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Abstract

Probit and logistic regressions are among the most popular and well–established formula-
tions to model binary observations, thanks to their plain structure and high interpretabil-
ity. Despite their simplicity, their use poses non–trivial hindrances to the inferential pro-
cedure, particularly from a computational perspective and in high–dimensional scenarios.
This still motivates thriving active research for probit, logit, and a number of their gen-
eralizations, especially within the Bayesian community. Conjugacy results for standard
probit regression under normal and unified skew–normal (SUN) priors appeared only re-
cently in the literature. Such findings were rapidly extended to different generalizations of
probit regression, including multinomial probit, dynamic multivariate probit and skewed
Gaussian processes among others. Nonetheless, these recent developments focus on spe-
cific subclasses of models, which can all be regarded as instances of a potentially broader
family of formulations, that rely on partially or fully discretized Gaussian latent utilities.
As such, we develop a unified comprehensive framework that encompasses all the above
constructions and many others, such as tobit regression and its extensions, for which con-
jugacy results are yet missing. We show that the SUN family of distribution is conjugate for
all models within the broad class considered, which notably encompasses all formulations
relying on likelihoods given by the product of multivariate Gaussian densities and cumu-
lative distributions, evaluated at a linear combination of the parameter of interest. Such
a unifying framework is practically and conceptually useful for studying general theoreti-
cal properties and developing future extensions. This includes new avenues for improved
posterior inference exploiting i.i.d. samplers from the exact SUN posteriors and recent ac-
curate and scalable variational Bayes (VB) approximations and expectation–propagation,
for which we derive a novel efficient implementation.

Along a parallel research line, we focus on binary regression under logit mapping, for
which computations in high dimensions still pose open challenges. To overcome such dif-
ficulties, several contributions focus on solving iteratively a series of surrogate problems,
entailing the sequential refinement of tangent lower bounds for the logistic log-likelihoods.
For instance, tractable quadratic minorizers can be exploited to obtain maximum likeli-
hood (ML) and maximum a posteriori estimates via minorize–maximize and expectation–
maximization schemes, with desirable convergence guarantees. Likewise, quadratic sur-
rogates can be used to construct Gaussian approximations of the posterior distribution in
mean-field VB routines, which might however suffer from low accuracy in high dimen-

i



sions. This issue can be mitigated by resorting to more flexible but involved piece-wise
quadratic bounds, that however are typically defined in an implicit way and entail re-
duced tractability as the number of pieces increases. For this reason, we derive a novel
tangent minorizer for logistic log-likelihoods, that combines the quadratic term with a sin-
gle piece-wise linear contribution per each observation, proportional to the absolute value
of the corresponding linear predictor. The proposed bound is guaranteed to improve the
accuracy over the sharpest among quadratic minorizers, while minimizing the reduction
in tractability compared to general piece-wise quadratic bounds. As opposed to the latter,
its explicit analytical expression allows to simplify computations by exploiting a renowned
scale-mixture representation of Laplace random variables. We investigate the benefit of the
proposed methodology both in the context of penalized ML estimation, where it leads to
a faster convergence rate of the optimization procedure, and of VB approximation, as the
resulting accuracy improvement over mean-field strategies can be substantial in skewed
and high-dimensional scenarios.
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Introduction

Binary and categorical regression problems play undoubtedly a pivotal role within the
statistics literature (Agresti, 2013). While being of paramount interest per se in a number
of applied fields, ranging from social sciences to biostatistics and econometrics, several
models developed for binary regression can be exploited as building blocks in more com-
plex statistical constructions, such as density regression (Rodrı́guez & Dunson, 2011) and
additive trees (Chipman et al., 2010). Two of the most common approaches to model dis-
crete observations are arguably given by logistic and probit regression, for which a large
and well-established literature is available. Despite that, binary and categorical regression
in high-dimensional regimes under probit and logit links still presents several open chal-
lenges that motivate thriving active research, primarily among the Bayesian community
(Chopin & Ridgway, 2017; Durante, 2019; Fasano et al., 2022) and, to a lesser extent, even
in the Frequentist one (Sur & Candès, 2019; Candès & Sur, 2020).

For instance, conjugacy in probit models under the commonly assumed normal prior
was believed to be obstructed by the product of Gaussian cumulative distribution func-
tions appearing in the likelihoods. Nonetheless, recent results by Durante (2019) showed
that the posterior actually belongs to a known family of distribution, namely the unified
skew–normals (Arellano-Valle & Azzalini, 2006; Azzalini & Capitanio, 2013), which gen-
eralizes the multivariate Gaussian by introducing skewness while retaining several of its
desirable properties. Along the lines of the original result by Durante (2019), in the first
Chapter of the present Thesis we focus on Bayesian inference for a large class of models
that share the same analytical and computational difficulties of probit regression. Indeed a
broad class of models that routinely appear in several fields can be expressed as partially
or fully discretized Gaussian linear regressions (Greene, 2008). Besides including classi-
cal Gaussian response settings, this class also encompasses probit (Albert & Chib, 1993;
Holmes & Held, 2006; Chopin & Ridgway, 2017), multinomial probit (McCulloch & Rossi,
1994; Albert & Chib, 2001; Imai & Van Dyk, 2005) and tobit regression (Tobin, 1958; Chib
et al., 2009; Loaiza-Maya et al., 2021), among others, thereby yielding to one of the most
widely–implemented families of models in routine applications. The relevance of such
representations has stimulated decades of research in the Bayesian field (Albert & Chib,
1993; McCulloch et al., 2000; Albert & Chib, 2001; Andrieu & Doucet, 2002; Girolami &
Rogers, 2006; Consonni & Marin, 2007), mostly motivated by the fact that, unlike for the
Gaussian linear regression, the posterior distribution induced by such models does not
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apparently belong to a known class, under the commonly-assumed Gaussian priors for
the coefficients. This has motivated several solutions for posterior inference relying either
on sampling–based strategies (Holmes & Held, 2006) or on deterministic approximations
(Chopin & Ridgway, 2017) that, however, still experience computational and accuracy is-
sues, especially in high dimensions. The scope of the first Chapter of the present Thesis
is to review, unify and extend recent advances in Bayesian inference and computation for
this core class of models. To address such a goal, we prove that the likelihoods induced
by these formulations share a common analytical structure that implies conjugacy with a
broad class of distributions, namely the unified skew–normals, that generalize Gaussians
to skewed contexts. This result unifies and extends recent conjugacy properties for specific
models within the class analyzed (Durante, 2019; Fasano et al., 2021; Fasano & Durante,
2022), and opens new avenues for improved posterior inference, under a broader class of
formulations and priors, via novel closed–form expressions, i.i.d.samplers from the exact
SUN posteriors, and more accurate and scalable approximations from variational Bayes
(Fasano & Rebaudo, 2021; Blei et al., 2017) and expectation-propagation (Minka, 2001;
Vehtari et al., 2020). In particular, we develop a scalable implementation of expectation-
propagation with linear cost per iteration in the number of covariates, as opposed to the
quadratic cost achieved by state-of-the-art implementations that greatly hampers their use
in high-dimensional settings. All aforementioned advantages are illustrated in simulations
and are expected to facilitate the routine–use of these core Bayesian models, while provid-
ing novel frameworks for studying general theoretical properties and developing future
extensions.

Along a parallel line of research, in the second Chapter of the present Thesis we turn
the attention to binary regression under logit mapping, which notoriously hinders tractable
analytical inference. In the attempt to circumvent such difficulty, data-augmentation strate-
gies for logistic regression have received considerable attention within the Bayesian frame-
work (Holmes & Held, 2006; Frühwirth-Schnatter & Frühwirth, 2007; Frühwirth-Schnatter
et al., 2009; Zens et al., 2020; Polson et al., 2012). Conversely, unconstrained and penalized
maximum likelihood estimations typically proceed via iterative schemes that alternate be-
tween the construction and the optimization of quadratic approximations of the logistic
log-likelihood (Böhning & Lindsay, 1988; Jaakkola & Jordan, 2000), either corresponding
to Newton’s method or arising from different tangent bounds exploited within minorize-
maximize (Hunter & Lange, 2004; Wu & Lange, 2010) or expectation-maximization schemes
(Dempster et al., 1977; McLachlan & Krishnan, 1996). As Newton’s method remains prone
to unstable convergence issues, we focus our attention on the above strategies, leveraging
on the optimality of the lower bound corresponding to the Pólya-Gamma data-augmenta-
tion scheme (Polson et al., 2012; Durante & Rigon, 2019) among quadratic minorizers for
the logistic log-likelihood. We highlight how such advantage over alternative quadratic
bounds is enhanced by the combination with ℓ1-regularizations, such as lasso (Tibshirani,
1996) or elastic net (Zou & Hastie, 2005). Indeed, the presence of the non-smooth penalty
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contribution dictates the use of coordinate-wise optimization schemes (Friedman et al.,
2007; Hastie et al., 2015), that indirectly levels out the difference in computational cost
that arises from expensive algebraic operations in the unpenalized case (Durante & Rigon,
2019). Furthermore, we derive a novel tangent minorizer, dominating the Pólya-Gamma
one, by adding a piece-wise linear contribution proportional to the ℓ1-norm of the linear
predictors. Strictly speaking, the proposed methodology falls within the general class of
piece-wise quadratic tangent bounds for logistic likelihoods, such as those proposed by
Khan et al. (2010) and Marlin et al. (2011), which are known to improve over the traditional
quadratic bounds by Böhning & Lindsay (1988) and Jaakkola & Jordan (2000). However,
their construction remains inherently implicit, and the actual bound is found by solving nu-
merically a minimax problem, agnostic to the observed data, which requires imposing an
arbitrary number of piece-wise quadratic branches for each approximate likelihood term.
On the contrary, the novel bound we propose allows for an explicit analytical representa-
tion, parametrized by a set of variational locations which are learned by the data as part of
the inferential procedure. Notably, such piece-wise quadratic bound still allows for exact
solutions of the corresponding coordinate-wise optimization equations. Empirical results
support the intuition that the higher flexibility of the proposed bound lead to an improved
convergence rate of the resulting minorize-maximize scheme.

Finally, we further leverage on the novel piece-wise quadratic bound to construct an im-
proved variational approximation of the posterior distribution (Blei et al., 2017; Ormerod
& Wand, 2010). Indeed variational Bayes routines provide a popular class of strategies to
perform approximate posterior computations, whenever a faster alternative to sampling-
based inference is required. The essence of such methods lies in the minimization of a
suitable discrepancy, most often the forward Kullback-Leiber (Kullback & Leibler, 1951) di-
vergence, between the exact posterior and an approximate one, belonging to a pre-specified
family of distributions. The latter is typically identified by the enforcement of an explicit
analytical form or via the imposition of a specific dependence structure in the target pa-
rameter space (Bishop, 2006). Either way, the choice of approximating class is driven by
an implicit trade-off between tractability, which ensures the computational advantage over
sampling schemes, and flexibility, which eventually allows for accurate approximation.
In the case of Bayesian logistic regression, several contributions in the literature resort to
a Gaussian approximation for the intractable posterior, originally derived in Jaakkola &
Jordan (2000) by direct tangent minorization of the log-likelihood contributions. Only re-
cently, Durante & Rigon (2019) showed that such procedure is actually endowed with a
full probabilistic interpretation, as it arises as a proper mean-field variational Bayes rou-
tine (Blei et al., 2017) under the celebrated Pólya-Gamma data augmentation scheme by
Polson et al. (2012). In the third Chapter we exploit the piece-wise linear-quadratic bound
derived previously to construct a more accurate variational approximation of the posterior
in logistic regression models, which dominates over the Pólya-Gamma mean-field one as a
consequence of relative tightness of the corresponding log-likelihood lower bounds. Intu-
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itively, the advantage of the novel approximation comes from a higher flexibility in choos-
ing the posterior location and inflating its variance by tuning a set of associated variational
parameters. The novel approximate procedure still allows for simple expression of the up-
date equations for such variational parameters, albeit entailing the evaluation of suitable
expected values with respect to a distribution with piece-wise quadratic kernel. Nonethe-
less, it is possible to obviate the lack of closed-form expressions by exploiting a well-known
scale mixture of normals representation for the Laplace contributions appearing in the
lower bound, previously exploited in the literature dealing with the Bayesian versions of
lasso (Park & Casella, 2008; Hans, 2009) or quantile regression (Kozumi & Kobayashi, 2011;
Li et al., 2010). This enables to obtain Monte Carlo estimates of the desired quantity, notably
allowing for an implementation with linear cost in the number of covariates, given each
sample of the additional auxiliary variables arising from the scale mixture representation.
As a consequence, the resulting approximation still leads to a positive tractability-accuracy
trade-off in large-p-small-n scenarios, where state-of-the-art exact sampling schemes often
face severe limitations while mean-field variational Bayes might suffer from reduced ac-
curacy. Finally, a reverse engineering process on the piece-wise linear-quadratic bound
might lead to the construction of a novel data augmentation scheme, which would allow
for a fully probabilistic interpretation of the proposed variational procedure.
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Chapter 1

Bayesian conjugacy in probit, tobit,
multinomial probit and extensions: a
review and new results

A broad class of models that routinely appear in several fields can be expressed as partially
or fully discretized Gaussian linear regressions. Besides including basic Gaussian response
settings, this class also encompasses probit, multinomial probit and tobit regression, among
others, thereby yielding one of the most widely–implemented families of models in rou-
tine applications. The relevance of such representations has stimulated decades of research
in the Bayesian field, mostly motivated by the fact that, unlike for the Gaussian linear re-
gression, the posterior distribution induced by such models does not apparently belong
to a known class, under the commonly–assumed Gaussian priors for the coefficients. This
has motivated several solutions for posterior inference relying either on sampling–based
strategies or on deterministic approximations that, however, still experience computational
and accuracy issues, especially in high dimensions. The scope of this Chapter is to review,
unify and extend recent advances in Bayesian inference and computation for this core class
of models. To address such a goal, we prove that the likelihoods induced by these for-
mulations share a common analytical structure that implies conjugacy with a broad class
of distributions, namely the unified skew–normals, that generalize Gaussians to skewed
contexts. This result unifies and extends recent conjugacy properties for specific models
within the class analyzed, and opens new avenues for improved posterior inference, under
a broader class of formulations and priors, via novel closed–form expressions, i.i.d. sam-
plers from the exact SUN posteriors, and more accurate and scalable approximations from
variational Bayes and expectation–propagation. Such advantages are illustrated in simu-
lations and are expected to facilitate the routine–use of these core Bayesian models, while
providing a novel framework for studying general theoretical properties and developing
future extensions.
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CHAPTER 1. BAYESIAN CONJUGACY IN PROBIT, TOBIT, MULTINOMIAL PROBIT
AND EXTENSIONS: A REVIEW AND NEW RESULTS

1.1 Introduction

The scope of this Chapter is to review, unify, compare and extend both past and recent de-
velopments in Bayesian inference for probit (Bliss, 1934), multinomial probit (Hausman &
Wise, 1978; Tutz, 1991; Stern, 1992) and tobit (Tobin, 1958) models, along with their exten-
sions to multivariate, skewed, non–linear and dynamic contexts. Although such models
provide core formulations in statistics (DeMaris, 2004; Greene, 2008; Agresti, 2013) and
often appear as building–blocks within more complex constructions (see e.g., Chipman
et al., 2010; Rodrı́guez & Dunson, 2011), Bayesian inference under the associated likeli-
hoods still presents open challenges that have motivated decades of active research in the
field (Chopin & Ridgway, 2017). This is mainly due to the presence in the likelihood of
Gaussian cumulative distribution functions arising from a partial or full discretization of
a set of Gaussian latent utilities under a discrete choice perspective (e.g., Greene, 2008),
which clearly hinders conjugacy when combined with the common Gaussian priors for the
regression coefficients β.

This lack of conjugacy for such a broad and routinely–used class of models motivates
still ongoing efforts to develop effective Markov Chain Monte Carlo (MCMC)–based sam-
pling methods and accurate deterministic approximations of the posterior distribution to
perform Bayesian inference in probit (Albert & Chib, 1993; Holmes & Held, 2006; Con-
sonni & Marin, 2007; Pakman & Paninski, 2014; Chopin & Ridgway, 2017), tobit (Chib,
1992; Chib et al., 2009; Loaiza-Maya et al., 2021), multinomial probit (Albert & Chib, 1993;
McCulloch & Rossi, 1994; Nobile, 1998; McCulloch et al., 2000; Albert & Chib, 2001; Imai
& Van Dyk, 2005) and their extensions to multivariate, skewed, dynamic and non–linear
settings (Chib & Greenberg, 1998; Chen et al., 1999; Andrieu & Doucet, 2002; Sahu et al.,
2003; Kuss et al., 2005; Girolami & Rogers, 2006; Bazán et al., 2010; Talhouk et al., 2012;
Soyer & Sung, 2013; Riihimäki et al., 2014). Although these methods yield state–of–the–art
implementations, there are still key open questions on computational scalability, mixing
and approximation accuracy, especially in high dimensions (Chopin & Ridgway, 2017).
These issues, combined with the recent conjugacy results for probit models in Durante
(2019), have led to renewed interest in closed–form solutions for Bayesian inference under
these formulations. More specifically, Durante (2019) recently proved that the posterior
distribution for the β coefficients in Bayesian probit regression under Gaussian priors be-
longs to the class of unified skew–normals (Arellano-Valle & Azzalini, 2006; Azzalini &
Capitanio, 2013) and, more generally, that SUNs are conjugate to probit regression mod-
els. The SUN class extends multivariate Gaussians to include skewness, and its analytical
properties have led to rapid subsequent extensions of the original results to multinomial
probit (Fasano & Durante, 2022), dynamic multivariate probit (Fasano et al., 2021), Gaus-
sian processes (Cao et al., 2022), skewed Gaussian processes (Benavoli et al., 2020, 2021),
skew–elliptical link functions (Zhang et al., 2021a) and rounded data (Kowal, 2021), while
facilitating the development of improved approximations (Fasano et al., 2022; Fasano &
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1.1. INTRODUCTION

Durante, 2022; Fasano & Rebaudo, 2021).

The above advancements are providing yet unexplored opportunities for Bayesian in-
ference under such models via novel closed–form expressions, tractable Monte Carlo meth-
ods relying on i.i.d. samples from the exact SUN posteriors, and more accurate and scalable
approximations from variational Bayes (e.g., Blei et al., 2017) and expectation–propagation
(EP) (e.g., Chopin & Ridgway, 2017). However, most of these new developments focus on
specific sub–classes of models within a potentially broader family of formulations that rely
on partially or fully discretized Gaussian latent utilities. Therefore, there is still the lack of a
unified framework that would be practically and conceptually useful to derive general con-
jugacy results along with broadly–applicable closed–form solutions, Monte Carlo methods
and improved approximations of the posterior distribution. For instance, conjugacy results
for tobit models (Tobin, 1958) are yet missing in the literature, however, as it will be clari-
fied in Section 1.3, SUNs are conjugate also to this class. Such a comprehensive treatment
would also help to clarify these advancements in the light of previously–developed state–
of–the–art MCMC methods and approximations, and would serve as a catalyst of applied,
methodological and theoretical research to further expand the set of solutions for this broad
class of models.

This Chapter aims at addressing the above gap to boost the routine–use of these core
Bayesian models, and provide comprehensive frameworks for studying general theoreti-
cal properties and developing future extensions. As a first step toward accomplishing this
goal, Section 1.2 unifies probit, tobit, multinomial probit and related extensions by refor-
mulating the associated likelihoods as special cases of a general form that relies on the
product of multivariate Gaussian densities and cumulative distributions, both evaluated
at a linear combination of the coefficients β. Such a unified formulation is crucial to prove
a general result in Section 1.3 which states that SUN distributions are conjugate priors to
any model whose likelihood can be expressed as a special case of the one defined in Sec-
tion 1.2. This result unifies available findings for probit (Durante, 2019), multinomial probit
(Fasano & Durante, 2022) and dynamic multivariate probit (Fasano et al., 2021), among oth-
ers, while extending SUN conjugacy properties to a much broader class of Bayesian models
for which similar results have not appeared yet in the literature. Notable examples are to-
bit models (Tobin, 1958) and any extension of probit, tobit and multinomial probit which
replaces the Gaussian latent utilities with skew–normal ones (Chen et al., 1999; Sahu et al.,
2003; Bazán et al., 2010), among others. As discussed in Section 1.4, this unified conjugacy
result is also practically–relevant since it allows to inherit all the recent methodological and
computational developments for Bayesian inference under SUN posteriors in probit and
multinomial probit to the whole class of models presented in Section 1.2. Such advance-
ments include novel closed–form expressions for relevant posterior moments, marginal
likelihoods and predictive distributions, along with improved Monte Carlo methods and
deterministic approximations from variational Bayes and expectation–propagation. These
solutions are presented in detail in Section 1.4 along with a careful review previous state–
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CHAPTER 1. BAYESIAN CONJUGACY IN PROBIT, TOBIT, MULTINOMIAL PROBIT
AND EXTENSIONS: A REVIEW AND NEW RESULTS

of–the–art solutions, recast under the proposed general framework. An excellent review of
these previous solutions can be already found in Chopin & Ridgway (2017), but the focus
is on univariate probit models. Due to this, the present Chapter will mostly consider the
more recent developments relying on SUN conjugacy and on their discussion in the light of
previous solutions, when adapted to the broader class of models and priors, beyond clas-
sical Bayesian probit regression. Consistent with this scope, Section 1.6 concludes with a
general discussion that points toward several future research directions motivated by the
unified framework developed in this Chapter. Empirical studies illustrating the potential
of this unification are provided in Section 1.5.

1.2 A unified likelihood for probit, tobit, multinomial probit and
extensions

As discussed in the previos Section, probit (Bliss, 1934), tobit (Tobin, 1958), multinomial
probit (Hausman & Wise, 1978; Tutz, 1991; Stern, 1992) and their extensions are core formu-
lations in statistics, and, when seen as specific examples of a more general representation
which also includes classical Gaussian linear regression, arguably yield one of the most
widely–implemented classes of models in routine applications (DeMaris, 2004; Greene,
2008; Agresti, 2013). In fact, all these formulations share a common generative construction,
in that the corresponding responses can be defined as partially or fully discretized versions
of continuous ones from a set of underlying Gaussian linear regressions (Chib, 1992; Albert
& Chib, 1993; Chib & Greenberg, 1998). More specifically, let zi ∈ ℜ denote a latent contin-
uous response available for every unit i = 1, . . . , n, and consider the standard linear regres-
sion model zi = x⊺

iβ + εi, with noise εi ∼ N(0, σ2), covariates’ vector xi = (xi1, . . . , xip)
⊺

and coefficients β = (β1, . . . , βp)
⊺. Starting from this building–block formulation, classical

Gaussian linear regression models, probit models (Bliss, 1934) and tobit regression (Tobin,
1958) can be obtained by letting yi = zi, yi = 1(zi > 0) and yi = max{zi, 0} = zi1(zi > 0),
respectively. The first two constructions correspond to the limiting cases in which zi is ei-
ther entirely observed or dichotomized, respectively, whereas the third one represents the
intermediate situation in which zi is fully observed only if it exceeds value 0 (Chib, 1992;
Albert & Chib, 1993). Multinomial probit models (Hausman & Wise, 1978; Tutz, 1991; Stern,
1992) for categorical responses yi ∈ {1; . . . ;L} can be derived with a similar reasoning. For
instance, in the formulation proposed by Stern (1992), the observed categorical response yi
is defined as yi = argmaxl{zi1, . . . , ziL}where zi1, . . . , ziL are class–specific Gaussian latent
utilities related to the covariates via a system of linear regressions zil = x⊺

iβl + εil for each
l = 1, . . . , L, with εi = (εi1, . . . , εiL)

⊺ ∼ NL(0,Σ).

As shown in Sections 1.2.1–1.2.4, these similarities in the generative models imply that
the likelihoods induced by the above formulations and their extensions are all specific ex-
amples of the general form

8
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p(y | β) = p(ȳ1 | β)p(ȳ0 | β) ∝ ϕn̄1(ȳ1 − X̄1β; Σ̄1)Φn̄0(ȳ0 + X̄0β; Σ̄0), (1.1)

with ϕn̄1(ȳ1 − X̄1β; Σ̄1) and Φn̄0(ȳ0 + X̄0β; Σ̄0) denoting the density and the cumulative
distribution function of the multivariate Gaussians Nn̄1(0, Σ̄1) and Nn̄0(0, Σ̄0), evaluated
at ȳ1− X̄1β and ȳ0 + X̄0β, respectively, where ȳ1 := ȳ1(y) and ȳ0 := ȳ0(y) denote known
response vectors obtained as a function of y, whereas X̄1 := X̄1(y,X) and X̄0 := X̄0(y,X)

are suitable design matrices which can be directly derived from the observed predictors in
X and, possibly, the response vector y. For instance, the likelihood

∏n
i=1Φ(x

⊺
iβ)

1(yi=1)[1−
Φ(x⊺

iβ)]
1(yi=0) under classical probit regression can be rewritten as

∏n
i=1Φ[(2yi− 1)x⊺

iβ] =

Φn[diag(2y − 1n)Xβ; In], which coincides with (1.1) after letting n̄1 = 0, n̄0 = n, ȳ0 = 0,
X̄0 = diag(2y− 1n)X and Σ̄0 = In. As shown in Sections 1.2.1–1.2.4, similar results can be
obtained under tobit, multinomial probit and other relevant extensions of these models.

1.2.1 Linear regression, multivariate linear regression and extensions

Although the focus of this Chapter is on models beyond the classical Gaussian response
setting, it is worth emphasizing that also this class induces likelihoods which are special
cases of (1.1). For instance, standard Gaussian linear regression (yi | β) ∼ N(x⊺

iβ, σ
2), in-

dependently for i = 1, . . . , n, is directly recovered after noticing that the induced likelihood

p(y | β) ∝
∏n

i=1
ϕ(yi − x⊺

iβ;σ
2) = ϕn(y −Xβ;σ2In), (1.2)

coincides with (1.1), when letting n̄0 = 0, n̄1 = n, ȳ1 = y, X̄1 = X and Σ̄1 = σ2In.
As a direct consequence, also heteroscedastic and correlated versions can be incorporated
by replacing σ2In with a general residuals covariance matrix. Similarly, the likelihood
associated with multivariate Gaussian response data from the regression model (yi | β) ∼
Nm(Xiβ,Σ), independently for i = 1, . . . , n, can be written as

p(y | β) ∝
∏n

i=1
ϕm(yi −Xiβ;Σ) = ϕn·m(y −Xβ; In ⊗Σ), (1.3)

where y = (y⊺
1, . . . ,y

⊺
n)⊺, X = (X⊺

1, . . . ,X
⊺
n)⊺ and⊗ denotes the Kronecker product. Setting

n̄0 = 0, n̄1 = n ·m, ȳ1 = y, X̄1 = X and Σ̄1 = In ⊗Σ in (1.1) yields directly to (1.3).
Eventually, it is also possible to include skewness in the above formulation, while still

remaining within the class of models whose likelihood can be expressed as in (1.1). Recall-
ing Sahu et al. (2003) and Azzalini (2005), this can be done by assuming that (yi | β) ∼
SN(x⊺

iβ, σ
2, α), independently for i = 1, . . . , n, where SN(x⊺

iβ, σ
2, α) denotes the skew–

normal distribution (Azzalini, 1985) with location x⊺
iβ, scale σ2 and shape parameter α.

This choice implies that

p(y | β) ∝
∏n

i=1
ϕ(yi − x⊺

iβ;σ
2)Φ(α(yi − x⊺

iβ);σ
2)

= ϕn(y −Xβ;σ2In)Φn(αy − αXβ;σ2In),
(1.4)

9
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which coincides again with equation (1.1) when n̄1 = n̄0 = n, ȳ1 = y, ȳ0 = αy, X̄1 = X,
X̄0 = −αX and Σ̄1 = Σ̄0 = σ2In. Inclusion of skewed responses from more elaborated
distributions such as the multivariate skew–normal (Azzalini & Dalla Valle, 1996; Azza-
lini & Capitanio, 1999), the extended multivariate skew–normal (Arnold & Beaver, 2000;
Arnold et al., 2002), the closed skew–normal family (González-Farias et al., 2004; Gupta
et al., 2004) and the SUN (Arellano-Valle & Azzalini, 2006), is also possible and yields again
special cases of (1.1), with similar derivations.

1.2.2 Probit, multivariate probit, multinomial probit and extensions

As discussed in Section 1.2, the classical probit regression model (yi | β) ∼ Bern[Φ(x⊺
iβ)],

independently for i = 1, . . . , n, induces likelihoods that can be readily reframed within
representation (1.1). More specifically, recalling Durante (2019), the probit likelihood can
be expressed as

p(y | β) ∝
∏n

i=1
Φ(x⊺

iβ)
yi [1− Φ(x⊺

iβ)]
1−yi =

∏n

i=1
Φ[(2yi − 1)x⊺

iβ]

= Φn(diag(2y − 1n)Xβ; In),
(1.5)

which is a special case of equation (1.1), after letting n̄1 = 0, n̄0 = n, ȳ0 = 0, X̄0 =

diag(2y − 1n)X and Σ̄0 = In. Probit probabilities of the form Φ(x⊺
iβ;σ

2) can also be
included by replacing Σ̄0 = In with Σ̄0 = σ2In.

The above probit model also admits a number of routinely–used extensions to incor-
porate multivariate binary outcomes (Chib & Greenberg, 1998) and multinomial response
data (Hausman & Wise, 1978; Tutz, 1991; Stern, 1992). As previously mentioned, both
cases have their roots in discrete choice models (e.g., Greene, 2008), and can be reframed
within (1.1). To clarify this result, let us first focus on multivariate probit models for the
binary response vector yi = (yi1, . . . , yim)⊺ ∈ {0; 1}m. As discussed in Chib & Greenberg
(1998), these formulations can be interpreted as a dichotomized version of the regression
model for multivariate Gaussian response data in Section 1.2.1. In fact, each yi is defined
as yi = [1(zi1 > 0), . . . ,1(zim > 0)]⊺, where zi = (zi1, . . . , zim)⊺ ∼ Nm(Xiβ,Σ), indepen-
dently for every i = 1, . . . , n. This means that the contribution to the likelihood of each
unit i is p(yi | β) = p([1(zi1 > 0), . . . ,1(zim > 0)]⊺ | β), which can be also written as
Φm(BiXiβ;BiΣBi), following standard properties of multivariate Gaussian cumulative
distribution function, where Bi = diag(2yi1 − 1, . . . , 2yim − 1). As a result, the joint likeli-
hood of multivariate probit regression is

p(y | β) ∝
∏n

i=1
Φm(BiXiβ;BiΣBi) = Φn·m(BXβ;B(In ⊗Σ)B), (1.6)

where X = (X⊺
1, . . . ,X

⊺
n)⊺, and B denotes a block–diagonal matrix with generic block

B[i,i] = Bi, for each i = 1, . . . , n. To reframe (1.6) within the general likelihood form in
(1.1) it suffices to set n̄1 = 0, n̄0 = n ·m, ȳ0 = 0, X̄0 = BX and Σ̄0 = B(In ⊗Σ)B.
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As discussed in Fasano & Durante (2022), similar constructions and derivations can
be also considered for a variety of multinomial probit models (Hausman & Wise, 1978;
Tutz, 1991; Stern, 1992). All these formulations express the probabilities of the L differ-
ent categories {1; . . . ;L} via a discrete choice mechanism relying on correlated predictor–
dependent Gaussian latent utilities which facilitate improved flexibility and avoid restric-
tive assumptions often found in multinomial logit, such as the independence of irrelevant
alternatives (Hausman & Wise, 1978). For instance, in the formulation by Stern (1992), each
categorical response variable yi is defined as yi = argmaxl{zi1, . . . , ziL}, where zil = x⊺

iβl+

εil for l = 1, . . . , L, with εi = (εi1, . . . , εiL)
⊺ ∼ NL(0,Σ), and βL = 0 for identifiability pur-

poses (Johndrow et al., 2013). As a direct consequence of this construction, it follows that
pr(yi = l | β) = pr(zil > zik, for each k ̸= l) = pr(εik − εil < x⊺

iβl − x⊺
iβk, for each k ̸= l).

Therefore, let vl denote the L×1 vector with value 1 in position l and 0 elsewhere, for every
l = 1, . . . , L, and define xil = v̄l⊗xi, where v̄l is the (L−1)×1 vector obtained by removing
the L–th entry from vl. Then, pr(yi = l | β) = pr[(vk − vl)

⊺εi < (xil − xik)
⊺β, for each k ̸=

l], where β = (β⊺
1, . . . ,β

⊺
L−1)

⊺. This expression for the probability of a generic category l
can be also formulated in the more compact form pr(V[−l]εi < Xi[−l]β), where V[−l] and
Xi[−l] denote suitable matrices whose rows are obtained by stacking the vectors (vk − vl)

⊺

and (xil − xik)
⊺, respectively, for every k ̸= l. Therefore, leveraging the standard proper-

ties of multivariate Gaussians, as done for the multivariate probit setting, it follows that
pr(yi = l | β) = pr(V[−l]εi < Xi[−l]β) = ΦL−1(Xi[−l]β;V[−l]ΣV⊺

[−l]), for every l = 1, . . . , L.
This result yields a joint likelihood for the observed categorical responses y = (y1, . . . , yn)

⊺

which can be written as

p(y | β) ∝
∏n

i=1
ΦL−1(Xi[−yi]β;V[−yi]ΣV⊺

[−yi]
) = Φn·(L−1)(Xβ;V(In ⊗Σ)V⊺), (1.7)

where X = (X⊺
1[−y1]

, . . . ,X⊺
n[−yn]

)⊺, and V is a block–diagonal matrix with generic block
V[i,i] = V[−yi], for each i = 1, . . . , n. Setting n̄1 = 0, n̄0 = n · (L − 1), ȳ0 = 0, X̄0 = X

and Σ̄0 = V(In ⊗ Σ)V⊺ in (1.1) leads to equation (1.7). Hence, the multinomial probit
model by Stern (1992) is again a special case of the general form in (1.1). As shown in
Sections 2.1 and 2.3 of Fasano & Durante (2022), also the alternative formulations proposed
by Hausman & Wise (1978) and Tutz (1991) induce likelihoods which can be expressed as
cumulative distribution functions of multivariate Gaussians evaluated at a suitable linear
combination of the coefficients’ vector β; see Propositions 1 and 3 in Fasano & Durante
(2022). This means that also such models can be easily recast within the general form in
(1.1) with n̄1 = 0, ȳ0 = 0, and suitably–chosen X̄0 and Σ̄0.

Inclusion of skewness is possible also under probit, multivariate probit and multino-
mial probit models. This direction has been effectively explored by Chen et al. (1999) and
Bazán et al. (2010), with a main focus on basic probit models, and can be again reframed
within the general formulation in (1.1). For example, in the context of univariate probit
regression, skewness can be incorporated by replacing the Gaussian latent utilities with
skew–normal ones; namely (zi | β) ∼ SN(x⊺

iβ, σ
2, α), independently for i = 1, . . . , n. As a
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consequence, the binary response data yi = 1(zi > 0) are Bernoulli variables with parame-
ter pr(yi = 1 | β) = pr(zi > 0 | β) ∝ Φ2[(x

⊺
iβ, 0)

⊺;diag(σ2, 1) + σα(1 + α2)−1/2(121
⊺
2 − I2)],

whose expression follows directly from the the cumulative distribution function of a skew–
normal; see e.g., González-Farias et al. (2004); Arellano-Valle & Azzalini (2006); Azzalini
& Bacchieri (2010); Azzalini & Capitanio (2013), and Arellano-Valle & Azzalini (2021).
Leveraging the same results it also follows that pr(yi = 0 | β) = pr(zi < 0 | β) ∝
Φ2[(−x⊺

iβ, 0)
⊺;diag(σ2, 1) − σα(1 + α2)−1/2(121

⊺
2 − I2)]. Let Xi = [(2yi − 1)xi,0]

⊺ and
Σi = diag(σ2, 1)+ (2yi− 1)σα(1+α2)−1/2(121

⊺
2− I2) = Σ+(2yi− 1)Λ, the joint likelihood

for the observed binary responses can be then expressed as

p(y | β) ∝
∏n

i=1
Φ2(Xiβ;Σi) = Φ2n(Xβ; In ⊗Σ+ diag(2y − 1n)⊗Λ), (1.8)

where X = (X⊺
1, . . . ,X

⊺
n)⊺, Σ = diag(σ2, 1), and Λ = σα(1+α2)−1/2(121

⊺
2−I2). As a result,

equation (1.8) is again a special case of (1.1) after setting n̄1 = 0, n̄0 = 2n, ȳ0 = 0, X̄0 = X

and Σ̄0 = In⊗Σ+diag(2y−1n)⊗Λ. Similar derivations can be considered to incorporate
skewness in multivariate and multinomial probit via multivariate skew–normal (Azzalini
& Dalla Valle, 1996), closed skew–normal (González-Farias et al., 2004; Gupta et al., 2004)
or unified skew–normal (Arellano-Valle & Azzalini, 2006) latent utilities. Some of these
choices have not yet been explored to induce skewed link functions for multivariate and
multinomial extensions of classical probit regression. Nonetheless, all these variables have
cumulative distribution functions proportional to those of multivariate Gaussians, eval-
uated at a linear combination of β, and, hence, induce likelihoods which can be again
expressed as special cases of the general framework in (1.1).

1.2.3 Tobit regression and extensions

Recalling Section 1.2, the classical tobit model (Tobin, 1958) characterizes the intermediate
situation in which response data are fully observed only if exceeding a certain threshold,
often set to 0. This implies that yi = zi1(zi > 0), with (zi | β) ∼ N(x⊺

iβ, σ
2), independently

for i = 1, . . . , n. Such a formulation yields the joint likelihood

p(y | β) ∝
∏n

i=1
ϕ(yi − x⊺

iβ;σ
2)1(yi>0)Φ(−x⊺

iβ;σ
2)1(yi=0),

= ϕn1(y1 −X1β;σ
2In1)Φn0(−X0β;σ

2In0),

(1.9)

where n1 and n0 denote the number of fully observed and censored units, respectively,
whereas y1, X1 and X0 are the response vectors and design matrices associated with these
two subsets of units. This likelihood can be again expressed as a special example of equa-
tion (1.1) by letting n̄1 = n1, n̄0 = n0, ȳ1 = y1, ȳ0 = 0, X̄1 = X1, X̄0 = −X0, Σ̄1 = σ2In1

and Σ̄0 = σ2In0 .
The above result also holds for several subsequent extensions of the original tobit model

(Tobin, 1958) which include more elaborated censoring mechanisms, possibly relying on
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multivariate Gaussian utilities. Such generalizations, often known in the literature as type
II, III, IV, and V tobit models, are carefully discussed in Amemiya (1984) and all induce
likelihoods which can be written as the product of Gaussian densities and cumulative dis-
tribution functions evaluated at suitable linear combinations of the coefficients β. This
common structure allows again to readily express such extensions as special cases of the
general form in (1.1). The inclusion of multivariate extensions is also straightforward un-
der similar reasoning considered in (1.3) and (1.6).

