
Università Commerciale “Luigi Bocconi”
Ph.D. School

Ph.D. Program in: Economics and Finance

Cycle: XXXIV

Disciplinary Field: SECS-P/01

Essays in the Economics of Innovation

Advisor

Mara P. Squicciarini

asd Author

asd Davide M. Coluccia

asd ID Number: 3081045

Year 2023





Essays in the Economics of Innovation

By

Davide M. Coluccia

Abstract

Innovation is a crucial determinant of long-run economic growth in advanced economies. This

dissertation explores the economic and social determinants of the production and diffusion

of innovation in the context of Europe and the United States in the late nineteenth and early

twentieth century.

The first chapter (jointly authored with Gaia Dossi) documents how out-migration impacts

innovation in the country of origin of migrants. During the Age of Mass Migration, nearly four

million English migrants settled in the US. We construct a novel individual-level dataset link-

ing English immigrants in the US to the UK census and complement it with the newly digitized

universe of UK patents. Using a new shift-share instrument for bilateral migration flows and a

triple-differences design, we document a positive, significant, and persistent effect of exposure

to US technology through migrant ties on the direction of innovation in Britain in 1870–1940.

The individual-level analysis suggests that physical return migration is not the main factor un-

derlying this “return innovation” effect. Instead, we find that migration ties generate infor-

mation flows that facilitate the cross-border diffusion of novel knowledge. Furthermore, our

findings suggest that market integration fostered by migration linkages is a crucial driver of

information flows.

The second chapter (jointly authored with Lorenzo Spadavecchia) interprets out-migration

through the lenses of directed technical change and adoption theory. We study the impact of

immigration restriction policies on technology adoption in countries sending migrants. Be-

tween 1920 and 1921, the number of Italian immigrants to the United States dropped by 85%

after Congress passed the Emergency Quota Act, a severely restrictive immigration law. In a

difference-in-differences setting, we exploit variation in exposure across Italian districts to this

massive restriction against human mobility. Using novel individual-level data on Italian immi-

grants to the US and newly digitized historical censuses, we show that this policy substantially

hampered technology adoption and capital investment. We interpret this as evidence of di-

rected technical adoption: an increase in the labor supply dampens the incentive for firms to

adopt labor-saving technologies. To validate this mechanism, we show that more exposed dis-

tricts display a sizable increase in overall population and employment in manufacturing. We

iii



provide evidence that “missing migrants,” whose migration was inhibited by the Act, drive this

result.

The third chapter (jointly authored with Enrico Berkes, Gaia Dossi, and Mara P. Squiccia-

rini) investigates how societies respond to adversity. After a negative shock, separate strands

of research document either an increase in religiosity or a boost in innovation efforts. In this

paper, we show that both reactions can occur at the same time, driven by different individuals

within the society. The setting of our study is 1918–1919 influenza pandemic in the United States.

To measure religiosity, we construct a novel indicator based on the naming patterns of new-

borns. We measure innovation through the universe of granted patents. Exploiting plausibly

exogenous county-level variation in exposure to the pandemic, we provide evidence that more-

affected counties become both more religious and more innovative. Looking within counties,

we uncover heterogeneous responses: individuals from more religious backgrounds further

embrace religion, while those from less religious backgrounds become more likely to choose

a scientific occupation. Facing adversity widens the distance in religiosity between science-

oriented individuals and the rest of the population, and it increases the polarization of religious

beliefs.
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Chapter 1

Return Innovation*

Evidence from the British Migration to the US, 1860-1940

1.1 Introduction

The adoption of foreign innovation accounts for a sizable proportion of national productivity

growth and, ultimately, long-run development (Eaton and Kortum, 1999).2 However, evidence

on the drivers of the cross-country diffusion of knowledge remains surprisingly limited. In this

paper, we document that exposure to foreign technology through out-migration linkages con-

tributes to the diffusion of innovation to emigration countries.3 This result—which we label

the “return innovation” effect—offers a more nuanced perspective on the effects of emigration

on the economic development of sending countries compared to the traditional “brain drain”

narrative (Docquier and Rapoport, 2012). Depending on the specialization of their settling lo-

cations, emigrants are exposed to different types of novel knowledge. We find that this hetero-

geneity, in turn, generates information flows that shape the trajectory of innovation of their

origin locations, thus contributing to international technology diffusion.

*This chapter is jointly authored with Gaia Dossi. We are extremely grateful to Mara Squicciarini for her con-
tinued guidance and support. For insightful comments and discussions, we also thank Jan Bakker, Enrico Berkes,
Maristella Botticini, Carola Frydman, Simon Görlach, Walker Hanlon, Leander Heldring, Matteo Leombroni, Nicola
Limodio, Paolo Masella, Filippo Mezzanotti, Joel Mokyr, Alessandro Nuvolari, Laura Ogliari, Sebastian Ottinger,
Marta Prato, Nancy Qian, Paola Sapienza, Carlo Schwartz, Marco Tabellini, Edoardo Teso, and John Van Reenen. We
thank audiences at the EHA (Pittsburgh), EHS (Cambridge), and ES (Berlin) conferences, at the 10th CEPR Economic
History Symposium, and seminar participants at Bocconi, Milan, Northwestern, Cologne, and Uppsala. Antonin
Bergeaud, Enrico Berkes, and Walker Hanlon kindly shared data with us. We are grateful to Bocconi, Fondazione
Invernizzi, MapTiler AG, and POID for financial support. Davide Coluccia thanks the Department of Economics at
Northwestern University for hospitality. All errors are our own.

2Economic historians have long argued that the diffusion of knowledge is a key driver of productivity growth
and catching up (e.g., see Gerschenkron, 1962; Rosenberg, 1982). However, endogenous growth models featuring
cross-country diffusion dynamics have emerged only recently (Alvarez et al., 2013; Buera and Oberfield, 2020;
Benhabib et al., 2021; Perla et al., 2021; Van Patten, 2023). Eaton and Kortum (1999), for example, estimate that
87% of productivity growth in France during the 1980s was due to foreign research.

3A vast scholarship documents that immigrants actively contribute to several dimensions of economic devel-
opment in their destination countries spanning entrepreneurship (Kerr and Kerr, 2020; Azoulay et al., 2022), in-
novation (Ganguli, 2015; Bahar et al., 2019; Burchardi et al., 2020; Bernstein et al., 2022) and science (Moser et al.,
2014, 2020), local specialization (Ottinger, 2020), and the formation of political preferences (Giuliano and Tabellini,
2020). As pointed out by Clemens (2011), emigration has generally generated far less attention than immigration.
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The impact of emigration on innovation is ex-ante ambiguous. Classical “brain drain” argu-

ments suggest that emigration countries suffer from a loss of human capital (for a review, see

Gibson and McKenzie, 2011). Standard growth theory, in turn, predicts that this would nega-

tively affect the subsequent ability to innovate (e.g., Benhabib and Spiegel, 2005). On the other

hand, recent scholarship suggests that exposure to innovation is a crucial determinant of inno-

vation activity (Akcigit et al., 2018; Bell et al., 2019). Building on these insights, we argue that

as migrants are exposed to innovation in the areas where they settle, they facilitate knowledge

flows between those areas and their origin country. Since this “return innovation” effect and the

“brain drain” channel operate in opposing directions, empirical evidence is necessary to quan-

tify their magnitudes and assess the overall impact of out-migration on innovation dynamics in

countries sending migrants.

The setting of this study is the English and Welsh migration to the United States during the

Age of Mass Migration (1850–1920). Between 1850 and 1920, approximately four million British

migrated to the United States (Berthoff, 1953).4 The British constitute the single largest immi-

grant ethnic group in the contemporary United States and have been credited as one major

influence in the development of American culture (Fischer, 1989). Besides its historical impor-

tance, this setting allows us to overcome three critical limitations of contemporary scenarios.

First, our novel individual-level data allow us to track bilateral migration flows within Britain

and the United States at a granular level of spatial aggregation. Second, we measure interna-

tional knowledge flows using detailed historical patent data. This approach would be unfeasible

with contemporary data due to intellectual property protection laws enacted in 1945. Finally,

the near-complete absence of emigration and immigration regulations ensures that endogenous

migration policy interventions do not confound the analysis.

To estimate the effect of out-migration on innovation, we observe that districts in the UK

would be exposed to different technologies depending on the county where emigrants from

those areas would settle.5 Our research design thus leverages the joint variation in (i) county-

level specialization across technology classes and (ii) district-county bilateral migration flows.

For the sake of argument, consider two English districts, call them 𝐴 and 𝐵, and two US coun-

ties, call them 𝑎 and 𝑏. Districts 𝐴 and 𝐵 have the same population and emigration rates, but

all emigrants from district 𝐴 settle in county 𝑎, whereas all those originating in 𝐵 move to 𝑏.

4This figure does not include the Irish. In the paper, we focus on the English and Welsh migration. We thus use,
for the sake of brevity, the terms “British” and “English” as shortcuts to collectively refer to England and Wales,
thus excluding Scotland.

5In most of the analysis, the units of observation are UK registration districts and US counties. In 1901, there
were 631 registration districts in England and Wales. Districts were comparable to US counties in terms of popu-
lation (approximately 40,000). Unlike counties, however, registration districts were statistical entities that did not
enjoy political or budgetary autonomy.
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Furthermore, suppose that county 𝑎 specializes in one sector, call it 𝑠𝑎, whereas county 𝑏 spe-

cializes in 𝑠𝑏. Then, in our baseline empirical setting, district 𝐴 will be exposed to technology

in sector 𝑠𝑎, whereas district 𝐵 shall experience exposure to 𝑠𝑏.

Existing data would not be suitable for this exercise. First, we lack disaggregated data on

the origin of English immigrants in the United States. We leverage confidential individual-level

data from the US and the UK historical population censuses (Schurer and Higgs, 2020; Ruggles

et al., 2021) to overcome this difficulty. We link US English immigrants’ records to their entry

in the UK census using state-of-the-art linking procedures (Bailey et al., 2020; Abramitzky et al.,

2021). The resulting novel dataset allows us to track individual-level out-migration and return

migration between the US and the UK and to compute granular bilateral flows between the two

countries. Moreover, since we observe census-measured characteristics before and after the

migration spell, we can study selection and assimilation dynamics in detail. Second, historical

patent data for England were available starting in the late 1890s. We thus digitize the universe

of patents issued in England and Wales from 1853–1899 to construct the first comprehensive

dataset covering innovation during the Second Industrial revolution in the United Kingdom.

Assortative matching is the primary factor that cautions against a causal interpretation of

the estimated relationship between exposure to US knowledge and innovation. For example,

suppose that out-migration correlates with a—possibly unobserved—factor that also predicts

the location where British immigrants settle in the United States. Then, the coefficient of a naï

regression between US knowledge exposure and innovation would reflect the spurious asso-

ciation between district- and county-level underlying covariates. Again, consider the example

above, and further suppose that districts 𝐴 and 𝐵 also specialize in one sector each, 𝑠𝑎 and

𝑠𝑏, respectively. Then, the estimated association between knowledge exposure and innovation

would conflate the spurious correlation driven by the initial specialization patterns. In prac-

tice, however, the unobserved confounding variable would need to vary over time and across

technology classes since we control for time-varying unobserved heterogeneity at the district

level.

We develop two empirical approaches to ensure that there exists a causal link between

knowledge exposure spurred by migration ties and innovation. First, we construct a shift-share

instrumental variable that exploits conditional county-level variation in the connection tim-

ing to the railway network to randomize immigration choices across counties (Sequeira et al.,

2020). The instrument’s validity requires that these county-level shocks only affect British im-

migration through railway connection (Borusyak et al., 2022). This assumption is especially

appealing in our setting because the shift-share shocks predict overall—and not British only—

immigration. Second, we note that the return innovation effect would imply that shocks to
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innovation activity in the United States would reverberate in the United Kingdom in districts

whose emigrants had settled in those areas where these shocks manifest. To test this, we imple-

ment two triple differences analyses that compare districts and technology classes by exposure

to US county-level (i) synthetic innovation shocks and (ii) Great Influenza pandemic mortality,

which exerted a positive impact on pharmaceutical innovation in comparatively more affected

counties (Berkes et al., 2022). The absence of statistically significant pre-treatment differences

between treatment and control districts provides evidence in favor of the standard parallel

trends identification assumption.

Our main result is that exposure to foreign knowledge through migration linkages shapes

the direction of innovation in emigration countries. We document a positive and statistically

significant association between various metrics of exposure to US innovation and patenting ac-

tivity in the United Kingdom. Importantly this result, which we label the “return innovation”

effect, is quantitatively larger for technologies that were already present in the UK. This sug-

gests that exposure to foreign knowledge through migration ties nurtures existing industries

rather than creating new ones. The instrumental variable analysis confirms the existence of

a causal link between exposure to US knowledge and innovation in the UK. Furthermore, the

triple differences analysis provides evidence that innovation shocks in the US diffuse into the

United Kingdom through migration ties. We estimate that, on average, exposure to a synthetic

innovation shock in the United States results in .4 yearly patents. This figure is quantitatively

sizable, accounting for approximately one-third of the average annual number of patents by dis-

trict technology class. Similarly, districts more exposed to the pharmaceutical innovation boom

ushered by the Great Influenza pandemic in the United States display higher rates of pharma-

ceutical innovation after the pandemic. Crucially, the flexible triple-differences estimates in

both cases provide evidence of the parallel trends assumption.

Several potentially concurrent mechanisms may explain the return innovation effect. We

first distinguish between those requiring the physical return of British immigrants in the US and

those that do not. Return migration may impact home innovation directly if return migrants

engage in innovation activity or indirectly if they spread the knowledge they had acquired dur-

ing their period abroad (Bahar et al., 2022b). To do so, we leverage the individual-level nature

of our migration and patenting data. Using a linked patent-census sample and geo-coded infor-

mation on the universe of the UK population, we estimate the effect of geographical proximity

to US emigrants on innovation activity by non-migrants in a difference-in-differences setting.

We find that patenting activity increases for non-migrants after their neighbor migrates to the

United States. Statistically significant pre-trends do not drive this estimate. Moreover, the es-

timated effect remains positive and significant when restricting the treatment to include only
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US migrants that never return. The first finding excludes that innovation activity by return mi-

grants alone explains the return innovation effect. The second result, in turn, suggests that it is

unlikely that the indirect return migration channel is its primary determinant.

Our favored interpretation of the return innovation effect is that migrant linkages foster

the flow and diffusion of information, which, in turn, nurture innovation. This “information

diffusion” effect would operate plausibly independently from the physical return of emigrants.

We leverage the introduction of the first transatlantic telegraph cable (1866) as a sudden and

sizable negative information friction shock to shed light on this mechanism.6 In a difference-

in-differences setting, we show that districts with higher US emigration rates display higher

patenting activity after the introduction of the telegraph. Moreover, increased innovation is

not even across technology classes. Instead, we estimate that the gains in patenting activity

manifest in those same technologies that districts had been more exposed to through migration

ties. Reassuringly, we find that the transatlantic telegraph positively impacted innovation only

in districts connected to the domestic network.

Even though we cannot explicitly disentangle the “meta-mechanism” that drives informa-

tion diffusion, our preferred interpretation is that migration ties facilitate cross-border mar-

ket integration, thus fostering the exchange of knowledge and information (Aleksynska and

Peri, 2014; Ottaviano et al., 2018). Exploiting bilateral trade as a measure of market integration,

we leverage technology-level variation in import duties following the Smoot-Hawley Tariff Act

(1930) in a difference-in-differences setting. We document that innovation activity decreased

in districts with more US emigrants in technology classes akin to industries targeted by the tar-

iff. While suggestive, this analysis cannot refute that hampered export-driven innovation and

not market integration explains the observed decrease in patenting activity (Bustos, 2011; Atkin

et al., 2017).

Finally, we explore the scope of the information flows generated by migration ties. More

specifically, we investigate whether these are restricted to novel knowledge and innovation or

if they encompass a broader set of subjects. We collect coverage data of general US-related

information from a comprehensive repository of historical British newspapers. We find that

newspapers in areas with more US emigrants are relatively more likely to cover US-related

news. Analogously, newspaper coverage of a given state (resp. county) is broader in districts

with more emigrants to a given state (resp. county). This exercise suggests that the scope of

information flows generated by migration ties is not limited to the diffusion of novel knowledge

6The telegraph represented a fundamental development in information and communication technology. Stein-
wender (2018) documents that the transatlantic cable allowed information to flow more rapidly and efficiently
across the Atlantic Ocean, thus enabling trade and reducing international arbitrage opportunities.
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and innovation. Hence, out-migration exerts potentially wide-encompassing consequences on

emigration countries.

This paper provides new evidence on how out-migration impacts innovation in the coun-

tries of origin of emigrants. We find that exposure to foreign knowledge through migration ties

influences the direction of innovation in emigration countries and contributes to the diffusion

of novel knowledge. Despite obvious cautions on the external validity, our results bear relevant

policy implications on how to think of the role of out-migration in economic development and

technology catch-up.

Related Literature. This paper contributes to four streams of literature. First, we inform lit-

erature that studies the determinants of the direction of innovation and the allocation of re-

search activity across technological sectors. Pioneering work on directed technical change by

Habakkuk (1962) was formalized by Acemoglu (2002, 2010). More recently, this question has

been studied both theoretically (Bryan and Lemus, 2017; Bryan et al., 2022; Hopenhayn and

Squintani, 2021) as well as empirically (Aghion et al., 2016; Moscona, 2021; Moscona and Sas-

try, 2022; Einiö et al., 2022; Gross and Sampat, 2022). We inform this literature by introducing

one novel determinant of the direction of innovation, namely, international human mobility,

through the return innovation effect.

Second, we inform the literature that studies the effects of out-migration on countries send-

ing migrants. Emigration has been shown to impact wages (e.g., Dustmann et al., 2015), atti-

tudes towards democracy and voting (Spilimbergo, 2009; Batista and Vicente, 2011; Ottinger

and Rosenberger, 2023) and political change (Chauvet and Mercier, 2014; Kapur, 2014; Karadja

and Prawitz, 2019), technology adoption (Coluccia and Spadavecchia, 2022), and social norms

(Beine et al., 2013; Bertoli and Marchetta, 2015; Tuccio and Wahba, 2018). Our paper is closest to

Andersson et al. (2022) who show that out-migration in nineteenth-century Sweden triggered

labor-saving innovation in the origin areas of emigrants. Relative to their contribution, this

paper provides novel evidence that out-migration generates international technology transfer

and knowledge flows that shape the direction of innovation in emigration countries. Moreover,

we highlight that this effect is likely driven by information flows rather than physical return

migration.

By its setting, this paper adds to the literature that studies technical change and diffusion of

novel technologies during the Age of Mass Migration. A growing number of papers examines the

short-run (Arkolakis et al., 2020; Moser et al., 2020; Diodato et al., 2022) as well as the long-run

(Akcigit et al., 2017; Burchardi et al., 2020; Sequeira et al., 2020) implications of immigration on

US innovation. Ottinger (2020) shows that European immigration influenced US industry spe-

cialization. Andersson et al. (2018, 2022) document that the mass migration of about a quarter
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of the Swedish population between 1850 and 1913 ignited labor-saving technological change.

Compared to Andersson et al. (2022), in particular, we show that exposure to US technology

altered the direction of innovation in the country of origin of emigrants. Moreover, we docu-

ment that migration ties foster the diffusion of information on novel knowledge absent physical

return migration. Furthermore, we provide two methodological contributions: we develop a

new database of English and Welsh patents that spans the Second Industrial Revolution, and

we construct a linked sample of emigrants from individual-level census data.

Finally, we relate this paper to the literature studying the dynamics and determinants of

knowledge flows and technology diffusion across countries (among others, see Jaffe et al., 1993;

Bahar et al., 2014; Pauly et al., 2021). In particular, we contribute to the papers documenting

how human mobility fosters the diffusion of novel knowledge (Kerr, 2008; Bahar et al., 2019;

Fackler et al., 2020; Bahar et al., 2022a; Prato, 2021). We inform this literature from several per-

spectives. First, we enlarge the observation sample to include the universe of emigrants instead

of a selected subgroup of highly skilled individuals. Second, we leverage recent insights by Ak-

cigit et al. (2018) and Bell et al. (2019) and show that exposure to foreign technology is a major

driver of technology transfers through migration ties. Finally, our setting allows us to uncover

the long-run effects of emigration and the mechanisms through which it affects innovation in

the home country of emigrants.

Outline. The rest of the paper is structured as follows. In section 1.2, we describe this study’s

historical and institutional context. Section 1.3 introduces the novel datasets we assemble and

the rest of the data. We present the empirical research design in section 1.4 and discuss the main

findings in section 1.5. Section 1.6 uncovers the possible mechanisms underlying the results and

discusses possible alternative interpretations. Section 1.7 concludes.

1.2 Historical and Institutional Background

This section offers a concise overview of the historical and institutional features of our study

setting. Throughout it, we highlight key aspects and details that are relevant to our empirical

investigation.

1.2.1 The English and Welsh Migration to the United States

Between 1850 and 1930—during the so-called Age of Mass Migration—more than 30 million

Europeans migrated to the United States (Abramitzky and Boustan, 2017). Migrants from Great
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Britain—England and Wales in particular—accounted for approximately 10% of this flow (Will-

cox, 1928). Emigration rates in Britain were among the highest in Europe, except for the years

1890–1900. They steadily increased throughout the period (Baines, 2002).7

1.2.1.1 Migration Policy in the United Kingdom and the United States

The virtual absence of legal constraints to human mobility represents a major appealing feature

of the Age of Mass Migration for economic research. Until 1917, the US applied minor restric-

tions on European immigration (Abramitzky and Boustan, 2017). Immigrants mostly originated

from Northern Europe, particularly the United Kingdom, Germany, Sweden, and Norway. This

positive attitude towards immigration ceased as flows from Eastern and Southern Europe in-

creased in the 1890s (Goldin, 1994). The restrictive immigration policies of the 1920s, however,

imposed allotted generous quotas to the United Kingdom, which were never filled (Abramitzky

and Boustan, 2017).8

Like in other European countries, out-migration legislation in the UK sought to help emi-

grants, if not explicitly to foster emigration (Baines, 2002, p. 72). Out-migration was encour-

aged in two ways: reduced and subsidized ticket fares and allotment of agricultural lands. Pol-

icy efforts were directed towards the Empire, particularly Canada, and Australia, through the

Committee of the Emigrants’ Information Office. Emigration to the United States was neither

subsidized nor discouraged. In general, however, these policies were not successful. Baines

(2002) argues that less than 10% emigrants traveled under government assistance during the

entire 1814-1918 period, and Leak and Priday (1933) report similar figures for the post-War

era. Attitudes towards out-migration remained positive after the First World War. The per-

ceived slowdown of emigrant flows after the War was viewed with concern by policymakers

(Leak and Priday, 1933).

This overview suggests that institutional constraints to US out- and immigration were largely

absent for English and Welsh migrants throughout the XIX and early XX century. Compared to

contemporary scenarios, this historical setting thus allows us to abstract from confounding fac-

tors arising from endogenous migration legislation.

7Only Ireland, Italy, and Norway had higher emigration rates, although, in England, massive out-migration
spanned longer than in the other countries above.

8The 1921 (resp. 1924) Act computed the quota for a given country as 3% (resp. 2%) of the population from
that country that was recorded in the US census in 1910 (resp. 1880). This scheme favored first-wave immigra-
tion countries, such as the United Kingdom and Germany, at the expense of new ones, as recommended by the
Dillingham Commission (Higham, 1955).
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1.2.1.2 English and Welsh Emigrants: The Perspective of Great Britain

Compared to the broader European phenomenon, the British migration to the US presents two

main distinctive features.9 First, unlike continental countries, Britain was already highly ur-

banized and industrialized at the inception of the Mass Migration. Erickson (1957, 1972) and

Thomas (1954) highlight the centrality of urban areas, starting in the 1880s, supplied the major-

ity of overseas migrants. Baines (2002) provides some estimates on the origin of migrants based

on birth certificates over the years 1850–1900. Emigration ratios were highest in Northern and

South-Western England and lowest in Lancashire and neighboring areas. Second, the selec-

tion of British migrants radically differed from that in continental countries (Erickson, 1957;

Abramitzky et al., 2020). Compared to the occupational structure of Great Britain, migrants

were less likely to be employed in agriculture and more likely to be low and high-skilled indus-

trial workers (Baines, 2002, p. 83). Until the 1880s, British emigrants generally came from rural

areas and, consequently, the vast majority were farmers. However, as cities and smaller urban

centers gained prominence, migrants were increasingly employed in industrial manufacturing

occupations (Baines, 2002). During the 1860s, about 15% emigrants were employed in agricul-

ture, and merely 5% were white-collar workers. In the 1900s, however, agriculture workers

accounted for a mere 5% of the overall emigrant stock, while those employed in white-collar

occupations were 25%.

Our newly constructed migration database allows us to assess the historical evidence quan-

titatively. In Appendix Table 1.D.4, we compare individual-level characteristics of US emigrants

with the staying population. On average, emigrants are more likely to come from North West

and South East England. Moreover, they are less likely to be farmers. By contrast, emigrants’

share of high and low-skilled manufacturing workers is substantially larger than among stay-

ers. Similar—although less marked—patterns are observed for return migrants. Appendix Fig-

ure 1.C.3 displays the origin of emigrants overtime at the district level. The data vividly show

that rural areas in central and south-western England, which initially feature the highest emi-

gration rates, are gradually replaced by urban industrial districts in the North and South. Taken

together, this evidence confirms the qualitative historical knowledge.

1.2.1.3 English and Welsh Immigrants: The Perspective of the United States

British immigrants have been central throughout the economic and political history of the

United States (Berthoff, 1953; Fischer, 1989). Several features distinguish the English from the

9Throughout the period, the US was the most relevant destination for English and Welsh migrants. Between
1850 and 1930, more than 40% emigrants settled in the US. This compares to 25% in Canada, 20% in Australia, and
15% in other non-European destinations (Baines, 2002, p. 63).
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continental transatlantic migrations. First, English and Welsh immigrants were, especially after

the 1880s, artisans and manufacturing workers, who settled where their skills were in highest

demand (Berthoff, 1953).10 Textile workers from Manchester typically settled in Massachusetts,

whereas coal miners from Southern Wales mostly settled in the Midwest and Pennsylvania. In

1890, 63% of British-born were employed in American industry (Thistlethwaite, 1958). Second,

English immigrants—unlike the Welsh—did not form ethnic clusters (Furer, 1972). Instead, they

tended to be scattered around settlement areas in highly diverse ethnic communities. Finally,

British immigrants were economically successful and assimilated relatively easily with the na-

tive population (Abramitzky et al., 2020).

We quantitatively evaluate these observations in Table 1.D.5. First, we compare individual-

level characteristics observed in the US census between the native and the British immigrants.

The analysis suggests that British immigrants are substantially different from the average na-

tive. For example, they are richer, more literate, and more likely to live in urban centers. Con-

sequently, they are less likely to be farmers and more likely to be employed in manufacturing

occupations with high or low-skill content. In addition, English immigrants are comparatively

more concentrated in North Atlantic and the West and less in Southern states. Similar patterns

emerge for return migrants.

These results, coupled with Table 1.D.4, identify British immigrants in the US as part of an

urban industrial class of skilled and semi-skilled workers. This is crucial in our analysis: it

would have been much more difficult for illiterate farmers to facilitate knowledge flows across

the Atlantic Ocean.

1.2.2 Intellectual Property Protection in the US and the UK

We measure innovation and knowledge flows using patent data. In this section, we briefly

present the key features of the American and British patent systems and discuss the state of

international intellectual property protection in the XIX and early XX centuries.

1.2.2.1 National Patent Systems

The first article of the United States Constitution establishes that inventors be granted exclusive

rights over their discoveries. In 1836 the US Congress passed the Patent Act, which formally in-

stituted the US Patent Office (USPTO). The USPTO has been credited as the first modern patent

system in the world (Khan and Sokoloff, 2004). Two features distinguished the American patent

10Thistlethwaite (1958) presents one instructive example. The pottery industry, a highly skilled and labor-
intensive sector, was concentrated in the Five Towns of Staffordshire. As transatlantic migration ensued, ceramic
workers located in just two localities: Trenton, New Jersey, and East Liverpool, Ohio.
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system from its European counterparts. First, an examination of novelty was carried out by pro-

fessional examiners to ascertain the originality of patent applications. Second, low application

fees ensured that access to intellectual property protection was widespread (Sokoloff and Khan,

1990). Several scholars documented how effectively the US patent system fostered innovation

well into the 20th century (Khan, 2020).

Britain established the world’s oldest continuously operating patent system in 1623-1624.

Until 1850, access to intellectual property protection was, however, difficult (Gomme, 1948; Bot-

tomley, 2014). Fees amounted to approximately four times the average income in 1860, and

the application process was lengthy and rife with uncertainty (Dutton, 1984). A large amount

of literature documented the poor performance of this system during the Industrial Revolu-

tion (Macleod, 1988; Moser, 2012). The 1852 Patent Law Amendment Act sought to reform this

process. The US system inspired the reform effort, which reduced application fees and tried

to streamline bureaucratic procedures. One subsequent reform in 1883 further reduced fees,

allowed applications by mail, designed a litigation system, and provided for the employment

of professional patent examiners (Nicholas, 2011). A technical examination of novelty was in-

troduced only in 1902. Until 1907 patents were granted conditional on the invention being

produced in Britain (Coulter, 1991).

1.2.2.2 International Intellectual Property Protection

As national patent systems spread across Europe and the US during the 19th century, demands

for international regulation increased. The Paris Convention—formally, the “Paris Convention

for the Protection of Industrial Property”—of 1883 governed international patent protection

throughout the period that we study (Penrose, 1951).

The Paris Convention emerged after a decade of multilateral confrontations spurred by

World Exhibitions in Vienna (1873) and Paris (1878). The Convention introduced two major

principles. First, nationals and residents of subscribing countries were guaranteed equality of

treatment with nationals. This concept, known as “national treatment”, rejects the principle

of “reciprocity”, which maintains that nationals in subscribing countries would be granted the

same protection as their origin country. The United States had vigorously demanded reciprocity

(Penrose, 1951, p. 66). Second, upon applying for a patent in one member country under Article

4, inventors were granted a “right of priority” of six months. Patents filed in foreign countries

during the priority period would not invalidate the inventor’s claim for protection in other

member countries. The provisions contained in Article 4 were central within the broader legal

apparatus (Penrose, 1951, p. 68). However, patents obtained in one member state were not

automatically recognized by other countries. To effectively claim protection, inventors had to
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submit different patent applications. This represented a substantial bureaucratic and financial

burden. While the Paris Convention—and its numerous amendments—are still in operation

today, international patents were established only in 1970.

The state of international intellectual property protection during our period is a major ad-

vantage of this historical setting. Since the UK and the US did not mutually recognize patents,

we can use them as an informative proxy of knowledge flows between them. This approach

would be impracticable in modern settings.

1.3 Data

This section presents our primary data sources and discusses the key methodology we adopt to

assemble our final datasets. We provide a more detailed description of the data in Appendix

sections 1.A, 1.B, and 1.C. Table 1.1 lists the main variables and provides descriptive statistics.

1.3.1 Migration Data

To conduct our analysis, we need information on the origin of English and Welsh immigrants in

the United States within the United Kingdom. Currently available data, however, do not contain

this information. Neither the US nor the UK collected disaggregated data on, respectively, the

origin of immigrants and the destination of emigrants. We tackle this limitation of the data by

developing a new dataset that links British immigrants in the US to the UK census. This allows us

to observe an individual in the UK and to track him to his US census record after he emigrated.11

This is the first dataset that reconstructs migration flows at this granular level of aggregation

for a major European country in this period.12

To construct our linked dataset, we leverage non-anonymized individual-level data from

the population censuses in the United Kingdom (Schurer and Higgs, 2020) and the United States

(Ruggles et al., 2021). We first extracted the universe of British immigrants from the censuses

in 1900, 1910, 1920, and 1903. They list, among other variables, the name and surname, birth

year, and immigration year of each migrant. We then match these records to the closest census

when they appear. Hence, for example, we try to link an individual who immigrated to the US

11Throughout the paper, we use the masculine to refer to individuals in our data because, as we explain in detail
later, we can only work with male individuals.

12Data assembled by Abramitzky et al. (2014) and Andersson et al. (2022) serve a similar purpose for, respectively,
Norway and Sweden. England and Wales, however, were substantially larger in terms of the overall population
and the US immigrant population. The population of Sweden and Norway in 1890 was approximately 4.7 and 2
million. In the same year, the population in England and Wales stood at 27 million.
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in 1905 to the 1901 UK census.13 The matching variables we consider are the name, surname,

and reported birth year, using state-of-the-art census-linking algorithms adapted from pioneer-

ing work by Abramitzky et al. (2021). Appendix 1.C.1 lists in more detail the primary sources

and the technical implementation of the algorithm. This class of linking algorithms relies on

the observation that a simple exact matching routine would artificially discard many plausi-

ble links between the two sources because of minor coding errors by the census enumerators.

Since human hand-checking is unfeasible, we implement an algorithm that returns a match

whenever the string similarity between the US and the UK records is above a certain threshold,

conditional on the birth year.

This approach presents some important caveats (Bailey et al., 2020). First, it may deliver

spurious links if the matching variables are insufficient to restrict the pool of potential matches.

Second, the matching probability may be correlated with individual characteristics. This would

be the case if, for instance, the likelihood that names and surnames were correctly enumerated

in the censuses correlated with education. We set high-quality thresholds to accept potential

matches to address the first concern. Moreover, we only keep immigrants matched up to two

records in the UK census. This ensures that we minimize the rate of false positives as much as

possible. Finally, we provide evidence against the second issue in Table 1.C.1, which shows that

the correlation between the number of matches and individual-level observable characteristics

is seldom significant, and always very small in magnitude.

Finally, we construct a dataset of return migrants. To assemble it, we apply the exact previ-

ous logic, except that migrants are matched to the UK censuses taken in the decades after their

immigration year. Hence, as an example, someone who migrated to the US in 1895 is matched

to censuses in 1901 and 1911. To avoid double counting, if a migrant is matched to more than

one census, we keep the match(es) in the first. Data on return migrants are generally scant his-

torically and with modern data (Dustmann and Görlach, 2016). This exercise is thus a valuable

feature of our methodology.

In Figure 1.1, we report in gray the number of English and Welsh immigrants in the United

States by year of immigration, digitized from official statistics (Willcox, 1928). The blue line on

the right 𝑦-axis tabulates the number of immigrants in our linked dataset. We attain a match-

ing rate of about 60% after dropping multiple matches and links with below-threshold match-

ing quality. Note that we are forced to discard women whose surname was likely to change

13Because no census was taken in 1870, we match those who migrated between 1870 and 1881 to the 1860 census.
Moreover, since the last available UK census was in 1911, we match all those who emigrated after 1911 to that one.
This implies that we have no information on migrants born after 1911. Since the median age of migrants is 30
and less than 10% of the distribution is younger than 19 in the rest of the sample, this bears little quantitative
implications for the matching rate in the later part of the sample.
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after marriage. The matching rate aligns with the literature on census linking (Abramitzky

et al., 2021).14 Moreover, reassuringly, our data co-moves with official statistics data. Figure

1.2 reports the spatial distribution of emigration rates across districts in the final sample and

highlights its cross-sectional spatial heterogeneity. In Appendix Figure 1.C.3, we break down

the map by decade and uncover substantial variation in the origin of US emigrants over time.

1.3.2 Patent Data

We measure innovation activity using patents, as is standard in the literature (Griliches, 1998).15

Patents for the United States have been digitized from original documents by Berkes (2018).

The data contain, among others, information on the authors’ addresses, the filing date, and the

CPC patent classification. We use these to construct a balanced panel dataset at the county-

technology class-year level.16

We collect patents for the United Kingdom for the period 1895-1939 from PATSTAT, which

in turn provides bulk access to data stored at the European Patent Office. These data contain

information on authors and CPC classes but do not report the geographic location of inven-

tors. We thus merge with data by Bergeaud and Verluise (2022) to retrieve the coordinates of

inventors and map them to registration districts at their 1890 borders. Patent data for previ-

ous years, unfortunately, are not currently available. To tackle this limitation of the data, we

digitized the universe of patents granted in England and Wales between 1853 and 1895. As

a result, we assemble a unique patent-level database that leverages textual information from

nearly 800,000 original patent documents.17 We have information on the title, text, inventors’

geo-references addresses, filing and issue date, and other variables not used in this paper. Next,

we map patents to districts at 1890 borders. We then employ a simple machine learning classi-

fication algorithm, discussed in Appendix section 1.B.1, to assign technology classes leveraging

information in titles.

14In Appendix section 1.C.2, we provide a more detailed discussion of the algorithm’s performance.
15Previous research shows that patents are not a flawless measure of innovation because non-patented inno-

vation represents a non-negligible share of overall technological progress (Moser, 2019). We nonetheless believe
that this is a comparatively minor issue for our analysis. Before our study period, the US and the UK had enacted
important reforms which decreased the cost of access to patent protection (Gomme, 1948). These drastically in-
creased the number of patents in both countries, thus ensuring that patents convey an informative picture of the
state of technology in both countries.

16We map patents to counties at 1900 borders using the inventors’ coordinates. From the three-digit CPC class,
we map patents to a coarser taxonomy of twenty sectors. Appendix 1.A.1 provides additional details.

17Appendix section 1.B.1 describes the primary sources and methodology we develop to extract and structure
the data from the original documents. In section 1.B.2, we compare our series with two existing series and find
that the three are highly consistent for the period of common support.
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This newly developed dataset is the first with geographical and textual information on the

universe of patents granted in England and Wales during the second half of the nineteenth cen-

tury. Data by Hanlon (2016), for instance, do not list titles or texts and do not report geographic

information. This dataset, which we plan to extend to 1617–1895, thus expands previous work

by Nuvolari and Tartari (2011) and Nuvolari et al. (2021) and provides the first comprehensive

assessment of innovation in Britain during the Second Industrial Revolution.

In some empirical applications, we link patent data to the census. This allows us to assign a

unique label to single inventors appearing in multiple patents and to observe individual-level

characteristics recorded in the census. To perform this linking, we match inventors based on

the string similarity between their name and surname and those recorded in the census, con-

ditional on geographic proximity. We describe the precise implementation in Appendix section

1.A.3.

1.3.3 Other Variables

In this section, we provide a brief description of the additional heterogeneous data that we

assemble. Appendix section 1.A.1 discusses each more diffusely.

1.3.3.1 Census Data

We assemble district-level statistics from population censuses at decade frequency between

1851 and 1911. Districts are the level of observation in most of the analysis. This is because

they were statistical units with neither budgetary nor administrative authority. The average

population was 40,000, which makes them roughly comparable to US counties. Districts un-

dergo minor boundary changes during the analysis period. However, to ensure geographical

consistency, we cross-walk all variables to districts in 1890 using the method described in Eck-

ert et al. (2020). In particular, the census allows reconstructing the employment shares across

sectors and other demographic information.

1.3.3.2 Newspapers

We use newspaper coverage of US-related topics as a measure of attention to the United States

in public opinion. We collect the data from the British Newspaper Archive. Beach and Hanlon

(2022) discuss this dataset in detail. We run three sets of queries. First, we search for the joint

mention of the words “United States”; second, we search for mentions of each state; third, we

search for mentions of each county. We collect these data at the newspaper level from 1850–

1939. Additionally, we know each newspaper’s publishing address, which we geo-reference
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to 1890-border districts. Ultimately, we assemble three datasets at the district, district-state,

and district-county levels, each at decade frequency. Figure 1.A.3 reports the distribution of

newspapers.

1.3.3.3 Telegraph Network

We reconstruct the English and Welsh telegraph network from Zeitschrift des Deutsch-Österreichischen

Telegraphen-Vereins, Jahrgang, volume IX, 1862. This directory lists all telegraph stations out-

side of London in 1862. To the best of our knowledge, it is the most comprehensive list before the

establishment of the transatlantic telegraph cable connecting the UK and the US (1862). We geo-

reference all the stations and assign them to 1890-border districts. Since, however, the source

does not list stations in the London area, in the sample of the telegraph analysis, we conflate

London urban districts into a single “London” unit, which we assume to be connected to the

telegraph network. Figure 1.A.4 reports the distribution of the stations.

1.4 Empirical Strategy

This section describes our baseline empirical strategy. We discuss the potential caveats that

hinder a causal interpretation of the resulting estimates. Then, we discuss two strategies to

address these concerns.

1.4.1 Baseline Methodology

The central hypothesis of this paper is that exposure to foreign—in this case, American—knowledge

through migrant linkages fosters the diffusion of novel knowledge—in this case, innovation. We

thus develop a simple measure of exposure to US knowledge that leverages two sources of varia-

tion. First, local specialization across counties measures the knowledge that diffuses from those

counties. Second, the number of migrants that leave a given district and settle in a given county

measures the intensity of the return knowledge channel. To fix ideas, consider two districts,

and call them 𝐴 and 𝐵. The same number of emigrants 𝑛 leaves each district. Emigrants from

𝐴 settle in county 𝑎, which only produces innovation in sector 𝜎𝑎. Emigrants from 𝐵 settle in

county 𝑏, which only innovates in sector 𝜎𝑏. Then, we expect district 𝐴 (resp. 𝐵) to innovate

comparatively more in sector 𝜎𝑎 (resp. 𝜎𝑏).

To implement this intuition, we define knowledge exposure as follows:

Knowledge Exposure𝑖𝑘,𝑡 ≡
∑︁
𝑗∈𝐽

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Emigrants𝑖→ 𝑗,𝑡

)
(1.1)
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where 𝑖, 𝑗, 𝑘, and 𝑡 denote a (UK) district, a (US) county, a technology class, and a decade, re-

spectively.18 The set 𝐽 denotes the universe of counties. The knowledge exposure term thus

averages district-level exposure to county-level specialization across technology classes. The

first term in the summation captures specialization, while the second term codes district-level

exposure. One may argue, however, that the relative share of patents may inflate specialization

in counties with a small number of granted patents. While this is unlikely to significantly bias

our results as those countries would likely have low district-level exposure, we code an alter-

native knowledge exposure variable that measures specialization as the raw count of patents

in a given technology class. One further challenge to measure (1.1) is that districts with larger

bilateral linkages are probably larger and, hence, selected. To account for district-level time-

varying confounding variables, we control non-parametrically for district-by-time fixed effects.

However, we also report results for an alternative knowledge exposure that measures exposure

through relative emigrant shares. We discuss these alternative definitions in more detail in the

Appendix section 1.E.2.

We estimate variants of the following regression model:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑡 + 𝛼𝑖×𝑘 + 𝛽 × Knowledge Exposure𝑖𝑘,𝑡 + 𝜀𝑖𝑘,𝑡 (1.2)

where the coefficient of interest (𝛽) quantifies the correlation between innovation activity and

exposure to foreign knowledge. The term 𝛼𝑖×𝑡 denotes district-by-decade fixed effects whose

inclusion allows to control non-parametrically for time-varying unobserved heterogeneity at

the district level; the term 𝛼𝑖×𝑘 denotes district-by-technology fixed effects and excludes varia-

tion arising, for example, from the possibility that district-level technology specialization and

immigration location decisions may be correlated. We comment more on this second point in

the next section. The error term is the 𝜀𝑖𝑘,𝑡. Standard errors in this specification are clustered

at the district level. We mainly estimate model (1.2) through ordinary least squares. Since the

dependent variable presents a non-negligible share of zeros, we also report the estimates of the

Poisson regression associated with the baseline model.19

18Throughout the paper, we refer to decade 𝑡 to mean the ten years before the upper bound 𝑡. Hence, the decade
indexed by 1890 refers to 1881–1890.

19In the innovation literature, it is common practice to apply a log transformation to the dependent variable. We
do not follow this practice because Chen and Roth (2022) show that average treatment effects for transformations
of the dependent variable defined in zero are arbitrarily scale-dependent. In Appendix section 1.D.4, we present
alternative specifications with multiple transformations of the dependent variable.
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1.4.2 Threats to Identification

The main factor that cautions against a causal interpretation of the estimates of model (1.2) is

assortative matching, meaning that there may be a—possibly unobserved—variable that cor-

relates with the location where emigrants settle in the United States and the composition of

patenting activity across technology classes.

In section 1.2.1, we discussed that the historical and quantitative evidence suggests that,

over time, emigrants originated from increasingly affluent and urbanized areas. Suppose emi-

grants also settled in comparatively more urban and affluent counties in the United States, and

there was a correlation between patenting activity in specific fields and economic growth. In

that case, the selection issue may bias the OLS estimates upward. We note that the bias arises

only if (i) the correlation between patenting and the underlying confounding variable is hetero-

geneous across technology classes and (ii) the correlation is the same in the US and the UK. If

(i) does not hold, then the omitted confounding variable would be absorbed by district-by-time

fixed effects. If (ii) does not hold, the selection bias would be against our result.

Assortative matching also arises if pre-existing differences in specialization across technol-

ogy classes predicted the counties where emigrants chose to settle. For example, suppose that

emigrants from a largely textile area, say Lancashire, were comparatively more likely to settle

in counties with larger textile sectors. Then, the estimated 𝛽 of model (1.2) would reflect pre-

existing innovation similarities between sending and settling areas rather than capture the ef-

fect of return innovation. Evidence by Hanlon (2018) and Ottinger (2020), among others, suggest

that non-random location decisions may represent a severe threat in this context. We attempt to

quantify this issue in Appendix section 1.D.4.2. We measure the similarity of innovation portfo-

lios between districts and counties and check whether this measure of specialization proximity

correlates with observed bilateral migration flows. Table 1.D.2 reports the results. We find no

significant association between innovation similarity and migration choices. This suggests that

assortative matching is a plausibly minor concern for our analysis. Moreover, in the baseline

estimation equation (1.2), we include district-by-technology fixed effects. Hence, for assortative

matching to bias our estimates, the underlying confounding variable would need to vary over

time across district-technology pairs.

While we present evidence against the presence of assortative matching, we ultimately can-

not rule it out. We thus develop two strategies that, we argue, ameliorate residual endogeneity

concerns.
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1.4.3 Shift-Share Instrumental Variable Strategy

We design a shift-share instrument that leverages recent advancements in the econometric lit-

erature to deal with selection and assortative matching. Identification critically hinges on the

observation that instrument validity can be obtained from the quasi-random assignment of

shocks (Borusyak et al., 2022). We construct county-specific immigration shocks by interacting

aggregate immigration flows in the US with the gradual expansion of the railway network along

the lines of Sequeira et al. (2020). These generate exogenous shocks in a quasi-experimental

shift-share design à la Borusyak et al. (2022).

To construct the shocks, we predict the county-level immigrant share, which is not specific

to British immigrants, from a regression between the actual immigrant shares and an inter-

action between the timing of connection to the railway network and the aggregate inflow of

immigrants. Importantly, we control for county-level unobserved time-invariant heterogeneity

and several other potential confounding variables at the county level.20 In our context, shocks

are conditionally exogenous if the settlement decisions of British immigrants did not influence

the direction of the enlargement of the US railway network. In other words, instrument validity

requires that shocks randomly assign British emigrants across counties. Under this assumption,

the instrument breaks issues of assortative matching. This may fail if, for instance, British im-

migrants settled in counties more similar to their area of origin among the counties connected

to the network in a given period. Since county-level shocks yield the overall predicted immi-

grant shares—and not those of the British only—we believe this is a relatively minor concern

to rule out by assumption. Following Borusyak et al. (2022), we show that shocks are uncorre-

lated with county-level confounding variables and that the instrument does not systematically

predict district-level characteristics. Appendix Figure 1.E.3 shows that while immigrant shares

correlate with district-level observable characteristics (Panel A), predicted immigration shares

do not (Panel B). Similarly, in Appendix Figure 1.E.4, we confirm that while out-migration cor-

related with most district variables, the instrument displays smaller and insignificant correla-

tions with the same variables. These exercises provide evidence in favor of the validity of our

research design.

Let 𝜔 𝑗,𝑡 be the immigrant share in county 𝑗 in decade 𝑡, and let 𝜔̂ 𝑗,𝑡 its prediction. We thus

define the instrument as

�Emigrants𝑖→ 𝑗,𝑡 ≡ 𝜔̂ 𝑗,𝑡 ×
∑︁
𝑗∈𝐽

(
𝜔̂ 𝑗,𝑡 × Emigrants𝑖→ 𝑗,1880

)
(1.3)

20In Appendix section 1.E.2, we describe in more detail the practical computation of the immigration shocks.
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where Emigrants𝑖→ 𝑗,1880 denotes the number of emigrants leaving district 𝑖 and settling in county

𝑗 at the beginning of the sample period. Importantly, this exposure term is allowed to be en-

dogenous by design. Identification stems from the quasi-exogeneity of the shocks {𝜔̂ 𝑗,𝑡}. Given

a predicted set of bilateral flows, we construct the instrument for knowledge exposure as in

(1.1), except that the predicted flows replace the observed ones.

Even though we present evidence otherwise, the conditional exogeneity of the timing of

railway connection is ultimately an untestable assumption. To validate the results obtained

with the instrument (1.3), we construct an additional series of county-level shocks {𝜔̂ 𝑗,𝑡} that

leverages a different source of variation. Specifically, we compute “leave-out” predicted county-

level immigrant shares by interacting start-of-period immigrant shares with aggregate inflows

by nationality. Importantly, we exclude British immigrants when calculating these shocks. This

ensures that the “leave-out” shares do not reflect the settling decisions of the British. We de-

scribe the procedure in more detail in Appendix 1.E.2.2. This alternative instrument yields

results that are highly consistent with the railway-based approach.

