂i
2 for the first case and 1− β̂i

for the second. In the following parts, we refer to these two measures as AD and

RAD

• Llorente et al. (2002):

Llorente et al. (2002) estimates the relative intensity of speculative vs. hedging

trades, based on the idea that speculative (hedging) trades generate momentum

(reversal) of stock return when the volume is high. Then the intensity of speculative

trading serves as a proxy for information asymmetry. Specifically, they ran the

following regression,

Ri,t+1 = C0i + C1iRi,t + C2iVi,tRi,t + ϵi,t

where Ri,t is the raw stock return. Vi,t is the logarithm of turnover ratio, detrended

by subtracting a 200-day moving average. A high and positive estimated coefficient

C2i indicates a high degree of information asymmetry. We refer to this measure as

C2.
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• Easley et al. (1996):

Perhaps the most popular measure of information asymmetry is the probability of

informed trading (PIN) proposed by Easley et al. (1996). They use the information

in the trade data to estimated the probability of informed vs. uninformed trading

when new information occurs. Specifically, they use the buy/sell trade quotes to es-

timate the model parameters and elicit the PIN using maximum likelihood method.

We refer to this measure as PIN

• Amihud et al. (1997); Amihud (2002):

These two measures are quite straightforward, both measures the extend to which

price responses to the order flow. The sensitivity of price to volume is known to

capture the liquidity which is strongly related to adverse selection. Specifically,

Amihud (2002) propose the following illiquidity measure

ILLiτ = 1/Diτ

Diτ∑
t=1

|Rit|
Vit

where Rit and Vit are return and dollar volume of stock i at day t within a time

interval τ (quarterly or yearly). Diτ is the total number of days with available Rit

and Vit.

Alternatively, the Amivest liquidity ratio (Amihud et al., 1997) captures similar

notion,

LRiτ = −
∑Diτ
t=1 Vit∑Diτ
t=1 |Rit|

Thus, higher ILL and LR indicate lower liquidity and a higher degree of information

asymmetry. We label them as ILL and LR, respectively.

• Pástor and Stambaugh (2003):

Our last measure of liquidity/information asymmetry is from Pástor and Stambaugh

(2003). They measure relies on the idea that order flows induce greater return
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reversal when liquidity is lower. Thus they propose the following regression

rei,t+1 = αi + βiri,t + γisign(rei,t)Vi,t + ϵi,t

where re is the stock return in excess to the market return. Vi,t is the dollar trading

volume. When the estimated coefficient γi is negative and high in magnitude, the

reversal effect is strong and liquidity is low. Thus the negative of γi measures the

liquidity and information asymmetry. We refer to this measure as GAM.

• Finally, we construct the first principal component of all these measures of infor-

mation asymmetry. We do this by first normalize each measure for each firm over

the whole sample period. Then we take the first principal component of the seven

measures for each firm.
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2.7.3 Appendix C. Additional Results

Table A1: Green Taste and Information Asymmetry

OLS IV

(1) (2) (3) (4)

ASY ASY ASY ASY

ENSCORE × growthgm -0.235∗∗∗ -0.222∗∗∗ -0.514∗∗∗ -0.502∗∗∗

(-7.18) (-6.96) (-8.34) (-7.86)

ENSCORE -0.472∗∗∗ -0.00608 -0.498∗∗∗ -0.0188

(-5.45) (-0.06) (-5.78) (-0.20)

growthgm 0.145∗∗∗ 0.191∗∗∗ 0.128∗∗∗ 0.272∗∗∗

(10.67) (14.11) (4.68) (9.69)

logmkv -1.394∗∗∗ -1.184∗∗∗ -1.391∗∗∗ -1.185∗∗∗

(-42.33) (-32.82) (-42.31) (-32.89)

Firm FE Yes Yes Yes Yes

Year FE No Yes No Yes

Adjusted R2 0.322 0.409 0.233 0.155

Observations 48478 48478 48478 48478

This table reports estimates for the coefficients from the regression of Equation (1). Green taste growthgm

is measured by the growth rate of Google Search Volume (GSV) of keywords Global Warming. We do

not report the coefficient for the intercept. t statistics are reported in parentheses.∗ p < .10, ∗∗ p < .05,
∗∗∗ p < .01. The standard errors are clustered by firm to account for serial correlation in outcomes.
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Table A2: Green Taste and Information Asymmetry