As for the models presented in Sections 1.2.1–1.2.2, also tobit regression admits exten-
sions to skewed contexts. This generalization has been explored, for example, by Hutton
& Stanghellini (2011) who replace the Gaussian assumption (zi | β) ∼ N(x⊺

iβ, σ
2) with

(zi | β) ∼ SN(x⊺
iβ, σ

2, α), independently for i = 1, . . . , n. Recalling the derivations for the
skewed extensions of the models in Sections 1.2.1–1.2.2, this assumption implies that the
contribution to the likelihood for the i–th unit is proportional to (ϕ(yi − x⊺

iβ;σ
2)Φ[α(yi −

x⊺
iβ);σ

2])1(yi>0)(Φ2[(−x⊺
iβ, 0)

⊺;diag(σ2, 1)− σα(1 + α2)−1/2(121
⊺
2 − I2)])

1(yi=0), where
diag(σ2, 1) = Σ and σα(1 + α2)−1/2(121

⊺
2 − I2) = Λ. Therefore

p(y | β) ∝
∏n

i=1

(
ϕ(yi − x⊺

iβ;σ
2)Φ[α(yi − x⊺

iβ);σ
2]
)
1(yi>0)

·

·
(
Φ2[(−x⊺

iβ, 0)
⊺;Σ−Λ]

)
1(yi=0)

= ϕn1(y1−X1β;σ
2In1)Φn1+2n0(α[y

⊺
1,0

⊺]⊺ − (αX⊺
1,X

⊺
0)

⊺β;Σ0),

(1.10)

where n1, n0, y1 and X1 are defined as in (1.9), whereas X0 is a 2n0 × p design matrix
obtained by stacking 2 × p row blocks Xi = (xi,0)

⊺ for those units with yi = 0, while
Σ0 is a block–diagonal matrix with blocks Σ0[1,1] = σ2In1 , Σ0[2,2] = In0 ⊗ Σ − In0 ⊗ Λ.
Hence, to express (1.10) as a particular case of (1.1) it suffices to set n̄1 = n1, n̄0 = n1 + 2n0,
ȳ1 = y1, ȳ0 = α[y⊺

1,0
⊺]⊺, X̄1 = X1, X̄0 = −(αX⊺

1,X
⊺
0)

⊺, Σ̄1 = σ2In1 and Σ̄0 = Σ0. Recalling
discussions in Sections 1.2.1–1.2.2, these derivations can be directly applied to incorporate
skewness in type II–V tobit models (Amemiya, 1984), also under more general distributions
which extend the original skew–normal.

1.2.4 Further generalizations

Although the models discussed in Sections 1.2.1–1.2.3 cover the most widely–implemented
formulations in the literature, as highlighted in Sections 1.2.4–1.2.4 several additional ex-
tensions of these representations to non–linear, dynamic and other contexts can be re-
framed within the likelihood in (1.1).

Inclusion of generic thresholds

All the results presented in Sections 1.2.1–1.2.3 hold, under minor changes, when replacing
the commonly–used 0 threshold with a generic one zT, possibly varying with units. For
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instance, in probit regression this modification implies that pr(yi = 1 | β) = Φ(−zT + x⊺
iβ),

thus providing the joint likelihood
∏n

i=1Φ[(2yi − 1)(−zT + x⊺
iβ)] = Φn(−zT(2y − 1n) +

diag(2y − 1n)Xβ; In), which coincides with expression (1.1) after letting n̄1 = 0, n̄0 = n,
ȳ0 = −zT(2y − 1n), X̄0 = diag(2y − 1n)X and Σ̄0 = In. Similar derivations apply to
multivariate probit, multinomial probit, tobit, and their skewed extensions.

By contrast, models relying on truncations to a finite interval of the form [z1T, z2T] do
not induce likelihoods which can be rewritten as in (1.1). Nonetheless, these versions are
less frequent than those presented in Sections 1.2.1–1.2.3 and, as discussed in Section 1.6,
the SUN conjugacy results presented for the general class of models whose likelihoods ad-
mit representation (1.1), are useful to motivate similar extensions for a generic truncation
mechanism. In fact, as discussed in Arellano-Valle et al. (2006), the SUN family belongs
itself to an even more general class of selection distributions (SLCT) whose construction
rely on cumulative distribution functions evaluated at generic intervals. This result has
been recently leveraged by Kowal (2021) and King & Kowal (2021) to extend the original
SUN conjugacy properties presented by Durante (2019) and Fasano et al. (2021) for probit
regression and its multivariate dynamic extensions, respectively, to rounded/categorical
data situations where truncation is in finite intervals (e.g., Jeliazkov et al., 2008). These
modifications can be extended to prove the SLCT conjugacy for generalizations of (1.1)
which admit truncation to any finite interval.

Inclusion of non–linear effects

Another key extension of the models presented in Sections 1.2.1–1.2.3 can be obtained by
including non–linearities in the predictor. A common solution to accomplish this goal is to
replace the linear predictor f(xi) = x⊺

iβ with a generic basis expansion f(xi) = g(xi)
⊺β,

where g(xi) = [g1(xi), . . . , gk(xi)]
⊺ are pre–specified non–linear basis functions, such as

splines (e.g., Holmes & Mallick, 2001; Lang & Brezger, 2004). Including this extension
within the general framework in (1.1) poses no difficulties since it suffices to replicate the
derivations for the models presented in Sections 1.2.1–1.2.3 with xi = (xi1, . . . , xip)

⊺ re-
placed by x̃i = [g1(xi), . . . , gk(xi)]

⊺, for each i = 1, . . . , n.
Alternatively, it is possible to model directly [f(x1), . . . , f(xn)]

⊺ through Gaussian pro-
cesses (e.g., Rasmussen & Williams, 2006). This direction has been often explored in the
context of the models presented in Sections 1.2.1–1.2.3 (e.g., Kuss et al., 2005; De Oliveira,
2005; Girolami & Rogers, 2006; Nickisch & Rasmussen, 2008; Riihimäki et al., 2014; Cao
et al., 2022; Benavoli et al., 2020, 2021), and can be also reframed within equation (1.1).
In fact, assuming, without loss of generality, no overlap in x1, . . . ,xn, the Gaussian pro-
cess construction with mean function m(·) and covariance kernel K(·, ·) implies that the
vector [f(x1), . . . , f(xn)]

⊺ is jointly distributed as a Nn(ξ,Ω) with ξ = [m(x1), . . . ,m(xn)]
⊺

and covariance matrix Ω having generic entries Ωii′ = K(xi,xi′), for each i = 1, . . . , n

and i′ = 1, . . . , n. This representation can be alternatively rewritten as X̃β, where β =

[f(x1), . . . , f(xn)]
⊺ ∼ Nn(ξ,Ω) and X̃ = In. Therefore, letting x̃i denote an n×1 vector with
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value 1 in position i and 0 elsewhere, for each i = 1, . . . , n, it is possible to consider Gaus-
sian process extensions of the models in Sections 1.2.1–1.2.3 while still remaining within
the general framework in (1.1).
The above results can be naturally adapted to multivariate settings, such as those in (1.3)
and (1.6).

Inclusion of dynamic structure

Dynamic versions of the models in Sections 1.2.1–1.2.3 are common in the literature (e.g.,
Manrique & Shephard, 1998; Andrieu & Doucet, 2002; Naveau et al., 2005; Chib & Jeli-
azkov, 2006; Soyer & Sung, 2013; Fasano et al., 2021). These extensions often appear as
generalizations of the original dynamic linear model having observation equation (yt |
βt) ∼ Nm(Xtβt,Σt), independently for each time t = 1, . . . , n, and state equation (βt |
βt−1) ∼ Np(Gtβt−1,Wt), independently for t = 1, . . . , n, where Xt, Σt, Gt, and Wt

are known system matrices, whereas β0 ∼ Np(a0,P0). This building–block construc-
tion implies that the contribution to the likelihood of yt, for every time t = 1, . . . , n,
is p(yt | β) = ϕm(yt − Xtβt;Σt) = ϕm(yt − X̃tβ;Σt), where β = (β⊺

1, . . . ,β
⊺
n)

⊺ and
X̃t = v⊺

t ⊗Xt, with vt denoting a n × 1 indicator vector having value 1 in position t and
0 elsewhere. Therefore, such a representation can be directly interpreted as a particular
version of the multivariate linear regression model in (1.3) with covariance matrix possi-
bly changing across the time units. Such a connection allows to directly recast the joint
likelihood p(y | β) of y = (y⊺

1, . . . ,y
⊺
n)⊺ within (1.1). Clearly, this result holds for any sub-

sequence y⊺
1:t = (y⊺

1, . . . ,y
⊺
t )

⊺, with t = 1, . . . , n, thereby facilitating online derivation of
filtering p(βt | y1:t), predictive p(βt+1 | y1:t) and smoothing p(β | y) distributions via the
Gaussian–Gaussian conjugacy implied by the observation and state equations (Kalman,
1960).

The above results have been recently extended by Fasano et al. (2021) to derive the
first analog of the classical Kalman filter (Kalman, 1960) in the context of multivariate dy-
namic probit models with Gaussian states, leveraging the SUN–probit conjugacy properties
proved in Durante (2019). Recalling Fasano et al. (2021) and adapting the notation to the
one in this Chapter, the contribution to the likelihood of yt, for every time t = 1, . . . , n,
can be expressed as p(yt | β) = Φm(BtXtβt;BtΣtBt), where Xt and Bt are defined as in
(1.6), with i replaced by t, whereas Σt is a possibly time–varying covariance matrix among
the latent utilities (zt1, . . . , ztm)⊺. Recalling the derivations considered for the Gaussian dy-
namic setting, the expression for p(yt | β) can be rewritten as p(yt|β) = Φm(X̃tβ;BtΣtBt),
with X̃t = v⊺

t ⊗ (BtXt), which shows again the direct connection between this dynamic
formulation and its static counterpart in (1.6), thereby allowing to recast the induced joint
likelihood for y = (y⊺

1, . . . ,y
⊺
n)⊺ and its subsequences y⊺

1:t = (y⊺
1, . . . ,y

⊺
t )

⊺, t = 1, . . . , n,
within expression (1.1).

These results clearly hold also for the dynamic extensions of models (1.2) and (1.5),
which represent the univariate versions of (1.3) and (1.6), respectively, thus simply requir-
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ing to set m = 1 in the above derivations. Similarly, multinomial probit (1.7) and tobit
(1.9) observation equations, along with skewed extensions ((1.4), (1.8), (1.10)), can be again
reframed within (1.1) since all these constructions are characterized by contributions to
the likelihood for each time t = 1, . . . , n having the same form of those associated with
statistical units i = 1, . . . , n in the static counterparts of such models presented in Sec-
tions 1.2.1–1.2.3, under suitable specifications of the design and covariance matrices.

As a last remark, it is worth emphasizing that equation (1.1) naturally encompasses any
combination of the models discussed in Sections 1.2.1–1.2.4. For example, if yi is defined
as yi = (yi1, yi2, yi2, yi4)

⊺, where yi1, yi2, yi2 and yi4 are from models in (1.2), (1.5), (1.7) and
(1.9), respectively, for each i = 1, . . . , n, then, leveraging the derivations in Sections 1.2.1–
1.2.3, it directly follows that the joint likelihood for the vector y = (y⊺

1, . . . ,y
⊺
n)⊺ still belongs

to (1.1).

1.3 Conjugacy via unified skew–normal distributions

Sections 1.3.1–1.3.2 unify Bayesian inference for the whole family of models presented in
Section 1.2 by proving that the general likelihood in (1.1) admits as conjugate priors the
whole class of unified skew–normal distributions. Crucially, these variables include as
special cases the commonly–assumed multivariate Gaussian priors for β in models (1.2)–
(1.10), while extending such distributions in several directions. In this way, such a review
not only unifies and extends a broad class of models within a single likelihood, but also
enlarges the class of prior distributions which admit closed–form posteriors that facilitate
Bayesian inference.

1.3.1 Unified skew–normal prior

Routine Bayesian implementations of the models in Sections 1.2.1–1.2.4 often assume mul-
tivariate Gaussian priors for β, which are natural choices in Bayesian regression and, un-
der the models presented in Sections 1.2.1–1.2.4, are further motivated by the Gaussian
form of the latent utilities (e.g., Chib, 1992; Albert & Chib, 1993; McCulloch & Rossi, 1994;
Holmes & Held, 2006; Girolami & Rogers, 2006; McCulloch & Rossi, 1994; Nobile, 1998;
Chib & Greenberg, 1998; McCulloch et al., 2000; Albert & Chib, 2001; Imai & Van Dyk,
2005; Kuss et al., 2005; Riihimäki et al., 2014; Soyer & Sung, 2013; Chopin & Ridgway, 2017).
Interestingly, these Gaussian priors are special cases of more general distributions which
include asymmetric shapes in multivariate Gaussians by modifying the density of such
variables through a skewness–inducing mechanism driven by the cumulative distribution
function of another Gaussian. Key examples include multivariate skew–normals (Azza-
lini & Dalla Valle, 1996; Azzalini & Capitanio, 1999), extended multivariate skew–normals
(Arnold & Beaver, 2000; Arnold et al., 2002) and closed skew–normals (González-Farias
et al., 2004; Gupta et al., 2004), which have all been subsequently unified by Arellano-Valle
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& Azzalini (2006) within a single general class, namely the unified skew–normal distribu-
tion. Accordingly, the vector β has SUNp̄,n̄(ξ,Ω,∆,γ,Γ) prior if its density is equal to

p(β) = ϕp̄(β − ξ;Ω)
Φn̄(γ +∆⊺Ω̄−1ω−1(β − ξ);Γ−∆⊺Ω̄−1∆)

Φn̄(γ;Γ)
, (1.11)

where Ω̄ denotes the p̄ × p̄ correlation matrix associated with the covariance matrix Ω

which, in turn, can be expressed as Ω = ωΩ̄ω, with ω = (Ω ⊙ Ip̄)
1/2. According to (1.11),

skewness is induced in ϕp̄(β−ξ;Ω) by multiplying such a density with the cumulative dis-
tribution function of a Nn̄(0,Γ−∆⊺Ω̄−1∆), evaluated at γ +∆⊺Ω̄−1ω−1(β − ξ), whereas
Φn̄(γ;Γ) corresponds to the normalizing constant. Note that when all the entries in the
p̄× n̄ skewness matrix ∆ are 0, the numerator in (1.11) reduces to Φn̄(γ;Γ), thereby allow-
ing to obtain the classical Gaussian prior density ϕp̄(β − ξ;Ω) as a special case of (1.11).
The quantities p̄ and n̄ denote instead the dimensions of the density and the cumulative
distribution function, respectively. Within the general class of formulations discussed in
Sections 1.2.1–1.2.4, p̄ refers to the dimension of β and, hence, can vary depending on the
model considered. While in most cases p̄ is equal to the number of predictors p, under spe-
cific constructions the two dimensions might differ. For instance, in the multinomial probit
model presented in equation (1.7), p̄ coincides with p · (L− 1).

Recalling Arellano-Valle & Azzalini (2006), the above SUN distribution also admits a
generative construction that further clarifies the role of the parameters ξ, Ω, ∆, γ, and
Γ, and provides key intuitions on the conjugacy properties of SUN priors under likelihood
(1.1). In particular, let β̃ ∈ ℜp̄ and z̃ ∈ ℜn̄ denote two vectors jointly distributed as a unified
skew-normal Np̄+n̄(0,Ω

∗), where Ω∗ is a (p̄ + n̄) × (p̄ + n̄) correlation matrix with blocks
Ω∗

[11] = Ω̄, Ω∗
[22] = Γ and Ω∗

[21] = Ω∗⊺
[12] = ∆⊺, then β̄ = (β̃ | z̃ + γ > 0) is distributed as

a SUNp̄,n̄(0, Ω̄,∆,γ,Γ), whereas β = ξ + ωβ̄ ∼ SUNp̄,n̄(ξ,Ω,∆,γ,Γ) with density as in
(1.11). Consistent with this generative representation, the parameters ξ and ω control the
location and the scale of the prior, whereas Ω̄, Γ and ∆ regulate the dependence within
β̃, z̃ and between these two random vectors, respectively. The term γ denotes instead the
truncation threshold in the conditioning mechanism. Besides clarifying the role of the prior
parameters, this representation also provides intuitions on the SUN conjugacy properties
formalized in Section 1.3.2. In fact, according to such a construction, SUNs arise as condi-
tional distributions in a generative mechanism that relies on partially–observed Gaussian
latent variables z̃. This formulation has direct connections with the posterior distribution
for the β coefficients under the broad class of models presented in Sections 1.2.1–1.2.4 that
is also defined, through Bayes rule, via a conditioning operation relying on a set of partially
or fully observed Gaussian latent utilities.

As clarified in Section 1.3.2, these conjugacy properties are also beneficial for posterior
inference. Recalling Arellano-Valle & Azzalini (2006); Azzalini & Bacchieri (2010); Gupta
et al. (2013); Azzalini & Capitanio (2013), and Arellano-Valle & Azzalini (2021) SUNs share
a number of common properties with multivariate Gaussians. These include closure un-
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der marginalization, linear combinations and conditioning, along with the availability of
closed–form expressions for the moment generating function and additive representations
via linear combinations of multivariate Gaussians and truncated normals. Due to SUN

conjugacy shown in Theorem 1.2, all these properties can facilitate point estimation, uncer-
tainty quantification, model selection and prediction under the SUN posterior associated
with the general likelihood in (1.1) which encompasses the models in Sections 1.2.1–1.2.4,
thus providing important advancements for a broad class of models, under a similarly
wide family of priors that extends multivariate Gaussians. Key examples of priors of poten-
tial interest which belong to the SUN family are univariate skew–normals (Azzalini, 1985)
for each coefficient βj , j = 1, . . . , p̄, or multivariate skew–normals (Azzalini & Dalla Valle,
1996; Azzalini & Capitanio, 1999), extended multivariate skew–normals (Arnold & Beaver,
2000; Arnold et al., 2002) and closed skew–normals (González-Farias et al., 2004; Gupta
et al., 2004) for the joint vector β.

1.3.2 Unified skew–normal posterior and its properties

Theorem 1.2 unifies and extends recent model–specific conjugacy findings by proving SUN

conjugacy for any statistical model whose likelihood can be expressed as in equation (1.1).
The proof of Theorem 1.2 combines original results on SUN conjugacy in probit models
(Durante, 2019, Corollary 4) with the following Lemma, which shows that SUN priors are
also conjugate to Gaussian linear regression.

Lemma 1.1. Let p(ȳ1 | β) = ϕn̄1(ȳ1 − X̄1β; Σ̄1) and assume that β is assigned a prior dis-
tribution SUNp̄,n̄(ξ,Ω,∆,γ,Γ) with density p(β) as in (1.11). Then, we have that (β | ȳ1) ∼
SUNp̄,n̄(ξ1,Ω1,∆1,γ1,Γ1), with

ξ1 = (Ω−1+X̄⊺
1Σ̄

−1
1 X̄1)

−1(Ω−1ξ + X̄⊺
1Σ̄

−1
1 ȳ1), Ω1 = (Ω−1+X̄⊺

1Σ̄
−1
1 X̄1)

−1,

γ1 = s−1
1 [γ +∆⊺Ω̄−1ω−1(ξ1 − ξ)], ∆1 = Ω̄1ω1ω

−1Ω̄−1∆s−1
1 ,

Γ1 = s−1
1 [Γ+∆⊺(Ω̄−1ω−1Ω1ω

−1Ω̄−1 − Ω̄−1)∆]s−1
1 ,

where s1 = ([Γ+∆⊺(Ω̄−1ω−1Ω1ω
−1Ω̄−1 − Ω̄−1)∆]⊙ In̄)

1/2.

Note that in Lemma 1.1 the rescaling operated by s1 is required to ensure that the matrix
Ω∗

1 with blocks Ω∗
1[11] = Ω̄1, Ω∗

1[22] = Γ1 and Ω∗
1[21] = Ω∗⊺

1[12] = ∆⊺
1 is a correlation matrix, as

in the original formulation by Arellano-Valle & Azzalini (2006). Although this constraint
is useful to avoid identifiability issues in frequentist settings, such problems are less of
a concern in the Bayesian setting considered in this Chapter, since the parameters of the
SUN posterior are function of the observed data and of the known prior hyperparameters.
Nonetheless, maintaining this constraint is still useful to inherit results of the original SUN

and to avoid identifiability issues in prior elicitation.

Proof. To prove Lemma 1.1, first notice that, by Bayes rule, p(β | ȳ1) ∝ p(β)p(ȳ1 | β),
where p(ȳ1 | β) = ϕn̄1(ȳ1−X̄1β; Σ̄1), whereas p(β) is the SUN density in (1.11). Leveraging
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Gaussian–Gaussian conjugacy, it follows that the product between ϕn̄1(ȳ1 − X̄1β; Σ̄1) and
the density term ϕp̄(β−ξ;Ω) in (1.11) is proportional to ϕp̄[β−(Ω−1+X̄⊺

1Σ̄
−1
1 X̄1)

−1(Ω−1ξ+

X̄⊺
1Σ̄

−1
1 ȳ1); (Ω

−1 + X̄⊺
1Σ̄

−1
1 X̄1)

−1] = ϕp̄(β − ξ1;Ω1), where Ω1 = (Ω−1+X̄⊺
1Σ̄

−1
1 X̄1)

−1 =

ω1Ω̄1ω1 and ξ1 = (Ω−1+X̄⊺
1Σ̄

−1
1 X̄1)

−1(Ω−1ξ+X̄⊺
1Σ̄

−1
1 ȳ1). Therefore, p(β | ȳ1) is propor-

tional to the product between this updated Gaussian density and the cumulative distribu-
tion function term Φn̄(γ +∆⊺Ω̄−1ω−1(β − ξ);Γ −∆⊺Ω̄−1∆) of the SUN density in (1.11),
which can be also re–expressed as Φn̄[s

−1
1 γ+s−1

1 ∆⊺Ω̄−1ω−1(β−ξ); s−1
1 (Γ−∆⊺Ω̄−1∆)s−1

1 ],
where s−1

1 is defined as in Lemma 1.1. To prove that this product yields the SUN ker-
nel in Lemma 1.1, rewrite s−1

1 γ + s−1
1 ∆⊺Ω̄−1ω−1(β − ξ) as s−1

1 γ − s−1
1 ∆⊺Ω̄−1ω−1ξ +

s−1
1 ∆⊺Ω̄−1ω−1β, and then sum and subtract s−1

1 ∆⊺Ω̄−1ω−1ξ1 inside this expression to ob-
tain s−1

1 [γ+∆⊺Ω̄−1ω−1(ξ1−ξ)]+s−1
1 ∆⊺Ω̄−1ω−1(β−ξ1) = γ1+s−1

1 ∆⊺Ω̄−1ω−1(β−ξ1). Let
us now replace in this formula the term s−1

1 ∆⊺Ω̄−1ω−1 with s−1
1 ∆⊺Ω̄−1ω−1ω1Ω̄1Ω̄

−1
1 ω

−1
1 =

s−1
1 ∆⊺Ω̄−1ω−1 = ∆⊺

1Ω̄1
−1ω−1

1 , where ∆1 = Ω̄1ω1ω
−1Ω̄−1∆s−1

1 . To conclude the proof,
note that the correlation matrix within the cumulative distribution function term can be
also rewritten as s−1

1 (Γ−∆⊺Ω̄−1∆)s−1
1 = s−1

1 (Γ−∆⊺Ω̄−1∆)s−1
1 +∆⊺

1Ω̄
−1
1 ∆1−∆⊺

1Ω̄
−1
1 ∆1 =

s−1
1 [Γ + ∆⊺(Ω̄−1ω−1Ω1ω

−1Ω̄−1 − Ω̄−1)∆]s−1
1 − ∆⊺

1Ω̄
−1
1 ∆1, which corresponds to Γ1 −

∆⊺
1Ω̄

−1
1 ∆1, with Γ1 defined as in Lemma 1.1. This proves that the kernel p(β)p(ȳ1 | β)

of the posterior coincides with that of a SUN having parameters ξ1, Ω1, ∆1, γ1 and Γ1

specified as in Lemma 1.1.

Leveraging Lemma 1.1 and adapting Corollary 4 in Durante (2019), it is now possible
to prove the general SUN conjugacy result stated in Theorem 1.2.

Theorem 1.2. Let p(y | β) = p(ȳ1 | β)p(ȳ0 | β) ∝ ϕn̄1(ȳ1−X̄1β; Σ̄1)Φn̄0(ȳ0+X̄0β; Σ̄0) as in
(1.1), and assume that β is assigned a SUNp̄,n̄(ξ,Ω,∆,γ,Γ) prior distribution with density p(β)
as in (1.11). Then, (β | y) ∼ SUNp̄,n̄+n̄0(ξpost,Ωpost,∆post,γpost,Γpost), with posterior parameters

ξpost = ξ1, Ωpost = Ω1, ∆post = (∆1, Ω̄1ω1X̄
⊺
0s

−1
0 ), γpost = [γ⊺

1, (ȳ0 + X̄0ξpost)
⊺s−1

0 ]⊺,

and Γpost characterizing a full–rank (n̄+ n̄0)× (n̄+ n̄0) correlation matrix with blocks Γpost[11] =

Γ1, Γpost[22] = s−1
0 (X̄0Ω1X̄

⊺
0 + Σ̄0)s

−1
0 , and Γpost[21] = Γ⊺

post[12] = s−1
0 X̄0ω1∆1, where s0 =

([X̄0Ω1X̄
⊺
0 + Σ̄0]⊙ In̄0)

1/2, while ξ1, Ω1, ∆1, γ1 and Γ1 are defined as in Lemma 1.1, namely

ξ1 = (Ω−1+X̄⊺
1Σ̄

−1
1 X̄1)

−1(Ω−1ξ + X̄⊺
1Σ̄

−1
1 ȳ1), Ω1 = (Ω−1+X̄⊺

1Σ̄
−1
1 X̄1)

−1,

γ1 = s−1
1 [γ +∆⊺Ω̄−1ω−1(ξ1 − ξ)], ∆1 = Ω̄1ω1ω

−1Ω̄−1∆s−1
1 ,

Γ1 = s−1
1 [Γ+∆⊺(Ω̄−1ω−1Ω1ω

−1Ω̄−1 − Ω̄−1)∆]s−1
1 ,

with s1 = ([Γ+∆⊺(Ω̄−1ω−1Ω1ω
−1Ω̄−1 − Ω̄−1)∆]⊙ In̄)

1/2.

Theorem 1.2 crucially encompasses all available conjugacy results for SUN distributions
under specific models within the broader family analyzed, while extending such findings
to other key formulations. For example, setting p̄ = p, n̄1 = 0, n̄0 = n, ȳ0 = 0, X̄0 =

diag(2y−1n)X and Σ̄0 = In as in model (1.5), and substituting these quantities within the
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expressions in Theorem 1.2, would yield a SUNp,n̄+n(ξpost,Ωpost,∆post,γpost,Γpost) posterior
with parameters as in Corollary 4 by Durante (2019). Theorem 1 in Durante (2019) is instead
recovered under the additional constraint n̄ = 0, which implies a Gaussian prior. Note that
when n̄1 = 0 the associated quantities ȳ1, X̄1 and Σ̄1 are not defined and simply need to be
removed from the formulas in Theorem 1.2. The same reasoning holds for ȳ0, X̄0 and Σ̄0

when n̄0 = 0, and for ∆, γ and Ω if n̄ = 0. For instance, setting n̄0 = 0 in Theorem 1.2 yields
directly to Lemma 1.1. Similarly, the SUN conjugacy results for multinomial probit (Fasano
& Durante, 2022), dynamic multivariate probit (Fasano et al., 2021), Gaussian processes
(Cao et al., 2022), and skewed Gaussian processes under linear models, affine probit and
combinations of these two formulations (Benavoli et al., 2020, 2021) can be readily obtained
from Theorem 1.2 under the settings in Sections 1.2.1–1.2.4 for the quantities defining the
likelihood in (1.1). Interestingly, also results outside the regression context, such as those
proved by Canale et al. (2016) for multivariate skew–normal likelihoods with Gaussian or
skew–normal priors on the shape parameter, can be recasted within Theorem 1.2. Besides
encompassing already available findings, Theorem 1.2 provides novel conjugacy results
also in previously–unexplored settings, such as in tobit regression and in models relying
on skewed utilities.

Proof. The proof for Theorem 1.2 simply requires to combine Lemma 1.1 with an adaptation
of Corollary 4 in Durante (2019). In particular, by direct application of the Bayes rule, it fol-
lows that p(β | y) ∝ p(β)p(y | β) ∝ p(β)p(ȳ1 | β)p(ȳ0 | β). Hence, the posterior p(β | y) =
p(β | ȳ1, ȳ0) ∝ [p(β)p(ȳ1 | β)]p(ȳ0 | β) can be obtained by first updating the SUN prior
p(β) with p(ȳ1 | β) ∝ ϕn̄1(ȳ1− X̄1β; Σ̄1), and then use such a conditional density p(β | ȳ1)

as an intermediate prior to be updated with the likelihood p(ȳ0 | β) ∝ Φn̄0(ȳ0 + X̄0β; Σ̄0)

of ȳ0 for obtaining the final posterior. By direct application of Lemma 1.1, it follows that
p(β | ȳ1) is the density of the SUNp̄,n̄(ξ1,Ω1,∆1,γ1,Γ1) with parameters defined as in
Lemma 1.1. Therefore, to conclude the proof, it is sufficient to prove that the updating of
this intermediate prior with the likelihood p(ȳ0 | β) ∝ Φn̄0(ȳ0 + X̄0β; Σ̄0) for ȳ0 yields
again to a SUNp̄,n̄+n̄0(ξpost,Ωpost,∆post,γpost,Γpost) with ξpost, Ωpost, ∆post, γpost and Γpost defined
as in Theorem 1.2. This result follows directly from an adaptation of Corollary 4 in Durante
(2019); see also Theorem 1 in Fasano & Durante (2022). In particular, replacing D with X̄0

and In with Σ̄0 in Corollary 4 by Durante (2019), under a SUNp̄,n̄(ξ1,Ω1,∆1,γ1,Γ1) prior,
yields the expressions for ξpost, Ωpost, ∆post and Γpost in Theorem 1.2. Inclusion of the offset
ȳ0 within the proof of Corollary 4 by Durante (2019) poses no difficulties since it directly
enters the SUN truncation parameter, thereby providing the expression for γpost in Theo-
rem 1.2.

As discussed in Section 1.3.1, the availability of a closed–form SUN posterior in Theo-
rem 1.2 facilitates Bayesian inference for the whole class of models in Sections 1.2.1–1.2.4,
by leveraging known properties of SUNs (e.g., Azzalini & Capitanio, 2013; Arellano-Valle
& Azzalini, 2021). For instance, the moment generating function of the posterior is
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M(t) = eξ
⊺
postt+0.5t⊺Ωpostt

Φn̄+n̄0(γpost +∆⊺
postωpostt;Γpost)

Φn̄+n̄0(γpost;Γpost)
, t ∈ ℜp̄, (1.12)

and, therefore, closed–form expressions for relevant moments can be obtained from (1.12).
In particular, applying the derivations of Azzalini & Bacchieri (2010) and Arellano-Valle &
Azzalini (2021) to the SUN posterior in Theorem 1.2, yields the following expressions for
E[β | y] and var[β | y]

E[β | y] = ξpost + ωpost∆postψ,

var[β | y] = Ωpost + ωpost∆post(Ψ−ψψ⊺)∆⊺
postωpost,

(1.13)

where ψ is a (n̄+ n̄0)× 1 vector having entries

ψi = ϕ(γpost,i)Φn̄+n̄0−1(γpost,−i − Γpost,−iγpost,i;Γpost,−i,−i − Γpost,−iΓ
⊺
post,−i)/Φn̄+n̄0(γpost;Γpost)

for i = 1, . . . , n̄ + n̄0, with γpost,i and γpost,−i denoting the ith element of γpost and the
(n̄+n̄0−1)×1 vector obtained by removing entry i in γpost, respectively, whereas Γpost,−i and
Γpost,−i,−i are the ith column of Γpost without entry i and the sub–matrix obtained by remov-
ing the ith row and column from Γpost, respectively. Analogously, Ψ is a (n̄+ n̄0)× (n̄+ n̄0)

symmetric matrix involving the second–order derivatives of the cumulative distribution
function term in (1.12); refer to Arellano-Valle & Azzalini (2021) for the exact expression
of Ψ and of higher–order moments of the SUN distribution. These quantities can be also
computed via Monte Carlo since

(β | y) d
= ξpost + ωpost(U0 +∆postΓ

−1
postU1), (where d

= means equality in distribution),(1.14)

with U0 ∼ Np̄(0, Ω̄post −∆postΓ
−1
post∆

⊺
post) and U1 ∼ TNn̄+n̄0(−γpost;0,Γpost), where the ran-

dom variable TNn̄+n̄0(−γpost;0,Γpost) denotes an (n̄ + n̄0)–variate Gaussian with mean 0,
covariance matrix Γpost and truncation below −γpost. This additive construction has been
first derived in Arellano-Valle & Azzalini (2006) and allows to generate independent and
identically distributed values from the exact posterior via linear combinations of samples
from p̄–variate Gaussians and (n̄ + n̄0)–variate truncated normals, thus overcoming con-
vergence and mixing issues of MCMC methods; see Section 1.4 for details.

Uncertainty quantification and calculation of credible intervals is instead facilitated by
the availability of a closed–form expression for the SUN cumulative distribution function.
Adapting Azzalini & Bacchieri (2010) and Arellano-Valle & Azzalini (2021), this is

pr(β ≤ b | y) =
Φp̄+(n̄+n̄0)([(b− ξpost)

⊺ω−1
post,γ

⊺
post]

⊺; Ω̃post)

Φn̄+n̄0(γpost;Γpost)
, b ∈ ℜp̄, (1.15)

where Ω̃post is a matrix with blocks Ω̃post[11] = Ω̄post, Ω̃post[21] = Ω̃⊺
post[12] = −∆

⊺
post and Ω̃post[22] =

Γpost.
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Extending the results of Durante (2019), Fasano et al. (2021) and Benavoli et al. (2021) to
the general setting under consideration, it is also possible to obtain the marginal likelihood
as follows

p(y) = c · ϕn̄1(ȳ1 − X̄1ξ; Σ̄1 + X̄1ΩX̄⊺
1)
Φn̄+n̄0(γpost;Γpost)

Φn̄(γ;Γ)
, (1.16)

where c = 1 under all the routinely–used models in Section 1.2 which rely on Gaussian util-
ities, namely (1.2), (1.3), (1.5), (1.6), (1.7) and (1.9), whereas for those formulations based on
skewed utilities, e.g., (1.4), (1.8) and (1.10), the constant c is a known value. Albeit the pri-
mary interest is inference on β, it is worth highlighting that the availability of the marginal
likelihood in (1.16) allows to obtain empirical Bayes estimates for the other quantities in
likelihood (1.1), such as the parameters in the covariance matrices Σ̄1 and Σ̄0, via numeri-
cal maximization; see Section 1.6 for further discussion on estimation of Σ̄1 and Σ̄0. In ad-
dition, equation (1.16) facilitates direct calculation of Bayes factors for model selection and
evaluation of predictive probabilities. This second objective can be readily accomplished
by noting that the predictive probability p(ynew | y) for a new vector of observations ynew

from model (1.1) is equal to the ratio p(ynew,y)/p(y) of the two associated marginal like-
lihoods. Therefore, focusing for simplicity on the case c = 1 — which covers the most
widely–used models in Section 1.2 — direct application of (1.16) yields

p(ynew | y) =
ϕn̄1+n̄new

1
(ȳ1pred − X̄1predξ; Σ̄1pred + X̄1predΩX̄⊺

1pred)

ϕn̄1(ȳ1 − X̄1ξ; Σ̄1 + X̄1ΩX̄⊺
1)

Φn̄+n̄0+n̄new
0

(γpred;Γpred)

Φn̄+n̄0(γpost;Γpost)
.(1.17)

where n̄new
1 and n̄new

0 are the dimensions of the vectors ȳ1new and ȳ0new associated with ynew.
Similarly, ȳ1pred = (ȳ⊺

1, ȳ
⊺
1new)

⊺, X̄1pred = (X̄⊺
1, X̄

⊺
1new)

⊺ and Σ̄1pred denotes a block–diagonal
matrix with Σ̄1pred[11] = Σ̄1 and Σ̄1pred[22] = Σ̄1new. The quantities γpred and Γpred, and, im-
plicitly, ξpred, Ωpred and ∆pred, are constructed analogously to the posterior parameters in
Theorem 1.2, after replacing the original data with the enriched ones (ȳ1pred, X̄1pred, Σ̄1pred)

and (ȳ0pred, X̄0pred, Σ̄0pred), where ȳ0pred = (ȳ⊺
0, ȳ

⊺
0new)

⊺, X̄0pred = (X̄⊺
0, X̄

⊺
0new)

⊺ and Σ̄0pred is a
block–diagonal matrix with Σ̄0pred[11] = Σ̄0 and Σ̄0pred[22] = Σ̄0new.

Before concluding the overview of the SUN properties that can facilitate posterior infer-
ence, it shall be emphasized that these variables are closed under marginalization, linear
combinations and conditioning (Arellano-Valle & Azzalini, 2021). This means, for exam-
ple, that the posterior distribution of each sub–vector β[j], j ⊂ {1; . . . ; p̄} is
SUN|j|,n̄+n̄0

(ξpost[j],Ωpost[jj],∆post[j],γpost,Γpost), where ∆post[j] corresponds to the matrix ∆post

after deleting all the rows whose indexes are not in j. As a consequence, setting j =

{j} shows that the posterior distribution of each regression coefficient βj , j = 1, . . . , p̄

is still SUN. Similarly, the posterior distribution of the linear combination a + A⊺β is
SUNd,n̄+n̄0(a + A⊺ξpost,A

⊺ΩpostA, [(A
⊺ΩpostA) ⊙ Id]

−1/2A⊺ωpost∆post,γpost,Γpost). In particu-
lar, this implies that the posterior distribution of any linear predictor still belongs to the
SUN family.
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1.4 Computational methods

The results presented in Section 1.3.2 suggest that posterior inference under the broad class
of models illustrated in Section 1.2 can be performed via closed–form solutions, without the
need to rely on MCMC strategies or deterministic approximations. This is true for any, even
huge, p̄ as long as n̄+ n̄0 is small–to–moderate, but not when n̄+ n̄0 exceeds few hundreds
(Durante, 2019; Fasano & Durante, 2022). In fact, equations (1.12)–(1.17) require evaluation
of cumulative distribution functions of (n̄ + n̄0)–variate Gaussians or sampling from (n̄ +

n̄0)–variate truncated normals which is known to be computationally challenging in high
dimensions (Genz, 1992; Genz & Bretz, 2009; Chopin, 2011; Botev, 2017; Genton et al., 2018;
Cao et al., 2019, 2021). This motivates still active research on developing sampling–based
methods and accurate deterministic approximations for tractable Bayesian inference under
the models presented in Section 1.2. Sections 1.4.1–1.4.3 review, unify, extend and compare
both past and more recent developments along these lines.