1.4.4 Shock Propagation Difference-in-Differences Strategy

To provide additional causal evidence on the effect of exposure to foreign knowledge through

migration ties on domestic innovation, we devise a research design that leverages geographi-

cally clustered innovation shocks in the United States in a triple-differences setting. We start by

observing a logical corollary of the return innovation argument. Suppose we observe a sudden

increase in the number of patents granted in some counties. Then, one would expect that dis-

tricts whose emigrants had settled more extensively in those counties would display increased

innovation activity. In other words, innovation shocks in the United States should “reverberate”

in the United Kingdom through pre-existing migration linkages.

We test this prediction using two sets of innovation shocks. First, as we describe in more

detail in Appendix 1.E.3, we construct a set of county-technology class synthetic innovation

shocks at yearly frequency. We regress the number of patents against fixed effects to obtain the

residualized innovation activity. Then, we flag an innovation shock 𝜉 𝑗𝑘,𝑡 whenever the residu-

alized number of patents in a given county 𝑗, technology class 𝑘, and year 𝑡 is in the top 0.1%

of the overall distribution.21 Appendix Table 1.D.8 documents that shocks are relevant, as one

such shock is associated with an average of forty patents more in the given county. Second, we

leverage recent evidence by Berkes et al. (2022), who document that the Great Influenza pan-

demic (1918–1919) significantly and positively affected pharmaceutical innovation in counties

21In Appendix Table 1.E.3.3, we show that the results remain consistent when imposing different values to flag
innovation shocks.

20



that were more exposed to the pandemic. We thus claim that districts that were comparatively

more exposed to affected counties should feature increased pharmaceutical innovation. We

provide additional details on the construction of county-level exposure to the pandemic in Ap-

pendix 1.E.3.22 We code county-level exposure to the pandemic as a dummy 𝜑 𝑗 that returns

value one if the ratio between deaths during the pandemic (1918–1919) and deaths in the pre-

ceding three years (1915–1917) is in the top 25%, and zero otherwise.

We measure district-level exposure to the county-level shocks in terms of the emigrants that

had left the given district to settle in the given county before the period of analysis.23 Formally,

we compute exposure to synthetic shocks in technology class 𝑘 as

Synthetic Shock Emigrants𝑖𝑘,𝑡 =
∑︁
𝑗∈𝐽

(
Emigrants𝑖→ 𝑗,1900 × 𝜉 𝑗𝑘,𝑡

)
(1.4)

and analogously, we define exposure to counties affected by the pandemic as

Influenza Emigrants𝑖𝑘 =
∑︁
𝑗∈𝐽

(
Emigrants𝑖→ 𝑗,1900 × 𝜑 𝑗

)
(1.5)

To avoid issues of continuous treatment described by Callaway et al. (2021), we recast each ex-

posure metric in terms of a dummy variable that returns value one if the associated continuous

measure is in the top 25%, and zero otherwise.24

To estimate the effect of US synthetic shocks on UK innovation activity, we estimate the

following triple differences specification:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑘×𝑡 + 𝛼𝑖×𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ × I

[
𝐷𝑖𝑘,𝑡 = ℎ

]
+ 𝜀𝑖𝑘,𝑡 (1.6)

where 𝛼𝑖×𝑘 , 𝛼𝑘×𝑡, and 𝛼𝑖×𝑡 denote, respectively, district-by-technology class, technology class-by-

year, and district-by-year fixed effects.25 The term
(
𝐷𝑖𝑘,𝑡 ≡ 𝑡 − I

[
Synthetic Shock Emigrants𝑖𝑘,𝑡

] )
denotes the number of years since the district-technology class 𝑖𝑘 was exposed to a synthetic

22Since the technology taxonomy used in this paper is different from Berkes et al. (2022), in Appendix Table
1.D.7 we confirm that their result holds in our data. Figure 1.D.2 reports the associated flexible triple differences
specification. Moreover, in Figure 1.E.6a, we confirm that the pandemic affected innovation activity only in the
pharmaceutical sector.

23This part of the analysis restricts the outcome variable to 1900–1930, so we can leverage migrant flows in the
preceding decade (1890–1899) to construct fixed exposure shares.

24In Appendix Table 1.E.7 we consider alternative thresholds to code the exposure variable (1.4). In Appendix
Table 1.E.8, we report the results using the continuous measure (1.5).

25When we estimate regression (1.6) using variation in exposure to the pandemic shock, we normalize the de-
pendent variable by the average number of patents granted before the pandemic to ensure that the estimated
coefficients’ size are comparable.
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innovation shock 𝜉. The roll-out of the treatment is staggered across units. Different district-

class pairs may be exposed to the exposure treatment at different points in time.26 Goodman-

Bacon (2021) showed that the standard two-way fixed effects estimator shown in (1.6) fails to

estimate the ATE if treatment effects are not constant over time. Several estimators have been

proposed to deal with this difficulty. In the main results, we report estimates obtained using the

imputation procedure presented in Borusyak et al. (2021). Other estimators yield quantitatively

similar results, as shown in Appendix Figure 1.E.7.

We follow a similar approach to estimate the effect of US exposure to the Great Influenza

pandemic on UK innovation. In particular, the model is entirely similar to (1.6), except that the

treatment variable is defined as
(
𝐷𝑖𝑘,𝑡 ≡ 𝑡 − 𝐼

[
Influenza Emigrants𝑖𝑘

] )
as it codes the number

of years since the influenza, and it is interacted with a dummy variable returning value one for

the pharmaceutical technology class, and zero otherwise.27

The primary estimation strategy in this section is thus a triple difference estimator (Olden

and Møen, 2022). A causal interpretation of the resulting estimates requires that the difference

between the within-group differences are not statistically different from zero. Several papers

highlight that, compared to the standard difference-in-differences estimator, the parallel trends

assumption in this setting is relatively weak because it only requires that no contemporane-

ous shock affects the relative outcome of the treatment and the control group (Gruber, 1994).

Throughout the paper, we present flexible triple difference estimates to provide evidence sup-

porting the parallel trends assumption.

1.5 Empirical Results

In this section, we present the main return innovation result. Then, we document that shocks to

US innovation diffuse into the UK through migration ties. We interpret these results as evidence

that migration flows contribute to the diffusion of innovative knowledge to countries sending

migrants.

26Notice that the treatment is also potentially repeated, for the same unit can be treated multiple times. This
is, however, not the case in the baseline case, where we define synthetic shocks in the top 0.1% of the overall
residualized innovation shock distribution.

27This specification focuses on the ATE on pharmaceuticals compared to other technology classes. In Appendix
Table 1.E.8, we report the double differences estimates associated with model (1.6). Then, in Figure 1.E.6b, we show
that, as in the United States, the influenza had a major effect on pharmaceutical innovation only.
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1.5.1 Exposure to US Innovation Shapes Innovation in the UK

The primary finding of this paper is that exposure to foreign technology through migration ties

shapes the dynamics of innovation in the emigrants’ country of origin.28 We label this novel

finding “return innovation”. We first estimate regression (1.2) through a simple OLS linear

probability model to document it. We report the results in columns (1–3) of panel A of Table 1.2.

There is a positive, significant, and quantitatively large correlation between the baseline mea-

sure of exposure to foreign knowledge and the number of patents at the district-technology

class level. Moreover, the correlation persists over time, as the estimates remain statistically

significant after two decades. In columns (1–3) of panel B we repeat this exercise, but we nor-

malize the number of patents by the district-level population at the beginning of the analysis

sample decade (1880). We confirm the positive association between knowledge exposure and

per-capita patents.

As discussed in section 1.4.2, at least two factors hinder a causal interpretation of the esti-

mates presented in panel A. First, out-migration is not random across districts. Second, there

may be some latent determinant of the settlement location decisions of emigrants that corre-

lates with innovation activity in their origin areas. To ensure that our estimates do not reflect

spurious correlation arising from omitted variable bias issues, we estimate model (1.2) using

the instrument (1.31). In columns (4–6) of panels A and B, we report the reduced-form associ-

ation between the instrument and the dependent variable. Figure 1.3 visually represents the

same regression. We confirm the positive and statistically significant effect of knowledge ex-

posure on innovation. The effect persists until one decade, as opposed to two from the OLS

estimates. Columns (7–9) report the two-stage least-squares (TSLS) estimation results. First, the

instrument is relevant.29 Second, the TSLS estimates confirm knowledge exposure’s positive,

large, and statistically significant effect on innovation. The magnitude of the TSLS estimates is

roughly similar to the OLS, although the latter appears to be slightly upward biased. The OLS

estimates possibly reflect the upward bias introduced by assortative matching across district-

county pairs.

The evidence in Table 1.2 is at the district-technology level. To explore the heterogeneity of

the return innovation effect across industries, however, we estimate model (1.2) at the district

level separately for each technology class. We report the resulting reduced-form coefficients

28A recent literature produced compelling evidence that exposure to innovation is a key determinant of subse-
quent innovation activity (Akcigit et al., 2018; Bell et al., 2019). Our results can thus be interpreted as evidence in
favor of this thesis.

29We report the complete first-stage estimates in Appendix Table 1.E.4. The instruments are always relevant and
capture a substantial share of the variation of the endogenous variables.
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of the knowledge exposure instrument—one for each regression—in Figure 1.4. We estimate

the largest treatment effects for industries like electricity and chemistry at the forefront of the

Second Industrial Revolution (Mokyr, 1998, e.g.,). We employ the UK-revealed comparative ad-

vantage to measure the relative sector-level innovation specialization.30 We find that the return

innovation effect is larger in sectors where the UK retained an advantage at the beginning of

the period (the 1880s). Rather than igniting the emergence of entirely new sectors, our results

suggest that exposure to US knowledge through migration ties nurtured already-existing indus-

tries.

The setting of this study allows for gauging the persistence of the association between ex-

posure to foreign knowledge and innovation.31 In Appendix Figure 1.D.3, we report the coeffi-

cients of a regression between the number of patents and an interaction term between knowl-

edge exposure in the period 1900–1930 and biennial time dummies from 1940 to 2014. The

estimates suggest that the positive effect of knowledge exposure on innovation persists for al-

most four decades, albeit the magnitude decreases over time. Starting in the mid-1970s, the

association gradually becomes small and statistically insignificant. In Appendix Table 1.D.9, we

repeat the exercise by technology class and find consistent results across sectors. Migration ties

thus generate enduring knowledge flows that shape innovation activity over the long run.

The analysis presented thus far focuses on how out-migration shaped the direction of inno-

vation.32 A natural question is, however, whether it also impacted the volume of patents. Our

data are not well-suited to answer this question because we lack disaggregated data on outright

emigration. Nevertheless, if emigration to countries other than the United States correlated

with US emigration, we can present some suggesting evidence. In Table 1.D.6, we estimate the

effect of out-migration on innovation, measured as the number of patents granted. The OLS

and TSLS estimates show that out-migration has a negative short-term impact on innovation,

but this reverses in the medium run (after one decade). Our findings thus appear to recon-

cile evidence of “brain drain”, in the short term, with “brain drain” arguments (Docquier and

Rapoport, 2012). The effect of out-migration on the volume of innovation has been the focus of

30In the international trade literature, the revealed comparative advantage is a widely-employed metric that
hinges on the observation that a country’s comparative advantage is revealed by the country’s relative exports
(Balassa, 1965). In our setting, we define the revealed comparative advantage as

RCA𝑖𝑘 =
Patents𝑖𝑘/

∑
𝑘′∈K Patents𝑖𝑘′∑

𝑖′∈I Patents𝑖′𝑘/
∑
𝑖′∈I,𝑘′∈K Patents𝑖′𝑘′

where 𝑖 and 𝑘 denote countries and sectors within sets I and K . Specifically, I = {UK,US}. Then, the UK is
relatively more specialized in sectors with RCAUK,𝑘 above one.

31We discuss the technical details of the long-run analysis in Appendix section 1.D.3.
32Appendix section 1.D.4.1 explores this aspect in more detail and provides the technical details of the analysis.
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many of the existing studies (Agrawal et al., 2011; Andersson et al., 2022). This paper, instead,

provides evidence that emigration is a fundamental driver of the direction of innovation.33

From this perspective, our results thus inform the recent literature studying the determinants

of the direction of innovation (Bell et al., 2019; Einiö et al., 2022).

We perform several robustness exercises to gauge the robustness of our results. First, we

report them in the Appendix and discuss them in section 1.E.1. Second, we consider alternative

dependent variable transformations in Table 1.E.1. Third, Table 1.E.2 reports the results using

five different definitions of knowledge exposure that hold fixed various margins of variation.

The baseline specification of model (1.2) includes district-by-decade and technology class fixed

effects. In Table 1.E.3, we show that the results are robust to alternative, demanding specifi-

cations. The standard errors are clustered at the district level in the baseline specification. In

Figure 1.E.1, we adopt various estimators and confirm that they all preserve the statistical signif-

icance of the main results. The instrument used in Table 1.2 leverages variation in the connec-

tion timing to the railway network to randomize immigration across counties. In Table 1.E.5,

we report the results using an alternative “leave-out” instrument, described in section 1.E.2.

Importantly, we can also use both instruments simultaneously and provide over-identification

tests. In Table 1.E.6, we confirm that the leave-out instrument results are robust to various

alternative definitions of the county-level shocks.

1.5.2 Innovation Shocks in the US Diffuse to the UK

The return innovation result indicates that migration ties shape the direction of innovation in

the origin areas of emigrants. We claim that this finding implies that fluctuations in patenting

activity in the United States would reverberate in the United Kingdom through migration link-

ages. We estimate model (1.6) using two different sources of such fluctuations—which we label

innovation shocks—to test this hypothesis.

Table 1.3 reports the results of this exercise. Columns (1–4) refer to the synthetic shocks

series we construct by residualizing the observed patenting activity against fixed effects and

flagging large increases in the resulting series as “innovation shocks”. As a preliminary ro-

bustness test, we report the full-sample estimate in column (1), while columns (2–4) exclude

districts in the top three areas in terms of patents granted. We estimate a positive, large, and

statistically significant effect of US synthetic innovation shocks on innovation activity in the UK.

33Our results resonate with evidence by Fackler et al. (2020). While their study essentially leverages cross-country
variation in emigration destinations, our analysis is based on within-country disaggregated data on the origin and
destination of migrants. This allows us to credibly estimate the causal effect of out-migration and investigate
possible underlying mechanisms.
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We estimate an average of 0.4 patents per year in the treated technology class after the shock

in exposed districts. This is a quantitatively sizable effect since the average number of patents

per district-class pair is 1.3. Moreover, the relative size of the effect remains consistent through

the regression samples. Next, we explore heterogeneous treatment effects over time in Figure

1.5a. Reassuringly, the figure provides evidence that supports the parallel trends assumption.

The effect of the innovation shock is the largest and most significant after two years since the

shock initially manifested in the United States. This time lag seems plausible, especially since

our data shows an average of 1.1 years delay between the application and issue date at the UK

patent office. The effect persists up until six years following the synthetic shock. We estimate

the effect of synthetic shocks sector by sector in the appendix Figure 1.E.5. As in 1.4, we find the

largest treatment effect for electricity.

Next, we investigate how exposure to the Great Influenza pandemic across US counties im-

pacted UK innovation. The logic behind this exercise is that exposure to the pandemic fostered

innovation in the pharmaceutical sector (see Table 1.D.7 and Berkes et al., 2022). We thus ex-

pect districts whose emigrants had settled in counties more exposed to the pandemic to display

higher patenting rates in pharmaceuticals. We report our findings in columns (5–8) of Table

1.3. We estimate the pandemic shock’s effect on British innovation to be positive and sizable.

On average, two patents per year are granted in the pharmaceutical sector in districts more

exposed to counties severely affected by the influenza. We estimate the associated dynamic

treatment effects in Figure 1.5b. We find only one marginally significant and very small coeffi-

cient in the pre-treatment period. By comparison, the post-treatment coefficients are large and

highly significant. The effect of the pandemic materialized six-seven years after the shock in

the United States. As noted before, this delay is partly due to the shift between patent applica-

tion and issue by the patent office, except that we now have to compound delays at the US and

UK offices. Moreover, the effect of the pandemic shock on US innovation in pharmaceuticals

was not immediate, as shown in Appendix Figure 1.D.2. Taken together, it is plausible that the

shock propagation into the UK is observed with some delay. We estimate statistically significant

treatment effect coefficients for more than a decade thereafter.

The pandemic shock only impacted innovation in pharmaceuticals in the US (Figure 1.E.6a).

We thus expect to retrieve a similar effect in Britain. Figure 1.E.6b shows that, although the point

estimates are not as sharp as in the US case, the pharmaceutical sector is the one that benefits

the most from the influenza shock. The point estimate for pharmaceuticals is nearly three times

larger than the second-largest estimate. The estimated effect in some sectors may be negative

because of crowding-out out of those fields into pharmaceuticals, although we cannot entirely

disentangle the underlying reason. We interpret this exercise as a falsification check: Figure
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1.E.6 provides convincing evidence that the pandemic shock affected the same sector in the US

and the UK.

We assess the robustness of these results through several robustness checks. First, we con-

sider alternative thresholds to (i) flag synthetic shocks and (ii) flag district exposure to synthetic

shocks. Table 1.E.7. We estimate larger treatment effects for smaller thresholds. This is rea-

sonable since smaller thresholds impute, on average, larger innovation shocks. The synthetic

shock triple differences model is a staggered design since shocks generally occur in different

periods across technology classes and districts. The baseline estimates are obtained from the

imputation estimator developed by Borusyak et al. (2021). In Figure 1.E.7, the estimated treat-

ment effect remains consistent across various estimators. In particular, the one developed by

De Chaisemartin and D’Haultfœuille (2022) allows repeated treatments and yields consistent

results. Finally, in Table 1.E.8, we report several specifications to gauge the robustness of the

pandemic shock results. First, in columns (1–2), we report the double differences estimates that

compare pharmaceutical innovation across districts by exposure to counties affected by the

pandemic. Then, in columns (3–7), we report various triple differences specifications that ex-

clude districts in areas with very high patenting activity. The results remain consistent through-

out.

1.6 Potential Mechanisms and Discussion

Several concurrent, not necessarily mutually exclusive mechanisms can explain the return in-

novation result. In this section, we present our analysis to disentangle some. First, we establish

whether return innovation is solely a consequence of return migration. Then, we discuss some

complementary and possibly quantitatively more substantial channels.

1.6.1 Is Return Innovation Return Migration?

Return migration is a primary candidate to explain our findings through two channels. First,

return migrants may engage in innovation activities in the fields they were exposed to abroad.

Second, return migrants may facilitate access to US knowledge without directly undertaking

innovation activities. The literature does not offer conclusive evidence on the effect of return

migration on innovation. On the one hand, several studies estimate modest effects for recruit-

ing programs of high-skilled nationals working abroad (Ash et al., 2022; Shi et al., 2023). On

the other, Giorcelli (2019) shows, although from a different perspective, that those exposed to

27



(managerial) foreign knowledge change their behavior once back in their origin country.34 In

this section, we investigate whether the direct or indirect return migration effects explain the

return innovation result.

As a first step, we estimate model (1.2) controlling for return knowledge exposure.35 Ta-

ble 1.D.10 reports the results: in columns (1–3), we present specifications with various levels

of fixed effects; columns (4) and (5) display the coefficients of lagged values of the indepen-

dent variables; in column (6) we report the full lag model. Throughout the specifications, the

coefficient of knowledge exposure is always significant and substantially larger than that of re-

turn knowledge exposure, which is seldom significant. The results thus suggest that the role of

return knowledge exposure is probably not a major driver of the return innovation effect.

To sharpen the focus, we leverage the granular nature of our data and perform an individual-

level analysis. First, we extract all men aged between 18 and 50 in 1900 that do not emigrate

from the 1911 census. We then create a yearly balanced panel dataset that reports the number

of patents obtained by each individual between 1900 and 1920. To do so, we leverage the linked

inventor-census data described in Appendix 1.A.3. Next, each individual is geo-referenced to

precise coordinates as described in Appendix 1.A.2. We complement this with information on

the geographical proximity between these “stayers” and migrants. More specifically, we de-

fine a dummy variable (US Migrant𝑘𝑝,𝑡) that returns value one in all periods after the first time

at least one individual living within 𝑘 meters from individual 𝑝 migrates to the US, and zero

otherwise. In the baseline analysis, we consider 𝑘 = 100 and recast (US Migrant100𝑝,𝑡 ) as simply

(US Migrant𝑝,𝑡) for brevity. We label this variable an indicator of “neighborhood migration”. To

estimate the effect of neighborhood migration on the probability of patenting, we thus estimate

the following double difference regression:36

Patents𝑝,𝑡 = 𝛼𝑝 + 𝛼𝑡 + 𝛽 × Neighborhood Migrant𝑝,𝑡 + 𝜀𝑝,𝑡 (1.7)

where 𝑝 and 𝑡 denote, respectively, individuals and years, and𝛼𝑝 and𝛼𝑡 are the associated fixed

effects. The term 𝛽 yields, under a standard parallel trends assumption, the estimated causal

34Choudhury (2016) shows that R&D firms with returnee managers are disproportionately more likely to file
patents in the United States. Bahar et al. (2022b) show that return migration can influence trade.

35Return knowledge exposure is defined as in (1.1), except that return migrant replaces out-migration linkages.
We formally describe how we define it in Appendix section 1.D.4.3.

36To avoid an excessive computational burden, we estimate model (1.7) on a 10% random sample of the popu-
lation. Moreover, the model is a staggered difference-in-differences design with (potentially) repeated treatments.
These issues arise because individuals in different neighborhoods are typically treated at different, possibly mul-
tiple, points in time. We thus estimate regression (1.7) using the estimator proposed by Borusyak et al. (2021). In
Appendix Figure 1.E.8, we show that results hold if the neighborhood-migrant treatment is activated whenever
emigrants within 100 meters from the individual in the sample migrate.
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effect of neighborhood migration on innovation.

The logic beneath equation (1.7) builds on Bell et al. (2019), who document the impor-

tance of geographical proximity to inventors as a driver of subsequent innovation activity.

A positive and significant estimate of 𝛽 would be evidence against the direct return innova-

tion effect since the sample comprises only individuals that never emigrate. Then, we define

a (Non-Return Neighborhood Migrant𝑘𝑝𝑡) dummy entirely analogous to the previous treatment,

except that we condition the neighborhood emigrant to not return to the UK. In this case, a pos-

itive estimate of 𝛽 would suggest that indirect return migration is also unlikely to be a primary

driver of the return innovation effect.

We report the estimates of equation (1.7) in Table 1.4. The dependent variable is the yearly

number of patents. In columns (1–4), the sample includes individuals from all districts; in

columns (5–7), we exclude individuals in the top three-producing patents areas (London, Lan-

cashire, and the South-West). In panel A, the treatment is activated by any US neighborhood

emigrant. In panel B, we restrict to neighborhood emigrants that never return in the sample pe-

riod. We estimate a positive effect of neighborhood emigration on innovation by non-migrants.

The effects hold in the baseline specification (columns 1 and 5), as well as including parish-by-

time fixed effects (columns 2 and 6) and applying coarsened exact matching (CEM, columns 3

and 4).37 Importantly, the estimated coefficient remains if we restrict the sample to exclude all

non-inventors, thus reducing the sample size considerably (columns 4 and 8). Panels A and B

show that overall and non-return neighborhood migration has a positive statistically significant

effect on the probability of inventing regardless of the dependent variable, the fixed effects, and

the matching scheme. In Figure 1.E.9, we report the associated flexible difference-in-differences

estimates, which indicate the absence of statistically significant pre-trends.

Evidence presented in Table 1.4 indicates that return migration is, either directly or indi-

rectly, unlikely to be the main driver of the return migration effect. Nevertheless, we do not

want to over-emphasize these results. They do not imply that return migration bears no impact

on innovation activity. Instead, we interpret them as suggesting that some other mechanism

that does not directly hinge on the physical return of emigrants exerts a more substantial in-

fluence on domestic innovation in the UK. We devote the rest of this section to studying these

potential additional channels.

37Parishes are very small geographical units with a population of approximately 2,500. Coarsened exact match-
ing weights are calculated to balance individuals in terms of age, parish of residence, and occupation. Appendix
Figure 1.E.10 reports the correlation between treatment status and pre-treatment individual-level observable char-
acteristics for the baseline sample (panel A) and the CEM weighted sample (panel B).
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1.6.2 Return Innovation Through Information Diffusion

The leading alternative channel that we explore is that migration ties foster the spread of in-

novative knowledge through information diffusion, absent physical return. We cannot un-

ambiguously disentangle the precise “meta-mechanism” through which information diffuses.

However, we provide evidence suggesting the importance of market integration facilitated by

migration ties.

1.6.2.1 The Transatlantic Telegraph Increased Innovation In Emigration Districts

We exploit one historically relevant event to provide evidence on the information diffusion

channel: the first transatlantic telegraphic cable that connected the US and UK domestic net-

works (1866). The telegraph represented a major revolution in communication technology

that ushered unprecedented market integration (Steinwender, 2018; Juhász and Steinwender,

2018). Before 1866, mail steam was the cheapest way to communicate between the UK and

the US. It took fifteen days to transmit information in this way. This delay was reduced to one

day overnight between June 27 and 28. The connection timing was unanticipated and exoge-

nous (Steinwender, 2018).38 We leverage this information friction shock to identify the effect

of knowledge flows generated by migration ties on UK innovation. After introducing the tele-

graph cable, we thus expect to find (i) increased innovation activity in districts with more US

emigrants and (ii) increased innovation activity in the fields emigrants were exposed to in the

US.

To test these hypotheses, we estimate the following difference-in-differences models:

Patents𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ

[
US Emigrants𝑖 × I(𝑡 − 1866 = ℎ)

]
+ 𝜀𝑖,𝑡 (1.8a)

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ

[
Knowledge Exposure𝑖𝑘 × I(𝑡 − 1866 = ℎ)

]
+ 𝜀𝑖𝑘,𝑡 (1.8b)

where 𝑖, 𝑘, and 𝑡 denote a district, technology class, and yea, respectively. The term (US Emigrants𝑖)
and (Knowledge Exposure𝑖𝑘) code the number of US emigrants and exposure to US knowl-

edge.39 Lastly, the variable I(𝑡 − 1866 = ℎ) denotes the number of years since the transatlantic

38The project for a transatlantic telegraphic cable had been underway for a long time before 1866. Previous
attempts in 1857, 1858, and 1865 all failed due to logistic and technical challenges. The 1866 attempt was thus one
among many, and its success had not been anticipated.

39The cable was laid down in 1866. Our migration data started in 1870. To construct district-level emigration,
we can only use emigrants from 1870–1875. This would be problematic if the telegraph fostered out-migration,
which, by available historical accounts, was not the case.
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cable was laid down. In equation (1.8a), the treatment coefficients {𝛽ℎ} quantify the effect of the

transatlantic cable by comparing districts by the number of US emigrants; in equation (1.8b),

we also leverage variation across sectors and exposure to US innovation.

We report the static versions that conflate pre- and post-treatment years in two periods in

columns (1) and (4) of Table 1.5. We estimate a positive and significant effect of the transatlantic

telegraph on innovation. To provide more convincing evidence on the plausibility of this result,

we expect the transatlantic cable to affect innovation only in districts connected to the domestic

network.40 We thus reconstruct the entire telegraph network before the introduction of the

transatlantic cable. The exact location of each station is displayed in Appendix Figure 1.A.4.

We refer to districts with at least one station as “connected”. In columns (2) and (5), we show

the estimated effect of the telegraph on connected districts. By comparison, columns (3) and

(6) report the estimates for non-connected districts. The results of this exercise are sharp. We

estimate a positive effect of the transatlantic cable only for districts connected to the domestic

UK network, as expected. We fail to detect any significant effect on non-connected districts.

Because the location of telegraph stations was not random, one may argue that this ex-

ercise only reflects pre-existing differences between connected and not connected districts.

However, identification in this setting requires that patenting in connected and unconnected

districts were on the same trend before the introduction of the telegraph and that it would

not have differed had the cable not been laid down. In Figure 1.6, we thus report the flexi-

ble double-differences estimates of model (1.8a), which we estimate separately on connected

and unconnected districts. We find that connected and unconnected districts were on the same

trend before 1866. We estimate positive and significant treatment effects only for the former

and after 1866, whereas the patenting in the latter does not respond to the shock. In 1873 and

1874, the second and third cables became operational. Our estimates suggest positive treatment

effects for those.

Building on Steinwender (2018), we interpret these results as evidence that lower frictions

to information diffusion enabled knowledge flows through pre-existing migration ties. In other

words, return innovation manifests absent physical return of emigrants through knowledge

flows ushered by migration ties. However, the precise mechanism that generates these flows is

difficult to disentangle. Our favored interpretation is that the telegraph fostered the integration

of the US and the UK markets and that this effect was more intense where migrant ties existed.

Later, we provide more evidence in favor of the market integration effect and discuss potential

additional mechanisms in section 1.6.3.

40We do not claim that there were no cross-district spillover effects even if districts were not connected to the
domestic UK network. We nonetheless believe the effect on connected districts would arguably be more significant.
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1.6.2.2 Newspaper Mentions of United States Topics in Emigration Districts

Thus far, we have restricted the focus of the analysis to information flows that pertain to in-

novative knowledge (patents). This section provides evidence that migration ties between the

UK and the US generated more general-purpose information flows. We exploit the vast British

Newspaper Archive that contains the digitized contents of thousands of historical British news-

papers (for a detailed description of the data, see Appendix section 1.3.3.2 and Beach and Han-

lon, 2022). Ideally, we would like to measure the intensity of US-related information flows into

the United Kingdom. We tackle the absence of direct hard data by measuring how frequently

US-related news appeared in historical newspapers.

We estimate three sets of regressions:

US Mentions𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽1 × US Emigrants𝑖,𝑡 + 𝜀𝑖,𝑡 (1.9a)

US State Mentions𝑖𝑠,𝑡 = 𝛼𝑖 + 𝛼𝑠×𝑡 + 𝛽2 × US Emigrants𝑖→𝑠,𝑡 + 𝜀𝑖𝑠,𝑡 (1.9b)

US County Mentions𝑖 𝑗,𝑡 = 𝛼𝑖 + 𝛼 𝑗×𝑡 + 𝛽3 × US Emigrants𝑖→ 𝑗,𝑡 + 𝜀𝑖 𝑗,𝑡 (1.9c)

where 𝑖, 𝑗, 𝑠, and 𝑡 denote a UK district, a US county, a US state, and a decade, respectively. Re-

gression (1.9a) is run at the district level and leverages the variation of the overall US emigra-

tion rate; in regressions (1.9b) (resp. (1.9c)), instead, we look at district-by-state (resp. district-

by-county) migration flows. We estimate regressions (1.9) using actual out-migration and the

shift-share instrument described in section 1.4.3.

Table 1.6 reports the results. Panels A, B, and C respectively display the estimated 𝛽 co-

efficients of models (1.9a), (1.9b), and (1.9c). In columns (1–3), we report the correlation be-

tween measured out-migration flows and newspaper coverage; columns (4–5) report the OLS

reduced-form association with the instrument; columns (7–9) display the two-stage least-square

estimates. In columns (3), (6), and (9), we restrict the sample to districts with at least one news-

paper. We find a strong and positive effect of out-migration on newspaper coverage of general-

interest US-related news. Importantly, we always control for time-varying confounding factors

at the level of the receiving place, whether it be the country, single states, or single counties.

This ensures that the estimates do not reflect shocks in those areas.

We interpret this result as evidence that out-migration generates general—not only innovation—

information flows between the areas where emigrants settle and where they originate. We can-

not disentangle—-and this goes beyond the scope of this paper—the precise underlying mech-

anism. For example, increased coverage of US-related news may be demand-driven because
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the local population may demand information covering the areas where their loved ones set-

tled. On the other hand, US emigrants could have sponsored local newspapers to cover news in

the areas where they had located. In this sense, our estimates may reflect a supply-side factor.

What is crucial for this paper is that, notwithstanding the precise underlying mechanism, out-

migration ignites cross-country information flows. The return innovation effect is thus one of

the possibly many effects of out-migration on countries sending migrants.41

1.6.2.3 Trade-Induced Technology Transfer

Our favored interpretation of the telegraph analysis is that market integration, fostered by

migration ties, is a major driver of the return innovation result. Here we provide one addi-

tional piece of evidence to support this interpretation.42 In particular, we focus on interna-

tional trade as a measure of market integration. In 1930, the United States passed a tariff—the

Smoot-Hawley Act —which sharply increased import duties and hampered trade (Eichengreen,

1986). We leverage variation in the tariff increase across technology classes in a difference-in-

differences setting. We find that patenting decreases in districts more exposed to technologies

that the Act comparatively more heavily targeted.

Since the tariff reform was one-sided, it is unlikely that depressed import competition or

access to intermediate inputs drive this result (e.g., see Bloom et al., 2016; Juhász and Steinwen-

der, 2018; Autor et al., 2020). We are unable to conclusively disentangle the impact of export

opportunities (e.g., see Bustos, 2011; Atkin et al., 2017) from the information access effect of

migration ties (Aleksynska and Peri, 2014; Ottaviano et al., 2018). However, we believe this ex-

ercise provides evidence in favor of the market integration interpretation of the knowledge

flows generated by migration ties.

1.6.3 Potential Additional Mechanisms

In this section, we discuss some potential additional mechanisms that may explain the return

innovation result. It is worth stressing that these may operate on top, and not instead, of the

information and market integration mechanism.

41A recent literature has already documented the disparate effects of out-migration on attitudes towards democ-
racy (Spilimbergo, 2009), demand for political change (Karadja and Prawitz, 2019), wages (Dustmann et al., 2015),
technology adoption and innovation (Andersson et al., 2022; Coluccia and Spadavecchia, 2022), social norms (Tuc-
cio and Wahba, 2018) We thus provide additional evidence of the wide-encompassing effects of out-migration on
emigration areas.

42We discuss the literature and the technical implementation of the empirical analysis in Appendix section 1.D.1.
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1.6.3.1 Temporary Migrations

When disentangling the possible mechanisms behind the return innovation effect, we con-

trasted those requiring physical return migration with those not. We concluded that physical

return is unlikely to be a major driver of return innovation. It may nonetheless be possible that

(unobserved) short-term temporary migrations influence the dynamics of innovation in the

UK. We cannot observe temporary migrants because we construct migration flows from census

data. Censuses are, in turn, only administered to the residing population. Our data would thus

fail to reflect such temporary migration movements.

Temporary migrations would confound our estimates if such migrations were correlated

with observed migration patterns. We believe that it is unlikely that this factor bears relevant

quantitative implications. First, the notion of a “temporary migrant” in XIX-century transat-

lantic migration is unclear. Piore (1980) refers to Southern and Eastern European migrants as

temporary because they planned to return to their origin countries at some point. This could

take, however, decades. For example, a one-way cabin travel ticket from New York to Liver-

pool, at roughly 100$, would cost as much as 20% of the average annual US income (Dupont

et al., 2017). This suggests that the extent of short-term stays must have been relatively limited.

Moreover, Piore (1980) notes that “temporary” migrants were relatively low-skilled and, thus,

less likely to operate technology transfer.

Furthermore, our research designs largely rule the temporary migration mechanism out.

First, our instrumental variable research design largely rules this mechanism out. Suppose

that measured out-migration and unobserved temporary migrations were correlated across

origin districts and destination counties. Our pull instrumental variable randomizes county-

level immigration shocks leveraging (conditional) variation in the decade counties were con-

nected to the railway network. While we show that the resulting instrument predicts actual

out-migration, it is likely that the source of pull variation is not as active for temporary “busi-

ness” migrants. Second, for temporary migration to explain the double and triple differences

result, one would need such temporary flows to be correlated with the county-level innovation

shocks. This seems unlikely, although we cannot directly test and rule it out.

1.6.3.2 Monetary Remittances

Along with classical “brain drain” arguments, monetary remittances have been a major sub-

ject of empirical investigations in the migration literature (Clemens, 2011). Remittances have

been found to contribute only modestly to the economic development of emigration countries.

This notwithstanding, it is possible that the inflow of capital through remittances may have
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sustained increased innovation activity, perhaps by relaxing financial constraints or access to

credit (Gorodnichenko and Schnitzer, 2013). It would be more difficult, however, that it would

have impacted the direction of innovation and, most importantly, that this effect would have

been correlated with variation in knowledge exposure.

Disaggregated data on financial remittances, unfortunately, do not exist. We thus remain

silent on the possibility that the documented positive effect of out-migration on innovation de-

pends on financial remittances. This capital inflow, however, cannot explain why out-migration

influences the direction of innovation unless knowledge and monetary remittances go hand in

hand. This is a possibility that we cannot explore. It nonetheless highlights that financial and

innovation remittances shape innovation in a complementary, rather than mutually exclusive,

fashion.

1.6.4 Discussion

Our results bear potentially far-reaching implications for policy-makers. We show that em-

igration does not necessarily further underdevelopment or stagnation, as the “brain drain”

literature seems to suggest (Docquier and Rapoport, 2012). Instead, out-migration can foster

innovation, technology adoption, and diffusion and thus empower long-run economic growth.

Instead of focusing on blocking the emigration of skilled individuals, our central recommen-

dation to policy-makers in emigration countries would be to foster cooperation and exchanges

between them and the staying population. Our results and more recent albeit narrative evi-

dence by Saxenian (1999) suggest that this approach can yield important and lasting benefits

on the economic development of emigration countries.

In 2020, for example, fifty-five Italian researchers were awarded a European Research

Council (ERC) starting grant, possibly the most prestigious award for early-career scholars work-

ing in the European Union. Only nineteen (≈ 35%) of them worked in Italian institutions. This

paper sheds new light on the economic contribution of the remaining thirty-six (≈ 65%) on sci-

ence, innovation, and, ultimately, growth in Italy.43 More generally, we study how the entire

stock of emigrants influences the dynamics of innovation in their sending countries. In doing

so, we vastly enrich our understanding of the consequences of emigration, compared to studies

that focus on much narrower sub-samples of super-skilled emigrants (e.g., see Prato, 2021).

Concerns over the external validity of these results are natural, given the setting we an-

alyze. We nonetheless think that History can inform the scholarly debate and policy-making

for two main reasons. First, as previously mentioned, Saxenian (1999) qualitatively documents

43These figures are the result of authors’ calculations over data released by the ERC, available at this link.
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similar return innovation effects with respect to the Taiwanese and Indian emigration to the

Silicon Valley area. Second, we provide evidence that the UK emigration to the US in the XIX

century largely resembles, mutatis mutandis, migration between European countries and the

United States during the XXI. Compared to the rest of the English population, migrants were

positively selected. They were similarly more likely to be employed in skilled occupations than

the average native and to live in urban centers. These patterns suggest that a cautious compar-

ison between historical and contemporary migration episodes can yield important insights for

policy-makers and scholars (Abramitzky and Boustan, 2017).

1.7 Conclusions

The diffusion of innovation across countries is a major factor shaping long-run development

trajectories and the economic catch-up of developing countries. In this paper, we argue that

international migrations generate knowledge flows that shape the volume and direction of in-

novation in emigration countries. This result—which we label “return innovation”—offers a

more nuanced view of emigration compared to the traditional “brain drain” hypothesis, which

interprets out-migration as a depletion of the country’s human capital sending migrants. More-

over, as the number of international migrants has been steadily rising over the past decades,

the role of human mobility as a driver of knowledge and information diffusion across countries

in a globalized world economy bears quantitatively relevant implications.

We study this question in the context of the English and Welsh mass migration to the United

States between 1870 and 1940. We leverage detailed US and UK population census data and as-

semble a novel individual-level dataset that allows us to observe the universe of English and

Welsh immigrants in the US before and after migrating. We complement this with newly digi-

tized patent data covering the universe of patents in England and Wales. On top of these unique,

high-quality data, the absence of stringent international intellectual property protection and ac-

tive migration policies represents a prominent appealing feature of this historical setting com-

pared to contemporary scenarios.

We document that migration linkages increase UK innovation activity in the technologies

that emigrants are exposed to in the US. To address endogeneity concerns arising from the as-

sortative matching of British immigrants in the US, we develop a new shift-share instrument

that exploits the conditional timing of connection to the railway network to randomize emigra-

tion across counties. Additionally, we implement a double and triple differences estimator that

leverages variation across counties and technology classes. Thus, we can document a causal

link between exposure to foreign knowledge through migration ties and innovation activity.
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Exploiting the granular nature of our data, we find that physical return migration is not the

primary determinant of the return innovation effect. Instead, the results suggest that migration

ties ignite the cross-border diffusion of information and novel knowledge, thus influencing the

direction of technological advancement. We provide evidence consistent with market integra-

tion ushered by migration linkages being a crucial driver of the information diffusion effect.

Moreover, historical newspaper coverage of US-related news indicates that migration ties foster

general-purpose information flows. From this perspective, the return innovation effect repre-

sents one of the potentially disparate effects of out-migration on the origin areas of emigrants.

Even though our results may not be immediately generalizable to contemporary scenarios,

the historical evidence suggests that the British mass migration to the United States may be

comparable to present-day cross-border movements between developed countries. History can

thus inform the scholarly literature and policymakers on the complex relationship between out-

migration, innovation, and, ultimately, long-run economic growth.
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Tables

Table 1.1: Descriptive Statistics of Selected Variables

Observations Mean Std. Dev. Min. Max.

(1) (2) (3) (4) (5)

Panel A. Innovation
Total Patents 5489 225.826 826.432 1 19789
Electricity 5489 23.565 200.755 0 9430
Instruments 5489 17.69 80.2 0 1850
Personal Articles & Furniture 5489 20.136 73.812 0 1548
Ships & Aeronautics 5489 16.463 55.062 0 1152
Transportation 5489 20.024 74.479 0 1923

Panel B. Emigration
N. of US Emigrants 3779 61.765 91.36 0.303 1073.998
N. of Return US Emigrants 2494 35.342 52.202 0.064 730

Panel C. Census Tracts
Population (1,000s) 3773 42.165 54.973 0.092 703.559
Share of Males (%) 3773 47.645 2.586 36.112 62.686
Share of Manufacture Empl. (%) 3773 13.213 6.306 2.569 42.723
Share of Agriculture Empl. (%) 3773 14.43 6.889 1.454 32.914
Share of Transportation Empl. (%) 3773 2.578 1.272 0 13.857
Share of Liberal Professions (%) 3773 1.679 0.65 0.43 6.873
Share of Public Servants (%) 3773 0.897 1.427 0 24.498

Panel D. Individual-Level Panel
Share of Inventors 471013 0.009 0.094 0 1
N. of Patents 471013 0.018 0.356 0 87
N. of Patents if Inventor 4210 1.993 3.205 1 87
N. of Neighborhood Emigrants 471013 13.62 43.338 0 756
N. of Non-Return Neighborhood Emigrants 471013 12.979 40.888 0 512

Notes. This table displays summary descriptive statistics for a subset of the variables in the dataset. In
Panels A, B, and C, variables are observed at the district level and at a decade frequency. In Panel D, the
statistics are computed for individuals observed for twenty years around the 1891 and 1911 census
years. An individual is labeled an inventor if they obtain at least one patent over this period. Panel A
reports statistics for the top five most frequent technological classes. In Panels B and C, the underlying
data are cross-walked to 1900 district borders.
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Table 1.2: Effect of Exposure to US Technology on Innovation in Great Britain

Ordinary Least Squares Reduced Form Two-Stages Least-Squares

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Dependent variable: Number of patents

Knowledge Exposure𝑡 1.342∗∗∗ 0.037∗∗∗ 1.224∗∗∗
(0.143) (0.007) (0.195)

Knowledge Exposure𝑡−1 0.909∗∗∗ 0.015∗∗∗ 0.488∗∗
(0.145) (0.005) (0.190)

Knowledge Exposure𝑡−2 0.379∗∗∗ -0.012 -0.398
(0.112) (0.014) (0.478)

Mean Dep. Var. 10.392 13.345 15.256 8.706 12.045 15.314 8.708 12.049 15.319
Std. Beta Coef. 0.299 0.148 0.050 0.075 0.022 -0.013 0.296 0.088 -0.053
R2 0.772 0.701 0.737 0.800 0.799 0.736 0.035 0.011 -0.003
K-P F-stat 109.826 109.826 109.826

Panel B. Dependent Variable: Patents per capita (× 10,000)

Knowledge Exposure𝑡 0.178∗∗∗ 0.004∗∗∗ 0.146∗∗∗
(0.020) (0.001) (0.027)

Knowledge Exposure𝑡−1 0.092∗∗∗ 0.002∗∗∗ 0.078∗∗∗
(0.018) (0.001) (0.024)

Knowledge Exposure𝑡−2 0.049∗∗∗ 0.000 0.001
(0.015) (0.001) (0.043)

Mean Dep. Var. 2.066 2.629 2.973 1.748 2.345 2.980 1.747 2.346 2.980
Std. Beta Coef. 0.124 0.054 0.023 0.023 0.011 0.000 0.093 0.046 0.000
R2 0.426 0.443 0.476 0.417 0.452 0.476 0.001 0.000 0.000
K-P F-stat 107.825 107.825 107.825

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N. of District-Class 11268 11268 11268 11214 11214 11214 11214 11214 11214
N. of Observations 67549 67549 56295 56070 56070 56070 56047 56047 56047

Notes. This table displays the association between innovation and exposure to US knowledge. The unit
of observation is a district-technology class pair, observed at a decade frequency between 1880 and
1939. The main explanatory variable is knowledge exposure. In Panel A, the dependent variable is the
number of patents; in Panel B, the dependent variable is the number of patents normalized by
district-level population in 1880 and multiplied by 10,000 for readability. In columns (1–3), we estimate
the OLS correlation with the observed measure of knowledge exposure; in columns (4–6), we estimate
the reduced-form association with the railway-based instrument of knowledge exposure through OLS;
columns (7–9) report the two-stage least-squares estimate. Each model includes district-by-decade and
district-by-technology class fixed effects. Standard errors are reported in parentheses and are clustered
at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.3: Triple Differences Effect of Exposure to US Shocks on UK Innovation

Synthetic Shocks Great Influenza Pandemic Shock

(1) (2) (3) (4) (5) (6) (7) (8)
Full Sample No London No Lancs No S/W Full Sample No London No Lancs No S/W

Synth. Shock × Post × Emigrants 0.434*** 0.277*** 0.578*** 0.420***
(0.121) (0.082) (0.125) (0.127)

Pharma × Post × Emigrants 0.613*** 0.417*** 0.678*** 0.461***
(0.164) (0.140) (0.172) (0.156)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes
Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Number of Units 10029 9697 8760 9547 10727 10217 9384 10047
Number of Observations 393046 382153 343450 375850 429080 408680 375360 401880
Mean Dep. Var. 1.361 1.029 1.263 1.276 0.725 0.532 0.682 0.668

Notes. This table displays the effect of US innovation shocks on innovation activity in the UK. The unit
of observation is a district-technology class pair observed at a yearly frequency between 1900 and
1939. The dependent variable is the number of patents. In columns (1–4), the independent variable is
an indicator that, for a given district–technology, returns value one after a synthetic innovation shock
in that technology class is observed in at least one county where the district has above-average
out-migration. A synthetic innovation shock is observed whenever the residualized number of patents
observed in the country is in the top 0.5% of the overall distribution. In columns (5–8), the independent
variable is an indicator that returns value one for pharmaceutical patents only and only if emigration
from the observed district to counties in the top quartile of the influenza mortality distribution is in the
top quartile across districts. Both models should thus be interpreted as triple-difference designs. Since
models in columns (1–4) are staggered designs, we estimate them using the imputation estimator
developed by Borusyak et al. (2021). In columns (2) and (6), we drop districts in the London area; in
columns (3) and (7), we exclude districts in the Lancashire area; in columns (4) and (8), we drop
districts in the South-West area. Excluded regions are the first three in terms of patents granted. All
models include district-by-year, district-by-technology class, and technology class-by-year fixed effects;
standard errors, clustered two-way by district and technology class, are shown in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.4: Double Differences Effect of Neighborhood Out-Migration on Innovation

Baseline Sample Dropping Individuals in...