Panel A. OLS regressions

(1) (2) (3) (4) (5) (6) (7) (8)

AD RAD C2 PIN ILL LR GAM ASY

ENSCORE × growthcc -0.159∗∗∗ 0.0357 0.124∗∗∗ -0.0927∗∗∗ -0.119∗∗∗ 0.117∗∗∗ -0.0741∗∗ -0.164∗∗∗

(-4.70) (1.33) (3.58) (-8.16) (-7.72) (5.92) (-2.45) (-6.03)

ENSCORE -0.0650∗ -0.0167 0.0164 -0.0122 -0.0212 0.0147 -0.0768 0.00355

(-1.79) (-0.47) (0.42) (-0.22) (-0.34) (0.36) (-1.53) (0.04)

growthcc 0.0316∗∗ -0.0126 0.0165 0.0121∗∗∗ 0.0828∗∗∗ 0.142∗∗∗ 0.00760 0.133∗∗∗

(2.24) (-1.10) (1.19) (2.75) (11.40) (18.51) (0.66) (11.14)

logmkv 0.111∗∗∗ 0.0311∗∗∗ -0.0343∗∗∗ -0.663∗∗∗ -1.125∗∗∗ -0.338∗∗∗ -0.0455∗∗∗ -1.180∗∗∗

(9.40) (2.98) (-3.15) (-26.10) (-38.74) (-22.62) (-2.90) (-32.75)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.212 0.917 0.030 0.715 0.654 0.246 0.332 0.408

Observations 50438 50438 52593 52691 52688 52718 48634 48478

Panel B. IV regressions

(1) (2) (3) (4) (5) (6) (7) (8)

AD RAD C2 PIN ILL LR GAM ASY

ENSCORE × growthcc -0.230∗∗ 0.0327 -0.349∗∗∗ -0.288∗∗∗ -0.483∗∗∗ -0.317∗∗∗ -0.139 -0.697∗∗∗

(-1.96) (0.37) (-3.19) (-8.37) (-9.69) (-5.51) (-1.46) (-8.12)

growthcc -0.0245 -0.152∗∗∗ -0.112∗∗ 0.0705∗∗∗ 0.364∗∗∗ 0.107∗∗∗ 0.379∗∗∗ 0.391∗∗∗

(-0.43) (-3.61) (-2.45) (4.67) (15.86) (4.35) (9.19) (9.64)

ENSCORE -0.0653∗ -0.0172 0.0155 -0.0120 -0.0201 0.0145 -0.0756 0.00422

(-1.80) (-0.48) (0.40) (-0.22) (-0.32) (0.35) (-1.50) (0.04)

logmkv 0.114∗∗∗ 0.0374∗∗∗ -0.0257∗∗ -0.664∗∗∗ -1.134∗∗∗ -0.334∗∗∗ -0.0617∗∗∗ -1.188∗∗∗

(9.58) (3.56) (-2.36) (-26.15) (-38.84) (-22.43) (-3.91) (-32.92)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.001 -0.004 -0.015 0.181 0.299 0.027 -0.030 0.149

Observations 50438 50438 52593 52691 52688 52718 48634 48478

This table reports estimates for the coefficients from the regression of Equation (1). Green taste growthcc is measured by the growth

rate of Google Search Volume (GSV) of keywords Climate Change. We do not report the coefficient for the intercept. t statistics are

reported in parentheses.∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The standard errors are clustered by firm to account for serial correlation in

outcomes.
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Table A3: Green Taste and Information Asymmetry

Panel A. OLS regressions

(1) (2) (3) (4) (5) (6) (7) (8)

AD RAD C2 PIN ILL LR GAM ASY

ENSCORE × growthgm -0.196∗∗∗ 0.0236 0.0903∗∗ -0.0872∗∗∗ -0.125∗∗∗ 0.0699∗∗∗ 0.00635 -0.222∗∗∗

(-4.76) (0.66) (2.38) (-6.31) (-7.39) (3.44) (0.19) (-6.96)