1.4.1 Analytical methods

As discussed above, the evaluation of high–dimensional Gaussian integrals with linear
constraints, such as those arising in equations (1.12)–(1.17), is a longstanding problem (e.g.,
Genz, 1992; Genz & Bretz, 2002; Miwa et al., 2003; Gassmann, 2003; Genz, 2004; Craig, 2008;
Chopin, 2011; Hayter & Lin, 2013; Pakman & Paninski, 2014; Trinh & Genz, 2015; Nomura,
2016; Ridgway, 2016; Botev, 2017; Genton et al., 2018; Cao et al., 2019; Gessner et al., 2020;
Cao et al., 2021).

A popular class of strategies for evaluating these Gaussian integrals encompasses sev-
eral extensions of the original separation of variables estimator initially proposed by Genz
(1992). This solution recasts the problem as a sequence of tractable one–dimensional in-
tegrals, which are evaluated numerically via a randomized quasi–Monte Carlo sampling.
As suggested in, e.g., Genz & Bretz (2009), the variance of the resulting estimator can be
further reduced by means of variable reordering. More recently, Botev (2017) proposed
a new solution relying on an optimal exponential tilting of the Genz (1992) construction,
which is found by solving efficiently a minimax saddle–point problem, and then used as
proposal distribution of an importance sampler. While still providing an unbiased esti-
mate, this technique achieves a rare vanishing asymptotic relative error property, which
translates into a practical reduction of the estimator variance by orders of magnitude.
Moreover, this enhanced procedure remains effective in settings where the original Genz
(1992) method cannot provide reliable estimates. Such a solution, available in the R library
TruncatedNormal, remains generally tractable in a few hundred of dimensions, but it
progressively slows down beyond this regime. To achieve scalability in high dimensions,
recent solutions leverage low–rank hierarchical block structures of the covariance matrix
within the high–dimensional Gaussian integral to decompose the problem into a sequence
of smaller–dimensional ones which facilitate reduction of computational complexity while
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accounting for accuracy (Genton et al., 2018; Cao et al., 2019, 2021). Among these alterna-
tives, the one proposed in Cao et al. (2021) provides a state–of–the–art extension of the orig-
inal separation of variables estimator which incorporates both an effective tile–low–rank
representation of the covariance matrix and an iterative block–reordering scheme to obtain
notable improvements in runtimes and scalability. For instance, this solution has been re-
cently adapted to the problem of evaluating predictive probabilities in high–dimensional
probit Gaussian processes with p̄ in tens of thousands (Cao et al., 2022), obtaining notable
improvements over state–of–the–art methods.

There are also alternative solutions beyond the general separation of variables tech-
nique. For example, Pakman & Paninski (2014) proposed an Hamiltonian Monte Carlo
scheme, incorporating the truncations via hard walls and exploiting the possibility to in-
tegrate exactly the Hamiltonian equations of motion with Gaussian potential. Ridgway
(2016) developed a sequential Monte Carlo sampler for computing Gaussian orthant proba-
bilities, adding a dimension at each step, combined with carefully–designed MCMC moves.
More recently, Gessner et al. (2020) constructed an efficient estimator of Gaussian inte-
grals with linear domain constraints, which decomposes the problem into a sequence of
easier–to–solve conditional probabilities, relying on a sequence of nested domains. Each
internal step uses an analytic version of elliptical slice sampling, exploiting the availability
of closed–form solutions for the intersections between the ellipses and linear constraints.
The authors reported evidence of the effectiveness of such method even for thousand–
dimensional integrals. Additional relevant references for the problem of evaluating Gaus-
sian integrals can be found in, e.g., Genz & Bretz (2002); Miwa et al. (2003); Gassmann
(2003); Genz (2004); Craig (2008); Chopin (2011); Hayter & Lin (2013); Trinh & Genz (2015)
and Nomura (2016).

Interestingly, some of the aforementioned strategies also provide, as a direct conse-
quence, effective solutions for sampling from multivariate truncated normals, which can
be useful to generate values from the SUN posterior via the additive representation in equa-
tion (1.14). Such methods can be found, for example, in Botev (2017) and Gessner et al.
(2020). Motivated by inference on a phylogenetic multivariate probit model, Zhang et al.
(2021b) and Nishimura et al. (2021) recently employed two alternative schemes for sam-
pling from a truncated normal distribution with dimension above ten thousand. This is
done by resorting to a bouncy particle sampler (BPS) and an Hamiltonian Zigzag sampler,
respectively. The latter is a variant of HMC that rely on Laplace–distributed momentum.
As such, it can be combined with the no–U–turn (NUTS) algorithm in Hoffman & Gelman
(2014), benefiting from the associated minimal tuning.

All the above solutions provide effective methods for evaluating Gaussian cumula-
tive distribution functions and, possibly, sampling from multivariate truncated normals.
Nonetheless, such procedures are still subject to a tradeoff between accuracy and computa-
tional tractability which is often specific to the model analyzed and to the size of the data,
thereby motivating still ongoing research. Due to this, it is difficult to find a generally–

24



1.4. COMPUTATIONAL METHODS

applicable gold–standard among the aforementioned techniques, although, in practice, the
method by Botev (2017) has often notable performance when applied to equations (1.12)–
(1.17) in small–to–moderate settings with n̄ + n̄0 in the order of few hundreds. Higher–
dimensional problems may require more scalable solutions (e.g., Cao et al., 2021; Gessner
et al., 2020), even if more extensive empirical analyses are required to assess these methods
in general settings.

1.4.2 Sampling–based methods

Whenever the interest is in more complex functionals of the SUN posterior distribution,
beyond those presented in Section 1.3.2, an effective solution is to rely on Monte Carlo es-
timates based on samples from p(β | y). While generally–applicable MCMC strategies such
as state–of–the–art implementations of Hamiltonian Monte Carlo (e.g., Hoffman & Gel-
man, 2014) and Metropolis–Hastings (e.g., Roberts & Rosenthal, 2001; Haario et al., 2001)
can be considered, a widely–implemented class of algorithms in the context of the models
presented in Section 1.2 are data augmentation Gibbs samplers (e.g., Chib, 1992; Albert &
Chib, 1993; McCulloch & Rossi, 1994; Chib & Greenberg, 1998; Albert & Chib, 2001; Imai
& Van Dyk, 2005; Holmes & Held, 2006). This is because most of the formulations dis-
cussed in Section 1.2 rely on Gaussian latent utilities which are assigned a regression model
with coefficients β. Therefore, treating these utilities as augmented data restores Gaussian–
Gaussian conjugacy between the prior for β and the likelihood of the augmented utilities,
which can be in turn sampled from truncated normal full–conditionals, given β and the
censoring information provided by the observed y. This facilitates the implementation of
tractable Gibbs samplers that iterate among these two steps, thus producing samples from
the posterior distribution of β.

Although the above techniques have been proposed only for a subset of the models in
Section 1.2, and in separate contributions mainly focusing on Gaussian priors (e.g., Chib,
1992; Albert & Chib, 1993; McCulloch & Rossi, 1994; Chib & Greenberg, 1998; Albert &
Chib, 2001; Imai & Van Dyk, 2005; Holmes & Held, 2006), the comprehensive framework
in equation (1.1), and the general conjugacy results reported in Section 1.3 allow to unify
these MCMC strategies within a broad construction which can be applied to any model in
Section 1.2, even beyond those currently studied, and holds not only for Gaussian priors,
but also for general SUN ones. Letting Xpost = ∆⊺

postΩ̄
−1
postω̄

−1
post, ηpost = γpost − Xpostξpost and

Σpost = Γpost −∆⊺
postΩ̄

−1
post∆post, this general Gibbs sampler can be obtained by noticing that,

due to (1.11), the kernel of the SUN posterior in Theorem 1.2 can be written as

p(β | y) ∝ ϕp̄(β − ξpost;Ωpost)Φn̄+n̄0(γpost +∆⊺
postΩ̄

−1
postω

−1
post(β − ξpost);Γpost −∆⊺

postΩ̄
−1
post∆post)

∝ ϕp̄(β − ξpost;Ωpost)

∫
ϕn̄+n̄0(z̄− (ηpost +Xpostβ);Σpost)1(z̄ > 0)dz̄

∝
∫
p(β, z̄ | y)dz̄.

(1.18)
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Therefore, extending similar derivations for multinomial probit by Fasano & Durante (2022)
and leveraging standard properties of multivariate Gaussian and truncated normals, equa-
tion (1.18) implies a generally applicable data augmentation Gibbs sampler relying on the
full–conditional distributions

(β | y, z̄) ∼ Np̄(Vpost[X
⊺
postΣ

−1
post(z̄− ηpost) +Ω−1

postξpost],Vpost),

(z̄ | y,β) ∼ TNn̄+n̄0(0;ηpost +Xpostβ,Σpost),
(1.19)

where Vpost = (Ω−1
post +X⊺

postΣ
−1
postX

⊺
post)

−1. Hence, available Gibbs sampler for specific models
within (1.1) and yet unexplored extensions to the whole class under general SUN priors,
can be readily obtained as special cases of (1.19) under suitable specification of the poste-
rior parameters defining the above full–conditionals. It shall also be emphasized that the
sampling from the (n̄+ n̄0)–dimensional truncated normal distribution in (1.19) is usually
simplified by the conditional independence properties among the latent utilities, under-
lying most of the models presented in Sections 1.2.1–1.2.4. This means that Σpost is either
diagonal or block–diagonal, often with small–dimensional blocks, and, therefore, sampling
from (z̄ | y,β) simply requires drawing values from univariate or low–dimensional trun-
cated normals. Nonetheless, as discussed in Johndrow et al. (2018) the dependence struc-
ture between β and z̄ can still yield poorly–mixing implementations; see also Qin & Hobert
(2019) for a detailed convergence analysis.

An effective option to obviate the above mixing issues is to sample i.i.d. values from
the joint posterior p(β, z̄ | y), instead of autocorrelated ones as in scheme (1.19). Extending
the derivations by Holmes & Held (2006) to the whole class of models in (1.1), under SUN

priors (1.11), this task can be accomplished by noting that p(β, z̄ | y) = p(β | y, z̄)p(z̄ | y),
where p(β | y, z̄) is the density of the Gaussian in (1.19), whereas p(z̄ | y) is obtained
by marginalizing out from the truncated normal in (1.19) the β coefficients with density
ϕp̄(β − ξpost;Ωpost). Leveraging standard properties of Gaussian and truncated normal ran-
dom variables, and recalling Holmes & Held (2006), this marginalization step implies

(z̄ | y) ∼ TNn̄+n̄0(0;γpost,Γpost). (1.20)

Replacing the full–conditional multivariate truncated normal in (1.19) with the one in (1.20),
yields a scheme for sampling i.i.d. values from p(β, z̄ | y) and, as a direct consequence,
from the posterior p(β | y) of interest. To do this, it is sufficient to draw z̄ from (1.20) and
then generate a value for β by sampling from the Gaussian in (1.19) with mean evaluated
at the sampled value of z̄. This routine is closely related to the i.i.d. sampler based on the
additive representation of the SUN in equation (1.14) which relies on linear combination
among samples from p̄–variate Gaussian and (n̄+ n̄0)–variate truncated normals (Durante,
2019; Fasano & Durante, 2022; Fasano et al., 2021).

Although the above strategies effectively address the potential mixing and convergence
issues of the Gibbs sampler in (1.19), the multivariate truncated normal in (1.20) is often

26



1.4. COMPUTATIONAL METHODS

more challenging from a computational perspective relative to the one in (1.19). In fact,
marginalizing out β in TNn̄+n̄0(0;ηpost+Xpostβ,Σpost) induces dependence among the latent
utilities in z̄. This means that, unlike Σpost, the covariance matrix Γpost of the truncated
normal in (1.20) has no more a diagonal or block–diagonal structure and, hence, p(z̄ | y)
does not factorize as the product of univariate or low–dimensional truncated normals as
for p(z̄ | y,β) in (1.19), making sampling from (1.20) much more challenging when (n̄ +

n̄0) is large. In the context of probit models, Holmes & Held (2006) address this issue by
leveraging closure under conditioning properties of truncated normals (Horrace, 2005) to
sample iteratively from the univariate truncated normal full–conditionals p(z̄i | z̄−i,y), for
i = 1, . . . , n̄ + n̄0. However, this strategy implies a Gibbs–sampling routine which may be
still subject to mixing issues. Alternatively, it is possible to sample directly from p(z̄ | y)
in (1.20) leveraging the state–of–the–art schemes presented in Section 1.4.1 (e.g., Botev,
2017; Gessner et al., 2020). Nonetheless, as mentioned in Section 1.4.1, there is still lack of a
generally–applicable gold standard for any size of p̄ and n̄+ n̄0, thus motivating alternative
solutions for inference in high dimension, beyond sampling–based schemes. A unified
view of these alternative strategies, with a main focus on past and recent developments in
variational Bayes and expectation–propagation, is provided in Section 1.4.3.

1.4.3 Deterministic approximation–based methods

Even resorting to state–of–the–art techniques, sampling from the posterior distribution can
become prohibitive for high–dimensional datasets and large sample sizes (Chopin & Ridg-
way, 2017). In such scenarios, an effective solution is to consider deterministic approxima-
tions of the exact posterior. Sections 1.4.3–1.4.3 provide a unified treatment of classical and
more recent VB (Blei et al., 2017) and EP (Minka, 2001) approximations which are widely–
implemented solutions in the context of the models considered in this Chapter; see Chopin
& Ridgway (2017) for a review of alternative methods, such as Laplace approximation and
INLA (Rue et al., 2009).

Variational Bayes

VB solves a constrained optimization problem which aims at finding the approximating
density that is the closest in Kullback–Leiber (KL) divergence (Kullback & Leibler, 1951) to
the exact posterior, among all the densities within a pre–specified tractable family facili-
tating Bayesian inference. Recalling Blei et al. (2017), in the context of models admitting
conditionally conjugate constructions with global parameters β and local augmented data
z̄ — such as for the formulations in Section 1.2 — the solution of the optimization prob-
lem often benefits from taking p(β, z̄ | y) as the target density to be approximated, which
in turn would yield an approximation for p(β | y) after marginalizing out z̄ (Girolami &
Rogers, 2006; Consonni & Marin, 2007; Fasano et al., 2022; Fasano & Durante, 2022). As for
the choice of the approximating familyQ, classical solutions (e.g., Girolami & Rogers, 2006;
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Consonni & Marin, 2007) rely on mean–field assumptions (e.g., Blei et al., 2017) which can
be generally expressed as QMF = {q(β, z̄) : q(β, z̄) = q(β)

∏C
c=1 q(z̄c)}, where z̄1, . . . , z̄C

are distinct sub–vectors of z̄, such that z̄ = (z̄⊺1, . . . , z̄
⊺
C)

⊺. Note that the choice of how to
factorize q(z̄) in C independent blocks is often guided by the dependence structures in z̄.
For instance, in models relying on conditionally independent latent utilities in z̄, such as
those in Section 1.2, it is common to factorize q(z̄) consistent with these conditionally inde-
pendent sub–vectors. In fact, as illustrated in the context of probit (e.g., Consonni & Marin,
2007) and multinomial probit (e.g., Girolami & Rogers, 2006), even without assuming a
specific factorization for q(z̄), i.e., C = 1, the optimum q∗MF(z̄) within the class QMF would
still factorize as

∏C
c=1 q

∗
MF(z̄c), where z̄1, . . . , z̄C correspond to the subsets of conditionally

independent latent utilities, as implied by the assumed model and prior.

Summarizing the above discussion, the MF–VB solution can be formalized as

q∗MF(β, z̄) = argminq(β,z̄)∈QMF
KL[q(β, z̄)||p(β, z̄ | y)]

= argmaxq(β,z̄)∈QMF
ELBO[q(β, z̄)]

= argmaxq(β,z̄)∈QMF
{−KL[q(β, z̄)||p(β, z̄ | y)] + log p(y)},

(1.21)

with QMF = {q(β, z̄) : q(β, z̄) = q(β)
∏C

c=1 q(z̄c)}. Recalling, e.g., Blei et al. (2017), this
optimization problem can be solved via a simple coordinate ascent variational inference
(CAVI) algorithm, which iteratively updates the solution of the approximating densities
for both β and z̄ through the equations q(t)MF(β) ∝ exp{Ez̄[log p(β | y, z̄)]} and q

(t)
MF(z̄c) ∝

exp{E(β,z̄−c)[log p(z̄c | y,β, z̄−c)]}, for c = 1, . . . , C, where z̄−c coincides with z̄ with-
out sub–vector z̄c, whereas the expectation is taken with respect to the most recent up-
date of the variational density over the other conditioning variables. Replacing the full–
conditional distributions in these expressions with those in equation (1.19), and leveraging
closure under conditioning properties of multivariate truncated normals (Horrace, 2005),
yields a general MF–VB approximation which extends Girolami & Rogers (2006) and Con-
sonni & Marin (2007) to the whole class of models and priors in Section 1.2–1.3, and can be
easily obtained via CAVI updates

q
(t)
MF(β) ∝ ϕp̄(β −Vpost[X

⊺
postΣ

−1
post(Ez̄[z̄]− ηpost) + Ω̄−1

postξpost];Vpost),

q
(t)
MF(z̄c) ∝ ϕnc(z̄c−Eβ,z̄−c [µc];Σpost[c,c]−Σpost[c,−c](Σpost[−c,−c])

−1Σpost[−c,c])1(z̄c > 0),
(1.22)

for c = 1, . . . , C, where nc corresponds to the dimension of the sub–vector z̄c, whereas
Ez̄[z̄] = (E⊺

z̄1 [z̄1], . . . ,E
⊺
z̄C

[z̄C ])
⊺ and

Eβ,z̄−c [µc] = ηpost[c] +Xpost[c]Eβ[β]+

+Σpost[c,−c](Σpost[−c,−c])
−1(Ez̄−c [z̄−c]− ηpost[−c] −Xpost[−c]Eβ[β]).

In equation (1.22) the quantities Σpost[c,c], Σpost[c,−c], Σpost[−c,c], and Σpost[c,c], correspond to the
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four blocks of Σpost when partitioned to highlight the sub–vector z̄c against all the others
in z̄−c. Similarly, Xpost[c], Xpost[−c], ηpost[c] and ηpost[−c] denote the rows of Xpost and ηpost cor-
responding to z̄c and z̄−c, respectively. Hence, according to (1.22), MF–VB for the whole
class of models and priors in Section 1.2–1.3 can be implemented via simple CAVI routines
providing Gaussian and truncated normal approximating densities for β and z̄1, . . . , z̄C ,
respectively, which only require updating of the corresponding means with respect to the
most recent density estimate of the other conditioning variables, until convergence of the
ELBO. Computing the Gaussian expectation Eβ[β] poses no computational difficulties,
whereas, recalling Sections 1.3.2 and 1.4.1, evaluating the mean Ez̄c [z̄c], c = 1, . . . , C of
the truncated normals may be challenging if nc is large. Nonetheless, nc is often equal to
1 or to a small value when factorizing q(z̄) consistent with the diagonal block structures of
Σpost that are implied by most of the models in Sections 1.2.1–1.2.4. This implies that the
MF–VB solutions for the local variables z̄ correspond to tractable low–dimensional trun-
cated normals whose expectation can be computed via efficient routines, such as the one in
the R library MomTrunc (Galarza Morales et al., 2021).

Although MF–VB provides a scalable and widely–applicable solution under the models
considered in this Chapter, as shown by Fasano et al. (2022) in the context of probit regres-
sion with Gaussian priors, the resulting Gaussian approximation q∗MF(β) has often low ac-
curacy, both theoretically and empirically, in high dimensions, especially when p̄ > n̄+ n̄0.
These issues are evident not only in a general underestimation of posterior uncertainty,
but also in the tendency to overshrink locations and to induce bias in the predictive prob-
abilities, thus affecting the reliability of Bayesian inference under q∗MF(β). To address these
fundamental issues and improve the accuracy of VB in high dimensions, Fasano et al. (2022)
and Fasano & Durante (2022) propose a partially–factorized MF–VB solution (PFM–VB) that
replaces the classical mean–field family QMF = {q(β, z̄) : q(β, z̄) = q(β)

∏C
c=1 q(z̄c)} with a

more flexible partially–factorized oneQPFM = {q(β, z̄) : q(β, z̄) = q(β | z̄)
∏C

c=1 q(z̄c)}which
avoids assuming independence between β and z̄ as in mean–field, and only factorizes q(z̄)
as
∏C

c=1 q(z̄c). The structure of this enlarged family is directly motivated by the form of
the actual joint posterior p(β, z̄ | y). In fact, as highlighted in Section 1.4.2, p(β, z̄ | y)
can be re–written as p(β | y, z̄)p(z̄ | y), where p(β | y, z̄) is the density of the Gaussian
full–conditional in (1.19), whereas p(z̄ | y) is the one of the (n̄ + n̄0)–variate truncated
normal with full covariance matrix in (1.20); see also Holmes & Held (2006). Therefore,
since the Gaussian form of p(β | y, z̄) does not seem to pose computational difficulties,
it is reasonable to preserve dependence between β and z̄ in QPFM and only approximate
the intractable multivariate truncated normal density p(z̄ | y) via the product

∏C
c=1 q(z̄c)

of low–dimensional tractable ones. In addition, when the block partitions under MF–VB

and PFM–VB coincide, QMF ⊂ QPFM. Hence, it is guaranteed that the optimum q∗PFM(β, z̄)

under QPFM is never less accurate than q∗MF(β, z̄), namely KL[q∗PFM(β, z̄)||p(β, z̄ | y)] ≤
KL[q∗MF(β, z̄)||p(β, z̄ | y)].

The improved accuracy of the above procedure, combined with the simple solution
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of the optimization problem even under the enlarged family QPFM, have motivated subse-
quent extensions of the original idea in Fasano et al. (2022) to multinomial probit (Fasano &
Durante, 2022), dynamic probit (Fasano & Rebaudo, 2021) and GPs (Cao et al., 2022), which
can be, in fact, generalized to the whole class of models and priors in Sections 1.2–1.3. To
clarify this result, note that by the chain rule of the KL divergence

KL[q(β | z̄)
C∏
c=1

q(z̄c)||p(β, z̄ | y)] = Ez̄

[
KL[q(β | z̄)||p(β | z̄,y)]

]
+ KL[

C∏
c=1

q(z̄c)||p(z̄ | y)],

where the first non–negative summand is equal to zero only when q(β | z̄) = p(β | z̄,y).
Hence, q∗(β | z̄) coincides with the density of the exact Gaussian full–conditional distri-
bution in (1.19), while the minimizer of KL[

∏C
c=1 q(z̄c)||p(z̄ | y)] can be readily obtained

by applying the closure under conditioning properties (Horrace, 2005) of the multivari-
ate truncated normal in (1.20) to the CAVI equations q(t)MF(z̄c) ∝ exp{Ez̄−c [log p(z̄c | y, z̄−c)]},
c = 1, . . . , C. These results yield the following scheme for obtaining q∗PFM(β, z̄), which re-
places the one for the MF–VB solution in (1.22),

qPFM(β | z̄) = p(β | z̄,y) ∝ ϕp̄(β −Vpost[X
⊺
postΣ

−1
post(z̄− ηpost) +Ω−1

postξpost];Vpost),

q
(t)
PFM(z̄c) ∝ ϕnc(z̄c−Ez̄−c [µ̄c];Γpost[c,c]−Γpost[c,−c](Γpost[−c,−c])

−1Γpost[−c,c])1(z̄c > 0),
(1.23)

for c = 1, . . . , C, with Ez̄−c [µ̄c] = γpost[c]+Γpost[c,−c](Γpost[−c,−c])
−1(Ez̄−c [z̄−c]−γpost[−c]), where

the expectation is taken with respect to most recent density estimate of the conditioning
variables, whereas the indexing of sub–vectors and matrix blocks is the same as the one
detailed in equation (1.22).

As for the scheme of MF–VB in (1.22), also the CAVI for PFM–VB simply requires to up-
date mean vectors until convergence of the ELBO. However, unlike for (1.22), this scheme
is only required for the truncated normal components, whereas the solution for qPFM(β | z̄)
is already known to coincide with p(β | z̄,y). This gain comes, however, at the cost that,
unlike for MF–VB, the approximated density q∗PFM(β) of interest is not available as a di-
rect output of (1.23). Recalling, Fasano et al. (2022) and Fasano & Durante (2022), this
apparent drawback can be easily addressed after noticing that, by (1.23), q∗PFM(β | z̄) is
the density of the random variable distributed as a linear combination between a Gaus-
sian, with mean vector Vpost(−X⊺

postΣ
−1
postηpost + Ω̄−1

postξpost) and covariance matrix Vpost, and a
random vector z̄ whose joint density is approximated via the product of low–dimensional
truncated normals under the CAVI updates in (1.23). Recalling equation (1.14) this con-
struction coincides with the additive representation of a SUNp̄,n̄+n̄0 random variable that,
unlike for the exact SUN posterior in Theorem 1.2, relies on a block–diagonal matrix ΓPFM

with C low–dimensional nc × nc blocks, for c = 1, . . . , C. This means that the computa-
tional challenges for closed–form inference under the exact SUN posterior discussed in Sec-
tion 1.3.2 and 1.4.1 are no more present for the optimal SUN approximate density q∗PFM(β),
since the (n̄ + n̄0)–variate Gaussian cumulative distribution functions and truncated nor-
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mals in equations (1.12)–(1.17) now factorize as C low–dimensional components that can
be effectively evaluated when n1, . . . , nC are small–to–moderate. For example,

EPFM[β] = Vpost[X
⊺
postΣ

−1
post(EPFM[z̄]− ηpost) + Ω̄−1

postξpost],

varPFM[β] = Vpost +VpostX
⊺
postΣ

−1
postvarPFM[z̄]Σ

−1
postXpostVpost,

(1.24)

where EPFM[z̄] = (EPFM[z̄
⊺
1], . . . ,EPFM[z̄

⊺
C ])

⊺ comprises the expectation of each low–dimen-
sional sub–vector z̄c, c = 1, . . . , C with respect to its optimal truncated normal approximat-
ing density, whereas varPFM[z̄] is a block–diagonal covariance matrix with generic block
varPFM[z̄][c,c] denoting the covariance matrix of z̄c according to its optimal truncated nor-
mal approximation. As previously mentioned, each of these quantities can be effectively
evaluated in small–to–moderate dimensions via, e.g., the R MomTrunc (Galarza Morales
et al., 2021). Recalling Fasano et al. (2022), the computational complexity of the PFM–VB is
the same as the one for MF–VB, although the new partially–factorized solution yields im-
proved accuracy both in theory and in practice. For instance, the authors prove that, unlike
for MF–VB, the KL divergence between the PFM–VB approximation and the exact posterior
density goes to 0 as p̄ →∞ and sample size fixed, thereby providing accurate inference in
high–dimensional settings at a much lower computational cost, than exact solutions.

Expectation–propagation

Expectation–propagation (Minka, 2001) provides another well–established procedure for
constructing a global approximation q∗EP(β) of the posterior distribution p(β | y) (Chopin
& Ridgway, 2017; Riihimäki et al., 2014; Vehtari et al., 2020), which often yields improved
accuracy in practice, relative to the MF–VB solution. Contrary to the mean–field VB methods
presented in Section 1.4.3 — which only impose factorized structures for the approximating
densities without necessarily assuming a functional form — EP postulates that the target
posterior density itself can be written as a product of factors, also referred to as sites, and
then iteratively approximates each one with an element of a given family of distributions,
typically Gaussian for continuous variables or multinomial for discrete ones. Moreover, in
the EP scheme each update is driven by the minimization of a suitable reverse KL, instead
of the forward KL as in VB. This operation tends to improve MF–VB accuracy (e.g., Chopin
& Ridgway, 2017) and becomes particularly convenient when the approximating density
qEP(β) belongs to the exponential family, since it simply requires suitable moment matching
strategies between qEP(β) and p(β | y) (e.g., Vehtari et al., 2020; Bishop, 2006, Chapter 10).

Current implementations of EP for probit (Chopin & Ridgway, 2017) and multinomial
probit (Riihimäki et al., 2014) suggest that these strategies may yield practical gains for
the whole class of models in Section 1.2, thus motivating the development of a broadly–
applicable unified EP scheme, which is unavailable to date. This Section aims at cover-
ing such a gap, while providing novel closed–form expressions for moment matching of
Gaussian sites leveraging the SUN conjugacy in Section 1.3, which also yields additional
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supporting arguments on the accuracy of EP for the models in Section 1.2.

To address this goal, first note that, although likelihood (1.1) is very general, all the
relevant examples discussed in Section 1.2 admit a factorized form for the intractable term

Φn̄0(ȳ0 + X̄0β; Σ̄0) =
C∏
c=1

Φn̄c(ȳ0[c] + X̄0[c]β; Σ̄0[c,c]), (1.25)

where ȳ0 = (ȳ⊺
0[1], . . . , ȳ

⊺
0[C])

⊺, X̄0 = (X̄⊺
0[1], . . . , X̄

⊺
0[C])

⊺ and Σ̄0 is a block–diagonal matrix
with generic block Σ̄0[c,c], for c = 1, . . . , C. As discussed in Sections 1.4.2 and 1.4.3, this
factorization is implied by the conditional independence structures among latent utilities,
which yield tractable one–dimensional (e.g., probit and tobit) or low–dimensional (e.g.,
multinomial probit) factors Φn̄c(ȳ0[c] + X̄0[c]β, Σ̄0[c,c]). Hence, under these models, likeli-
hood (1.1) can be written as

p(y | β) = p(ȳ1 | β)p(ȳ0 | β) = ϕn̄1(ȳ1 − X̄1β; Σ̄1)

C∏
c=1

Φn̄c(ȳ0[c] + X̄0[c]β; Σ̄0[c,c]), (1.26)

thus providing a general factorized structure which motivates EP schemes. For ease of
notation, this routine is derived below under a Gaussian prior p(β) = ϕp̄(β− ξ;Ω) instead
of its SUN generalization, although the proposed EP scheme can be easily extended to any
prior within the SUN class. Updating this Gaussian prior with the likelihood in (1.26) yields
the posterior distribution p(β | y) which can be more conveniently re–expressed as

p(β | y) = 1

p(ȳ0 | ȳ1)

p(β)p(ȳ1 | β)
p(ȳ1)

p(ȳ0 | β) =
1

p(ȳ0 | ȳ1)
p(β | ȳ1)p(ȳ0 | β),

∝ ϕp̄(β − ξpost;Ωpost)
∏C

c=1
Φn̄c(ȳ0[c] + X̄0[c]β; Σ̄0[c,c])

= l0(β)
∏C

c=1
lc(β) =

∏C

c=0
lc(β),

(1.27)

where lc(β) = Φn̄c(ȳ0[c] + X̄0[c]β; Σ̄0[c,c]), c = 1, . . . , C, correspond to the intractable terms
in likelihood (1.26), whereas l0(β) = p(β | ȳ1) = ϕp̄(β − ξpost;Ωpost) is the conditional
density obtained by updating the Gaussian prior ϕp̄(β − ξ;Ω) for β with the tractable
factor ϕn̄1(ȳ1 − X̄1β; Σ̄1) in likelihood (1.26). As a direct consequence of the results in
Section 1.3.2, this conditional density can be obtained in closed–form and coincides with
the one of a Gaussian Np̄(ξpost,Ωpost), with parameters defined as in Theorem 1.2. Such a
density acts as an intermediate prior in (1.27) to be updated with the intractable likelihood
terms for obtaining the posterior p(β | y).

Recalling e.g., Vehtari et al. (2020), EP approximates the above posterior with a density
qEP(β) that has the same factorized form of p(β | y) in (1.27), and is made of C+1 Gaussian
sites. Hence
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qEP(β) ∝
∏C

c=0
qc(β) =

∏C

c=0
exp(−0.5β⊺Qcβ + β⊺rc)

= exp[−0.5β⊺QEPβ + β⊺rEP],
(1.28)

where rc and Qc define the natural parameters associated with the local Gaussian site c,
for each c = 1, . . . , C, whereas rEP =

∑C
c=0 rc and QEP =

∑C
c=0Qc denote those of the

Gaussian EP approximation qEP(β) for p(β | y). Consistent with this expression, the ideal
goal of EP would be to find the optimal r∗EP and Q∗

EP such that the induced Gaussian den-
sity qEP(β) under (1.28) is as close as possible to the exact p(β | y) in (1.27) under the
reverse KL divergence KL[p(β | y)||qEP(β)]. Recalling Bishop (2006, Chapter 10), the solu-
tion of this optimization problem relies on a simple moment matching, which implies that
r∗EP = (var[β | y])−1E[β | y] and Q∗

EP = (var[β | y])−1, or, alternatively, ξ∗EP = E[β | y] and
Ω∗

EP = var[β | y], where ξ∗EP and Ω∗
EP denote the mean vector and the covariance matrix

of the Gaussian EP approximation. Unfortunately, as discussed in Section 1.3.2, the exact
posterior is a SUN, and computing the associated moments is computationally challeng-
ing in general settings. In fact, such computational bottlenecks are those motivating the
approximate schemes in Section 1.4.3.

To circumvent the aforementioned issue, EP relies on an iterative scheme which pro-
gressively improves rEP =

∑C
c=0 rc and QEP =

∑C
c=0Qc by sequentially updating each term

(rc,Qc), c = 1, . . . , C, keeping fixed the others at their previous estimate (e.g., Vehtari
et al., 2020). Let l−c(β)=

∏
c′ ̸=c lc′(β) and q−c(β) =

∏
c′ ̸=c qc′(β) denote the product among

the different factors in (1.27) and (1.28), respectively, excluding the c–th one, this routine
proceeds by optimizing, for every site c, a more tractable approximation of the reverse
KL[p(β | y)||qEP(β)] in which the exact posterior p(β | y) ∝ l−c(β)lc(β) is replaced by the
hybrid one p(tc)h (β | y) ∝ q(tc)−c (β)lc(β), where tc is the step of the algorithm which updates
site c at iteration t. Using q(tc)−c (β) instead of l−c(β) yields a more tractable density since, by
(1.28), the kernel of the so-called cavity distribution q(tc)−c (β) is that of a Gaussian with nat-
ural parameters r(tc)−c and Q

(tc)
−c corresponding to rEP − rc and QEP −Qc, respectively, when

rEP, rc, QEP and Qc are fixed at their most recent estimate. Hence, the only intractable
term in the kernel of p(tc)h (β | y) is lc(β) = Φn̄c(ȳ0[c] + X̄0[c]β, Σ̄0[c,c]). As a result, adapting
derivations in Section 1.3, this hybrid density can be expressed as

p
(tc)
h (β | y) ∝ q(tc)−c (β)lc(β)

∝ ϕp̄
(
β − (Q

(tc)
−c )

−1r
(tc)
−c ; (Q

(tc)
−c )

−1
)
Φn̄c

(
ȳ0[c] + X̄0[c]β; Σ̄0[c,c]

)
,

which implies that p(tc)h (β | y) is the density of SUNp̄,n̄c(ξc,Ωc,∆c,γc,Γc) with param-
eters Ωc = (Q

(tc)
−c))

−1, ξc = (Q
(tc)
−c )

−1r
(tc)
−c , ∆c = Ω̄cωcX̄

⊺
0[c]s

−1
c , γc = s−1

c (ȳ0[c] + X̄0[c]ξc) and
Γc = s−1

c (Σ̄0[c,c] + X̄0[c]ΩcX̄
⊺
0[c])s

−1
c , where sc = ([Σ̄0[c,c]+X̄0[c]ΩcX̄

⊺
0[c]]⊙In̄c)

1/2. Therefore,
unlike the exact SUN posterior, this hybrid SUN is much more tractable since the dimension
of the cumulative distribution function term is n̄c, and not

∑C
c=1 n̄c as in p(β | y), under

Gaussian prior. In fact, as previously discussed, n̄c is either equal to 1 or to a low value
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under most of the models presented in Sections 1.2.1–1.2.4. This means that inference un-
der the SUN with density p(tc)h (β | y) can be performed via the closed–form expressions in
Section 1.3.2, which can be effectively evaluated when n̄c is small; see also Section 1.4.1.
In particular, it is possible to compute the mean E(tc)[β | y] and variance var(tc)[β | y] of β
with respect to the hybrid density p(tc)h (β | y) via expressions (1.13) evaluated at parame-
ters ξc,Ωc,∆c,γc and Γc. Alternatively, leveraging the additive representation of the SUN

in (1.14), it follows that

E(tc)[β | y] = ξc + ωc∆cΓ
−1
c E[U1c],

var(tc)[β | y] = Ωc − ωc∆cΓ
−1
c ∆⊺

cωc + ωc∆cΓ
−1
c var[U1c]Γ

−1
c ∆⊺

cωc,
(1.29)

where U1c ∼ TNn̄c(−γc;0,Γc) is a low–dimensional truncated normal whose expecta-
tion E[U1c] and variance var[U1c] can be effectively computed via R library MomTrunc

(Galarza Morales et al., 2021), due to the small value of n̄c. This implies that the reverse
KL can be easily optimized via moment matching when p(β | y) is replaced by p(tc)h (β | y),
thereby obtaining the improved estimates r

(tc)
EP and Q

(tc)
EP for the parameters of interest rEP

and QEP at step tc, defined as r(tc)EP = (Ω
(tc)
EP )−1ξ

(tc)
EP and Q

(tc)
EP = (Ω

(tc)
EP )−1, so that

r
(tc)
EP = (Ωc − ωc∆cΓ

−1
c ∆⊺

cωc+ωc∆cΓ
−1
c var[U1c]Γ

−1
c ∆⊺

cωc)
−1(ξc+ωc∆cΓ

−1
c E[U1c]),

Q
(tc)
EP = (Ωc − ωc∆cΓ

−1
c ∆⊺

cωc + ωc∆cΓ
−1
c var[U1c]Γ

−1
c ∆⊺

cωc)
−1.

Concurrently, the new estimates of the parameters at site c — which are required for the
subsequent updates — are r

(tc)
c = r

(tc)
EP − r

(tc)
−c and Q

(tc)
c = Q

(tc)
EP −Q

(tc)
−c .

The above updating scheme is iterated multiple times t ∈ {1; . . .} and for each site
c = 1, . . . , C, until convergence to a stationary point. Note that in this routine site c =

0 does not require to be updated sequentially. Recalling, e.g. Chopin & Ridgway (2017)
and Vehtari et al. (2020), factor l0(β) corresponds to the tractable Gaussian prior in (1.27)
and, therefore, this term can be analytically matched to q0(β) in (1.28), obtaining r0 =

Ω−1
postξpost and Q0 = Ω−1

post, where ξpost and Ωpost are defined as in Theorem 1.2. We shall
also emphasize that the aforementioned EP scheme can yield, as a direct by–product, an
approximation of the marginal likelihood p(y). A detailed presentation of the step–by–step
procedure to obtain such an estimate can be found in Appendix E of Vehtari et al. (2020),
which shows that a key condition to compute such an approximation is the availability of
the normalizing constant for the hybrid density p(tc)h (β | y). Interestingly, this quantity is
available in closed–form for the EP scheme discussed above since p(tc)h (β | y) is the density
of a SUNp̄,n̄c(ξc,Ωc,∆c,γc,Γc) and, hence, recalling Section 1.3, its normalizing constant
is Φn̄c(γc;Γc). Since n̄c is small, also this quantity can be effectively evaluated using, for
example, the R library TruncatedNormal (Botev, 2017).