(1) (2) (3) (4) (5) (6) (7)
London Lancashire South-West

Panel A. All Emigrants

Neighborhood Emigrant × Post 0.167∗∗∗ 0.180∗∗∗ 0.170∗∗∗ 16.208∗∗∗ 0.130∗∗ 0.180∗∗∗ 0.198∗∗∗
(0.053) (0.055) (0.056) (5.758) (0.061) (0.055) (0.061)

Std. Beta Coef. 0.022 0.024 0.023 0.211 0.018 0.025 0.025

Panel B. Only Non-Return Emigrants

Non-Return Neighborhood Emigrant × Post 0.165∗∗∗ 0.189∗∗∗ 0.167∗∗∗ 15.749∗∗∗ 0.108∗ 0.183∗∗∗ 0.211∗∗∗
(0.054) (0.056) (0.057) (5.987) (0.060) (0.056) (0.062)

Std. Beta Coef. 0.021 0.024 0.021 0.196 0.014 0.024 0.026

Individual FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes – Yes Yes Yes Yes Yes
Parish × Year FE No Yes No No No No No
Matching No No Yes No No No No
Sample Full Full Full Inventors Full Full Full
N. of Individuals 473112 473112 469585 4224 410327 422230 352064
N. of Observations 9462240 9419787 9391700 84480 8206540 8444600 7041280
Mean Dep. Var. 0.890 0.892 0.893 99.716 0.794 0.836 0.893
S.D. Dep. Var. 40.291 40.324 40.351 414.695 37.439 39.126 41.333

Notes. This table reports the effect of neighborhood out-migration on innovation. The units of
observation are individuals who are observed yearly between 1900 and 1920. In columns (1–3) and
(5–7), the sample consists of the universe of males who did not emigrate over the period and that were
at least 18 years old in 1900; in columns (4) and (8), we restrict the sample to inventors. The dependent
variable is the number of patents obtained annually. In columns (1–4), the sample consists of
individuals residing in all England and Wales divisions; in columns (5–7), we exclude the top
tree-patents producing areas: London, Lancashire, and the South-West. In Panel A, the independent
variable is an indicator that, for a given individual, returns value one after at least one person that was
living in the same neighborhood as the individual migrates to the United States; in Panel B, we restrict
to emigrants that never return in the period of observation. In this context, “neighborhood” refers to
the same street, square, or similar. We explore an alternative distance-based definition in Appendix
Table 1.E.9. Each model includes individual and—at least—year fixed effects; in column (2), we include
parish-by-year fixed effects; in column (3), individuals are weighted by their coarsened exact matching
weight. The estimates are obtained using the method discussed in Borusyak et al. (2021) to account for
the staggered roll-out of the treatment across individuals. Standard errors, clustered at the district
level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.5: Double Differences Effect of Transatlantic Telegraph on Innovation

Double Differences Triple Differences

(1) (2) (3) (4) (5) (6)
All Connect N. Connect All Connect N. Connect

Post × Emigrants 1.345∗∗∗ 1.639∗∗∗ -0.083
(0.451) (0.559) (0.097)

Post × Knowledge Exposure 0.027∗∗ 0.027∗∗ -0.003
(0.010) (0.011) (0.005)

District FE Yes Yes Yes – – –
Class FE Yes Yes Yes – – –
Year FE Yes Yes Yes Yes Yes Yes
District-Class FE – – – Yes Yes Yes
N. of District-Class 631 463 168 631 463 168
N. of Observations 10096 7408 2688 181728 133344 48384
R2 0.918 0.917 0.817 0.790 0.794 0.498
Mean Dep. Var. 5.610 7.241 1.115 0.312 0.402 0.062
Std. Beta Coef. 0.114 0.125 -0.039 0.035 0.034 -0.007

Notes. This table displays the estimated effect of the connection of the US and UK telegraph lines on
innovation in the UK. The units of observation are districts in columns (1–3) and district-technology
class pairs in columns (4–6). Units are observed yearly between 1860 and 1875. The dependent variable
is the total number of patents granted. In columns (1–3), the independent variable is an interaction
between the—time-invariant—number of US emigrants in the 1870s and an indicator variable that
returns value one after the transatlantic cable successfully connected the UK and the US in 1866, and
zero otherwise; in columns (4–6) the treatment interacts—time-invariant—knowledge exposure in the
1870s with the same posttreatment indicator. In columns (1) and (4), the sample includes all districts; in
columns (2) and (5) (resp. 3 and 6), we restrict the estimation to districts that were (resp. were not)
connected to the domestic UK telegraph system. Models (3) and (6) should be interpreted as placebo
exercises. Regressions include fixed effects for district and year in columns (1–3) and district-by-class
and year in columns (4–5). Standard errors, clustered at the district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.6: Effect of US Emigration on Newspaper Coverage of US-related News

Dependent Variable: Number of Newspaper Mentions

OLS Reduced Form 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. US-Wide Coverage

US Emigrants 6.753∗∗∗ 6.632∗∗∗ 7.207∗∗∗ 24.396∗∗∗ 24.228∗∗∗ 25.061∗∗∗
(0.958) (1.006) (0.600) (1.570) (1.611) (0.912)�US Emigrants 1.451∗∗∗ 1.440∗∗∗ 1.501∗∗∗

(0.121) (0.124) (0.078)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dep. Var. 1017.635 1017.635 2276.989 1017.635 1017.635 2276.989 1017.635 1017.635 2276.989

Panel B. State-Wide Coverage

US Emigrants 1.050∗∗∗ 1.049∗∗∗ 1.103∗∗∗ 10.060∗∗∗ 10.061∗∗∗ 10.091∗∗∗
(0.095) (0.096) (0.052) (0.428) (0.430) (0.458)�US Emigrants 0.038∗∗∗ 0.038∗∗∗ 0.039∗∗∗

(0.001) (0.001) (0.001)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
State-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dep. Var. 57.486 57.486 127.984 64.672 64.672 136.660 64.672 64.672 136.660

Panel C. County-Wide Coverage

US Emigrants 1.120∗∗∗ 1.120∗∗∗ 1.217∗∗∗ 4.861∗∗∗ 4.863∗∗∗ 5.130∗∗∗
(0.148) (0.148) (0.079) (0.471) (0.460) (0.291)�US Emigrants 0.055∗∗∗ 0.055∗∗∗ 0.058∗∗∗

(0.006) (0.005) (0.004)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
County-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Mean Dep. Var. 0.003 0.003 0.007 0.004 0.004 0.008 0.004 0.004 0.008

N. of Newspapers No Yes No No Yes No No Yes No
Districts in Sample All All w/News All All w/News All All w/News
N. of Districts 602 602 321 602 602 321 602 602 321

Notes. This table displays the effect of out-migration on newspaper coverage of emigrants’ destinations.
The observation unit is: in Panel A, a district; in Panel B, a district-US state pair; in Panel C, a district-US
county pair. Units are observed at a decade frequency between 1880 and 1930. The dependent variable
is the number of articles mentioned: in Panel A, “United States”; in Panel B, US states; in Panel C, US
counties. The independent variable is: in Panel A, the number of US emigrants; in Panel B, the
district-state emigrants; in Panel C, the district-county emigrants. Models (1–3) estimate the model
through OLS; models (4–5) report the reduced-form association between mentions and the
out-migration instrument; models (7–9) report the two-stage least squares estimates. Regressions
include district fixed effects and: in Panel A, decade fixed effects; in Panel B: state-by-decade fixed
effects; in Panel C: county-by-decade fixed effects. Standard errors, clustered at the district level, are
reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Figures

Figure 1.1: Immigrants in the US from the UK and Linked US-UK Migrants, 1840–1930
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Notes. This figure compares the total number of English and Welsh immigrants in the United States as
recorded in official statistics from Willcox (1928) with the linked emigrants’ sample developed in this
paper. The light gray bars display the total inflow of English and Welsh immigrants in the US over the
period 1840–1870, i.e., out of the period we study. The darker gray bars report the same figure for
1870–1924. The blue line, whose values are reported on the right 𝑦-axis, reports the total number of
English and Welsh immigrants in the US that appear in our matched sample. By construction, we can
only match men who appear at least once in one British census. Figures are in thousand units.
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Figure 1.2: Spatial Distribution of US Migrants Across British Districts

Notes. This figure reports the spatial distribution of emigrants across English and Welsh districts over
the period 1870–1930. Data are from the matched emigrants’ sample. The total number of emigrants
over the period is normalized by district population in 1900 and is reported in ‰ units. Districts are
displayed at 1900 historical borders, and the emigrant population is cross-walked to consistent borders
as described in 1.A.1. Lighter to darker blues indicate higher emigration rates.
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Figure 1.3: Reduced-Form Effect of Knowledge Exposure on Innovation
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Notes. This figure is a binned scatter plot of the reduced-form effect of instrumented knowledge
exposure on innovation. The unit of observation is a district-technology class observed at a yearly
frequency between 1880 and 1939. The graph partials out district-by-decade and district-by-technology
class fixed effects. We report in note the regression coefficient along with its standard error, clustered
at the district level, and the R2.
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Figure 1.4: Heterogeneous Effects of Return Innovation Across Technology Classes
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Notes. This figure reports the reduced-form effect of instrumented knowledge exposure on innovation
by technology class. Each dot reports the coefficient of a regression between the total number of
patents and the instrument for knowledge exposure in a given technology class. The unit of
observation in each regression is a district, observed at a decade frequency between 1880 and 1939.
Regressions include district and decade fixed effects. Bands report 95% confidence intervals. Standard
errors are clustered at the district level. The dashed black line reports the average unconditional
association between the instrument and the patents across classes. Blue (resp. red) dots display the
regression coefficients for the UK (resp US) revealed comparative advantage sectors.
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Figure 1.5: Flexible Triple Differences Effect of UK Exposure to US Shocks

(a) Synthetic Shocks
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Notes. These figures report the dynamic treatment effects of synthetic shocks (Panel 1.5a) and the Great
Influenza Pandemic shock (Panel 1.5b) on innovation. The units of observation are district-technology
class pairs; units are observed at a yearly frequency in Panel 1.5a and at a biennial frequency in Panel
1.5b between 1900 and 1939. The dependent variable is the number of patents. The treatment is an
indicator equal to one if: in Panel 1.5a, a synthetic shock is observed in a given technology in at least
one county where the district has above-median out-migration; in Panel 1.5b, for pharmaceutical
patents, emigration from a given district to counties in the top quartile of the mortality distribution is in
the top quartile across districts. The black dashed line indicates the timing of the treatment. Standard
errors are two-way clustered by district and technology class; bands report 95% confidence intervals.
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Figure 1.6: Flexible Double Differences Effect of Transatlantic Telegraph on Innovation
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Notes. The figure displays the estimated dynamic treatment effect of the connection of the US and UK
telegraph lines on innovation in the UK. The units of observation are districts observed at a yearly
frequency between 1860 and 1875. The dependent variable is the number of patents. The independent
variable is an interaction between the—time-invariant—number of emigrants in the 1870s and a
posttreatment indicator that equals one after the transatlantic telegraph cable. Blue dots report the
dynamic treatment effects on the sample of districts connected to the domestic UK telegraph network
in 1862; red dots report those for the districts not connected to the network. The black solid vertical bar
indicates the year the first cable was laid down (1866); the dashed black vertical line flags the year
when the second and third cables were laid (1873-1874). Regressions include district and year fixed
effects. Standard errors are clustered at the district level; bands report 95% confidence bands.
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Appendix

1.A Data Sources and Methods

This section describes the sources and methods we adopted to assemble and merge the various

datasets that underlie the empirical analysis. We defer a more detailed discussion of the novel

patent data that we digitize, and the linked international migrants sample to sections 1.B and

1.C, respectively.

1.A.1 Summary of Data Sources

1.A.1.1 Patent Data

US patent data are from Berkes (2018), who digitizes the universe of patents granted between

1836, when the US patent and trademark office was established, and 2010. In this paper, we are

interested in the CPC technology class, the issue year, and the coordinates of residence of each

inventor. We then assign each patent to US counties at 1900 borders. Depending on the number

of inventors, a single patent may be assigned to multiple counties. In the case of patents with

multiple inventors, we weigh each by the inverse of the number of inventors to avoid multiple

counting. English and Welsh patents after 1900 are available at the European patent office. To

construct our dataset, we leverage bulk access to the PATSTAT dataset. Information contained

in PATSTAT includes the CPC class and the issue year. To retrieve the location of each inventor,

we merge the PATSTAT data with the PatCity repository, which contains geo-coded information

on the universe of English and Welsh patents during this period Bergeaud and Verluise (2022).

Data before 1900 are not available. In section 1.B, we describe how we digitize the universe

of patent documents issued over the period 1853–1900 to fill this substantial gap. Importantly,

we map 3-digit CPC classes to a coarser taxonomy of classes. To do that, we reduce them to

functional units using the CPC classification scheme. The scheme is publicly available at the

following link. To accommodate the historical context, we divide the transporting categories

into two classes: ”Transporting”, which includes carriages, railways, and cars, and “Ships and

Aeronautics”. Moreover, we conflate the “Weapons and Blasting” and the “Mining” classes into

the “Metallurgy” category because few patents were observed in those industries.
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1.A.1.2 Migration Data

Disaggregated data on the origin of English and Welsh immigrants—and, more generally, of all

other nationalities—do not exist. These we collected neither by receiving US authorities nor

by sending UK offices. We thus lack precise information on where British immigrants in the

US came from within the UK. We fill this gap and link the individual-level UK and US censuses,

as described in 1.C. Ideally, we observe the universe of British emigrants to the United States

between 1870 and 1930. For those individuals, we know all information contained in the US

Census and those detailed in the UK one. Most notably, we know where they came from. As we

discuss more in detail later, we also link return migrants. Since the last publicly available UK

census dates to 1911, however, we can only construct return migration flows over the period

1870–1910.

1.A.1.3 Population Census

The main data sources we leverage are the individual-level non-anonymized UK and US pop-

ulation censuses. The US census features prominently in the economic history literature as a

major source of detailed microdata, and we thus avoid discussing it any further Ruggles et al.

(2021). The UK census is relatively less well-known Schurer and Higgs (2020). Although not as

rich as its US counterpart, the UK population census covers individuals who have resided in

the UK since 1850. The first census was run in 1841, but only 1851, 1861, 1881, 1891, 1901, and

1911 are completely digitized.44 Data in the census include the name and surname, birth year,

division, county, district, parish, precise address of residence, the specific occupation detailed

through HISCO codes, and other variables that we do not use in the paper, such as the type of

dwelling and fertility information. We augment these variables by geo-coding the universe of

addresses that appear in the census to precise geographical coordinates, as detailed in section

1.A.2.

1.A.1.4 Newspapers

We collect data on newspaper coverage of US-related news from the British Newspaper Archive.45

Beach and Hanlon (2022) describe this dataset in detail. In this paper, we run a set of three

queries. First, we search for the words “United States”. Second, we perform fifty searches, one

for each state. Finally, we perform approximately three thousand searches, one for each county.

Each search spans the period 1850–1939. We collect the information at the article level. For each

44The 1921 census is currently being digitized and is partially available. We do not use it because its coverage is
still not complete and because it is not available in bulk. All censuses that were after 1921 are subject to privacy
restrictions.

45A limited free-tier access to newspaper data is available at the following link.
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entry in the database, we know the journal, day, month, and year of publication, whether it is an

article or some other type of content—e.g., an obituary–, the page, and the word count. Impor-

tantly, we collect information on the universe of newspapers in the archive. Journal-level data

contain the publishing address at the city level, the first and last day, month, and year of activity,

and the publication frequency—e.g., quarterly, daily. We then geocode each newspaper to the

coordinates of the city where it was published and map those to 1891 registration districts. We

can thus construct a measure of newspaper coverage at the district-year level.46 In Table 1.A.1,

we provide a set of summary statistics on the resulting dataset. We collect information for a

total of 2022 newspapers: of these, 1459 are based in England, and 93 are published in Wales.

We exclude Scottish and Irish newspapers from the analysis. The average life of a newspaper

in this period is 40 years. In Panel B, we report district-level statistics by decade. The number

of newspapers decreases over time, as noted by Beach and Hanlon (2022), from an average of

2.3 newspapers per district in the 1870s to 0.7 in the 1930s. It is unclear whether this is due

to incomplete coverage in the later period. In Panel C, we report the district-level statistics by

division and find that, except for the London division, newspapers appear to be quite sparse

across the country. Figure 1.A.3 displays the spatial distribution of the number of newspapers

across districts over the period and confirms the impression that newspapers tend to evenly

cover a substantial share of districts. London stands as a major outlier: we thus perform all

exercises dropping London districts and find consistent results.

1.A.1.5 Miscellaneous

To construct the domestic UK telegraph network prior to the first transatlantic UK–US cable

(1866), we digitize the list of telegraph stations reported in the Zeitschrift des Deutsch-Österreichischen

Telegraphen-Vereins, Jahrgang, volume IX, 1862. This directory lists the universe of telegraph

stations outside of London in 1862. To the best of our knowledge, it is the most complete di-

rectory prior to the introduction of the transatlantic cable. We geo-code each station to precise

coordinates. The red dots in Figure 1.A.3 report each station. We then label each district with

at least one telegraph station as “connected” to the domestic network and as “not connected”

otherwise.

We construct US county-level exposure to the Great Influenza pandemic using mortality

statistics collected by the US Bureau of Census. These data are available for a subset of counties

representing approximately 60% of the US population in 1900.

46Unfortunately, for newspapers based in London, we only know their city, i.e., London. In the newspaper anal-
ysis, we are thus forced to conflate all urban London districts into a single “London” geographical unit.
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To compute the railway-based instrument, we construct US-county level immigration shocks

following the methodology described in Sequeira et al. (2020). We use the same data sources.

Hence we defer the interested reader to their paper for a more detailed discussion.

We digitize import and export yearly data from the 1935 edition of the Statistical Abstract of

the United States.47 In particular, we collect the yearly tariff rate applied between 1925 and 1929,

i.e., before the Smoot-Hawley Act, and between 1930 and 1935, i.e., after the Act. Tariff rates are

available by sector. We then map each industry to a technology class, as listed in Table 1.A.3.

In the baseline analysis, we consider an industry protected if its tariff rate increases by more

than 50% between 1925-1929 and 1930-1935. We consider alternative thresholds as robustness

checks.

1.A.1.6 GIS Shapefiles & Boundary Harmonization

Patents and telegraph stations are mapped to 1900 registration district borders using historical

GIS files and their coordinates.48 However, all data from the population censuses appears at his-

torical borders. Registration districts do not undergo major boundary changes over the period

that we study. However, we adapt the method presented by Eckert et al. (2020) to UK districts to

ensure that we work with consistent geographical units. To construct geographical crosswalks

using their method, one needs to assume that variables are evenly distributed over the area

of geographical units. The crosswalk is then obtained by overlapping geographical units over

time. Suppose unit 𝑥 in decade 𝑑 is split, and 80% of its territory is assigned to itself, while 20%

is assigned to another district 𝑦. To construct a cross-walk relative to period 𝑑 + 𝑡2 for a generic

variable between decades 𝑑 − 𝑡1 and 𝑑 + 𝑡2, for 𝑡1, 𝑡2 > 0, one needs to multiply the variable

measured in district 𝑥 in 𝑑 − 𝑡1 by 4/5, and add 1/5 of the variable in 𝑥 to that measured in 𝑦 in

the same decade. We map registration districts to their boundaries in 1901. Less than 5% of the

overall area of England and Wales is re-assigned in this way. We adopt the same methodology

to map counties to their 1900 borders.

1.A.2 Geo-referenced Census Records

A notable feature of the UK census is that it contains precise information on the residential

address of the universe of British population. This information is extremely valuable because,

in principle, it assigns the finest possible location to each individual. In practice, however, it

is highly non-standardized and challenging to use. In this section, we discuss the methodology

47This publication is freely available at the following link.
48GIS data for the US are provided by NHGIS, whereas district boundaries have been digitized by the Great Britain

Historical GIS Project.
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that we apply to assign geographical coordinates to textual addresses. This dataset expands

earlier work by Lan and Longley (2019), who adopt a different strategy and only analyze the

1901 census, whereas we geo-reference the entire 1851-1911 censuses. Furthermore, the geo-

coded census sample is used in the individual-level analysis only. All other exercises do not rely

on these data.

1.A.2.1 Methodology

There are two ways to geo-reference historical addresses. One approach is to manually digi-

tize historical locations, either streets or enumeration units, from historical maps. However,

this method does not scale up and becomes rapidly unfeasible as the data grows. A second au-

tomated approach is to run text-based address matching between historical data sources and

address databases that have already been geo-referenced. We follow this latter method since

we need to geo-reference 5,464,578 unique addresses.

To implement the latter approach Lan and Longley (2019) exploit open-source address

data from OpenStreetMaps. In this paper, instead, we take advantage of the commercial geo-

referenced database developed by MapTiler AG. This has three key benefits compared to OpenStreetMaps-

powered engines. First, the data has some historical “depth”, meaning that historical names of

locations are sometimes recorded. Second, MapTiler AG provides a flexible address-correction

engine that matches the query to the closest address available in their dataset. Finally, this

commercial database has better coverage than OpenStreetMaps in rural areas.

To perform the actual matching, we perform a preliminary simple manual trimming of ad-

dresses. First, we remove house numbers because they undergo many changes and re-sequencing

over time. Second, we remove uninformative locations, such as “village”, “farm”, and “rectory”.

Then, we input the resulting addresses as queries into the geo-referencing engine. Crucially,

we discard the match if the resulting coordinates are not within the parish’s boundaries where

the address is recorded. This consistency check is necessary because homonyms are frequent.

Since observing two addresses with the same name within a given parish is extremely rare, this

ensures that the algorithm matches are not spurious.

1.A.2.2 Matching Performance

In Figure 1.A.2, we report the distribution of the share of geo-referenced addresses by district

and census decade. The blue bars refer to the simple matching rate, defined as the share of geo-

referenced addresses. The black-contoured bars, instead, adjust for the number of residents
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recorded in each address. In each figure, we report the average matching rates and their respec-

tive standard deviations. The average matching rate ranges between 76% in 1851 and 86% in

1911. All distributions display substantial right-skewness, meaning there are very few districts

with a matching rate lower than 50%. The matching rate increases over time for two reasons.

First, the quality of recorded addresses increases in more recent censuses. Second, the urban

geography in 1911 is more similar to that in the MapTiler AG database than in 1851. This is due

to street re-labeling and urban agglomerates’ growth and consolidation. Figure 1.A.1 displays

the spatial distribution of the average geo-referencing rates across censuses. Figure 1.A.1a re-

ports the crude rate, whereas Figure 1.A.1b, we adjust by address-population. Except for Wales

and some rural districts at the center of England, the geo-referencing rates are above 80% ev-

erywhere. It is particularly high—above 90%—in North-Western and South-Eastern England.

More urbanized areas generally tend to feature larger geo-referencing rates because addresses

tend to be more informative. This notwithstanding, differences are quantitatively small as the

matching rate is remarkably homogeneous across registration districts. Wales is the single most

relevant exception. The geo-referencing rate there is very low because addresses in the census

until 1901-1911 tend to be reported in Welsh, especially in Western areas.

Taken together, the results of the geo-referencing algorithms are satisfactory. More than

80% addresses are successfully matched to precise geographical coordinates. This ratio is even

higher in areas outside Wales, where innovation and migration activity are more extensive.

1.A.3 Linked Inventor Sample

This section presents the methodology we use to link patents to census records. The linked

inventors-census sample is used in the individual-level analysis only. All other exercises do not

rely on these data.

1.A.3.1 Methodology

We follow the logic of Berkes (2018), who links patents to census records in the US. We link

patents between 1881 and 1899 to the 1891 census and those between 1901 and 1920 to the 1911

census. Relative to our baseline sample, we thus drop patents issued after 1920 because we can-

not observe individuals born after 1911. While this is unlikely an issue for patents granted until

1930, it may induce some selection of linked inventors for later patents. Patent data contain the

name and surname of inventors, their residence, and the issue year.

Given a patent 𝑝, define the set of inventors as A𝑝 = {𝐴1, . . . , 𝐴𝑛𝑝}. Most patents are solo-

authored in this period, meaning |A𝑝 | = 1. Call L𝑝 = {ℓ1, . . . , ℓ𝑚𝑝} the set of locations patent
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𝑝 is associated to. Each ℓ is a couple of latitude-longitude coordinates. Let Lparish
𝑝 be the set

of parishes associated with each coordinate. Analogously, let Ldistrict
𝑝 and Lcounty

𝑝 be the set of,

respectively, districts and counties where each coordinate locates. Notice that these are progres-

sively coarser units: parishes are contained in districts, which form counties. Unfortunately, we

do not know the inventor-location pair. To match the generic 𝐴𝑝, we thus perform the following

operations:

1. With a slight abuse of notation, let Lparish
𝑝 —and, analogously, Ldistrict

𝑝 and Lcounty
𝑝 —denote

the set of census records in each parish, district, and county within the respective sets.

2. Take all entries 𝑖 within the set of parishes Lparish
𝑝 that are at least 18 when the patent 𝑝

is filed. Let year𝑖 and 𝑡𝑝 respectively denote the birth year of 𝑖 and the issue date:

Mparish
𝐴𝑝

=

{
𝑖 ∈ Lparish

𝑝

��� 𝑡𝑝 − year𝑖 ≥ 18
}

(1.10)

3. For each 𝑖 ∈ Mparish
𝐴𝑝

, compute the distance between the name and surname of 𝑖, and that

of 𝐴𝑝:

Similarity𝐴𝑝
𝑖

= 𝛼 × Name Similarity𝐴𝑝
𝑖

+ (1 − 𝛼) × Surname Similarity𝐴𝑝
𝑖

(1.11)

for some 𝛼 ∈ [0, 1]. In our baseline setting, we pick 𝛼 = .3 to assign a larger weight to the

surname.

4. Define the set of acceptable matches as those with the highest similarity with the given

𝐴𝑝:

Mparish
𝐴𝑝 =

 𝑖 ∈ Mparish
𝐴𝑝

��� Similarity𝐴𝑝
𝑖

= max
𝑖′∈Mparish

𝐴𝑝

Similarity𝐴𝑝
𝑖′

 (1.12)

and define Similarity𝐴𝑝 as the similarity between all elements in Mparish
𝐴𝑝 and 𝐴𝑝. Notice

that this is the same across all 𝑖 ∈ Mparish
𝐴𝑝 .

5. Set a threshold 𝜏 such that if Similarity𝐴𝑝 < 𝜏, Mparish
𝐴𝑝 = ∅, otherwise pass.

6. If Mparish
𝐴𝑝 is not empty, then inventor 𝐴𝑝 is matched to all records in Mparish

𝐴𝑝 . If it is empty,

repeat steps 2–4 conditioning on records in Ldistrict
𝑝 . If Mdistrict

𝐴𝑝 is empty, repeat steps 2–4

conditioning on records in Lcounty
𝑝 . If Mcounty

𝐴𝑝 is empty, repeat steps 2–4 without imposing

geographical conditions on records 𝑖. In the baseline setting, we only accept county-level

and country-level matches if the name and surname of the match(es) exactly match 𝐴𝑝’s.

Patent data have the clear advantage that we have geographical information on the location
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of inventors. Inventors are mobile, however, and there may be a considerable time between the

moment the patent is granted and the 1911 census. For these reasons, we incrementally exploit

geographical information on the inventor’s location. First, we look for high-quality matches

within the same parish where the patent is filed. Parishes are small, as their average population

is less than 10,000. When a match at the parish level is feasible, it is usually unique. We then

progressively expand the set of records by coarsening their geographic location. Districts are

larger than parishes, and counties are, in turn, larger than districts. If we cannot find one match

at the county level, we look for one within the entire population of England and Wales. Unlike

the migrants sample, we do not have information on the birth year. To ensure that county- and

country-level matches are reliable, we require that their name and surname are verbatim those

recorded in the patent document.

1.A.3.2 Matching Statistics

In Figure 1.A.5, we report the matching rate of this exercise. We focus on two matching rates:

a gross rate is the share of inventors that have at least one match, relative to the overall set of

inventors; a net rate is the share of inventors with at least one acceptable match, relative to the

overall group of inventors. In the analysis, a match is acceptable if (i) the similarity between

name and surname is above 0.95 and (ii) a given inventor has no more than five matches. Panel

1.A.5a reports both margins over time. The gross matching rate remains consistently above

80 throughout the period. The net matching rate, however, rejects approximately 20% of the

matches. This is mainly due to inventors linked to more than five census records. This notwith-

standing, the share of acceptable matches is approximately constant and above 60% each year.

Our algorithm delivers satisfactory performance compared to standard linking rates in the lit-

erature. In panel 1.A.5b, we break down the number of matches by geographical unit where

the match is attained. Blue, red, green, and yellow bars report the matching rates at the parish,

district, county, and national levels. The share of inventors matched with more than 20 census

records is larger at the national level; there, we look for possible matches with no information

on the residence. Multiple matches are somewhat common at the parish level as well. This is

because we first try to match inventors at the parish level. Hence parish matches represent the

large majority of the linked sample, while district-level matches are residual and, thus, more

accurate. Figure 1.A.6 displays the spatial distribution of inventors, who are plotted using the

geo-coded census coordinates described in the previous section.

A plausible concern is that the probability of obtaining a link is not random. This may be

the case if, for instance, more successful inventors were more educated and, hence, more likely

to report their names correctly in the census. On the other hand, if successful inventors were
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relatively more mobile, we may fail at linking them because we may need to go national to ob-

tain a match, which would most likely be dropped because of the multiple-match issue. While

these hypotheses are ultimately challenging to test, in Table 1.A.2, we compute the correlation

between the number of matches in our sample and a set of individual observed characteristics.

In Panel A, we have age; in Panel B, we list the set of occupational categories; in Panel C, we

list the residence divisions. We find no clear association between the number of matches and

these variables in the overall sample (column 1) and across matches selected by geographical

layer (columns 2–5). Overall, we interpret the Table as conveying reassuring evidence that the

selection of inventors into the linked sample does not appear to favor particular groups system-

atically.

1.A.4 Historical Examples of Technology Transfer

Personal biographies of British emigrants to the United States often reveal instructive exam-

ples of return innovation. In this section, we briefly present three examples whose personal

stories we recovered from historical newspapers.49 The biographies of Marsden and Hughes,

discussed respectively in sections 1.A.4.1 and 1.A.4.2, attest to how experience and exposure to

novel knowledge in the US shaped the lives of emigrants. As emigrants returned, they retained

these newly acquired skills and put them to productive use in Britain. In section 1.A.4.3, instead,

we mention the story of Wellstood and Smith, who convey a vivid example of how overseas mi-

grants operated technology transfer.

1.A.4.1 Henry R. Marsden and the Metal-Working Industry in Leeds

Henry Rowland Marsden was born in Leeds to poor parents in 1823 (Curtis, 1875). At age

twenty-five, he emigrated to the United States, first to New York and then to Connecticut. There,

he took on apprenticeships in engineering and metal-working firms. He obtained several engi-

neering patents—chiefly related to steam engines and pumps. In 1855 he developed a “stone-

crusher”, which is still used today and bears his name. In 1862 Marsden and his family returned

to Leeds, where he set up a flourishing business centered around his newly patented invention

and several other patents he had subsequently obtained in England. A wealthy man, respected

for his philanthropic endeavors, he was elected mayor of Leeds in 1873 with the Liberals. He

died in 1878 and is credited as one of the most prominent figures in the industrial development

of Leeds.

49Unless otherwise specified, biographical information was collected from original newspapers; hence we omit
the source.
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1.A.4.2 David E. Hughes: The Inventor of the Microphone

Born in 1831, either in London or in Wales, David Edward Hughes was one of the most dis-

tinguished inventors of the Victorian Age (Encyclopædia Britannica, 2018). At age seven, his

family emigrated to Kentucky. A musical talent from a young age, he eventually obtained a

professorship in music at St. Joseph’s College in Bardstown, Kentucky. In 1855, inspired by the

mechanics of pianos, Hughes designed and patented the first printing telegraph. The printing

telegraph essentially integrates a piano-style keyboard onto a standard telegraph, dramatically

increasing the transmission speed. In 1857 Hughes moved to London to market his invention.

Within a few years, the printing telegraph became the standard in Europe, and the then-small

Western Union promptly brought it to commercial success. In later years, Hughes invented the

microphone and may have detected radio waves as early as ten years before Heinrich Hertz.

1.A.4.3 Stephen Wellstood & James Smith: Migrants as Agents of Technology Transfer

Overseas

Compared to Marsden and Hughes, the story of Stephen Wellstood and John Smith, at first

glance, pales. It nonetheless highlights how international migration spurs technology transfers

across countries. At age 16, James Smith (1811–1886) left Bonnybridge, Scotland, and migrated

to the US. There, he established himself selling cooking stoves and married. However, as his

wife got ill, Smith returned to Bonnybridge and started re-selling imported stoves from the US.

He soon realized, however, that he could manufacture stoves directly in Britain. He then part-

nered with his long-time friend Stephen Wellstood and opened a foundry. They patented the

exact same cooking stove Smith had been selling in the US and started a business that remained

active until 1983.
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1.A.5 Tables

Table 1.A.1: Descriptive Statistics on Newspapers and Newspaper Coverage in the UK

(1) (2) (3) (4) (5)
Mean Std. Dev. Min. Max. Observations

Panel A. Journal-Level Statistics
Number of Issues 2795.843 4959.740 1 46163 2022
First Publication Year 1869.746 44.171 1699 1996 2094
Last Publication Year 1910.692 49.470 1699 2009 2094
Publication Lifespan 40.946 40.490 0 273 2094
Publication Lifespan if English 40.993 41.921 0 273 1459
Publication Lifespan if Welsh 38.161 36.920 0 178 93
Publication Lifespan if Scottish 45.144 41.107 0 251 229
Publication Lifespan if Irish 41.336 34.809 0 170 241

Panel B. District-Level Statistics, by Decade
1870s 2.309 14.860 0 285 637
1880s 1.885 11.610 0 233 636
1890s 1.494 8.587 0 160 634
1900s 1.166 5.893 0 114 634
1910s 0.942 3.845 0 83 633
1920s 0.809 2.381 0 50 633
1930s 0.714 1.274 0 24 633

Panel C. District-Level Statistics, by Division
East 1.631 1.272 1 8 111
East Midlands 2.349 2.409 1 14 43
London 18.767 97.312 1 534 30
North East 2.079 1.761 1 8 38
North West 3.600 3.477 1 17 40
South East 1.800 1.271 1 6 100
South West 1.747 1.382 1 8 79
Wales 2.327 2.391 1 10 52
West Midlands 2.342 2.722 1 18 79
Yorkshire 2.186 2.201 1 10 59

Notes. This table reports descriptive statistics on newspapers active in the UK between 1850 and 1940.
In Panel A, figures are computed at the newspaper level; Panel B computes district-level statistics on
the number of newspapers by decade; Panel C computes district-level statistics on the number of
newspapers by division. Panels B and C only restrict the observation sample to English and Welsh
districts. Newspapers were geo-coded to their publishing address and assigned to districts based on
their borders in 1900.
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Table 1.A.2: Correlation Between Inventors’ Characteristics and Number of Matches

Overall Sample Parish Matches District Matches County Matches Nationwide Matches

(1) (2) (3) (4) (5)

Panel A. Demographics

Age 0.005 -0.018 -0.005 -0.014* 0.026***
(0.010) (0.021) (0.012) (0.007) (0.005)

Dependent Variable – Dummy = 1 if Matched Inventor is in:

Panel B. Occupation

Agriculture 0.123* 0.272** 0.073*** 0.000 0.028**
(0.073) (0.129) (0.019) (0.016) (0.011)

Chemicals -0.010*** -0.019*** -0.012* -0.011*** -0.005***
(0.004) (0.005) (0.006) (0.004) (0.001)

Construction -0.015 -0.032 0.006 0.010 -0.001
(0.016) (0.031) (0.008) (0.017) (0.002)

Engineering -0.018 -0.042* -0.017** -0.007 0.004
(0.012) (0.025) (0.007) (0.007) (0.003)

Liberal Professions -0.014*** -0.016*** -0.003 -0.018*** -0.019***
(0.005) (0.006) (0.010) (0.002) (0.005)

Metallurgy -0.020 -0.031 0.018 -0.015 0.004**
(0.013) (0.019) (0.019) (0.019) (0.002)

Other Manufacturing -0.024* -0.042** -0.027 0.005 -0.007**
(0.012) (0.018) (0.016) (0.007) (0.003)

Public Administration -0.009 -0.017 -0.014 -0.015 -0.008**
(0.008) (0.014) (0.010) (0.011) (0.003)

Textiles -0.013 -0.042* 0.002 0.058*** 0.003
(0.012) (0.026) (0.024) (0.013) (0.005)

Trade -0.031*** -0.044*** -0.038*** -0.021* -0.025***
(0.011) (0.016) (0.007) (0.011) (0.005)

Transport -0.008 -0.025 0.001 0.006 0.003
(0.014) (0.026) (0.008) (0.011) (0.003)

Utilities -0.013*** -0.020*** -0.031*** -0.016*** -0.007*
(0.004) (0.005) (0.005) (0.006) (0.004)

Panel C. Division of Residence

East -0.004 -0.059 -0.061 -0.074 -0.010
(0.015) (0.067) (0.065) (0.089) (0.011)

East Midlands 0.004 -0.061 0.070 -0.055 0.012
(0.012) (0.070) (0.102) (0.066) (0.013)

London -0.048 -0.039 -0.053 -0.008 -0.025
(0.069) (0.173) (0.053) (0.079) (0.022)

North East 0.028 -0.045 -0.041 -0.060 0.016
(0.031) (0.052) (0.049) (0.072) (0.016)

North West -0.057 -0.165 -0.069 0.195*** 0.012
(0.050) (0.167) (0.080) (0.056) (0.013)

South East -0.024 -0.050 -0.106 -0.118 -0.028
(0.030) (0.057) (0.106) (0.136) (0.027)

South West 0.001 -0.025 -0.049 -0.051 -0.019
(0.008) (0.029) (0.054) (0.062) (0.020)

Wales 0.233 0.469** 0.540*** -0.026 0.046
(0.187) (0.212) (0.137) (0.032) (0.046)

West Midlands -0.049 -0.102 -0.104 -0.130 0.004
(0.050) (0.112) (0.103) (0.148) (0.007)

Yorkshire 0.005 -0.021 -0.029 0.008 -0.003
(0.013) (0.025) (0.032) (0.021) (0.007)

Notes. This table reports the correlation between inventor-level variables observed in the UK census
and the number of matches in the linked sample. In column (1), the sample is the entire linked dataset.
We restrict to matches at the parish (column 2), district (column 3), county (column 4), and national
level (column 5). The Table reports standardized beta coefficients for comparability. Regressions
include decade fixed effects. Standard errors are clustered at the division level and are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.A.3: List of Industries By Tariff Rate, 1925–1935

Sector Technology Class Tariff Rate Before S-H Tariff Rate After S-H Change in Tariff Treated

(1) (2) (3) (4) (5) (6)

Agricultural products and provisions Agriculture 23.059 40.204 74.352 Yes
Chemicals, oils, and paints Chemistry 29.577 40.195 35.900 No
Cotton Manufactures Textiles 34.876 44.764 28.352 No
Earths, earthenware, and glassware Personal Articles, Furniture 47.321 53.049 12.106 No
Flax, hemp, and jute, and manufacture thereof Textiles 18.948 26.104 37.766 No
Metals, and manufacture thereof Metallurgy 34.534 36.803 6.572 No
Pulp, paper, and books Printing 25.652 25.591 -0.239 No
Silk and silk goods Textiles 55.768 58.115 4.208 No
Spirits, wines, and other beverages Food 37.298 59.007 58.226 Yes
Sugar, molasses, and manufactures thereof Food 68.971 110.022 59.519 Yes
Sundries Personal Articles, Furniture 38.149 36.587 -4.096 No
Tobacco, and manufactures thereof Agriculture 58.176 81.636 40.326 No
Wood, and manufactures thereof Building 23.727 20.672 -12.875 No
Wool, and manufactures thereof Textiles 49.344 78.255 58.591 Yes

Notes. This table reports the US tariff rate applied to the categories listed in the Statistical Abstracts of
the United States. Column (1) reports the listed sector; column (2) maps the sector to technology classes
in our baseline taxonomy; columns (3) and (4) report the tariff rate applied, respectively, before and
after the Smoot-Hawley Act (1930). Tariff rates before the Act are averages in the five years before the
reform (1925–1929); tariff rates after the Act are averages in the five years posterior to the reform
(1930–1935). Column (5) computes the change in the tariff rates. In column (6), we list the technology
classes we considered targeted by the Act, namely, those whose tariff rate increase exceeded 50%. Data
are digitized from the 1935 Statistical Abstracts of the United States.
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1.A.6 Figures

Figure 1.A.1: Spatial Distribution of the Share of Geo-coded Addresses, 1851–1911

(a) Unweighted Geo-coding Ratio (b) Population-Weighted Geo-coding Ratio

Notes. These figures report the spatial distribution of the share of geo-referenced addresses from the
UK censuses, 1851–1911. For each census, we obtain a list of more than five million addresses by fine
geographical unit (i.e., parishes). We then geo-reference these addresses to precise geographical
coordinates. Panel 1.A.1a reports the district-level share of successfully geocoded addresses. In Panel
1.A.1b, we weigh each address by the number of people reported to live in that address. The
performance of the geo-referencing algorithm is relatively poor in Wales because addresses there are
often reported in Welsh.
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Figure 1.A.2: Distribution of the Share of Geo-coded Addresses by Census

(a) 1851 Census
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(b) 1861 Census
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(c) 1881 Census
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(d) 1891 Census
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(e) 1901 Census
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(f) 1911 Census
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Notes. These figures display the district-level distribution of the share of geo-coded addresses from the
UK censuses (1851–1911) by decade. For each census, we obtain a list of more than five million
addresses by fine geographical unit (i.e., parishes). We then geo-reference these addresses to precise
geographical coordinates. The black-contoured bars report the crude geo-coding rate; the blue bars
report the population-adjusted geo-coding rate. Each figure reports the average and standard deviation
of the two distributions.
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Figure 1.A.3: Number of Active Newspapers Over the Period 1880–1940, by District

Notes. This figure reports the spatial distribution of the number of active newspapers across districts
over the period 1880–1940. To be included in the data, a publication must be active for at least one year
between 1880 and 1940. To retrieve the location of each journal, we geo-reference its publishing
address and overlay historical district boundaries to assign it to consistent 1900 districts. The
publishing address only lists the city. Hence we cannot distinguish across the eleven London urban
districts. We consequently dissolve these districts into a single “London” unit.
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Figure 1.A.4: Distribution of Districts Connected to the UK Telegraph Network in 1862

Notes. This figure reports the spatial distribution of telegraph stations across districts in 1862. Red
markers display the location of telegraph stations. Districts without any telegraph station are displayed
in dark blue. To retrieve the coordinates of each telegraph station, we geo-reference the city where it is
located. The list of telegraph stations is taken from the Zeitschrift des Deutsch-Österreichischen
Telegraphen-Vereins, Jahrgang, volume IX, 1862. This source does not list telegraph stations in London.
We thus dissolve urban districts in the London area into a single “London” unit and assume that this
unit is connected to the domestic telegraph network.
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Figure 1.A.5: Matching Rate of the Linked Inventors-Census Sample, 1881–1911

(a) Matching Rate Over Time
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Notes. These figures report the matching rate for the linked inventor-census sample. Panel 1.A.5a
reports the matching rate over time for the 1881–1900 sample (blue bars) and the 1901–1920 sample
(red bars). Color-contoured bars report the share of records with at least one match; color-filled bars
report the share of acceptable linked matches. A record match is acceptable if it has no more than five
multiple matches. Panel 1.A.5b reports the share of matches by the number of matches, broken down
by geographical layers. In Panel 1.A.5a, we do not show the few matches with quality below .95. In
Panel 1.A.5b, the sample is restricted to records with at least one match.
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Figure 1.A.6: Distribution of Inventors Across UK Districts, 1881–1911

Notes. This figure displays the spatial distribution of inventors across districts between 1881 and 1911.
Each marker reports one inventor, defined as an individual who obtains at least one patent over the
sample period. To retrieve the coordinates of the inventors, we first link population censuses, whose
entries are, in turn, geo-referenced. The background map displays districts at historical borders in 1900.

77



1.B Novel Patent Data

1.B.1 Sources and Digitization

This section presents the motivation for developing a new patent dataset for England and Wales

that spans the second half of the XIX century. Then, we describe the sources we use and how we

structure the textual data they contain into a machine-usable dataset. Finally, we describe two

data-augmentation routines that we perform to geocode the patents and assign them a modern

technology class.

1.B.1.1 Motivation

Despite its historical significance, we lack comprehensive patent data for the Second Indus-

trial Revolution period (1850–1900) in the United Kingdom. In particular, it is impossible to

reconstruct the geographical distribution of innovation activity during this period. This data

limitation sharply contrasts the effort undertaken to document patenting activity since the in-

ception of the English patent law in 1617 up until the end of the First Industrial Revolution in

the 1840s (Nuvolari and Tartari, 2011; Nuvolari et al., 2021). We fill this gap by constructing

the first dataset of English and Welsh patents that spans the period 1853–1900 and contains de-

tailed information on the text, geographical location, inventors’ personal information, and date

for the universe of patents.

1.B.1.2 Data Sources

The UK Intellectual Property Office allowed us access to restricted full-page scans of original

patent documents. These are the universe of patents granted in England and Wales between

1617 and 1899. This paper focuses on the period 1853-1899 for two main reasons. First, Nu-

volari and Tartari (2011) already digitized patents before 1853 from Bennet Woodcroft’s index,

although patent documents contain additional information compared to the index. Second, in

1853 a reform dramatically lowered patent application prices. This makes it challenging to com-

pare patents before and after the reform. Patent documents contain a wealth of unstructured

information. We provide two examples in Figure 1.B.1: in panel 1.B.1a we show the patent

granted to Henry Bessemer for the eponymous process to produce steel, and in panel 1.B.1b we

display the patent granted to John Starley for the first modern safety bicycle. Both patents are in

our dataset. The rectangles identify the location of the textual data that we extract. These com-

prise (i) a short title, (ii) a long title, (iii) the author(s)’s name(s), (iv) the author(s)’s address(es),
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(v) the author(s)’s professions, (vi) the filing date, (vii) the issue date, (viii) the type of protec-

tion, (ix) an indicator of whether the application was filed by an agent on behalf of someone

living abroad, and (x) the full text of the patent. Not all (i-x) are available throughout the sam-

ple. In particular, (i), (vi), and (viii) are available only until 1873. After that date, a short title

is no longer reported, the filing date is reported only sporadically, and the type of protection

becomes immaterial, for only granted patents are included in the sample.

1.B.1.3 Digitization

We perform optical character recognition (OCR) on each patent individually to structure the

data in a machine-readable dataset. To ensure state-of-the-art performance, we OCR the first

page of each document, where all the (i–ix) variables are located, using Amazon’s commercial

textract engine. To retrieve the rest of the text, which is not used in this paper, we use the

open-source engine tesseract. An OCR-ed document is a text file. To extract the relevant vari-

ables, we implement a script that leverages regular expressions to identify the variables (i–ix).

Fortunately, the text of each patent is fairly standardized; hence this routine yields detailed and

high-quality results for all variables except (v), which is not used in this paper.

1.B.1.4 Geo-Coding

This exercise results in a database of approximately 800,000 patents granted between 1853 and

1899. To retrieve each patent’s location, we geocode each inventor’s listed address using the

commercial geocoding engine provided by MapTiler AG. To geocode an address, if a coarse

geographical unit is listed on the patent (e.g., the county), we condition the outcome coordinates

to lie within that unit. In Figure 1.B.4, we report the resulting distribution of patents (panel

1.B.4a) and patents per capita (panel 1.B.4b). Reassuringly, these are consistent with underlying

population and economic development indicators.

1.B.1.5 Technology Class Assignment

Naturally, historical patent documents do not list CPC classes. Yet, technological classification

is a key variable in our empirical exercise. To reconstruct the class, we adopt a supervised

machine-learning approach. We conjecture, following Xu (2018), that titles are informative of

technological classes. We split the PATSTAT data, which covers the years 1900–1939 and for

which we observe both titles and classes, in a train and a test set, with a proportion of 4:1.

We apply a term frequency-inverse document frequency vectorization algorithm to the titles

of both datasets. Then, we estimate a linear support vector machine (LSVC) on the train set.

An LSVC is a non-probabilistic classifier that assigns class labels to maximize the width of the
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gap between classes. Formally, consider a set of points (x𝑖 , 𝑦𝑖)𝑁𝑖=1 where x ∈ ℜ𝑁 represent the

features—in our case, words—and 𝑦 is the class. For simplicity, assume 𝑦 ∈ Y = {−1, 1}. An

LSVC solves for the hyperplane W = {w ∈ ℜ𝑁 s. t.w⊺x𝑖 − ℓ = 0} that maximizes the distance

between the group 𝑖 such that 𝑦𝑖 = 1, and the group where 𝑦𝑖 = −1. The distance that is most

commonly used, that allows for non-linearly separable data, is the hinge loss, which is defined

as 𝑑𝑖 = max {0, 1 − 𝑦𝑖 (w⊺x𝑖 − ℓ)}. In our case, however, we allow for multiple classes, that is,

the cardinality of Y be more than two. We employ an LSVC because the literature notes that

it yields particularly robust results. However, the classification outcome would remain fairly

unchanged using different algorithms.50

On the training set, the LSVC yields a 95% accuracy, measured as the share of patents with

a correctly imputed class relative to the total number of patents. This decreases to 85% on the

test set, which is not used to train the algorithm. Given that state-of-the-art models trained

on modern US data achieve approximately a test 90% accuracy, we interpret these results as

rather encouraging (Li et al., 2018). We report the confusion matrix on the test set in Figure

1.B.2. For a given cell, the row label is the true technology class, and the column label is the

imputed class. A perfect classifier would thus yield a diagonal confusion matrix. Overall, we

find that misclassification errors are evenly distributed, in relative terms, across classes. Hence,

even though the classifier is not perfect, there does not seem to be any systematic measurement

error in class imputation.

1.B.2 External Validation

To validate our data, we consider the only two series that cover—a portion of—the years 1853–

1899. Hanlon (2016) digitized an index of patents issued between 1855 and 1883. His data list,

for each patent, the inventor(s) and their profession(s), a technology class, and the issue year. On

top of the longer time coverage, our data thus contain several additional information, including

the geographical coordinates. The second dataset that we use as a comparison is the “A Cradle

of Invention” (COI) series, published by Finishing Publications (2018). These data, too, were

digitized from indices and thus only list authors, issue year, and, often, titles. In principle, this

series spans the years 1617–1895. However, after 1883 patent applications that were eventually

denied protection are also listed. Absent a way to identify granted patents, we do not report

figures after 1883 for the COI series.