ENSCORE -0.0742∗∗ -0.0157 0.0201 -0.0156 -0.0261 0.0178 -0.0754 -0.00608

(-2.05) (-0.44) (0.51) (-0.28) (-0.42) (0.43) (-1.50) (-0.06)

growthgm 0.0264 -0.0268∗ 0.0219 0.0303∗∗∗ 0.0899∗∗∗ 0.124∗∗∗ 0.154∗∗∗ 0.191∗∗∗

(1.61) (-1.92) (1.48) (5.82) (12.19) (15.05) (11.55) (14.11)

logmkv 0.112∗∗∗ 0.0320∗∗∗ -0.0345∗∗∗ -0.664∗∗∗ -1.126∗∗∗ -0.338∗∗∗ -0.0539∗∗∗ -1.184∗∗∗

(9.46) (3.07) (-3.17) (-26.10) (-38.73) (-22.66) (-3.45) (-32.82)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.212 0.917 0.030 0.715 0.654 0.243 0.335 0.409

Observations 50438 50438 52593 52691 52688 52718 48634 48478

Panel B. IV regressions

(1) (2) (3) (4) (5) (6) (7) (8)

AD RAD C2 PIN ILL LR GAM ASY

ENSCORE × growthgm -0.186∗∗ 0.00603 -0.290∗∗∗ -0.221∗∗∗ -0.341∗∗∗ -0.240∗∗∗ -0.0571 -0.502∗∗∗

(-2.13) (0.09) (-3.49) (-8.52) (-9.08) (-5.48) (-0.80) (-7.86)

growthgm -0.0147 -0.104∗∗∗ -0.0747∗∗ 0.0512∗∗∗ 0.256∗∗∗ 0.0766∗∗∗ 0.257∗∗∗ 0.272∗∗∗

(-0.37) (-3.55) (-2.31) (4.81) (15.88) (4.42) (9.08) (9.69)

ENSCORE -0.0740∗∗ -0.0170 0.00377 -0.0210 -0.0338 0.00479 -0.0775 -0.0188

(-2.03) (-0.48) (0.10) (-0.38) (-0.54) (0.12) (-1.54) (-0.20)

logmkv 0.114∗∗∗ 0.0362∗∗∗ -0.0268∗∗ -0.664∗∗∗ -1.132∗∗∗ -0.333∗∗∗ -0.0588∗∗∗ -1.185∗∗∗

(9.59) (3.46) (-2.47) (-26.14) (-38.85) (-22.41) (-3.75) (-32.89)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Adjusted R2 0.002 -0.001 -0.008 0.181 0.309 0.028 0.003 0.155

Observations 50438 50438 52593 52691 52688 52718 48634 48478

This table reports estimates for the coefficients from the regression of Equation (1). Green taste growthgm is measured by the growth rate

of Google Search Volume (GSV) of keywords Global Warming. We do not report the coefficient for the intercept. t statistics are reported

in parentheses.∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The standard errors are clustered by firm to account for serial correlation in outcomes.
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Table A4: Book Leverage, Asymmetric Information and Category Learning

(1) (2) (3)

booklev booklev booklev

ASY 0.00490∗∗ -0.00252 0.00528∗∗

(0.00212) (0.00279) (0.00226)

tangibility 0.125 0.121 0.124

(0.0876) (0.0882) (0.0877)

qratio -0.00148 -0.00103 -0.00137

(0.00453) (0.00471) (0.00454)

firmsize 1.474 1.685∗ 1.562

(0.994) (1.019) (1.009)

profit -0.408∗∗∗ -0.425∗∗∗ -0.414∗∗∗

(0.111) (0.125) (0.117)

AD 0.000537

(0.000998)

RAD 0.000396

(0.000973)

C2 0.000710

(0.00118)

PIN 0.00878∗

(0.00497)

ILL 0.00665∗

(0.00398)

LR -0.00109

(0.00183)

GAM 0.00563∗∗∗

(0.00186)

cat_firm -0.0210

(0.0135)

Firm FE Yes Yes Yes

Year FE Yes Yes Yes

N 11525 11274 11503

R2 0.780 0.779 0.779

This table reports estimates for the coefficients from the regression of Equation (C.4) with the book

leverage as the capital structure measure. We do not report the coefficient for the intercept. t statistics

are reported in parentheses.∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01. The standard errors are clustered by firm.
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Chapter 3