Although EP often yields improved accuracy relative to VB, it shall be noted that state–
of–the–art implementations build on weaker theoretical guarantees relative to CAVI (e.g.,
Bishop, 2006; Chopin & Ridgway, 2017; Vehtari et al., 2020) and, as it will be discussed in
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Section 1.4.3, tend to be more computationally demanding. For instance, there is no guar-
antee that the final EP solution minimizes the global reverse KL[p(β | y)||qEP(β)], nor that
the routine always converges in general settings. Nonetheless, empirical evidence typi-
cally reports remarkable EP accuracy in general settings, which is also confirmed by the
simulation studies in Section 1.5. Recalling Bishop (2006, Chapther 10) an intuition for this
notable performance is that, at each EP iteration the sites are updated to be most accurate in
regions of high posterior probability controlled by the fixed remaining factors. More formal
arguments can be found in Dehaene & Barthelmé (2015, 2018) and show that in asymptotic
settings the discrepancy among the EP solution and the exact posterior goes to 0 faster than,
for instance, the Laplace approximation. Recalling, e.g., Chopin & Ridgway (2017); Vehtari
et al. (2020); Dehaene & Barthelmé (2015, 2018), these practical and theoretical accuracy
results are intimately related to log–concavity properties of the target posterior. Interest-
ingly, as shown recently in Arellano-Valle & Azzalini (2021, Section 3.1), SUN distributions
are log–concave. Hence, the general conjugacy results in Section 1.3 are also useful in pro-
viding further support for the reliability of EP for the whole class of models presented in
Section 1.2.

Computational costs

To conclude the analysis of the approximate schemes in Sections 1.4.3–1.4.3, we discuss the
associated cost per–iteration focusing, for ease of notation, on classical probit regression∏n

i=1Φ(x
⊺
iβ)

1(yi=1)[1 − Φ(x⊺
iβ)]

1(yi=0) as in (1.5), with a spherical Gaussian prior p(β) =

ϕp̄(β;ω
2Ip̄). Note that, as discussed in Section 1.2.2, n = n̄0 and p = p̄ when such a model

is written as a special case of likelihood (1.1). Besides providing one of the most widely
implemented formulations within the class of models whose likelihood can be expressed as
in (1.1), this choice is also motivated by the fact that detailed costs per–iteration of effective
MF–VB and PFM–VB implementations have been already derived in Fasano et al. (2022)
under probit regression with Gaussian prior. Moreover, it gives the opportunity to show
that currently–reported per–iteration costs of EP for the same class of models and priors
(Chopin & Ridgway, 2017) can be further reduced, thus making also EP scalable to high
dimensions.

For deriving the costs of MF–VB, PFM–VB and EP it shall be emphasized that, in probit
regression, such approximations rely on c = 1, . . . , n and, hence, nc = n̄c = 1 for any c.
Under MF–VB (Consonni & Marin, 2007) and EP (Chopin & Ridgway, 2017), this choice
is implied by the formulation of the optimization problem and is a direct consequence of
the conditional independence among the unit–specific latent utilities. Instead, for PFM–VB

(Fasano et al., 2022) such a setting is not enforced. Nonetheless, it provides a convenient
specification which is in line with MF–VB and EP solutions, and also facilitates posterior
inference by only requiring to deal with univariate truncated normals.

Under the above settings, Appendix A of Fasano et al. (2022) provides a detailed dis-
cussion of the per–iteration cost for both MF–VB and PFM–VB, which is O(n ·min{n; p}) =
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O(n̄0 ·min{n̄0; p̄}), after suitable matrix precomputations before running the CAVI routine.
Since the mean and variance of univariate truncated normals can be accurately computed
atO(1) cost under standard algorithms (e.g., Botev, 2017), the most intensive computations
in the CAVI routines for MF–VB and PFM–VB are associated with the matrix multiplication
operations. These steps can be efficiently implemented by exploiting recursive formulas
when updating each univariate truncated normal approximating density conditioned the
most recent estimate of the others, in PFM–VB, or of the β parameters, in MF–VB, thereby
leading to an overall per–iteration cost that is either linear or sublinear in p = p̄.

As for EP, the currently reported per–iteration cost in probit regression with spherical
Gaussian priors is O(np2) = O(n̄0p̄2) (Chopin & Ridgway, 2017), after suitable precompu-
tations as in MF–VB and PFM–VB. Intuitively, this increased complexity is due to the fact
that, unlike for MF–VB and PFM–VB, not only the expectations but also the p× p covariance
matrices must be updated and then inverted at every site c, for c = 1, . . . , n. Although
the specific form of such matrices allows to reduce the common cubic cost into a quadratic
one via application of the Woodbury’s formula to avoid direct matrix inversion (Chopin
& Ridgway, 2017), an O(np2) = O(n̄0p̄2) cost is still computationally impractical in large
p = p̄ settings. In fact, as mentioned in the final discussion of Chopin & Ridgway (2017),
even state–of–the–art implementations of EP are often computationally challenging when p
exceeds one thousand. This is also confirmed in the empirical studies of Fasano et al. (2022),
where the EP implementation within the R package EPGLM by Chopin & Ridgway (2017)
requires more than six hours to reach convergence in a high–dimensional Alzheimer’s ap-
plication with p = p̄ = 9036 and n = n̄0 = 300. Notably, as a further contribution of the
present Chapter, it shall be emphasized that a more scalable EP implementation with per–
iteration costO(np ·min{n; p}) = O(n̄0p̄ ·min{n̄0; p̄}) can be actually derived by leveraging
similar results considered in Fasano et al. (2022) for obtaining efficient implementations of
MF–VB and PFM–VB. In particular, this novel EP implementation exploits the fact that, un-
der the same reformulation via Woodbury’s identity of Chopin & Ridgway (2017), the site
updates do not necessarily require direct computation of the aforementioned p×pmatrices,
since such quantities enter via the inner product with the p×n design matrices X̄⊺

0. Hence,
when p = p̄ is large, it is more convenient to update this product directly, without storing,
updating or multiplying any p × p matrix. This yields an O(np) = O(n̄0p̄) cost for each
site, and to an overall cost for the n = n̄0 site updates of O(n2p) = O(n̄20p̄). In high dimen-
sional settings, when p ≫ n, this linear cost in p = p̄ yields massive computational gains
relative to the original O(np2) = O(n̄0p̄2) cost of EPGLM in Chopin & Ridgway (2017). For
example, applying the proposed more scalable implementation to the high–dimensional
Alzheimer’s application yields an overall runtime of five minutes, which is orders of mag-
nitude lower than EPGLM (Chopin & Ridgway, 2017) that requires, instead, more than six
hours. When, instead, n ≫ p, the linear cost in n = n̄0 of the EPGLM ensures effective
implementations. Combining these two scenarios yields an overall per–iteration cost of
O(np ·min{n; p}) = O(n̄0p̄ ·min{n̄0; p̄}), which is linear in the higher between n = n̄0 and
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p = p̄0. To the best of our knowledge, this is the first implementation of EP available in the
literature to achieve such computational efficiency. Despite this, standard EP remains more
computationally demanding than MF–VB and PFM–VB since, as discussed above, also the
p×pmatrices need to be updated at each step of the EP routine, either directly or implicitly
via the product with X̄⊺

0.
The above reasoning can be directly applied to highlight a similar dependence on sam-

ple size and number of predictors in the per–iteration cost of effective MF–VB, PFM–VB and
EP implementations under the whole class of models and priors in Sections 1.2 and 1.3 —
as long as nc and n̄c are sufficiently small to allow the calculations of the moments for the
associated multivariate truncated normals at a negligible cost compared to the one of the
matrix operations. This result is illustrated in empirical studies in Section 1.5, with a focus
on tobit regression.

1.5 Empirical studies

Insightful empirical assessments of the methods in Sections 1.3–1.4, under specific mod-
els, can be found in Chopin & Ridgway (2017); Durante (2019); Fasano & Durante (2022);
Cao et al. (2022); Fasano et al. (2022, 2021); Benavoli et al. (2020) and Benavoli et al. (2021);
see also the Github repositories ProbitSUN, Dynamic-Probit-PFMVB, Probit-PFMVB
and PredProbitGP. These studies encompass analyses of probit regression, multinomial
probit, dynamic probit, probit Gaussian processes, skewed Gaussian processes and possi-
ble combinations of these constructions, but do not cover tobit regression for which SUN

conjugacy has been proved in the present Chapter and, hence, the practical consequences
of this results and the associated computational methods remain unexplored to date.

To address this key gap, we provide empirical evidence for the performance of the
computational methods in Section 1.4, focusing on the standard tobit regression model in
equation (1.9). In accomplishing this goal, we simulate a total of n = n0 + n1 = 200 obser-
vations from tobit regression, under three different proportions of censored observations
r = n0/n ∈ {0.15; 0.50; 0.85}. This choice allows to cover a broad spectrum of scenar-
ios which ranges from a model more similar to classical Gaussian linear regression, when
r = 0.15, to one closely mimicking unbalanced probit regression, when r = 0.85. The p
unit–specific predictors in xi, i = 1, . . . , n, are instead simulated from standard Gaussians,
except for the intercept term, whereas the regression coefficients in β are generated from a
uniform distribution in the range [−5, 5]. Exploiting the latent utility interpretation of the
tobit regression in Section 1.2, the final response data yi, i = 1, . . . , n are obtained by first
simulating the associated latent utilities zi, i = 1, . . . , n from a N(x⊺

iβ, 1), and then setting
yi = zi1(zi > zT), for each i = 1, . . . , n where zT is a pre–specified truncation threshold
to obtain the desired proportion of censored observations under the three different set-
tings of r considered. Note that this varying threshold poses no difficulties in Bayesian
inference since it will directly enter the intercept term. To evaluate accuracy and computa-
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Table 1.1: Runtimes, in seconds, of two alternative solutions to sample 5000 realizations from the pos-
terior distribution in tobit regression with n = 200. (NUTS): rstan implementation of No–U–Turn HMC
sampler. (i.i.d.): i.i.d. sampling from the exact SUN posterior via equation (1.14) leveraging the R library
TruncatedNormal.

p
Censoring Method 10 20 50 100 200 400 800

85 % NUTS 3.18 3.97 11.71 24.88 56.48 150.62 1106.03
i.i.d. 2.42 2.39 23.68 38.87 97.66 12.66 7.78

50 % NUTS 2.47 2.59 3.90 10.32 42.32 119.60 1040.48
i.i.d. 1.02 0.96 1.22 1.27 2.17 2.07 4.43

15 % NUTS 1.65 1.79 2.60 4.77 18.97 90.91 460.38
i.i.d. 0.11 0.09 0.12 0.18 0.39 0.91 3.02

tional efficiency at varying dimensions, these datasets are simulated for different values of
p ∈ {10; 20; 50; 100; 200; 400; 800}. Posterior inference under the datasets produced for each
combination of r and p relies on spherical Gaussian priors Np(0, ω

2
pIp), with ω2

p = 25 · 10/p
so as to control the variance of the linear predictor and induce increasing shrinkage in
high dimensions. In addition, following recommended practice (e.g., Gelman et al., 2008;
Chopin & Ridgway, 2017), the predictors are standardized to have 0 mean and standard
deviation 0.5, before posterior inference.

Table 1.1 illustrates the computational gains in sampling–based methods which can be
obtained by leveraging routines that exploit the SUN conjugacy in Section 1.3, instead of
state–of–the–art MCMC alternatives. This is done by comparing, for every combination of
r and p, the runtimes to obtain 5000 samples from the exact posterior distribution of β un-
der both the routinely–used ??rstan implementation of No–U–Turn HMC sampler and the
i.i.d. sampler which exploits the additive representation of the SUN posterior in (1.14). This
latter routine leverages the R library TruncatedNormal (Botev, 2017) to sample the mul-
tivariate truncated normal component in (1.14). Consistent with related findings on probit
(Durante, 2019) and multinomial probit (Fasano & Durante, 2022), Table 1.1 confirm the
substantial computational gains of i.i.d. sampler relative to HMC in almost all settings of r
and p, especially when p is large. In fact, while high–dimensional regimes are often chal-
lenging for HMC, under (1.14) p only controls the dimension of the multivariate Gaussian
which is feasible to sample, even in large p contexts. As discussed in Sections 1.4.1–1.4.2,
more problematic for the i.i.d. scheme is the number of censored data n0, which defines
the dimension of the truncated normal in (1.14). This issue can be clearly seen in the in-
crements of runtimes under i.i.d. sampling when the percentage of censoring grows from
15% to 85%. Nonetheless, the procedure remains still competitive relative to HMC in these
small–to–moderate n0 settings. It is also interesting to notice an increment in the runtime
for the setting r = 0.85 (i.e., n0 = 170), when p ≈ n0. In such a regime — which is rem-
iniscent of the double–descent in high–dimensional regression (Hastie et al., 2022) — the
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Figure 1.1: For four functionals of interest and different settings of r ∈ {0.15; 0.50; 0.85}, trajectories for the
median of the absolute differences, at varying p, between an accurate Monte Carlo estimate of such functionals
via i.i.d. sampling from the exact SUN posterior and their approximation provided by mean–field variational
Bayes (MF), partially–factorized variational Bayes (PFM) and expectation–propagation (EP) under tobit regres-
sion, with n = 200. The shaded areas correspond to the first and third quartiles computed from the absolute
differences.

method by Botev (2017) experiences low acceptance probability that surely deserves fur-
ther investigations.

As highlighted in Table 1.1, the moderate dimensions of the simulated datasets would
still allow posterior inference under the closed–form solutions and i.i.d. sampling schemes
presented in Section 1.3.2. Nonetheless, as already discussed, when n0 grows, these pro-
cedures become computationally impractical, thereby motivating also the assessment of
the more scalable approximate methods presented in Section 1.4.3. The relevant outcomes
of these performance comparisons are reported in Figures 1.1–1.2 and in Table 1.2, with a
focus on both accuracy and scalability. More specifically, Figure 1.1 provides insights on
the accuracy of MF–VB, PFM–VB and EP in approximating key posterior functionals of in-
terest at varying p, and for the three different settings of r. These quantities include the
posterior mean and variance of each βj for j = 1, . . . , p, along with predictive measures
for the expected value of the response E[0 · Φ(−x⊺

NEW,iβ) + (x⊺
NEW,iβ)Φ(x

⊺
NEW,iβ) | y] =

E[(x⊺
NEW,iβ)Φ(x

⊺
NEW,iβ) | y] and the probability of a censoring event E[Φ(−x⊺

NEW,iβ) | y],
both computed for 200 test observations whose predictors are simulated as for the original
training data. For such functionals, Figure 1.1 displays medians and quartiles of the ab-
solute differences between the corresponding Monte Carlo estimates under i.i.d. sampling
from the exact posterior and the approximations provided by the three methods analyzed,
at varying combinations of r and p. In the first two panels, the three quartiles are computed
on the p absolute differences associated with coefficients β1, . . . , βp, whereas in the last two
panels these measures are calculated on the 200 absolute differences for the i = 1, . . . , 200

test units.
Consistent with Chopin & Ridgway (2017) and despite the lack of theoretical guaran-

tees, EP emerges as the most accurate solution in Figure 1.1 since its discrepancy from the
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Figure 1.2: Runtime, in seconds, for each iteration of mean–field variational Bayes (MF), partially–factorized
variational Bayes (PFM) and expectation–propagation (EP) in tobit regression at varying p > n0 settings, when
r = 0.5.

Monte Carlo estimates is negligible in all regimes, ranging from p ≤ n0 to p ≥ n0. Nonethe-
less, as highlighted in Figure 1.2, the per–iteration runtimes of EP are linear in p for high
dimensions, whereas those of MF–VB and PFM–VB are essentially constant and much lower.
Therefore, from a computational perspective, such alternatives are more effective and scal-
able options in high–dimensional settings. This is especially true for PFM–VB which, as
expected from the theory in Fasano et al. (2022), attains the same accuracy of EP when
p ≳ 2n0, but with a considerably lower computational effort. On the contrary, MF–VB is
not competitive with EP in terms of accuracy and does not yield notable improvements in
runtimes relative PFM–VB. Consistent with the theoretical results in Fasano et al. (2022),
Table 1.2 provides evidence on the fact that the number of iterations needed by PFM–VB to
reach convergence of the ELBO goes to one as p grows to infinity, while also displaying the

Table 1.2: Number of iterations required to reach convergence in mean–field variational Bayes (MF–VB),
partially–factorized variational Bayes (PFM–VB) and expectation–propagation (EP) under tobit regression, with
n = 200.

p
Censoring Method 10 20 50 100 200 400 800 1200

85 % MF–VB 192 407 337 342 180 147 92 103
PFM–VB 126 271 178 127 14 7 4 4
EP 4 5 7 6 5 4 4 4

50 % MF–VB 39 67 75 138 192 146 149 172
PFM–VB 22 37 34 42 17 6 3 4
EP 4 3 4 4 5 4 4 4

15 % MF–VB 11 16 20 36 90 90 114 169
PFM–VB 7 9 9 11 10 3 4 4
EP 3 3 3 3 4 4 3 3
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phenomenon reminiscent of double–descent noticed in Table 1.1 for i.i.d. sampling, thus
motivating further research along this line. Interestingly, the empirical results in Table 1.2
also suggest that the number of iterations required by EP does not grow with p. These
analyses point toward EP as a default strategy, while suggesting PFM–VB as a valuable al-
ternative in high–dimensional situations where EP is computationally impractical.

1.6 Discussion

This review Chapter provides a novel unified methodological and computational frame-
work for Bayesian inference within a wide class of routinely–used regression models un-
der a similarly broad set of prior distributions, which include the Gaussian one. Such
an important gap in the literature is covered by first expressing the likelihoods associ-
ated with probit, tobit, multinomial probit and their extensions as special cases of a sin-
gle formulation, and then generalizing early findings for specific models in e.g., Durante
(2019); Fasano & Durante (2022); Fasano et al. (2021); Cao et al. (2022); Benavoli et al. (2020,
2021) to prove SUN conjugacy for any representation that admits such a general likelihood.
This allows to develop general and broadly applicable versions of past and more recent
computational methods, previously proposed only for some specific members of the gen-
eral class and with a focus on Gaussian priors. These include data–augmentation Gibbs
samplers, i.i.d. sampling schemes, mean–field variational Bayes, partially–factorized vari-
ational Bayes and novel scalable implementations of expectation–propagation.

Due to the relevance of the regression models considered within the present Chapter,
such a review is expected to catalyze increasing interest by applied, computational and
methodological researchers, and will hopefully motivate further research advancements
along the directions opened by the results in Sections 1.2–1.5. For instance, the closed–form
expressions in Section 1.3.2 for inference under the exact SUN posterior provide additional
motivations to stimulate ongoing research aimed at developing accurate and fast methods
to evaluate cumulative distribution functions of high–dimensional Gaussian distributions.
In fact, any advancement along this direction and in sampling from multivariate truncated
normals can be directly applied to conduct posterior inference via the closed–form results
in Section 1.3.2, for increasingly larger sample sizes n̄ + n̄0, beyond small–to–moderate
settings. This would be also useful for estimation of possible unknown parameters in the
covariance matrices Σ̄1 and Σ̄0, via numerical maximization of the marginal likelihood
p(y) in (1.16). As shown in Sections 1.2.1–1.2.4 such matrices are often parameterized by
a one–dimensional or low–dimensional vector of parameters, and hence can be effectively
estimated via direct maximization of p(y) when its evaluation is computationally practical.
Alternatively, when the sample size exceeds small–to–moderate regimes, it is possible to
optimize scalable approximations of p(y), such as the one provided by EP. The availability
of a closed–form expression (1.16) for p(y) and of i.i.d. sampling schemes from (β | y)
as in (1.14) can be also useful to improve full Bayesian inference for Σ̄1 and Σ̄0 when the
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associated parameters are assigned a prior distribution. For example, leveraging p(y) it is
possible to derive collapsed Metropolis–Hastings routines to sample from the posteriors of
Σ̄1 and Σ̄0 after integrating outβ analytically, thereby improving mixing of MCMC schemes
based on full–conditional distributions that rely both on β and on augmented data (e.g.,
Park & Van Dyk, 2009); see also Chan & Jeliazkov (2009) for effective MCMC methods to
infer Σ̄0 under identifiability constraints. These advancements are beyond the scope of
this review, but provide a relevant research direction that is worth further exploration.
Finally, it is also interesting to include hyperpriors for the scale parameters of the Gaussian
or, more generally, SUN prior, that would yield scale–mixture representations which induce
shrinkage in high dimensions (Carvalho et al., 2010). Since most of these constructions rely
on conditionally Gaussian priors, the results in the present review may be useful to obtain
improved theoretical and practical performance in state–of–the–art implementations of the
models in Section 1.2 under sparse settings and more general classes of priors.

Although likelihood (1.1) already encompasses most of the models of interest in rou-
tine applications, further generalizations of such a likelihood and of the conjugacy results
in Section 1.3 can be considered. For instance, it is possible to extend (1.1) to any version
of the models in Sections 1.2.1–1.2.4 that arise from censoring or rounding of the Gaussian
latent utilities into a generic truncation region. In fact, as discussed in Section 1.2.4, such
a mechanism is directly related to the generative construction of the broader class of selec-
tion distributions (SLCT) in Arellano-Valle et al. (2006). Hence, following the same general
reasoning considered in the present review, it seems natural to prove SLCT conjugacy for
this broader family of likelihoods. For instance, this has been done in Kowal (2021) and
King & Kowal (2021) by extending the ideas in Durante (2019) and Fasano et al. (2021) to
static and dynamic rounded–data situations. These generalizations can be considered to
prove similar conjugacy results for any extension of (1.1) which incorporates truncation
into a finite region. Similarly, it would be also interesting to extend the recent conjugacy
results under skew–elliptical link functions to the proposed general framework. In fact,
likelihood (1.1) incorporates skew–normal and multivariate skew–normal utilities, but not
generic skew–elliptical ones, such as skew–t. Motivated by results in Durante (2019) and
Fasano & Durante (2022), Zhang et al. (2021a) prove that unified skew–elliptical distribu-
tions are conjugate to probit and multinomial probit with skew–elliptical link functions,
thereby suggesting that such a result may hold more generally for any regression model
whose induced likelihood arises from partially or fully observed skew–elliptical latent util-
ities.

Finally, it shall be emphasized that the class of models in Section 1.2 arguably encom-
passes the broadest set of formulations that appear in econometrics (Greene, 2008) and
social sciences (DeMaris, 2004). Nonetheless, routine applications of such models under a
Bayesian perspective have lagged behind the growing interest in Bayesian statistics. This
is mainly due to the apparent intractability of posterior inference under such a class of re-
gression models. This review not only clarifies that the posterior distributions induced by
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the likelihoods of these models belong to a known class of variables, but also that such
conjugacy results hold for a broader set of priors and for various extensions of classical
probit, tobit and multinomial probit that are of direct relevance in econometrics and social
science constructions. Therefore, the present Chapter will hopefully boost routine–use of
these Bayesian models in applied research and motivate the development and implemen-
tation of even more flexible versions which still belong to likelihood (1.1), including, for
example, random effect formulations and graphical models (e.g., Jones et al., 2005).
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Chapter 2

Optimal lower bounds for logistic
likelihoods

The use of logit mapping in binary regression models notoriously hinders tractable analyt-
ical inference. In the attempt to circumvent such difficulty, data-augmentation (DA) strate-
gies for logistic regression have received considerable attention within the Bayesian frame-
work. Conversely, unconstrained and penalized maximum likelihood (ML) estimations
typically proceed via iterative schemes that alternate between the construction and the op-
timization of quadratic approximations of the logistic log-likelihood, either corresponding
to Newton’s method or arising from different tangent bounds exploited within minorize-
maximize (MM) or expectation-maximization (EM) schemes. As Newton’s method remains
prone to unstable convergence issues, we focus our attention on the above strategies, giv-
ing new evidence on the optimality of the lower bound arising from the Pólya-Gamma
data-augmentation scheme among quadratic minorizers for the logistic log-likelihood. We
show that this advantage over alternative quadratic bounds is enhanced by the combina-
tion with ℓ1-regularizations as a byproduct of the associated coordinate-wise optimization
schemes. Furthermore, we derive a novel tangent minorizer dominating the Pólya-Gamma
one, by adding a piece-wise linear contribution proportional to the ℓ1-norm of the linear
predictors. Such piece-wise quadratic bound still allows for a tractable coordinate-wise
optimization algorithm, as routinely implemented in the literature for lasso and elastic net
penalized logistic regression. Empirical results confirm that the higher flexibility of the
proposed bound leads to an improved convergence rate of the resulting MM scheme.

2.1 Introduction

In the present Chapter, we turn our attention toward logistic regression, which models
a set of binary observations y = (y1, . . . , yn)

⊺ as Bernoulli random variables, each with
success probability π(x⊺

iβ) = (1 + e−x⊺
i β)−1, given a vector unknown parameters β =

(β1, . . . , βp)
⊺ ∈ ℜp and a set of observed predictors xi = (xi1, . . . , xip)

⊺ ∈ ℜp, for i =
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1, . . . , n. Despite such simple structure, the logit link notoriously hinders exact analyt-
ical inference, even from a Frequentist perspective. Accordingly, maximum likelihood
(ML) estimation typically proceeds via the sequential optimization of quadratic approxi-
mations of the logistic log-likelihood, obviating the absence of a closed-form solution for
the original problem (Hastie et al., 2015). The most natural quadratic approximation of
the log-likelihood arises from a second-order truncation of Taylor expansion, as exploited
within Newton-Raphson’s method, chiefly appreciated because of its speed. However, it
is well known that convexity of the objective function is not sufficient to guarantee conver-
gence of the Newton-Raphson updates (McLachlan & Krishnan, 1996), which may incur
into oscillating and even diverging behaviors (Böhning & Lindsay, 1988). Such unreliable
convergence issues can be by solved resorting to minorize-maximize (Wu & Lange, 2010)
and expectation-maximization schemes (McLachlan & Krishnan, 1996), that achieve a de-
sirable monotonicity property by maximizing at every step tangent bounds for the target
function. Indeed, the sequential optimization of such bounds is guaranteed to drive the
log-likelihood uphill at each iteration, ensuring stability of the corresponding updates, po-
tentially at the expense of slower convergence. For this reason, over the years several con-
tributions focused on the construction and refinement of tractable tangent lower bounds
for logistic log-likelihoods (Böhning & Lindsay, 1988; Jaakkola & Jordan, 2000; Marlin et al.,
2011; Ermis & Bouchard, 2014).

A simple quadratic bound (BL) first appeared in the seminal work by Böhning & Lind-
say (1988), by exploiting a uniform bound on the curvature of the logistic log-likelihood
function to minorize the associated Hessian matrix, which has been largely implemented
in the literature (Hunter & Lange, 2004; Wu & Lange, 2010; James, 2017; Khan et al., 2010).
The same minorization strategy has been extended even to multinomial logistic regression
(Böhning, 1992; Krishnapuram et al., 2005; Browne & McNicholas, 2015), as well as to pe-
nalized ML estimation (Friedman et al., 2007, 2010; Hastie et al., 2015), by combining the
unaltered penalty term with the lower bound for the log-likelihood contribution. An al-
ternative quadratic bound was derived in Jaakkola & Jordan (2000), by exploiting the sup-
porting hyperplane inequality for a suitable transformation of the log-likelihood. Notwith-
standing its good empirical performance and widespread use in the literature (Bishop &
Svensén, 2003; Rasmussen & Williams, 2006; Lee et al., 2010; Ren et al., 2011; Carbonetto &
Stephens, 2012), such routine apparently lacked a clear probabilistic interpretation. How-
ever, the recent contribution by Durante & Rigon (2019) provided an elegant justification
for the procedure by Jaakkola & Jordan (2000), showing that the associated minorizer arises
as proper evidence lower bound under the celebrated Pólya-Gamma (PG) data augmenta-
tion scheme for logistic regression (Polson et al., 2012). Accordingly, the optimization pro-
cedure by Jaakkola & Jordan (2000) can be regarded as a full-fledged EM scheme, in light
of its connection with a well-defined missing variables representation. Durante & Rigon
(2019) additionally carried out a direct comparison of the two MM schemes building on
the BL and PG bound, showing that the routine leveraging on the latter dominates over
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the former in terms of the asymptotic rates of convergence. Intuitively, this reflects how
well the corresponding surrogates approximate the target function near a local extremum
(Zhou & Zhang, 2012; Lange, 2016), suggesting that a tighter approximation will lead to
a faster convergence rate. Indeed, following the reasoning by De Leeuw & Lange (2009),
it can be shown that the PG bound is the sharpest tangent quadratic minorizer that can
be constructed for the logistic log-likelihood. However, such optimality result is typically
stated solely by restricting the attention to simpler one-dimensional building blocks of the
likelihood function. Besides deriving an alternative proof for such univariate findings, in
this Section 2.2 we reformulate and emphasize the optimality of the PG lower bound, by
expressing the corresponding quadratic surrogate explicitly as a function of the regression
parameter β.

Nevertheless, the better converge rate associated with the PG bound comes with a trade-
off in the efficiency of the corresponding updates for the joint optimization over ℜp. In fact,
while the fixed curvature of the BL bound allows to limit costly matrix inversion solely
to the initialization of the procedure, the higher flexibility of the PG bound forces to re-
peat such calculations at each iteration. On the contrary, in Section 2.3 we highlight that
the benefit coming from the sharpness of the bound becomes more evident in combina-
tion with some of the most popular regularization methods, such as the lasso (Tibshirani,
1996) and the elastic net (Zou & Hastie, 2005). Indeed, the ℓ1-norm term in such penal-
ties dictates the use of coordinate-wise descent schemes to solve the resulting optimization
problem (Friedman et al., 2007, 2010), which indirectly avoids the aforementioned large
matrix inversions. This implies that the costs per iteration associated with the BL and PG

MM schemes coincide in the coordinate-wise optimization framework, limiting the relative
performance to the difference between the corresponding convergence rates. Accordingly,
the PG bound results to all extent preferable to the BL one in such penalized scenarios.
Surprisingly the aforementioned computational advantage of the PG bound for penalized
regression has been apparently overlooked even in state-the-art statistical software, albeit
it might be readily incorporated with minor modifications.

Finally, in Section 2.4 we construct a novel piece-wise quadratic (PLQ) minorizer for lo-
gistic log-likelihoods, dominating over the PG bound. Indeed, several contributions in the
literature focused on improving over the bound by Jaakkola & Jordan (2000) via piece-wise
surrogates (Khan et al., 2010; Marlin et al., 2011; Ermis & Bouchard, 2014). For instance,
Marlin et al. (2011) consider the general class of all piece-wise quadratic tangent bounds,
defined on an arbitrary number of intervals. However, the flexibility of such formulations
comes at the cost of reduced tractability, as the minorizers are defined implicitly and re-
fined by data-agnostic numerical optimization. In contrast, the bound we propose allows
for a simple analytical expression, as we complement the quadratic surrogate of the log-
likelihood of each observation with a piece-wise linear contribution, proportional to the ab-
solute value of the corresponding linear predictor |x⊺

iβ|. Notably, the coordinate-wise up-
dates for the PLQ bound still admit exact solutions, which make it particularly suitable for
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the combination with the ℓ1-penalties discussed above. The sharper approximation of the
likelihood is expected to bring a further advantage in terms of the convergence rate of the
associated MM optimization, compared to that of the BL bound. Indeed, in Section 2.5 we
provide empirical evidence of the benefits brought by the proposed methodology, which
becomes particularly appreciable in high-dimensional regression settings.

2.2 Minorize-maximize and expectation-maximization schemes

The acronym MM denotes a broad class of powerful iterative optimization schemes that
address difficult minimization or maximization problems by solving a sequence of simpler
surrogate ones, arising from the construction of tangent bounds for the original target func-
tion. The first appearances of the underlying principle trace back to De Leeuw (1977) and
De Leeuw & Heiser (1977). However, except for the sub-class of EM algorithms, the more
general formulation of MM schemes experienced a renewed popularity among the statistics
community only in more recent years (Hunter & Lange, 2004; Wu & Lange, 2010; Lange
et al., 2021), thanks to a beneficial combination of convergence guarantees and practical
efficiency. In this Section, we concentrate on the minorize-maximize formulation of MM

schemes, since the target optimization problem considered is that of maximum likelihood
estimation for logistic regression, although the same MM acronym encompasses analogous
minorize-maximize routines in case the interest is on maximization. Given a target func-
tion F(β) and a starting vector β(t) ∈ ℜp, the technical essence of such methods lies in the
construction of a tangent minorizer G(β | β(t)), namely a function satisfying the properties

F(β(t)) = G(β(t) | β(t))

F(β) ≥ G(β | β(t)) ∀β ∈ ℜp.
(2.1)

Although in principle there are no limitations on the analytic form of the lower bound,
the above relation becomes of practical interest whenever the optimization of G is tractable
and efficient, whereas that ofF is troublesome or computationally demanding. Indeed, the
optimization of the former via β(t+1) = argmaxβG(β | β

(t)) jointly drives uphill even the
latter, as

F(β(t+1)) ≥ G(β(t+1) | β(t)) ≥ G(β(t) | β(t)) = F(β(t)). (2.2)

This naturally translates into an iterative scheme, that alternate between the construction
of a refined bound in the so-called minorization step and its subsequent maximization,
leading to the acronym MM scheme. The descent property from equation (2.2) endows
MM routines with remarkable numerical stability, as mild conditions for the target function
ensure convergence of corresponding iterations (Lange, 2016).
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EM algorithms as special instances of MM

MM schemes have been successfully employed for the optimization of a large variety of
target functions F(β), which are typically minorized by purely mathematical arguments.
However, when the target function corresponds to the log-likelihood ℓ(β) = log p(y | β)
of suitable statistical constructions, there is a large subclass of MM routines, known as
expectation-maximization algorithms, whose distinguishing characteristic is to hinge on
missing data representations (McLachlan & Krishnan, 1996). The core of the EM rationale
consists in addressing the original likelihood p(y | β) as corresponding to an incomplete-
data problem, hindered by the unavailability of a set of missing variables z ∈ Z from
some suitable space Z . In particular, the interest lies in identifying a complete data space
such that the maximization of p(y, z | β) over β would result considerably more tractable
compared to that of the starting problem. Therefore, as the augmented variables z remain
partially or entirely unobserved, the complete log-likelihood is conveniently replaced by
its conditional expectation given the observed data and the current value of the parameter

Q(β | β(t)) = Ep(z|β(t),y)

[
log p(y, z | β)

]
, (2.3)

that is maximized to obtain an updated estimate β(t+1) = argmaxβQ(β | β
(t)). As before,

this scheme is iterated alternating between the update of the surrogate target in the so-
called E-step and its optimization in the M-step, where the convergence of such procedure is
guaranteed by the same monotonicity property presented above. Indeed, the EM procedure
can be reformulated so as to give a proper minorizer as in equation (2.1)

G(β | β(t)) = ℓ(β(t)) +Q(β | β(t))−Q(β(t) | β(t))

= Ep(z|β(t),y)

[
log

p(y, z | β)
p(z | β(t),y)

]
,

(2.4)

which allows to formally embed EM schemes within the broader framework of the MM

rationale. In fact, the discrepancy between the log-likelihood in any two locations can
be decomposed as the difference between the corresponding Q functions and a suitable
Kullback-Leiber divergence (Kullback & Leibler, 1951), which is non-negative by definition

ℓ(β)− ℓ(β(t)) = Q(β | β(t))−Q(β(t) | β(t)) + KL
[
p(z | β(t),y)

∥∥p(z | β,y)].
Besides such minorization perspective, the explicit use of missing data representation en-
dows EM schemes with several additional desirable properties. Above all, it provides a
clear probabilistic interpretation of the procedure, that allows to draw direct connections
with analogous Gibbs Sampling schemes (Gelfand, 2000) and variational Bayes approxima-
tion (Ormerod & Wand, 2010; Blei et al., 2017). At the same, it often facilitates the analytical
study of its theoretical properties, particularly when the complete-data log-likelihood be-
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longs to the regular exponential family of distributions (McLachlan & Krishnan, 1996).

2.2.1 MM via quadratic tangent bounds

The tractability of the surrogate problems plays a pivotal role in determining the practical
efficiency of the corresponding MM scheme. For this reason, quadratic bounds of the form

G(β | β(t)) = F(β(t)) +∇F(β(t))⊺(β − β(t)) +
1

2
(β − β(t))⊺G(β(t))(β − β(t)) (2.5)

have received considerable attention in several contexts (Wu & Lange, 2010), both within
MM and EM formulations. Notice that the degrees of freedom in choosing the above sur-
rogates in equation (2.5) concentrate solely on the curvature G(β(t)) = ∇2

βG(β | β
(t)), as

the values of the constant and linear terms are imposed by the constraints in equation (2.1).
The optimization of the above quadratic minorizer readily results in the updated vector

β(t+1) = M(β(t)) = β(t) −
(
G(β(t))

)−1∇F(β(t)), (2.6)

where it is worth highlighting the parallel between the updates in equation (2.6) and the
analogous ones corresponding to Newton-Raphson’s method, for which the inverse of the
exact Hessian (∇2F(β(t)))−1 would take the place of (G(β(t)))−1. As already mentioned,
the Newton-Raphson updates can be prone to oscillating or diverging behaviors, since
they do not benefit from the monotonicity property that characterizes MM schemes. While
equations (2.2) and (2.6) ensure respectively convergence of the procedure and tractability
of the corresponding updates, the empirical performances of a specific MM scheme will be
determined by the number of iterations needed for the difference F(β(t+1)) − F(β(t)) to
become smaller than a fixed threshold. Accordingly, the convergence rate of MM schemes
based on smooth surrogates is typically assessed by studying the spectral radius R(β) of
the Jacobian J (β) of the transformation map M : ℜp → ℜp, describing the MM updates
(Lange, 2016). If the objective F and the surrogate G are twice differentiable at a local
maximum β∗ and the corresponding Hessians are positive definite, it can be shown that

J (β∗) = Ip −
(
G(β∗)

)−1∇2F(β∗), (2.7)

which gives R(β∗) = 1−minβ ̸=0{β⊺∇2F(β∗)β / β⊺G(β∗)β} (Wu & Lange, 2010). This
allows to get a clear intuition for the impact of the specific minorization considered, as the
rate of convergence in proximity of a given equilibrium point will be roughly determined
by how closely the curvature of the minorizer approximates that of the target. Accordingly,
the tighter the approximation given by a particular surrogate is, the faster the convergence
of the resulting MM scheme is expected to be.
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2.2.2 Tangent bounds for logistic log-likelihoods

As mentioned above, the target function F(β) we aim at maximizing is the logistic log-
likelihood ℓ(β) =

∑n
i=1 ℓi(β), for which we have

ℓi(β) = log p(yi | β,xi) = yix
⊺
iβ − log(1 + ex

⊺
i β)

∇ℓi(β) = (yi − πi)xi

∇2ℓi(β) = −πi(1− πi)xix
⊺
i ,

where πi = π(x⊺
iβ), while from now on we omit the covariates from the conditioning set

for ease of notation. Notice that each term ℓi(β) depends on the parameters β only via
the inner product with the corresponding covariates x⊺

iβ, so that the gradient of the tar-
get function takes the form ∇ℓ(β) = ∇F(β) = X(y − π), with π = (π1, . . . , πn)

⊺ and
X = (x1, . . . ,xn)

⊺. At the same time, the element-wise minorization scheme entails a com-
posite structure for the quadratic contribution of the bound G(β(t)) = −X⊺W(t)X, where
W(t) = W(β(t)) is a positive definite n × n diagonal matrix. Indeed, taking advantage of
the additive structure of the log-likelihood, the construction of a surrogate for the overall
target is more often carried out by providing a tangent bound for the log-likelihood con-
tribution of each statistical unit, since the minorization relation in equation (2.1) is closed
respect to sum and non-negative product, other than limits and composition with increas-
ing functions (Wu & Lange, 2010). As such, the overall tangent bound will be decomposed
as

G(β | β(t)) =
n∑

i=1

gi(β | β(t)).