50In particular, we tested the Naïve Bayes classifier, several Boosting algorithms (e.g., AdaBoost, XGBoost), a ran-
dom forest classifier, and a simple convolutional neural network. All the above yield similar classification results
but slightly lower accuracy than the LSVC. Additionally, we explored alternative vectorization algorithms using
transformers (e.g., BERT and RoBERTa) with no significant performance gains.
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In Table 1.B.1, we report the aggregate number of patents issued according to our series

(columns 2 and 6), COI (columns 3 and 7), and Hanlon (2016) (columns 4 and 8). Reassuringly,

the three series are highly consistent. Our series is closest to Hanlon (2016), but the COI figures

are not too far off either. Overall, the Table strongly suggests that our series is as complete as

the Hanlon (2016) database. We cannot, however, externally validate it for the later part of the

period because there is no data available for this period.

1.B.3 Summary Statistics and Stylized Facts

We conclude this section by presenting some stylized statistics and facts our new data allow

us to uncover. First, as noted in Table 1.B.1, the number of patents granted generally grows

over time, although at a somewhat stagnating path. There is, however, a sizable discontinuity

between 1883 and 1884, when the number of patents jumps from 6074 to 9873. In 1883 the

Patents Act reduced application fees by 83%, as noted by Nicholas (2014). It seems plausible to

attribute the discontinuity to this reform.

Second, in Figure 1.B.3, we report the composition of patenting activity by technology class.

In each year, we compute the share of patents in a given sector with respect to the total num-

ber of patents issued that year. We report such shares over time between 1853 and 1939. The

composition of innovation exhibits two clear patterns. First, the share of textiles patents, which

in the 1850s represented nearly 20% of the total, shrinks considerably, and in 1939 it accounts

for less than 5%. This is consistent with the historical preeminence of textiles during the First

Industrial revolution and their subsequent loss of importance. Second, electricity-related inno-

vation grows considerably in the later part of the period. In 1939, it represented more than 20%

of the total number of patents issued in the UK. Once more, this echoes historical, anecdotal ev-

idence highlighting the centrality of electricity during the later stages of the Second Industrial

revolution and beyond (David, 1990; Mokyr, 1998).

Finally, a crucially novel component of our dataset is that it allows studying the geograph-

ical dimension of the innovation process. Thus, in Figure 1.B.4, we report the spatial distribu-

tion of the number of patents in absolute number (panel 1.B.4a) and normalized by population

(panel 1.B.4b). These maps attest to the importance of duly considering the geography of inno-

vation. The patenting activity appears to be widely dispersed across England and Wales. Heav-

ily industrial areas, such as Lancashire, the Midlands, the Tyne, and South Wales, all feature

prominently in terms of issues patents. Similarly, the London area is also a major innovation

hub. By contrast, Northern Wales, Anglia, Cornwall, and Cumbria perform poorly. In Figure

1.B.5, we repeat this exercise, but we break down the number of patents by selected technology

classes: chemistry (panel 1.B.5a), electricity (panel 1.B.5b), engineering (panel 1.B.5c), engines
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and pumps (panel 1.B.5d), metallurgy (panel 1.B.5e), and textiles (panel (panel 1.B.5f). While

innovation centers remain roughly similar across sectors, some differences emerge. For ex-

ample, the metallurgy industry was particularly deep-rooted in the Midlands, where we note

the largest concentration of metallurgy patenting. Similarly, textile innovation centers in the

Lancashire area, the historic “cotton districts”. Our database allows studying a novel, thus far

largely unexplored dimension of the innovation and patenting activity. Therefore, the analysis

carried out in this paper is one of many that may take advantage of this contribution.
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1.B.4 Tables

Table 1.B.1: Patents Granted in the UK: Comparison Across Three Datasets

Years 1853-1876 Years 1877-1899

(1) (2) (3) (4) (5) (6) (7) (8)
Year Our Series COI Hanlon Year Our Series COI Hanlon

1853 3042 3016 1877 4943 4928 4940
1854 2759 2690 1878 5336 5143 5333
1855 2960 2866 2955 1879 5332 5305 5325
1856 3107 2967 3102 1880 5499 5132 5509
1857 3206 3092 3197 1881 5744 5620 5745
1858 3023 2954 2999 1882 6159 6150 6233
1859 3048 2989 2998 1883 6074 6006 5981
1860 3192 3139 3190 1884 9873
1861 3261 3269 3272 1885 8783
1862 3482 3459 3486 1886 8999
1863 3301 3299 3308 1887 9218
1864 3256 3225 3257 1888 9331
1865 3378 3364 3378 1889 10325
1866 3451 3408 3452 1890 10355
1867 3724 3692 3720 1891 10686
1868 4008 3908 3984 1892 11429
1869 3832 3741 3781 1893 11985
1870 3407 3288 3405 1894 11648
1871 3525 3479 3525 1895 12198
1872 3969 3940 3967 1896 13597
1873 4276 4281 4282 1897 14249
1874 4494 4516 4491 1898 13100
1875 4557 4451 4557 1899 13172
1876 5049 5012 5064

Notes. This table reports the total number of patents in England and Wales between 1853 and 1899.
Columns (2) and (6) report the series constructed from our novel dataset; columns (3) and (7) tabulate
data from A Cradle of Inventions (Finishing Publications, 2018); columns (4) and (8) report data from
Hanlon (2016). The A Cradle of Inventions series potentially stretches until 1899. However, after 1883
there is no way to distinguish between patents granted and applications. Hence we do not report
figures for these later years (Nicholas, 2014). Data from Hanlon (2016) only cover the years 1855–1883.
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1.B.5 Figures

Figure 1.B.1: Sample Annotated Patent Documents

(a) Henry Bessemer’s 1856 Patent (b) John K. Starley’s 1885 Bicycle Patent

Notes. This figure displays two sample patent documents in our dataset. Panel 1.B.1a was granted to
Henry Bessemer in 1856 for the invention of the famous eponymous process for the mass production of
steel from the molten pig iron. Panel 1.B.1b was granted to John Starley in 1885 for the invention of the
first modern bicycle, which would soon revolutionize mobility in Europe and in the US. Colors mark
different variables that we structure in the dataset: (i) in brown, the short title; (ii) in red, the complete
title (iii) in green, the type of protection granted; (iv) in blue, the author(s) name(s); (v) in yellow, the
author(s)’s address(es); (vi) in light blue, the application date; (vii) in purple, the issue date; (viii) in
black, the patent text that continues in the rest of the patent document; (ix) in dark purple, the
author(s) profession(s). Not all (i–ix) data are available on every patent and in each year.
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Figure 1.B.2: Confusion Matrix of the Technology Sector Classifier

A
gr

ic
ul

tu
re

B
ui

ld
in

g

Ch
em

is
tr

y

El
ec

tr
ic

it
y

En
gi

ne
er

in
g

En
gi

ne
s,

 P
um

ps

Fo
od

H
ea

lt
h,

 A
m

us
em

en
t

In
st

ru
m

en
ts

Li
gh

tn
in

g,
 H

ea
ti

ng

M
et

al
lu

rg
y

Pe
rs

on
al

 A
rt

ic
le

s,
 F

ur
ni

tu
re

Pr
in

ti
ng

Se
pa

ra
ti

ng
, M

ix
in

g

Sh
ap

in
g

Sh
ip

s,
 A

er
on

au
ti

cs

Te
xt

ile
s

Tr
an

sp
or

ti
ng

Predicted Technology Class

Agriculture

Building

Chemistry

Electricity

Engineering

Engines, Pumps

Food

Health, Amusement

Instruments

Lightning, Heating

Metallurgy

Personal Articles, Furniture

Printing

Separating, Mixing

Shaping

Ships, Aeronautics

Textiles

Transporting

Tr
ue

 T
ec

hn
ol

og
y 

Cl
as

s

951 10 23 2 2 4 24 8 5 6 0 45 2 21 34 21 6 12

9 2310 42 11 58 6 0 14 25 23 4 65 3 12 63 58 7 79

7 56 4704 34 18 21 21 21 19 78 62 39 31 89 133 31 71 9

1 9 25 5146 30 43 1 14 163 53 21 20 12 8 34 40 14 63

1 41 15 55 1975 105 0 11 37 36 6 62 4 3 100 62 19 151

1 5 13 43 80 2113 0 2 31 47 2 5 0 10 10 40 1 59

11 2 60 1 5 1 936 9 4 32 0 27 2 22 44 46 3 1

6 21 57 29 20 7 5 1525 64 24 7 101 5 15 31 54 17 20

3 19 28 304 76 43 11 48 4148 69 23 93 78 14 40 115 17 92

10 22 53 65 35 51 18 7 51 2739 31 50 5 40 24 30 16 40

2 5 85 18 14 6 0 9 26 39 1565 18 8 17 58 37 5 14

12 67 43 15 26 3 26 47 72 40 3 3847 44 13 90 127 60 26

1 12 49 16 2 3 4 4 80 13 4 49 1567 11 77 58 45 5

12 8 145 10 19 9 13 16 27 44 33 18 17 1057 54 44 18 1

20 61 119 47 111 13 11 19 51 35 52 121 55 26 3737 143 57 70

16 51 24 38 73 36 37 25 92 24 21 102 60 22 116 3736 100 97

4 10 102 11 18 5 4 5 11 6 4 82 27 12 54 40 2898 4

14 59 4 88 149 42 0 5 50 59 3 55 1 1 36 60 4 3863

Notes. This figure displays the confusion matrix of the patent technology classifier. The algorithm
assigns to each patent an imputed technology class using information contained in the title. Titles
undergo pre-processing and term frequency-inverse document frequency (tf-idf) vectorization. The
classifier is trained on an 80% sub-sample of the universe of British patents granted over the period
1900–1940. The figure reports the classifier’s performance on the remaining 20% test set, which is not
used in training. The 𝑦-axis reports the true patent class; the 𝑥-axis reports the class imputed by the
classifier. A perfect classifier would yield a diagonal confusion matrix. The accuracy in the training
(resp. test) set is ≈98% (resp. ≈85%). Lighter to darker blue indicates an increasing number of patents
in the cell.
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Figure 1.B.3: Distribution of Patents Granted in the UK Across Technology Classes
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Notes. This figure displays the evolution of innovation in Britain across technology classes from
1853–1939. For each year, we compare the share of patents in each class in our database relative to the
total number of patents granted in that year. Data for the period 1853–1899 are from the newly
digitized universe of patents; data for the period 1900–1939 are made available by the European Patent
Office repository.

86



Figure 1.B.4: Distribution of Patents and Patents per Capita Across Districts, 1880–1939

(a) Number of Patents (b) Patents per Person

Notes. These figures report the intensity of patenting activity across districts over the period
1880–1939. Panel 1.B.4a reports the total number of patents granted; Panel 1.B.4b normalizes this by
district population in 1900 and expresses the resulting rate in ‰ units. Districts are displayed at 1900
borders. To assign patents to districts, we geo-reference the address of each author listed in the patent
document and assign districts based on historical district borders.
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Figure 1.B.5: Spatial Distribution of Patents Granted Across Technology Classes, 1880–1939

(a) Chemistry (b) Electricity (c) Engineering

(d) Engines, Pumps (e) Metallurgy (f) Textiles

Notes. These figures report the intensity of patenting activity across districts over 1880–1939 for
selected technology classes. Districts are displayed at 1900 borders. To assign patents to districts, we
geo-reference the address of each author listed in the patent document and assign districts based on
historical district borders.
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1.C Linked International Migrants Sample

This section discusses our methodology to link English and Welsh immigrants to the UK census

and present key statistics on the resulting dataset.

1.C.1 Sources and Linking Algorithm

We rely on two sources of externally-compiled data.51 For the US, we have access to the IPUMS

full-count non-anonymized census (Ruggles et al., 2021). A census was taken in the US every

ten years starting in 1790, except for 1890. Until 1840, the census was run at the household

level. From 1850 on, instead, we have detailed individual information on the universe of the US

population.52 For confidentiality, these data are available up until 1940. Our dataset, therefore,

contains snapshots of the entire US population at any given decade between 1850 and 1940, al-

though for the sake of this paper, we restrict to the years 1850-1920. Crucially, we have access to

the non-anonymized version of the IPUMS data. Hence, besides publicly available information,

we also know each individual’s recorded name and surname.

In the UK, the I-CeM data mirrors the IPUMS (Schurer and Higgs, 2020) content. More pre-

cisely, it contains information on the universe of people living in England, Scotland, and Wales.

Similarly to the US—and virtually every other—census, it was run at decade frequency starting

in 1851 and until 1911. No census was taken in 1871. As with the IPUMS data, we can access the

full-count non-anonymized version of the dataset. Besides publicly available information, this

contains full names and addresses of the universe of individuals living in the UK at any given

decade.

Our methodology relies on Abramitzky et al. (2021). This dataset tackles the problem that

neither the US nor the UK—nor other European countries—recorded where British immigrants

came from within the UK. We thus try to match British immigrants residing in the US with their

entry in the UK census, which records where they come from at a granular geographical level.53

More precisely, we take the stock of British residing in the US in a given census year—say, 1900—

and match them with their entry in the preceding UK census—in this case, 1891.54 This implies

51We are deeply thankful to IPUMS and I-CeM for allowing us access to their confidential data. Without their
help, this paper would not have been possible.

52By US population, we refer to the universe of individuals who lived in the US at a given point in time.
53Since women usually change their name upon marriage, we are unable to match them. This is a common

problem in linking algorithms (Abramitzky et al., 2021).
54Since no census was taken in the UK in 1871, we link the 1880 US census to the 1861 UK one. This is not overly

problematic because we can still match all those aged ten or older in 1871.
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that we measure the flow of British immigrants over time rather than their stock.

We use three variables to link individuals: first name, surname, and birth year. The baseline

sample we link consists of individuals who report, in the US census, either England, Scotland,

or Wales—or analogous denominations, such as Great Britain—as their country of origin. In

the 1900 census, we take all those who immigrated between 1870 and 1899. In the subsequent

censuses, until 1930, we retrieve stock of those who immigrated in the preceding decade. Then,

to match each unit in the sample—call the generic one 𝐴—to an entry in the UK census, we

perform this sequence of operations:

1. Take the census that precedes the immigration year of 𝐴. Hence, for instance, we match

all those who immigrated in 1896 to the 1891 census.

2. Select all records in that census with the same reported birth year as 𝐴—call the resulting

sample M𝐴 = {𝑚𝐴
1 , . . . , 𝑚

𝐴
𝑁 }.

3. Compute a string-similarity measure between the name and surname of 𝐴 and that of all

elements of M𝐴. In other words, for every 𝑚𝐴
𝑖
∈ M𝐴, compute55

Similarity𝐴𝑖 = 𝛼 × Name Similarity𝐴𝑖 + (1 − 𝛼) × Surname Similarity𝐴𝑖 (1.13)

for some 𝛼 ∈ [0, 1]. In our baseline setting, we set 𝛼 = 0.3 to give higher weight to the

surname.

4. The set of matches is defined as

M𝐴
=

{
𝑚𝐴
𝑖 ∈ M𝐴

�� Similarity𝐴𝑖 = max
𝑚𝐴
𝑖′∈M

𝐴
Similarity𝐴𝑖′

}
(1.14)

which means that we restrict the set of possible matches to include only those whose

similarity score with the entry in the US census 𝐴 is the largest.

5. Finally, for a given threshold 𝜏 > 0, we select only the possible matches whose similarity

score is above 𝜏. The set of effective matches thus boils down to:

M̃𝐴
𝜏 =

{
𝑚𝐴
𝑖 ∈ M𝐴

��� Similarity𝐴𝑖 ≥ 𝜏
}

(1.15)

Clearly, M̃𝐴 can ideally be empty, meaning that 𝐴 has no effective matches. It can have

one element, in which case we refer to it as a “perfect match,” or it can have multiple

matches. In our baseline exercise, we set 𝜏 = 0.7 as we see a clear elbow in the distribution

55We cannot simply match on exact same name and surname because coding errors are commonplace in histor-
ical census data (Abramitzky et al., 2021).
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of similarities there.

We evaluate the distance between two strings 𝑖 and 𝑗 in terms of their Jaro-Winkler similarity

𝑑𝑖 𝑗 :

𝑑𝑖 𝑗 ≡ 𝑑𝑖 𝑗 + ℓ𝑝(1 − 𝑑𝑖 𝑗) (1.16)

where

𝑑𝑖 𝑗 ≡

0 if 𝑚 = 0
1
3

(
𝑚
|𝑖 | +

𝑚
| 𝑗 | +

𝑚−𝑡
𝑚

)
else

(1.17)

where 𝑚 is the number of matching characters, |𝑖 | is the length of string 𝑖, and 𝑡 is half the

number of transpositions, ℓ is the length of common an eventual common prefix no longer

than four characters between 𝑖 and 𝑗, and 𝑝 = 0.1 is a constant scaling factor. Two characters

are matching only if they are the same and are not farther than
⌊
max( |𝑖 |,| 𝑗 |)

2

⌋
−1. Half the number

of matching characters in different sequence order is the number of transpositions.56

The Jaro-Winker distance has been shown to perform well in linking routines (Abramitzky

et al., 2021). In our particular case, however, this metric outperforms more standard string

dissimilarity metrics, such as the cosine or the Levenshtein distances, because the Jaro-Winkler

assigns a “bonus” score to strings starting with closer initial substrings. In addition, coding

errors are far more frequent at the end of names and surnames than at the beginning. The

manual assessment confirmed that the Jaro-Winkler metric outperforms other measures in our

setting.

1.C.2 Internal and External Validation

We now present key statistics on the dataset that we assemble. In Figure 1.C.1, we report the

matching rate by the number of matches (panel 1.C.1a) and over time (panel 1.C.1b. The match-

ing rate is the ratio between the number of matched individuals and the number of English

and Welsh immigrants in the US census. We break down the matching rate by the number of

matches every immigrant is associated with. About 40% of the overall immigrant population

is matched to one single record in the UK census. Another 10% is matched to two records, and

the remaining 50% is matched to three or more records in the UK census. By construction, we

can never match someone not appearing in the UK census. This is possible if a child born in,

say, 1895 emigrates before 1901, which is the closest subsequent census. In Figure 1.C.1a, we

report a corrected matching rate whose denumerator removes these “unmatchable” observa-

tions. Overall, 55% of the total number of English and Welsh immigrants is matched to no more

56The Jaro-Winkler distance has been recently employed in the economic history literature for intergenerational
linking purposes by, among others, Abramitzky et al. (2021)
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than two records in the UK census. This constitutes the baseline sample that we analyze. A 55%

matching rate is consistent with standard historical linking algorithms (Abramitzky et al., 2021),

although a more precise quantitative assessment is complex because the benchmark statistics

refer to intergenerational census linking exercises.

In panel 1.C.1b, we report the matching rate by immigration year. In blue, we report the

total number of immigrants; those paired with at least one match are shown in red; the green

area reports our baseline sample, which is composed of all those immigrants with no more than

two matches. We also impose a quality threshold on names and surnames. Suppose an immi-

grant is matched to someone born in the same year. In that case, we require both the name

and the surname to have a similarity above .85. If an immigrant is matched to someone born

either one year before or one year after, we impose a stricter threshold of .9 on both name and

surname. We set high thresholds because we are concerned about false positive matches. Fol-

lowing Abramitzky et al. (2021), we are thus willing to give up on power to maximize accuracy.

In Figure 1.C.2, we report the overall distribution of name (panel 1.C.2a) and surname (panel

1.C.2b) match quality. The solid and dashed red lines superimpose the aforementioned coarse

and strict thresholds. The quality distribution is substantially skewed to the left: most matches

are of excellent quality. Dropping low-quality ones is, therefore, quantitatively second-order.

Since we match immigrants to the UK census before their migration year, the matching rate

decreases over a decade. This is clear from the black line in Figure 1.C.1b, which jumps up at the

turn of each decade until 1911. The matching rate before 1881 is relatively low. This is because

no census was taken in the UK in 1871. Therefore, we match all those who migrated to the US

between 1870 and 1881 to the 1861 census. This mechanically reduces the matching rate, for we

cannot match all those born between 1862 and 1881 who migrate during this period. Similarly,

the matching rate decreases after 1911. This is because censuses after 1911 are protected by

British privacy law. We thus match all those who migrate after 1911 to that census. However,

this implies that we cannot match all those who migrated after 1911 and were born after that

year. To ensure that our results are not driven by these asymmetries at the edges of the sample,

in robustness analyses, we show that restricting the period to the years 1880-1920 does not

affect our main findings.

One plausible concern is that instances of migrants with multiple matches in the UK census

are not randomly distributed. This may be due to various reasons (Bailey et al., 2020). First,

educated individuals are more likely to report their name and surname in full, with consistent

spelling over time. This would generate non-classical measurement error because the match-

ing rate would be higher for a selected population sub-sample. This issue does not seem to

be relevant in this case, as the matching rate—i.e. the share of immigrants that are eventually
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matched, irrespective of the number of matches—approaches the universe of the observations.

Second, the number of matches may not be orthogonal to individual characteristics. This may

be the case if wealthier individuals give relatively uncommon names, as documented by Olivetti

et al. (2020). To assess the severity of this concern, we regress the number of matches on a set

of individual-level observable variables observed in the US and UK censuses. Under classical

measurement error, we would expect no statistically significant correlation between the num-

ber of matches and observable characteristics. Table 1.C.1 reports the estimates thus obtained.

We find minimal and marginally significant correlations between the number of matches and

individual-level characteristics observed in the US census. The number of matches correlates

positively with agriculture and low-skilled employment. However, these correlations are very

small: one more match is associated with a .01% increase in the probability of being employed

in agriculture. This association is marginally larger for low-skilled manufacturing employment

(0.03%). These very low magnitudes are unlikely to affect the results we document in this pa-

per quantitatively. Moreover, notice that most correlations are not statistically significant. Most

importantly, we do not find any significant association between the number of matches and the

location of English immigrants. This is reassuring because our identification assumption cru-

cially hinges on the variation arising from settlement decisions. We believe this is solid evidence

of our linking algorithm and the novel database we assemble.

1.C.3 Return Migration Data

Following the logic explained in section 1.C.1, we construct a linked sample of return migrants.

This identifies English and Welsh immigrants in the US in decade 𝑑 and looks for possible

matches in the UK census in decade 𝑑 + 1, using a minor variation on the algorithm described

previously. Since the last UK census that we have is the 1911 one, we face a hard upper bound

for the coverage of return migration, as we can only construct return migrants linked samples

spanning the period 1870–1910.

Previous research suggests that return migration rates during the Age of Mass Migration

were substantial (Bandiera et al., 2013), although probably less so in the UK than in second-

wave countries such as Italy. Using our linked sample methodology, we find an approximately

30% return migration rate, broadly consistent with previous estimates.

1.C.4 Summary Statistics and Stylized Facts

The newly developed dataset we develop presents some key novelties compared to available

data. It is the first dataset that allows retrieving the origin of US immigrants from England
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and Wales at a fine level of geographical aggregation during a period of massive international

migrations (1880–1930).57 The dataset’s granular—individual—structure allows us to observe

several individual characteristics of immigrants at home and in the US. This section briefly

discusses key stylized facts that our new data allow us to document.

In Figure 1.C.3, we explore the origin of English and Welsh emigrants to the US over time.

Each figure reports the emigration rate normalized by population in 1900, in thousand units.

Two patterns emerge. First, substantial cross-sectional heterogeneity exists in the intensity of

out-migration across districts throughout the sample period. Second, we find that the intensity

of US emigration flows is initially larger in rural districts, especially in the South West and

East regions, but this shifts over time toward industrial and urban areas. By the 1910s, the

industrialized Lancashire districts featured as a prominent area of emigration. This finding

provides a sound quantitative validation of historical—largely anecdotal—evidence (Erickson,

1972; Baines, 2002).

Additionally, we can study the selection patterns of English and Welsh emigrants along two

margins. Specifically, we can compare them to (i) the native US population in the areas where

they settled and (ii) the non-migrant population in England and Wales who lived in their ori-

gin areas. These exercises extend seminal historical work by Baines (2002), who performed a

similar exercise using incomplete information from the population censuses. We defer a dis-

cussion of selection patterns to the main text. Here, we only note that our dataset is well-suited

to study the selection of British emigrants because it identifies individuals before they migrate,

thus conveying a complete picture of selection issues during the period.

57Similar data-sets have been produced for Norwegian Abramitzky et al. (2014) and Swedish (Andersson et al.,
2022) immigrants. Our is the first such effort for a major European country: in 1890, the population in England
and Wales stood at more than 27 million inhabitants. This compares to approximately 2 million Norwegians and
4.7 million Swedes.
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1.C.5 Tables

Table 1.C.1: Correlation Between Number of Matches and Observable Characteristics

Dep. Var.: Number of Matches

(1) (2) (3)

Panel A. Occupations
Agriculture 0.003 0.004* 0.003**

(0.001) (0.001) (0.001)
Low-Skilled Manufacture 0.013** 0.011** 0.008**

(0.003) (0.003) (0.002)
High-Skilled Manufacture 0.006 0.007 0.008*

(0.003) (0.003) (0.003)
Professionals –0.001 –0.001 –0.001

(0.001) (0.001) (0.001)
Public Administration –0.004** –0.003* –0.002

(0.001) (0.001) (0.001)
Manager –0.000 –0.000 0.000

(0.000) (0.000) (0.000)
Service Worker 0.001 0.001 0.002

(0.001) (0.001) (0.001)

Panel B. Origin
Northeast –0.004

(0.006)
Midwest 0.004

(0.004)
South –0.002

(0.001)
West 0.001

(0.002)

State FE No Yes No
County FE No No Yes
Year FE No Yes Yes

Notes. This table reports the correlation between observable characteristics of British immigrants in
the US census and the number of matches in the linked sample database. In each row, the table displays
the correlation between the number of matches and an indicator equal to one if for immigrants that
correspond to the row variable and zero otherwise. The sample is restricted to the set of matches we
effectively use in the analysis. Column (1) reports unconditional correlations; column (2) includes state
and census decade fixed effects; column (3) adds county fixed effects. In Panel A, the characteristics are
the occupations; in Panel B, the variables are the Census Bureau region of residence. Standard errors,
clustered at the county level, are shown in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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1.C.6 Figures

Figure 1.C.1: Share of British Immigrants in the US Census Matched to the UK Census

(a) Matching Rate by Number of Matches
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(b) Matching Rate Over Time
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Notes. These figures report the share of English and Welsh immigrants recorded in the US census that
we match to the UK census. Panel 1.C.1a plots the share of records that we match to the UK census and
whose match quality is such that we retain it in the linked sample, broken down by the number of
matches. In the baseline sample, we keep records with no more than two matches. Blue bars report
ratios relative to the entire number of immigrants, and red bars restrict the set of immigrants to those
we can match. Panel 1.C.1b reports the matching rate over time. The blue area reports the total number
of US immigrants, the red area reports the entire number of matches we obtain, and the green area
reports the matches that eventually enter our baseline linked sample. The black dashed line on the
right 𝑦-axis is the ratio between the green and the blue areas.
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Figure 1.C.2: Quality of Matches in the Complete Linked Sample: Names and Surnames

(a) Name Match Quality
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(b) Surname Match Quality
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Notes. The figures report the distribution of the match quality in terms of name and surname similarity
for the set of records with no more than two matches in the baseline sample. The similarity measure
we use to construct the links is the Jaro-Winkler. This string metric measures the edit distance between
the name and surname of the British immigrant recorded in the US census and their match(es) in the
UK census. Panel 1.C.2a reports the distribution of the name similarity; Panel 1.C.2b refers to surnames.
The vertical lines mark the quality thresholds we impose for a match to be part of the final linked
sample.
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Figure 1.C.3: Distribution of the Emigration Rate Across Districts, 1871–1930

(a) 1871-1880 (b) 1881-1890 (c) 1891-1900

(d) 1901-1910 (e) 1911-1920 (f) 1921-1930

Notes. These figures report the distribution of US emigrants across districts in England and Wales over
the period 1871–1939 by decade. Data are from the matched emigrants’ sample. The number of
emigrants in each decade is normalized by population in 1900 and is expressed in ‰ units. Districts
are displayed at their 1900 borders. Out-migration is also cross-walked to consistent historical borders.
Lighter to darker blues indicate higher emigration rates.
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1.D Additional Results

This section presents in some detail several additional results that are mentioned in passing in

the main text.

1.D.1 Trade-Induced Technology Transfer

Our favored explanation of the return innovation result is that migrants facilitate the flow of

knowledge between the areas where they settle and those they originate from. We argue that

those flows are fostered by the diffusion of information and by market integration. This sec-

tion presents one more piece of evidence in this direction. We focus on international trade as a

measure of bilateral market integration. Previous research documents that trade fosters inno-

vation, either because of increased import competition (Bloom et al., 2016; Autor et al., 2020),

export opportunities (Bustos, 2011; Atkin et al., 2017; Aghion et al., 2018), access to intermediate

inputs (Juhász and Steinwender, 2018), and increased market size (Coelli et al., 2022).58 In our

analysis, we interpret trade as a means of facilitating technology transfer between the UK and

the US, following Aleksynska and Peri (2014) and Ottaviano et al. (2018).

We consider a major shock to trade flows between the US and the UK: the 1931 Smoot-

Hawley Act. The Act was a major trade policy reform enacted in response to the Great Depres-

sion (Eichengreen, 1986; Crucini, 1994). Importantly for our setting, the Act did not establish a

uniform tariff rate. Instead, as we report in Table 1.A.3, tariffs vastly differed across industries

before and after the shock. We leverage this variation, interacted with the before-Act knowl-

edge exposure in a difference-in-differences setting.59 The key idea that underlies this approach

is that if migration linkages generate return innovation flows through international trade, then

an increase in trade costs is expected to reduce patenting in the UK in the sectors that (i) districts

were more exposed to, through migrations, and (ii) were targeted by the tariff increase.

We thus estimate the following double differences model separately for protected and non-

protected industries:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
𝑏∑︁

ℎ=−𝑎
𝛽ℎ ×

[
1 (𝑡 = 1931 + ℎ) × Knowledge Exposure𝑖𝑘

]
+ 𝜀𝑖𝑘,𝑡 (1.18)

58Shu and Steinwender (2019) provide a critical assessment of the literature studying the effect of international
trade on innovation.

59We first map sectors defined in the Act to technology classes. We then assign one class to the treatment group
if its average ad valorem import duty changes by more than fifty percentage points between 1925–1930 and 1931–
1936. Yearly tariff rates have been digitized from the Statistical Abstract of the United States.
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Where 𝑖, 𝑘, and 𝑡 respectively denote a district, technology class, and year, and Knowledge Exposure𝑖𝑘
is the average sector-level knowledge exposure in the decade before the Act (1920–1930). In the

baseline analysis, an industry is protected if its tariff rate increases by more than 50 p.p. be-

tween 1925–1930 and 1931–1935. Then, we estimate the triple-differences specification that

compares treated and non-treated industries:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑖×𝑡 + 𝛼𝑘×𝑡+

+
𝑏∑︁

ℎ=−𝑎
𝛽ℎ ×

[
Tariff𝑘 × 1 (𝑡 = 1931 + ℎ) × Knowledge Exposure𝑖𝑘

]
+ 𝜀𝑖𝑘,𝑡

(1.19)

where Tariff𝑘 is an indicator returning value one for protected industries and zero otherwise.

In columns (1–2) of Table 1.D.3 we report the results of model (1.18). Column (1) presents

the estimated coefficient for non-protected industries, while column (2) focuses on protected

ones. We find no effect for the former and a negative effect for the latter. This is confirmed

when looking at the associated flexible specification, reported in Figure 1.D.1. This also provides

evidence supporting the parallel trends assumption for the two groups of technology classes. In

columns (3–5), we report the estimates of the triple differences model (1.19). We consider three

possible threshold values of the increase in the tariff rate after the Act to define a protected

sector (10%, 30%, and 50%). All yield quantitatively similar estimates. Note, however, that the

estimated ATE reassuringly increases in absolute magnitudes for larger tariff increases.

The analysis suggests that trade—which we interpret as a proxy for market integration—

is a relevant channel through which migration ties generate knowledge flows and technology

transfer. However, it is worth noting that the magnitude of the estimated treatment effects of

the tariff reform on UK innovation is modest, despite the large increase in tariff duties. We

thus interpret trade as one additional, although plausibly not the pivotal, factor driving return

innovation.

1.D.2 Selection of British Migrants

The historical scholarship argues that the English and Welsh mass migration to the US starkly

differed from that of other countries (Berthoff, 1953; Baines, 2002). Unlike other European

counties, such as Germany, Sweden, or Italy, US emigration in the UK in the second half of the

nineteenth century was not a low-skilled rural phenomenon. Especially after the 1880s, people

started to leave urban, industrial areas. Importantly, emigrants did not represent the bottom of

the human capital distribution, as was the case in Italy (Spitzer and Zimran, 2018) or Norway

(Abramitzky et al., 2014). This is crucial for our analysis, as it is unlikely that illiterate farmers
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would facilitate the flow of novel knowledge back to their origin areas. Even if this was the

case, it would be equally unlikely that those rural areas would have the ability to reproduce US

patents. While these considerations are helpful for our analysis, they largely rely on anecdotal

evidence or analysis of incomplete census sources. In this section, we present evidence on the

selection of English emigrants to the US and their integration into the US. To construct these

statistics, we leverage the novel linked sample that allows us to observe individual-level char-

acteristics before emigrants left—in the UK census—and after they settled—in the US census.

Table 1.D.4 compares US emigrants with the non-migrant population. Column (1) refers to

non-migrants, and columns (2) and (5) refer to emigrants and return migrants, respectively. In

columns (3) and (6), we compute the difference between non-migrants and emigrants and non-

migrants and return migrants, respectively. Migrants are less likely to work in agriculture and

as professionals. They are, however, more likely to be employed in industrial sectors, such as

textiles and metallurgy. This overall confirms the historical analysis of Baines (2002). Emigrants

mainly originated from the North West, including Lancashire, and South West, chiefly, Devon

and Cornwall. Similar patterns emerge when looking at return migrants, who are even less

likely to be employed as agricultural workers. Return rates in high-emigration areas of the

South West appear low compared to the rest of the country, while they are very high in the

London area.

In Table 1.D.5, we compare English and Welsh immigrants to the rest of the US population.

Column (1) refers to natives, and columns (2) and (5) refer to emigrants and return migrants,

respectively. In columns (3) and (6), we compute the difference between natives and emigrants

and natives and return migrants, respectively. UK immigrants differ substantially from the

rest of the US population: they are less likely to work in agriculture and as civil servants. By

comparison, they are more likely to be employed in metallurgy, textiles, and trade. This aligns

well with evidence by Erickson (1972), who argues that English immigrants in the US tended

to specialize in industries where they had a comparative advantage. Similar patterns emerge

for return migrants. Regarding their geographical distribution, UK immigrants settled most

commonly in the New England and Mid-Atlantic regions.

1.D.3 Long-Run Effect of Return Innovation

We now investigate the persistence of the effect of exposure to foreign knowledge through mi-

gration ties on the direction of patenting activity. While this exercise cannot be tasked with any

claim of causality, it nonetheless suggests the possible far-reaching effects of out-migration on

innovation.
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We estimate the following regression:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑘 + 𝛼𝑡 +
∑︁
𝜏∈T

𝛽𝜏
[
Knowledge Exposure𝑖𝑘 × 1 (𝑡 = 𝜏 |𝑡 = 𝜏 + 1)

]
+ 𝜀𝑖𝑘,𝑡 (1.20)

where 𝑖, 𝑘, and 𝑡 denote a district, technology class, and year, respectively. In this setting, we

have 𝑡 ∈ [1940, 2015]. The term Knowledge Exposure𝑖𝑘 refers to knowledge exposure in the

years 1900–1930, i.e., before the sample period. To reduce noise in the estimated 𝛽𝜏 coefficients,

we conflate years in T in biennial windows. The estimated set of 𝛽𝜏 expresses the conditional

correlation between historical exposure to knowledge exposure and innovation activity in the

two-year window indexed by 𝜏.

In Figure 1.D.3, we report the set of estimated 𝛽𝜏 over time. The correlation between his-

torical knowledge exposure and patenting activity remained positive and significant until the

early 1980s, although it—reassuringly— decreased over time. We interpret this as evidence that

exposure to foreign knowledge through migration ties has a potentially long-lasting effect on

the composition of innovation activity over time. In Table 1.D.9 we re-estimate model (1.20),

sector-by-sector, by decade. Compared to (1.20), we can thus only include district and decade

fixed effects. Columns report the estimated 𝛽𝜏 by decade. The estimated correlation between

historical exposure and patenting decreases over time in almost all sectors and all but a few

display significant coefficients after the 1980s.

1.D.4 Further Additional Results

1.D.4.1 Out-Migration and the Volume of Innovation

The main analysis concentrates on the effect of knowledge exposure on the direction of innova-

tion. Knowledge exposure leverages variation in specialization across US counties and bilateral

flows between UK districts and US counties. In this section, we briefly comment on the effect of

out-migration on innovation’s volume.

We estimate variations on the following model:

Patents𝑖,𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽 × US Emigrants𝑖,𝑡 + 𝜀𝑖,𝑡 (1.21)

where US Emigrants𝑖,𝑡 is the total number of emigrants from district 𝑖 in decade 𝑡. As in the

main text, we instrument total out-migration flows with the shift-share instruments constructed

using railway-based and leave-out immigration shocks. Compared to the model estimated in the

main text, endogeneity concerns in (1.21) are severe. However, if the instruments are valid, then
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the estimated 𝛽 coefficients measured the causal effect of out-migration on patenting. A perhaps

more crucial concern in regression (1.21) is that we do not have information on emigration to

countries other than the US. Suppose emigration rates to, say, Australia or Canada (the second

and third most common destinations) were correlated with US out-migration. In that case, we

may fail to single out the effect of out-migration.

With these caveats in mind, in Table 1.D.6, we report the estimates of regression (1.21). In

panel A, columns (1–3), we report the correlation between measured out-migration and patent-

ing, while columns (4–6) and (7–9) display the reduced form association with, respectively, the

railway-based and the leave-out instruments. In panel B we report the 2SLS estimates. We find

that the contemporaneous effect of out-migration on innovation is negative. This is reasonable

given that out-migration entails a loss of human capital, which, in the light of the selection anal-

ysis, was probably relatively skilled and is consistent with the “brain drain” literature. Once we

lag emigration by one decade, however, we find a positive effect. This sign reversal is robust

across the two instruments in the reduced form and the two-stage least-square estimates. It is

tempting to interpret it as evidence of “brain drain”, that is, that return innovation increases

the volume of innovation (Docquier and Rapoport, 2012). While the results are consistent with

this interpretation, they are not conclusive because of the caveats that underlie this exercise.

1.D.4.2 Assortative Matching

In this section, we lay down a simple framework to test whether British immigrants sort into

US counties depending on the innovation similarity between the settlement location and their

origin district. Let P 𝑗,𝑡 = {𝑝1 𝑗,𝑡, . . . , 𝑝𝑁 𝑗,𝑡} denote the patent portfolio of county 𝑗 at decade 𝑡,

whose generic entry 𝑝𝑘 𝑗𝑡 returns the number of patents in technology class 𝑘. Analogously, let

P𝑖,𝑡 be the portfolio of district 𝑖. We define a metric of innovation similarity as follows:

Innovation Similarity𝑖 𝑗,𝑡 ≡
P⊺
𝑖,𝑡
P 𝑗,𝑡

∥P𝑖,𝑡∥ · ∥P 𝑗,𝑡∥
=

∑
𝑘 𝑝𝑘𝑖,𝑡𝑝𝑘 𝑗,𝑡√︃∑

𝑘 𝑝
2
𝑘𝑖,𝑡

√︃∑
𝑘 𝑝

2
𝑘 𝑗,𝑡

≤ 1 (1.22)

which is a simple cosine similarity. The similarity measure returns value one if the patent port-

folios of district 𝑖 and county 𝑗 are equal, meaning their composition across classes is the same.

The index is normalized between zero and one.

We then estimate variations on the following simple linear probability model:

Emigrants𝑖→ 𝑗,𝑡 = 𝛼𝑖× 𝑗 + 𝛼𝑡 + 𝛽 × Innovation Similarity𝑖 𝑗,𝑡 + 𝑋
⊺
𝑖 𝑗,𝑡

Γ + 𝜀𝑖 𝑗,𝑡 (1.23)

where the dependent variable is the flow of emigrants from district 𝑖𝑡 to county 𝑗 in decade 𝑑,
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and 𝛼𝑖× 𝑗 denotes county-by-district fixed effects. The coefficient 𝛽 thus yields the correlation

between the similarity of innovation activity and migration flows. The dependent variable is

measured in logs, and standard errors are two-way clustered by district and county. Under

sorting, one would expect 𝛽 > 0.

We test this prediction in Table 1.D.2. We find no correlation between the similarity of

innovation portfolios across county districts and the migration flow between them. This holds

irrespective of whether we take the contemporaneous similarity (columns 1–2) or if we lag by

one (columns 3–4) or two (columns 5–6) decades. Notably, the standardized beta coefficient of

the innovation similarity term is always minimal in magnitude. This suggests that assortative

matching based on innovation similarity between origin and destination places is probably not

a significant threat to a causal interpretation of our estimates. This notwithstanding, since the

similarity of innovation portfolios is measured with error, we do not claim that we can exclude

it tout court.

1.D.4.3 District-Level Return Knowledge Exposure

To explore the effect of return migration on the return innovation result, we leverage individual-

level data and study the possible heterogeneous treatment effect of neighborhood out-migration

depending on whether the US migrant return or does not return to the UK. In this section, in-

stead, we construct a measure of “return knowledge exposure” at the district level and show

that the association between the baseline knowledge exposure variable and patenting remains

significant upon including the return measure. Moreover, we fail to detect any significant as-

sociation between the return metric and patenting activity. Overall, these results confirm that

it is unlikely that return migration is the main mechanism underlying the return innovation

result.

The return knowledge exposure metric is analogous to the baseline one, except that it lever-

ages return migration flows:

Return Knowledge Exposure𝑖𝑘,𝑡 ≡
∑︁
𝑗

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Return Migrants 𝑗→𝑖,𝑡

)
(1.24)

where Return Migrants 𝑗→𝑖,𝑡 is the number of return emigrants from county 𝑗 to district 𝑖 in

decade 𝑡. We then estimate variants of the following model:

Patents𝑖𝑘,𝑡 = 𝛼𝑖×𝑡 + 𝛼𝑘 + 𝛽 × Knowledge Exposure𝑖𝑘,𝑡 + 𝛾 × Return Knowledge Exposure𝑖𝑘,𝑡 + 𝜀𝑖𝑘,𝑡
(1.25)
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where we are primarily interested in the relative sizes and significance of the 𝛽 and 𝛾 coeffi-

cients.

We report the regression results (1.25) in Table 1.D.10. The baseline regression is displayed

in column (1); in columns (2) and (3), we incrementally introduce technology-by-decade and

district-by-class fixed effects; in columns (4) and (5) we include the exposure terms with a one-

decade and a two-decade lags; finally, in column (6) we include all lagged variables. The Table

conveys a very clear message. The estimated 𝛽 coefficient is always positive, significant, and

large in magnitude. By contrast, the estimate of 𝛾 is mostly non-significant and even when it

is, its magnitude is much smaller than that of the corresponding 𝛽. Taken together, we view

this exercise as providing additional evidence that return migration is unlikely to be the main

driver of the return innovation result.
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1.D.5 Tables

Table 1.D.1: Zero-Stage Regressions Between Immigrant Shares and Railway Access

Baseline Excluding States in...

(1) (2) (3) (4) (5)
Northeast Midwest South West

𝐼Rail
𝑡−1 × Immigrant Flow𝑡−1 0.372∗∗∗ 0.399∗∗∗ 0.198∗∗ 0.461∗∗ 0.252∗∗

(0.102) (0.111) (0.097) (0.198) (0.101)
𝐼Rail
𝑡−1 0.845 4.014 -4.288 -17.024∗∗∗ 3.374

(2.765) (2.775) (2.798) (5.918) (2.775)

County FE Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes Yes Yes
N. of Counties 2759 2543 1742 1513 2479
N. of Observations 17308 15803 10919 9222 15980
R2 0.905 0.903 0.921 0.880 0.915
Mean Dep. Var. 79.842 74.284 55.019 132.174 72.101

Notes. This table reports the results of the zero-stage regressions that we estimate to construct the
railway-based county-level immigration shocks. This table largely replicates Sequeira et al. (2020). The
unit of observation is a county observed at a decade frequency between 1870 and 1930. The dependent
variable is the share of the foreign-born population. The main dependent variable is an interaction
between the one-decade-lagged national inflow of immigrants and an indicator variable that returns
value one if the county was connected to the national railway network in the previous decade and zero
otherwise. The regressions also control for the railway indicator, the lagged share of foreign-borns, an
interaction between lagged national industrial production and the railway indicator, an interaction
between lagged GDP and the railway indicator, population density, the share of the population living in
urban centers, and an interaction between the share of the urban population and the national inflow of
immigrants. The parameter restriction imposed by the instrument’s logic requires that the railway
indicator’s coefficient be non-positive. In column (1), the sample is the universe of counties; in columns
(2), (3), (4), and (5), we drop states in, respectively, the North-East, Midwest, South, and West Census
Bureau regions. Each regression includes county and decade fixed effects. Standard errors, clustered at
the county level, are displayed in brackets.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01

106



Table 1.D.2: British Immigrants Assortative Matching Across US Counties

Contemporaneous 10 Years Lag 20 Years Lag

(1) (2) (3) (4) (5) (6)

Innovation Similarity𝑡 0.083 201.876
(2.847) (155.968)

Innovation Similarity𝑡−1 0.419 333.940
(2.800) (205.476)

Innovation Similarity𝑡−2 1.370 -172.428
(2.485) (218.951)

District-County FE Yes Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes Yes Yes Yes
N. of District-Counties 1743283 32176 1665941 31383 1505060 29948
N. of Observations 9029476 88636 7266084 86789 5476833 83220
Sample All Non-Zero All Non-Zero All Non-Zero
R2 0.473 0.675 0.553 0.675 0.662 0.676
Mean Dep. Var. 0.022 1.617 0.027 1.635 0.034 1.670
Std. Beta Coef. 0.000 0.000 0.000 0.000 0.000 0.000

Notes. This table reports the association between the similarity of innovation activity and migration
flows between US counties-UK districts pairs. The unit of observation is a county-district pair, observed
at a decade frequency between 1870 and 1920. The dependent variable is the number of emigrants that
leave the given district and settle in the given county. The independent variable is the similarity of the
innovation portfolios between the county and the district. The innovation similarity is computed as the
cosine distance of the respective patent portfolios over the decade. Columns (1), (3), and (5) report
results for the universe of county-district pairs; columns (2), (4), and (6) restrict to pairs with non-zero
migration flows. Columns (1) and (2) estimate the contemporaneous correlation; in columns (3) and (4),
innovation similarity appears with a one-decade lag; in columns (5) and (6), it is included with a
two-decade lag. Regressions include district-by-county and decade fixed effects. Standard errors,
clustered at the district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.3: Double and Triple Differences Effect of The Smoot-Hawley Act on Innovation

Double Differences Triple Differences

(1) (2) (3) (4) (5)
Not Protected Protected +10% +30% +50%

Knowledge Exposure × Post -0.040 -0.463∗∗
(0.063) (0.219)

Knowledge Exposure × Post × Protected (+10%) -0.469∗∗∗
(0.078)

Knowledge Exposure × Post × Protected (+30%) -0.478∗
(0.269)

Knowledge Exposure × Post × Protected (+50%) -0.685∗∗∗
(0.206)

Year FE Yes Yes – – –
District-Year FE No No Yes Yes Yes
District-Class FE Yes Yes Yes Yes Yes
Class-Year FE No No Yes Yes Yes
N. of District-Class 632 632 632 632 632
N. of Observations 63200 37920 101120 101120 101120
R2 0.653 0.563 0.713 0.713 0.713
Mean Dep. Var. 2.125 1.260 1.801 1.801 1.801
Std. Beta Coef. -0.004 -0.061 -0.054 -0.055 -0.079

Notes. This table reports the estimated effect of an increase in the US tariff rate on innovation in
Britain. The unit of observation is a district-technology class pair observed at a yearly frequency
between 1920 and 1939. The dependent variable is the number of patents by district technology class.
In columns (1–2), the independent variable is the interaction between knowledge exposure over
1910–1920 and a post-reform (1930) indicator variable. The regression in column (1) is estimated over
technology classes not targeted by the Act; in column (2), we focus on classes that the Act targets. We
define a class as “targeted” if its average tariff rate increases by more than 50% after the Smoot-Hawley
Act. In columns (3), (4), and (5), the treatment interacts the previous one with an indicator that returns
value one for technology classes whose tariff rates increases by more than, respectively, 10%, 30%, and
50% after 1930. Regressions (1–2) are thus double-difference designs; regressions (3–5) are
triple-difference designs. Consequently, in columns (1–2), we include district-by-class and year fixed
effects, while in columns (3–5), we add district-by-year and technology-by-year fixed effects. Standard
errors, clustered at the district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.4: Selection of US Emigrants Compared to the Rest of the British Population

Non Migrants Emigrants Return Migrants

(1) (2) (3) (4) (5) (6) (7)
Mean Mean Difference Std. Err. Mean Difference Std. Err.