Applying Lehmann‘s Informativeness

Order in Precautionary Principal

3.1 Introduction

The comparison between information structures dated back to Blackwell et al. (1951)

and Blackwell (1953). His definition on the relative informativeness of information struc-

tures (or, experiments) is that, an experiment A is more informative than B if and only if

a decision maker with any utility function prefers to observe experiment A over B. This

happens whenever experiment A is a “garbling" of B, i.e., B can obtained from A by

adding noise that is not related to the underlying state. While this definition of ordering

is general, it is also very incomplete (Cabrales et al., 2013). For example, Lehmann (1988)

shows that, surprisingly, Blackwell’s informativeness ranking fails to compare two location

experiments with uniform noises.1

To address this limitation of Blackwell’s informativeness ranking. Lehmann (1988)

introduce a new method to rank experiments focusing on the monotone decision problem
1Specifically, let two experiments be X ∼ U [ω − 1

2 , ω − 1
2 ] and Y ∼ U [ω − ρ

2 , ω − ρ
2 ] where 0 < ρ < 1.

It is intuitive that Y is more informative than X. However, these two experiments cannot be compared
using Blackwell informativeness unless ρ = 1

k for some positive integer k (see Theorem 3.1 in Lehmann
(1988)).

129



130 Chapter three

(Karlin and Rubin, 1956). A Lehmann higher ranked experiment induces higher expected

utility for all monotone decision problems. This approach is less strict than the Black-

well’s ranking and thus compares more cases. Lehmann’s ranking is later proved to be

applicable to utilities with single-crossing properties (Persico, 2000) and more general

interval dominance order (IDO) properties (Quah and Strulovici, 2009). This concept is

then applied in the literature to study various economic problems.2 However, it has not

been applied in environmental economics to study the effect of better future information

structure on current actions. Given the increasing concern on climate change during re-

cent decades, we believe this application could help policymaker better decide the timing

of climate mitigation when facing decreased future uncertainty.

Gollier et al. (2000) investigate how learning about climate damage in the future

affects emission decisions today. They find that when absolute prudence is bigger than

twice the absolute risk aversion, a better information structure in the future reduces

emission today. This so called Precautionary Principal depends on interplay among the

wealth effect, precautionary effect, and irreversibility effect. However, their analysis ranks

experiments according to the Blackwell’s order. As such, it would be interesting to see

how does the condition on utility change when we apply the informativeness order by

Lehmann. As Lehmann’s order is less strict compared to Blackwell’s, we expected the

condition on utility that supports the precautionary principal to be less strict in our case

than in the case of Gollier et al. (2000).

3.2 Lehmann’s informativeness order

Consider the underlying state ω ∈ Ω, which is unobservable to a decision maker.

Instead, the decision maker observe a signal X, of which the distribution is contingent on

2For example, information acquisition in auctions (Persico, 2000); information contents of prices in
the financial market (Bond, 2019); informativeness of sample selections (Tillio et al., 2021); insurance
and monopoly pricing problem.
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the underlying state. In addition, the conditional distribution depends on an additional

parameter θ which can be interpreted as “regimes" using the language from Bond (2019).

Specifically, the distribution of the signal is

P (X < x|ω, θ) = F (x|ω, θ)

Lehmann provides a precise definition when two experiments with different regimes θ1

and θ2 can be compared.

Definition 1. An experiment with regime θ1 is more Lehmann informative than that with

regime θ2 if and only if the function F−1(F (x|ω, θ2)|ω, θ1) is nondecreasing in ω for all x.

Example 1 Consider the case of location experiments with uniform noises. Let ω ∈ R

to be the state variable and the signal follows the distribution X ∼ U [ω − 1
2θ , ω + 1

2θ ]

with θ > 0. Thus a higher θ indicates a more precise signal and thus should be more

informative.

The CDF of the signal is

F (x|ω, θ) = θ(x− ω) + 1
2

Thus

F−1(F (x|ω, θ2)|ω, θ1) = θ2

θ1
(x− ω) + ω = θ2

θ1
x+ (1 − θ2

θ1
)ω

Clearly, this is nondecreasing in ω if and only if θ2 ≤ θ1, which says the experiment with

θ1 is Lehmann more informative than θ2, consistent with the intuition.