MM via uniform quadratic bounds

Albeit the construction of a proper tangent bound is typically highly specific to each partic-
ular optimization problem, there is a set of mathematical tools frequently employed in the
MM literature (Wu & Lange, 2010). Among others, uniform quadratic minorizers are often
the first option considered when dealing with twice-differentiable concave target functions
F with bounded curvature. In fact, if it exists a positive definite constant matrix B such that
the difference B−∇2F(β) is non-negative definite for every β ∈ ℜp, then a valid quadratic
bound is simply obtained by fixing G(β(t)) = −B in equation (2.5). In the case of logistic
regression, such uniform minorization arises by recognizing that πi(1 − πi) ∈ (0, 1/4], as
firstly exploited in the seminal contribution by Böhning & Lindsay (1988). Accordingly, the
quadratic function

gBL,i(β | β(t)) = ℓi(β
(t)) + (yi − π(t)i )(x⊺

iβ − x⊺
iβ

(t))− 1

2

1

4
(x⊺

iβ − x⊺
iβ

(t))2
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is a valid minorizer for the i-th log-likelihood term ℓi(β) at β(t), where π(t)i = π(x⊺
iβ

(t)).
Equivalently, this leads to an overall quadratic surrogates GBL(β | β(t)) =

∑n
i=1 gBL,i(β |

β(t)) whose curvature reads GBL(β
(t)) = −X⊺WBLX, where WBL = 1/4 In.

EM via Pólya-Gamma data-augmentation

The EM rationale has proven to be extremely effective even in a variety of situations where
the incompleteness of the data is not necessarily self-evident, beyond classical scenarios
manifestly involving partially-observed data. In the case of logistic regression, a num-
ber of latent variable representations has been proposed over the years (Holmes & Held,
2006; Frühwirth-Schnatter & Frühwirth, 2007; Frühwirth-Schnatter et al., 2009; Polson et al.,
2012; Zens et al., 2020). Among others, Polson et al. (2012) constructed a powerful data
augmentation strategy by exploiting a scale-mixture representation for logistic likelihoods,
which translates into the introduction of a Pólya-Gamma latent variable zi ∈ (0,∞) for

each statistical unit i = 1, . . . , n, such that (zi | β)
ind∼ PG(1,x⊺

iβ). Accordingly, the usual
likelihood for the observed i-th binary observation p(yi | β) can be addressed as marginal-
ization over zi of a complete likelihood p(yi, zi | β). Notably, the logarithm of the latter is a
tractable quadratic function of the parameter β, which largely facilitates both Frequentist
and Bayesian inference. Indeed, Polson et al. (2012) exploited the restored conjugacy with
the commonly-used Gaussian prior for the coefficients to build an efficient Gibbs sampling
scheme with conjugate full-conditionals. Similarly, Durante & Rigon (2019) leveraged on
the same hierarchical representation to construct both a formal mean-field variational ap-
proximation of the joint posterior p(β, z | y), with z = (z1, . . . , zn)

⊺, other than a proper
EM routine for maximum likelihood estimation. In particular, the lower bound on the i-th
log-likelihood contribution exploited within the latter takes the form

gPG,i(β | β(t)) = Ep(zi|β(t))

[
log

p(yi, zi | β)
p(zi | β(t))

]
= ℓi(β

(t)) + (yi − 1/2)
(
x⊺
iβ − x⊺

iβ
(t)
)
− 1

2
wPG(x

⊺
iβ

(t))
(
(x⊺

iβ)
2 − (x⊺

iβ
(t))2

)
and wPG(x

⊺
iβ

(t)) = tanh(x⊺
iβ

(t)/2)/(2 x⊺
iβ

(t)) arises as the expected value of a PG(1,x⊺
iβ

(t))

random variable. As before, this translates into an overall quadratic surrogate GPG(β |
β(t)) =

∑n
i=1 gPG,i(β | β(t)) with curvature GPG(β

(t)) = −X⊺W
(t)
PGX, where now W

(t)
PG =

diag({wPG(x
⊺
iβ

(t))}ni=1).
As a matter of fact, the above quadratic minorizer was originally derived in the semi-

nal contribution by Jaakkola & Jordan (2000). However, the authors did not appeal to any
explicit missing data representation, leveraging instead solely on convexity arguments ex-
ploited in a more traditional-MM fashion, as detailed in Section 2.2.3. Their methodology
has been successfully employed in the literature both for variational Bayes inference and
ML estimation (Bishop & Svensén, 2003; Rasmussen & Williams, 2006; Lee et al., 2010; Ren
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et al., 2011; Carbonetto & Stephens, 2012), although it lacked a clear probabilistic interpre-
tation until the contribution by Durante & Rigon (2019). A first intuition on the relation
with Pólya-Gamma data augmentation scheme appeared in the manuscript by Scott & Sun
(2013), albeit the authors did not establish a full probabilistic connection, as the one settled
by Durante & Rigon (2019).

Relative tightness and computational efficency

Durante & Rigon (2019) additionally carried out a direct comparison of the two iterative
optimization schemes, exploiting respectively the quadratic bounds arising from the Pólya-
Gamma data augmentation and the uniform one by Böhning & Lindsay (1988). Indeed, the
authors showed that the former achieve a better asymptotic rate of convergence in prox-
imity of any local maximum β∗, and it thus is expected to lead to a faster convergence
in practice. To do so, Durante & Rigon (2019) leveraged the proper EM formulation of the
proposed scheme, by advocating the so-called missing information principle (McLachlan &
Krishnan, 1996). This means that the Jacobian of the corresponding transformation matrix
can be written as JPG(β) = Ip + I−1

c (β, y)∇2ℓ(β), where Ic(β, y) denotes the expectation,
taken with respect to the augmented data, of the complete-data information matrix. This
allowed the authors to simplify the comparison between the asymptotic rate of conver-
gences of the two alternative optimization schemes. However, the same result can be seen
also as a direct consequence of the overall quality of the respective resulting approximation
for the target function. Indeed, on one hand equation (2.7) suggests that, for general MM

schemes, the convergence rate reflects how closely the curvature of the minorizer approxi-
mates that of the target in proximity of a given local extremum. At the same time, since the
curvature represents the only degree of freedom in constructing tangent quadratic minoriz-
ers, the relative quality of the two approximations concerns the bounds in their entirety. In
fact, noticing that wPG(x

⊺
iβ

(t)) ∈ (0, 1/4] for any β(t) and xi, it follows that the difference
between the Hessian matrices

GPG(β
(t))−GBL(β

(t)) = −X⊺W
(t)
PGX+X⊺WBLX

is non-negative definite for every β(t) ∈ ℜp. This means that the BL bound acts in turn as a
uniform quadratic minorizer for the PG bound as well, meaning that

ℓ(β) ≥ GPG(β | β(t)) ≥ GBL(β | β(t)) ∀β ∈ ℜp.

Furthermore, the same argument can be further extended to prove that the PG bound
is optimal among quadratic minorizers for the logistic log-likelihood, as detailed in Sec-
tion 2.2.3.

Nevertheless, a thorough comparison of the alternative minorization schemes needs to
take into account not only the relative speed of convergence, but also the computational
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efficiency of the corresponding updates from equation (2.6). Indeed, the major bottleneck
in performing such updates is typically given by a p × p matrix inversion, (X⊺WBLX)−1

and (X⊺W
(t)
PGX)−1 respectively, which becomes prohibitive in high-dimensional scenarios.

However, the uniform bound offers the possibility to perform such expensive operation
only once as a pre-computation of the optimization procedure, greatly mitigating the cost
of each update. On the contrary, the higher flexibility of the PG bound comes at the cost of
requiring such costly matrix inversion at every update. Accordingly, the relative efficiency
of the two minorization schemes will be determined by a trade-off between the associated
convergence rate and the cost per iteration, largely influenced by the dimensionality of the
specific regression problem considered. Nonetheless, empirical evidence suggests that the
BL bound may suffer from poor convergence rates in the same scenarios where Newton-
Raphson’s method results unreliable, undermining the very argument motivating the use
of a MM scheme.

2.2.3 Optimality of the PG bound among quadratic tangent minorizers

In this Section we further elaborate on the comparison between alternative quadratic mi-
norizers for the logistic log-likelihood, clarifying the optimality of the PG bound within
such a family. Beforehand, it is insightful to provide an alternative derivation of the PG

bound, along the lines of its original formulation by Jaakkola & Jordan (2000). The au-
thors proceed by first decomposing and symmetrizing each likelihood contribution ℓi(β),
viewed as a function of the linear predictor ri = x⊺

iβ

ℓi(ri) = (yi − 0.5)ri + h(ri)

h(ri) = − log(eri/2 + e−ri/2),
(2.8)

where the source of intractability is condensed within the even function h : ℜ → ℜ−.
Dropping the index i of the statistical unit for ease of notation, h(r) is then reparametrized
as a function of the squared linear predictor ρ = r2, and lower bounded via its tangent
surface at a given location φ = ζ2

h(ρ) ≥ h(φ) + ∂h

∂ρ
(φ)(ρ− φ), (2.9)

by the convexity of h(ρ), while the same relation holds true even transforming back the
problem in the original space

h(r) ≥ hPG(r | ζ) = h(ζ) +
∂h

∂(r2)
(ζ2)(r2 − ζ2) = h(ζ)− tanh(ζ/2)

4ζ
(r2 − ζ2)

= h(ζ) +
∂h

∂r
(ζ)(r − ζ)− 1

2

tanh(ζ/2)

2ζ
(r − ζ)2.
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Recalling that wPG(ζ) = tanh(ζ/2)/(2ζ), it is immediate that the lower bound above coin-
cides with PG minorizer gPG,i(β | β(t)), which is recovered by substituting r and ζ with x⊺iβ
and x⊺iβ

(t) respectively. Conversely, the BL bound corresponds to the uniform minorization

h(r) ≥ hBL(r | ζ) = h(ζ) +
∂h

∂r
(ζ)(r − ζ)− 1

2

1

4
(r − ζ)2.

While we already emphasized that hPG(r | ζ) ≥ hBL(r | ζ) for any r ∈ ℜ given any ζ ∈ ℜ, the
same property can be further generalized to the comparison with any alternative quadratic
tangent bound hQ(r | ζ) within the family

HQ(ζ) =

{
hQ(r | ζ) = h(ζ) +

∂h

∂r
(ζ)(r − ζ)− 1

2
wQ(ζ)(r − ζ)2

∣∣∣∣ h(ζ) = hQ(ζ | ζ)
h(r) ≥ hQ(r | ζ) ∀r

}
.

Indeed, De Leeuw & Lange (2009) exploited the symmetry of the target function and of
hPG(r | ζ) to prove that the PG minorization provides the sharpest quadratic tangent bound
that can be constructed for h(r), meaning that

hPG(r | ζ) ≥ hQ(r | ζ) ∀r ∈ ℜ, (2.10)

given any ζ ∈ ℜ and hQ(r | ζ) ∈ HQ(ζ). The argument of De Leeuw & Lange (2009) can be
rephrased by noticing that the specific condition hQ(ζ | ζ) = h(ζ) = h(−ζ) ≥ hQ(−ζ | ζ)
directly translates into a bound on the curvature coefficient wQ(ζ) ≥ −∂h

∂r (ζ)/ζ = wPG(ζ),
which is attained by the PG minorizer. While this is reflected in the symmetry of the latter,
implying in particular that the PG bound is tangent to h(r) both in ζ and−ζ, the comparison
with any alternative valid curvature ensures the relation in equation (2.10), as illustrated
in Figure 2.1.

-10 -5 5 10
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-5

-4

-3

-2

-1
h (r)

hPG(r|ζ )

hq(r|ζ ) ← wq=1.5×wPG

hBL(r|ζ )

hq(r|ζ ) ← wq=5.5×wPG

Figure 2.1: Comparison between different quadratic bounds for h(r), tangent to the latter
in ζ = 5. hPG(r | ζ) arises from the PG DA, hBL(r | ζ) from a uniform minorization of
the curvature, while the two quadratic lower bounds hQ(r | ζ) corresponds respectively to
wQ(ζ) = 1.5 · wPG(ζ) and wQ(ζ) = 5.5 · wPG(ζ).
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Since the interest in deriving a minorizer for the log-likelihood as a function of the
parameter β ∈ ℜp, the above univariate findings can be exploited to state the following
result

Lemma 2.1. Let GQ(β | β(t)) be any quadratic tangent minorizer in β(t) ∈ ℜp for the logistic log-
likelihood ℓ(β) =

∑n
i=1 ℓi(β) =

∑n
i=1

(
yix

⊺
iβ − log(1 + ex

⊺
i β)
)
. Furthermore, let GQ(β | β(t)) be

separable as the sum of the contributions associated with each statistical unit, with each contribution
depending on β only via the inner product with the corresponding linear predictor

GQ(β | β(t)) =
n∑

i=1

kQ,i(x
⊺
iβ | x

⊺
iβ

(t)),

for a suitable set of quadratic functions {kQ,i}ni=1. Then it holds that

ℓ(β) ≥ GPG(β | β(t)) ≥ GQ(β | β(t)) ∀β ∈ ℜp, ∀β(t) ∈ ℜp.

Proof. As highlighted before, the requirement that GQ(β | β(t)) minorizes ℓ(β) at β(t) con-
straints the first two terms of every quadratic bound

GQ(β | β(t)) = ℓ(β(t)) +∇ℓ(β(t))⊺(β − β(t))− 1

2
(β − β(t))⊺AQ(β

(t))(β − β(t)),

whereas separability ensures that the p×p positive definite matrix AQ(β
(t)) is decomposed

as AQ(β
(t)) = X⊺WQ(β

(t))X, where WQ(β
(t)) = diag({wQ,i(x

⊺
iβ

(t))}ni=1) is an n × n diag-
onal matrix. Accordingly, the optimality of GPG(β | β(t)) as a function of β arises directly
as by contradiction, since the existence of β(t), {wQ,i(x

⊺
iβ

(t))}ni=1 and β̃ = β̃(β(t)) such that
ℓ(β̃) ≥ GQ(β̃ | β(t)) > GPG(β̃ | β(t)) would negate the result in equation (2.10).

2.3 Logistic regression under elastic net penalty

In penalized estimation contexts, the log-likelihood ℓ(β) is coupled with a regularization
term P(β), with the goal of enhancing both prediction accuracy and interpretability. This
is of particular interest in high dimensional regimes, where the number of covariates p is
considerably greater than the number of observations n. In this Section, we focus on logistic
regression under one of the most popular regularization methods, namely the elastic net
by Zou & Hastie (2005), which gives a compromise between lasso and ridge regularizers
(Hoerl & Kennard, 1981; Tibshirani, 1996)

P(β) = λ
(
(1− α)1

2
∥β∥22 + α∥β∥1

)
. (2.11)

On one hand, it inherits the good predictive power of ridge regression. At the same time,
it behaves similarly to the lasso in discarding ineffective predictors. The parameter λ ∈ ℜ+

55



CHAPTER 2. OPTIMAL LOWER BOUNDS FOR LOGISTIC LIKELIHOODS

in equation (2.11) determines the overall strength of the regularization, while α ∈ (0, 1)

regulates the relative magnitude of the ℓ1 and ℓ2-norm contributions. The resulting penal-
ized optimization problem is often formulated as the minimization minβ

{
− ℓ(β)+P(β)

}
.

Nonetheless, we here choose to phrase it rather as a maximization problem by a simple
sign change, for coherence with the setting of the previous Sections.

Indeed, the MM and EM schemes presented above are readily extended to such penal-
ized ML estimation problems, thanks to the aforementioned closure of the minorization op-
eration with respect to addition and non-negative product. Accordingly, the minorization
step still proceeds by providing a valid tangent bound for each log-likelihood term ℓi(β),
exploited to construct an overall minorizer G(β | β(t)) for F(β) = ℓ(β) − P(β). Nonethe-
less, the maximization step is now hindered by the further intractability introduced by
ℓ1-norm in the regularization, which prevents closed-form solutions for the optimization
in ℜp even in combination with simple quadratic bounds for the log-likelihood terms. In
the latter case, the overall surrogate takes the form

G(β | β(t)) = −1

2

n∑
i=1

w
(t)
i

(
τ
(t)
i − x⊺

iβ
)2 − λ(1− α)1

2
∥β∥22 − λα∥β∥1 + const, (2.12)

where the form for the weights w(t)
i = wi(x

⊺
iβ

(t)) and effective residuals τ
(t)
i = τi(x

⊺
iβ

(t))

will be determined by the specific minorization procedure considered. The resulting opti-
mization problem can be formally regarded as an instance of quadratic programming, for
which several sophisticated methods have been developed over the years (Nesterov & Ne-
mirovskii, 1994). However, such routines often turn out to be computationally sub-optimal
compared to other more specific techniques, tailored for the lasso regularization. Indeed,
while some contributions in the literature considered the possibility of deriving an addi-
tional quadratic bound for the penalty term (Wu & Lange, 2010), most popular approaches
rely on coordinate-wise optimization schemes (Friedman et al., 2007, 2010), which amount
to optimizing sequentially the surrogate target one coordinate βj at a time, while keep-
ing fixed the remaining βj′ , for every j′ ̸= j. This create an inner sequence of iterates
{β(t,s)}s≥0 starting from the current tangency location β(t,0) = β(t), that are updated by
setting β(t,s+1)

j′ = β
(t,s)
j′ , for all j′ ̸= j and

β
(t,s+1)
j = argmaxβj

{
G(β | β(t))

∣∣ βj′ = β
(t,s)
j′ ∀j′ ̸= j

}
,

where j = s (mod p) for the so-called cyclic version of coordinate descent, while β(t+1) is
eventually set to the final value of such inner cycle, once convergence has been reached.

In particular, the EM formulation of the PG minorization allows the embedding of the re-
sulting coordinate-wise optimization scheme within the broader framework of expectation-
conditional-maximization (ECM) algorithms. These are extensions of EM schemes, intro-
duced by Meng & Rubin (1993) to deal with situations where even the complete-data ML
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estimation remains rather complicated, not necessarily because of the combination with
a non-smooth regularization. Accordingly, every M-step is replaced with a sequence of
simpler conditional-maximization (CM) steps, each of which maximizes the conditional
expectation of the target function obtained in the last E-step subject to a set of adaptive
constraints, that are expressed as the conditioning on some function of the parameters.
The inner cycle of CM-steps is typically run until convergence as in the formulation above,
although it is also possible to fix a priori a given number of CM-steps per each E-step.

2.3.1 Cyclic coordinate-wise optimization

The inner sequence arising from such coordinate-wise optimization scheme is guaranteed
to converge to the global optimum β(t+1) = argmaxβG(β | β

(t)), provided the non-smooth
penalty contribution is a separable function with respect to the coordinates of β

P(β) =
∑p

j=1Pj(βj), (2.13)

where Pj : ℜ → ℜ are univariate convex non-differentiable functions (Hastie et al., 2015,
Section 5.4.1). As the above criterion is clearly satisfied by elastic net penalized logistic
regression, we can focus on one-dimensional surrogates of the kind

G(βj ;β(t,s) | β(t)) = −1

2

n∑
i=1

w
(t)
i ·

(
xijβj −

(
τ
(t)
i + xijβ

(t,s)
j − x⊺

iβ
(t,s)
))2

− λ(1− α)1
2
β2j − λα|βj |+ const,

(2.14)

for each j = 1, . . . , p. This reformulation of the maximization problem has a twofold ad-
vantage. On one hand, it avoids expensive large matrix inversions, in contrast to what
happens for the unpenalized updates of equation (2.6). At the same time, it restores the
tractability of the MM scheme, since the maximization of equation (2.14) allows for an exact
solution of the form

β
(t,s+1)
j =

S
(∑n

i=1w
(t)
i xij

(
τ
(t)
i + xijβ

(t,s)
j − x⊺

iβ
(t,s)
)
, λα

)
∑n

i=1w
(t)
i x2ij + λ(1− α)

, (2.15)

where S(r, δ) is the so-called soft-thresholding operator (Hastie et al., 2015)

S(r, δ) = sign(r)(|r| − δ)+ =


r − δ if r > 0 and δ < |r|
0 if δ ≥ |r|
r + δ if r < 0 and δ < |r| .

(2.16)

It is worth mentioning that advanced computational routines typically complement the
described coordinate-wise optimization scheme with a set of significant heuristics, with
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the goal of enhancing empirical performances. For instance, the aforementioned glmnet

package implements the so-called path-wise coordinate optimization framework by Fried-
man et al. (2007), which makes use of warm-start initialization and active set convergence
(Friedman et al., 2010). The former means that the solution is computed progressively for
a decreasing sequence of values of the regularization parameter, rather than for a single
one, using the outcome of one optimization cycle as the starting value for the following.
The latter signifies that the optimization routine concentrates only on a dynamic subset of
the coordinates of β, namely the non-zero ones, updating such set at the end of each maxi-
mization cycle. While these approaches can be extremely advantageous in practice, in this
work we choose not to employ the above heuristics, with the purpose of better appreciating
the relative efficiency of the routines based on different lower bounds. As such, we focus
on the optimization problem for a single value of the regularization parameter, perform-
ing the maximization for every coordinate of parameter β. Nonetheless, all the methods
presented in this Chapter can be readily integrated within the same path-wise coordinate
optimization scheme.

Uniform and PG quadratic bounds and relative performance

A practical implementation of the above MM coordinate-wise optimization scheme for pe-
nalized ML estimation in logistic regression requires solely the specification of the weights
{w(t)

i }ni=1 and effective residuals {τ(t)i }ni=1. Simple algebraic calculations show that the uni-
form quadratic bound by Böhning & Lindsay (1988) corresponds tow

(t)
BL,i = 1/4

τ
(t)
BL,i =

(
(yi − π(t)i ) + w

(t)
BL,i x

⊺
iβ

(t)
)
/w

(t)
BL,i .

The use of the above coefficients above can often be explicitly selected in several state-of-
the-art statistical software as an alternative to the Newton-Raphson’s updates, that would
correspond tow(t)

NR,i = π
(t)
i (1−π(t)i ) and τ

(t)
NR,i =

(
(yi−π(t)i )+w

(t)
NR,i x

⊺
iβ

(t)
)
/w

(t)
NR,i. Conversely,

the quadratic surrogate arising for the Pólya-Gamma data augmentation translates into
weights and effective residuals given byw

(t)
PG,i = tanh(x⊺

iβ
(t)/2)/(2 x⊺

iβ
(t))

τ
(t)
PG,i = (yi − 1/2)/w

(t)
PG,i .

We highlight here that the comparison between the MM routines arising from the two al-
ternative quadratic bounds presents a substantial difference compared to the unpenalized
case, arising from the use of the coordinate-wise optimization scheme. Indeed, the itera-
tive solution of the univariate maximization problems via equation (2.15) does not involve
anymore any large matrix inversion, which encompassed the only significant operational
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difference between the two quadratic minorization procedures in the absence of regular-
ization. As a consequence, this eliminates the trade-off between cost per update and speed
of convergence associated with the PG and BL bounds described in the previous Section. In
fact, in the coordinate-wise optimization framework, the relative convenience of a partic-
ular bound will be determined solely by the resulting finite-time convergence rate, which
as before is intuitively connected to the tightness of the minorization employed. Indeed,
Lemma 2.1 still implies that

ℓ(β)− P(β) ≥ GPG(β | β(t))− P(β) ≥ GQ(β | β(t))− P(β) ∀β ∈ ℜp

for all β(t) ∈ ℜp and all tangent quadratic minorizer GQ(β | β(t)), which in particular
includes the BL bound. Accordingly, the PG minorization is expected to be consistently
superior to the use of any alternative quadratic tangent bound, as supported by the em-
pirical evidence reported in Section 2.5. Despite this fact, the PG bound is surprisingly
not implemented in many of the most used packages addressing logistic regression under
elastic-net regularization, such as the glmnet R package mentioned previously, in contrast
to the uniform minorization by Böhning & Lindsay (1988). In fact, our results suggest a
systematic replacement of the latter with the PG bound in all coordinate-wise optimization
algorithms for logistic regression, requiring only minor practical modification. A more
formal assessment of the relative convenience of the two MM schemes would require a
quantitative analysis of the associated finite time convergence rates. However, as noted
recently in Klopfenstein et al. (2020), the non-differentiability of the ℓ1-norm in the penalty
significantly hinders an analytical study of the convergence rate, which remains object of
active research (Saha & Tewari, 2013; Zhao et al., 2018). In fact, the majority of the results
in the literature addressing this issue for ECM and EM schemes are limited to smooth target
and surrogate functions (Meng & Rubin, 1993; Meng, 1994; McLachlan & Krishnan, 1996;
Ma et al., 2000; Zhou & Zhang, 2012).

2.4 Beyond PG optimality: piece-wise quadratic minorization

The key feature driving the interest in quadratic tangent bounds for logistic log-likelihoods
dwells in their tractability, which in turn translates into the computational efficiency of
the associated MM schemes. Nonetheless, the comparison between alternative quadratic
minorizations stimulates the question regarding the possibility to develop a tighter one,
especially in light of the aforementioned connection between the speed of convergence of a
given MM scheme and the sharpness of the underlying surrogate functions. Indeed, several
contributions in the literature focused on improving over the PG bound by exploiting piece-
wise quadratic minorizers (Khan et al., 2010; Marlin et al., 2011; Ermis & Bouchard, 2014).
In particular, Marlin et al. (2011) proposed the use of fixed minimax-optimal piece-wise
quadratic bounds among all possible piece-wise quadratic tangent bounds for logistic log-

59

https://cran.r-project.org/package=glmnet


CHAPTER 2. OPTIMAL LOWER BOUNDS FOR LOGISTIC LIKELIHOODS

likelihoods
hPQ(r;R) =

∑R
s=1(asr

2 + bsr + cs) · 1(r ∈ [ts−1, ts)).

In doing so, they consider the number of disjoint intervals R composing the domain of the
surrogate function to be a principal tunable parameter, which regulates a trade-off between
the accuracy and the complexity of the resulting approximation. For an arbitrary number
of pieces R, the piece-wise quadratic bound is then constructed by solving numerically a
minimax optimization problem both on the locations identifying the interval’s separation
and on the local coefficients of the quadratic contributions

min
{as,bs,cs,ts}

max
s=1,...,R

max
r∈[ts−1,ts)

(
h(r)− hPQ(r;R)

)
∣∣∣∣∣∣∣
h(r)−

(
asr

2 + bsr + cs
)
≥ 0 ∀s, ∀r ∈ [ts−1, ts)

ts − ts−1 > 0 ∀s = 1, . . . , R

as ≤ 0 ∀s = 1, . . . , R ,

further imposing bounded discrepancy from the target in each of the R sets. The out-
put of such numeric optimization is then exploited within a generalized EM algorithm to
overcome the intractability of some logistic-Gaussian integrals, replacing the intractable
logistic log-likelihood with the fixed piece-wise bound. This separates the construction of
the fixed bound from the learning phase of the inferential procedure, as the former is in-
tended as a pre-computed approximation of an analytically intractable component of the
model, whose accuracy is controlled via the cardinality of the underlying partitioning of
the domain space. Furthermore, the generality of such a class of approximating functions
comes at cost of the unavailability of a tractable analytical formulation.

In the present Section, we construct a novel piece-wise quadratic tangent bound of the
logistic log-likelihoods, that addresses both the aforementioned limitations of the contri-
bution by Marlin et al. (2011). Assuming again a separable structure of the overall bound
GPLQ(β | β(t)) =

∑n
i=1 gPLQ,i(β | β(t)), we complement each quadratic term with an addi-

tional piece-wise linear contribution, proportional to the ℓ1-norm of the associated linear
predictor |x⊺

iβ|. Accordingly, we chose the acronym PLQ (piece-wise linear-quadratic) to
denote the resulting surrogate, as to emphasize the source of the piece-wise behavior. Our
approach differs from several perspectives from that of Marlin et al. (2011), as detailed later
in this Section.

2.4.1 Novel piece-wise linear-quadratic bound

The proposed PLQ bound is more easily constructed by working in the same transformed
space as in Jaakkola & Jordan (2000), namely focusing on the reparametrization of h(r) as a
function of the squared linear predictor ρ = r2. Indeed, the minorization in equation (2.9)
can be improved only by introducing some curvature in the right and side, for instance by
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complementing it with a term proportional to
√
ρ

h(ρ) ≥ hPLQ(ρ | φ) = h(φ)− 1

2
wPLQ(φ)(ρ− φ)− νPLQ(φ)(

√
ρ−√φ).

While the tangency condition typical of MM scheme ∂h
∂ρ (φ) = ∂hPLQ(ρ|φ)

∂ρ (φ) imposes a con-
straint of the two coefficients wPLQ(φ) and νPLQ(φ), the remaining degree of freedom can be
optimized over by imposing the constraint h(0) = hPLQ(0 | φ), which leads to

wPLQ(φ) =
2

φ

(
h(φ)− h(0)− 2φ

∂h

∂ρ
(φ)

)
νPLQ(φ) = −

2
√
φ

(
h(φ)− h(0)− φ ∂h

∂ρ
(φ)

)
.
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Figure 2.2: Comparison between the PLQ and the PG tangent bounds hPLQ(ρ | φ) and hPG(ρ |
φ) for h(ρ) as a function of the squared linear predictor ρ = r2, with φ = 20.

While Figure 2.2 gives a visual representation of the resulting accuracy gain over the
PG bound as a function of ρ = r2, the minorization clearly remains valid even under the
usual parametrization

h(r) ≥ hPLQ(r | ζ) = h(ζ)− 1

2
wPLQ(ζ)(r

2 − ζ2)− νPLQ(ζ)(|r| − |ζ|), (2.17)

where now

wPLQ(ζ) = 2wPG(ζ)− 2 log cosh
(
ζ/2
)
/ζ2

νPLQ(ζ) = |ζ|
(
wPG(ζ)− wPLQ(ζ)

)
,

(2.18)

while Figure 2.3 allows for an intuitive comparison between the relative accuracy of the
different minorization schemes presented in this work.

61



CHAPTER 2. OPTIMAL LOWER BOUNDS FOR LOGISTIC LIKELIHOODS

-30 -20 -10 10 20 30

-20

-15

-10

-5
h (r)

hPLQ(r|ζ )

hPG(r|ζ )

hBL(r|ζ )

Figure 2.3: Comparison between the novel piece-wise linear-quadratic bound hPLQ(r | ζ)
and the usual quadratic minorizers hPG(r | ζ) and hBL(r | ζ) in the original space, with
ζ = 20. The three bounds coincide in the limit of |ζ| going to zero. Conversely, the larger
is |ζ|, the greater is the relative improvement in the approximation accuracy given by the
PLQ over the PG one.

Comparison with PG bound and more involved piece-wise quadratic minorizations

Thanks to the above formulation, it is relatively easy to prove that the PLQ bound domi-
nates over the PG bound

h(r) ≥ hPLQ(r | ζ) ≥ hPG(r | ζ),

by exploiting the majorization for the absolute value function |r| ≤ 1
2

(
r2

|ζ| + |ζ|
)
, frequently

employed in the MM literature (Hunter & Lange, 2004; Wu & Lange, 2010). Indeed, it can be
easily verified that the usual PG bound is indeed recovered by substituting the piece-wise
linear term in the PLQ minorizer with such quadratic tangent bound for the absolute value
function. In particular, this is a direct consequence of the tangency condition for the PLQ

bound, which gives

wPLQ(ζ) +
1

|ζ|
νPLQ(ζ) = wPG(ζ) . (2.19)

At the same time, proving a general optimality result, analogous to that of equation (2.10),
appears to be more subtle in the case of the PLQ bound, as the piece-wise behavior intro-
duces a significant degree of flexibility, already with only two quadratic branches. How-
ever, if we restrict our attention to the class of two-fold piece-wise quadratic minorizers
for which the non-smooth behavior can be expressed as arising from the absolute value
function

HS(ζ) =

{
hS(r | ζ) = h(ζ) + aS(ζ)(r − ζ)−

1

2
wS(ζ)(r

2 − ζ2)− νS(ζ)(|r| − |ζ|)

s.t. h(ζ) = hS(ζ | ζ) and h(r) ≥ hS(r | ζ) ∀r

}
.
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then we are able to prove that the PLQ bound dominates over all such minorizers

hPLQ(r | ζ) ≥ hS(r | ζ) ∀r ∈ ℜ, (2.20)

given any ζ ∈ ℜ \ {0} and hS(r | ζ) ∈ HS(ζ), as detailed in Appendix A.2.1.
Albeit implicitly included in the general family of piece-wise quadratic tangent bounds

for the logistic log-likelihood, the methodology we propose differs in several aspects from
that of Marlin et al. (2011). Above all, we provide an explicit analytical formulation of the
minorizer, which entails only a single splitting point for the domain of each likelihood con-
tribution at the origin, and restrict the degree of freedom by imposing the same curvature
on both the resulting quadratic branches. In doing so, we avoid imposing bounded dis-
crepancy from the target, since the increased flexibility of the PLQ bound already provides
a substantial accuracy gain over the minorization schemes by Böhning & Lindsay (1988)
and Jaakkola & Jordan (2000). Finally, the variables ζ = (ζ1, . . . , ζn)

⊺, which parameterize
the bound and its coefficients, are learned adaptively as part of the inferential procedure,
instead of being pre-determined via data-agnostic numerical optimization.

Interpretation and connection with generalized lasso

The explicit formulation in terms of the ℓ1-norms of the linear predictors further allows for
a two-fold interpretation of the proposed minorizers. Indeed, the MM routines exploiting
quadratic surrogates can be interpreted as tackling logistic regression by solving an adap-
tive sequence of re-weighted least-squares approximate problems. Conversely, the combi-
nation of the PLQ bound for h(r) with the exact linear term from equation (2.8) results in
the overall tangent minorizer

GPLQ(β | β(t)) =
n∑

i=1

ℓi(β
(t)) +

n∑
i=1

(yi − 1/2)
(
x⊺
iβ − x⊺

iβ
(t)
)

− 1

2

n∑
i=1

wPLQ(x
⊺
iβ

(t))
(
(x⊺

iβ)
2 − (x⊺

iβ
(t))2

)
−

n∑
i=1

νPLQ(x
⊺
iβ

(t))
(
|x⊺

iβ| − |x
⊺
i β

(t)|
)
.

(2.21)

Alternatively, the above surrogate can be rewritten as

GPLQ(β | β(t)) = −n log 2 + (y − 0.5 · 1n)⊺Xβ −
1

2
β⊺X⊺W

(t)
PLQXβ − ∥N

(t)
PLQXβ∥1, (2.22)

where W
(t)
PLQ = diag({wPLQ(x

⊺
iβ

(t))}ni=1) and N
(t)
PLQ = diag({νPLQ(x

⊺
iβ

(t))}ni=1). This sug-
gests that the essence of logistic regression is better grasped by an approximating sequence
of adaptive combinations of re-weighted least-squares and least-absolute-deviations prob-
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lems, which can be equivalently addressed as least-squares regressions under an adaptive
generalized lasso penalty (Tibshirani & Taylor, 2011; Hastie et al., 2015; Arnold & Tibshi-
rani, 2016; Ali & Tibshirani, 2019). The latter is an extension of the celebrated lasso regular-
ization, which penalizes the regression via the ℓ1-norm of a suitable linear transformation
Dβ of the parameters, instead of the usual penalization ∥β∥1. The scope of such penal-
ties is to enforce certain structural constraints on the coefficients, rather than pure sparsity,
as it happens for instance in the case of the fused lasso (Tibshirani et al., 2005) and trend
filtering (Kim et al., 2009). Indeed, the generalized lasso regularization induced by the
proposed minorization scheme at the t-th step corresponds to the transformation matrix
D = N

(t)
PLQX, which essentially enforces a penalization on values of β resulting in large

values of the linear predictors Xβ, further strengthened by the monotonicity of the multi-
plicative coefficients νPLQ(ζ) with respect to |ζ|.

2.4.2 Bound optimization and MM algorithm under elastic net penalty

The price to be paid for the higher flexibility of the PLQ bound is the unavailability of
a closed-form solution for the joint maximization steps on ℜp in the resulting MM algo-
rithm, even for the unconstrained case. In fact, the nature of the resulting surrogate for-
mally places the problem within the broader framework of the optimization of piece-wise
quadratic functions with linear constraints (Lucet et al., 2009; Cui et al., 2020). However, it
is computationally advantageous to leverage on the specific structure of the problem con-
sidered, similarly to what we have seen before in Section 2.3. Indeed, it can be shown that
the resulting coordinate-wise optimization problems still admit exact solutions, which in
particular suggest the use of PLQ in combination with ℓ1-penalties, as they already dictate
the use of coordinate descent schemes. In the latter case, the one-dimensional regularized
surrogate would take the form

GPLQ(βj ;β
(t,s) | β(t)) = −1

2

n∑
i=1

w
(t)
PLQ,i ·

(
xijβj −

(
τ
(t)
PLQ,i + xijβ

(t,s)
j − x⊺

iβ
(t,s)
))2

−
n∑

i=1

ν
(t)
PLQ,i ·

∣∣xijβj − (xijβ(t,s)j − x⊺
iβ

(t,s)
)∣∣

− λ(1− α)1
2
β2j − λα|βj |+ const ,

with w
(t)
PLQ,i = wPLQ(x

⊺
iβ

(t)), ν(t)PLQ,i = νPLQ(x
⊺
iβ

(t)) and τ
(t)
PLQ,i = (yi − 1/2)/w

(t)
PLQ,i, while the

solution to the maximization problem β
(t,s+1)
j = argmaxβj

GPLQ(βj ;β
(t,s) | β(t)) can be ex-

pressed, for instance, as in Theorem 2.2 of Ohishi et al. (2021). For ease of notation, let us
consider the one-dimensional function

G(r) = −1

2
c2r

2 + c1r −
m∑
j=1

σj |r − δj |
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where c2 > 0 and σj > 0 for all j = 1, . . . ,m, and define {ta}ua=1 to be the order statistics of
{δj}mj=1, with u < m if the original set contains duplicates, while t0 = −∞ and tu+1 = ∞.
Furthermore, let us introduce the auxiliary variables

Ra =

{
(ta, ta+1] 0 ≤ a ≤ u− 1

(ta, ta+1) a = u
σ̃a =

{
−
∑r

j=1 σj a = 0

σ̃a−1 + 2
∑

j:tj∈Ra
σj 1 ≤ a ≤ u

and r̃a = (c1− σ̃a)/c2 for a = 1, . . . , u. Accordingly, it can be shown that it exists either an
index a∗ such that r̃a∗ ∈ Ra∗ or and index a⋆ such that ta⋆ ∈ [r̃a⋆ , r̃a⋆−1) (Ohishi et al., 2021),
and that

argmaxrG(r) =

{
r̃a∗ if a∗ exists

ta⋆ otherwise .