Panel A. Employment (Dependent variable = 1 if individual employed in:)

Agriculture 0.281 0.271 -0.009*** (0.001) 0.252 -0.028*** (0.002)

Chemicals 0.008 0.008 -0.001** (0.000) 0.009 0.001** (0.000)

Construction 0.141 0.142 0.001 (0.001) 0.145 0.004*** (0.002)

Engineering 0.138 0.138 -0.000 (0.001) 0.148 0.010*** (0.002)

Liberal Profession 0.035 0.032 -0.002*** (0.000) 0.036 0.002* (0.001)

Metallurgy 0.029 0.034 0.005*** (0.001) 0.032 0.003*** (0.001)

Other Manufacturing 0.074 0.074 -0.000 (0.001) 0.074 -0.001 (0.001)

Public Administration 0.030 0.028 -0.001*** (0.000) 0.032 0.002*** (0.001)

Textiles 0.090 0.099 0.009*** (0.001) 0.082 -0.008*** (0.001)

Trade 0.072 0.079 0.007*** (0.001) 0.078 0.007*** (0.001)

Transport 0.097 0.090 -0.007*** (0.001) 0.103 0.006*** (0.001)

Utilities 0.007 0.006 -0.000 (0.000) 0.009 0.002*** (0.000)

Panel B. Region of Residence (Dependent variable = 1 if individual lives in:)

East 0.102 0.086 -0.016*** (0.001) 0.089 -0.014*** (0.001)

East Midlands 0.065 0.057 -0.007*** (0.000) 0.058 -0.006*** (0.001)

London 0.132 0.129 -0.003*** (0.001) 0.139 0.006*** (0.001)

North East 0.067 0.070 0.003*** (0.000) 0.070 0.003*** (0.001)

North West 0.179 0.194 0.015*** (0.001) 0.199 0.020*** (0.001)

South East 0.120 0.110 -0.009*** (0.001) 0.117 -0.003*** (0.001)

South West 0.063 0.085 0.022*** (0.001) 0.065 0.002*** (0.001)

Wales 0.070 0.064 -0.006*** (0.000) 0.069 -0.001 (0.001)

West Midlands 0.114 0.110 -0.004*** (0.001) 0.108 -0.006*** (0.001)

Yorkshire 0.088 0.094 0.006*** (0.001) 0.087 -0.001* (0.001)

Notes. This table compares observable individual characteristics of US emigrants with the rest of the
British population. In each row, we define a dummy variable equal to one for individuals in the given
employed in the given sector (Panel A) or residing in the given division (Panel B) and compute the
average for non-migrants (column 1), emigrants (column 2), and return migrants (column 5). Columns
(3) and (6) report the difference between columns (1) and, respectively, columns (2) and (5). Robust
standard errors are reported in columns (4) and (7).
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.5: Selection of British Immigrants Compared to the Rest of the US Population

US Population Immigrants Return Migrants

(1) (2) (3) (4) (5) (6) (7)
Mean Mean Difference Std. Err. Mean Difference Std. Err.

Panel A. Employment (Dependent variable = 1 if individual employed in:)

Agriculture 0.215 0.121 -0.094*** (0.001) 0.129 -0.086*** (0.001)

Chemicals 0.006 0.010 0.004*** (0.000) 0.006 -0.001*** (0.000)

Construction 0.044 0.096 0.052*** (0.001) 0.087 0.042*** (0.001)

Engineering 0.434 0.199 -0.235*** (0.001) 0.262 -0.172*** (0.002)

Liberal Profession 0.042 0.078 0.036*** (0.001) 0.063 0.021*** (0.001)

Other Manufacturing 0.076 0.159 0.083*** (0.001) 0.148 0.072*** (0.001)

Public Administration 0.014 0.009 -0.005*** (0.000) 0.008 -0.006*** (0.000)

Textiles 0.015 0.076 0.061*** (0.001) 0.080 0.066*** (0.001)

Trade 0.069 0.104 0.035*** (0.001) 0.092 0.023*** (0.001)

Transport 0.056 0.087 0.031*** (0.001) 0.085 0.029*** (0.001)

Utilities 0.028 0.059 0.031*** (0.001) 0.041 0.013*** (0.001)

Panel B. Region of Residence (Dependent variable = 1 if individual lives in:)

East North Central 0.205 0.210 0.005*** (0.001) 0.192 -0.014*** (0.001)

East South Central 0.087 0.008 -0.079*** (0.000) 0.008 -0.078*** (0.000)

Mid Atlantic 0.208 0.350 0.143*** (0.001) 0.365 0.157*** (0.002)

Mountain 0.030 0.058 0.028*** (0.000) 0.062 0.032*** (0.001)

New England 0.068 0.165 0.097*** (0.001) 0.187 0.120*** (0.001)

Pacific 0.054 0.101 0.047*** (0.001) 0.072 0.018*** (0.001)

South Atlantic 0.130 0.026 -0.104*** (0.000) 0.023 -0.107*** (0.000)

West North Central 0.123 0.067 -0.055*** (0.001) 0.077 -0.045*** (0.001)

West South Central 0.095 0.014 -0.081*** (0.000) 0.013 -0.082*** (0.000)

Notes. This table compares observable individual characteristics of British immigrants with the rest of
the US population. In each row, we define a dummy variable equal to one for individuals in the given
employed in the given sector (Panel A) or residing in the given division (Panel B) and compute the
average for non-migrants (column 1), immigrants (column 2), and return migrants (column 5).
Columns (3) and (6) report the difference between columns (1) and, respectively, columns (2) and (5).
Robust standard errors are reported in columns (4) and (7).
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.6: Association Between Out-Migration and the Volume of Innovation

Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. OLS Estimates

Measured US Emigration Railway Instrument Leave-Out Instrument

US Emigrants𝑡 -1.453∗∗∗
(0.303)

US Emigrants𝑡−1 0.951∗∗∗
(0.258)

US Emigrants𝑡−2 -0.702
(0.646)

Railway-Predicted Emigrants𝑡 -0.141∗∗∗
(0.038)

Railway-Predicted Emigrants𝑡−1 0.283∗∗∗
(0.074)

Railway-Predicted Emigrants𝑡−2 0.212∗∗
(0.107)

Leaveout-Predicted Emigrants𝑡 -0.307∗∗∗
(0.093)

Leaveout-Predicted Emigrants𝑡−1 0.473∗∗∗
(0.126)

Leaveout-Predicted Emigrants𝑡−2 0.162
(0.134)

Std. Beta Coef. -0.228 0.125 -0.086 -0.185 0.284 0.196 -0.095 0.106 0.034

Panel B. Two-Stage Least-Square Estimates

Railway Instrument Leave-Out Instrument Overidentified 2SLS

US Emigrants𝑡 -1.479∗∗∗ -2.351∗∗∗ -1.433∗∗∗
(0.372) (0.396) (0.389)

US Emigrants𝑡−1 1.670∗∗∗ 1.424∗∗∗ 1.662∗∗∗
(0.458) (0.366) (0.455)

US Emigrants𝑡−2 -28.128 59.484 -18.895
(30.883) (377.778) (15.412)

Std. Beta Coef. -0.232 0.219 -3.441 -0.368 0.187 7.276 -0.224 0.218 -2.311
K-P F-stat 71.165 215.018 0.805 10.054 70.998 0.026 43.918 106.788 0.933
Sargan-Hansen J 3.473 2.735 0.397

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N. of District 620 620 618 618 618 618 618 618 618
N. of Observations 2474 1858 1236 2472 1854 1236 2472 1854 1236
Mean Dep. Var. 179.519 221.154 288.871 179.672 221.617 288.871 179.672 221.617 288.871

Notes. This table reports the association between US out-migration and the number of patents. The unit
of observation is a district, at a decade frequency between 1880 and 1939. The dependent variable is
the number of patents. In Panel A, we report the association with measures out-migration (columns
1–3), the reduced-form railway instrument (columns 4–6), and the reduced-form leave-out instrument
(columns 7–9). In Panel B, we report the two-stage least-square estimates of the railway (columns 1–3),
leave-out (columns 4–6), and combined (columns 7–9) instruments. All regressions include district and
decade fixed effects; standard errors are clustered at the district level and are displayed in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.7: Estimated Effect of the Influenza Pandemic on US Innovation

Double Differences Triple Differences

(1) (2) (3) (4) (5) (6)
Level Level Level Level Share Share

Excess Deaths × Post 3.120∗∗∗
(0.751)

1(Q. of Excess Deaths > 75) × Post 1.474∗∗∗
(0.504)

Excess Deaths × Post × Pharma 2.641∗∗∗ 0.063∗∗
(0.678) (0.032)

1(Q. of Excess Deaths > 75) × Post × Pharma 1.311∗∗∗ 0.042∗∗∗
(0.451) (0.016)

County FE Yes Yes – – – –
Year FE Yes Yes – – – –
County-Year FE – – Yes Yes Yes Yes
County-Class FE – – Yes Yes Yes Yes
Class-Year FE – – Yes Yes Yes Yes
N. of County-Class 1272 1272 21624 21624 21624 21624
N. of Observations 50880 50880 864960 864960 864960 864960
Classes in Sample Pharma Pharma All All All All
R2 0.405 0.405 0.683 0.683 0.114 0.114
Mean Dep. Var. 0.991 0.991 0.534 0.534 0.077 0.077
Std. Beta Coef. 0.296 0.083 0.191 0.041 0.032 0.009

Notes. This table reports the effect of exposure to the Great Influenza Pandemic (1918–1919) on
innovation in the US. The units of observation are counties (columns 1–2) and county-class pairs
(columns 3–6). Units are observed at a yearly frequency between 1900 and 1939. In columns (1–4), the
dependent variable is the number of patents granted; in columns (5–6), the dependent variable is the
number of pharmaceutical patents divided by the total number of patents granted. In column (1), a
post-influenza indicator is interacted with a measure of excess mortality, namely, the ratio between the
average number of deaths during the pandemic (1918–1919) and the three previous years. In column
(2), the treatment interacts the post-influenza indicator with a dummy variable equal to one for
counties in the top quartile of the excess deaths distribution. In columns (3) and (5), the treatment
interacts the excess deaths measure with a post-influenza dummy and an indicator variable for
pharmaceutical patents; in columns (4) and (6), the excess deaths variable is coded as binary, and
returns value one for counties in the top quartile of the excess mortality distribution. In columns (1–2),
regressions include county and year fixed effects; in columns (3–6), regressions include county-by-year,
county-by-technology class, and technology class-by-year fixed effects. Standard errors, clustered at the
district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.8: Double and Triple Differences Effect of Synthetic Shocks on US Innovation

Baseline Excluding States in ... Innovation Shock Treshold

(1) (2) (3) (4) (5) (6) (7) (8)
Northeast Midwest South West 0.1% 1% 10%

Innovation Shock × Post 32.727*** 40.194*** 26.937*** 32.514*** 33.336*** 94.663*** 18.948*** 3.958***
(2.610) (4.018) (2.613) (2.633) (2.802) (8.056) (1.384) (0.207)

County-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
County-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes
Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Number of County-Class 51263 47376 32849 28727 46169 51264 51250 51097
Number of Observations 2101783 1942416 1346809 1177807 1892929 2101824 2101250 2093047
Mean Dep. Var. 0.772 0.511 0.730 1.241 0.765 0.772 0.752 0.615

Notes. This table reports the effect of synthetic innovation shock on US innovation. These coefficients
are not interpreted as causal but as evidence that synthetic shocks capture relevant variation in
county-technology-specific patenting activity. The unit of observation is a county-technology class pair
observed at a yearly frequency between 1900 and 1939. The baseline treatment is an interaction
between an innovation shock and a post-shock indicator. An innovation shock occurs when the
residualized patenting activity in a given county technology is in the top 0.5% of the overall distribution
of residualized values. Because the setting is staggered, all regressions are estimated using the
methodology of Borusyak et al. (2021). Column (1) reports the estimate for the entire panel of counties;
in columns (2), (3), (4), and (5), we exclude counties in, respectively, the North-East, Midwest, South, and
West Census Bureau regions. In columns (6), (7), and (8), instead, we consider different thresholds for
the definition of innovation shocks at the top 0.1%, 1%, and 10% of the overall distribution of
residualized patents, respectively. All regressions include county-by-year, county-by-technology class,
and technology class-by-year fixed effects. Standard errors, clustered at the county level, are reported
in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.9: Long-Run Sector Correlation Between Knowledge Exposure and Innovation

1940s 1950s 1960s 1970s 1980s 1990s 2000s

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Number of Patents in:

Agriculture 3.183*** 2.654*** 1.914*** 1.909** 1.750** 0.647 0.516
(0.751) (0.617) (0.602) (0.790) (0.823) (0.609) (0.641)

Building 6.065*** 4.748*** 5.312*** 3.918*** 4.540*** 3.265*** 1.804*
(1.181) (1.085) (1.093) (0.942) (1.031) (1.010) (1.045)

Chemistry 23.553*** 15.352*** 23.228*** 29.817*** 11.953** 5.042 2.337
(7.640) (5.371) (6.691) (12.031) (5.354) (6.310) (6.625)

Electricity 32.018*** 31.842** 22.787*** 16.405** 8.087 2.124 2.665
(8.010) (13.812) (7.136) (8.273) (6.442) (7.260) (7.732)

Engineering 9.870*** 7.969*** 9.549*** 8.374*** 4.229*** 1.167 0.702
(1.705) (1.563) (1.754) (2.008) (1.406) (1.666) (1.720)

Engines, Pumps 6.551*** 7.387*** 5.926*** 8.172* 4.480* 0.200 0.784
(2.090) (2.559) (1.960) (4.461) (2.299) (2.228) (2.263)

Food 10.948*** 9.570*** 8.089*** 10.390*** 4.173** 0.495 -0.291
(1.995) (2.262) (2.486) (3.452) (1.830) (2.340) (2.344)

Health, Amusement 4.430*** 4.959*** 3.988*** 7.074*** 6.700*** 4.318*** 5.210***
(1.307) (1.405) (1.419) (2.111) (1.536) (1.526) (1.708)

Instruments 14.172*** 14.338*** 15.127*** 14.236*** 10.658*** 4.819 4.079
(2.937) (3.244) (3.480) (4.101) (2.905) (3.072) (3.599)

Lightning, Heating 11.553*** 8.118*** 8.113*** 5.359*** 3.534*** 1.581 0.513
(2.154) (1.447) (1.774) (1.397) (1.270) (1.528) (1.476)

Metallurgy 18.803*** 9.443*** 13.905*** 10.698*** 6.346** 1.834 0.849
(3.888) (2.573) (3.541) (3.493) (2.722) (3.110) (3.236)

Personal Articles, Furniture 6.810*** 6.784*** 5.250*** 2.813*** 1.599** 1.367* 1.674**
(1.014) (1.175) (0.811) (0.755) (0.803) (0.811) (0.821)

Printing 6.914*** 7.830*** 8.202*** 6.030*** 3.245*** 1.984* 1.455
(1.226) (1.341) (1.573) (1.205) (1.045) (1.190) (1.313)

Separating, Mixing 7.892*** 7.493*** 7.633*** 8.032*** 5.290*** 1.602 1.166
(1.707) (1.508) (1.681) (1.922) (1.458) (1.557) (1.696)

Shaping 9.833*** 7.901*** 8.591*** 7.795*** 3.555*** 1.156 0.426
(1.584) (1.377) (1.520) (1.629) (1.214) (1.421) (1.491)

Ships, Aeronautics 8.433*** 8.800*** 9.757*** 6.624*** 3.441*** 1.319 0.905
(1.032) (1.156) (1.379) (1.193) (0.946) (1.081) (1.161)

Textiles 14.865*** 12.841*** 11.039*** 10.100*** 3.649*** 0.752 0.475
(2.044) (1.653) (1.760) (2.000) (1.263) (1.464) (1.496)

Transporting 5.102*** 4.368*** 3.974*** 2.988** 1.704* 0.471 0.147
(1.157) (1.194) (1.231) (1.391) (0.934) (1.123) (1.167)

Number of Districts 632 632 632 632 632 632 632

Notes. This table reports the correlation between knowledge exposure in the years 1900–1930 and
subsequent patenting activity by sector. For each class displayed in the rows, we estimate a model that
interacts knowledge exposure with decade dummies, and we report the coefficients for each decade in
the respective column. The 2010s decade serves as the baseline category. All regressions include
district and decade fixed effects. Robust standard errors are displayed in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.10: Association Between Return and Outward Knowledge Exposure

Dep. Var.: Number of Patents

(1) (2) (3) (4) (5) (6)

Knowledge Exposure𝑡 2.230∗∗∗ 2.183∗∗∗ 1.368∗∗∗ 2.366∗∗
(0.565) (0.572) (0.392) (0.862)

Return Knowledge Exposure𝑡 -0.048 -0.019 -0.167 0.359
(0.031) (0.034) (0.114) (0.247)

Knowledge Exposure𝑡−1 2.271∗∗∗ 0.976∗∗
(0.592) (0.447)

Return Knowledge Exposure𝑡−1 0.124 0.081
(0.087) (0.118)

Knowledge Exposure𝑡−2 1.152∗∗ 0.334
(0.407) (0.522)

Return Knowledge Exposure𝑡−2 0.278∗∗ -0.268∗∗
(0.125) (0.116)

District-Decade FE Yes Yes Yes Yes Yes Yes
Technology Class FE Yes – – Yes Yes Yes
Class-Decade FE No Yes Yes No No No
District-Class FE No No Yes No No No
N. of District-Class 11376 11376 11376 11376 11376 11365
N. of Observations 45464 45464 45464 34115 22747 22705
R2 0.637 0.643 0.844 0.638 0.627 0.647
Mean Dep. Var. 9.869 9.869 9.869 12.175 15.868 15.891
Std. Beta (KE) 1.707 1.672 1.048 1.621 0.782
Std. Beta (Return KE) 0.340 0.332 0.208 0.248 0.114

Notes. This table reports the association between innovation and the baseline measure of knowledge
exposure, accounting for return knowledge exposure. The unit of observation is a district-technology
class pair, observed at a decade frequency between 1880 and 1920. The dependent variable is the
number of patents by district-technology decade. Return knowledge exposure is constructed by
interacting county-level specialization with district-county return migration flows analogously to the
baseline knowledge exposure measure. In columns (1) and (4–6), we include district-by-decade and
technology class fixed effects. In column (2), we add technology-by-decade fixed effects; the
specification in column (3) is saturated. Standard errors, clustered at the district level, are displayed in
parentheses. The Table reports the standardized beta coefficient of both the baseline knowledge
exposure term and the return knowledge exposure term.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.D.11: Heterogeneous Effects of Neighborhood Out-Migration on Innovation

By Age By Occupation

(1) (2) (3) (4) (5) (6) (7) (8)

Emigrant × Post 0.105∗ 0.348∗∗∗ 0.595∗∗∗ 0.172∗ -0.040 -0.209 -0.030 0.069
(0.057) (0.134) (0.222) (0.103) (0.110) (0.202) (0.212) (0.051)

Age ∈ [18, 30) × Emigrant × Post 0.195∗∗
(0.092)

Age ∈ [30, 40) × Emigrant × Post 0.006
(0.068)

Age ∈ [50, 60) × Emigrant × Post -0.033
(0.083)

Age ≥ 60 × Emigrant × Post 0.040
(0.182)

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Sample Full Engineering Metallurgy Construction Textiles Trade Pub. Adm. Agriculture
N. of Individuals 469250 62716 12875 65013 31144 40576 15420 102463
N. of Observations 13608250 1818764 373375 1885377 903176 1176704 447180 2971427
R2 0.135 0.120 0.097 0.148 0.080 0.097 0.295 0.103
Mean Dep. Var. 0.616 0.871 0.672 0.564 0.548 0.988 0.745 0.253
Std. Beta Coef. 0.002 0.004 0.010 0.003 -0.001 -0.003 -0.000 0.002

Notes. This table reports some heterogeneity analysis on the individual-level effect of neighborhood
migration on patenting activity. The units of observation are individuals who are observed yearly
between 1900 and 1920. The baseline treatment is an indicator that, for a given individual, returns
value one after at least one person that was living in the same neighborhood as the individual migrates
to the United States. In column (1), we interact this treatment with age category dummies and
normalize the dummy for the age range 40–50 as the baseline category. In columns (2–8), we estimate
the baseline double differences model by recorded occupations. Hence, in column (2), we estimate the
model only for individuals employed in engineering occupations. All models include individual and
year fixed effects. Standard errors are clustered at the district level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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1.D.6 Figures

Figure 1.D.1: Flexible Double Differences Effect of Tariff Reform on Innovation
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Notes. This figure reports the estimated dynamic treatment effects of increased US tariff rates on
innovation in Britain. The unit of observation is a district-technology class pair observed at a yearly
frequency between 1920 and 1939. The dependent variable is the number of patents. The independent
variable is the interaction between knowledge exposure over 1910–1920 and year dummies. The last
year before the Reform, 1929, is the baseline category. The blue dots report the estimated treatment
effects for technology classes targeted by the Act; the red dots restrict the sample to non-treated
technology classes. We define a class as “targeted” if its average tariff rate increases by more than 50%
after the Smoot-Hawley Act. Regressions include district-by-class and year fixed effects. Standard
errors, clustered at the district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Figure 1.D.2: Flexible Triple Differences Effect of the Influenza on US Innovation
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Notes. These figures report the dynamic treatment effects of exposure to the Great Influenza Pandemic
on innovation in the US. The units of observation are county-technology class pairs; units are observed
at a yearly frequency between 1900 and 1939. The dependent variable is the number of patents. The
treatment is an indicator equal to one for pharmaceutical patents and districts in the top quartile of the
excess mortality distribution. The graph displays the interaction coefficients between the treatment
and biennial time dummies, where the last dummy before the pandemic—1916–1917—serves as the
baseline category. Excess mortality is computed as the average number of deaths during the pandemic
over the average number of deaths in the three years before the pandemic. The black dashed line
indicates the timing of the treatment. The regression includes county-by-technology class, technology
class-by-biennial, and county-by-biennial fixed effects. Standard errors are two-way clustered by
district and technology class; bands report 95% confidence intervals.
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Figure 1.D.3: Long-Run Association Between Knowledge Exposure and Innovation
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Notes. This figure reports the correlation between knowledge exposure in the period 1900–1930 and
subsequent innovation activity. The unit of observation is a district-technology class pair. Units are
observed at a biennial frequency between 1940 and 2015. Each dots report the coefficient of an
interaction term between—time-invariant—knowledge exposure and biennial time dummies. The last
biennial, 2014–2015, serves as the baseline category. The model includes district-by-technology class
and decade fixed effects. Standard errors are clustered at the district level. Bands report 95%
confidence intervals.
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1.E Robustness Analysis

This section provides details on the technical implementation of the analyses discussed in the

main text and briefly describes the exercises we perform to ensure the results’ robustness.

1.E.1 Alternative Baseline Specifications

In this section, we list and comment on the alternative specifications of the main equation that

we estimate in the main text.

1.E.1.1 Alternative Dependent Variables

In the principal analysis, we use the raw number of patents at varying levels of aggregation as

the dependent variable. We thus follow Chen and Roth (2022), who note that under transfor-

mations of the dependent variable defined at zero—as would be our case, to avoid dropping

zero-patents observations—, the estimates of the average treatment effect are scale-dependent.

Since it is common practice in the innovation literature to take the log-transformation, in Table

1.E.1, we show that the results are robust using a battery of alternative transformations.

1.E.1.2 Alternative Definitions of Knowledge Exposure

In Table 1.E.2, we employ four alternative measures of knowledge exposure. First, we take the

log of the baseline. Second, we construct a measure that fixes bilateral emigrant flows:

Knowledge Exposure2𝑖𝑘,𝑡 =
∑︁
𝑗

(
Patents 𝑗𝑘,𝑡
Patents 𝑗,𝑡

× Migrants𝑖→ 𝑗,1880

)
(1.26)

which, compared to the main measure, restricts assortative matching to the first decade of the

analysis. Third, we define the mirror measure that holds fixed specialization patterns across

counties:

Knowledge Exposure3𝑖𝑘,𝑡 =
∑︁
𝑗

(
Patents 𝑗𝑘,1880
Patents 𝑗,1880

× Migrants𝑖→ 𝑗,𝑡

)
(1.27)

Compared to the main measure, this ensures that knowledge exposure does not conflate vari-

ation in patenting activity across counties determined or influenced by English immigrants.

Finally, we define an alternative measure that leverages the stock, instead of the flow of patents

issued:

Knowledge Exposure4𝑖𝑘,𝑡 =
∑︁
𝑗

[∑︁
𝜏≤𝑡

(
Patents 𝑗𝑘,𝜏
Patents 𝑗,𝜏

)
× Migrants𝑖→ 𝑗,𝑡

]
(1.28)
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The idea behind (1.28) is that specialization can be defined in terms of the cumulative number

of patents filed before the given period. In Table 1.E.2, we show that all these measures yield

quantitatively similar results.

1.E.1.3 Alternative Fixed Effects

In the main text, we report the results for a specification that includes district-by-time and tech-

nology class fixed effects. These are intended to capture time-varying unobserved heterogeneity

at the district level and time-invariant features of technologies that we do not observe. In Ta-

ble 1.E.3, we show that the—OLS and 2SLS—results are robust when including a wide array of

alternative fixed effects. First, in columns (1) and (6), we report the unconditional correlation

between innovation and knowledge exposure. This documents that knowledge exposure alone

explains a sizable (30%) share of the variation in patenting activity. Then, in columns (2–5) and

(7–10), we incrementally include additional fixed effects and show that the significance and

magnitude of the coefficients remain very stable. In particular, in columns (5) and (10), we sat-

urate the model with all couples of fixed effects to non-parametrically control for heterogeneity

at the district-time, technology-time, and district-technology levels. The results are confirmed

even in this demanding specification.

1.E.2 Instrumental Variable Strategy

This section discusses how we construct the county-level shocks necessary to compute the pre-

dicted bilateral flows, as described in section 1.4. We first present the strategy to construct the

shocks for the main railway-based instrument. Then, we explain how we compute the shocks

for the additional, leave-out instrument.

1.E.2.1 Railway-Based Instrument

The baseline instrument leverages county-level immigration shocks obtained by leveraging

variation in the conditional timing when each county was connected to the US railway network.

This strategy closely mimics the instrument developed by Sequeira et al. (2020) to estimate the

long-run effect of immigration in the US.
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To construct such shocks, we follow a two-step procedure. We first estimate the following

zero-stage equation:

Immigrant Share 𝑗,𝑡 = 𝛼 𝑗 + 𝛼𝑡 + 𝛽Immigrant Share 𝑗,𝑡−1 + 𝛾𝐼Rail
𝑗,𝑡−1+

+ 𝛿
(
𝐼Rail
𝑗,𝑡−1 × Immigrant Flow𝑡−1

)
+ 𝜁

(
Industrialization𝑡−1 × 𝐼Rail

𝑗,𝑡−1

)
+

+ 𝜂
(
GDP Growth𝑡−1 × 𝐼Rail

𝑗,𝑡−1

)
+ 𝑋⊺

𝑗,𝑡−1Θ + 𝜀 𝑗,𝑡

(1.29)

where (Immigrant Share) is the share of foreign-born individuals, 𝐼Rail
𝑗,𝑡

is a dummy variable

returning value one if county 𝑗 is connected to the railway network in decade 𝑡, and zero oth-

erwise, (Immigrant Flow) is the aggregate immigration inflow computed from Willcox (1928),

(Industrialization) is an index of industrial production computed by Davis (2004), and annual

average GDP growth is obtained from Maddison (2007) data. The other terms control for con-

founding factors and non-random connections to the railway network. The term 𝑋 includes

log-population density, lagged urbanization, and an interaction between lagged urbanization

and lagged aggregate immigrant flow. The core of the identification strategy that we borrow

from Sequeira et al. (2020) is to exploit variation generated by the interaction between aggre-

gate immigration inflows and connection to the railway network (𝛿). The underlying idea is

that connection to the railway only induces a larger immigrant inflow if it occurs during a pe-

riod of high immigration. If this reasoning holds, the estimate of 𝛽 should be close to zero, and

that of 𝛿 should be positive. We confirm these predictions in Appendix Table 1.D.1.

We construct a synthetic series of county-level time-varying immigration shocks from equa-

tion (1.29) as follows:

�Immigrant Share 𝑗,𝑡 = 𝛿
(
𝐼Rail
𝑗,𝑡−1 × Immigrant Flow𝑡−1

)
(1.30)

where 𝛿 is simply the OLS estimates from the previous model. We thus generate a set of county-

level immigration shocks that are orthogonal to economic development and other characteris-

tics that may induce sorting into the US. Variation, in other words, is solely due to the timing

when a county is connected to the railway network.

1.E.2.2 Alternative Instrumental Variable

As further robustness to the railway instrument, we develop a simple leave-out instrument that

borrows heavily on the literature that uses shift-share instruments to estimate the effects of

immigration (e.g. Card, 2001; Tabellini, 2020). The rationale that underlies this approach is that

if assortative matching across counties by British immigrants is the main threat to identification
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in the baseline regression, then it is possible to leverage the distribution of immigrants from

other countries to construct county-level immigration shocks that yield consistent estimates

because they do not reflect such assortative matching effects.

In practice, let 𝜔𝑀
𝑗

be the share of immigrants from country 𝑀 that settle in county 𝑗 in

the period 1860-1870, i.e., before the beginning of the analysis years. We then compute the

aggregate inflow of immigrants from country 𝑀 in each subsequent decade and construct the

predicted immigrant inflows as

�Immigrant Share 𝑗,𝑡 =
1

Population 𝑗,𝑡

∑︁
𝑀≠UK
𝑀∈M

(
𝜔𝑀𝑗 × Immigrant Inflow𝑀

𝑡

)
(1.31)

where M is a set of origin countries. Both (1.30) and (1.31) yield a set of county-specific im-

migration shocks that do not conflate immigration patterns of the British. They leverage very

different sources of variation, though, which enables us to use the resulting instruments jointly

and perform over-identification tests.

We allow multiple sets of origin countries M. The baseline exercise, whose first-stage rel-

evance is shown in Table 1.E.4 and results are displayed in Table 1.E.5, collates all countries

except for the UK.60 To account for possible correlation between British immigrants and those

from other nationalities, however, we vary the set of included countries in Table 1.E.6. In partic-

ular, we drop all countries in Northern Europe (column 3), which may have been more similar

to England and Wales. Moreover, in column (6), we only include non-European countries and

show that results hold nonetheless. The coefficients remain relatively stable across all specifi-

cations, indicating the possibility that assortative matching may be a quantitatively mild issue.

1.E.2.3 Tests on Instrument Validity

The validity of the shift-share instrument for knowledge exposure that we construct hinges on

the exogeneity of the shocks constructed using either (1.30) or (1.31), following Borusyak et al.

(2022). In practice, they advise conducting two types of falsification tests. First, shocks should be

orthogonal to observed county-level characteristics. Second, the instrument should not be sys-

tematically correlated with district-level observable variables. The first test provides evidence

of the exogeneity of the shocks, while the second should support the exclusion restriction that

underlies the instrument.

60In Figure 1.E.2 we report binned scatter plots of the association between predicted and actual knowledge ex-
posure using the two instruments.
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We perform the first exercise in Figure 1.E.3. Panel (A) displays the correlation of the ob-

served immigration shares with county-level observable characteristics. As expected, immigra-

tion is not random as it tends to be concentrated in larger counties, which also display higher

patenting activity. In panels (B) and (C), we report the correlation between the predicted im-

migrant shares using the railway-based and the leave-out approaches, respectively. We fail to

detect a statistically significant correlation between the so-constructed immigrant shares and

the large majority of county-level observable variables.61 This provides reassuring evidence in

favor of the validity of the instruments.

We report the second exercise in Figure 1.E.4. Each dot displays the correlation between

district-level observable variables and actual, railway-based, and leave-out emigration in pan-

els (A), (B), and (C), respectively. Unsurprisingly, districts featuring higher emigration flows are

larger, produce more patents, and have a larger share of the population working in agriculture

and textiles. On the other hand, synthetic out-migration, whether constructed using the rail-

way or the leave-out shocks, is not correlated with any such variables. Once more, we interpret

these results as evidence supporting the validity of the shift-share research design.

1.E.3 Shock Propagation

This section describes the technical definition of the synthetic innovation shocks and exposure

to the influenza pandemic, along with two falsification exercises and several sensitivity analy-

ses.

1.E.3.1 Details on the Construction of the Synthetic Shocks

We define a synthetic innovation shock as an unusual deviation from the number of patents

granted in a given county, technology class, and year. Formally, we estimate the following fixed-

effects regression:

Patents 𝑗𝑘,𝑡 = 𝛼 𝑗×𝑘 + 𝛼𝑘×𝑡 + 𝛼 𝑗×𝑡 + 𝜀 𝑗𝑘,𝑡 (1.32)

where 𝑗, 𝑘, and 𝑡 denote a county, technology class, and year respectively, and𝛼 is the associated

fixed effect. In particular, we include county-by-year fixed effects to remove fluctuations in

patenting activity due to, for instance, economic growth. We remove technology-by-year fixed

effects to ensure that the shocks do not reflect aggregate changes in the propensity to patent in

a given class. Finally, we average out county-by-class fixed effects to remove asymmetries due

61Even when the correlation remains significant, the standardized beta coefficient is substantially lower than in
the benchmark panel (A).
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to initial specialization. We then construct a series of residualized innovation activity from the

residuals of (1.32).

In the baseline analysis, we define an innovation shock as an observed residualized patent-

ing activity in the top 0.1% of the overall distribution. Let Γ(·) be the cumulative distribution

of the residuals of regression (1.32). Then, the set of shocks 𝜉(𝜏), for 𝜏 = 0.001, is given by the

set 𝜉(𝜏) = {𝜉 ∈ supp(Γ) | Γ(𝜉) − Γ(𝜏) ≥ 0}. In Table 1.E.7, we use two other threshold values

of 𝜏 (1% and 0.5%). We find that the average treatment effect decreases as 𝜏 increases. This is

compelling since larger 𝜏 flags smaller residualized patenting activity as instances of treatment.

In Table 1.D.8, we show the “effect” of synthetic shocks on innovation. This is not a causal effect

but rather a measure of the relevance of such shocks. There is a strong and positive association

between the number of patents and the period when a shock is observed, and this also holds

excluding specific areas (columns 2–5). In columns (6–8), we show that larger levels of 𝜏 are

associated with a lower increase in patenting.

1.E.3.2 Details on the Construction of the Influenza Shock

To construct exposure to the influenza across counties, we follow Berkes et al. (2022). From the

mortality statistics collected by the Bureau of Census, we define a metric of excess deaths as the

ratio between average deaths during the pandemic (1918–1919) relative to the average in the

preceding three years.62 Formally, we have

Excess Deaths 𝑗 =
1
2
∑1919
𝑡=1918 Deaths 𝑗,𝑡

1
3
∑1917
𝑡′=1915 Deaths 𝑗,𝑡′

(1.33)

We then code a binary variable equal to one if county 𝑗 is in the top 25% of the excess deaths

distribution to avoid issues of continuous treatment (Callaway and Sant’Anna, 2021).

The baseline estimation equation for US counties is then

Patents 𝑗𝑘,𝑡 = 𝛼 𝑗×𝑘 + 𝛼𝑘×𝑡 + 𝛼 𝑗×𝑘 + 𝛿 (Excess Deaths𝑐 × Pharma𝑘 × Post𝑡) + 𝜀 𝑗𝑘,𝑡 (1.34)

where Pharma𝑘 is an indicator variable returning value one if 𝑘 is pharmaceutical patents,

and zero otherwise, and Post𝑡 is an indicator variable returning value one for years after 1918,

and zero otherwise. Figure 1.D.2 reports the associated flexible triple differences estimates,

which, with no evidence of statistically significant pre-treatment coefficients, suggests that the

influenza had a strong, positive, and significant effect on pharmaceutical innovation in the US.

62Due to data limitations, this is the pre-pandemic period that maximizes the sample size. Mortality statistics
thus allow covering 60% of the US population.
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1.E.3.3 Robustness to Synthetic Shock Analysis

We perform two main exercises to ensure that the results using the synthetic shocks are robust.

First, in Figure 1.E.7, we ensure that the estimated effect of US innovation shocks on UK innova-

tion remains significant and is quantitatively consistent under different estimators that allow

for staggered roll-out of the treatment across units. The estimated ATE remains significant, and

its magnitude is preserved under various estimators.

Second, in Table 1.E.7, we vary two margins along which a district is considered to be

treated. First, as previously discussed, we consider different thresholds 𝜏 (1%, 0.5%, and the

baseline 0.1%) above which we flag synthetic innovation shocks. Reassuringly, larger levels 𝜏,

which require a lower marginal increase in patenting to flag a synthetic shock, lead to smaller

ATEs. This is consistent with the idea that larger innovation shocks in the US should lead to

larger innovation shocks in the UK. Second, we vary the threshold of emigration that we im-

pose for a district to be considered exposed to the innovation shock. In our main analysis, we

consider a district exposed to the innovation shock in a given county if it is in the top quartile

of the distribution of emigration to that county. We consider two additional thresholds (top

50% and top 90%). We find that the baseline result is qualitatively robust to all such thresh-

olds. Moreover, we confirm that larger exposure thresholds lead to larger estimates ATEs. This

suggests that the more intense the previous migration tie between a county and a district, the

larger the diffusion effect of county-level shocks on district-level innovation.

1.E.3.4 Shock Falsification Checks

The rationale for the analysis discussed in the main text (table 1.3 and Figure 1.5) and thus far

is that the influenza only impacted patenting in pharmaceutical patents in the US. If that is the

case, then this would ignite an innovation shock that was localized in areas that were more

exposed to the influenza, and that could reverberate in the UK to districts whose emigrants had

settled in such areas.

We test this assumption in Figure 1.E.6a. Each dot reports an estimated 𝛿 coefficient of

equation (1.34), except that the treated technology is reported in each row. Thus, the exclusion

restriction would require that each coefficient was not statistically different from zero, except

for pharmaceuticals. This assumption is confirmed in the data. The ATE for pharmaceuticals is

the only one that is positive, significant, and quantitatively large. Figure 1.E.6a thus implies that

we expect to observe an increase in pharmaceutical patents only, and only in districts whose

emigrants had settled in areas that were more severely exposed to the pandemic.
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We test this in Figure 1.E.6b, in which we estimate the baseline triple-difference specifi-

cation of the main text, except that the treated technology is reported in each row, as before.

While estimates are noisier here, we confirm that the estimated ATE for pharmaceuticals is the

largest and statistically significant across classes, as expected. Overall, Figure 1.E.6 thus pro-

vides convincing evidence that (i) the influenza fostered innovation in pharmaceuticals only

in the US, and (ii) that districts whose emigrants had settled in areas that were more severely

exposed to the influenza display higher innovation activity in pharmaceuticals.
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1.E.4 Tables

Table 1.E.1: Knowledge Exposure and Innovation: Alternative Dependent Variables

Level of Patents Share of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Baseline ln(·) ln(1 + ·) ln(𝜀 + ·) arcsinh(·) Share ln(·) ln(1 + ·) ln(𝜀 + ·) arcsinh(·)

Panel A. OLS Estimates

Knowledge Exposure 1.342∗∗∗ 0.015∗∗∗ 0.067∗∗∗ 0.142∗∗∗ 0.082∗∗∗ 0.005∗∗∗ 0.015∗∗∗ 0.004∗∗∗ 0.169∗∗∗ 0.005∗∗∗
(0.143) (0.002) (0.007) (0.016) (0.009) (0.001) (0.002) (0.000) (0.020) (0.001)

R2 0.772 0.802 0.824 0.766 0.813 0.330 0.625 0.344 0.523 0.334
Std. Beta Coef. 0.299 0.101 0.396 0.495 0.407 0.411 0.139 0.439 0.629 0.418

Panel B. Reduced-Form Estimates

Knowledge Exposure 0.037∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.000∗∗∗
(0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.800 0.811 0.816 0.752 0.805 0.347 0.651 0.358 0.510 0.350
Std. Beta Coef. 0.075 0.032 0.043 0.027 0.039 0.046 0.043 0.046 0.022 0.046

Panel C. Two-Stage Least Square Estimates

Knowledge Exposure 1.224∗∗∗ 0.018∗∗∗ 0.031∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.002∗∗∗ 0.018∗∗∗ 0.002∗∗∗ 0.027∗∗∗ 0.002∗∗∗
(0.195) (0.005) (0.005) (0.007) (0.006) (0.000) (0.005) (0.000) (0.008) (0.000)

K-P F-stat 109.826 83.266 109.826 109.826 109.826 109.826 83.266 109.826 109.826 109.826
Std. Beta Coef. 0.296 0.116 0.171 0.108 0.153 0.181 0.158 0.181 0.087 0.181

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N. of District-Class 11268 8475 11268 11268 11268 11268 8475 11268 11268 11268
N. of Observations 67549 36290 67549 67549 67549 67549 36290 67549 67549 67549
Mean Dep. Var. 10.392 1.795 1.137 -0.005 1.400 0.051 -2.946 0.046 -4.636 0.050

Notes. This table displays the association between innovation and exposure to US knowledge using
alternative transformations of the dependent variable. The unit of observation is a district-technology
class pair, observed at a decade frequency between 1880 and 1939. In columns (1–5), the dependent
variable is the number of patents; in columns (6–10), the dependent variable is the share of patents in a
given technology, normalized by the total number of patents. In columns (1) and (6), we do not
transform the dependent variable; in columns (2) and (7), we take the log; columns (3) and (8) report
the estimates using log(1+), which avoids dropping zeroes; in columns (4) and (9) we take log(0.01+) of
the dependent variable; columns (5) and (10) report the estimates using the inverse hyperbolic sine.
The main explanatory variable is knowledge exposure. In Panel A, we estimate the correlation through
OLS; in Panel B, we report the reduced-form association between the instrument for knowledge
exposure and innovation; in Panel C, we display the two-stage least-squares estimates. Each model
includes district-by-decade and district-by-technology class fixed effects. Standard errors are reported
in parentheses and are clustered at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.2: Knowledge Exposure and Innovation: Alternative Independent Variables

Dependent Variable: N. of Patents

(1) (2) (3) (4) (5)

Knowledge Exposure 1.342∗∗∗
(0.143)

ln(1 + Knowledge Exposure) 4.175∗∗∗
(0.228)

Fixed-Emigrants Knowledge Exposure 2.610∗∗∗
(0.300)

Fixed-Patents Knowledge Exposure 0.063∗∗∗
(0.015)

Cumulative Knowledge Exposure 0.136∗∗
(0.067)

District-Decade FE Yes Yes Yes Yes Yes
District-Technology Class FE Yes Yes Yes Yes Yes
N. of District-Class 11268 11268 11268 11268 11268
N. of Observations 67549 67549 67547 67555 67549
R2 0.772 0.766 0.770 0.765 0.764
Mean Dep. Var. 10.392 10.392 10.393 10.392 10.392
Std. Beta Coef. 0.299 0.119 0.249 0.104 0.017

Notes. This table displays the association between innovation and exposure to US knowledge, using
alternative transformations of knowledge exposure. The unit of observation is a district-technology
class pair, observed at a decade frequency between 1880 and 1939. In column (1), we report the
baseline estimate. In column (2), we take knowledge exposure in log terms, adding one to avoid
dropping zeros since the baseline measure is defined as non-negative. In column (3), we fix bilateral
district-county bilateral exposure shares as the number of emigrants from the given district to the
given county in the decade 1870-1880. In column (3), instead, we fix county-level specialization as the
share of patents in a given field granted in the decade 1870-1880 only. In column (5), for a given decade,
we measure specialization as the sum of patents obtained until the end of that decade relative to the
total number of patents obtained until the end of that decade. The measure used in column (5) thus
considers the cumulative patent stock instead of its decade-on-decade flow. The main explanatory
variable is knowledge exposure. Each model includes district-by-decade and district-by-technology
class fixed effects. Standard errors are reported in parentheses and are clustered at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.3: Knowledge Exposure and Innovation: Alternative Sets of Fixed Effects

Dependent Variable: N. of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9) 10)

Panel A. Correlational Estimates

OLS Poisson

Knowledge Exposure 2.393∗∗∗ 1.947∗∗∗ 1.936∗∗∗ 1.942∗∗∗ 1.241∗∗∗ 0.038∗∗∗ 0.011∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.010∗∗∗
(0.212) (0.194) (0.184) (0.191) (0.149) (0.004) (0.002) (0.003) (0.003) (0.002)

R2 0.284 0.431 0.539 0.547 0.781 0.226 0.718 0.749 0.760 0.864
Std. Beta Coef. 0.533 0.433 0.431 0.432 0.276 0.303 0.084 0.112 0.109 0.080

Panel B. Instrumental Variable Estimates

Reduced Form Two-Stage Least Squares�Knowlegde Exposure 0.158∗∗∗ 0.080∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.033∗∗∗
(0.012) (0.009) (0.010) (0.012) (0.009)

Knowledge Exposure 2.053∗∗∗ 1.490∗∗∗ 0.867∗∗∗ 0.779∗∗∗ 1.097∗∗∗
(0.157) (0.167) (0.192) (0.208) (0.271)

R2 0.104 0.385 0.501 0.509 0.808 0.293 0.111 0.065 0.059 0.028
K-P F-stat 184.700 96.871 169.304 132.033 46.312
Std. Beta Coef. 0.322 0.164 0.083 0.083 0.068 4.196 3.045 1.772 1.591 2.243

District FE No Yes – – – No Yes – – –
Decade FE No Yes – – – No Yes – – –
Class FE No Yes Yes – – No Yes Yes – –
District-Decade FE No No Yes Yes Yes No No Yes Yes Yes
Class-Decade FE No No No Yes Yes No No No Yes Yes
District-Class FE No No No No Yes No No No No Yes
N. of District-Class 11268 11268 11268 11268 11268 11268 11250 11250 11250 10081
N. of Observations 67549 67549 67549 67549 67549 67549 67474 65946 65946 59703
Mean Dep. Var. 10.392 10.392 10.392 10.392 10.392 10.392 10.404 10.645 10.645 11.758

Notes. This table displays the association between innovation and exposure to US knowledge. The unit
of observation is a district-technology class pair, observed at a decade frequency between 1880 and
1939. The dependent variable is the number of patents. The main explanatory variable is knowledge
exposure. In Panel A, in columns (1–5), we estimate the correlation through OLS; in columns (6–10), we
estimate the model as a Poisson regression to account for the many zeros in the data; columns (1–5) in
Panel B report the reduced-form association between the instrument for knowledge exposure and
innovation; columns (6–10) report the two-stages least square estimates. Columns (1) and (6) reports
the unconditional regressions; in columns (2) and (7), we include district, decade, and technology class
fixed effects; columns (3) and (8) add district-by-decade fixed effects; in columns (4) and (9) we include
district-by-decade and class-by-decade fixed effects; models in columns (5) and (10) are saturated with
all couples of fixed effects. Standard errors are reported in parentheses and are clustered at the district
level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.4: First Stage of the Instrumental Variable Estimation

Railway-Based (SNQ) Instrument Leaveout Instrument

Baseline Dropping Districts in... Baseline Dropping Districts in...

(1) (2) (3) (4) (5) (6) (7) (8)
London Lancs S-W London Lancs S-W

Panel A. Dependent Variable: Bilateral Flows

SNQ Migrants 0.007∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗
(0.001) (0.001) (0.001) (0.001)

Leaveout Migrants 0.006∗∗∗ 0.005∗∗ 0.005∗∗∗ 0.005∗∗∗
(0.002) (0.002) (0.002) (0.002)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
County-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
N. of District-Counties 1736040 1653240 1518000 1625640 1786360 1701160 1562000 1672760
N. of Observations 8399666 7999046 7344700 7865506 10403031 9906861 9096450 9741471

Panel B. Dependent Variable: Knowledge Exposure

SNQ Knowledge Exposure 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗
(0.000) (0.000) (0.000) (0.000)

Leaveout Knowledge Exposure 0.169∗∗∗ 0.157∗∗∗ 0.159∗∗∗ 0.145∗∗∗
(0.034) (0.036) (0.034) (0.032)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
Class-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
N. of District-Classes 11322 10782 9900 10602 11304 10764 9882 10584
N. of Observations 56587 53887 49488 52987 67801 64561 59280 63481

Notes. This table reports the first-stage estimates of the two shift-share instruments we propose. In
Panel A, the observation units are district-county pairs, observed at a decade frequency between 1870
and 1920 (columns 1–4) and 1930 (columns 5–8). In Panel B, the observation units are
district-technology classes, at decade frequency between 1870 and 1920 (columns 1–4) and 1930
(columns 5–8). In columns (1–4), the predicted number of emigrants constructed using the
railway-based instrument that leverages shocks à la Sequeira et al. (2020); in columns (5–8), predicted
emigrants are constructed using the leave-out instrument. Columns (1) and (5) report the full-sample
estimates; in columns (2) and (6), we exclude districts in the London area; columns (3) and (7) exclude
districts in the Lancashire area; in columns (4) and (8) we drop districts in the South-West. In Panel A,
all models include district-by-decade and county-by-decade fixed effects; in Panel B, regressions
include district-by-decade and technology class-by-decade fixed effects. Standard errors, clustered at
the district level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.5: Return Innovation Result Using the Leaveout Instrument

Reduced Form TSLS Overidentified TSLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)�Knowledge Exposure 0.007∗
(0.004)�Knowledge Exposure𝑡−1 0.018∗∗∗

(0.006)�Knowledge Exposure𝑡−2 0.029∗∗
(0.012)

Knowledge Exposure 0.093∗ 0.322∗∗∗
(0.051) (0.052)

Knowledge Exposure𝑡−1 0.180∗∗∗ 0.082∗
(0.065) (0.044)

Knowledge Exposure𝑡−2 0.103∗∗ 0.032
(0.041) (0.038)

District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-Technology Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N. of District-Class 11196 11196 11196 11196 11196 11196 11196 11196 11196
N. of Observations 55980 44784 33588 55957 44761 33586 55957 44761 33586
R2 0.816 0.831 0.850 0.018 -0.006 -0.002 0.054 -0.001 -0.000
Mean Dep. Var. 1.079 1.202 1.312 1.079 1.203 1.312 1.079 1.203 1.312
Std. Beta Coef. 0.007 0.017 0.015 0.051 0.103 0.055 0.175 0.047 0.017
K-P F-stat 27.303 23.391 248.916 62.737 59.305 198.950
Sargan-Hansen J 24.274 6.131 31.636

Notes. This table reports the estimated return innovation effect estimated using the leave-out
instrument. The unit of observation is a district-technology class pair, observed at a decade frequency
between 1880 and 1939. The dependent variable is the number of patents. The main explanatory
variable is knowledge exposure. In columns (1–3), we report the reduced-form association between
knowledge exposure constructed using predicted emigration flows using the leave-out instrument and
the dependent variable; in columns (4–6), we report the associated two-stage least-squares estimates.
In columns (7–9), instead, we exploit the railway and the leave-out instruments to estimate an
over-identified instrumental variable regression. This allows us to report the associated Sargan-Hansen
J-statistic to test the validity of the over-identifying restrictions. The Sargan-Hansen test does not refute
the null that the instruments are valid. Each model includes district-by-decade and
district-by-technology class fixed effects. Standard errors are reported in parentheses and are clustered
at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.6: Return Innovation Result Using the Modified Leaveout Instruments

Baseline Excluding Immigrants from...