3.3 Model

The model considered here follows Gollier et al. (2000). Consider a two-period model

where agent chooses consumption c1 and c2 of the two periods. Consumption in both
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periods induce pollution that accumulates through time with an uncertain damage at

time-2 consumption. The damage intensity is given by a random variable x of which the

decision maker learns the true value by observing an experiment y. Thus agent solves

max
c1

u(c1) + Ey

(
max
c2

Ex|yv(c2 − x(δc1 + c2))
)

where u and v are increasing and concave.

Let C = δc1 + c2 and z = 1 − x, then the problem becomes

max
c1

u(c1) + Ey

(
max
C

Ez|yv(−δc1 + zC)
)

We assume the signal y conditional on the state z is distributed as F (y|z, θ), which satisfies

the MLR. This can be written explicitly as

max
c1

u(c1) +
∫
y

(
max
C

∫
z
v(−δc1 + zC)dG(z|y, θ)

)
dF (y, θ)

where G(z|y, θ) is the posterior distribution of state variable z conditional on observing

signal y with regime θ. F (y, θ) is the unconditional distribution of y with regime θ. Let

C(y, θ) be the solution of the problem inside the parenthesis, namely,

C(y, θ) = arg max
C

∫
z
v(−δc1 + zC)dG(z|y, θ)

Then the F.O.C. indicates

∫
z
zv′(−δc1 + zC)dG(z|y, θ) = 0
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The F.O.C. with respect to c1 is

u′(c1) = δ
∫
y

∫
z
v′(−δc1 + zC(y, θ))dG(z|y, θ)dF (y, θ)︸ ︷︷ ︸

J(c1,θ)

Suppose that θ characterises Lehmann informativeness, we want to see how J(c1, θ)

changes with respect to θ. This determines how c1 changes with respect to θ: given

that u′(c1) (J(c1, θ)) is decreasing (increasing) in c1, if dJ(c1,θ)
dθ

≥ 0, an increase in θ

decreasing first-period consumption.

Inspired by Persico (2000), we introduce the function T (y|z, θ, η) = F−1(F (y|z, η)|z, θ)

where η < θ. From the functional form, it is immediate that

y|z ∼ F (y|z, η) ⇔ T (y|z, θ, η)|z ∼ F (y|z, θ)

Given this relation, we can transform the variable y in J(c1, θ). Specifically

J(c1, θ) =
∫
y

∫
z
v′(−δc1 + zC(y, θ))dG(z|y, θ)dF (y, θ)

=
∫
z

∫
y
v′(−δc1 + zC(y, θ))dF (y|z, θ)dF (z)

=
∫
z

∫
y
v′(−δc1 + zC(T (y|z, θ, η), θ))dF (y|z, η)dF (z)

=
∫
y

∫
z
v′(−δc1 + zC(T (y|z, θ, η), θ))dG(z|y, η)dF (y, η)

Thus,
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dJ(c1, θ)
dθ

∣∣∣∣∣
θ=η

=
∫

y

∫
z

d

dθ
v′(−δc1 + zC(T (y|z, θ, η), θ))dG(z|y, η)dF (y, η)

∣∣∣∣∣
θ=η

=
∫

y

∫
z

zv′′(−δc1 + zC(y, η)) d
dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣
θ=η

dG(z|y, η)dF (y, η)

= −
∫

y

∫
z

zv′(−δc1 + zC(y, η))

γA(−δc1 + zC(y, η)) d
dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣
θ=η

 dG(z|y, η)dF (y, η)

where γA = −v′′

v′ is the absolute risk aversion. Note that the following F.O.C. for C holds

∫
z
zv′(−δc1 + zC(y, η))dG(z|y, η) = 0

In addition, zv′(−δc1 + zC(y, η)) is quasi-monotone on z (it crosses the horizontal axis

only once). Thus we have the following proposition

Proposition 6. If the function γA(−δc1 +zC(y, η)) d
dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣∣
θ=η

is nondecreas-

ing (nonincreasing) in z, then J(c1, θ) is nonincreasing (nondecreasing) in θ.

Proof The proof follows Lemma 1 of Persico (2000).