In other words, the above solution can be regarded as arising from a generalization
of the soft-threshold function of equation (2.16), that notably requires sorting an n + 1-
dimensional array of effective residuals {δj}mj=1 appearing within the absolute value func-
tions.

We conclude this Section with a note on the numerical stability of optimization proce-
dures exploiting the PLQ bound, concerning in particular the evaluation of the coefficients
in equation (2.18) as their argument goes to zero. Indeed, it appears that state-of-the-art
numerical libraries incur into a fictitious oscillating behavior in calculating the function(
log cosh(r)

)
/r in a neighborhood of the origin. We obviate this problem by replacing the

aforementioned function with its expansion around zero, whenever its argument is within
a ball of arbitrarily small radius around the origin.

Addressing convergence of the corresponding coordinate-wise updates

The approach described above would correspond to an extension of the methodology em-
ployed by Wu & Lange (2008) in the context of lasso penalized least-absolute regression,
sharing in particular the same limitations. In fact, it has been shown that in such scenarios
coordinate-wise optimization may fail to convergence to a proper optimum but rather get
stuck into an inferior point (Li & Arce, 2004), since the non-differentiable contribution in
the target function is not anymore a separable function of the coordinates of the parame-
ter vector β (Tseng, 2001; Hastie et al., 2015), contrarily to the penalty in equation (2.13).
Indeed, the same issue is faced by all generalized lasso penalties, which motivated the de-
velopment of different optimization schemes tailored for the specific penalization matrix
D considered. However, despite the aforementioned connection between the PLQ bound
and generalized lasso regularizations, the extension of methodologies developed for the
latter to the surrogate in equation (2.21) remains nontrivial. Indeed, optimization schemes
dealing with generalized lasso penalties typically leverage on specific sparse structure and
discrete nature of the matrix D. Furthermore, such routines often resort to path-wise opti-
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mization (Yu et al., 2015; Arnold & Tibshirani, 2016; Ohishi et al., 2021), taking advantage
of explicit relations between the solutions of the penalized optimization problems corre-
sponding to different values of a multiplicative penalty parameter λ, which regulates the
strength of ∥Dβ∥1 relative to the unconstrained objective as in equation (2.11). On the con-
trary, while the non-smooth term in equation (2.21) lacks such tunable penalty parameter,
the structural constrain among the coordinates of β induced by the matrix D = N

(t)
PLQX

within the PLQ bound is substantially more complicated than the one appearing in usual
generalized lasso regularizations.

Nevertheless, it is worth highlighting that the aforementioned unreliable convergence
issue is different in nature from that of Newton’s method. Indeed, coordinate-wise op-
timization schemes targeting the combination F(β) of a smooth objective with a non-
separable non-differentiable penalty are still guaranteed to reach convergence in a finite
number of iterations, intended as observing a difference F(β(t+1)) − F(β(t)) smaller than
any fixed threshold. On the contrary, Newton’s iterates may not reach convergence at all,
as they remain prone to face oscillating and even diverging behaviors (Böhning & Lindsay,
1988). Nonetheless, the limiting value arising from coordinate-wise optimization of the
PLQ bound may be sub-optimal compared to a proper optimum (Li & Arce, 2004), albeit
often barely appreciable in scenarios of practical interest. Finally, we note that coordinate-
wise optimization of equation (2.21) reintroduces a trade-off between the enhanced speed
of the convergence and the reduced computational efficiency of the resulting MM scheme,
if compared to the one arising from the use of quadratic tangent bounds. Indeed, solv-
ing the corresponding univariate optimization problems requires a sorting operation with
O(n log n) cost, which is missing when dealing with purely quadratic minorizers. As such,
the overall relative performance of the MM schemes exploiting respectively the PLQ and the
PG bound will again depend on a balance between cost per update and speed of conver-
gence, the latter being strongly influenced by the dimensionality of the regression problem.
Intuitively, the use of the PLQ bound is expected to be advantageous in large-p-small-n set-
tings.

2.4.3 Generalized-MM via semi-smooth coordinate descend

In this Section we propose a hybrid optimization procedure to reduce the computational
difficulty of the coordinate-wise updates for the PLQ bound, while still allowing to benefit
from the resulting faster rate of convergence. A viable approach to do so would be to get
rid of the non-differentiability within the bound, in the search for a compromise between
tractability of the surrogate and tightness of the resulting approximation. For instance,
this could be done by appealing to the alternative interpretation of the PLQ bound as the
combination of least-squares and least-absolute regression terms, which allows for a direct
extension of the semi-smooth approximation exploited by Yi & Huang (2017) in the context
of quantile regression under elastic net penalty. In particular, the strategy proposed therein
amounts to performing an additional approximation step, replacing the absolute value
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functions within the PLQ bound with Huber-loss-like contributions, arbitrarily close to the
original surrogate

|r| ≤ dϵ(r) =

{
|r| if |r| > ϵ
1
2
r2

ϵ + 1
2ϵ if |r| ≤ ϵ

∀ϵ > 0 .

Indeed, such operation restores first-order differentiability of the approximate target while
still providing a valid MM scheme, as the overall surrogate yields a proper tangent mi-
norizer for the true objective function at β(t), provided that ϵ < mini|x⊺

iβ
(t)|

G(ϵ)PLQ(β | β(t)) = −1

2

n∑
i=1

w
(t)
PLQ,i ·

(
x⊺
iβ − τ

(t)
PLQ,i

)2 − n∑
i=1

ν
(t)
PLQ,i · dϵ(x

⊺
iβ)

− λ(1− α)1
2
∥β∥22 − λα∥β∥1 + const .

(2.23)

Alternatively, it would be possible to obtain a different smoother relaxation of the problem
via the relation |r| <

√
r2 + ϵ2 (Voronin et al., 2015), even though strictly speaking the re-

sulting surrogate will not be anymore tangent to the target at β(t). However, the resulting
iterative optimization scheme could be regarded as a generalization of the MM rationale
relaxing the tangency constraints on the minorizer, as the one considered by Parizi et al.
(2019). In particular, the authors provided general conditions for the convergence proper-
ties of the resulting routines.

In either case, while the smooth approximations would eliminate the hurdle arising
from the non-differentiability in the surrogate target, thus restoring once more the compu-
tational efficiency of the coordinate-wise updates by getting rid of the sorting operation, the
solutions to the associated coordinate-wise optimization problems would not be available
anymore via an exact formulation. For this reason, Yi & Huang (2017) suggested solving
sequentially the resulting univariate optimizations via semi-smooth Newton coordinate
descent, claiming in particular that the convergence of resulting updates is ensured under
the pathwise optimization framework. While it may sound contradictory to re-introduce
Newton’s method to perform the inner optimizations of MM and EM schemes, as one dis-
tinctive feature of the latter is indeed the associated convergence guarantees, the empirical
studies presented in the following Section suggest that the smooth approximations of the
piece-wise linear-quadratic surrogate are sufficiently well behaved for the inner Newton
updates to consistently achieve convergence. In particular, this remains true even in spe-
cific low-dimensional unpenalized logistic regression settings, where the application of
Newton’s method to the exact objective actually incurs in the aforementioned diverging
behavior. In Appendix A.2.2 we report the coordinate-wise updates for the semi-smooth
surrogate from equation (2.23), which follows directly from an extension of the construc-
tion by Yi & Huang (2017).
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2.5 Empirical studies

In the current Section, we report the results of empirical studies we performed for two an-
tithetical scenarios. We first consider the large-n-small-p setting of the Indian Liver Patient
Dataset available at the UCI machine learning repository (Dua & Graff, 2017). Additionally,
we consider the large-p-small-n scenario of the leukemiaDataset available in the R library
supclust. We perform penalized maximum likelihood estimation for logistic regression
under elastic net penalty, where the parameter α in equation (2.11) is set to α = 0.5, while
the value λ is set by cross-validation via the glmnet R package on each Dataset. We focus
on coordinate-wise optimization via MM (or EM) schemes employing the uniform quadratic
bound by Böhning & Lindsay (1988), the optimal quadratic one by Jaakkola & Jordan (2000)
and the novel piece-wise linear quadratic bound introduced above. Table 2.1 reports the
primary quantity of interest for our work, namely the number of iterations needed to reach
convergence, which give empirical evidence on the respective convergence rate. For each
lower bound, we consider two possible implementations, which differ in the internal max-
imization of the corresponding MM schemes. In one case, for each E-step we perform a full
inner optimization, until convergence of the coordinate-wise updates (Full). Alternatively,
for each E-step we perform only one single optimization step per each covariate (One-step),
as in generalized EM schemes. For what concern the optimization of the PLQ bound, we
proceed by solving exactly the corresponding coordinate-wise updates, as described in
Section 2.4.2. On the contrary, we do not explicitly report analogous results for the hybrid
strategy discussed in Section 2.4.3, for which the convergence rates are slightly sub-optimal
compared to that of the exact coordinate-wise optimization.

Table 2.1: Outcome of penalized logistic regression under elastic net regularization, ex-
ploiting different tangent lower bounds of the log-likelihood. In particular, the focus is on
the empirical convergence rates of the resulting MM optimization schemes and the associ-
ated overall speed-complexity trade-off.

Dataset λ n p M-steps Value MM-BL ECM-PG MM-PLQ

Liver 1,48 579 11 One-step E steps 750 295 263

Full E steps 670 177 131

M steps 1592 844 691

Leukemia 0,59 72 3572 One-step E steps 10001 6065 3156

Full E steps 8827 4836 2200

M steps 10001 5410 2539

The results reported in Table 2.1 confirm the intuition reported in the previous Sec-
tions. On one hand, the use of the PG bound leads to systematically better performances
compared to that arising from the uniform quadratic bound. In fact, the former leads to
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consistent faster convergence, and the same cost per iteration. Surprisingly, the PG bound
is rarely implemented in state-of-the-art statistical software, such as the aforementioned
glmnet package, in favor of the uniform one. On the other hand, the use of the PLQ

bound in turn improves the convergence rate over the PG one, especially in large-p-small-n
settings, where it improves by the same proportions as the latter does over the uniform
bound. Despite these encouraging results, the overall speed-complexity trade-off is still in
favor of the PG bound, which motivates further investigation for the optimization of the
PLQ surrogates, for instance extending the path-wise algorithms developed in the litera-
ture for generalized lasso penalties (Tibshirani & Taylor, 2011; Hastie et al., 2015; Arnold &
Tibshirani, 2016; Ali & Tibshirani, 2019).

2.6 Discussion

In the present Chapter we reviewed the most popular MM optimization schemes for unpe-
nalized and regularized ML estimation in logistic regression models. We highlighted the
optimality of the bound arising from the Pólya-Gamma data augmentation scheme (Pol-
son et al., 2012), among all possible quadratic tangent minorizers for logistic log-likelihood.
We stressed how this becomes particularly beneficial in the presence of ℓ1 penalties, which
appears to have been surprisingly overlooked even in state-of-the-art statistical software.
Furthermore, we introduced a refined tangent lower bound for logistic log-likelihoods, by
providing a piece-wise quadratic tangent minorizer for an intractable term appearing in
the latter. Notably, the proposed minorizer dominates over the aforementioned quadratic
PG bound, while at the same improves in tractability with respect to alternative piece-wise
quadratic minorizers available in the literature (Marlin et al., 2011). As opposed to the
latter, the proposed surrogate allows for an explicit analytical expression, regulated by a
set of parameters that can be learned adaptively as part of the inferential procedure. The
proposed piece-wise quadratic surrogate is particularly suited for the combination with
non-smooth penalties, such as the lasso and the elastic net, which already dictate the use
of coordinate-wise optimization schemes. In fact, the resulting coordinate-wise updates
still admit exact solutions in combination with the PLQ bound. The increased tightness of
the novel bound with respect to quadratic surrogates is shown to lead to a faster empirical
convergence rate of the resulting MM optimization scheme, especially in high-dimensional
scenarios. We note however that the increased convergence speed comes with a trade-off
in the cost per iteration, as each coordinate-wise update now requires a sorting operation at
O(n log n) cost, which is absent when dealing with purely quadratic surrogates. Currently,
the resulting balance between convergence speed and updates efficiency appears to remain
in favor of the PG bound, although the details of the implementation for the PLQ updates
might play a pivotal role in assessing such relation. Nevertheless, alternative strategies
for the optimization of the proposed PLQ bound certainly deserve further investigation,
beyond the aforementioned pathwise optimization schemes, extending those developed
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for generalized lasso penalties (Arnold & Tibshirani, 2016). For instance, the impact of the
sorting operation can be largely mitigated by considering only a subset of the observations
to construct the surrogate target at each step, as it happens in the context of stochastic op-
timization. Indeed, this would result in a generalization of the MM rationale, in the same
spirit as the one studied in Zhang et al. (2019).
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Chapter 3

Enhanced variational Bayes for
logistic regression via piece-wise
quadratic approximations

Variational Bayes routines provide a popular class of strategies to perform approximate
posterior computations, whenever a faster alternative to sampling-based Bayesian infer-
ence is required. The essence of such methods lies in the minimization of a suitable dis-
crepancy between the exact posterior and an approximate one, belonging to a pre-specified
family of tractable distributions. The latter is typically identified by the enforcement of an
explicit analytical form or via the imposition of a specific dependence structure in the tar-
get parameter space. The choice of the approximating class is often driven by an implicit
trade-off between tractability, which ensures the computational advantage over sampling
methods, and flexibility, which eventually allows for accurate approximation. In the case of
Bayesian logistic regression, several contributions in the literature resort to a Gaussian ap-
proximation for the intractable posterior, originally derived by direct tangent minorization
of the log-likelihood contributions. Such procedure is actually endowed with a full prob-
abilistic interpretation, as it arises as a proper mean-field (MF) variational Bayes routine
under the celebrated Pólya-Gamma data augmentation scheme. As the resulting approx-
imate posterior might not be sufficiently accurate in high dimensions, we leverage on the
piecewise linear-quadratic bound derived in the previous Chapter to construct a refined
variational approximation of the posterior distribution in logistic regression models, which
improves over the PG MF one as a consequence of relative tightness of the corresponding
likelihood lower bounds. The novel approximate procedure still allows for simple expres-
sion of the update equations for the associated variational parameters, albeit they entail
the evaluation of suitable expected values with respect to a distribution with piece-wise
quadratic log-kernel, lacking closed-form expressions as opposed to the purely Gaussian
case. Nonetheless, it is possible to leverage a well-known scale mixture of normals rep-
resentation for the Laplace contributions appearing in the lower bound, exploited in the
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literature dealing with the Bayesian lasso and quantile regression. This enables to obtain
accurate Monte Carlo estimates of the desired quantity, while allowing for an implementa-
tion with linear cost in the number of covariates. As a consequence, the resulting approxi-
mation still leads to a beneficial tractability-accuracy trade-off in large-p-small-n scenarios,
where state-of-the-art exact sampling schemes often face severe limitations while mean-
field variational Bayes might suffer from reduced accuracy.

3.1 Introduction

A recurrent hurdle in Bayesian statistics dwells in the need to perform computations under
intractable posterior distributions, lacking closed-form expressions. Indeed, the intractabil-
ity of the posterior often arises directly from a non-conjugate combination of likelihood
and prior, or indirectly as a consequence of the dimensionality of the associated statisti-
cal problem. The more traditional way to overcome such limitations appeals to different
Monte Carlo (MC) schemes tailored to sample from the exact posterior distribution, ranging
from most simple methods, such as Accept-Rejection and Importance Sampling (Chopin &
Papaspiliopoulos, 2020), to more elaborate Markov Chain Monte Carlo MCMC schemes, in-
cluding among others Gibbs Samplers, Adaptive Metropolis (Haario et al., 2001), Hamilto-
nian Monte Carlo (Hoffman & Gelman, 2014). Nonetheless, even most advanced sampling
schemes often remain computationally restrictive, if not prohibitive, especially in high-
dimensional scenarios or dealing with large datasets and even for moderately complex
models (Chopin & Ridgway, 2017; Johndrow et al., 2018). As an alternative way to perform
scalable posterior computations, fast deterministic approximations have become increas-
ingly popular in the last two decades, with variational Inference playing a prominent role
among several alternatives (Bishop, 2006; Blei et al., 2017). Generally speaking, the term
variational Inference encompasses any procedure that replaces the intractable posterior
with an approximate one, chosen by optimizing a suitable divergence between the exact
target and the elements of a pre-specified family of distributions (Wainwright & Jordan,
2008). Most common variational Bayes (VB) routines focus on the minimization of the for-
ward Kullback-Leibler divergence (Kullback & Leibler, 1951) KL[q(θ)∥p(θ | y)] over a given
family of distribution q(θ) ∈ Q, where θ is the parameter of interest and y represent the ob-
served data (Ormerod & Wand, 2010; Blei et al., 2017). Nonetheless, the general definition
above encompasses a broad spectrum of methodologies focused on the optimization of al-
ternative objectives, ranging from expectation–propagation (Minka, 2001) and belief prop-
agation (Yedidia et al., 2000), to variational routines building on other kinds of divergences,
such as the Hellinger distance (Campbell & Li, 2019) or other α−Renyi divergences (Li &
Turner, 2016), or on direct tangent minorization of the likelihood contributions (Jaakkola &
Jordan, 2000; Wainwright et al., 2005).

The different forms of variational inference typically face a common accuracy-scalability
trade-off, as considering larger and flexible approximating families will hopefully allow to
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get closer to the true objective, most often at the expense of a more elaborate and costly op-
timization procedure (Bishop, 2006). On the contrary, enforcing simpler structures might
decrease the approximation accuracy in exchange for facilitating the optimization process
and improving scalability. For instance, mean-field variational inference has become par-
ticularly popular thanks to its clear probabilistic interpretation and remarkable scalability,
as the underlying independence assumption in the target parameter space allows for effi-
cient coordinate-wise optimization in the case of conditionally conjugate models within the
exponential family (Blei et al., 2017). This approach has been particularly exploited in hier-
archical formulations with global-local variables, where the unknown parameter θ = (β, z)

can be split into a set of global target parameters β ∈ ℜp, which are shared across all ob-
servations, and a set of local hidden variables z = (z1, . . . , zn)

⊺, each one specific of the
single statistical unit (Ormerod & Wand, 2010). Nonetheless, the factorization assumption
in MF-VB is known to often lead to an over-simplified approximation of the full target, suf-
fering often from substantial variance underestimation (Giordano et al., 2015), occasionally
coupled with over-shrinking of the posterior mean (Fasano et al., 2022). This led to several
lines of research improving variational Bayes routines in different directions, often inter-
twined with one another. Some contributions focused on developing general applicable
variational approximation schemes (Ranganath et al., 2014), as opposed to highly model-
specific procedures that require non-trivial domain-knowledge and dedicated implemen-
tations. Other works combined the essence of mean-field approximations with powerful
ideas from gradient-based stochastic optimization (Hoffman et al., 2013; Hoffman & Blei,
2015) and automatic differentiation (Kucukelbir et al., 2017), with the goal of extending
scalability via subsampling. Concurrently, other contributions focused on relaxing the in-
dependence assumption of MF procedures, in an effort to improve the optimization accu-
racy both within general formulations (Guo et al., 2016; Miller et al., 2017; Campbell & Li,
2019) or focusing on specific but fundamental statistical constructions (Fasano et al., 2022).

The current Chapter falls within the latter research line, as we develop a refined vari-
ational approximation for the posterior distribution under logistic likelihoods, improv-
ing over the mean-field VB routine associated with the celebrated PG data augmentation
scheme (Polson et al., 2012; Durante & Rigon, 2019). Following the original construction
by Jaakkola & Jordan (2000), such MF-VB procedure has been largely exploited in the lit-
erature (Bishop & Svensén, 2003; Rasmussen & Williams, 2006; Lee et al., 2010; Ren et al.,
2011; Carbonetto & Stephens, 2012), although the formal probabilistic connection with the
DA was established only recently thanks to the contribution by Durante & Rigon (2019).
We improve over the aforementioned approximation by tackling again the problem from
a tangent minorization perspective (Wu & Lange, 2010), exploiting the novel piece-wise
quadratic (PLQ) bound derived in the previous Chapter. Indeed, such minorization in-
duces a sharper lower bound on the exact marginal likelihood, dominating over the evi-
dence lower bound (ELBO) associated with the PG MF-VB scheme.

Similarly to the latter, the PLQ variational surrogate involves a set of variational param-
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eters ζ = (ζ1, . . . , ζn), which can be learned adaptively to optimize the corresponding ELBO.
Notably, this still leads to simple expressions for the sequential updates of the aforemen-
tioned parameters, although the increased approximation accuracy comes at the cost of
reduced tractability, since the purely Gaussian behavior resulting from the MF-VB assump-
tion no longer holds true. However, the specific analytical structure of the log-likelihood
minorizers allows to perform computations by borrowing well-established results from the
literature, developed in the context of the Bayesian version of lasso (Park & Casella, 2008;
Hans, 2009) and quantile regressions (Kozumi & Kobayashi, 2011; Li et al., 2010). In partic-
ular, we take advantage of a scale-mixture of Gaussian representation for Laplace random
variables, to deal with the piece-wise linear contributions appearing in the approximate
log-posterior. This translates into the possibility to produce MC estimates of the desired
quantity, sampling from n additional latent variables κ = (κ1, . . . , κn). Notably, the com-
putational cost given any sample κ can be optimized so as to scale only linearly in the
number of covariates. This is most interesting in light of the fact that PG MF-VB suffers
mostly from reduced accuracy in scenarios with non-negligible posterior skewness, as in-
deed happens routinely in large-p-small-n settings. As a result, the novel approximation
procedure still allows for a beneficial accuracy-tractability trade-off in high dimensions,
where a middle-ground between exact but expensive sampling schemes and fast but poor
approximations is still lacking in the literature. Preliminary empirical results confirm the
potential benefits of the proposed procedure over the PG MF-VB, while more stringent an-
alytical results may follow by extending some recent results in the literature, tackling the
PG MF-VB from a tangent transform perspective (Ghosh et al., 2022).

3.2 Mean-field variational Bayes for logistic regression

Bayesian logistic regression notoriously allows for a convenient hierarchical formulation
via Pólya-Gamma data augmentation (Polson et al., 2012), as discussed previously in Sec-
tion 2.2.2

(yi | xi,β)
ind∼ Bern(π(x⊺

iβ)) i = 1, . . . , n

(zi | xi,β)
ind∼ PG(1,x⊺

iβ) i = 1, . . . , n

β ∼ Np(ξ0,Ω0) ,

where as before π(x⊺
iβ) = (1+ e−x⊺

i β)−1 represents the logit link, with i ∈ {1, . . . , n}, while
from now on we omit the predictors xi = (xi1, . . . , xip)

⊺ in the conditioning for ease of
notation. A key advantage of such representation lies in the restored conjugacy of the full
conditional posterior p(β | y, z) under the commonly assumed Gaussian prior for the un-
known coefficients β. While this renewed tractability has been readily exploited within a
plain Gibbs Sampling scheme for drawing samples from the exact posterior (Polson et al.,
2012), the same representation leads to an efficient mean-field variational Bayes scheme
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for approximating the intractable joint posterior p(β, z | y), as highlighted recently in Du-
rante & Rigon (2019). Such a procedure aims at minimizing the KL divergence between a
surrogate and the exact posterior

min
q(β,z)∈QMF

KL [ q(β, z) ∥ p(β, z | y) ] ,

while constraining the former to belong to a factorized family of distributions QMF =

{ q(β, z) | q(β, z) = q(β) q(z) }. More conveniently, the same optimization problem can be
recast as the equivalent maximization of the evidence lower bound, allowing to cancel out
the unknown and intractable marginal likelihood p(y) =

∫
p(β)

∏n
i=1 p(yi | β) dβ

ELBO[q(β, z)] =

∫
q(β, z) log

p(β, z,y)

q(β, z)

= −KL [ q(β, z) ∥ p(β, z | y) ] + log p(y) ≤ log p(y).

(3.1)

Under the mean-field assumption, such optimization is typically solved via an efficient
coordinate-wise optimization scheme (CAVI) (Blei et al., 2017), which translates into the
simple sequential updates

q(t+1)(β) ∝ exp
{
Eq(t)(z)[ log p(β | z,y) ]

}
q(t+1)(zi) ∝ exp

{
Eq(t+1)(β)[ log p(zi | β) ]

}
i = 1, ..., n ,

where the additional factorization q(z) =
∏n

i=1 q(zi) is an indirect consequence of the con-
ditional independence structure of the latent variables. Moreover, the augmented repre-
sentation falls within the tractable framework of conditionally conjugate exponential fam-
ily models, which allows to further simplify the updates equation above. Indeed, it can
be easily verified that q(t+1)(β) is the density of a p-variate Gaussian Np(ξ

(t+1);Ω(t+1)),
while q(t+1)(zi) is the density of a Pólya-Gamma random variable PG(1, ζ

(t+1)
i ), where the

respective parameters are obtained as

Ω(t+1) =
(
Ω−1

0 +X⊺diag
(
{wPG(ζ

(t)
i )}ni=1

)
X
)−1

ξ(t+1) = Ω(t+1)
(
Ω−1

0 ξ0 +X⊺(y − 1/21n)
)

(
ζ
(t+1)
i

)2
= Eq(t+1)(β)

[
(x⊺

iβ)
2
]
= x⊺

iΩ
(t+1)xi + (x⊺

i ξ
(t+1))2 i = 1, . . . , n ,

(3.2)

where wPG(ζ
(t)
i ) = Eq(t)(zi)

[zi] = tanh(ζ
(t)
i /2)/(2ζ

(t)
i ), while X = (x1, . . . ,xn)

⊺. The updates
above are repeated iteratively until convergence of the corresponding ELBO, the latter being
ensured by a useful monotonicity property for the lower bound itself.
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3.2.1 Variational inference via tangent minorization

The same variational approximation was originally introduced from a different perspec-
tive in the seminal contribution by Jaakkola & Jordan (2000), without appealing to a formal
hierarchical probabilistic interpretation. Indeed, the authors tackled the problem by pro-
viding a family of tangent minorizers for the log-likelihood contributions

log p(yi | β) ≥ log p̄(yi | β, ζi) ∀β ∈ ℜp

log p(yi | β̄) = log p̄(yi | β̄, ζi) ∀β̄ = β̄(ζi)

for i = 1, . . . , n, where the parameters {ζi}ni=1 were interpreted as simply identifying tan-
gent locations. Regardless of the specific parametric form of the surrogates p̄(yi | β, ζi), the
above minorization implicitly induces both a lower bound on the marginal likelihood

p(y) ≥ p̄(y | ζ) =
∫
p(β)

n∏
i=1

p̄(yi | β, ζi) dβ (3.3)

and an associated full-fledged approximate posterior distribution

p̄(β | y, ζ) = p̄(β,y | ζ)
p̄(y | ζ)

=
p(β)

∏n
i=1 p̄(yi | β, ζi)
p̄(y | ζ)

. (3.4)

In particular, the lower bound on the marginal likelihood in equation (3.3) can be employed
as a global measure of the approximation accuracy, hence redirecting the attention to its
maximization over the variational parameters maxζ∈ℜn p̄(y | ζ). Such optimization can be
performed by resorting to a further minorization via Jensen inequality, which gives

log p̄(y | ζ) = logEq(β)

[
p̄(β,y | ζ)
q(β)

]
≥ Eq(β)

[
log

p̄(β,y | ζ)
q(β)

]
. (3.5)

While the above relation holds true for any distribution q(β), it becomes of practical interest
by setting q(t+1)(β) = p̄(β | y, ζ(t)), which gives

Ep̄(β|y,ζ(t))

[
log

p̄(β,y | ζ)
p̄(β | y, ζ(t))

]
= Q(ζ | ζ(t))−H(ζ(t)) ,

where H(ζ(t)) represents the Shannon entropy of the distribution p̄(β | y, ζ(t)), which does
not depend on the free parameters ζ, while Q(ζ | ζ(t)) is defined as

Q(ζ | ζ(t)) = Ep̄(β|y,ζ(t)) [log p̄(β,y | ζ)] . (3.6)

As equation (3.5) now holds as an equality when ζ = ζ(t), the minorization above naturally
translates into a genuine minorize-maximize (MM) routine (Hunter & Lange, 2004; Wu &
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Lange, 2010) for optimizing p̄(y | ζ) over ζ ∈ ℜn, by updating the variational parameters
sequentially via the fixed-point scheme ζ(t+1) = T (ζ(t)) = argmaxζ∈ℜnQ(ζ | ζ(t)), and it-
eratively using the updated locations to construct refined tangent minorizers. By virtue of
the properties of MM schemes, the monotonicity of {p̄(y | ζ(t+1))}t≥0 is ensured as well un-
der the above formulation, which in turn guarantees convergence of the procedure under
usual assumptions for MM schemes (Wu & Lange, 2010), eventually reaching an equilib-
rium point ζ∗ = T (ζ∗). Furthermore, the joint optimization in ℜn naturally decouples as n
separate one-dimensional maximization problem, as a consequence of the additive nature
of the log-likelihood

ζ
(t+1)
i = argmax

ζi∈ℜ
Ep̄(β|y,ζ(t)) [log p̄(yi | β, ζi)] . (3.7)

It is worth mentioning that the tangent minorization perspective to construct variational
approximations of the posterior does not offer guarantees on the KL divergence between
the latter and the optimal surrogate, as in general

argmaxζ∈ℜn p̄(y | ζ) ̸= argminζ∈ℜnKL [ p̄(β | y, ζ) ∥ p(β | y) ], (3.8)

as exemplified later on in Section 3.4.

3.2.2 Quadratic surrogates and equivalence with PG MF-VB

A key step in constructing a practical variational approximation in the setting of equa-
tion (3.3) consists in supplying a valid tangent lower bound for a specific likelihood. While
elaborate and flexible parametric forms of p̄(y | β, ζ) might lead to more accurate approx-
imations, simpler surrogates might allow for a more efficient solution to equation (3.7). In
the case of logistic regression, Jaakkola & Jordan (2000) focused on quadratic minorizer for
the log-likelihood

log p(yi | β) = (yi − 0.5)x⊺
iβ − log(ex

⊺
i β/2 + e−x⊺

i β/2)

≥ (yi − 0.5)x⊺
iβ − log(eζi/2 + e−ζi/2)− 1

2
wPG(ζi)((x

⊺
iβ)

2 − ζ2i )

:= log p̄PG(yi | β, ζi),

obtained via supporting hyperplane inequality, with equality clearly holding when (ζi)
2 =

(x⊺
iβ)

2. This induces a tractable Gaussian Variational approximation of the posterior p̄(β |
y, ζ) = ϕp(β−ξ(ζ);Ω(ζ)), which has been indeed largely exploited in the literature (Bishop
& Svensén, 2003; Rasmussen & Williams, 2006; Lee et al., 2010; Ren et al., 2011; Carbonetto
& Stephens, 2012). As a matter of fact, both the approximate posterior parameters ξ(ζ) and
Ω(ζ) and the update rules of the variational parameters ζ(t+1) match exactly with that of
equation (3.2). Indeed the original tangent minorization approach by Jaakkola & Jordan
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(2000) fully coincides with the proper MF-VB under the Pólya-Gamma DA presented in the
previous Section, as recently shown by Durante & Rigon (2019). In particular, the lower
bound in equation (3.5) coincides with the genuine evidence lower bound for the joint
approximate posterior from equation (3.1)

ELBO[q(t+1)(β, z)] =

∫
q(t+1)(β, z) log

p(β, z,y)

q(t+1)(β, z)
= Ep̄PG(β|y,ζ(t))

[
log

p̄PG(β,y | ζ(t+1))

p̄PG(β | y, ζ(t))

]
,

as proven in Theorem 2.1 of Durante & Rigon (2019), implying that the two procedures
ultimately aim at maximizing the same objective.

As outlined in the previous Section, this result places the approximation by Jaakkola
& Jordan (2000) within the broader framework of variational inference for conditionally
conjugate exponential family models, thereby inheriting recent advances derived for this
latter class. For instance, Wang & Titterington (2004) proved that the expected value for
the parameter β under the MF-VB approximation converges locally to the true value with
probability 1 as the sample size becomes indefinitely large. In fact, analogous guarantees
on the approximation accuracy in large n regimes from a tangent minorization perspective
were recently studied in Ghosh et al. (2022), by upper bounding the frequentist risk bound.
On the contrary, it is well known that MF-VB procedures as the one above might suffer
from variance underestimation (Giordano et al., 2015), and possibly over-shrinking of the
posterior mean (Fasano et al., 2022), especially in situations where the exact posterior for
β exhibits substantial skewness. While in Section 3.4 we give an example of this issue in
a low-dimensional setting, the logit posterior p(β | y) is known to be often significantly
skewed in large-p-small-n scenarios, as it happens indeed also under the probit link (Du-
rante, 2019). As for the latter case, the reduced accuracy of the variational approximation
typically has a dramatic impact also on prediction performances in such high-dimensional
settings (Fasano et al., 2022), motivating the development of refined approximations. In
the remaining of the present Chapter, we show how this can be done, for instance, by pro-
viding sharper tangent minorizers for the likelihood contributions, thereby covering a gap
in the literature.

3.3 Improved variational inference via piece-wise quadratic tan-
gent bounds

The different perspectives on variational Bayes presented above suggest two alternative
strategies to construct refined approximations of the exact posterior. An elegant proba-
bilistic approach would be to relax the independence assumption of the mean-field family,
as done for instance by Fasano et al. (2022) in the context of probit regression, where the
authors considered approximate joint posteriors of the form q(β, z) = q(β | z)

∏n
i=1 q(zi).

However, an analogous relaxation for logistic regression would not be equally tractable
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under the PG DA. A viable alternative would be to provide tighter lower bounds for the
likelihood terms, exploited with the tangent minorization perspective to variational Bayes
presented above. Indeed, this can be done by leveraging on the piece-wise linear quadratic
bounds introduced in the previous Chapter, which fits within a broader endeavor in the
literature to improve over the quadratic bound for logistic likelihoods by Jaakkola & Jor-
dan (2000) via piece-wise quadratic functions (Khan et al., 2010; Marlin et al., 2011; Ermis
& Bouchard, 2014). In particular, Marlin et al. (2011) consider a general but implicit formu-
lation accounting for all continuous piece-wise quadratic functions over an arbitrary par-
tition of the real line, as detailed previously in Section 2.4. For a pre-specified cardinality
R ≥ 2 of such partition, the lower bound was constructed by solving a data-agnostic con-
strained optimization problem both on the locations identifying the interval’s separation
and on the local coefficients of the quadratic contributions. The output of such numeric
optimization was then exploited within a generalized EM algorithm to overcome the in-
tractability of some logistic-Gaussian integrals, replacing the logistic log-likelihood with a
pre-calculated minimax R-piece-wise quadratic bound.

Albeit formally included in such a general formulation, the methodology we propose
differs in several aspects from that of Marlin et al. (2011). Above all, we provide an ex-
plicit analytical formulation of the tangent bound, while restricting R = 2 and fixing the
splitting point of the two-fold partition at the origin. At the same time, we allow for het-
erogeneity in the coefficients for the bound of each likelihood contribution, each regulated
via a single scalar parameter ζi whose value is learned adaptively from the data. Finally,
since the piece-wise behavior originates solely by terms proportional to the absolute val-
ues of the linear predictors |x⊺

iβ|, we can take advantage of a well-known scale-mixture of
normals representation for Laplace random variables to overcome the reduced tractability
compared to purely Gaussian approximations.

3.3.1 Variational Bayes via PLQ tangent minorization

The VB procedure we propose leverage on the novel piece-wise quadratic bound for logistic
log-likelihoods, introduced in the previous Chapter

log p̄PLQ(yi | β, ζi) := (yi − 0.5)x⊺
iβ − log(eζi/2 + e−ζi/2)− 1

2
wPLQ(ζi)

(
(x⊺

iβ)
2 − ζ2i

)
− νPLQ(ζi)

(
|x⊺

iβ| − |ζi|
)

= (yi − 0.5)x⊺
iβ −

1

2
wPLQ(ζi) (x

⊺
iβ)

2 − νPLQ(ζi) |x⊺
iβ| − log 2,

(3.9)

where as before

wPLQ(ζi) = 2wPG(ζi)− 2 log cosh
(
ζi/2

)
/ζ2i νPLQ(ζi) = |ζi|

(
wPG(ζi)− wPLQ(ζi)

)
.
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In particular, we have already shown in Section 2.4.1 that p̄PG(yi | β, ζi) acts in turn as a
tangent lower bound also for the surrogate in equation (3.9), which implies that

log p(yi | β) ≥ log p̄PLQ(yi | β, ζi) ≥ log p̄PG(yi | β, ζi) ∀β ∈ ℜp, (3.10)

with equalities holding whenever |ζi| = |x⊺
iβ|, for all i = 1, . . . , n. Accordingly, by simply

plugging-in the enhanced tangent surrogate in equation (3.4), we obtain a more flexible
variational approximation for the posterior, with piece-wise quadratic kernel

p̄PLQ(β | y, ζ) ∝ exp

{
− 1

2

(
β − ξ0

)⊺
Ω−1

0 (β − ξ0
)
+

n∑
i=1

(yi − 0.5)x⊺
iβ

− 1

2

n∑
i=1

wPLQ(ζi) (x
⊺
iβ)

2 −
n∑

i=1

νPLQ(ζi) |x⊺
iβ|

} .

In particular, the relative tightness of the likelihood tangent minorizers transfers directly
to the corresponding evidence lower bounds from equation (3.3).

Lemma 3.1. For any ζ ∈ ℜn it holds that

p(y) ≥ p̄PLQ(y | ζ) ≥ p̄PG(y | ζ).

Therefore, defining ζPLQ = argmaxζ p̄PLQ(y | ζ) and ζPG = argmaxζ p̄PG(y | ζ) one has

p(y) ≥ p̄PLQ(y | ζPLQ) ≥ p̄PLQ(y | ζPG) ≥ p̄PG(y | ζPG).