(1) (2) (3) (4) (5) (6)
UK UK + North Eu. UK + South Eu. UK + East Eu. UK + Europe

Panel A. Second-Stage Estimates

Knowledge Exposure 1.849∗∗∗ 0.454∗∗∗ 0.589∗∗∗ 0.428∗∗∗ 0.315∗∗ 0.487∗∗∗
(0.174) (0.125) (0.170) (0.096) (0.160) (0.139)

N. of Observations 78876 78876 78876 78876 78876 78876
Mean Dep. Var. 11.768 11.768 11.768 11.768 11.768 11.768
K-P F-statistic 39.267 30.074 346.557 14.672 52.663

Panel B. First-Stage Estimates

Knowledge Exposure (No Northern Europe + UK) 0.215∗∗∗
(0.039)

Knowledge Exposure (No Southern Europe + UK) 0.889∗∗∗
(0.048)

Knowledge Exposure (No Eastern Europe + UK) 0.481∗∗∗
(0.126)

Knowledge Exposure (No Europe + UK) 3.103∗∗∗
(0.428)

N. of Observations 78876 78876 78876 78876 78876
Mean Dep. Var. 3.063 3.063 3.063 3.063 3.063

District-Decade FE Yes Yes Yes Yes Yes Yes
Technology Class FE Yes Yes Yes Yes Yes Yes

Notes. This table reports the instrumental variable estimates of the effect of knowledge exposure on
innovation using modified versions of the leave-out instrument. The unit of observation is a
district-technology class pair, observed at a decade frequency between 1880 and 1939. The dependent
variable is the number of patents. The explanatory variable is knowledge exposure. In column (1), we
report the OLS correlation. In columns (2–6), we construct predicted bilateral emigrant flows using
county-level immigration shocks that exclude immigrants from different parts of the world: in (2), we
exclude only immigrants from UK nations; in (3), we exclude the UK immigrants along with those from
other Northern Europe countries; in (4), we exclude immigrants from the UK and Southern Europe; in
(5), UK and Eastern Europe immigrants are excluded; in (6), we exclude all European immigrants.
Panel A reports the second-stage estimates; Panel B reports the associated first-stage estimates. All
regressions include district-by-decade and technology class fixed effects. Standard errors, clustered at
the district level, are displayed in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.7: Triple Differences Effect of Synthetic Shocks: Varying Thresholds

Top 1% Synthetic Shocks Top 0.5% Synthetic Shocks Top 0.1% Synthetic Shocks

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Top 50% Top 75% Top 90% Top 50% Top 75% Top 90% Top 50% Top 75% Top 90%

Innovation Shock (Above 50%) × Post 0.187** 0.299*** 0.617***
(0.083) (0.098) (0.126)

Innovation Shock (Above 75%) × Post 0.224*** 0.377*** 0.617***
(0.080) (0.081) (0.126)

Innovation Shock (Above 90%) × Post 0.326 0.825*** 0.532***
(0.269) (0.229) (0.175)

District-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
District-by-Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Class-by-Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Counties 189586 362024 426147 217975 381438 434687 431467 431467 445120
Number of Observations 5247 9187 10671 6762 9786 10900 10834 10834 11128
Mean Dep. Var. 1.022 1.106 1.586 1.410 1.3 1.686 2.064 2.064 2.020

Notes. This table displays the effect of US innovation shocks on innovation activity in the UK. The unit
of observation is a district-technology class pair observed at a yearly frequency between 1900 and
1939. The dependent variable is the number of patents. The treatment variable is equal to one for
district-technology class pairs after a synthetic innovation shock in a given technology class is observed
in counties where the district has above 𝑘-percentile emigrants. We consider three different thresholds
for 𝑘: above the median, above the top 25%, and above the top 10%. A synthetic shock is observed
whenever the residualized patenting activity in a given county-technology class pair is in the top
ℓ-percentile of the residualized patenting activity distribution. We consider three such 𝑒𝑙𝑙: top 1%, in
columns (1–3), top 0.5%, in columns (4–6), and top 0.1%, in columns (7–9). Since the treatment timing is
staggered, we estimate the models using the imputation estimator developed by Borusyak et al. (2021).
All models include district-by-year, district-by-technology class, and technology class-by-year fixed
effects; standard errors, clustered two-way by district and technology class, are shown in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.8: Triple Differences Effect of the US Influenza on UK Innovation: Robustness

Double Differences Triple Differences

(1) (2) (3) (4) (5) (6) (7)
No London No Lancs No S/W

Influenza Emigration × Post 0.008∗
(0.004)

1(Q. of Influenza Emigration > 75) × Post 0.980∗∗
(0.463)

Influenza Emigration × Post × Pharma 0.004∗∗
(0.002)

1(Q. of Influenza Emigration > 75) × Post × Pharma 0.584∗∗∗ 0.396∗∗ 0.671∗∗∗ 0.423∗∗
(0.163) (0.139) (0.173) (0.156)

District FE Yes Yes – – – – –
Year FE Yes Yes – – – – –
District-Year FE – – Yes Yes Yes Yes Yes
District-Class FE – – Yes Yes Yes Yes Yes
Class-Year FE – – Yes Yes Yes Yes Yes
N. of District-Class 631 631 10727 10727 10217 9384 10047
N. of Observations 18930 18930 321810 321810 306510 281520 301410
Classes in Sample Pharma Pharma All All All All All
R2 0.544 0.544 0.668 0.668 0.616 0.653 0.679
Mean Dep. Var. 0.927 0.927 0.763 0.763 0.559 0.721 0.706
Std. Beta Coef. 0.082 0.082 0.014 0.016 0.015 0.018 0.010

Notes. This table displays the effect of the Great Influenza Pandemic shock on innovation activity in the
UK. In columns (1–2), the observation unit is a district; in columns (3–7), the observation unit is a pair
district-technology class; units are observed at a yearly frequency between 1900 and 1939. The
dependent variable is the number of patents. In column (1), the treatment variable is an interaction
between an influenza exposure term equal to the share of emigrants to counties in the top 25% of the
flu-related excess mortality distribution and a post-Influenza indicator; in column (2), we code
exposure as a binary variable equal to one for districts in the top 25% of the continuous exposure
distribution. In columns (3) and (5–7), the treatment term in column (1) is interacted with an indicator
variable for pharmaceutical patents; in column (4), we interact the treatment term in column (2) with
the same pharmaceutical indicator. Regressions in (1–4) report full-sample estimates; in columns (5),
(6), and (7), instead, we drop districts in the London, Lancashire, and South-West areas, respectively.
Regressions in columns (1–2) include district and year fixed effects; regressions in columns (3–7)
include district-by-year, technology class-by-year, and district-by-technology class fixed effects.
Standard errors, reported in parentheses, are clustered by district in columns (1–2) and two-way by
district and technology class in (3–7).
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 1.E.9: Double Differences Effect of Neighborhood Emigration: Alternative Threshold

Baseline Sample Dropping Individuals in...

(1) (2) (3) (4) (5) (6) (7)
London Lancashire South-West

Panel A. All Emigrants

Neighborhood Emigrant × Post 0.120∗∗ 0.146∗∗ 0.133∗∗ 11.846∗ 0.079 0.142∗∗ 0.167∗∗∗
(0.059) (0.068) (0.059) (6.144) (0.065) (0.062) (0.061)

Std. Beta Coef. 0.016 0.019 0.018 0.155 0.011 0.020 0.022

Panel B. Only Non-Return Emigrants

Non-Return Neighborhood Emigrant × Post 0.148∗∗∗ 0.199∗∗∗ 0.160∗∗∗ 14.694∗∗ 0.061 0.172∗∗∗ 0.226∗∗∗
(0.056) (0.062) (0.058) (6.293) (0.061) (0.059) (0.058)

Std. Beta Coef. 0.019 0.025 0.020 0.186 0.008 0.023 0.028

Individual FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes – Yes Yes Yes Yes Yes
Parish × Year FE No Yes No No No No No
Matching No No Yes No No No No
Sample Full Full Full Inventors Full Full Full
N. of Individuals 473112 473112 469585 4224 410327 422230 352064
N. of Observations 9462240 9412502 9391700 84480 8206540 8444600 7041280
Mean Dep. Var. 0.890 0.892 0.893 99.716 0.794 0.836 0.893
S.D. Dep. Var. 40.291 40.337 40.351 414.695 37.439 39.126 41.333

Notes. This table reports the effect of neighborhood out-migration on innovation. The units of
observation are individuals who are observed yearly between 1900 and 1920. In columns (1–3) and
(5–7), the sample consists of the universe of males who did not emigrate over the period and that were
at least 18 years old in 1900; in columns (4) and (8), we restrict the sample to inventors. The dependent
variable is the number of patents obtained annually. In columns (1–4), the sample consists of
individuals residing in all England and Wales divisions; in columns (5–7), we exclude the top
tree-patents producing areas: London, Lancashire, and the South-West. In Panel A, the independent
variable is an indicator that, for a given individual, returns value one after at least one person that was
living in the same neighborhood as the individual migrates to the United States; in Panel B, we restrict
to emigrants that never return in the period of observation. In this context, “neighborhood” refers to
emigrants within a range of 100 meters from the individual in the sample. Each model includes
individual and—at least—year fixed effects; in column (2), we include parish-by-year fixed effects; in
column (3), individuals are weighted by their coarsened exact matching weight. The estimates are
obtained using the method discussed in Borusyak et al. (2021) to account for the staggered roll-out of
the treatment across individuals. Standard errors, clustered at the district level, are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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1.E.5 Figures

Figure 1.E.1: Alternative Standard Errors Estimators of the Return Innovation Result

(a) Measured Knowledge Exposure
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(b) Railway-Based Knowledge Exposure
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Notes. These figures report alternative estimates for the standard errors (SEs) of the regression
between the number of patents and knowledge exposure. The unit of observation is a
district-technology pair, observed at a decade frequency between 1880 and 1930. Models include
district-by-technology and decade fixed effects. In Panel 1.E.1a, the independent variable is measured
knowledge exposure; Panel 1.E.1b reports the estimated reduced-form coefficient between patents and
the railway-based instrument. We report unadjusted SEs, robust to heteroskedasticity (White);
clustered at the district, technology class, and two-way by district and technology class; robust to
heteroskedasticity and autocorrelation of order 2 (HAC (2)), order 3 (HAC (3)); robust to
heteroskedasticity and autocorrelation, and clustered by decade (HAC (2) - Decade) and two-way by
decade and district-by-technology class (HAC (2) - Decade & (Dist., Tech.). Finally, we also report SEs that
account for spatial autocorrelation at various orders (between 50 and 250 kilometers) following Conley
(1999). Bands report 95% confidence intervals.
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Figure 1.E.2: First Stage Binned Scatter Plot

(a) Railway-Based Instrument
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Notes. Coefficient = 0.453 (Clust. Std. Err. = 0.034). R2 = 0.806.

(b) UK Innovation
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Notes. Coefficient = 1.529 (Clust. Std. Err. = 0.256). R2 = 0.773.

Notes. These figures are binned scatter plots of the association between actual and predicted knowledge
exposure obtained using the railway-based instrument (Panel 1.E.2a) and the leave-out instrument
(Panel 1.E.2b). The unit of observation is a district-technology class pair, at a decade frequency between
1880 and 1920. Graphs partial out district-by-decade and technology class fixed effects. We report the
associated regression coefficients and standard errors, clustered at the district level, below each graph.
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Figure 1.E.3: Shock-Level Balance Tests for Instrumental Variable Validity
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Notes. This figure reports the correlation between county-level observable characteristics and the
(predicted) immigrant share. The unit of observation is a county observed at a decade frequency
between 1870 and 1920. Panel (A) refers to the observed immigrant share; Panel (B) refers to the
immigrant share predicted from the railway-based shock constructed from the zero-stage estimates à
la Sequeira et al. (2020); Panel (C) refers to the leave-out shocks used to construct the alternative
leave-out instrument. Each dot reports the correlation between the row variable and the immigrant
share, lagged by one decade. Variables are standardized for the sake of readability. Each model
includes county and state-by-decade fixed effects. Standard errors are clustered at the county level.
Bands report 95% confidence intervals.
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Figure 1.E.4: District-Level Balance Tests for Instrumental Variable Validity
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Notes. This figure reports the correlation between district-level observable characteristics and the
(predicted) number of emigrants. The unit of observation is a district observed at a decade frequency
between 1870 and 1920. Panel (A) refers to the observed number of emigrants; Panel (B) refers to the
predicted emigrant outflow obtained from the railway-based instrument; Panel (C) refers to the
leave-out instrument. Each dot reports the correlation between the row variable and out-migration,
lagged by one decade. Variables are standardized for the sake of readability. Each model includes
district and decade fixed effects. Standard errors are clustered at the county level. Bands report 95%
confidence intervals.
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Figure 1.E.5: Effect of Synthetic Innovation Shocks Across Technology Classes
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Notes. This figure reports the effect of synthetic innovation shocks on innovation in the UK by
technology class. Each dot reports one double-differences estimated effect of the baseline exposure
treatment with innovation; in each row, the treatment is activated whenever a district has
above-median. The unit of observation is thus a district, observed at a yearly frequency between 1900
and 1993. Regressions include district and year fixed effects, and standard errors are clustered at the
district level. Bands report 95% confidence intervals.
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Figure 1.E.6: Effect of the Influenza Shock Across Technology Classes

(a) US Innovation
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(b) UK Innovation
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Notes. This figure reports the effect of the Influenza shock on innovation, by technology classes, in the
US (Panel 1.E.6a) and in the UK (Panel 1.E.6b). Each dot reports one triple-differences estimated effect
of the baseline exposure treatment with innovation; in each row, exposure is interacted with a
sector-specific dummy variable. If the shock only impacted innovation in pharmaceuticals, we would
expect each coefficient but the pharmaceutical one to be statistically equal to zero. Regressions are
saturated with fixed effects; standard errors are two-way clustered at the technology class and county
(Panel 1.E.6a) or district (Panel 1.E.6b) level. Bands report 95% confidence intervals.
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Figure 1.E.7: Alternative Staggered Estimators of Synthetic Shocks
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Notes. This figure reports the estimated effect of synthetic innovation shocks in US counties on
innovation activity in the UK, using alternative estimators that explicitly allow for the staggered
treatment roll-out design. The unit of observation is a district-technology class pair observed at a yearly
frequency between 1900 and 1939. The dependent variable is the number of patents. The treatment
variable is an indicator that, for a given district-technology, returns value one after a synthetic
innovation shock in that technology class is observed in at least one county where the district has
above-average out-migration. A synthetic innovation shock is observed whenever the residualized
number of patents observed in the country is in the top 0.5% of the overall distribution. We estimate
the models on the full sample of districts, as well as excluding the top three areas in terms of patents
granted: London, Lancashire, and the South-West. We report the estimates obtained using four
estimators that allow for the inclusion of all the triple differences interactions of the fixed effects:
Borusyak et al. (2021), De Chaisemartin and D’Haultfœuille (2022), Cengiz et al. (2022), and Sun and
Abraham (2021). Standard errors are clustered at the district and technology class levels. Bands report
95% confidence intervals.

143



Figure 1.E.8: Alternative Staggered Estimators for Neighborhood Out-Migration
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Notes. These figures report the effect of neighborhood out-migration on innovation. The units of
observation are individuals observed at a yearly frequency between 1900 and 1920. The sample
consists of all males who did not emigrate over the period and aged at least 18 in 1900. The dependent
variable is the number of patents obtained every year. The treatment variable is an indicator that
returns value one after at least one person living in the same neighborhood as the individual migrates
to the United States. We report the estimates obtained using six estimators that allow staggered roll-out
of treatment assignment: the baseline two-way fixed effects (TWFE) estimator, Borusyak et al. (2021),
Sun and Abraham (2021), Cengiz et al. (2022), Freyaldenhoven et al. (2019), and De Chaisemartin and
D’Haultfœuille (2022). Standard errors are clustered at the district level. Bands report 90% confidence
intervals.
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Figure 1.E.9: Flexible Double Differences Effect of Neighborhood Out-Migration
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(b) Non-Return Migrants
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Notes. These figures report the effect of neighborhood out-migration on innovation. The units of
observation are individuals observed at a yearly frequency between 1900 and 1920. The sample
consists of all males who did not emigrate over the period and aged at least 18 in 1900. The dependent
variable is the number of patents obtained every year. In Panel 1.E.9a, the treatment variable is an
indicator that returns value one after at least one person that was living in the same neighborhood as
the individual migrates to the United States; in Panel 1.E.9b, we restrict to emigrants that never return
in the period of observation. Each model includes individual and parish-by-year fixed effects. Standard
errors are clustered at the district level. The estimates are obtained using the estimator discussed in
Borusyak et al. (2021). Bands report 95% confidence intervals.
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Figure 1.E.10: Co-variate Balance for Individual-Level Design
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Notes. These figures report the correlations between individual-level observable characteristics and
treatment status in the individual-level analysis. The units of observation are individuals observed at a
yearly frequency between 1900 and 1920. The sample consists of all males who did not emigrate over
the period and aged at least 18 in 1900. Variables are observed in the 1911 census. Hence some of them
are not pre-determined when the treatment initiates. Each dot reports the correlation between the row
variable and a dummy variable equal to one if the individual is treated in the observation period and
zero otherwise. Variables are standardized for readability. Panel (A) reports the unweighted
correlation; in Panel (B), individuals are weighted by their CEM weights. Standard errors are clustered
by division. Bands report 95% confidence intervals.
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Chapter 2

The Economic Effects of Immigration Restriction

Policies*

Evidence from the Italian Mass Migration to the US

2.1 Introduction

In recent years, attitudes towards immigration in developed countries have considerably de-

teriorated (e.g., Guriev and Papaioannou, 2022). Immigration restriction policies (henceforth,

IRPs) are becoming increasingly common, reinforcing an upward trend that has been docu-

mented since the 1970s.2 A large literature in economics studies the potential effects of these

pieces of legislation in countries receiving migrants. Evidence on emigration countries remains,

however, comparatively scant.3

In this paper, we focus on one crucial dimension of economic growth: technology adop-

tion. Since developing and emigration countries typically operate far from the technology fron-

tier, the adoption of new technologies represents a major source of productivity gains.4 This

*This chapter is jointly authored with Lorenzo Spadavecchia. We are particularly grateful to Mara Squicciarini
for her continued guidance and support. We thank Maristella Botticini, Gaia Dossi, Stefano Fiorin, Michela Gior-
celli (discussant), Simon Görlach, Thomas Le Barbanchon, Nicola Limodio, Jaime Marques Pereira, Luke Milsom
(discussant), Joel Mokyr, Nathan Nunn, Gianmarco Ottaviano, Sebastian Ottinger, Elena Stella, Marco Tabellini,
and seminar participants at Alghero, Bari, Bocconi, CESifo, EEA/ESEM, IZA, OECD, and Warwick for insightful
comments and discussions. We acknowledge financial support from Bocconi. Nicola Fontana, Marco Manacorda,
Gianluca Russo, and Marco Tabellini kindly shared data with us.

2Data from (De Haas et al., 2015) show that immigration restriction policies make up for approximately 40% of
the entire corpus of migration laws. This share has been steadily increasing since the beginning of the 1970s.

3Clemens (2011) notes that in the RePEc archive, papers on emigration account for 25% of the overall migration
literature.

4Several papers highlight the centrality of technology adoption for economic growth, especially in countries far-
ther from the technology frontier, both theoretically (e.g. Parente and Prescott, 1994; Foster and Rosenzweig, 1995;
Eaton and Kortum, 1999) as well as empirically (e.g. Suri, 2011; Bryan et al., 2014; Juhász et al., 2020). Historically,
Gerschenkron (1962) famously discusses the technological catch-up of countries at the periphery of the industrial
world in the XIX century.
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notwithstanding, the effects of out-migration – and policies attempting to restrict it – on tech-

nology adoption are ex-ante ambiguous and potentially conflicting. On the one hand, emigra-

tion entails a loss of human capital – the so-called brain drain – that may hamper the ability

of countries to adopt new technologies (Kwok and Leland, 1982; Gibson et al., 2011; Docquier

and Rapoport, 2012).5 On the other, however, emigration may incentivize the adoption of labor-

saving technologies because it increases the relative cost of labor (among others, see Hicks,

1932; Habakkuk, 1962; Acemoglu, 2002). The former interpretation implies that IRPs would

bolster technology adoption and prove beneficial for long-run growth. The latter theory, how-

ever, predicts that IRP-induced labor supply shocks would dampen the incentive to adopt labor-

saving technologies, thus hampering economic development. In this paper, we offer a causal

quantification of the effects of restrictive immigration policies on technology adoption in emi-

gration countries.

We investigate this question in the context of the Age of Mass Migration, the largest episode

of voluntary migrations in recorded history (Choate, 2008). Specifically, we focus on Italy, the

archetypal sending country during this period. From 1876 to 1925, approximately 17 million

emigrants left Italy (nearly 70% of the average Italian population in 1900); about half of them

never returned. Italy had one of the highest emigration rates and, since the 1890s, it was the

leader in sheer emigration numbers (Hatton and Williamson, 1998). On average, 40% emigrants

headed toward the United States, and the remaining 60% were split between South America

and Europe. The United States was therefore the single most absorbent emigration destination.

Italian mass migration to the United States, however, abruptly ended in 1921, when Congress

passed the first of a series of restrictive IRPs that we refer to collectively as the “Quota Acts.”

The Quota Acts defined numerical quotas for European countries that were based on how many

citizens from each country were recorded living in the United States at a given point in time.6

We leverage the differential exposure to this shock across Italian districts to estimate the

economic effects of emigration on industrialization and technology adoption. Comparable em-

pirical exercises face three major limitations. First, emigration seldom flows into only a few

destinations; hence, it is difficult to observe large restrictive policy shifts. Second, migration

5Emigration has been shown to influence, among others, human-capital accumulation through remittances
(Fernandez-Sanchez, 2020), return migration (Dustmann et al., 2011), and increased returns to schooling (Beine
et al., 2008). In this paper, however, we focus on technology adoption as one major determinant of long-run growth.

6The 1921 Emergency Quota Act restricted the annual number of immigrants admitted into the United States
to no more than 3% of the number of residents from that country, as recorded in the 1910 census. The 1924
Johnson-Reed Act reduced the quota to 2%, and pegged the reference date to the 1890 census. These laws explicitly
targeted Southern and Eastern European countries, which until the early 1900s hardly took part in the Age of
Mass Migration and whose immigrants were perceived by the public as a threat to America’s economic welfare
and cultural values (Higham, 1955).
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dynamics are often affected by co-evolving regulations enacted by both receiving and send-

ing countries which were absent during the period we study (Abramitzky and Boustan, 2017).

Third, it is often difficult to retrieve information on emigrants in their home country (Dustmann

et al., 2015).7 Our unique historical setting allows overcoming these difficulties.

Our empirical strategy relies on different exposure to the Quota Acts across Italian districts.

Consider, for the sake of argument, two districts A and B, both of which had high emigration

rates. However, most migrants from district A went to the United States, whereas none from

district B did. Our key observation is that district A will be highly exposed to the Quota Acts,

whereas district B will not. This is because emigration flows displayed substantial time and

spatial persistence. Local information diffusion and social networks shaped the dynamics of

Italian mass migration more than home-destination wage gaps (Gould, 1980b).8 Formally, our

identification assumption thus requires that districts with similar emigration rates but different

destinations would not have undergone different development trajectories had the Quota Acts

not been enacted, i.e. they were on parallel trends in terms of the outcomes we consider. We

provide several pieces of evidence supporting this assumption. In Figure 2.2, we plot emigrants

as a fraction of the total population, showing that Northern, as well as Southern regions, experi-

enced varying emigration intensities. By contrast, the share of emigrants heading to the United

States is prevailing in the Mezzogiorno (South of Italy). The figure also shows that exposure to

the Quota Acts reflects these heterogeneous patterns once we control for the extensive margin

of emigration.9 It is straightforward to conceive this context in terms of a simple difference-in-

differences (DiD) framework with a continuous treatment defined by some measure for quota

exposure at the district level, where we control for the share of emigrants relative to the total

population.

Existing data from official statistics are not suitable for this exercise because (i) digitized US

and Italian censuses and complementary historical statistics do not report the origin of Italian

migrants at a granular level of spatial aggregation, and (ii) disaggregated indicators of economic

performance for Italy remain scarce. We thus construct a novel dataset linking administrative

7Aydemir and Borjas (2007) and Mishra (2007) overcome this issue by studying Mexican emigration to Canada
and the United States, exploiting that about 95% of Mexican emigrants go to the United States. Meanwhile, Dust-
mann et al. (2015) study this in the context of Poland. These studies all lack exogenous variation to credibly identify
the causal impact of migration policy on economic development in sending countries.

8Recently, Spitzer and Zimran (2020) formally validated the original information-diffusion hypothesis formu-
lated by Gould (1980b). Further, Brum (2019) argues that the location choice of pioneers was a key determinant of
future emigration outflows across districts. These findings confirm the original result from Hatton and Williamson
(1998), who noted that pull factors, rather than push factors, explain the bulk of variation in Italian emigration.

9In Figures 2.C.1, 2.C.2, and 2.C.3, we show that more-exposed districts were not on different development trajec-
tories before the Quota Acts, conditional on total emigration. This is key for valid causal inference of our estimates,
as we explain later.
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records of Italian emigrants who arrived at Ellis Island between 1892 and 1930 to their district of

origin, and we complement it with newly digitized detailed data from industrial and population

censuses. These data allow us to document three sets of results.10

We first show that industrial firms located in districts more exposed to the Quota Acts sub-

stantially decreased investment in capital goods. We measure investment in capital-intensive

production technologies with the number of installed engines, and we further distinguish be-

tween traditional mechanical engines and cutting-edge electrical ones. The electrical engine—a

defining technology of the Second Industrial Revolution—could yield sizable productivity gains

(David, 1990; Mokyr, 1998). We show that in more-exposed districts, the adoption of engines

slowed. This effect is particularly strong in magnitude for electrical engines, either measured

in absolute number or weighted by the horsepower they generated. This is relevant for our

argument because electrical engines were a decisively labor-saving technology (Gaggl et al.,

2021). We also show that the worker-per-engine ratio, a proxy for the labor intensity of pro-

duction technologies, increased in firms located in more-exposed districts. This result is consis-

tent with findings by Andersson et al. (2022), who show that emigration fosters the adoption of

labor-saving technologies because it dampens labor supply, hence increasing the relative cost

of labor. Since technology adoption is a key driver of long-run growth (e.g., Juhász et al., 2020),

our evidence suggest that the Quotas had possibly detrimental effects on Italian economic de-

velopment.

To rationalize these findings, we advance and validate the hypothesis that IRPs induce a

geographically segmented labor supply shock.11 This is because, following an IRP, all those who

would have migrated had the policy not been enacted are—at least partly—forced to join the

local employment pool. More abundant (thus cheaper) labor dampens the incentive for firms

to adopt capital-intensive technologies, as we observe. Under this interpretation, in Italy, the

Quota Acts effectively implied that more-exposed districts experienced a disproportionate in-

crease in labor supply, relative to less-exposed ones. Districts that experienced more emigration

until 1924 were more exposed to the quotas because pull factors were disproportionately more

effective there.12 We document that population in these districts grew comparatively more rel-

ative to districts that were less exposed to the Quota Acts. We provide supportive evidence

10In Section 2.D.1, we develop a simple theoretical framework to explain our results in the context of labor-saving
directed technical adoption, in the spirit of Zeira (1998) and San (2022).

11This approach mirrors that of Abramitzky et al. (2019), who document that the Quota Acts induced a negative
labor supply shock in U.S. counties whose intensity depended on the prevailing origin of immigrants across Euro-
pean countries. In a similar spirit, Beerli et al. (2021) show that a reform that granted free access to the Swiss labor
market to European workers increased natives’ wages and benefitted Swiss firms.

12Several studies have documented that emigration location choices tend to persist over time (e.g. Gould, 1980b;
Brum, 2019; Fontana et al., 2021; Spitzer and Zimran, 2020).
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of this mechanism, showing that (i) emigrants did not substitute the United States with other

arrival destinations—neither internal nor international—and (ii) emigration outflows toward

unrestricted countries, i.e., countries that did not promulgate IRPs, did not increase. Hence,

districts that had been supplying relatively more U.S.-bound emigrants ended up having more

“missing” migrants, i.e., people who would have migrated had the Quota Acts not been enacted.

This mechanism generates a spatially segmented positive labor supply shock. If our directed

technical adoption interpretation is correct, we would expect to observe increased industrial

employment in more-treated districts.

To further assess the soundness of the directed technical adoption hypothesis and validate

it against alternative mechanisms, we study how employment across sectors reacted to the IRP-

induced labor supply shock. We focus primarily on the two biggest sectors at the time, agri-

culture and manufacturing.13 We find that employment in manufacturing grew considerably

in districts that were comparatively more exposed to the Quota shock. This finding is consis-

tent with directed technical adoption: firms in manufacturing substituted capital goods with

more abundant, therefore cheaper, labor provided by missing migrants. By contrast, in agri-

culture, we find no sizable increase in employment. A possible explanation for this finding is

that agriculture in this period was a largely labor-intensive activity, hence the incentive for

manufacturing firms to enlarge their labor stock following the Quota shock was larger than for

agriculture firms. Because industrial employment grew and agricultural employment did not,

the share of workers engaged in manufacturing increased.

Identification, and therefore a causal interpretation of our estimates, may fail if condi-

tional variation in U.S. emigration rates was still systematically correlated with economic per-

formance. Historical evidence provided by Spitzer and Zimran (2020) suggests that this is un-

likely. Information diffusion and local social networks were the decisive factors influencing

emigrants’ location decisions. While we cannot test the baseline identification assumption, we

develop two instrumental variables (IVs) to deal with residual endogeneity concerns. In the first

validation exercise, we develop an IV along the lines of Tabellini (2020). This allows us to fix the

cross-sectional variation in emigrant origin to a given—early—point in time, and to predict a

district’s emigration using the time-series variation in aggregate outflows, dropping emigrants

from that district. Our second IV exploits variation stemming from the timing of when districts

became connected to the railway system, in the spirit of Sequeira et al. (2020). Because railways

drastically reduced transportation costs, they fostered out-migration. Moreover, U.S. emigra-

tion boomed as districts got "closer" to transoceanic emigration ports. We thus leverage time

13We repeat the entire analysis at the manufacture-sector level. We find that sectors where technology adoption
drops the most, are also the ones where employment increases the most.
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variation in the evolution of the railway network to instrument U.S. emigration, and we confirm

all the baseline results. Both instruments confirm the main results.

This paper is related to three streams of literature. First, we speak to the several contri-

butions seeking to investigate the impact of emigration on sending countries, as opposed to

the much more developed literature studying the economic and social effects of immigration.14

This literature identifies human-capital accumulation as the key driver of economic growth fos-

tered by emigration; it is fueled either by return migrants or by increased returns to schooling

(Beine et al., 2008; Dustmann et al., 2011; Dinkelman and Mariotti, 2016; Akram et al., 2017;

Fernandez-Sanchez, 2020). Evidence by Becker et al. (2020) in the context of forced migrations

echoes these findings. We inform this literature by studying a different mechanism whereby

emigration fosters the adoption of labor-saving technologies. We emphasize that this channel

operates plausibly independently from human-capital accumulation.

Second, we contribute to the literature that studies the relationship between technology

adoption and the supply of production inputs. Beyond the path-breaking contributions by Hicks

(1932) and Habakkuk (1962), Hornbeck and Naidu (2014), Clemens et al. (2018), and Hanlon

(2015) all study historical settings where changes in the availability of labor and other factors

of production altered the direction of innovation activity. Lewis (2011) offers similar evidence

in a modern setting. Our paper is closest in spirit to Andersson et al. (2022), who show that labor-

saving innovation emerged in response to migration-induced labor shortages in 19th-century

Sweden. Similar to their paper, we emphasize the labor supply-shock mechanism. However, we

focus on technology adoption, and leverage exogenous variation in a DiD framework.15 Several

studies document the importance of technology adoption as a key driver of long-run growth,

particularly in developing countries (Suri, 2011; Bryan et al., 2014; Juhász and Steinwender,

2018). Gerschenkron (1962) argues that technology adoption was a pivotal factor that enabled

countries at the periphery of the industrialized world, such as Italy, to catch up with leading

industrial nations. Moreover, while Andersson et al. (2022) study the effect of a labor shortage,

this paper documents how excess labor stemming from immigration restriction policies shapes

the adoption of new technologies.

14Borjas (1995, 2014) produced two influential reviews of this literature. Dustmann and Görlach (2016) discuss
why empirical works studying immigration reach conflicting conclusions. Abramitzky and Boustan (2017) sur-
veyed papers studying historical and contemporary U.S. immigration. Hatton et al. (2005) and Ferrie and Hat-
ton (2015) provided two complementary works studying the role of immigration from the standpoint of global
economic history. Clemens (2011) instead surveyed the literature studying the effects of emigration on sending
countries.

15We do not cover innovation, both because Italy performed poorly by standard indicators of innovation and
because Italian firms were not on the technological frontier during this period (Vasta, 1999; Nuvolari and Vasta,
2015).
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Third, by virtue of its setting, this paper is related to the large, growing literature investi-

gating the exceptionally broad social phenomenon represented by the Age of Mass Migration

(for a review, see Abramitzky and Boustan, 2017). We owe our baseline empirical strategy to

the approach pioneered by Abramitzky et al. (2019), who leverage differential exposure to the

Quota Acts to study how labor scarcity affected the United States. Several papers study both

the short-run (Abramitzky et al., 2014; Tabellini, 2020) as well as the long-run (Burchardi et al.,

2020; Sequeira et al., 2020) effects of Transatlantic migration. Focusing on emigration countries,

Karadja and Prawitz (2019) document that the mass migration fostered the demand for political

change in Sweden. Circling back to Italy, Hatton and Williamson (1998) study the aggregate de-

terminants of Italian emigration. Spitzer and Zimran (2020) validate the Gould (1980b) theory,

whereby social networks exerted substantial influence on Italian emigration dynamics. Pérez

(2021) compares the assimilation dynamics of Italian emigrants to the United States with those

who moved to Argentina. Our contribution to this literature is twofold. In terms of method-

ology, we build the first highly comprehensive geographically disaggregated dataset of Italian

emigrants during the years when the bulk of Italian mass migration took place (1900–1914).

We also present newly digitized district-level data from population and industrial censuses. In

terms of new findings, we show that the massive outflow of unskilled labor leaving Europe

toward the Americas was unlikely to have hampered the structural shift towards manufactur-

ing, even at the periphery of the (slowly) industrializing Old World. Our results suggest that

the opposite impact prevailed: immigration restriction was what likely threatened economic

modernization in Italy.

We structure the paper as follows. Section 2.2 describes Italian mass migration, the policies

that shaped it, and the key economic characteristics of early 20th-century Italy. In Section 2.3,

we discuss our data-collection contribution and our sources. In Section 2.4, we detail our em-

pirical strategy, and we present our three sets of results. Section 2.5 presents our key robustness

checks and our IV exercises. Section 2.6 concludes.

2.2 Historical Context

2.2.1 The Italian Mass Migration

The Italian mass migration (1870–1925) was the largest episode of voluntary migration in recorded

history (Choate, 2008). Between 1880 and 1913, 17 million —corresponding to 65% of the Ital-

ian population in 1900—emigrated; most headed toward continental Europe and the Americas.

Along with Ireland, Italy had the highest per capita emigration rate (Taylor and Williamson,
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1997). Even though Bandiera et al. (2013) document that return rates were equally among the

highest in Europe, the Italian mass emigration has long been recognized as a focal feature of

the country’s development process (Hatton and Williamson, 1998, p. 75). Gould (1980a) vividly

describes late-19th-century Italy as the archetypal case of mass migration.

Italy was a latecomer to large-scale mass migration. Northern European countries had been

experiencing substantial population outflows since the 1840s. By contrast, Italy, along with

other Southern and Eastern European countries, didn’t start experiencing mass emigration un-

til the 1880s. The country’s migration patterns over the 1870–1925 period display substantial

time variation. Until the 1880s, its emigration rate remained relatively modest, and the bulk of

its migrants hailed from Northern regions. Prohibitively high transportation costs and prevail-

ing poverty in rural Southern areas largely inhibited migration from the Mezzogiorno.16 During

the 1880s, Northerners chiefly moved to neighboring countries on a temporary, seasonal basis

(Sori, 1979). The widespread adoption of steamships and an agrarian crisis kicked off the South-

ern mass emigration (Keeling, 1999). A decade later, the script had flipped: most migrants were

now coming from Southern regions. Though the share of migrants from Northern regions de-

clined as the share from Southern regions grew, emigration rates from both areas rose steadily

from 1870 to 1913 (Hatton and Williamson, 1998, p. 100). By the 1890s, Italy had become the

global leader both in sheer numbers of emigrants and in emigration rate, which grew from 5‰

in 1880 to a peak of 25‰ in 1913 (Hatton and Williamson, 1998, p. 95). Again, only Ireland had

emigration rates comparable to Italy’s during the Age of Mass Migration.

Italian emigration collapsed during World War 1 (WW1) but quickly regained momentum

in the years immediately following the war. The epoch effectively came to an end by the early

1920s, when the U.S. Congress enacted a series of restrictive immigration policies that effec-

tively halted mass emigration to the United States. Emigration toward other transoceanic and

European destinations nonetheless endured until the outbreak of WW2.

In the 1880s, Italy was a young nation rife with regional disparities spanning cultural and

economic dimensions (Smith, 1997). The resulting geographically segmented migratory pat-

terns largely reflected this substantial heterogeneity and provide the backbone of our empiri-

cal strategy. Until the early 1880s, the vast majority of migrants from Northern regions moved

to European countries. Most of the rest steamed across the Atlantic, to Argentina and Brazil.

This pattern is completely reversed for Southern migrants, whose primary destination was the

United States. The share of U.S.-bound migrants increased substantially over time in every Ital-

ian region. By the 1910s, the United States had become the primary transoceanic destination for

16This term refers to Southern Italy, corresponding to NUTS-2 areas ITC and ITH. Regions within these areas are
Lazio, Abruzzi e Molise, Campania, Puglie, Basilicata, Calabrie, Sicilia and Sardegna.
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all of Italy, though Northern migrants still tended to prefer continental European destinations.

To explain why destinations with low relative wage gaps such as Argentina and Brazil re-

ceived sizeable migration inflows, Gould (1980b) hypothesizes that local emigration dynamics

were driven by a process of information diffusion. Information about emigration opportunities

required time to spread across the country, and this diffusion accelerated as the volume of em-

igration increased. This process implied that emigration from different localities followed an

S-curve, whereby emigration started slow, then picked up the pace, until eventually leveling off

at saturation. Gould (1980b) provides convincing evidence suggesting that declining regional

emigration-rate inequality is consistent with this mechanism. An indirect consequence of the

Gould hypothesis is that local emigration rates displayed relatively little sensitivity to economic

and demographic conditions, instead featuring high persistence (Hatton and Williamson, 1998,

p. 99). Gould’s hypothesis further strengthens our identification scheme. We leverage differen-

tial exposure of Italian districts to the U.S. Quota Acts to estimate the impact of a restrictive mi-

gration policy on economic development. Had migration decisions been exclusively driven by

local economic conditions in the first place, our exclusion restriction may have turned weaker.17

Transportation costs may have also influenced international migration patterns. System-

atic data on ticket fares are, to the best of our knowledge, lacking. Anecdotal evidence sug-

gests that the price of a ticket from Naples to New York be around 170-190 lire at 1900-prices

(Gomellini and O’Grada, 2011). By contrast, a third-class train from Naples to Milan would cost

100 lire, and one to Paris or Berlin would make another 100 (dei Deputati, 1907, p. 14873).

Gomellini and O’Grada (2011) suggest that a Southern unskilled laborer would make about

500 lire if he stayed at home, while in New York the figure would be around 2000-2500 lire.

Compounding wage differentials between Italy and the US, these figures highlight that for the

Southern population transatlantic migration was a far cheaper option than both internal relo-

cations as well as continental out-migration. Differences in transportation costs, however, are

unlikely to explain the choice between transoceanic destinations. Pérez (2021) documents that

a ticket from Naples to Buenos Aires in 1902 would cost 170 lire. For Southern emigrants, so-

cial networks rather than transportation costs, therefore, influenced the preferred emigration

destination.

17Spitzer and Zimran (2020) provide evidence consistent with Gould’s diffusion hypothesis. They show that em-
igration began in a few districts in the 1870s and 1880s, then subsequently spread to nearby districts over time
through immigrants’ social networks.
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In the United States, Italian emigration was part of the “second wave” of immigration, com-

ing mostly from Southern and Eastern Europe. Compared to first-wave countries such as Eng-

land and Germany, poorer second-wave nations tended to supply less-educated, less-skilled mi-

grants who experienced harder living conditions, assimilated more slowly and played economic

catch-up with the natives for longer (Daniels, 1959; Abramitzky and Boustan, 2017; Albert et al.,

2021). Italian emigrants, typically unskilled agricultural workers, were no exception. Because

we exploit a migration policy shift to assess the impact of emigration on economic development,

the potential endogenous selection of migrants may be relevant for our results.18 Spitzer and

Zimran (2018) nonetheless show that migrants from Southern regions, who constituted the bulk

of transoceanic migration, were positively selected.

One last, largely overlooked component of labor migration in Italy during the Age of Mass

Migration is internal migration. Current data limitations hinder a quantitative study of internal

migration from 1870 to 1925. In the rest of this study, we abstract from explicitly accounting for

internal migrations for three reasons (beyond data availability). First, Gallo (2012) shows that

internal migrants were easily outnumbered by international migration flows, particularly dur-

ing the Age of Mass Migration. Second, internal mobility was largely temporary and seasonal,

inherently different from transoceanic migration (Gallo, 2012, p. 32). Third, internal migrations

reflected historically deep-rooted, persistent economic relationships between regions that are

unlikely to influence our results on economic modernization in the 1930s (Gallo, 2012, p. 38).

2.2.2 Migration Policy in Italy and the United States

Newly unified Italy had virtually no emigration policy until 1873. Occasional, largely ineffective

provisions were enacted between 1873 and 1887 that reflected the perceived need to deal with

labor agents and recruiters, the so-called padroni, but did not form a corpus of migration law

(Gabaccia, 2013, p. 55). The first such attempt at that was the 1888 Crispi-De Zerbi law, which

introduced and regulated the contract of emigration between the migrant and the migration

agency. The law was manifestly inadequate, however, to deal with the waves of migration that

unfolded starting in the 1890s: it regarded emigration as an artificial phenomenon instigated

by migration agencies and attempted to centralize its governance. Apart from a small measure

to control ticket fares, it effectively failed (Foerster, 1919, p. 477).

Italian policymakers came to realize that emigration was more likely to make laws, rather

18Consider the case of negative migrant selection. The additional manpower forced to remain in Italy by the
restrictive U.S. migration policy shock would be of relatively low quality. This would confound and downward
bias our estimated impact of migration on economic development.
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than abide them (Foerster, 1919, p. 475). The 1901 emigration law was passed under the re-

newed understanding that emigration was no artificial phenomenon and that it could bear

positive effects on Italy. As such, the law sought to protect migrants from exploitation, rather

than restricting their movement. The law established a Commissioner-General of Emigration

to oversee the protective institutions and collect data on migrants. Only companies licensed by

the Commissioner-General could sell tickets, whose rates were reset every three months. Com-

paratively minor subsequent legislation further protected remittances (1901), strengthened the

authority of the Commissioner-General (1910), and regulated citizenship (1913) (Rosoli, 1998, p.

43).

Throughout this period, Italy either failed at or abstained from, enforcing emigration re-

strictions (Foerster, 1919, p. 501). The open-border policy enacted by the Italian government,

coupled with (if not driven by) the overwhelming tide of migration flows, implies that emigra-

tion featured as a first-order dimension of Italian economic and social development.

The United States, for its part, maintained an open border between 1775 and the early

1920s, interrupted only by isolated outbreaks of anti-immigration policy interventions. During

the Age of Mass Migration, some 30 million migrants entered the United States. By 1910, 22% of

the labor force was foreign-born, the highest such share ever since (Abramitzky et al., 2014). The

first lasting attempt to limit immigration was the Chinese Exclusion Act, which effectively halted

Chinese immigration until its repeal in 1943.19 In 1895, a bill was introduced by Henry Cabot

Lodge requiring that a literacy test be administered to each immigrant upon arrival. Congress

voted for the bill, but it was vetoed by President Cleveland in 1897. Two other such proposals

were vetoed by Presidents Taft and Wilson in 1912 and 1915, respectively (Koven and Götzke,

2010, p. 130). A literacy-test law was eventually passed in 1917, but it was largely ineffective

thanks to rising literacy rates in Europe (Goldin, 1994).

In 1907, the United States Congressional Joint Immigration Commission, also known as

the Dillingham Commission after its chairman, was formed to study, among other things, the

economic and social conditions of immigrants. The Commission’s 41-volume report favored

"old" immigration countries such as England and Germany over "new," mainly Southern and

Eastern European ones. The commission opined that because immigration from second-wave

countries displayed higher return rates, migrants were less likely to assimilate (Higham, 1955).

The highly influential report shaped numerous migration policy interventions. When immigra-

tion ramped up again after WW1, nativist demands for restrictions surged, and the Emergency

Quota Act was passed in 1921. It was modified by the 1924 Immigration Act, which further

19The Chinese Exclusion Act was built on the 1875 Page Act, which banned Chinese women from immigrating.
To date, these are the only U.S. laws to have explicitly targeted one ethnic group.
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tightened immigration restrictions on second-wave countries.

The 1921 Emergency Quota Act envisaged a (temporary) annual quota of 360,000 immi-

grants from Europe.20 Importantly for our identification, entry quotas were assigned to each

country as 3% of that country’s nationals living in the United States in 1910, as recorded in that

year’s census. The 1924 Immigration Act made the quota system permanent, lowered the inflow

from 3% to 2%, and shifted the census baseline year to 1890. The last provision, in particular,

disadvantaged countries newer to mass migration, consistent with the recommendations of the

Dillingham Commission.

Abramitzky et al. (2019) note that the 1924 Immigration Act had a highly heterogeneous im-

pact on immigration across different sending countries. Flows from Southern and Eastern Eu-

rope were heavily curtailed because the share of foreign-born individuals from those countries

who lived in the United States in 1890 was extremely small. The quotas assigned to Northern

and Western European countries were comparatively generous. For our purposes, the 1921 and

1924 laws (henceforth, the Quota Acts) effectively halted Italian mass migration to the United

States. Since the 1890s, America had been absorbing 30% to 40% of all Italian emigration, so

the Quota Acts represented a major policy shock for Italy.

2.2.3 Technology Adoption and Economic Growth in Italy

Italy entered the Age of Mass Migration in the 1880s. The country was in the midst of an agrarian

crisis (Toniolo, 2014, pp. 60-73) that followed two decades of stagnation. The period from 1895

to 1913 was the only time until the 1950s “economic miracle” in which Italy managed to outper-

form and narrow the income gap with the leading industrial nations. In the 1920s and 1930s,

during the Fascist period, Italy was still a mainly agricultural country, featuring low income per

capita and stagnating productivity (Cohen and Federico, 2001, p. 23). During the first half of the

Fascist Ventennio, economic policy was aimed primarily at fiscal and monetary consolidation.

Agricultural policy—which formed an integral part of the Fascist propaganda—centered on

boosting agricultural productivity, which had been stagnating since WW1, and draining marsh-

lands. However, sheer numbers attest that agricultural policies resulted in neither substantial

intervention nor sizeable progress (Zamagni, 1990, p. 262). All in all, growth slowed after 1925

and regional disparities further widened (Cohen and Federico, 2001, p. 15). Historical evidence

is thus consistent with our finding that following the 1921–1924 U.S. emigration restrictions,

Italy underwent a period of economic distress and rising regional inequality.