Lemma 3.3.1. (Persico, 2000) Let (c, d) be an interval of the real line, J(·) a nonde-

creasing function, H(·) a quasi-monotone function. Assume that for some measure µ on

R that ∫ d

c
H(v)dµ(v) = 0

Then ∫ d

c
H(v)J(v)dµ(v) ≥ 0

Note that

d

dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣∣
θ=η

= ∂

∂θ
C(y, θ)

∣∣∣∣∣∣
θ=η

+ ∂

∂y
C(y, θ) ∂

∂θ
T (y|z, θ, η)

∣∣∣∣∣∣
θ=η
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The above equations use the fact T (y|z, η, η) = y. In the above equation, only the term
∂
∂θ
T (y|z, θ, η)

∣∣∣∣∣∣
θ=η

is dependent on the state variable z. Moreover, it is increasing in z, To

see this
∂

∂θ
T (y|z, θ, η)

∣∣∣∣∣∣
θ=η

= lim
θ→η

T (y|z, θ, η) − y

θ − η

Note that by definition, η < θ, so the experiment with regime θ is more Lehmann in-

formative than that with regime η. By definition, T (y|z, θ, η) is increasing in z. Thus
∂
∂θ
T (y|z, θ, η)

∣∣∣∣∣∣
θ=η

is also increasing in z. Since v(−δc1 + zC) satisfies a monotone decision

problem and F (y|z, θ) satisfies the MLR, the optimal action is increasing in the signal

realizations: ∂
∂y
C(y, θ) ≥ 0. As a result, d

dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣∣
θ=η

as a whole is increasing

in z.

Question: We need to examine the monotonicity of the function

γA(−δc1 + zC(y, η)) d
dθ
C(T (y|z, θ, η), θ)

∣∣∣∣∣∣
θ=η

1. When γA is constant (CARA): J(c1, θ) is nonincreasing in θ, better Lehmann infor-

mation structure leads to higher time-1 consumption

2. When γA is decreasing (DARA) and d
dθ
C(T (y|z, θ, η), θ) is positive: the effect is

not clear because monotonicity of the multiplication between an positive increasing

function and a positive decreasing one is not clear.

3. When γA is decreasing (DARA) and d
dθ
C(T (y|z, θ, η), θ) is negative: the multipli-

cation is increasing. Better Lehmann information structure leads to higher time-1

consumption

4. When γA is increasing (IARA) and d
dθ
C(T (y|z, θ, η), θ) is positive: the multiplica-

tion is increasing. Better Lehmann information structure leads to higher time-1

consumption.
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5. When γA is increasing (IARA) and d
dθ
C(T (y|z, θ, η), θ) is negative: the effect is

not clear because monotonicity of the multiplication between an positive increasing

function and a negative increasing one is not clear.

3.4 Examples

Example 1. CARA utility and Normal signals Assume that the prior and condi-

tional likelihood of the signal are normal, that utility is CARA. Specifically, z ∼ N(µ, σ2),

y|z ∼ N
(
z, 1

θ
σ2
y

)
where θ > 0 is the regime parameter, and v(c) = − exp(−γc). An in-

crease in θ makes the signal Lehmann more informative. To see this, first note that this

family of signals satisfy monotone likelihod ratio (MLR) property, due to the logconcavity

of normal distribution.3 In addition, a signal Y1with regime θ1 is Blackwell more informa-

tive than a signal Y2 with regime θ2 if θ1 ≥ θ2, since Y2 can be garbled from Y1 by adding

a noise ε ∼ N
(

0,
(

1
θ2

− 1
θ1

)
σ2
y

)
. Under the condition that both experiments satisfy MLR

property. Y1 is Blackwell more informative than Y2 implies that Y1 is Lehmann more

informative than Y2.4

Note that the posterior is given by z|y ∼ N
(
σ2y+ 1

θ
σ2
yµ

σ2+ 1
θ
σ2
y
,

1
θ
σ2σ2

y

σ2+ 1
θ
σ2
y

)
. The second period

optimization problem is

maxC
∫
z

− exp
(
−γ (−δc1 + zC)

)
dG(z|y)

⇔ maxC − exp
(
γδc1 − γCE(z|y) + 1

2γ
2C2Var(z|y)

)

The solution is

3For location experiements, the conditional distribution of signal is F (y|z) = F (y − z). Thus MLR
means f(y + ϵ − z)/f(y − z) is increasing in z, or the first-order derivative of log f is decreasing. This
means the logconcavity of f .