In this sense, the variational approximation via piece-wise quadratic approximation is
guaranteed to improve in accuracy over the PG MF-VB one. As previously mentioned, it
is not straightforward to translate the results above into quantitative guarantees on the
KL divergence or on the accuracy of approximate posterior moments. Nevertheless, the
empirical results reported in Section 3.4 show that the refined variational approximation
can lead to significant improvements even in these directions.

Update equations for the variational parameters

As before, the optimization of the marginal likelihood lower bound over the parame-
ters ζ can be performed via an EM scheme, by sequentially maximizing QPLQ(ζ | ζ(t)) =

Ep̄PLQ(β|y,ζ(t)) [log p̄PLQ(β,y | ζ)]. Notably, this still leads to simple update rules for the vari-

tional parameters ζ(t+1) = TPLQ(ζ
(t)), which boils down to

∣∣ζ(t+1)
i

∣∣ = Ep̄PLQ(β|y,ζ(t))

[
(x⊺

iβ)
2
]

Ep̄PLQ(β|y,ζ(t))

[
|x⊺

iβ|
] i = 1, . . . , n (3.11)
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as proved in Appendix A.3.1. As the purely Gaussian behavior is lost under the PLQ ap-
proximation, the quantities above lack of closed-form expressions. However, the proposed
variational approximation can still be beneficial in high-dimensional settings, as the spe-
cific nature of the involved log-likelihood minorizers allows to exploit a well-known scale-
mixture representation for the Laplace-like contributions to obtain accurate MC estimates
of the required expected values. At the same time, we propose a generalized-MM scheme
(Parizi et al., 2019) for the optimization of p̄PLQ(y | ζ) over ζ ∈ ℜn that results in a hybrid
approximation, benefiting both from the tractability of the PG MF-VB one and the more
accurate objective induced by the PLQ bound.

3.3.2 Efficient MC estimates via scale-mixture representation

Laplace random variables admit a well-known scale-mixture of normals representation,
arising from the integral equation

a

2
e−a|r| =

∫ ∞

0

1√
2πκ

e−r2/2κ a
2

2
e−a2κ/2dκ , (3.12)

which has been previously exploited in the literature within Gibbs Sampling schemes for
drawing from the posterior of the Bayesian version of lasso (Park & Casella, 2008; Hans,
2009) and quantile regressions (Kozumi & Kobayashi, 2011; Li et al., 2010). Since the piece-
wise behavior in the PLQ minorizers originates solely by terms proportional to the absolute
values of the linear predictors |x⊺

iβ|, we can take advantage of such property to overcome
the reduced tractability of the corresponding variational approximation. Indeed, by con-
ditioning on the latent variables κ = (κ1, . . . , κn)

⊺ associated with the representation in
equation (3.12), the PLQ bound becomes again a purely quadratic function of β, allowing
for closed-form computations conditionally on κ. This naturally suggests a way to calcu-
late MC estimates of the desired quantities E

[
f(β)

]
= E

[
E
[
f(β) | κ

]]
. For instance, the

marginal likelihood lower bound can be rewritten as

p̄PLQ(β | y, ζ) =
1

2n

∫
(ℜ+)n

ϕp
(
ξ0;Ω0

)
ϕp
(
ξ(ζ,κ);Ω(ζ,κ)

) n∏
i=1

p(κi) dκi =
1

2n
Ep(κ)

[
ϖ(ζ,κ)

]
(3.13)

where the Ω(ζ,κ), ξ(ζ,κ) and ϖ(ζ,κ) are defined as

Ω(ζ,κ) =
(
Ω−1

0 +X⊺diag
(
{wPLQ(ζi) + ν2PLQ(ζi)/κi}ni=1

)
X
)−1

ξ(ζ,κ) = Ω(ζ,κ)
(
Ω−1

0 ξ0 +X⊺(y − 0.51n
))

ϖ(ζ,κ) = ϕp
(
ξ0;Ω0

)
/ϕp
(
ξ(ζ,κ);Ω(ζ,κ)

)
,
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while p(κi) = e−κi/2/
√
2πκi are the densities of Chi-squared random variables with one

degree of freedom. Similarly, the updates for the variational parameters in equation (3.11)
take the form

∣∣ζ(t+1)
i

∣∣ = Ep(κ)

[
ϖ(ζ(t),κ) ·

(
σ2i (ζ

(t),κ) + µ2i (ζ
(t),κ)

) ]
Ep(κ)

[
ϖ(ζ(t),κ)

σi(ζ
(t),κ)

·
(
2ϕ
(µi(ζ(t),κ)
σi(ζ

(t),κ)

)
+
µi(ζ

(t),κ)

σi(ζ
(t),κ)

(
1− 2Φ

(
− µi(ζ

(t),κ)

σi(ζ
(t),κ)

)))]
where µi(ζ(t),κ) = x⊺

i ξ(ζ
(t),κ) and σ2i (ζ

(t),κ) = x⊺
iΩ(ζ(t),κ)xi.

We highlight that the above sampling strategy would still be more convenient than
standard MCMC methods in high dimensions, as it entails i.i.d. sampling and leads to ef-
ficient computations, since the bottleneck step can be made to scale linearly in p. Accord-
ingly, equation (3.12) would allow to exploit successfully the proposed methodology in
large-p-small-n scenarios, where exact sampling schemes are inefficient while the PG MF-
VB can be inaccurate. We refer to Appendix A.3.2 for analogous expressions for posterior
moments and for the details on the scalable calculations of the weights ϖ(ζ,κ).

3.3.3 Hybrid PG VB via generalized EM optimization

Notwithstanding the possibility to exploit the aforementioned scale-mixture representation
to deal with the Laplace contributions, computations under the PLQ variational approxi-
mation remain essentially more involved than those entailed by plain quadratic surrogates,
as in the PG MF-VB approach. For this reason, we hereby propose a hybrid strategy that
benefits from the best of both approaches, as it preserves the tractability of the Gaussian
approximation arising from the bound by Jaakkola & Jordan (2000), while still taking ad-
vantage from the refined objective function induced by the PLQ bound. The approach we
propose can be formally regarded as a generalization of traditional EM schemes, where
the E-step is approximated by performing the required calculation under an alternative
distribution. The underlying idea traces back to the so-called incremental-EM by Neal &
Hinton (1998) and the variational-EM by Jordan et al. (1999), later extensively addressed by
Gunawardana & Byrne (2005) in the framework of generalized alternating minimization
(GAM). More recently, Parizi et al. (2019) extended the same rationale to the broader set-
ting of MM schemes, relaxing the tangency condition for the lower bounds via the so-called
generalized majorization-minimization (G-MM).

Generalized alternating minimization framework

Indeed, the minorization in equation (3.5) holds true regardless of the specific form of the
proxy distribution q(β), while the specific choice q(t+1)(β) = p̄(β | y, ζ(t)) is essentially
driven by the need to construct a lower bound that is tangent to the objective at the current
locations. The latter condition is in fact a fundamental requirement of traditional MM and
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EM optimization schemes, as it is crucial in ensuring the monotonicity of the corresponding
updates. However, one can proceed by relaxing such tangency condition and performing
the expectation in equation (3.6) under a different, more tractable distribution, while keep-
ing the argument of the expected value fixed to log p̄PLQ(β,y | ζ). In particular, we propose
to use as surrogate distribution q(t+1)(β) = p̄PG(β | y, ζ(t+1/2)), for some suitable ζ(t+1/2).
The same hybrid strategy arises by addressing EM schemes from an alternating minimiza-
tion perspective, according to which also the E-step is described as solving an optimization
problem

q(t+1)(β) = argmin
q(β)

KL
[
q(β) ∥ p̄PLQ(β | y, ζ(t))

]
= p̄PLQ(β | y, ζ(t)) .

Accordingly, in generalized alternating minimization schemes the above optimization is
relaxed by constraining q(t+1)(β) to belong to a given subclass of distributions

q(t+1)(β) = argmin
q∈Q

KL
[
q(β) ∥ p̄PLQ(β | y, ζ(t))

]
,

where in particular we choose the parametric family arising from the PG MF scheme Q ={
p̄PG(β | y, ζ) | ζ ∈ ℜn

}
. This leads to a set of hybrid updates for the variational parame-

ters

∣∣ζ(t+1)
i

∣∣ = [ThPG(ζ
(t))
]
i
=

Ep̄PG(β|y,ζ(t+1/2))

[
(x⊺

iβ)
2
]

Ep̄PG(β|y,ζ(t+1/2))

[
|x⊺

iβ|
]

=
(σ̃

(t+1)
i )2 + (µ̃

(t+1)
i )2

2 σ̃
(t+1)
i ϕ

(
µ̃
(t+1)
i /σ̃

(t+1)
i

)
+ µ̃

(t+1)
i

(
1− 2Φ

(
− µ̃(t+1)

i /σ̃
(t+1)
i

)) ,
where we have defined ζ(t+1/2) = argminζ KL[ p̄PG(β | y, ζ) ∥ p̄PLQ(β | y, ζ(t)) ], µ̃(t+1)

i =

x⊺
i ξ̃

(t+1) and σ̃
(t+1)
i = (x⊺

i Ω̃
(t+1)xi)

1/2, while ξ̃(t+1) and Ω̃(t+1) are obtained as in equa-
tion (3.2), but replacing ζ(t) with ζ(t+1/2). The sequential repetition of the above update
rules thereby formally corresponds to a GAM scheme, aiming at the approximate maxi-
mization over ζ of the ELBO p̄PLQ(y | ζ) via non-tangent minorizer of the latter, induced by
the family of quadratic surrogates defined by Jaakkola & Jordan (2000). As a side effect,
this ultimately produces also a refined Gaussian approximation of the posterior, which pre-
serves the analytical form arising from the mean-field scheme p̄PG(β | y, ζ), but optimizes
the associated variational parameters ζ as to maximize a refined surrogate objective, in-
duced by the PLQ bound. Indeed, preliminary empirical results suggest that this strategy
indirectly puts a remedy for the mean over-shrinking and variance underestimation that
affect MF-VB in skewed and high-dimensional scenarios.
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Comparison with alternative correction methods for MF-VB

In this respect, it is interesting to notice a practical analogy between the hybrid strategy
proposed above and the linear response variational Bayes (LRVB) by Giordano et al. (2015).
Indeed the authors introduced a method for correcting the uncertainty underestimation
of MF-VB by generalizing linear response methods from statistical physics. The essence
of their approach lies in performing a perturbation of the MF fixed-point equation for the
variational parameters ζ = TMF(ζ), induced by considering an exponential tilting of the
posterior, or equivalently, a log-linear perturbation of the latter. For approximate posterior
within the exponential family, this translates into a simple intuitive formula for calculat-
ing the linear response correction by solving a linear system based on the MF-VB solution.
While elegant and generally applicable, the methodology by Giordano et al. (2015) crucially
relies on the assumption that MF-VB provides an accurate approximation of the posterior
mean, which in fact might not hold in the high-dimensional settings that we consider in
this work. Conversely, the hybrid strategy we propose, which interestingly can be regarded
as arsing from a log-piece-wise linear perturbation of the posterior, acts in practice as a cor-
rection of the aforementioned location bias. Furthermore, the LRVB approach increases non
trivially the computational burden, as it scales linearly with the number of data points but
cubically in the number of covariates. On the contrary, our hybrid variational approxima-
tion comes with the same exact computational cost as the standard PG MF-VB, while still
allowing for the combination with post-processing by Giordano et al. (2015).

3.4 Empirical studies

In this Section, we demonstrate the potential benefit of the proposed PLQ variational ap-
proximation for the logistic posterior in a simple simulation study. Albeit low-dimensional,
the exact posterior is strongly skewed, leading to poor performances of the PG MF-VB. In-

deed, we consider an intercept only logistic regression yi | β
ind∼ Bern(π(β)) where the true

value of the parameter is set to βTRUE = 3, while the prior is chosen to be a normal N(0, σ20)

with σ0 = 3.5. We simulate n = 10 observations from the model, which results in yi = 1

for all i = 1, . . . , n, where such an extremely unbalanced scenario is indeed purposely de-
signed to obtain a skewed but easily visualized exact posterior. Furthermore, the PLQ vari-
ational approximation allows for exact computations in such a low-dimensional setting,
leading to the results reported in Figure 3.1 and Table 3.1. It is interesting to notice that,
as already mentioned previously, the tangent transform approach offers guarantees solely
on the relative tightness of the evidence lower bounds, but not for the corresponding KL

divergence from the exact posterior. Indeed, defining as before ζPLQ = argmaxζ p̄PLQ(y | ζ)
and ζPG = argmaxζ p̄PG(y | ζ), Table 3.1 shows that in fact KL[ p̄PG(β | y, ζPLQ) ∥ p(β | y) ]
is smaller than KL[ p̄PG(β | y, ζPG) ∥ p(β | y) ] in the example considered, while analogous
relative improvements are observed also in terms of posterior moments. This constitutes a
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Figure 3.1: The strong skewness of the exact posterior leads to a poor performance of the
PG MF-VB distribution, which not only underestimates the variance but also over-shrinks
the posterior mean. The proposed PLQ variational approximate leads to an improvement
in both directions.

promising result even for the hybrid strategy proposed in Section 3.3.3, which would in fact
return a Gaussian approximate posterior virtually indistinguishable from p̄PG(β | y, ζPLQ).

Table 3.1: The monotonicity of the ELBOs given by different approximations follows from
equation (3.10). Although this does not offer guarantees on the posterior moments or the
KL from the exact posteriors, both the PLQ and the quadratic approximation evaluated at
ζPLQ improve over the standard MF-VB in these directions. This motivates further investi-
gations on the performance in higher dimensions of the hybrid strategy from Section 3.3.3.

Method Posterior Marginal Mean Variance KL[p̄(β | y)∥p(β | y)]
p̄(β | y) Likelihood

Exact p(β | y) 0.2252 4.4144 3.6615 0

PLQ | ζPLQ p̄PLQ(β | y, ζPLQ) 0.1396 4.0942 1.3816 0.15497

PLQ | ζPG p̄PLQ(β | y, ζPG) 0.1367 3.7822 1.1673 0.20160

PG | ζPG p̄PG(β | y, ζPG) 0.1103 3.8335 0.7667 0.33318

PG | ζPLQ p̄PG(β | y, ζPLQ) 0.1074 4.2252 0.8451 0.32684
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3.5 Discussion

In the current Chapter, we proposed a refined variational approximation for the exact pos-
terior distribution that arises in logistic regression models under Gaussian prior for the
coefficients. We tackled the problem by leveraging on a novel piece-wise quadratic tan-
gent bound for logistic log-likelihood, introduced in the previous Chapter, that dominates
over the tightest quadratic minorizer by Jaakkola & Jordan (2000). As the use of the lat-
ter in variational inference coincides with a proper MF-VB under the Pólya-Gamma data
augmentation (Polson et al., 2012; Durante & Rigon, 2019), our contribution fits within the
broader endeavor in the literature to improve over the poor performances of mean-field
variational approximation in high-dimensional scenarios (Hoffman & Blei, 2015; Guo et al.,
2016; Miller et al., 2017; Fasano et al., 2022). Despite more elaborate than purely Gaussian
approximations, the proposed variational Bayes scheme allows for efficient and accurate
calculations via a well-known scale mixture representation for Laplace random variables
(Park & Casella, 2008; Kozumi & Kobayashi, 2011). The same strategy is not applicable for
alternative contributions in the literature, improving over the bound by Jaakkola & Jordan
(2000) via piece-wise quadratic surrogates (Khan et al., 2010; Marlin et al., 2011; Ermis &
Bouchard, 2014). At the same time, the PLQ bound can be used to construct a hybrid varia-
tional approximation, that retains the tractability and analytical expression of the PG MF-VB

posterior but optimizes the associated variational parameters by considering a modified
objective function (Neal & Hinton, 1998; Gunawardana & Byrne, 2005; Parizi et al., 2019).
This translates to a simple perturbation of the mean-field fixed-point iteration scheme, that
leads to substantial empirical improvement without affecting computational complexity.
In particular, the resulting approximation substantially corrects the over-shrinking of the
approximate posterior mean, and to a lesser extent also the concurrent variance underesti-
mation. As such, it bears some interesting qualitative similarities with the linear response
variational Bayes correction method by Giordano et al. (2015). In fact, as the latter cru-
cially assumes reliable estimates for the posterior means, a combination with our proposed
methodology is most promising.

Finally, we plan to further investigate the novel piece-wise quadratic bound, in an effort
to establish a formal connection with a full-fledged mean-field variational Bayes routine.
In practice, this would consist in a reverse-engineering process to construct or recognize a
data augmentation scheme for logistic regression that induces the aforementioned refined
bound (Gramacy & Polson, 2012; Polson & Scott, 2013; Bhadra et al., 2020), endowing the
proposed methodology with a full probabilistic interpretation. Furthermore, the availabil-
ity of such a hierarchical representation would potentially allow to greatly simplify calcu-
lations, for instance by exploiting the scale mixture representation of Laplace contributions
at the level of the latent variables.
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Discussion

In the present thesis, we developed novel methodological and computational contribu-
tions for statistical inference in high-dimensional regression settings. Tackling the prob-
lem mostly from a Bayesian perspective, we focused on some of the most popular regres-
sion formulations dealing with discrete-valued observations, both binary and categorical,
building on probit and logit link functions. The discrete nature of the observations poses
various challenges to Bayesian inference in several respects, including hindered analytical
calculations and mixing issues within data augmentation-based sampling schemes.

In the case of probit model, conjugacy results for the regression coefficients under SUN

priors were proven only recently by Durante (2019). Such original results were then rapidly
extended to a number of constructions generalizing standard probit regression. In Chap-
ter 1, we reviewed and unified such recent advances, developing a unifying general frame-
work that encompasses a broad class of statistical formulations, crucially all relying on
the partial discretization of a set of latent linear Gaussian regressions. Among others, this
accounts for standard, multinomial and multivariate probit models, tobit models and sev-
eral related extensions, other than corresponding dynamic, skewed and non-linear formu-
lations, including Gaussian processes (Fasano & Durante, 2022; Fasano et al., 2021; Cao
et al., 2022; Benavoli et al., 2020). Furthermore, the generic form of the likelihood function
associated with the developed framework implies conjugacy under SUN prior for all the
accounted regression models. This result leads to new theoretical insights, benefiting from
several useful properties of the SUN posterior, as well as to the development of a unifying
computational framework for a broad class of models potentially involving discrete-valued
observations. This chiefly includes i.i.d. sampling from exact unified skew–normal poste-
rior, taking advantage of an additive stochastic representation admitted by SUN random
variables. As this involves sampling from a multivariate truncated normal distribution,
we review a rich literature dealing with such a task (e.g., Botev, 2017; Gessner et al., 2020),
which is indeed a longstanding and recurrent problem in various statistical constructions.
In particular, the property of the SUN posterior allows to easily handle i.i.d. sampling in
large-p-small-n settings, where alternative MCMC schemes encounter different limitations.
Nonetheless, our results highlight the importance of further research efforts to develop an
efficient gold-standard approach to sample from multivariate truncated Gaussian distri-
butions and to evaluate multivariate normal distribution functions. To deal with settings
where the number of discrete observations exceeds a few hundred, we focus also on de-
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terministic approximation approaches to posterior inference. In particular, we extend a re-
cently derived partially-factorized variational Bayes scheme (Fasano & Rebaudo, 2021) to
all models encompassed by the developed unified framework. Concurrently, we develop
a novel scalable implementation of expectation-propagation, characterized by a linear cost
per iteration in the number of covariates, unachieved by any alternative implementation
available in the literature (Chopin & Ridgway, 2017).
Through our work, we considered the covariance matrices Σ̄1 and Σ̄0 to be fixed, while
we concentrated our effort on inference for the regression parameter β. Nonetheless, we
note that it is possible to produce empirical Bayes estimates of such quantities via nu-
merical maximization of the marginal likelihood p(y) in (1.16), eventually relying on the
corresponding accurate approximate version that arises from EP. Indeed, such matrices are
often parameterized by a low–dimensional vector of parameters, as exemplified in Sections
1.2.1–1.2.4, which makes the direct maximization of p(y) a feasible approach. Alternatively,
full Bayesian inference for the same covariance matrices Σ̄1 and Σ̄0, once assigned a suit-
able prior distribution, might proceed by still taking advantage from the availability of a
closed–form expression (1.16) for p(y), coupled with i.i.d. sampling schemes from (β | y).
For instance, this would allow to derive collapsed Metropolis–Hastings routines to sample
from the posteriors of Σ̄1 and Σ̄0 after integrating out β analytically, benefiting from im-
proved mixing over MCMC schemes based on full–conditional distributions both for β and
a set of augmented data (e.g., Park & Van Dyk, 2009; Chan & Jeliazkov, 2009).
Concerning the choice of the hyperparameters within the SUN prior, we note that it might
not be straightforward to elicit domain knowledge information while maintaining the most
general SUN representation, particularly dealing with the matrices ∆ and Γ and for large
values of n̄. Although the role of such quantities within the generative process that leads
to the SUN density might help prior specification, this matter surely deserves further inves-
tigation. Nonetheless, since multivariate normal distributions are special cases of SUNs, all
the uninformative, weakly informative and informative priors relying on Gaussians (e.g.,
Zellner, 1986; Gelman et al., 2008; Chopin & Ridgway, 2017) can be employed by letting
n̄ = 0 and suitably specifying ξ and Ω. Conversely, it remains possible to readily incorpo-
rate prior information on the skewness for β by eliciting simpler structures. For instance,
a convenient choice might be to place independent univariate skew–normals priors for
each coefficient βj , j = 1, . . . , p̄, which allow to regulate prior skewness via a single and
interpretable parameter for each coefficient. Finally, it would be also worth to include hy-
perpriors for the scale parameters of the Gaussian or, more generally, SUN prior, which
would yield scale–mixture representations that induce shrinkage in high dimensions (Car-
valho et al., 2010). Since most of these constructions rely on conditionally Gaussian priors,
the results in the present review may be useful to obtain improved theoretical and practical
performance in state–of–the–art implementations of the models in Section 1.2 under sparse
settings and more general classes of priors.

In Chapter 2 and 3 we still focused on high-dimensional regression with discrete-valued
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data, yet turning our attention to binary regression under logit link. We first consider maxi-
mum likelihood estimation inference for logistic regression models, both with and without
lasso and ridge regularizations. Given the lack of closed-form expressions even in the ab-
sence of such penalties, ML estimation typically proceeds by via sequential optimization
schemes, which entail the specification of a family of surrogate targets locally approxi-
mating the logistic log-likelihood. As a naive Taylor expansion is known to be prone to
unreliable and unstable behaviors, especially dealing with extreme values of choice prob-
abilities, we focus on minorize-maximize and expectation-maximization schemes, which
benefit from solid convergence guarantees (Böhning & Lindsay, 1988; McLachlan & Krish-
nan, 1996). We first consider a tractable quadratic minorizer, that has been recently shown
to arise from Pólya–Gamma data augmentation scheme (Durante & Rigon, 2019). Over
than showing its optimality among quadratic tangent lower bounds, intended as point-
wise tightness to the true target function, we underline the benefit of its use in combina-
tion with ℓ1 penalties, which results in faster convergence of the associated coordinate-wise
optimization schemes. Furthermore, we derive a novel piece-wise quadratic tangent mi-
norizer that dominates over the PG bound while allowing greater tractability than alter-
native piece-wise quadratic surrogates available in the literature (Marlin et al., 2011). The
tighter approximation given by the new bound is shown to lead to additional benefit in
terms of speed of convergence.
Furthermore, in Chapter 3 we take advantage of such novel lower bound to construct a
refined variational approximation of the logit posterior under Gaussian prior. Indeed, sev-
eral contributions tackling Bayesian logistic regression have concentrated on the develop-
ment of data augmentation schemes resulting in plain Gibbs sampling strategies, from the
well-established Pólya–Gamma DA by Polson et al. (2012), to recent contributions such as
the ultimate Pólya–Gamma sampler by Zens et al. (2020). Nonetheless, similarly to the
probit case discussed in Chapter 1, these sampling schemes often incur in sever limitations
in large-p-small-n scenarios. While in some cases it is possible to introduce further latent
working parameters to mitigate such issues by re-scaling and re-centering the augmented
data (Zens et al., 2020), variational Bayes routines have become an increasingly popular
alternative for approximate posterior inference. This typically amounts to approximating
the exact posterior with the closest member within a pre-specified family of distributions.
Among several alternatives, the combination of forward KL minimization with mean-field
independence assumptions owes its widespread use to the resulting simplicity and great
efficiency in conditionally conjugate exponential family models (Blei et al., 2017). However,
the resulting approximations often exhibit reduced accuracy in skewed or high-dimensions
settings, motivating the development of more refined approximations schemes. To pursue
this goal in logistic regression models, we employ a tangent minorizaton perspective, un-
der which the MF-VB for PG DA was originally derived, and combine it with the novel
piece-wise linear quadratic bound introduced in Chapter 2. This is shown to lead to more
accurate evidence lower bounds, at the same time improving also the estimates of poste-
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rior moments. Despite the reduced numerical tractability, the cost of the procedure can
be made linear in the number of covariates by exploiting a renowned scale mixture repre-
sentation for Laplace random variable, thus maintaining a beneficial tractability-accuracy
trade-off in high-dimensional scenarios.
Both the proposed methodologies based on the novel piece-wise linear-quadratic approx-
imation still present open challenges and compelling research venues. For what con-
cerned penalized maximum likelihood estimation, this amount foremost to developing
novel strategies for the efficient and accurate optimization of the non-smooth lower bound.
One possible way to achieve this result would be to leverage on the tight connection with
generalized lasso penalties, extending the path-wise optimization routines tailored for
such regularizations (Tibshirani & Taylor, 2011; Arnold & Tibshirani, 2016) Alternatively,
it would be worth pursuing other relaxations of the associated optimization problem, such
as the semi-smooth coordinate descent presented in Section 2.4.3, or the combination with
techniques from the stochastic optimization literature, which has become increasingly pop-
ular in recent years. Conversely, the variational Bayes approximation from Chapter 3 cer-
tainly deserves further empirical and theoretical investigation. The latter might proceed by
extending the analysis by (Ghosh et al., 2022), which provided guarantees on the statisti-
cal optimality of the variational approximation by Jaakkola & Jordan (2000) from a purely
tangent minorization perspective, instead of exploiting the full probabilistic interpretation
provided by Durante & Rigon (2019). However, their result focuses on asymptotic regimes
in the number of observations, whereas the proposed bound is expected to be superior in
large-p-small-n scenarios. A the same time, while the hybrid strategy via generalized alter-
nating minimization proposed in Section 3.3.3 required more careful analysis and detailed
implementation, it would be worth investigating the combination of the proposed method-
ology with the linear response variational correction by Giordano et al. (2015). Finally,
more effort should be concentrated on formally recasting the novel piece-wise quadratic
bound within a full-fledged variational Bayes routine. This might be possible via a sort of
reverse-engineering process, eliciting a data augmentation scheme for logistic regression
that induces the aforementioned refined bound (Gramacy & Polson, 2012; Polson & Scott,
2013; Bhadra et al., 2020). Other than endowing the proposed methodology with a full
probabilistic interpretation, the availability of such a hierarchical representation would po-
tentially allow to greatly simplify calculations, for instance by exploiting the scale mixture
representation of Laplace contributions at the level of the latent variables.
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A.1 Scalable EP implementation

A.1.1 Naive implementation of EP

In the next two Sections, we detail the novel scalable implementation for EP in the setting
of equation (1.26) from Chapter 1. For ease of exposition, we first report in Algorithm 1
the pseudocode corresponding to the naive implementation of the procedure described in
Section 1.4.3. To do so, we re-formulate the moments in equation (1.29) as to highlight a
specific algebraic structure, that we leverage on in the following Sections to derive efficient
implementations of the EP updates. Specifically, in accordance with equation (1.13), the
first to moments of the hybrid distribution p(tc)h (β | y) read

E(tc)
h [β | y] = ξc +ΩcX̄

⊺
0[c]s

−1
c ψc,

var(tc)h [β | y] = Ωc +ΩcX̄
⊺
0[c]s

−1
c Πcs

−1
c X̄0[c]Ωc,

(14)

where

ψc = Γ−1
c E[U1c],

Πc = Ψc −ψcψ
⊺
c = Γ−1

c

(
var[U1c]− Γc

)
Γ−1
c ,

(15)

with U1c ∼ TNn̄c(−γc;0,Γc) as before.
In the presentation of EP from Section 1.4.3, we omitted the normalizing constants of

the hybrid and approximate distributions, for ease of exposition. We report here the details
on how to calculate and update these constants for completeness, since they are needed to
assess the approximation of the marginal likelihood provided by EP. In particular, the
normalized global approximation reads

qEP(β) =
C∏
c=0

1

Zc
qc(β) = exp

{
−1

2
β⊺QEPβ + β⊺rEP −Υ(rEP,QEP)

}

where Υ(rEP,QEP) = 1
2r

⊺
EPQ

−1
EP rEP + p

2 log(2π) −
1
2 log |QEP| accounts for the normalization

of the Gaussian distribution in its natural parametrization. As before, at step tc we refine
the c-th site indirectly, as we obtain an updated global Gaussian approximation q(tc)EP (β) my
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Algorithm 1: EP algorithm for the factorized likelihood in equation (1.26)

QEP = Q0 = Ω−1
post = Ω−1+X̄⊺

1Σ̄
−1
1 X̄1

rEP = r0 = Ω−1
postξpost = Ω−1ξ + X̄⊺

1Σ̄
−1
1 ȳ1

for c = 1, . . . , C do
Qc = 0p×p ; rc = 0p ; log(1/Zc) = 0

end
for t from 1 until convergence do

for c from C do
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
Q−c = QEP −Qc

r−c = rEP − rc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
Ωc = Q−1

−c

ξc = Ωc r−c

sc = ([Σ̄0[c,c] + X̄0[c]ΩcX̄
⊺
0[c]]⊙ In̄c)

1/2

γc = s−1
c (ȳ0[c] + X̄0[c]ξc)

Γc = s−1
c (Σ̄0[c,c] + X̄0[c]ΩcX̄

⊺
0[c])s

−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moments evaluation

ψc = Γ−1
c E[U1c]

Πc = Γ−1
c

(
var[U1c]− Γc

)
Γ−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation

QEP =
(
Ωc + (ΩcX̄

⊺
0[c])s

−1
c Πcs

−1
c (X̄0[c]Ωc)

)−1

rEP = QEP

(
ξc + (ΩcX̄

⊺
0[c])s

−1
c ψc

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c-th site approximation
Qc = QEP −Q−c

rc = rEP − r−c

log(1/Zc) = log Φnc(γc,Γc) +
1
2 log |QEP| − 1

2 log |Q−c|+
−1

2r
⊺
EPQ

−1
EP rEP +

1
2r

⊺
−cQ

−1
−cr−c

end
end
ΩEP = Q−1

EP

ξEP = ΩEP rEP

log q(ȳ0 | ȳ1) =
1
2r

⊺ξEP − 1
2r

⊺
0Q

−1
0 r0 − 1

2 log |QEP|+ 1
2 log |Q0|+

∑C
c=1 log(1/Zc)

Result: ( ΩEP, ξEP, log q(ȳ0 | ȳ1) )
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moment matching with the hybrid p(tc)h (β), including its zeroth order moment

Z
(tc)
h =

∫
lc(β)

∏C
c′=1q

(tc)
c′ (β) dβ = Φn̄c(γc;Γc).

Then, we reconstruct the updated c-th site q(tc)c (β) so that its combination with the remain-
ing unaltered ones gives exactly q(tc)EP (β)

1

Z
(tc)
c

q(tc)c (β) = Z
(tc)
h

q
(tc)
EP (β)

q
(tc)
−c (β)

,

where in the equation above both the cavity and the global approximation are intended as
properly normalized distributions. Accordingly

log 1/Z(tc)
c = logZ

(tc)
h −Υ(r

(tc)
EP ,Q

(tc)
EP ) + Υ(r

(tc)
−c ,Q

(tc)
−c ).

Likewise, after the convergence of the iterations, the global approximation of the marginal
log-likelihood log p(y) = log p(ȳ1) + log p(ȳ0 | ȳ1) is obtained by replacing p(ȳ0 | ȳ1) with
its EP equivalent

qEP(ȳ0 | ȳ1) =

∫ C∏
c=0

1

Zc
qc(β) dβ =

exp {Υ(rEP,QEP)}∏C
c=0 Zc

, (16)

where Z0 = exp{Υ(r0,Q0)}.

A.1.2 Scalable Gaussian EP for probit and tobit regression

In this Section, we present an efficient implementation of expectation–propagation for a
specific set of models among the ones embedded in equation (1.1). Specifically, we focus
here on likelihoods of the form

p(y | β) = ϕn̄1(ȳ1 − X̄1β;σ
2In1)

n̄0∏
i=1

Φ(ȳ0[i] + x̄⊺
0[i]β),

which in particular accounts both for standard tobit and probit regression. Under a Gaus-
sian prior p(β) = ϕp̄(β − ξ;Ω), the factorized target distribution becomes

p(β | y) = 1

p(ȳ0 | ȳ1)
ϕp̄(β − ξpost;Ωpost)

n̄0∏
i=1

Φ(ȳ0[i] + x̄⊺
0[i]β)

Accordingly, we recognize in the hybrid distribution
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ph(β) ∝ Φ(ȳ0[i] + x̄⊺
0[i]β) exp

{
−1

2
β⊺Q−iβ + β⊺r−i

}
the kernel of a multivariate extended skew normal SNp̄(ξi,Ωi,αi, γi) random variable,
with

Ωi = Q−1
−i = ωiΩ̄iωi

ξi = Ωir−i

α⊺
i = x̄⊺

0[i]ωi

γi = (1 + x̄⊺
0[i]Ωix̄0[i])

−1/2(ȳ0[i] + x̄⊺
0[i]ξi) ,

Its normalization constant is Zh = Φ(γi), while the first to moments read

Eh[β | y] = ξi +Ωix̄0[i] ψ1(γi)si

varh[β | y] = Ωi +Ωix̄0[i] ψ2(γi)s
2
i x̄

⊺
0[i]Ωi

where si = (1 + x̄⊺
0[i]Ωix̄0[i])

−1/2, ψ1(x) = ϕ(x)/Φ(x) and ψ2(x) = −ψ1(x)
2 − xψ1(x). As

before, we update the global approximation parameters Q
(ti)
EP and r

(ti)
EP by moment match-

ing with the hybrid, and modify accordingly the parameters of i-th approximate site Q
(ti)
i

and r
(ti)
i . For ease of notation, in the remaining of this appendix we replace the superscript

“(ti)” on the updated parameters with “new”, and drop the superscript “(ti−1)” identifying
the outcome of the previous EP update. The key step for simplifying Algorithm 1, adapted
to the one-dimensional sites under consideration, is to employ the Woodbury identity for
calculating the matrix inverse (varh[β])−1. Specifically, we rewrite the updated site preci-
sion matrix as

Qnew
i =

(
varh[β | y]

)−1 −Q−i =
(
Ωi + ψ2(γi)s

2
i (Ωix̄0[i])(Ωix̄0[i])

⊺)−1 −Q−i

= Ω−1
i − ψ2(γi)s

2
i (1 + ψ2(γi)s

2
i x̄

⊺
0[i]Ωix̄0[i])

−1x̄0[i]x̄
⊺
0[i] −Ω−1

i

=
[
−(ψ2(γi)

−1s−2
i + x̄⊺

0[i]Ωix̄0[i])
−1
]
x̄0[i]x̄

⊺
0[i]

=

[
− ψ2(γi)

1 + x̄⊺
0[i]Ωix̄0[i] + ψ2(γi)x̄

⊺
0[i]Ωix̄0[i]

]
x̄0[i]x̄

⊺
0[i] = knew

i x̄0[i]x̄
⊺
0[i]

with knew
i = − ψ2(γi)

1 + x̄⊺
0[i]Ωix̄0[i] + ψ2(γi)x̄

⊺
0[i]Ωix̄0[i]

. Moreover, the corresponding new site

location vector is obtained as

rnew
i = Qnew

EP Eh[β]− r−i = Q−iEh[β] +Qnew
i Eh[β]− r−i

= Q−iQ
−1
−i r−i + ψ1(γi)six̄0[i] +Qnew

i Eh[β]− r−i

= ψ1(γi)siQ−iΩix̄0[i] +Qnew
i Eh[β]

= ψ1(γi)six̄0[i] + knew
i x̄0[i]x̄

⊺
0[i]Ωir−i + knew

i ψ1(γi)six̄0[i]x̄
⊺
0[i]Ωix̄0[i]

=
[
ψ1(γi)si + knew

i (Ωix̄0[i])
⊺r−i + knew

i ψ1(γi)si(x̄
⊺
0[i]Ωix̄0[i])

]
x̄0[i] = mnew

i x̄0[i]
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where mnew
i = ψ1(γi)si + knew

i (Ωix̄0[i])
⊺r−i + k

(ti)
i ψ1(γi)six̄

⊺
0[i]Ωix̄0[i]. This suggests that we

can implement EP by saving only the set of scalars {ki}n̄0
i=1 and {mi}n̄0

i=1, instead of the full
matrices {Qi}n̄0

i=1 and vectors {ri}n̄0
i=1, after having initialized the former to some starting

values. In practice, we start the algorithm by setting them to zero, which corresponds to
initializing the global approximation to the prior distribution. Afterward, both p̄× p̄matrix
inversions involved in each update can be avoided, since

Ωi = Q−1
−i =

(
QEP − kix̄0[i]x̄

⊺
0[i]

)−1

=
(
QEP

)−1
+

ki

1− kix̄⊺
0[i]

(
QEP

)−1
x̄0[i]

(
QEP

)−1
x̄0[i]x̄

⊺
0[i]

(
QEP

)−1

and

Ωnew
EP = Ωi +Ωix̄0[i] ψ2(γi)s

2
i x̄

⊺
0[i]Ωi

Qnew
EP = Q−i + knew

i x̄0[i]x̄
⊺
0[i].