20U.S. immigration peaked in 1907, at 1,285,349 entrants. The number of entrants during the 1910s averaged
around 800,000.
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We relate the migration shock to diminished investment in capital goods, especially tech-

nologically advanced ones, and to a shift to labor-intensive production routines. Italy was

nowhere near the technological frontier throughout the period, and skill premia actually de-

clined from the 1890s onward (Vasta, 1999; Federico et al., 2021). Like today’s developing coun-

tries, Italy lagged behind large industrial nations in research-and-development expenditures,

and it imported substantial amounts of foreign technology, both patents, and machinery. When-

ever possible, Italian firms bundled different vintages of capital, adding new machines to exist-

ing ones instead of renovating the whole stock (Cohen and Federico, 2001, p. 51). The large pool

of unskilled workers made it more profitable for Italian entrepreneurs to adopt labor-intensive

technologies relative to the highly capital-intensive German and British ones. Consistent with

this narrative, we find that the migration policy shock increased the stock of unskilled work-

ers in regions with high emigration. There, firms opted out of investment in capital goods and

became more labor-intensive, thus hampering the process of modernization they had been un-

dergoing prior to the Quota Acts.

2.3 Data

Our analysis spans the years 1881 to 1936. We collected data from a number of sources; we

stacked the data by census years and analyzed them at the circondario (henceforth, "district")

level of aggregation.21 In 1921, there were 216 districts, each consisting of a variable number

of municipalities (see Online Appendix section 2.A for a complete description of the data). Be-

cause districts were abolished in 1927, all subsequent data are collected at the municipality

level and aggregated at the 1921-district boundaries. Table 2.1 reports summary statistics for

the variables in our final dataset.

2.3.1 Emigration

Italian official emigration statistics are of limited scope because out-migration flows were recorded

at the province-level of aggregation (Hatton and Williamson, 1998). Province-level data are

not suited for quantitative analysis, because provinces were relatively large: in 1921, there

were only 60 provinces that together contained a population of approximately 20 million. This

21Population censuses were taken in 1881, 1901, 1911, 1921, 1931, and 1936. We do not include data prior to 1901
in our baseline analysis, except for population. Districts were instituted in 1859 as the middle administrative unit
between municipalities and provinces. They had mainly statistical and judiciary purposes and were granted little
administrative autonomy. In Online Appendix section 2.A.2 we discuss more in detail the sources that we digitized
and present a visual summary of all the variables we analyze.
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naturally limits the use of official statistics for an econometric exercise. We nonetheless digi-

tize province-level emigration outflows and use them to validate the series we derive from the

dataset that we assemble (see Online Appendix section 2.A.1.3).

To overcome this issue and study the Italian mass migration to the United States, we col-

lected administrative records of Italians who entered the country between 1892 and 1930 through

the Ellis Island immigration station.22 This was by far the largest, though not the only, immi-

gration gateway during this period.23 Administrative records report, for the vast majority of

migrants, name and surname, year of arrival, age, municipality of origin, and sailing ship. In

this study, we concentrate on the migration year and the municipality of origin. Ultimately, we

collected approximately 2.7 million individual observations spanning the years 1890 to 1930.

Because all data were recorded by U.S. officials, the municipality variable displays frequent

coding errors. We adapted the matching procedure from Abramitzky et al. (2014), using a

sound-spelling similarity metric to account for orthographic and misspelling errors24. We then

set a threshold measure below which we accepted the best-matched municipality and above

which we dropped the observation; we then ran robustness checks around this threshold. In

our preferred specification, we were able to match 1.6 million migrants to their origin munic-

ipality. Among those, 800,000 are coded with no error. We mapped each municipality to the

district it belonged to in 1921, then we computed district-level yearly flows. To the best of our

knowledge, this is the most comprehensive data spanning the whole Age of Mass Migration for

Italy, at this level of aggregation.25 In figure 2.1, we plot the overall country-level yearly inflow

of emigrants who landed in Ellis Island from 1890 to 1930. Emigration took off in the mid-

1890s and peaked between 1905 and 1913. It collapsed during World War 1 (WW1), quickly

regained momentum in 1920, then was definitively shut down by the Quota Acts in 1921 and

1924. Our data are consistent with both comprehensive U.S. immigration data and overall Ital-

ian migration patterns (Brum, 2019; Sequeira et al., 2020). In Figure 2.2, we plot the geographical

22These records are freely available at heritage.statueofliberty.org. We run queries over a comprehensive
pool of 20,000 Italian surnames over 1890–1930 period. In Online Appendix section 2.A.1.3 we document that
our newly constructed series correlates well with existing—albeit less granular—emigration data from official
statistics.

23According to official U.S. statistics, between 1892 and 1924, a total of 14,277,144 migrants entered the country
through Ellis Island, out of a total immigration inflow of 20,003,041 (Unrau, 1984, p. 185). Thus, Ellis Island alone
accounted for 71.4% of the total immigrant inflow. Some 95% of all Italian immigrants passed through Ellis Island.

24In section 2.A.1.1 in the Online Appendix we discuss more in detail the methodology we used to correct coding
errors. In section 2.A.1.2 we show that immigrants whose origin municipality was not recorded represent, in every
year, less than 1% of the overall sample.

25The only other geographically disaggregated data available to date for this period are those collected by Brum
(2019) and Fontana et al. (2021). Both, however, focus on the pre-1900 period. Our dataset is thus the only one
covering the years when the bulk of the mass migration took place (1900–1914).
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distribution of migrants across districts. The upper panel displays variation in the emigrants-

to-population ratio, i.e., the emigration rate. The lower panel reports unconditional variation in

the U.S. emigrants-to-population ratio, which is the baseline measure for treatment exposure.

Both figures normalize emigration by population in 1880 and report the resulting standardized

series.

2.3.2 Population

We digitize information from six population censuses: in 1881, 1901, 1911, 1921, 1931, and 1936.

The main outcome variable is the share of workers in industrial sectors. This variable, as well

as total employment in several other sectors, is available for each district between 1901 and

1921. We digitized the 1931 and 1936 census data at the municipality level, then aggregated

them at the district level. More granular data on employment for major manufacturing sectors

are, unfortunately, only available until 1921. For the remaining years, we digitized them from

manufacturing censuses, with the caveat that these are at the province level and are imputed to

districts, as described in the next paragraph. The population of each municipality was compiled

by the Italian statistical office (ISTAT), and we aggregated it by districts. We computed the 𝑘-

urbanization rate of a given district as the share of people living in municipalities of population

𝑘 or higher in that district, relative to the district’s population. In some robustness checks, we

control for the altitude, area, and population density of the districts.

2.3.3 Economic Activity

To measure shifts in the adoption of capital-intensive technology, we digitized province-level

data from the 1911, 1927, and 1937 manufacturing censuses. Manufacturing censuses gath-

ered information on the universe of firms operating in each province at the time of census

completion; they provide valuable information about the amount and vintage of capital goods

employed by firms. We collect data on (i) the number of operating firms, (ii) the number of op-

erating firms employing inanimate horsepower, (iii) the number of mechanical engines, (iv) the

number of electrical engines, (v) the amount of horsepower generated by mechanical engines,

and (vi) the amount of horsepower generated by electrical engines. We distinguish between

electrical and mechanical engines because the former were at the forefront of technological

progress in those years (Gaggl et al., 2021). This allows us to disentangle the possibly differen-

tial impact of the labor supply shock induced by the migration shock on different technology

vintages. Industrial census data are available only at the province level. To impute them to dis-

tricts, we regressed province-level outcome variables against the number of workers in each
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sector, controlling for population, province, and year-fixed effects. Then, from the resulting OLS

estimates, we predicted the associated district-level variables.26

2.3.4 Other Data

Italy participated in WWI between 1915 and 1918. Because the war took place between two

census years and ended just three years before the Emergency Quota Act, it can potentially

confound our estimates. We, therefore, collect WW1 death records to measure the geographi-

cal variation in the cost imposed by the war across districts.27 The dataset provides rich infor-

mation on Italian military personnel who died during WW1. Importantly for our analysis, it

includes the municipality of origin of each soldier. Because we conducted our analysis at the

district level, we collapse the dataset from municipalities to 1921 districts, and we measured the

war’s severity in a given district as the ratio between deaths and population in 1910. In Tables

2.B.16 and 2.B.7, we report all our results, further controlling for this measure interacted with

a posttreatment indicator, and we confirm our baseline estimates.

To implement our railway instrumental variable, we digitized the entire Italian railway

network over 1839–1926 period.28 For each railway section, we know all the stations it is con-

nected to. Stations are generally labeled in terms of the municipality they were located in.

Further details are included for stations located in municipalities with more than one station.

We also know the exact date when each trunk was built and opened to public use, as well as

the distance it covered and the traction system the trains employed. We use these data to con-

struct the Italian railway network. To capture its evolution over time, we took snapshots of the

network at decade frequency.

26In Online Appendix section 2.A.2.1 we explain how we conduct the imputation of province-level data to dis-
tricts. We then validate our imputation methodology by comparing imputed and measured variables.

27Death records were collected by the Fascist regime for propaganda purposes. They are available at caduti-
grandeguerra.it. This dataset is maintained by the Istituto per la storia della Resistenza e della società contempo-
ranea. Acemoglu et al. (2022) were among the first to use them in the economics literature.

28The data come from the volume Sviluppo delle ferrovie italiane dal 1839 al 31 dicembre 1926, edited by the
Italian Statistical Office (Ufficio Centrale di Statistica) in 1927. To the best of our knowledge, this is the first paper
to use these data.
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2.4 Results

2.4.1 Empirical Strategy

In this section we explain the baseline empirical strategy we apply to estimate the causal im-

pact of the Quota Acts on technology adoption and the dynamics of labor supply. Our identi-

fication relies on geographic variation in emigration patterns and intensity across districts in

the pre-quota period.29 Consider for the sake of argument two ideal districts; call them A and

B. From 1890 to 1924, many Italians emigrated from both districts. However, most emigrants

from district A headed toward the United States, whereas none from district B did. District A

will thus be more exposed to the emigration restriction shock relative to district B. This is the

case because social networks and information diffusion exerted a powerful pull, influencing

potential emigrants through previous generations’ emigrants (Spitzer and Zimran, 2020). This

induced substantial persistence in emigration patterns by country of destination. Districts that

had experienced higher emigration toward the United States before the Quota Acts were there-

fore comparatively more exposed to the migration restriction shock relative to those districts

whose emigrants headed mainly toward European and South American countries.

Reality was more nuanced than our example. Emigrants left from all districts and headed

to numerous destinations, hence the intensity of quota exposure varies smoothly with respect

to the relative emigrant outflows to the United States. Importantly, the existing dispersion of

U.S.-bound emigrants by district of origin shown in Figure 2.2 ensures that emigration loca-

tion choices were not systematically correlated with economic development. In other words,

we allow the decision to emigrate to be correlated with economic performance at home. What

we restrict to be conditionally orthogonal to economic performance is the decision of where to

emigrate.30 Our identification assumption—in jargon, parallel trends—thus relies on the key as-

sumption that districts with similar relative emigration outflow but with different destinations

would not have undergone differential development patterns had the Quota Acts not been en-

acted. The wide divide between Northern and Southern regions could threaten our identifica-

tion scheme. In Online Appendix Tables 2.B.16 and 2.B.7, we show that our baseline results are

robust if we include a large set of covariates measured before the Acts, interacted with a year

time trend, as further controls. In particular, we show that including an interaction between

29This identification scheme therefore mirrors that of Abramitzky et al. (2019), who exploit different immigration
patterns by country of origin across U.S. counties and the Quota Acts shock to estimate the economic effects of
immigration.

30In Section 2.5.2, we present a simple instrumental variable that further addresses the possible residual corre-
lation between intensity of exposure to the Quota Acts and economic performance of districts.
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a Southern dummy and a posttreatment indicator does not qualitatively alter the results. This

implies that our estimated effects do not critically depend on a Northern-Southern comparison.

We measure quota exposure of district 𝑐 as

QE𝑐 =
1

Population𝑐,1880

1924∑︁
𝑡=1890

US Emigrants𝑐,𝑡 =
US Emigrants𝑐

Population𝑐,1880
(2.1)

where Population𝑐,1880 is the population of district 𝑐 in 1880, and US Emigrants𝑐,𝑡 is the num-

ber of emigrants who headed to the United States over the period. Since mass outmigration

started in the 1890s, in equation (2.1) we normalize the total number of U.S. emigrants with

district population in 1880 to ensure that the measure for quota exposure does not conflate

confounding variation due to aggregate emigration. Quota exposure in equation (2.1) can be

further decomposed as

QE𝑐 =
US Emigrants𝑐

Emigrants𝑐︸              ︷︷              ︸
Intensive margin ≡ IM𝑐

×
Emigrants𝑐

Population𝑐,1880︸                ︷︷                ︸
Extensive margin≡EM𝑐

(2.2)

where Emigrants𝑐 is the total number of emigrants. The intensive margin (IM) of exposure

measures the relative importance of the United States as an emigration destination; the exten-

sive margin (EM) measures the relative importance of emigration overall. For a district to have

high quota exposure, we thus require that (i) cumulative emigrants are a non-negligible share

of the 1900 population, and (ii) a non-negligible share of those emigrants headed toward the

United States. By contrast, districts with both little overall and little U.S.-bound emigration are

at the bottom of the distribution of QE. In our preferred specification, we control for the exten-

sive margin to compare districts with similar emigration rates but different destinations, hence

exposure. This is because, while the decision to emigrate is likely endogenous to economic de-

velopment, the destination should be conditionally quasi-random. In Section 2.5, we show that

results are robust to two different instrumental variables exploiting a shift-share design, as well

as time-varying access to the railway network. We construct a measure for EM using province-

level data of total emigration available in the census, and we assume constant emigration rates

within each province.31 Figure 2.2 plots the geographical variation in EM and QE. We view the

figure as supportive evidence that variation in QE is quasi-exogenous upon conditioning on the

extensive emigration margin.

31Since district-level data on overall migration do not exist, we cannot test this assumption. However, using
district-level U.S. emigration figures, we find that within-province U.S. emigration rates do not substantially differ
across districts.
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Quota exposure defined in equation (2.1) serves as our baseline treatment. Our dataset is a

panel of districts, observed every census year between 1901 and 1936. Throughout the rest of

the paper, we estimate variations on the following DiD model:

𝑦𝑐,𝑡 = 𝛾𝑐 + 𝛾𝑡 + 𝑥𝑥𝑥′𝑐,𝑡𝛽𝛽𝛽 + 𝛿1 (EM𝑐 × Post𝑡) + 𝛿2
(
QE𝑐 × Post𝑡

)
+ 𝜀𝑐,𝑡 (2.3)

where 𝑦 is the log-difference of a generic outcome variable, 𝑥𝑥𝑥 is a vector of additional controls,

and Post𝑡 is an indicator that is equal to one if 𝑡 > 1924.32 The baseline specification includes

district and time fixed-effects, and standard errors are heteroskedasticity-robust and clustered

at the district level unless otherwise specified. Baseline controls are labor market slackness and

population. The geographic variation in the treatment is shown in the bottom panel of Figure

2.2, where we normalize total U.S. emigration outflows by 1880 population. The term 𝛿2 then

captures the impact of the emigration restriction shock on the outcome variable 𝑦. In all re-

gressions, we control for the emigration rate (EM) because our identification scheme relies on

the fact that districts with similar emigration rates but different destinations would not have

undergone differential development patterns had the Quota Acts not been enacted. In a series

of robustness checks (discussed in detail in Section 2.5), we control for variation due to WW1,

measurement errors in the years following the Quota Acts due to changes in registration proce-

dures at Ellis Island, and possible correlation between QE and the error term. There is evidence,

moreover, that emigration fosters economic ties, chiefly through international trade, between

immigration and emigration countries (e.g. Dunlevy and Hutchinson, 1999). We account for

this by including the interaction between US GDP and Quota exposure as a further control. This

captures demand-type shocks which US emigration districts could be exposed to, depending on

the state of the US business cycle.

Causal inference on estimates of model (2.3) requires that the treatment and control groups

were on the same trend before the treatment (the Quota Acts) occurred. Because no census was

taken in 1891, to test the parallel trends assumption we need to interpolate data points between

1881 and 1901. In the Online Appendix—in Figures 2.C.1, 2.C.2, and 2.C.3—we report the results

of these event-study regressions and provide convincing evidence in favor of the parallel-trends

assumption. All figures report the estimated coefficient of our baseline treatment interacted

with decade dummies. Under the parallel-trends assumption, we expect all coefficients before

the treatment period not to be statistically significantly different from zero, as we observe at

standard confidence levels. In Table 2.2, we instead report correlations between the outcome

32Congress passed the first restrictive migration law—the Emergency Quota Act—in May 1921. The Immigration
Act of 1924 further restricted the number of Italians allowed in the US every year. The choice between 1921 and
1924 as the treatment year is however immaterial since we do not observe districts within the two Acts.
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variables we collect and the measure for quota exposure, conditional on the extensive emi-

gration margin, population, and province fixed effects for 1911 and 1921. This exercise is not

ideal in that we cannot clean for year-fixed effects, but it nonetheless strongly suggests that the

treatment and control groups are comparable at all standard confidence levels before the treat-

ment period. In fact, we find that none of the outcome variables we examine has a significantly

different-from-zero correlation with the treatment before 1921.

2.4.2 Emigration and Technology Adoption

We study how technology adoption and investment in capital goods by manufacturing firms re-

sponded to the IRP shock. To do this, we collect several proxies for capital investment from the

manufacturing census, and we report estimates of model (2.3) for these various outcomes. Our

two baseline measures of investment in capital goods are the number of engines and their in-

stalled horsepower capacity. We distinguish between traditional mechanical engines and tech-

nologically advanced electrical ones. The electrical engine, in particular, was a defining innova-

tion of the Second Industrial Revolution, yielding substantial productivity gains relative to older

mechanical engines (Mokyr, 1998). Importantly, electrical engines were more labor-saving than

electrical ones. We, therefore, interpret investment in electrical engines as a proxy for the adop-

tion of advanced, labor-saving technology, a key driver of long-run economic growth (Juhász

et al., 2020).

U.S. observers evocatively described the turn of the 20th century as the Age of Electricity. In

1900, horsepower produced by electrical engines accounted for a mere 5% of overall consump-

tion for production purposes. Two decades after, this figure had risen to 50% (David, 1990).

Though productivity growth was relatively slow to manifest, it nonetheless became apparent

starting in the early 1920s.

Italian firms were latecomers to technology adoption (Cohen and Federico, 2001). Hence,

it seems plausible that well into the 1930s, electricity represented a major source of potential

productivity growth. Despite the large productivity gains they could yield, Italian firms were

slow to adopt electrical engines. Capital stocks in the early phase of adoption were a patchwork

of different engine vintages. All these implied that, in the United States, capital-per-worker in-

creased following the introduction of electrical engines (David, 1990). We document a different

pattern in Italy in the aftermath of the IRP shock.

Table 2.3 reports the baseline results. We employ six outcome variables to measure in-

vestment in capital goods and technology adoption, and we estimate the causal impact of the
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Quota Acts in model (2.3), controlling for the extensive emigration margin, population, labor-

market slackness, and district and year fixed effects. From left to right, the columns display the

total number of firms, the number of firms with at least one engine of any vintage, the sheer

number of mechanical and electrical engines, and the horsepower of mechanical and electrical

engines. As in all other regression tables, the first row displays the DiD coefficient 𝛿2.33 We

find that investment in mechanical and electrical engines alike declined substantially in more-

exposed districts, whether such exposure is measured as the sheer number of installed engines

or in terms of generated horsepower. In terms of magnitude, however, the effect of the IRP

shock is stronger for electrical engines. Our results are qualitatively unchanged if we restrict

the estimation sample to Southern regions.34

To rationalize this finding, we build on Andersson et al. (2022), who hypothesized that emi-

gration fosters invention and adoption of labor-saving technology because it makes labor a rel-

atively scarce production input. We take the specular perspective, arguing that the Quota Acts,

and IRPs more broadly, induced a geographically segmented positive labor supply shock. Dis-

tricts that before the Acts had experienced high U.S.-bound emigration rates were more exposed

to the policy shock, because they ended up having disproportionately more “missing migrants.”

If missing migrants at least partly joined the local employment pool, then those districts were

subject to a positive labor supply shock. On the other hand, districts whose emigrants headed

toward destinations other than the United States did not undergo any such shock, because

emigration to those countries remained unrestricted after the Quota Acts. Directed technical

change and adoption theory thus suggests that firms in treated districts would be motivated to

decrease investment in capital goods and to substitute capital with labor, which had become a

more abundant production input following the IRP-induced shock. We devote the rest of the

paper to validating this hypothesis.

An obvious corollary of this hypothesis is that production technologies in more heavily

treated districts should become more labor-intensive. We assess this in Table 2.4. To measure

labor intensity in production, we calculate the ratio of the number of workers employed in

manufacturing to all the previous outcome variables. We thus measure how labor-intensive

production technologies were across districts. We find that the number of industrial workers

per unit of capital increased. This again holds if we measure capital in terms of the number

of installed engines, or in terms of horsepower generated. In terms of magnitude, the effect

of the IRP is comparable across vintages—a 1% increase in QE leads to a 0.6% increase in the

33The negative coefficient associated to the interaction between the extensive emigration margin and the post-
treatment indicator could reflect the fact that emigration districts were negatively selected.

34Southern regions include all but EU NUTS 2 ITC and ITH regions. In other words, we drop Aosta Valley, Pied-
mont, Lombardy, Liguria, Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, and Emilia-Romagna.
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worker-to-capital ratio for both electrical and mechanical engines.

Finally, we ask whether the effects of the IRP shock are distributed evenly across indus-

trial sectors. To answer this, we repeat the exercise of Table 2.3 for each sector recorded by

the manufacturing census.35 We end up with six sectors, whose estimated DiD coefficients for

the various outcomes we report in Figure 2.3. We document sizable heterogeneity across sec-

tors. Firms in relatively backward First Industrial Revolution sectors, particularly textiles and

construction, reduced investment in capital goods. This effect is stronger for more-advanced

electrical engines. On the other hand, we find that capital investment and adoption of electri-

cal engines by firms in modern sectors, such as chemicals and metallurgy, display a less-marked

decrease.36 The sector-level analysis yields sharper predictions for our directed technical adop-

tion hypothesis. Under this interpretation, we would expect employment in First Industrial

Revolution sectors to grow more than in modern ones because firms in the former sectors were

apparently eager to substitute capital for newly available labor. We evaluate this prediction in

Section 2.4.4.

2.4.3 Emigration and Population Growth

Here, we document that districts more exposed to the migration shock experienced subsequent

higher population growth. We view this as evidence confirming our narrative, whereby emi-

gration restriction imposes a positive labor supply shock on the emigrants’ country of origin.

We thus estimate model (2.3), setting population growth as the outcome variable; we report the

resulting estimates in Table 2.5. We compare the estimates obtained from the baseline contin-

uous treatment, as well as those with a categorical dummy treatment equal to one for districts

whose exposure is above the median, and zero otherwise. In all regressions, we control for the

extensive emigration margin, population, labor-market slackness, and district and year fixed

effects.

The estimated DiD coefficient (𝛿2) confirms that districts that were more exposed to the

Quota Acts experienced higher population growth. This effect is always statistically different

from zero. Importantly, significance does not vanish if we restrict the sample only to South-

ern districts, where the exclusion restriction is sharper. We view this result as confirming that

our measure of quota exposure is sound. Districts with more outstanding U.S.-bound emigrant

35We do not include “other industries” or “public service industries” in the analysis—the former is a residual
category with little economic meaning, and data for the latter are not available in later censuses.

36We broadly classify manufacturing sectors based on narrative historical evidence presented by Mokyr (1998).
Textiles and construction are therefore more closely associated with the First Industrial Revolution, whereas chem-
icals and steel-working refer to the Second Industrial Revolution (sometimes called the technological revolution).
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stocks experienced less emigration, which triggered higher population growth in the years fol-

lowing the Quota Acts. Though studying the precise mechanism driving this result is beyond

the purpose of this paper, this finding is consistent with pull factors, such as social networks

and information diffusion, exerting better influence in more-exposed districts. Table 2.5 shows

that the significance and magnitude of the DiD coefficient 𝛿2 both increase once we control for

the extensive margins of U.S.-bound emigration.

Implicitly, Table 2.5 provides evidence against mechanisms that could threaten our source

of identifying variation. The mechanism we emphasize relies on the fact that at least some of

the missing migrants join the local workforce. This may not hold if potential U.S.-bound mi-

grants substituted their decision by either (i) emigrating to unrestricted countries or (ii) migrat-

ing internally. In Online Appendix Table 2.B.2 and Figure 2.C.4, we provide evidence against

both interpretations. However, if either international or internal substitution were in place, we

would not observe any positive effect of IRP exposure on population growth, because missing

migrants in exposed districts would not be missing altogether.

2.4.4 Emigration and Industrialization

In the previous subsection, we provide evidence that the Quota Acts increased labor supply in

exposed districts. We now ask whether this translated into increased employment and, if so,

whether there is heterogeneity across sectors. Historical scholarship suggests that emigrants

could, potentially, take on industrial jobs. First, Italian emigrants to the United States were

largely unskilled workers who took low-qualification jobs in manufacturing (Abramitzky and

Boustan, 2017). Second, Italian firms during this period relied mostly on unskilled workers and

employed labor-intensive production technologies (Cohen and Federico, 2001, p. 60). Hence,

the increased supply of unskilled labor could be compatible with the demand by firms. To test

this, we estimate model (2.3), taking as outcome variables changes in the number of workers

employed in agriculture and manufacturing, as well as changes in the share of workers em-

ployed in both sectors as a fraction of overall employment.37 As an alternative measure for

broader modernization, we use the urbanization rate, calculated as the share of citizens living

in municipalities with more than 5,000 inhabitants.38

37We harmonize the definition of industrial firms across censuses. For instance, transportation firms were not
recorded as industrial firms in 1931, though they were in all other censuses.

38Urbanization has been widely used as a proxy for economic modernization. Among others, see Boustan et al.
(2018) and Sequeira et al. (2020). We set the urban threshold at 5,000 inhabitants as this was the median city size
before the Mass Migration (1881).
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In Table 2.6, we show that while agricultural employment did not significantly react to the

Quota Acts, industrial employment increased substantially.39 This effect is consistent with the

evidence presented in Table 2.3, which documents that firms in manufacturing decreased their

investment in capital goods following the IRP shock. Taken together, these results suggest that

manufacturing firms in exposed districts took advantage of more abundant labor unleashed by

the IRPs and substituted capital investment with (now cheaper) labor. This evidence is therefore

consistent with our directed technical adoption narrative.

In Table 2.7, we repeat the exercise but consider changes in the share of industrial and

agricultural workers as the main outcome variable. We interpret the share of industrial work-

ers as one further indicator of industrialization, whereas the opposite holds with respect to

the share of workers employed in agriculture.40 Because overall employment hardly reacts to

the Quota Acts, industrial employment grows and agricultural employment does not, and the

share of workers employed in manufacturing increases. Similarly, the share of workers em-

ployed in industry surged. Because industrial firms were the driving force behind economic

and social progress during this period, Table 2.7 may suggest that the Quota Acts contributed to

the modernization of the Italian economy, pushing comparatively more workers into modern

industrial sectors. Finally, in the last column, we report that urbanization hardly increased in

exposed districts. This might be driven by the fact that manufacturing firms were not located

in urban centers, as shown in figure 2.C.7.

In Figure 2.3, we document sizable heterogeneity in capital investment and technology

adoption decisions across sectors. We now ask whether the directed technical adoption mecha-

nism allows the reconciliation of these dynamics with changes in sector-level industrial employ-

ment. We therefore estimate the baseline DiD model for the six sectors whose employment was

collected in the population and manufacturing censuses. The outcome variable in each regres-

sion is the growth rate in sector employment, and we control for aggregate manufacturing em-

ployment growth. This is because we are interested in understanding which industrial sectors

grew more relative to the increase in aggregate industrial employment. We report the results of

this exercise in Table 2.8, where the first row displays the estimated impact of quota exposure.

Employment dynamics reflect the heterogeneity in capital investment decisions. Employment

in agriculture and fishing in more-exposed districts decreased. On the other hand, firms in First

39The OLS estimates report a modest decrease in agriculture employment. The estimated coefficient is marginally
significant at the 10% level and small in magnitude. Moreover, the IV estimates of the agriculture coefficient are
not significant. We conclude that agriculture employment did not react to the Quota shock.

40Our theory predicts that the number of workers employed in manufacturing in exposed districts should in-
crease, whereas we do not expect any such effect on agriculture. In turn, this implies that the share of workers
employed in manufacturing should increase and that the share in agriculture should decrease.
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Industrial Revolution sectors—chiefly textiles, but construction as well—increased their labor

stock. Moreover, we find that employment in the two distinctively Second Industrial Revolution

sectors—namely chemicals and metallurgy—reacted less to the IRP shock, although we still find

an increase in comparatively more-exposed districts. These results are entirely consistent with

evidence reported in Figure 2.3. Our results suggest that faced with more-abundant unskilled

labor, firms in textiles and construction substituted capital with labor, increasing employment

and cutting investment in capital goods. By contrast, industrial firms in the agriculture sector

reduced their overall labor stock and increased investment in capital goods. High value-added

sectors did not respond as much to the labor supply shock, displaying smaller changes in their

employment stock and investment in physical capital. All these findings are consistent with the

baseline directed technical adoption narrative, and therefore provide evidence in favor of our

proposed mechanism.

2.4.5 Discussion and Alternative Mechanisms

We have documented that the Quota Acts, arguably one of the most sudden and restrictive

immigration restriction policies in modern history, led to decreased investment in capital goods

and hampered technology adoption in more-exposed districts. To rationalize these findings, we

showed that the IRP induced a larger positive labor supply shock in more-exposed districts.

Throughout the paper, we have interpreted this evidence through the lens of directed technical

change and adoption theory. In this section, we discuss some alternative mechanisms that could

be compatible with our findings, and we touch on how data limitations might preclude some

additional and potentially relevant analysis. We then briefly elaborate on the external validity

of our results.

Human-capital spillovers ignited by out-migration have traditionally received sizable at-

tention in the literature. Evidence by Spitzer and Zimran (2018) suggests that Italian emigrants

to the United States were positively selected within Southern regions, implying that emigration

was exerting a “brain drain” effect on Southern Italy. Under this interpretation, our estimated

effects of the Quota Acts would be partially confounded by human-capital dynamics triggered

by the IRP shock. More specifically, the drop in capital investment and technology adoption

that we estimate might be driven by substitutability between capital goods and the upper tail

of the skill distribution of workers, rather than by directed technical adoption. Even though

this mechanism does not necessarily conflict with the one we propose, we view this as second-

order in our setting, for two reasons. First, we find that the bulk of employment gains and

capital investment losses materialized in First Industrial Revolution sectors. These occurred

in traditionally low-skilled and labor-intensive manufacturing, especially in Southern regions
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(A’Hearn, 1998). Hence it is unlikely that high-skilled workers would be comparatively more

productive there. Second, we run a battery of robustness checks—see Online Appendix Tables

2.B.16 and 2.B.7. When we include the literacy rate as a proxy for average human capital in our

regressions, results hold.

Along with the brain-drain effect, remittances are a traditionally major research topic within

the emigration literature. Despite sizable global flows, Clemens (2011) argues that remittances

can have at best a second or third-order effect on economic growth in sending countries when

compared to the welfare effects of immigration restriction barriers. Building on this insight, we

consequently abstracted from including remittances in our analysis, more so given that existing

data are of questionable reliability at best. Remittance dynamics nonetheless represent a com-

peting mechanism. More-exposed districts were receiving more remittances before the Quota

Acts, hence they suffered the most from the border closure. Inasmuch as within-household cash

transfers result in aggregate savings, remittances may accrue to overall investment dynamics

(Rapoport and Docquier, 2006). A large literature has nonetheless documented that remittances

are largely spent on consumption and invested in human—rather than physical—capital (for a

review, see Yang, 2011).

A more sensible interpretation could be that remittances fostered literacy (e.g., Dinkelman

and Mariotti, 2016; Fernandez-Sanchez, 2020). Exposed districts would have thus suffered from

a relative drop in skilled workers following the Acts, and the labor force would have reshuffled

toward unskilled sectors. This pattern would thus move in the opposite direction of the reverse-

brain-drain effect. Under this interpretation, this channel does not conflict with the one we

propose. If anything, it augments the relevance of exposure to the Quota Acts in generating an

excess supply of workers, which triggered the directed technical incentive to abandon invest-

ment in physical capital. To quantify this concern, we run several robustness checks where we

control for average human capital. The results of these exercises fully confirm our baseline

estimates.

A plausible concern for our empirical strategy is that after the Quota Acts, emigrants simply

substituted the United States with either internal or international unrestricted destinations.41

Our main argument against this interpretation is backed by evidence in Table 2.5. If emigrants

substituted the United States with other destinations, we would expect no effect of exposure

to the Quota Acts on population growth. Given the persistence of demographic dynamics, it

is unlikely that alternative explanations can account for such a sharp, sizable increase that is

correlated with the conditionally exogenous variation we exploit. Disaggregated emigration

41If the Quotas fostered labor mobility within Italy, our estimates may fail to reflect the productivity gains this
could induce (Bryan and Morten, 2019).
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data toward countries other than the United States does not exist. However, in Figure 2.C.4, we

report aggregate outflows toward the four main emigration destinations, before and after the

treatment period(s). We show that the United States is the only country where immigration sig-

nificantly departs from its historical level, except during WWI.42 Moreover, the sheer numbers

of internal migrations cannot account for the drop in U.S.-bound out-migration (Gallo, 2012). In

Table 2.B.2, we show that in no Southern region did the gross outflow to Northern regions from

1921 to 1931 exceed 10% of U.S.-bound emigrants from 1910 to 1920. Qualitative and quantita-

tive evidence alike, therefore, call for dismissing the emigration substitution argument.

A second reason precluding a causal interpretation of our estimates would be that—even

when conditioning on the decision to emigrate—the choice of where to emigrate was system-

atically correlated with factors inducing an underlying correlation with local economic devel-

opment. We provide and discuss evidence throughout this paper against this interpretation.

Historical scholarship, however, notes that assimilation patterns of Italian immigrants in the

United States and Argentina during this period substantially differed (Klein, 1983).43 If this was

caused by pre-migration differences in characteristics, then our identification scheme may fail.

Using detailed data from censuses and passenger lists, Pérez (2021) nonetheless documents that

the “success” of Italians in Argentina compared to Italians in the United States was unlikely to

be caused by pre-migration differences in observable characteristics between the two groups.

Emigrants to Argentina and the United States were essentially indistinguishable in terms of oc-

cupation and literacy rate, the only difference being that the former chiefly originated from

Northern regions, whereas the latter mostly came from Southern areas. Selection patterns

across the two groups do not display sizable differences, providing solid evidence in favor of

our identification assumption.

Data limitations prevent us from studying two additional, potentially interesting variables,

namely wages and output (productivity). Studying wages would be informative because di-

rected technical adoption hinges on the relatively more abundant labor becoming relatively

cheaper. An analysis of wages could reveal this pattern, which we currently implicitly assume.

Geographically disaggregated data on wages, unfortunately, do not exist. Productivity would,

in turn, be key to investigating the welfare effects of the Quota Acts. However, disaggregated

data on output were not recorded until 1936; hence, we lack a time series covering the period

42These four countries are the United States, France, Argentina, and Brazil. Taken together, emigrants heading
toward these destinations accounted for 70% of the total outflow. We predict the number of emigrants after 1924
using historical emigration before 1914. We show that the United States was the only country whose inflow falls
relative to the prediction based on historical data after the Quota Acts.

43Argentina and the United States were the two leading destinations for Italian emigrants in this period. Klein
(1983), among others, noted that Italian immigrants in Argentina had higher home-ownership rates and were more
likely to be employed in skilled occupations compared to Italians in the United States.
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we study.

It is not obvious that our results lend themselves to further generalization. Some similari-

ties with contemporary settings nonetheless emerge. In terms of emigrant selection, the average

Italian emigrant to the United States was slightly positively selected, left a rural area, and took

on unskilled industrial jobs once in the United States (Sequeira et al., 2020). This description is

remarkably similar to contemporary emigration from poor countries, whereas it is starkly dif-

ferent from emigration from rich countries (e.g., Grogger and Hanson, 2011). While we do not

claim that all our findings generalize to contemporary migration relationships, the evidence

presented in this paper indicates that IRPs should be evaluated in terms of their joint effects

on sending and receiving countries, beyond remittances and human-capital deprivation, as is

standard in the existing literature.

2.5 Robustness Checks

In this section, we summarize our main robustness checks.44 We essentially address two em-

pirical problems. First, we provide evidence that our results so far are robust to alternative

measures of treatment exposure across districts. Second, we propose two simple instrumental

variables to deal with potential endogeneity issues relating to our estimates.

2.5.1 Alternative Measures of Treatment Exposure

There are two margins along which measured quota exposure may be subject to mismeasure-

ment. First, while most Ellis Island records after 1900 report the district of origin, this is not

true for the years 1890 to 1900. Records for these years most often only report “Italy” as the ori-

gin of a migrant.45 Similarly, after the 1924 Emergency Act was enacted, Ellis Island authorities

largely stopped recording immigrants’ municipalities of origin. If there were systematic pat-

terns underlying whether migrants were recorded with their district of origin or were simply

recorded as Italian, then our measure would suffer from bias. Second, as discussed in Section

2.2, though emigration collapsed during WW1, it did not completely dry out. During the war,

44See the Online Appendix, Sections 2.B and 2.C, for detailed tables reporting the results which we discuss here.
45Online Appendix section 2.A.1.2 reports the number of migrants whose origin we label as missing. The share

of Ellis Island immigrants with missing origin never exceeds 1% of the overall number of immigrants in any given
year over the period 1892-1924.
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districts closer to emigration ports are in fact disproportionately represented relative to previ-

ous shares.46 This induces spurious variation in measured quota exposure, as we would impute

higher exposure to some districts by sole virtue of their geographic position.

The first robustness check we thus consider restricts the sample years over which quota

exposure is computed. In our baseline specification of equation (2.1), we measure the exposure

of a given district as the share of people who migrated from that district from 1890 to 1924,

relative to that district’s population in 1880. To make sure that emigration registration proce-

dures and WW1 do not induce systematic measurement error in our estimates, we introduce

two other treatment variables. As a first alternative, we consider only emigrants who left no

later than 1921. Then, we further restrict the sub-sample to the years before the outbreak of

WWI. The first alternative measure seeks to control for the fact that the Ellis Island database

lacks information about the municipality of origin for a high number of Italian migrants after

1921. We thus aim to clean for possible measurement error due to the nonrandom selection of

registered district locations. The second exposure measure drops emigrants who left after WWI

started, as emigration opportunities were possibly affected by proximity to departure ports. In

particular, emigrants from districts nearer to ports could be over-represented.

Our baseline results are robust to these different measures of quota exposure, as shown in

Online Appendix tables 2.B.13-2.B.14-2.B.15. Most likely, this is because the bulk of emigration

took place before 1914, hence restricting the sample to the years before WW1 does not substan-

tially affect our estimated treatment exposure. In particular, though districts closer to ports are

over-represented in emigration statistics during WW1, the absolute number of emigrants was

negligible relative to previous years, as WWI induced a marked collapse in those districts as

well. Finally, emigrants lacking a recorded district of origin constitute the majority for the post-

1924 period. Yet, we find no noticeable pattern inducing nonrandom recording across districts.

Hence, measured quota exposure should not be mismeasured whether we include those years

or not, as confirmed by the estimated coefficients. One further concern is that our results might

be driven by remote migration patterns. According to the Gould (1980b) hypothesis, in fact, out-

migration from any given region would eventually saturate over time. Hence, it might be that

our estimated effects are driven by districts whose out-migration stretches back to years before

the Quota shock becomes salient. Similarly, one may wonder whether it is instead more recent

emigration waves that drive the results. In Online Appendix tables 2.B.13-2.B.14-2.B.15 we ad-

dress these concerns by constructing two measures of Quota Exposure which assign increasing

46Throughout this period, emigrants could sail overseas only from Naples, Palermo, or Genoa. In Online Ap-
pendix section 2.A.1.3 we show that the correlation between our newly constructed emigration series and official
statistics is lowest during the WW1 years. We thus report robustness regressions excluding those years from our
measured Quota Exposure, and confirm all our baseline estimates.
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or decreasing weights on more recent out-migration flows. We find that all our baseline results

hold.

2.5.2 Shift-Share Instrumental Variable

A possible concern for our identification strategy is that geographical variation in exposure to

the U.S. immigration quotas was not conditionally random across districts. While we provided

historical and quantitative evidence against this argument, ultimately the exclusion restriction

cannot be formally tested. We, therefore, develop an instrument close in spirit to that presented

in Card (2001) and Tabellini (2020) to address a similar—although specular—issue.

Let 𝜔𝑇𝑐𝑟 ≡
∑𝑇
𝜏=0 US Emigrants𝑐,𝜏/US Emigrants𝑇 be the share of emigrants from district 𝑐 in

region—or province—𝑟 until time𝑇 (US Emigrants𝑐,𝑇 ) relative to total emigration (US Emigrants𝑇 ).

We predict total emigrant outflow from district 𝑐 from the following “zero-stage” equation:

�US Emigrants
𝑇

𝑐𝑟 = 𝜔
𝑇
𝑐𝑟 ×

1924∑︁
𝜏=1890

∑︁
𝑐′∉𝑟

US Emigrants𝑐′,𝜏 = 𝜔
𝑇
𝑐𝑟 × US Emigrants−𝑟 (2.4)

In the first stage, we instrument QE𝑐𝑟 using �US Emigrants
𝑇

𝑐𝑟, then we plug the resulting pre-

dicted Q̂E
𝑇

𝑐𝑟 into the second-stage regression to estimate the baseline model (2.3). To strengthen

the validity of our OLS estimates, we pick 𝑇 to be before the bulk of the Mass Migration pe-

riod. Thus, predicted district-level U.S. emigration outflows wash out spurious variation in U.S.

emigration due to emigration—endogenously—affecting economic development in emigration

districts, conditional on district and year-fixed effects.

The instrumental variable (2.4) exploits two sources of variation. Cross-sectional varia-

tion is embedded in the (𝜔𝑇𝑐𝑟) term. It captures heterogeneity in the origin districts of mi-

grants at a given point in time (𝑡). We can modulate the choice of 𝑇 so that the distribution

of emigrants across districts is more plausibly driven by exogenous information diffusion, and

less so by economic outcomes (Spitzer and Zimran, 2020). Time series variation, captured by

(US Emigrants−𝑟), is driven by changes in the aggregate emigration outflow, excluding the in-

strumenting district 𝑐, and possibly all other districts in the same region (or province). This

“leave-out” strategy ensures that our instrument is not correlated with the economic perfor-

mance of districts in region 𝑟, hence mitigating the concern that quota exposure could be cor-

related with district-level economic performance hence inducing endogeneity and bias our es-

timated coefficients. By changing 𝑇 , we address the possible concern that WWI altered the

composition of Italian emigrants to the United States in a spatially nonrandom fashion.
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In Table 2.B.8, we summarize the results of the first-stage regressions, where we vary mea-

sured quota exposure as discussed in Section 2.5.1. We also control for different baseline years

𝑇 in the construction of the Shift-Share Instrument to make sure emigration patterns reflect

district-level variation, which is not correlated with economic performance. The first stage is

statistically significant because the instrument has high explanatory power, as we would expect

for emigration—and immigration—patterns exhibiting substantial persistence. Minor changes

arise in the first stage when comparing results for the two different baseline years considered,

1895 and 1900. An advantage of picking 𝑇 less than 1906 is that we wash out variation induced

by the Messina-Reggio Calabria earthquake (Spitzer et al., 2020). Tables 2.9 and 2.10 compare

results from the OLS estimation and from the second stage of our IV regression for different out-

come variables, specifically, measures for capital investment, industrialization, urbanization,

and population growth. No major differences arise between the two estimations. However, IV

regression on population growth yields slightly higher estimates: downward bias in the OLS

could arise if the conditional identifying variation was regionally clustered within the South.

This however affects neither the sign nor the significance of the results.

2.5.3 Railway-Access Instrumental Variable

Several recent papers call for caution on the use of Bartik instrumental variables (Jaeger et al.,

2018; Goldsmith-Pinkham et al., 2020). In our context, the proposed shift-share IV suffers from

endogeneity issues if the initial spatial variation of migration patterns was correlated with eco-

nomic development at baseline. To address this concern, we develop an IV based on the timing

when Italian districts became connected to the railway network, similarly to Sequeira et al.

(2020). In general, gaining access to the railway system in this period drastically reduced trans-

portation costs for potential emigrants, hence increasing the total migration outflow. On top of

this, the rationale behind our instrument is that transoceanic migration required a district to be

connected to an emigration port.47 Specifically, because U.S.-bound emigrants could leave only

from Genoa, Naples, or Palermo, we leverage variation in the timing when districts became

connected to one of these ports to instrument actual U.S.-bound migration outflows.

47As Calabrese (2017, pp.52, 90) puts it:

“The lack of railroads contributed to the isolation. [...] It was only between 1880 and 1900 that over
1,250 miles of railroad were constructed in region [Basilicata], making it more accessible for travel
and facilitating emigration. [...] From Potenza and towns in the western part of Basilicata, migrants
could travel to Naples by railroad. The building up of infrastructure in Basilicata aided emigrants in
traveling to their port of departure.”
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Let RA𝑐𝑟,𝑡 denote an indicator variable that returns the value one if district 𝑐 in region 𝑟 is

connected to the railway system in decade 𝑡, and zero otherwise. We define railway access to

emigration ports RAP𝑐𝑟,𝑡 as follows:

RAP𝑐𝑟,𝑡 ≡ RA𝑐𝑟,𝑡 ×min {𝑑𝑡 (𝑐,Naples), 𝑑𝑡 (𝑐, Palermo), 𝑑𝑡 (𝑐,Genoa)}−1 (2.5)

where 𝑑𝑡 (𝑐, 𝑖) is the geodesic distance over the railway network in decade 𝑡 between district 𝑐

and emigration port 𝑖.48 Because the network evolves over time, we allow the geodesic distance

between each district and the closest emigration port to reflect this time variation. A natural test

of the hypothesized role of the railway system in shaping the direction of emigration would be

to observe a positive correlation between our measured access RAP𝑐𝑟,𝑡 and the relative share

of emigrants headed toward the United States.49 Evidence presented in the next paragraph

confirms this.

Following Sequeira et al. (2020), we estimate the following “zero-stage” model:

US Emigrant Share𝑐𝑟,𝑡 = 𝛼𝑐 + 𝛼𝑟,𝑡 + 𝛽US Emigrant Share𝑐𝑟,𝑡−1 + 𝛾RAP𝑐𝑟,𝑡−1

+ 𝛿
(
Industrialization𝑟,𝑡−1 × RAP𝑐𝑟,𝑡−1

)
+ 𝜁

(
RAP𝑐𝑟,𝑡−1 × Emigrants𝑟,𝑡−1

)
+ 𝑥𝑥𝑥′𝑐𝑟,𝑡𝜂𝜂𝜂 + 𝜀𝑐𝑠,𝑡

(2.6)

where 𝑡 denotes decades spanning the 1890-1920 period; 𝛼𝑐 and 𝛼𝑟,𝑡 denote district and region-

by-year fixed effects; Emigrants𝑟,𝑡−1 is the total number of emigrants leaving region 𝑟, where 𝑐 ∈
𝑟, during decade 𝑡, normalized by the total population in that region in 1881; Industrialization𝑟,𝑡−1
is the share of workers employed in manufacturing in region 𝑟,50 and 𝑥𝑥𝑥𝑐𝑟,𝑡 is a set of con-

trols consisting of lagged population, a South dummy interacted with lagged railway access,

and labor-market slackness. The outcome of interest, US Emigrant Share𝑐𝑟,𝑡, is the share of

U.S. emigrants from district 𝑐 in region 𝑟 in decade 𝑡 over district 𝑐’s population in 1881, and

US Emigrant Share𝑐𝑟,𝑡−1 is its lagged value. Our main coefficient of interest is 𝜁 . This captures

48In graph theory, the geodesic distance is defined as the shortest path between two nodes. More formally, let
the railway system in decade 𝑡—call it N𝑡—be defined as the pair (𝑉, 𝐸), where 𝑉 is the set of nodes, and 𝐸 =

{(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝑉2, 𝑢 ≠ 𝑣} is the set of edges. Let A denote the adjacency matrix associated to 𝐸, where for every
couple of vertices 𝑣, 𝑢 ∈ 𝑉 , 𝐴𝑢𝑣 = 1 if there is an edge between 𝑢 and 𝑣, and zero otherwise. The (geodesic) distance
𝑑 (𝑢, 𝑣) between the two vertices is the minimum 𝑟 such that [A𝑟]𝑢𝑣 = 1 (Newman, 2018).

49Clearly, emigration toward South America would have equally benefited from railway connection to emigra-
tion ports. However, U.S.-bound emigrants easily outnumbered emigrants bound for South America in this period.

50Controlling for the share of workers employed in manufacturing serves a twofold purpose. On one hand, it
washes out variation in U.S. emigration due to more affluent districts being granted access to the railway system
relatively sooner than backward ones (Sequeira et al., 2020). Second, the timing of connection to the railway
may itself affect economic development, for instance through increased specialization and industrialization (i.a.
Donaldson and Hornbeck, 2016; Donaldson, 2018). This would generate endogenous variation, which we wash out
when constructing the instrument.
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how changes in railway closeness to emigration ports influenced U.S.-bound emigration during

periods of high vis-à-vis low overall aggregate emigration, accounting for the district population

in 1881, i.e., before the mass emigration began. We thus expect the estimate of 𝜁 to be positive.