4Y1 is Blackwell more informative than Y2 is equivalent to that Y1 delivers greater expected utility
than Y2 for all decision problem. Y1 is Lehmann more informative than Y2 is equivalent to that Y1 delivers
greater expected utility than Y2 for all monotone decision problem (under the assumption that Y1and Y2
are both MLR). Thus, the former implies the latter.
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C∗(y) = E(z|y)
γVar(z|y) =

θσ2y + σ2
yµ

γσ2σ2
y

Put it back to the expected utility, and note that the unconditional distribution of y is

N
(
0, σ2 + 1

θ
σ2
y

)
, the second period expected utility is

Ey

(
max
C

Ez|yv(−δc1 + zC)
)

=
∫
y

− exp

γδc1 −

(
θσ2y + σ2

yµ
)2

2σ2σ2
y

(
θσ2 + σ2

y

)
 1√

2π
(
σ2 + 1

θ
σ2
y

) exp

− (y − µ)2

2
(
σ2 + 1

θ
σ2
y

)
 dy

= − exp (γδc1)√
2π
(
σ2 + 1

θ
σ2
y

) ∫
y

exp
− y2

2σ2
y/θ

− µ2

2σ2

 dy

= − exp
(
γδc1 − µ2

2σ2

)√√√√ σ2
y

θσ2 + σ2
y

Thus the F.O.C. of time-1 consumption is

u′(c1) = γδ exp
(
γδc1 − µ2

2σ2

)√√√√ σ2
y

θσ2 + σ2
y

Assuming concavity of first-period utility u (so u′ is decreasing), and note that the

right hand side is increasing in c1. Thus there exists an unique solution of c1. The right

hand side is decreasing in θ, thus a increase in θ shifts down the upward-sloping curve

and increase the optimal c1. This is the first case discussed in point 1.

Example 2. HARA utility and binary signals with three states In this example,

we aim to consider a case where two experiments are Lehmann ranked but not Blackwell

ranked. The goal is to see how the conditions derived in Gollier et al. (2000) can be

relaxed to fit the Lehmann informativeness order. We are considering simple examples

with binary signals. As noted by Jewitt (2007) and Kim (2018), if the number of states
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is two, then Blackwell’s notion is equivalent to that of Lehmann. Therefore we need at

least three states to construct the example.

Now, suppose that the random variable z takes three values: z1 = −1, z2 = 0, z3 = 1

with equiprobable prior (1
3 ,

1
3 ,

1
3).5 Suppose there are two experiments, P and Q, with

binary signals and the following structure:

P :

z1 z2 z3

s1 0.9 0.5 0.1

s2 0.1 0.5 0.9

, Q :

z1 z2 z3

s1 0.8 0.5 0.3

s2 0.2 0.5 0.7

Note that even though Q seems less “precise" than P , they are not Blackwell ordered.

To see this, suppose there is a garbling matrix G that garbles P to Q, then Q = G · P .

Let G =

 a b

1 − a 1 − b

, then we get the equations 0.9a+ 0.1b = 0.8, 0.5a+ 0.5b = 0.5,

and 0.1a+ 0.9b = 0.3. Clearly there is no solution for a and b.6

However, it can be easily shown that P is Lehmann more informative than Q. Ac-

cording to the Proposition 1 of Jewitt (2007), Lehmann’s information order is equivalent

to Blackwell’s order on dichotomies. That is, suppose both P and Q satisfy MLR, then P

is Lehmann more informative than Q if and only if P is Blackwell more informative than

Q for any two states {ω1, ω2} ∈ Ω. Consider the previous three equations that pins down

the garbling matrix. Each combination of two equations can be solved with a, b ∈ (0, 1).

5Note that we need the support of z includes both positive and negative values so that the optimal
value of C does not go to infinity.