Finally, even the update of log(1/Znew
i ) can be simplified noticing that

=
1

2
log |Qnew

EP | −
1

2
log |Q−i|

=
1

2
log |Q−i + knew

i x̄0[i]x̄
⊺
0[i]| −

1

2
log |Q−i|

=
1

2
log |Q−i|+

1

2
log
(
1 + knew

i x̄⊺
0[i]Q

−1
−i x̄0[i]

)
− 1

2
log |Q−i|

=
1

2
log
(
1 + knew

i x̄⊺
0[i]Ωix̄0[i]

)
and
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Algorithm 2: Probit & tobit EP - O(p̄2 · n̄0) cost per iteration

QEP = Q0 = (Ω−1 + σ−2X̄⊺
1X̄1)

rEP = r0 = (Ω−1ξ + σ−2X̄⊺
1ȳ1)

for i = 1, . . . , n̄0 do
ki = 0 ; mi = 0 ; log(1/Zi) = 0

end
if p̄ > n̄1 then

ΩEP = Ω−ΩX̄⊺
1(σ

2In̄1 + X̄1ΩX
⊺
1 )

−1X̄1Ω
else

ΩEP = (Q0)
−1

end
ξpost = Q−1

0 r0

for t from 1 until convergence do
for i from n̄0 do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
Q−i = QEP − kix̄0[i]x̄

⊺
0[i]

r−i = rEP −mix̄0[i]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution

Ωi = ΩEP +
ki

1− kix̄⊺
0[i]ΩEPx̄0[i]

(ΩEPx̄0[i])(x̄
⊺
0[i]ΩEP)

si = (1 + x̄⊺
0[i]Ωix̄0[i])

−1/2

γi = six̄
⊺
0[i]Ωi r−i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th site approximation
ki = −ψ2(γi)/

(
1 + x̄⊺

0[i]Ωix̄0[i] + ψ2(γi)x̄
⊺
0[i]Ωix̄0[i]

)
mi = ψ1(γi)si + ki(x̄

⊺
0[i]Ωi)r−i + kiψ1(γi)six̄

⊺
0[i]Ωix̄0[i]

log(1/Zi) = log Φ(γi) +
1

2
log
(
1 + kix̄

⊺
0[i]Ωix̄0[i]

)
+

−1

2

x̄⊺
0[i]Ωix̄0[i]

1 + kix̄
⊺
0[i]Ωix̄0[i]

(
mi +

x̄⊺
0[i]Ωir−i

x̄⊺
0[i]Ωix̄0[i]

)2

+
1

2

(
x̄⊺
0[i]Ωir−i

)2
x̄⊺
0[i]Ωix̄0[i]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
QEP = Q−i + kix̄0[i]x̄

⊺
0[i]

rEP = r−i +mix̄0[i]

ΩEP = Ωi +Ωix̄0[i] ψ2(γi)s
2
i x̄

⊺
0[i]Ωi

end
end
ξEP = ΩEP rEP

log q(ȳ0 | ȳ1) =
1
2r

⊺
EPξEP − 1

2r
⊺
0ξpost − 1

2 log |QEP|+ 1
2 log |Q0|+

∑n̄0
i=1 log(1/Zi)

Result: ( ΩEP, ξEP, log q(ȳ0 | ȳ1) )

96



APPENDIX

= −1

2
rnew⊺

EP (Qnew
EP )−1rnew

EP +
1

2
r⊺−iΩir−i

= −1

2
(r⊺−i +mnew

i x̄⊺
0[i])

(
Ωi −

knew
i

1 + knew
i x̄⊺

0[i]Ωix̄0[i]
(Ωix̄0[i])(x̄

⊺
0[i]Ωi)

)
(r−i +mnew

i x̄0[i])

+
1

2
r⊺−iΩir−i

= −1

2
r⊺−iΩir−i −

1

2
(mnew

i )2x̄⊺
0[i]Ωix̄0[i] −mnew

i x̄⊺
0[i]Ωir−i

+
1

2

knew
i

1 + knew
i x̄⊺

0[i]Ωix̄0[i]
(x̄⊺

0[i]Ωir−i)
2 +

1

2

knew
i

1 + knew
i x̄⊺

0[i]Ωix̄0[i]
(mnew

i )2(x̄⊺
0[i]Ωix̄0[i])

2

+
knew
i

1 + knew
i x̄⊺

0[i]Ωix̄0[i]
mnew

i (x̄⊺
0[i]Ωix̄0[i])(x̄

⊺
0[i]Ωir−i) +

1

2
r⊺−iΩir−i

= −mnew
i (x̄⊺

0[i]Ωir−i)
1

1 + knew
i x̄⊺

0[i]Ωix̄0[i]
− 1

2
(mnew

i )2(x̄⊺
0[i]Ωix̄0[i])

1

1 + knew
i x̄⊺

0[i]Ωix̄0[i]

+
1

2
(x̄⊺

0[i]Ωir−i)
2 knew

i

1 + knew
i x̄⊺

0[i]Ωix̄0[i]

= −1

2

x̄⊺
0[i]Ωix̄0[i]

1 + knew
i x̄⊺

0[i]Ωix̄0[i]

(
mnew

i +
x̄⊺
0[i]Ωir−i

x̄⊺
0[i]Ωix̄0[i]

)2

+
1

2

(
x̄⊺
0[i]Ωir−i

)2
x̄⊺
0[i]Ωix̄0[i]

Assembling all the results above, we can construct the alternative EP scheme reported in
Algorithm 2. Except for the efficient calculation of log(1/Znew

i ), the core of the EP updates
in Algorithm 2 takes the same form as in the implementation of the R package EPGLM,
used as a benchmark by Chopin & Ridgway (2017). Notably, there is no direct p̄× p̄ matrix
inversion or determinant calculation, reducing the cost per EP iteration to O(p̄2 · n̄0).

Despite the improvement over a naive implementation, like that of Algorithm 1, the
quadratic cost in the number of covariates can still make computations impractically slow
for high-dimensional datasets. In the remaining part of this Section we show that the same
representation can be further exploited to formulate an equivalent EP scheme withO(p̄ · n̄20)
cost per iteration. In fact, we can avoid handling explicitly any p × p matrix by defining
the new variables τ i = Q−1

−i x̄0[i] = Ωix̄0[i] and ui = Q−1
EP x̄0[i], for each i = 1, . . . , n0, and

working out directly their updates. Coherently with the above formulation

τ i = Q−1
−i x̄0[i] = (QEP −Qi)

−1x̄0[i]

= Q−1
EP x̄0[i] + (1− kix̄⊺

0[i]Q
−1
EP x̄0[i])

−1ki(Q
−1
EP x̄0[i])(Q

−1
EP x̄0[i])

⊺x̄0[i]

= ui + ki(1− kix̄⊺
0[i]ui)

−1uiu
⊺
i x̄0[i] = ui + ki(1− kix̄⊺

0[i]ui)
−1(x̄⊺

0[i]ui)ui

=

[
1 +

kix̄
⊺
0[i]ui

1− kix̄⊺
0[i]ui

]
ui =

[
1

1− kix̄⊺
0[i]ui

]
ui.

In this reformulation of the problem, the update of any specific i-th factor affects also every
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other site, contrarily to Algorithm 2, in that it leads to a modification of all the vectors
{uj}n̄0

j=1. In fact,

unew
j = (Qnew

EP )−1x̄0[j] = (QEP −Qi +Qnew
i )−1x̄0[j]

=
(
Qnew

EP + (knew
i − ki)x̄0[i]x̄

⊺
0[i]

)−1
x̄0[j]

=

(
(QEP)

−1 − knew
i − ki

1 + (knew
i − ki)x̄⊺

0[i](QEP)−1x̄0[i]
(QEP)

−1x̄0[i]x̄
⊺
0[i](QEP)

−1

)
x̄0[j]

= uj − ui
(knew

i − ki)
1 + (knew

i − ki)x̄⊺
0[i]ui

x̄⊺
0[i]uj .

Instead of cycling over j, these updates can be performed in block by defining a p̄ × n̄0
matrix U = (u1,u2, . . . ,un̄0). Accordingly

Unew = U− ui
(knew

i − ki)
1 + (knew

i − ki)x̄⊺
0[i]ui

x̄⊺
0[i]U .

This operation will be the most expensive per site update, being of order O(p̄ · n̄0). Ac-
cordingly, each EP iteration will have cost O(p̄ · n̄20). Contrarily to Algorithm 2, once the
procedure has reached convergence we still need to calculate the inverse of the global pre-
cision matrix Q−1

EP , other than its determinant |QEP| as in all previous versions. Both these
calculations can be optimized as well in their cost with respect to p̄, starting from the obser-
vation that QEP = Q0 +

∑n̄0
i=1 x̄0[i]kix̄

⊺
0[i] = Q0 + X̄⊺

0KX̄0 with K = diag({ki}n̄0
i=1). Defining

Λ = (K−1 + X̄0ΩX̄⊺
0)

−1, so that Q−1
EP = Q−1

0 −Q−1
0 X̄⊺

0ΛX̄0Q
−1
0 , one has

U = Q−1
EP X̄

⊺
0 = ΩX̄⊺

0 −ΩX̄⊺
0(K

−1 + X̄0ΩX̄⊺
0)

−1X̄0Ω

= ΩX̄⊺
0

(
In̄0 − (In̄0 +KX̄0ΩX̄⊺

0)
−1KX̄0ΩX̄⊺

0

)
= ΩX̄⊺

0(In̄0 +KX̄0ΩX̄⊺
0)

−1

= ΩX̄⊺
0(K

−1 + X̄0ΩX̄⊺
0)

−1K−1 = ΩX̄⊺
0ΛK−1,

and thus, recalling that U0 = ΩX̄⊺
0 = Q−1

0 X̄⊺
0

ΩEP = Q−1
EP = Ω−UKU⊺

0 ,

while

−1

2
log |QEP|+

1

2
log |Q0| = −

1

2
log |K−1 + X̄0Q

−1
0 X̄⊺

0| −
1

2
log |K|

= −1

2
log |In̄0 +KX̄0U0| .

Similarly, since r = r0 +
∑n̄0

i=1mix̄0[i] = X̄⊺
0m, with m = (m1,m2, . . . ,mn̄0)

⊺, one has
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Algorithm 3: Efficient probit & tobit EP - O(p̄ · n̄20) cost per iteration

Q0 = (Ω−1 + σ−2X̄⊺
1X̄1)

r0 = (Ω−1ξ + σ−2X̄⊺
1ȳ1)

for i = 1, . . . , n̄0 do
ki = 0 ; mi = 0 ; log(1/Zi) = 0

end
if p̄ > n̄1 then

Ωpost = Ω−ΩX̄⊺
1(σ

2In̄1 + X̄1ΩX
⊺
1 )

−1X̄1Ω
else

Ωpost = (Q0)
−1

end
ξpost = Ωpostr0

U = U0 = ΩpostX̄
⊺
0

for t from 1 until convergence do
for i from n̄0 do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
τ i = (1− kix̄⊺

0[i]ui)
−1ui

r−i = rEP −mix̄0[i]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
si = (1 + x̄⊺

0[i]τ i)
−1/2

γi = siτ
⊺
i r−i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i-th site approximation
knew
i = −ψ2(γi)/

(
1 + x̄⊺

0[i]τ i + ψ2(γi)x̄
⊺
0[i]τ i

)
mi = ψ1(γi)si + knew

i τ ⊺
i r−i + knew

i ψ1(γi)six̄
⊺
0[i]τ i

δki = knew
i − ki

ki = knew
i

log(1/Zi) = log Φ(γi) +
1

2
log
(
1 + kix̄

⊺
0[i]τ i

)
+

1

2

(τ ⊺
i r−i)

2

x̄⊺
0[i]τ i

−1

2

x̄⊺
0[i]τ i

1 + kix̄
⊺
0[i]τ i

(
mi +

τ ⊺
i r−i

x̄⊺
0[i]τ i

)2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
rEP = r−i +mix̄0[i]

U = U− ui
δki

1 + δki x̄
⊺
0[i]ui

(x̄⊺
0[i]U)

end
end
ΩEP = Ωpost −UKU⊺

0

ξEP = ξpost +U0m−UKU⊺
0rEP

log q(ȳ0 | ȳ1) =
1
2r

⊺ξEP − 1
2r

⊺
0ξpost − 1

2 log |In̄0 +KX̄0U0|+
∑n̄0

i=1 log(1/Zi)

Result: ( ΩEP, ξEP, log q(ȳ0 | ȳ1) )
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ξEP = ΩEP rEP = Q−1
EP rEP = ΩrEP −UKU⊺

0rEP = ξpost +U0m−UKU⊺
0rEP.

We now have all the building blocks to construct the final efficient EP scheme reported
below in Algorithm 3

A.1.3 Scalable Gaussian EP for multivariate normal cdf sites

Both the efficient EP schemes from the previous Section can be adapted to the more general
case with multivariate normal cdf sites in the target distribution, as it happens in equa-
tion (1.26). As before, for ease of notation we replace the superscript “(tc)” on the updated
parameters with “new”, and drop the superscript “(tc−1)” identifying the outcome of the
previous step. Once again, the key for reformulating the EP updates is the application of
Woodbury identity, which gives

Qnew
c =

(
varh[β | y]

)−1 −Q−c =
(
Ωc +ΩcX̄

⊺
0[c]s

−1
c Πcs

−1
c X̄0[c]Ωc

)−1 −Q−c

= Ω−1
c − X̄⊺

0[c](scH
−1
c sc + X̄0[c]ΩcX̄

⊺
0[c])

−1X̄0[c] −Ω−1
c

= X̄⊺
0[c]K

new
c X̄0[c]

with Knew
c = −(scΠ−1

c sc + X̄0[c]ΩcX̄
⊺
0[c])

−1, and

rnew
c = Qnew

EP Eh[β | y]− r−c = (Q−c +Qnew
c )(Ωcr−c +ΩcX̄

⊺
0[c]s

−1
c ψc)− r−c

= X̄⊺
0[c]K

new
c X̄0[c]Ωcr−c + X̄⊺

0[c]K
new
c X̄0[c]ΩcX̄

⊺
0[c]s

−1
c ψc + X̄⊺

0[c]s
−1
c ψc

= X̄⊺
0[c]K

new
c scγc + X̄⊺

0[c]K
new
c X̄0[c]ΩcX̄

⊺
0[c]s

−1
c ψc + X̄⊺

0[c]s
−1
c ψc

= X̄⊺
0[c]m

new
c

where mnew
c =

(
s−1
c ψc + Knew

c scγc + Knew
c X̄0[c]ΩcX̄

⊺
0[c]s

−1
c ψc

)
. Accordingly, we can store

the n̄c-dimensional vector mc and the n̄c × n̄c matrix Kc for each site c = 1, . . . , C, instead
of the full rc and Qc. Accordingly

Ωc = Q−1
−c = (QEP − X̄⊺

0[c]KcX̄0[c])
−1

= ΩEP +ΩEPX̄
⊺
0[c](K

−1
c − X̄0[c]ΩEPX̄

⊺
0[c])

−1X̄0[c]ΩEP,

while

Qnew
EP = Q−c + X̄⊺

0[c]K
new
c X̄0[c]

Ωnew
EP = Ωc +ΩcX̄

⊺
0[c]s

−1
c Πcs

−1
c X̄0[c]Ωc .

For what concerns the update of log(1/Zc), instead, recalling that γc = s−1
c X̄0[c]Ωcr−c and

introducing ϑc = (X̄0[c]ΩcX̄
⊺
0[c])

−1scγc we have
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Algorithm 4: EP for Multivariate Normal cdf sites - Quadratic cost per iteration in
the number of features p̄
QEP = Q0 = Ω−1+X̄⊺

1Σ̄
−1
1 X̄1

rEP = r0 = Ω−1ξ + X̄⊺
1Σ̄

−1
1 ȳ1

for c = 1, . . . , C do
Kc = 0n̄c×n̄c ; mc = 0n̄c ; log(1/Zc) = 0

end
if p̄ > n̄1 then

ΩEP = Ω−ΩX̄⊺
1(Σ̄+ X̄1ΩX

⊺
1 )

−1X̄1Ω
else

ΩEP = (Q0)
−1

end
ξpost = ΩEPr0

for t from 1 until convergence do
for c from C do

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution
Q−c = QEP − X̄⊺

0[c]KcX̄0[c]

r−c = r− X̄⊺
0[c]mc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
Ωc = ΩEP +ΩEPX̄

⊺
0[c]

(
K−1

c − X̄0[c]ΩEPX̄
⊺
0[c]

)−1
X̄0[c]ΩEP

sc = ([Σ̄0[c,c] + X̄0[c]ΩcX̄
⊺
0[c]]⊙ In̄c)

1/2

γc = s−1
c (ȳ0[c] + X̄0[c]Ωc r−c)

Γc = s−1
c (Σ̄0[c,c] + X̄0[c]ΩcX̄

⊺
0[c])s

−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moments evaluation

ψc = Γ−1
c E[U1c]

Πc = Γ−1
c

(
var[U1c]− Γc

)
Γ−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c-th site approximation

Kc = −(scΠ−1
c sc + X̄0[c]ΩcX̄

⊺
0[c])

−1

mc = s−1
c ψc +Kcscγc +KcX̄0[c]ΩcX̄

⊺
0[c]s

−1
c ψc

ϑc = (X̄0[c]ΩcX̄
⊺
0[c])

−1scγc

log(1/Zc) = log Φn̄c(γc,Γc) +
1
2 log |In̄c +Kc(X̄0[c]ΩcX̄

⊺
0[c])|+

1
2γ

⊺
cscϑc

+1
2(mc + ϑc)

⊺K−1
c (s−1

c Πcs
−1
c )(X̄0[c]ΩcX̄

⊺
0[c])(mc + ϑc)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
QEP = Q−c + X̄⊺

0[c]KcX̄0[c]

rEP = r−c + X̄⊺
0[c]mc

ΩEP = Ωc +ΩcX̄
⊺
0[c]s

−1
c Πcs

−1
c X̄0[c]Ωc

end
end
ξEP = ΩEP r

log q(ȳ0 | ȳ1) =
1
2r

⊺ξEP − 1
2r

⊺
0ξpost − 1

2 log |QEP|+ 1
2 log |Q0|+

∑C
c=1 log(1/Zc)

Result: ( ΩEP, ξEP, log q(ȳ0 | ȳ1) )
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= −1

2
rnew⊺

EP Ωnew
EP rnew

EP +
1

2
r⊺−cΩcr−c

= −1

2
(r⊺−c +m⊺

cX̄0[c])
(
Ωc +ΩcX̄

⊺
0[c]s

−1
c Πcs

−1
c X̄0[c]Ωc

)
(r−c + X̄⊺

0[c]mc) +
1

2
r⊺−cΩcr−c

= −1

2
m⊺

c(X̄0[c]ΩcX̄
⊺
0[c])

[
s−1
c Πcs

−1
c + (X̄0[c]ΩcX̄

⊺
0[c])

−1
]
(X̄0[c]ΩcX̄

⊺
0[c])mc

−m⊺
c(X̄0[c]ΩcX̄

⊺
0[c])

[
s−1
c Πcs

−1
c + (X̄0[c]ΩcX̄

⊺
0[c])

−1
]
X̄0[c]Ωcr−c

− 1

2
r⊺−cΩcX̄

⊺
0[c]

[
s−1
c Πcs

−1
c + (X̄0[c]ΩcX̄

⊺
0[c])

−1
]
X̄0[c]Ωcr−c

+
1

2
r⊺−cΩcX̄

⊺
0[c](X̄0[c]ΩcX̄

⊺
0[c])

−1X̄0[c]Ωcr−c

=
1

2
(m⊺

c + ϑ
⊺
c)(K

new
c )−1(s−1

c Πcs
−1
c )(X̄0[c]ΩcX̄

⊺
0[c])(mc + ϑc) +

1

2
(γ⊺

cscϑc),

while

=
1

2
log |Qnew

EP | −
1

2
log |Q−c| =

1

2
log |Knew

c |+ 1

2
log |(Knew

c )−1 + X̄0[c]ΩcX̄
⊺
0[c]|

=
1

2
log |Inc +Knew

c (X̄0[c]ΩcX̄
⊺
0[c])|

Accordingly, we can formulate Algorithm 4 below.

Analogously to the previous Section, we can devise a version of the EP updates with
linear cost in the number of covariates even in such multivariate case . Let us define for
each block the variables uc = Q−1

EP X̄
⊺
0[c] and τ c = Q−1

−cX̄
⊺
0[c], both with dimension p̄ × n̄c .

Accordingly

τ c = Q−1
−cX̄

⊺
0[c] = (QEP − X̄⊺

0[c]KcX̄0[c])
−1X̄⊺

0[c]

= Q−1
EP X̄

⊺
0[c] −Q−1

EP X̄
⊺
0[c](K

−1
c − X̄0[c]Q

−1
EP X̄

⊺
0[c])

−1X̄0[c]Q
−1
EP X̄

⊺
0[c]

= Q−1
EP X̄

⊺
0[c]

[
In̄c + (K−1

c − X̄0[c]Q
−1
EP X̄

⊺
0[c])

−1X̄0[c]Q
−1
EP X̄

⊺
0[c]

]
= Q−1

EP X̄
⊺
0[c](K

−1
c − X̄0[c]Q

−1
EP X̄

⊺
0[c])

−1K−1
c

= uc(K
−1
c − X̄0[c]uc)

−1K−1
c = uc(In̄c −KcX̄0[c]uc)

−1.

As before, the update of a single site c leads to a change in all {us}Cs=1. Defining the matrix
δKc = Knew

c −Kc, one has

unew
s =

(
Qnew

EP

)−1
X̄⊺

0[s] = (QEP −Qc +Qnew
c )−1X̄⊺

0[s]

= (QEP − X̄⊺
0[c]KcX̄0[c] + X̄⊺

0[c]K
new
c X̄0[c])

−1X̄⊺
0[s] = (QEP + X̄⊺

0[c]δKcX̄0[c])
−1X̄⊺

0[s]

= Q−1
EP X̄

⊺
0[s] −Q−1

EP X̄
⊺
0[c](In̄c + δKcX̄0[c]Q

−1
EP X̄

⊺
0[c])

−1δKcX̄0[c]Q
−1
EP X̄

⊺
0[s]

= us − uc(In̄c + δKcX̄0[c]uc)
−1δKcX̄0[c]us.
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Algorithm 5: Efficient EP for Multivariate Normal cdf sites - Linear cost per itera-
tion in the number of features p̄
Q0 = Ω−1+X̄⊺

1Σ̄
−1
1 X̄1

r0 = Ω−1ξ + X̄⊺
1Σ̄

−1
1 ȳ1

for c = 1, . . . , C do
Kc = 0n̄c×n̄c ; mc = 0n̄c ; log(1/Zc) = 0

end
if p̄ > n̄1 then

Ωpost = Ω−ΩX̄⊺
1(Σ̄+ X̄1ΩX

⊺
1 )

−1X̄1Ω
else

Ωpost = (Q0)
−1

end
ξpost = Ωpostr0

U = U0 = ΩpostX̄
⊺
0

for t from 1 until convergence do
for c from C do. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cavity distribution

τ c = uc(In̄c −KcX̄0[c]uc)
−1

r−c = r− X̄⊺
0[c]mc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid distribution
sc = ([Σ̄0[c,c] + X̄0[c]ΩcX̄

⊺
0[c]]⊙ In̄c)

1/2

γc = s−1
c (ȳ0[c] + X̄0[c]Ωc r−c)

Γc = s−1
c (Σ̄0[c,c] + X̄0[c]ΩcX̄

⊺
0[c])s

−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moments evaluation

ψc = Γ−1
c E[U1c]

Πc = Γ−1
c

(
var[U1c]− Γc

)
Γ−1
c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c-th site approximation

Knew
c = −(scΠ−1

c sc + X̄0[c]τ c)
−1

δKc = Knew
c −Kc

Kc = Knew
c

mc = s−1
c ψc +Knew

c scγc +Knew
c X̄0[c]ΩcX̄

⊺
0[c]s

−1
c ψc

ϑc = (X̄0[c]τ c)
−1scγc

log(1/Zc) = log Φn̄c(γc,Γc) +
1
2 log |In̄c +Kc(X̄0[c]τ c)|+ 1

2γ
⊺
cscϑc

+1
2(mc + ϑc)

⊺K−1
c (s−1

c Πcs
−1
c )(X̄0[c]τ c)(mc + ϑc)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global approximation
rEP = r−c + X̄⊺

0[c]mc

U = U+ uc

(
(In̄c + δKcX̄0[c]uc)

−1δKc

)
(X̄0[c]U)

end
end
ΩEP = Ωpost −UKU⊺

0

ξEP = ξpost +U0m−UKU⊺
0r

log q(ȳ0 | ȳ1) =
1
2r

⊺ξEP − 1
2r

⊺
0ξpost − 1

2 log |In̄0 +KX̄0U0|+
∑C

c=1 log(1/Zc)

Result: ( ΩEP, ξEP, log q(ȳ0 | ȳ1) )
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Grouping {uc}Cc=1 into a single p̄ × n̄0 matrix U = (u1, . . . ,uC), the cost of EP updates
scales again linearly in the number of features p̄ since

Unew = U+ uc

[
(In̄c + δKcX̄0[c]uc)

−1δKc

]
(X̄0[c]U) .

Eventually, the final matrix inversion an the determinant calculation can be performed
as seen before in the case of univariate truncated-normal sites. Indeed, we still have that
QEP = Q0 +

∑C
c=1 X̄

⊺
0[c]KcX̄0[c] = Q0 + X̄⊺

0KX̄0 and r = r0 +
∑C

c=1 X̄
⊺
0[c]mc = X̄⊺

0M, where
now K = diag({Kc}Cc=1) is a n̄0 × n̄0 block-diagonal matrix, while m = (m⊺

1, . . . ,m
⊺
C)

⊺ is a
vector of length n̄0. Accordingly, as before

ΩEP = Q−1
EP = Ω0 −UKU⊺

0

ξEP = ξpost +Q−1
EP rEP = U0m−UKU⊺

0r,

and

−1

2
log |QEP|+

1

2
log |Q0| = −

1

2
log |In̄0 +KX̄0U0|.

The resulting efficient EP schemes in summarized in Algorithm 5.

A.2 PLQ optimality and semismooth coordinate descent

A.2.1 Optimality of the PLQ bound

In this Section we prove equation (2.20) from Chapter 2, which states the optimality of the
PLQ bound with the familyHS(ζ), given that ζ ̸= 0. With no loss of generality and for ease
of exposition, we hereby consider a translated version h̃(r) of the target function h(r) from
equation (2.8)

h̃(r) = h(r)− h(0) = − log cosh(r/2) ,

so that h̃(0) = 0, while we still have h̃(−r) = h̃(r). Accordingly, every element hS(r | ζ) ∈
HS(ζ) gives a proper minorizer for the adjusted target by simply applying the same rigid
translation h̃S(r | ζ) = hS(r | ζ)− h(0), so that h̃(r) ≥ h̃S(r | ζ) = h̃(ζ) + aS(ζ)(r − ζ)− 1

2wS(ζ)(r
2 − ζ2)− νS(ζ)(|r| − |ζ|)

h̃(ζ) = h̃S(ζ | ζ) .

In particular, the minorization requirement implies h̃(ζ) = h̃(−ζ) ≥ h̃S(−ζ | ζ) = h̃(ζ)− 2aS(ζ)ζ

0 = h̃(0) ≥ h̃S(0 | ζ) = h̃(ζ)− aS(ζ)ζ +
1
2wS(ζ)ζ

2 + νS(ζ)|ζ| .
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Additionally, since we have assumed that ζ ̸= 0, the minorizers will be differentiable at ζ.
As such, the tangent minorization requirement further gives

h̃′(ζ) = h̃′S(ζ | ζ) = aS(ζ)− wS(ζ)ζ − νS(ζ) sign(ζ)

where h̃′(r) = ∂h̃′(r)/∂r. Combining this with the previous conditions, we have that
aS(ζ)− νS(ζ) sign(ζ) = h̃′(ζ) + wS(ζ)ζ

wS(ζ) ≥ 2
ζ2

(
h̃(ζ)− h̃′(ζ) ζ

)
aS(ζ)ζ ≥ 0 .

Conversely, we recall that the PLQ bound h̃PLQ(r | ζ) arises by imposing both that aPLQ(ζ) =

0, which implies symmetry with respect to the origin, and that h̃(0) = h̃PLQ(0 | ζ). This
translates into

wPLQ(ζ) =
2

ζ2

(
h̃(ζ)− h̃′(ζ) ζ

)
νPLQ(ζ) =

1

|ζ|

(
h̃′(ζ) ζ − 2 h̃(ζ)

)
,

which in particular means that wPLQ(ζ) ≤ wS(ζ). Assume now that ζ > 0. If r > 0, then

h̃PLQ(r | ζ)− h̃S(r | ζ) = −
(
νPLQ(ζ)− νS(ζ) + aS(ζ)

)
(r − ζ)− 1

2

(
wPLQ(ζ)− wS(ζ)

)
(r2 − ζ2)

=
(
wPLQ(ζ)− wS(ζ)

)
ζ(r − ζ)− 1

2

(
wPLQ(ζ)− wS(ζ)

)
(r2 − ζ2)

= −1

2

(
wPLQ(ζ)− wS(ζ)

)
(r − ζ)2 ≥ 0 .

Conversely, if r < 0

h̃PLQ(r | ζ)− h̃S(r | ζ) =
(
h̃PLQ(−r | ζ)− h̃S(−r | ζ)

)
− 2 aS(ζ) r ≥ 0 .

Indeed, the first term is non-negative thanks to the previous equation, while the second is
one is non-negative because r < 0 and aS(ζ) ≥ 0, since ζ > 0. As by definition h̃PLQ(0 | ζ) =
h̃(0) ≥ h̃S(0 | ζ), we have that h̃PLQ(r | ζ) ≥ h̃S(r | ζ) for any r ∈ ℜ, while analogous results
can be derived for the case ζ < 0.

A.2.2 Semi-smooth coordinate-wise updates

In this Section, we report the coordinate-wise updates for the semi-smooth surrogate from
equation (2.23), which follow directly from an extension of the construction by Yi & Huang
(2017). A key aspect of the methodology by the authors is that it updates simultaneously
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a regression coefficient βj and its corresponding subgradient vj ∈ ∂|βj | at each step of
the coordinate-wise optimization. Indeed, the solutions to the univariate optimization
problems can be tackled by addressing the corresponding Karush-Kuhn-Tucker conditions
(Rockafellar, 1970), thanks to the concavity of the objective function. Given the current val-
ues for the primal and dual s(t,s) = (β(t,s),v(t,s))⊺ variables, the updates for intercept β0,
usually not affected by the penalization, take the form

β
(t,s+1)
0 ← β̃

(t)
0 −

∑n
i=1

(
− (yi − 1/2) + w

(t)
PLQ,i · x

⊺
iβ

(t,s) + ν
(t)
PLQ,i · d′ϵ(x

⊺
iβ

(t,s))
)∑n

i=1

(
w

(t)
PLQ,i + ν

(t)
PLQ,i · 1(|x

⊺
iβ

(t,s)| ≤ ϵ)/ϵ
) ,

where 1(|r| ≤ ϵ)/ϵ provides a valid subgradient of d′ϵ(r) := ∂dϵ(r)/∂r (Yi & Huang, 2017).
Conversely, the joint updates for s(t,s+1)

j = (β
(t,s+1)
j , v

(t,s+1)
j )⊺ takes a two-fold form, de-

pending on the value of |β(t,s)j + v
(t,s)
j |. In particular, if |β(t,s)j + v

(t,s)
j | > 1

β
(t,s+1)
j ← β

(t,s)
j −

∑n
i=1

(
− (yi − 1/2) + w

(t)
PLQ,i · x

⊺
iβ

(t,s) + ν
(t)
PLQ,i · d′ϵ(x

⊺
iβ

(t,s))
)
xij∑n

i=1

(
w

(t)
PLQ,i + ν

(t)
PLQ,i · 1(|x

⊺
iβ

(t,s)| ≤ ϵ)/ϵ
)
x2ij + λ(1− α)

+
λ(1− α)β(t,s)j + λα sign(β(t,s)j + v

(t,s)
j )∑n

i=1

(
w

(t)
PLQ,i + ν

(t)
PLQ,i · 1(|x

⊺
iβ

(t,s)| ≤ ϵ)/ϵ
)
x2ij + λ(1− α)

v
(t,s+1)
j ← sign(β(t,s)j + v

(t,s)
j ) ,

while if |β̃j + ṽj | ≤ 1

β
(t,s+1)
j ← 0

v
(t,s+1)
j ← −

∑n
i=1

(
− (yi − 1/2) + w

(t)
PLQ,i · x

⊺
iβ

(t,s) + ν
(t)
PLQ,i · d′ϵ(x

⊺
iβ

(t,s))
)
xij

λα

+
β
(t,s)
j

∑n
i=1

(
w

(t)
PLQ,i + ν

(t)
PLQ,i · 1(|x

⊺
iβ

(t,s)| ≤ ϵ)/ϵ
)
x2ij

λα
.

A.3 PLQ-VB updates and efficient computations

A.3.1 Variational parameters updates for the PLQ bound

In the current Section we prove equation (3.11) from Chapter 3, which gives the update
rule for the variational parameters {ζi}ni=1 under the piece-wise quadratic approximation
introduced in Section 3.3. The goal is to maximize the function

QPLQ(ζ | ζ(t)) = Ep̄PLQ(β|y,ζ(t))

[
log p̄PLQ(β,y | ζ)

]
= Ep̄PLQ(β|y,ζ(t))

[
log p(β) +

∑n
i=1 log p̄PLQ(yi | β, ζi)

]
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over ζ ∈ ℜn, where for ease of notation we are going to write q(t+1)(β) = p̄PLQ(β | y, ζ(t)).
Notice that QPLQ(ζ | ζ(t)) depends on the variational parameters only via their absolute
value {|ζi|}ni=1, so that we can restrict our attention to the maximization over ϱi = |ζi|, for
all i = 1, . . . , n. Accordingly, QPLQ(ϱi | ϱ(t)) =

∑n
i=1Qi(ϱi | ϱ(t)), with

Qi(ϱi | ϱ(t)) = − log cosh(ϱi/2)− νPLQ(ϱi)
(
Eq(t+1)(β)

[
|x⊺

iβ|
]
− ϱi

)
− 1

2
wPLQ(ϱi)

(
Eq(t+1)(β)

[
(x⊺

iβ)
2
]
− ϱ2i

)
+ const

and we want to solve Q′
i(ϱi | ϱ(t)) := ∂Qi(ϱi | ϱ(t))/∂ϱi = 0 for all i = 1, . . . , n. Recall that

νPLQ(ϱi) =
2

ϱi

(
log cosh(ϱi/2)−

1

4
ϱi tanh(ϱi/2)

)
wPLQ(ϱi) =

2

ϱ2i

(
− log cosh(ϱi/2) +

1

2
ϱi tanh(ϱi/2)

)
,

and νPLQ(ϱi) + ϱiwPLQ(ϱi) =
1
2 tanh(ϱi/2). Simple algebraic calculations allow to obtain

ν ′PLQ(ϱi) :=
∂νPLQ(ϱi)

∂ϱi
= wPLQ(ϱi)−

1

4
sech2(ϱi/2)

w′
PLQ(ϱi) :=

∂wPLQ(ϱi)

∂ϱi
= − 2

ϱi
ν ′PLQ(ϱi).

Accordingly

Q′
i(ϱi | ϱ(t)) = −

1

2
tanh(ϱi/2) + νPLQ(ϱi) + ϱiwPLQ(ϱi)− ν ′PLQ(ϱi)

(
Eq(t+1)(β)

[
|x⊺

iβ|
]
− ϱi

)
− 1

2
w′

PLQ(ϱi)
(
Eq(t+1)(β)

[
(x⊺

iβ)
2
]
− ϱ2i

)
.

The first three terms cancel out as a consequence of equation (2.19), so that

Q′
i(ϱi | ϱ(t)) = −ν ′PLQ(ϱi)Eq(t+1)(β)

[
|x⊺

iβ|
]
− 1

2
w′

PLQ(ϱi)Eq(t+1)(β)

[
(x⊺

iβ)
2
]

+
1

2
ϱ2i

(
w′

PLQ(ϱi) +
2

ϱi
ν ′PLQ(ϱi)

)
=

1

2
w′

PLQ(ϱi)
(
ϱi · Eq(t+1)(β)

[
|x⊺

iβ|
]
− Eq(t+1)(β)

[
(x⊺

iβ)
2
])
,

which is clearly equal to zero for ϱi = Eq(t+1)(β)

[
(x⊺

iβ)
2
]
/Eq(t+1)(β)

[
|x⊺

iβ|
]
. In turn, this

gives ∣∣ζ(t+1)
i

∣∣ = Ep̄PLQ(β|y,ζ(t))

[
(x⊺

iβ)
2
]

Ep̄PLQ(β|y,ζ(t))

[
|x⊺

iβ|
] i = 1, . . . , n

as in equation (3.11).
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A.3.2 Approximate posterior moments and scalable implementation

In the current Section we provide the details for the scalable implementation of the PLQ-
VB posterior, under the scale-mixture representation for the Laplace contributions, as in
equation (3.13)

p̄PLQ(β | y, ζ) =
1

2n

∫
(ℜ+)n

ϕp
(
ξ0;Ω0

)
ϕp
(
ξ(ζ,κ);Ω(ζ,κ)

) n∏
i=1

p(κi) dκi =
1

2n
Ep(κ)

[
ϖ(ζ,κ)

]
(17)

We begin by noticing that the weights ϖ(ζ,κ) can be rewritten as

ϖ(ζ,κ) = ϕp
(
ξ0;Ω0

)
/ϕp
(
ξ(ζ,κ);Ω(ζ,κ)

)
=
|Ω(ζ,κ)|1/2

|Ω0|1/2
exp

{
1
2ξ(ζ,κ)

⊺Ω(ζ,κ)ξ(ζ,κ)
}

exp
{
1
2ξ

⊺
0Ω0ξ0

}
where Woodbury Identity gives us

|Ω(ζ,κ)|1/2

|Ω0|1/2
=

∣∣∣∣diag
({

κi
wPLQ(ζi)κi + ν2PLQ(ζi)

}n

i=1

)
+XΩ0X

⊺

∣∣∣∣−1/2

·

·
n∏

i=1

(
κi

wPLQ(ζi)κi + ν2PLQ(ζi)

)1/2

,

and

= ξ(ζ,κ)⊺Ω(ζ,κ)ξ(ζ,κ)

= r⊺Ω0r− r⊺Ω0X
⊺
(

diag
({

κi
wPLQ(ζi)κi + ν2PLQ(ζi)

}n

i=1

)
+XΩ0X

⊺
)−1

XΩ0r ,

where we have introduced r = (Ω−1
0 ξ0 +X⊺(y − 1/21n)). For what concerns the approxi-

mate posterior mean of β, it is easy to very that

EpPLQ(β|y,ζ)
[
β
]
=

Ep(κ)

[
ϖ(ζ,κ) ξ(ζ,κ)

]
Ep(κ)

[
ϖ(β,κ)

] ,

while, in accordance with the law of total variance var[β] = E[var[β | κ]] + var[E[β | κ]],
for the approximate covariance of β we have

varpPLQ(β|y,ζ)
[
β
]
=

Ep(κ)

[
ϖ(ζ,κ)Ω(ζ,κ)

]
Ep(κ)

[
ϖ(ζ,κ)

] +
Ep(κ)

[
ϖ(ζ,κ) ξ(ζ,κ) ξ⊺(ζ,κ)

]
Ep(κ)

[
ϖ(ζ,κ)

]
−

Ep(κ)

[
ϖ(ζ,κ) ξ(ζ,κ)

]
Ep(κ)

[
ϖ(ζ,κ)

] ·
Ep(κ)

[
ϖ(ζ,κ) ξ⊺(ζ,κ)

]
Ep(κ)

[
ϖ(ζ,κ)

] .
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