6Given that P and Q are not Blackwell ordered, there exists a (non-monotone) decision problem that
Q is preferred to P . For example, let the state-contingent payoffs of two action a1, a2 to be

z1 z2 z3
a1 0 0 0
a2 10 −19 10

Suppose the prior is ( 1
3 ,

1
3 ,

1
3 ). Then, with experiment P , the DM will choose a2 regardless of the signal

realizations. Thus his ex ante expected utility is the expected utility under prior, 1
3 . With experiment

Q, the DM will choose a2 with signal s1 and a1 with signal s2. The ex ante expected utility will be
1
2 >

1
3 . Thus he gets higher utility with a seemingly less precise experiment. This is because the signals

in weaker experiment differentiate the probability of state 2, which separates agent’s optimal actions.
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Thus P is Blackwell more informative than Q on dichotomies, and therefore P is Lehmann

more informative than Q.

Now, we want to check the conditions on preference that leads to precautionary prin-

cipal under Lehmann’s notion of informativeness. We consider the case where agent has

Hyperbolic Absolute Risk Aversion (HARA) utility functions in the second period

v(C) = γ

1 − γ

[
η + −δc1 + zC

γ

]1−γ

where it is required that η+ −δc1+zC
γ

> 0. Note that the posteriors of the two experiments

are

P :

s1 s2

z1
9
15

1
15

z2
5
15

5
15

z3
1
15

9
15

, Q :

s1 s2

z1
8
16

2
14

z2
5
16

5
14

z3
3
16

7
14

First consider experiment P , the ex-post expected utility after observing signal s1is

v(C|s1) = 1
15

γ

1 − γ

9
[
η + −δc1 − C

γ

]1−γ

+ 5
[
η + −δc1

γ

]1−γ

+
[
η + −δc1 + C

γ

]1−γ


The F.O.C. indicates that the optimal C is given by

C∗(s1) = 1 − 9
1
γ

1 + 9
1
γ

(ηγ − δc1)

Thus the value function conditional on signal s1 is

v(C∗|s1) = 1
15

γ

1 − γ

[
η + −δc1

γ

]1−γ
9

 2 · 9
1
γ

1 + 9
1
γ

1−γ

+ 5 +
 2

1 + 9
1
γ

1−γ

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Similarly, the value function conditional on signal s2 is

v(C∗|s1) = 1
15

γ

1 − γ

[
η + −δc1

γ

]1−γ

 2

1 + 9
1
γ

1−γ

+ 5 + 9
 2 · 9

1
γ

1 + 9
1
γ

1−γ


Since both signal have equal posterior probabilities. The ex-ante expected utility of

experiment P is

v(C∗|P ) = 1
30

γ

1 − γ

[
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γ
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The function J is characterized by

J(c1|P ) = −∂v(C∗|P )
∂c1

= δ
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Following the same procedure, we can get the function J under experiment Q:

J(c1|Q) = δ

30

[
η + −δc1

γ

]−γ

8

 2
(

8
3

) 1
γ

1 +
(

8
3

) 1
γ


1−γ

+ 3

 2

1 +
(

8
3

) 1
γ


1−γ

+ 2

 2
(

2
7

) 1
γ

1 +
(

2
7

) 1
γ


1−γ

+ 7

 2

1 +
(

2
7

) 1
γ


1−γ

+ 10


It remains to compare these two functions and see when J(c1|P ) > J(c1|Q), which leads

to a lower optimal c1 under the Lehmann more informative experiment P , i.e., the pre-

cautionary principal. To do this, we can focus on the terms in the curly bracket. The

following figure plots the two functions when γ changes from -5 to 5.
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Clearly, J(c1|P ) > J(c1|Q) if and only if 0 < γ < 1. This is consistent with the result

in Gollier et al. (2000). That is, a (Blackwell) better information structure in the future

reduces efficient level of period-1 consumption if and only if 0 < γ < 1 under HARA

utility. Here we find that this also holds using Lehmann’s informativeness order for this

specific example.

3.5 Conclusion

The study on how optimal carbon mitigation action should respond to a better in-

formation about climate change in the future have received much attention in the litera-

ture. However, the traditional information criterion proposed by Blackwell et al. (1951)

is usually restricted, making many information structures incomparable with each other.

As such, this proposal aim to extend the previous work on the precautionary principal

(Gollier et al., 2000) by using a more generalized information criterion from Lehmann

(1988). Further study to get a more clear condition on the precautionary principal us-

ing Lehmann’s information criterion is promising, since it could help policymaker better



142 Chapter three

decide the timing of climate mitigation when facing decreased future uncertainty.
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