In turn, we expect the estimate of 𝛾 to be close to zero, because it reflects how railway access

affected U.S. emigration in decades with little overall emigration. The estimated coefficients

of regression (2.6) confirm these predictions (for the sake of brevity, we do not report them).

One may suspect that the construction of the railway was not random across districts, because

more-affluent areas were connected before poorer ones, so we include the interaction between

the share of industrial workers and railway access as one further control.

The estimation equation (2.6) yields a set of estimated coefficients that allow us to construct

a predicted aggregate series of the share of U.S. emigrants, which we then aggregate up across

decades as follows:

Q̂E𝑐𝑟 ≡
1920∑︁
𝑡=1890

𝜁
(
RAP𝑐𝑟,𝑡−1 × Emigrants𝑟,𝑡−1

)
(2.7)

We instrument quota exposure with Q̂E𝑐𝑟, then we estimate the resulting instrumented DiD

model in a standard two-stage-least-squares setting.

Table 2.B.8 reports the results of the first-stage regressions. The “RA region” column re-

ports the results of the baseline instrument, whereas the “RA total” column uses a variation

on equation (2.6) where, instead of the aggregate number of emigrants in the region, we plug

in the overall nationwide number of emigrants. We find that there is a strong and positive as-

sociation between the synthetic and the actual series of U.S.-bound emigrants. Although the 𝐹

statistics using the railway instrument are not as high as those of the Bartik IVs, these nonethe-

less provide evidence suggesting that the instrument is not weak. Tables 2.9 and 2.10 compare

the second-stage results with the OLS estimates for, respectively, technology adoption and pop-

ulation and employment variables. The railway IV always confirms the baseline estimates in

sign and magnitude and, in most cases, preserves their significance.

2.6 Conclusion

In recent years, immigration has become an increasingly focal and polarizing theme in the

public debate. Policymakers exhibit widely divergent opinions about the effects of increased

immigration on the economic, social, and cultural security of native populations. Yet, a com-

mon perspective can be disentangled. Both proponents and opponents of harsher immigration-

restriction policies judge them in terms of their effects on their own country, that is the country
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subject to immigration. Few mention, possibly due to relatively scarce evidence, that immigra-

tion policies may entail important, even determinant, effects on sending countries. This asym-

metric attention in favor of receiving countries is worrisome, given that sending nations often

experience greater economic hardship and social distress.

In this study, we explore how restrictive immigration policies shape economic development

in sending countries. This poses two empirical challenges. First, emigration is seldom directed

toward one—or very few—countries, hence it is difficult to identify the effect of a single im-

migration policy shift in one such receiving country. Second, migration dynamics are likely

affected by preexisting regulations enacted by both receiving and sending countries. To tackle

both issues, we study the Italian emigration to the United States during the Age of Mass Migra-

tion (1850–1914). Through the 1921 and 1924 Quota Acts, the United States adopted a harshly

restrictive immigration policy, which starkly contrasted with the open-border approach that it

had maintained almost uninterruptedly since the 1810s. Comparing districts with similar em-

igration rates but different destinations, we leverage identifying variation in exposure to the

Quota Acts to estimate the impact of immigration restriction laws in a difference-in-differences

framework.

We find that industrial firms in more-exposed districts underwent sizable reductions in

capital investment and a slowdown in technology adoption. These effects are larger for more

advanced capital vintages and in relatively backward manufacturing sectors. To rationalize

these findings, we advance and validate the hypothesis that IRPs induce a positive labor supply

shock on countries sending migrants. Through the lenses of directed technical change and adop-

tion theory, more-abundant labor dampens the incentives for firms to invest in labor-saving,

possibly productivity-enhancing, production technologies (e.g., Zeira, 1998; Acemoglu, 2007).

We document that population growth increased in comparatively more-treated districts, con-

sistent with the idea that the Quota Acts prevented people who would have migrated from do-

ing so. Our empirical results endorse the directed technical adoption mechanism—we observe

that in highly exposed districts, industrial employment increased while agricultural employ-

ment did not. Shifting our analysis to manufacturing sectors, we find that sectors where capital

investment decreased the most were also the ones that absorbed the bulk of the labor supply

shock induced by the Quota Acts. This is consistent with the idea that firms in relatively back-

ward industrial sectors substituted capital-intensive production technologies with labor, which

the IRP shock made more abundant (and cheaper).

Taken together our results indicate that immigration restriction policies exert substan-

tial effects on the economic development of sending countries. An immigration restriction
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shock impresses upward pressure on the labor supply driven by foregone migrants in the send-

ing country. In our setting, this dampened the incentive for manufacturing firms to adopt

productivity-enhancing technology. Faced with more abundant labor, firms substituted capi-

tal with more labor-intensive production technologies. Because technology adoption is a well-

known driver of long-run growth (Juhász et al., 2020), evidence in this paper suggests that immi-

gration restriction policies have potentially long-lasting effects on the economic development

of sending countries. The external validity of these findings is not obvious. However, we argue

that neither the Italian economy nor emigrants’ characteristics during the 1920s were funda-

mentally different from many of today’s developing countries. Hence, we believe history can

inform the contemporary debate on this crucial issue.

185



Tables

Table 2.1: Summary Statistics

(1) (2) (3) (4) (5) (6)
N. of Obs. Mean Std. Dev. 10 pct. 50 pct. 90 pct.

Panel A: Demographics and Geography
Area 1070 121.08 77.12 45.93 98.31 240.66
Altitude 1070 0.33 0.22 0.07 0.31 0.63
Population 1066 165.25 156.88 53.37 122.36 319.56
5-Urbanization 1066 0.60 0.26 0.25 0.59 0.95
10-Urbanization 1066 0.37 0.27 0.00 0.31 0.80
15-Urbanization 1066 0.28 0.26 0.00 0.24 0.63

Panel B: Emigration
Emigration (1890-1930) 1080 284.82 266.57 57.82 238.57 496.41
Emigration (1890-1921) 1080 259.69 241.90 52.57 212.73 453.95
Emigration (1890-1914) 1080 230.64 226.87 42.55 185.68 389.12
US Emigration (1890-1930) 1080 73.20 81.88 7.41 43.51 164.73
US Emigration (1890-1921) 1080 67.26 74.89 6.88 40.40 152.31
US Emigration (1890-1914) 1080 57.71 64.79 5.66 36.08 130.94

Panel C: Employment
Agriculture Workers 1062 42.70 26.99 16.23 37.45 75.12
Manufacture Workers 1069 21.54 32.80 3.97 11.74 45.64
Trade Workers 1070 5.78 9.93 1.09 2.95 10.88
Liberal Professions 1062 2.48 4.46 0.38 1.28 4.66
Public Administration 1062 3.88 7.86 0.59 1.84 7.34

Panel D: Capital and Technology
Firms 1061 8278.04 9725.53 587.70 5262.13 19054.43
Firms with Engine 1061 1336.61 2032.29 137.06 679.12 3038.19
Mechanical Engines 1061 816.69 672.69 250.94 554.21 1782.77
Electrical Engines 1061 6051.59 21620.63 84.29 1055.33 12809.84
Mechanical Horsepower 1061 96168.86 163951.19 6021.24 26237.85 310569.50
Electrical Horsepower 1061 53083.77 142887.45 660.49 9552.07 134462.30

Notes. This table reports symmary statistics for the variables in our dataset, except sector-specific
capital and employment. All variables are in levels. Area, altitude, population, employment, and
emigration are expressed in thousands. Section 2.3 explains how we impute province-level data to
districts, and provides details on the sources employed.
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Table 2.2: Balance Table

Level Growth Rate

(1) (2) (3) (4)
1911 1921 1911 1921

All Firms 0.017 0.007 0.029 -0.022
(0.019) (0.027) (0.032) (0.032)

Firms with Engine 0.033 0.027 0.048 -0.012
(0.036) (0.066) (0.087) (0.110)

Mechanical Engines 0.005 -0.016 0.089 -0.168
(0.072) (0.088) (0.177) (0.202)

Electrical Engines 0.005 0.004 0.005 -0.001
(0.010) (0.009) (0.020) (0.022)

Mechanical Horsepower -0.038 -0.021 -0.095 0.056
(0.029) (0.051) (0.078) (0.098)

Electrical Horsepower -0.007 -0.012 -0.004 -0.026
(0.026) (0.039) (0.053) (0.070)

Population -0.000 0.000∗∗ -0.037 0.106
(0.000) (0.000) (0.166) (0.193)

Manufacture Workers 0.005 0.007 -0.028 0.017
(0.103) (0.094) (0.101) (0.075)

Agriculture Workers 0.031 0.006 -0.144 -0.048
(0.096) (0.125) (0.153) (0.127)

Trade Workers -0.050 -0.032 -0.151 0.099
(0.092) (0.094) (0.133) (0.075)

Liberal Professions -0.017 0.006 0.005 0.120
(0.114) (0.070) (0.113) (0.230)

Public Administration 0.065 0.088 0.027 0.036
(0.128) (0.204) (0.105) (0.129)

Notes. This table reports the correlation between the treatment measure (QE) and the covariates we
use as outcome variables, before the Quota Acts were enacted. Quota exposure is defined as the ratio
between US emigrants 1890-1924 and 1880-population. All regressions control for the emigration rate,
defined as the ratio between emigrants 1890-1914 and 1880-population, and province fixed effects.
Standard errors are clustered at the district level. In the first two columns, the outcome variable is in
level; in the last two columns, it is defined in growth rate. Dependent variables are standardized to
compare coefficients across models. Under validity of the parallel trends assumption, we require all
coefficients not to be statistically different from zero.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.3: Investment in capital goods and emigration

Firm Engine Horsepower

(1) (2) (3) (4) (5) (6)
All Engine Mechanic Electric Mechanic Electric

Quota Exposure × Post 0.128 0.299 -1.015∗∗∗ -1.098∗∗∗ -0.613∗∗ -1.268∗∗∗
(0.235) (0.401) (0.162) (0.327) (0.308) (0.294)

Extensive Margin × Post -0.093 0.017 0.184∗ 0.138 -0.271∗∗ 0.010
(0.108) (0.186) (0.101) (0.130) (0.114) (0.148)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 207 208 208 207 209 208
Observations 783 785 785 783 787 785
R2 0.457 0.737 0.844 0.473 0.663 0.841
F-stat 0.772 0.250 12.756 5.578 3.095 7.101
Mean Dep. Var. 0.139 0.128 0.107 0.248 0.020 0.187
Std. Beta Coef. 0.027 0.030 -0.181 -0.187 -0.059 -0.128

Notes. This table displays the effect of being exposed to the Quota Acts on various measures for capital
investment and technology adoption. The first and second columns report the effect on, respectively,
the number of all firms, and firms with engines. The third and fourth columns show the effect on the
number of mechanical and electrical engines; the fifth and sixth display the effect on mechanical and
electrical horsepower. All regressions include district and year fixed effects. Additional controls are the
log-population and labor market slackness at baseline interacted with a post-treatment dummy.
Outcome variables are defined in growth rate. Standard errors are always clustered at the district level.
Standardized betas refer to the baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.4: Labor intensity and emigration

Worker/Firm Worker/Engine Worker/Horsepower

(1) (2) (3) (4) (5) (6)
All Engine Mechanic Electric Mechanic Electric

Quota Exposure × Post 0.208 0.184 1.135∗∗∗ 1.050∗∗∗ 0.248 1.212∗∗∗
(0.239) (0.396) (0.174) (0.339) (0.353) (0.300)

Extensive Margin × Post 0.051 -0.072 -0.235∗∗ -0.114 0.421∗∗∗ 0.005
(0.142) (0.162) (0.103) (0.132) (0.125) (0.150)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 209 209 208 207 209 208
Observations 785 787 785 783 786 785
R2 0.522 0.725 0.837 0.456 0.642 0.836
F-stat 6.364 7.630 23.588 3.584 7.179 5.482
Mean Dep. Var. -0.082 -0.054 -0.077 -0.258 -0.078 -0.195
Std. Beta Coef. 0.036 0.017 0.188 0.180 0.023 0.123

Notes. This table displays the effect of being exposed to the Quota Acts on various measures for labor
intensity in production. The first and second columns report the effect on, respectively, the
worker-per-firm and the worker-per-firm with engine ratios. The third and fourth columns show the
effect on the ratio between worker and mechanical and electrical engines; the fifth and sixth display
the effect the ratio between workers and mechanical and electrical horsepower. All regressions include
district and year fixed effects. Additional controls are the log-population and labor market slackness at
baseline interacted with a post-treatment dummy. Outcome variables are defined in growth rate.
District fixed effects refer to 1921-circondari. Standard errors are always robust and clustered at the
district level. Standardized betas refer to the baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.5: Population Growth and Emigration

Continuous QE Categorical QE

(1) (2) (3) (4)

Quota Exposure × Post 0.409∗∗∗ 0.449∗∗∗
(0.113) (0.124)

Quota Exposure Dummy × Post 0.021∗∗∗ 0.023∗∗∗
(0.006) (0.007)

Extensive Margin × Post -0.068 -0.051
(0.055) (0.053)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Number of Districts 204 204 204 204
Observations 751 751 751 751
R2 0.452 0.452 0.445 0.445
F-stat 13.337 9.932 13.298 10.086
Mean Dep. Var. 1.042 1.042 1.042 1.042
Std. Beta Coef. 0.219 0.240 0.194 0.210

Notes. This table displays the effect of exposure to the Quota Acts on population growth. Population
growth is defined as the decade-on-decade percentage change in population. Continuous QE is the
baseline measure defined in (2.1); Categorical QE equals one if the continuous measure is above 1, and
0 otherwise. All regressions control for log-population and labor market slackness in 1901, interacted
with a post-treatment measure. Models in columns (2) and (4) include the emigration rate defined as
the number of emigrants 1890-1914 over the 1880-population, interacted with a post-treatment dummy.
All regressions include district and year fixed effects. Outcome variables are defined in growth rate.
Standard errors are always clustered at the district level. Standardized betas refer to the baseline Q.E.
coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.6: Employment in Industry and Agriculture

Industry Growth Agriculture Growth

(1) (2) (3) (4)

Quota Exposure × Post 1.827∗∗∗ 1.510∗∗∗ -0.416∗ -0.483∗
(0.427) (0.475) (0.159) (0.176)

Extensive Margin × Post 0.637 0.154
(0.400) (0.149)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Number of Districts 205 205 206 206
Observations 742 742 750 750
R2 0.540 0.542 0.461 0.465
F-stat 6.805 7.004 3.556 3.250
Mean Dep. Var. 0.060 0.060 -0.041 -0.041
Std. Beta Coef. 0.149 0.123 -0.116 -0.135

Notes. This table reports the effect of exposure to the Quota Acts on industrial and agricultural
employment growth. Sector employment growth are defines as the decade-on-decade changes in
employment. All regressions include district and year fixed effects. Further controls include
log-population and labor market slackness in 1901 interacted with a post-treatment dummy. Columns
(3) and (4) control for the emigration rate, defined as the number of emigrants 1890-1914 relative to
1880-population, interacted with a post-treatment dummy. Outcome variables are defined in growth
rate. Standard errors are robust and clustered at the district level. Standardized betas refer to the
baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.7: Urbanization and Share of Workers Employed in Industry and Agriculture

Industrialization Agriculture Urbanization

(1) (2) (3) (4) (5) (6)

Quota Exposure × Post 1.457∗∗∗ 1.152∗∗∗ -0.580∗∗∗ -0.605∗∗∗ 0.218 0.252∗
(0.356) (0.410) (0.145) (0.156) (0.145) (0.148)

Extensive Margin × Post 0.598∗ 0.066 -0.086
(0.350) (0.085) (0.099)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 205 205 204 204 201 201
Observations 729 729 743 743 742 742
R2 0.476 0.478 0.510 0.510 0.174 0.174
F-stat 6.085 6.494 5.470 4.049 1.125 1.025
Mean Dep. Var. 0.051 0.051 -0.022 -0.022 1.039 1.039
Std. Beta Coef. 0.153 0.121 -0.172 -0.180 0.094 0.109

Notes. This table reports the effect of exposure to the Quota Acts on urbanization and changes in the
share of industrial and agricultural workers relative to overall employment. Urbanization is defined as
the share of the population living in cities no smaller than 5,000 inhabitants. The share of sector
employment is defined as the ratio between sector and aggregate employment. All regressions include
district and year fixed effects. Further controls are log-population and labor market slackness in 1901
interacted with a post-treatment dummy. Columns (2), (4) and (6) control for the emigration rate,
defined as the number of emigrants 1890-1914 relative to 1880-population, interacted with a
post-treatment dummy. Outcome variables are defined in growth rate. Standard errors are robust and
clustered at the district level. Standardized betas refer to the baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.8: Changes in Industry Employment by Sector

(1) (2) (3) (4) (5) (6)
Mining Agriculture Steel Construction Textile Chemical

Quota Exposure × Post 0.442 -2.459∗ 1.379 6.103∗∗∗ 5.651∗∗∗ 0.017
(0.388) (1.261) (1.573) (1.626) (1.398) (0.308)

Extensive Margin × Post -0.000 1.029 -1.124 -2.693∗∗ -0.715 0.181
(0.287) (1.257) (1.576) (1.293) (0.991) (0.277)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 194 200 198 200 200 195
Observations 685 776 775 778 774 681
R2 0.071 0.424 0.106 0.317 0.449 0.450
F-stat 8.152 5.645 5.030 16.662 4.555 1.849
Mean Dep. Var. 0.724 0.422 0.250 0.553 0.291 0.751
Std. Beta Coef. 0.008 -0.134 0.096 0.180 0.124 0.000

Notes. This table displays the effect of exposure to the Quota Acts on changes in employment by
manufacture sector. Hence, column “Agriculture” reports the impact of QE on employment in
manufacture firms working in agriculture, not that on agriculture. We do not show the “public utility”
sector due to data availability, and a residual sector of unassigned firms. All regressions include district
and year fixed effects. Further controls are log-population, changes in industrial employment, the
emigration rate and 1901 labor market slackness interacted with a post-treatment dummy. Outcome
variables are defined in growth rate. Standard errors are clustered at the district level. Standardized
betas refer to the baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.9: Investment in capital goods and emigration - 2sls

Firm Engine Horsepower

(1) (2) (3) (4) (5) (6)
All Engine Mechanic Electric Mechanic Electric

Panel A: OLS
Quota Exposure × Post 0.128 0.299 -1.015∗∗∗ -1.098∗∗∗ -0.613∗∗ -1.268∗∗∗

(0.235) (0.401) (0.162) (0.327) (0.308) (0.294)
Panel B: 2SLS Shift Share
Quota Exposure × Post 0.429∗ 0.661∗ -0.850∗∗∗ -0.857∗∗∗ -0.568∗ -1.098∗∗∗

(0.233) (0.398) (0.164) (0.318) (0.329) (0.287)
Panel C: 2SLS Railway Regional
Quota Exposure × Post 0.603 -0.822 -0.895∗∗ -1.472∗ -0.178 -1.097∗∗

(0.454) (1.272) (0.374) (0.868) (0.955) (0.552)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 207 208 208 207 209 208
Observations 783 785 785 783 787 785
Mean Dep. Var. 0.139 0.128 0.107 0.248 0.020 0.187
Std. Beta OLS 0.027 0.030 -0.181 -0.187 -0.059 -0.128
Std. Beta SS 0.090 0.067 -0.152 -0.145 -0.055 -0.111
Std. Beta RA 0.060 0.077 -0.170 -0.140 -0.073 -0.138

Notes. This table reports the effect of Quota exposure on various measures of capital investment and
technology adoption. Panel A presents reduced form estimates. Panel B reports 2SLS estimates based
on the instrument defined in (2.4). Panel C reports 2SLS estimates based on te instrument defined in
(2.6). The first and second columns report the effect on, respectively,the number of all firms, and firms
with engines. The third and fourth columns show the effect on the number of mechanical and electrical
engines; the fifth and sixth display the effect on mechanical and electrical horsepower. All regressions
include district and year fixed effects. Additional controls are log-population and labor market
slackness at baseline interacted with a post-treatment dummy. Outcome variables are defined in
growth rate. Standard errors are always clustered at the district level. Standardized betas refer to the
baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.10: Population Growth, Employment in Industry and Agriculture

(1) (2) (3)
Population Growth Industry Growth Agriculture Growth

Panel A: OLS
Quota Exposure × Post 0.449∗∗∗ 1.510∗∗∗ -0.483∗

(0.124) (0.475) (0.176)
Panel B: 2SLS Shift Share
Quota Exposure × Post 0.668∗∗∗ 1.673∗∗∗ -0.138

(0.138) (0.544) (0.222)
Panel C: 2SLS Railway Regional
Quota Exposure × Post 0.933∗∗∗ 3.385∗∗ -0.733

(0.248) (1.347) (0.479)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Number of Districts 207 205 209
Observations 754 742 753
Mean Dep. Var. 0.042 0.060 -0.041
Std. Beta Coef. OLS 0.240 0.123 -0.135
Std. Beta Coef. Shift-Share 0.360 0.137 -0.038
Std. Beta Coef. Railway 0.503 0.276 -0.203

Notes. This table reports the effect of exposure to the Quota Acts on industrial and agricultural
employment growth. Sector employment growth are defines as the decade-on-decade changes in
employment. Panel A presents reduced form estimates. Panel B reports 2SLS estimates based on the
instrument defined in (2.4). Panel C reports 2SLS estimates based on te instrument defined in (2.6). All
regressions include district and year fixed effects. Additional controls are log-population and labor
market slackness at baseline interacted with a post-treatment dummy. Outcome variables are defined
in growth rate. Standard errors are always clustered at the district level. Standardized betas refer to
the baseline Q.E. coefficient.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Figures

Figure 2.1: Total Inflow of Italian Immigrants at Ellis Island
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Notes. This figure displays the aggregate number of Italians who registered at the Ellis Island
immigration station between 1890-1930. Dashed red lines indicate the period of WW1; solid red lines
indicate the 1921 Emergency Quota Act and the 1924 (Johnson-Reed) Immigration Act. Only migrants
whose origin we are able to trace are counted in the sum. Refer to the Online Appendix for details on
the linking procedure.
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Figure 2.2: District-Level Migration Flows, 1890-1924

(a) Emigration Rate

(b) Quota Exposure

Notes. Panel (a) displays variation in the emigrants-to-population ratio (emigration rate). Panel (b) plots
the unconditional variation in the US emigrants-to-population ratio (quota exposure). Both figures
normalize the number of emigrants by population in 1880, and report standardized variables in log. All
figures plot the flows obtained setting 𝛼 = .01 in the matching process. Refer to the Online Appendix for
more details and plots for different values of 𝛼.
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Figure 2.3: Capital Investment and Emigration by Industry Sectors
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Notes. This figure displays the effect effect exposure to the Quota Acts on capital investment and
technology adoption by manufacture sectors. Each marker reports the estimated coefficient in model
(2.3) where the outcome is the row-variable. Outcomes are the raw count of firms and firms with
engines; the number of electrical and electrical engines; mechanical and electrical horsepower. All
regressions include district and year fixed effects. Further controls are log-population, average
industrial employment growth, the emigration rate and 1901 labor market slackness interacted with a
post-treatment dummy. Standard Errors are clustered at the district level. Bands report the 95%
confidence intervals.
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Appendix

2.A Data Appendix

2.A.1 Emigration Data

In this section we document in detail the novel emigration data that we collect. The raw data

can be found at https://heritage.statueofliberty.org/. First, we describe how we deal

with spelling mistakes occurring the recorded municipality of origin of immigrants. Second,

we report the share of emigrants with missing origin municipality. Last, we provide evidence

suggesting that our data squares well with less granular data from official statistics records.

2.A.1.1 Emigration Matching Procedure

This section describes the procedure we follow to match municipalities recorded by Ellis Island

US officials to actual Italian comuni. Since municipalities changed over time, we first assembled

a list of all municipalities that existed between 1890 and 1930 from listed census names. Then

along the lines of Abramitzky et al. (2014), we run the following matching procedure:

1. Perform manual name cleaning, e.g. correcting systematic mistakes and recording short-

cuts.

2. Standardize each recorded and actual municipality name using the NYSIIS algorithm trained

on Italian phonetics (Atack et al., 1992). This procedure ensures that phonetically identical

municipality names have an exact match.

3. For each standardized recorded name which does not have a perfect match in the list of

all municipality names, compute the dissimilarity matrix with all those names, according

to some metric. Then, pick as a match the comune with the lowest dissimilarity.

4. If the distance between a recorded municipality and its best match is lower than some

threshold value 𝛼 ∈ [0, 1], accept the match. Otherwise, drop the observation.

We evaluate the distance between a recorded municipality name 𝑖 an actual name 𝑗 in terms of

their Jaro-Winkler similarity 𝑑𝑖 𝑗 :

𝑑𝑖 𝑗 ≡ 𝑑𝑖 𝑗 + ℓ𝑝(1 − 𝑑𝑖 𝑗) (2.8)
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where

𝑑𝑖 𝑗 ≡

0 if 𝑚 = 0
1
3

(
𝑚
|𝑖 | +

𝑚
| 𝑗 | +

𝑚−𝑡
𝑚

)
else

(2.9)

where 𝑚 is the number of matching characters, |𝑖 | is the length of string 𝑖, and 𝑡 is half the

number of transpositions, ℓ is the length of common an eventual common prefix no longer

than four characters between 𝑖 and 𝑗, and 𝑝 = 0.1 is a constant scaling factor. Two characters

are matching only if they are the same and are not farther than
⌊
max( |𝑖 |,| 𝑗 |)

2

⌋
−1. Half the number

of matching characters in different sequence order is the number of transpositions.51

The Jaro-Winker distance has been shown to perform relatively well in linking routines

(Abramitzky et al., 2021). In our particular case however, this metric outperforms more stan-

dard string dissimilarity metrics like the cosine or the Levenshtein because the Jaro-Winkler

assigns a “bonus” score to strings starting with closer initial substrings. We noted that coding

errors in municipality names are more frequent at the end of names, hence the comparative

advantage of the Jaro-Winkler distance.

The matching procedure assigns to each recorded municipality name its best match among

the actual names along with their distance 𝑑∗
𝑖 𝑗

. We set a threshold 𝛼 ∈ [0, 1], pick all matches 𝑗

with 𝑑∗
𝑖 𝑗
≤ 𝛼, and drop the others.

51The Jaro-Winkler distance has been recently employed in the economic history literature for intergenerational
linking purposes by, among others, Feigenbaum (2018) and Abramitzky et al. (2021).
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Figure 2.A.1: District-Level Migration Flows varying 𝛼

Notes. Each panel plots the number of emigrants across districts over the years 1890-1930. See
Appendix 2.A.1.1 for a complete description of the procedure and the meaning of 𝛼.
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2.A.1.2 Missing Origin

The Ellis Island records report the origin municipality of Italian immigrants starting in 1892

when the immigration station opened. In picture 2.A.2 we report the total number of recorded

Italian immigrants at Ellis Island, along with those whose origin municipality is missing. We

consider an origin entry as missing if it is either a proper missing or if the record reports coarse

geographical aggregates. These include, among others, “Italy”, Italian regions, and similar in-

formation which make it unfeasible to back out the district of origin of the immigrant. Since

our analysis is run at the district level and the non-missing Ellis Island records report origin

at the municipality level, to conduct our analysis we aggregate our individual-level data at the

district level.

Figure 2.A.2 suggests that missing origins are a minor concern in our dataset. There is

no single year when the share of immigrants with missing origin exceeds 1% of the overall

immigrants. Throughout our analysis, we therefore drop immigrants with missing origins from

our dataset.

Figure 2.A.2: Ellis Island Immigration Records: Assessment of Missing Origin
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Notes. The blue series reports the total number of Italian immigrants in our sample, over the period
1892-1924. The red series reports the total number of Italian immigrants whose origin is missing in the
Ellis Island dataset. We label as “missing” every entry whose origin is either missing, or reports coarse
geographical aggregates, such as Italy, and Italian regions or provinces.
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2.A.1.3 Validation of the Ellis Island Data

To validate our dataset, we compare it with official statistics data that we digitized from the

Annuario statistico dell’emigrazione italiana dal 1876 al 1925: con notizie sull’emigrazione negli

anni 1869-1875. The data was collected by the Commissioner-General for Emigration, and pub-

lished by the Italian Statistical Office (ISTAT) in 1926. Data report yearly emigration outflows,

broken down by major destination countries, and by region of origin of emigrants. There were

19 regions in Italy before WW1, and 20 thereafter. This implies that official statistics data can-

not be used in our analysis, since regions are too few and large. Instead, we use these data as a

meaningful validation tool for our dataset.

Figure 2.A.3: Validation of the Ellis Island Emigration Dataset
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Notes. The left panel displays the cross-sectional correlation between region-level US emigration
outflows as recorded in the official data—on the 𝑥-axis—and in our dataset—on the 𝑦-axis. A dot is a
region-year, and the size of each dot is proportional to that region’s population in the given decade. The
right panel reports the 𝑅2 of a regression where the dependent variable is US emigration as recorded in
official statistics, and the explanatory variable is US emigration in our dataset. Each regression only
considers observations for one given year. The note also reports the overall 𝑅2 of the associated
regression for the entire dataset, controlling for year and region-fixed effects.

In the left-hand panel of figure 2.A.3 we report the cross-sectional correlation between US

emigration outflows in our dataset—on the 𝑦-axis—and in official statistics—on the 𝑥-axis. Each

observation is a region year, and the size of each dot is proportional to the population of the re-

gion in that year’s decade, as registered in the population census. The red line reports the fitted

values of the associated linear regression. The figure depicts a strong and positive association

between the US emigration series in the two data sets. A similar picture would obtain if we

bin-scattered observations. A possible caveat is that our dataset consists of fewer emigrants

than reported in the official statistics because we searched 30,000 surnames in the Ellis Island

Foundation dataset. Although comprehensive, this is not the universe of Italian surnames. This
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notwithstanding, figure 2.A.3 attests that our dataset is geographically comparable to the official

data.

Figure 2.A.3 (B) reports the time-series correlation between the US emigration outflows

series in the two data-sets. More specifically, each dot reports the 𝑅2 of the following regression:

Ellis Island US Emigration𝑟,𝑡=𝑇 = 𝛼 + 𝛽OS US Emigration𝑟,𝑡=𝑇 + 𝜀𝑟,𝑡=𝑇 (2.10)

where Ellis Island US Emigration is the US emigration series measured with data from the Ellis

Island database; OS US Emigration is the US emigration series measured with official statistics

data; 𝑟 denotes a region, and 𝑇 ∈ [1892, 1924] is a given year. In other words, a dot in a given

year 𝑇 reports the cross-sectional 𝑅2 of a regression including all observations—i.e., one per

region—in that year. In the footnote, we also report the 𝑅2 associated with regression (2.10)

where we pool observations across years and include year and region-fixed effects. The 𝑅2 is

a measure of linear fit between the two series. Hence, we would ideally observe 𝑅2 = 1 under

perfect collinearity. Results indicate that the correlation between the official series and ours is

extremely high over time. Except for the WW1 years, the𝑅2 is above 75% throughout the sample

period and, starting in 1896, always exceeds 90%. In two robustness checks, we confirm that

our results remain unchanged even if we drop the periods with relatively low correlation, i.e.

1892-1896 and WW1.

The comparison between official statistics data and our series confirms that our measure

is a valid proxy for actual US emigration. The main advantage of our dataset is its granularity,

which we exploit in our analysis.

2.A.2 Data Sources

We here describe the sources from which we gathered the data needed for our analysis. Analy-

ses are mainly conducted at the district level—aggregation areas comparable to US counties—

which were named “Circondario” and are composed of municipalities (whose number ranges

from 7900 to 9000 in our sample period). We collected and digitize district- or municipality-

level data from multiple historical sources provided by the Italian Institute of Statistics. The

main sources are the Population Censuses and Industrial Censuses. As explained in the previ-

ous Section, migration flows by municipality were taken from the Ellis Island database.

We here provide a detailed summary of the sources of our variables of interest for each

year of our sample, specifying the geographical level at which data were collected. The his-

torical volumes we digitized can be found at this link. Censuses were held on a 10-year basis.
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Population Censuses were comprehensive of all information on population, including occupa-

tion and alphabetization for the whole period 1901-1921. In 1931 the Census was smaller and

did not include information on occupations. The next comprehensive Population Census was

held in 1936. In order to fill the gap between the years 1921-1936, we had to take the informa-

tion on occupation from the 1927 Industrial Census. This resulted in our sample of years for

the population’s occupations to be: 1901, 1911, 1921, 1927, 1936. As far as it concerns data on

the number of firms, engines, and horsepower, they are available in the Industrial Censuses:

information was available for the years 1911, 1927, and 1937.

Data on migration flows are gathered at the municipality level from the Ellis Island database,

starting from the year 1881. Population at the municipality level was instead collected for all

Population Censuses starting from 1861. For the years 1901, 1911, and 1921 data on population

by occupation were available at the district level (about 200 units) on the Population Census.

For the year 1927, it was instead available in the Industrial Census. In that same year, districts,

or “Circondari”, were suppressed as administrative units. This means that data on occupations

for 1936 had to be collected at the municipality level, for a total of about 8000 municipalities.

Industrial data are from Industrial censuses. The Industrial census was conducted for the

first time in 1911, and then again in 1927 and 1937. We digitized these censuses and collected

all relevant variables at the province level, i.e. the most granular available level of aggregation.

Since our analysis is conducted at the district level, we impute these from provinces to districts.

In the next section, we explain the details of the imputation procedure.

2.A.2.1 Imputation of Industrial Census Data

The variables we use to proxy capital investment—namely, the number of firms, number of

firms with engines, number of mechanical and/or electrical engines, and mechanical and/or

electrical horsepower—are digitized from industrial censuses. The most granular level of ag-

gregation available there are provinces. Provinces were composed of several districts, ranging

from one to four. In our analysis, we impute these province-level data to districts. In this section,

we describe the details of this imputation procedure.

Let subscript 𝑝 denote a province-level variable, whereas the same variable with subscript

𝑑 is at the district level. For every variable 𝑦𝑝 we need to impute, we run the following simple

OLS regression:

𝑦𝑝,𝑡 = 𝛼𝑝 + 𝛼𝑡 + 𝑥𝑥𝑥′𝑝,𝑡𝛽𝛽𝛽 + 𝜀𝑝,𝑡 (2.11)

where 𝑡 ∈ {1911, 1927, 1937}, and 𝛼𝑡 and 𝛼𝑝 respectively denote year and province fixed effects.

Term 𝑥𝑥𝑥𝑝,𝑡 includes a set of province-level regressors. These are total employment as well as the
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number of employed in agriculture, manufacturing, liberal professions, and public administra-

tion. Both 𝑦 and the variables in 𝑥𝑥𝑥 are in logs.

We estimate equation 2.11 and retrieve a set of coefficients 𝛽𝛽𝛽. To perform the imputation,

we exploit variation of the 𝑥𝑥𝑥’s at the district level:

𝑦𝑑,𝑡 = 𝑥𝑥𝑥
′
𝑑,𝑡𝛽𝛽𝛽 (2.12)

Notice that, because all regressions include district and year fixed effects, these capture varia-

tion which in regressions (2.11) is absorbed by year and province fixed effects.

In table 2.A.1 we compare province-level data from the industrial censuses and imputed

variables computed through (2.12), aggregated at province level. The table suggests that there

is a strong positive correlation between actual and imputed variables. This is confirmed by a

formal test of the statistical significance of the correlation coefficients. These are statistically

different from zero—and positive—for all imputed variables, thus suggesting that capital vari-

ables computed exploiting district-level variation in the 𝑥𝑥𝑥’s correlate with actual province-level

variables. We interpret this as evidence supporting our imputation procedure.

Table 2.A.1: Comparison Between Actual and Imputed Capital Variables

(1) (2) (3) (4)
𝜌 p-value 𝛽 se(𝛽) R2

Firms 0.439∗∗∗ (0.000) 0.160∗∗∗ (0.023) 0.193
Firms with Engine 0.470∗∗∗ (0.000) 0.222∗∗∗ (0.033) 0.221
Mechanical Engines 0.410∗∗∗ (0.000) 0.105∗∗∗ (0.022) 0.168
Electrical Engines 0.492∗∗∗ (0.000) 0.247∗∗∗ (0.036) 0.242
Mechanical Horsepower 0.469∗∗∗ (0.000) 0.197∗∗∗ (0.036) 0.220
Electrical Horsepower 0.468∗∗∗ (0.000) 0.217∗∗∗ (0.035) 0.219

Notes. This table compares measured and imputed capital variables. The imputation procedure is fully pinned
down by equations (2.11)-(2.12). Each row compares the imputed and the measured row variable. The imputed
row variable is predicted at the district level and then aggregated up to provinces. Column 𝜌 reports Pearson’s
correlation coefficient between imputed and measured variables, along with its Bonferroni-adjusted 𝑝-value.
Columns 𝛽 and se(𝛽) respectively display the coefficient and the standard error, clustered at the province level,
of a regression where the dependent variable is imputed and the independent variable is measured. Column R2

reports the coefficient of linear determination of this regression.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.

2.A.2.2 Railway data

Data on a district’s historical connectivity to the railway network were constructed using in-

formation taken from the Sviluppo delle ferrovie italiane dal 1839 al 31 dicembre 1926 edited by

the Italian Statistical Office (Ufficio Centrale di Statistica) in 1927. To the best of our knowledge,
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this is the first paper to use these data. The Italian Statistical Office recorded the year of con-

struction of each railway line connecting two municipalities, providing information on each

intermediate station. Hence, we are able to construct the railway network for each year from

1839 to 1926.

As our analysis is carried out at the district level, we obtain a measure of railway access

for each district 𝑐 by aggregating municipality-level data. We build a time-varying dummy—

RA𝑐𝑟,𝑡—taking value one if at least one municipality in a given district was connected through

the railway to another municipality in a different district, and zero otherwise. We also construct

a measure of the capillarity of the presence of the railway in a given district using the number

of train stations in that district for each year.

We build the network of districts connected through the railway in order to obtain the

distance between each district 𝑐 and any of the three departure ports: the districts of Genoa,

Naples, and Palermo. Each district constitutes a node of the network. An edge is created be-

tween two nodes if at least one municipality of the first district is connected to one municipal-

ity of the second district. De facto, edges connect adjacent districts, as for each year there is no

railway line directly connecting two municipalities in nonadjacent districts without stopping

in a train station belonging to the intermediate district.

The distance between two adjacent districts is calculated as the geodesic distance between

the centroids. The distance 𝑑𝑡 (𝑐, 𝑖) between any two districts 𝑐 and 𝑖 in the network is hence

the shortest path, or geodesic path, between the two nodes. We adopt this measure because we

interpret the railway network as a weighted graph where edges are weighted by the distance

between two nodes. In this context, the shortest path is the minimum sum of edge weights.

213



Table
2.A.2:VisualSum

m
ary

ofD
ata

Sources

(1)
(2)

(3)
(4)

(5)
Variable

M
easurem

ent
O

bservation
U

nit
Source

O
bserved

Years

D
em

ographics
Population

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
Area

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
U

rbanization
M

easured
D

istrict(1881-1921),M
unicipality

(1931-1936)
Population

Censuses
1881-1936,excl.1891

Literacy
M

easured
M

unicipality
Population

Censuses
1881-1936,excl.1891

Em
ploym

ent,by
Sector

M
anufacture

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
Agriculture

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
Trade

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
LiberalProfessions

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
Public

Adm
inistration

M
easured

D
istrict(1881-1921),M

unicipality
(1931-1936)

Population
Censuses

1881-1936,excl.1891
Capital&

Industry
Firm

s
Im

puted
Province,im

puted
to

D
istricts

M
anufacture

Censuses
1911,1927,1937

Firm
sw

ith
Engine

Im
puted

Province,im
puted

to
D

istricts
M

anufacture
Censuses

1911,1927,1937
M

echanicalEngines
Im

puted
Province,im

puted
to

D
istricts

M
anufacture

Censuses
1911,1927,1937

ElectricalEngines
Im

puted
Province,im

puted
to

D
istricts

M
anufacture

Censuses
1911,1927,1937

M
echanicalH

orsepow
er

Im
puted

Province,im
puted

to
D

istricts
M

anufacture
Censuses

1911,1927,1937
ElectricalH

orsepow
er

Im
puted

Province,im
puted

to
D

istricts
M

anufacture
Censuses

1911,1927,1937
Em

igration
U

S
Em

igration
M

easured
M

unicipality
EllisIsland

D
ata

1892-1924
O

verallEm
igration

Im
puted

Province,im
puted

to
D

istricts
O

ffi
cialStatisticsofthe

Com
m

issioner
General

1877-1925
O

ther
W

W
1

deaths
M

easured
M

unicipality
Istituto

per
la

storia
della

Resistenza
e

della
società

contem
poranea.

1915-1918
Railw

ays
M

easured
M

unicipality
ISTAT

–
Sviluppo

delle
ferrovie

italiane
dal1839

al31
dicem

bre
1926

1839-1926

N
otes.Thistable

reportsallvariablesused
in

the
paper.The

“M
easurem

ent”colum
n

reports“M
easured”ifthe

variable
isused

in
the

analysisasitism
easured

in
the

source
data;instead,itreports“Im

puted”ifitism
easured

ata
coarser

levelofaggregation,and
isthen

im
puted

to
districts.The

im
putation

procedure
is

described
in

the
D

ata
Appendix.The

“O
bservation

U
nit”returnsthe

levelofaggregation
atw

hich
the

variable
ism

easured.The
“Source”colum

n
displaysthe

type
ofsource

the
raw

data
are

extracted
from

.Further
referencesto

originalsourcescan
be

found
in

the
textm

ain
body.The

“O
bserved

Years”colum
n

reportsthe
yearsw

hen
the

raw
data

isavailable.Literacy
data

are
from

Fontana
etal.(2021).

214



2.B Additional Tables & Results

Table 2.B.1: Regional Emigration

Region Emigrants to US Emigrants to all destinations Share
76-87 88-99 00-12 13-25 Total 76-87 88-99 00-12 13-25 Total

Piemonte 5.2 12.3 109.8 43.4 170.8 353.3 332.5 697.2 527.9 1910.8 8.9
Liguria 8.2 10.8 27.2 10.6 56.8 63.0 51.1 89.0 92.9 296.1 19.2
Lombardia 4.4 11.0 56.7 28.6 100.8 237.9 259.7 675.8 441.6 1615.2 6.2
Veneto 1.0 6.0 52.7 48.4 108.1 486.3 1197.6 1298.2 651.0 3633.1 3.0
Emilia-Romagna 1.3 8.4 62.0 24.0 95.8 60.5 137.7 422.4 178.7 799.2 12.0
Toscana 3.3 12.9 89.6 42.0 147.8 110.7 157.5 412.4 230.6 911.2 16.2
Marche 0.2 2.0 62.0 30.6 94.8 12.7 48.0 280.6 131.1 472.3 20.1
Umbria 0.1 0.5 24.1 11.8 36.6 0.5 6.0 129.9 59.4 195.7 18.7
Lazio 0.02 2.3 109.4 50.1 161.9 0.4 14.0 151.4 72.9 238.6 67.8
Abruzzi e Molise 26.9 68.0 371.0 161.6 627.4 58.3 164.1 585.7 241.6 1049.7 59.8
Campania 44.3 157.5 637.8 241.5 1081.2 131.3 339.6 871.0 360.7 1702485 63.5
Puglie 1.3 12.9 164.7 107.9 286.9 8.1 37.2 283.4 172.4 501.2 57.2
Basilicata 28.4 53.3 108.1 38.5 228.3 74.1 106.5 179.8 70.5 431.0 53.0
Calabrie 15.0 58.5 457.7 125.1 656.3 74.1 178.5 539.8 253.6 1046.1 62.7
Sicilia 12.6 117.2 687.7 356.1 1173.6 26.8 170.9 946.5 516.4 1660.6 70.7
Sardegna 0.01 0.03 8.5 5.7 14.2 1.3 6.2 72.8 43.9 124.1 11.5

Total 152.1 533.9 3029.1 1326.0 5041.3 1699.3 3206.9 7635.8 4045.4 16587.4 30.4

Notes. Regional emigration towards US and total emigration during the period 1876-1925. Figures are
in thousands. Column “Share” indicates the percentage of total emigrants towards US relatively to all
emigrants from that region in the whole period 1876-1925.
Source: our elaboration on data from the Annuario statistico dell’emigrazione italiana dal 1876 al 1925:
con notizie sull’emigrazione negli anni 1869-1875, Italian Statistical Office (ISTAT), Roma, 1926.

215



Table 2.B.2: Internal and International Migrations, 1921-1931

Region Absolute numbers Share over Population

Population Internal Migrants Emigrants Internal Migrants Emigrants

Abruzzo 1317.2 19.3 170.3 1.5 12.9
Basilicata 524.5 5.6 52.4 1.1 10.0
Calabria 1257.9 8.2 219.4 0.7 17.4
Campania 2896.6 1.2 248.4 0.0 8.6
Emilia Romagna 2183.4 78.7 165.3 3.6 7.6
Lazio 903.5 -133.8 88.2 -14.8 9.8
Liguria 892.4 -60.5 112.7 -6.8 12.6
Lombardia 3680.6 -198.0 460.6 -5.4 12.5
Marche 939.3 25.2 99.2 2.7 10.6
Piemonte 3070.3 -111.9 469.3 -3.6 15.3
Puglia 1589.1 52.9 117.8 3.3 7.4
Sardegna 682.0 2.8 27.7 0.4 4.1
Sicilia 2927.9 31.7 333.4 1.1 11.4
Toscana 2208.9 27.2 198.0 1.2 9.0
Umbria 572.1 -1.0 37.1 -0.2 6.5
Veneto 2814.2 139.8 639.8 5.0 22.7

Notes. This table reports internal migration and out-migration flows over the period 1921-1931. Column
“Population” reports population in 1881. Column “Internal migrants” is the net internal migrant flow. To
compute net internal migration flows, we take the difference in the outflow of people leaving a given region and
the inflow of people arriving in that region during the decade 1921-1931. Since Census data only report the stock
of people born in a given region living in another region in 1921 and 1931, to compute the outflow of people
leaving a region during that decade, we take the difference across years of the total number of people born in
that region and living in any other Italian region. Similarly, to compute the inflow of people arriving in a region
during that decade we take the difference across years of the total number living in that region who were born in
any other Italian region. Positive (negative) figures imply a net population loss (gain) due to internal migrations.
Column “Emigrants” reports the number of international emigrants. Figures are in thousands. Columns “Share
over Population” report net internal and international migration figures, relative to 1881-population. Figures are
in percentage terms.
Source: our elaboration on data from the Annuario statistico dell’emigrazione italiana dal 1876 al 1925: con
notizie sull’emigrazione negli anni 1869-1875, Italian Statistical Office (ISTAT), Roma, 1926, and from Censimento
della Popolazione Italiana, Italian Statistical Office (ISTAT), Roma, 1921 and 1931.
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Table 2.B.3: Population Growth

Dep. Var.: Population Growth

(1) (2) (3) (4) (5) (6) (7) (8)

Quota Exposure × Post 0.408∗∗∗ 0.446∗∗∗ 0.422∗∗∗ 0.443∗∗∗ 0.515∗∗∗ 0.469∗∗∗ 0.342∗∗ 0.284∗∗
(0.113) (0.124) (0.120) (0.120) (0.134) (0.132) (0.134) (0.136)

Population 0.146∗∗∗ 0.142∗∗∗ 0.165∗∗∗ 0.166∗∗∗ 0.180∗∗∗ 0.183∗∗∗ 0.178∗∗∗ 0.179∗∗∗
(0.030) (0.030) (0.031) (0.030) (0.032) (0.033) (0.034) (0.033)

Extensive Margin × Post -0.065 -0.091 -0.109∗ -0.101∗ -0.094∗ -0.058 -0.058
(0.055) (0.057) (0.059) (0.055) (0.053) (0.051) (0.052)

Agriculture × Post 0.095∗∗∗ 0.072∗∗∗ 0.090∗∗∗ 0.078∗∗ 0.089∗∗∗ 0.088∗∗∗
(0.024) (0.026) (0.031) (0.031) (0.030) (0.030)

Urbanization × Post -0.026∗∗ -0.020 -0.017 -0.017 -0.019
(0.013) (0.014) (0.014) (0.014) (0.014)

Literacy × Post 0.024 0.019 0.059∗∗∗ 0.059∗∗∗
(0.017) (0.016) (0.019) (0.019)

WW1 × Post -0.030∗ -0.021 -0.020
(0.017) (0.015) (0.015)

South × Post 0.029∗∗∗ 0.029∗∗∗
(0.008) (0.008)

US GDP Growth × QE 0.018∗∗
(0.008)

District FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Number of Districts 204 204 204 204 204 204 204 204
Observations 751 751 751 751 751 751 751 751
R2 0.453 0.454 0.475 0.479 0.480 0.482 0.495 0.501
F-stat 13.726 10.139 10.400 12.096 14.920 14.928 16.897 15.768
Mean Dep. Var. 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042

Notes. This table displays the effect of exposure to the Quota Acts on population growth. Population growth is
defined as the decade-on-decade percentage change in population. All regressions include district and year fixed
effects. Outcome variables are defined in growth rate. Standard errors are always clustered at the district level.
Extensive margin is the emigration rate defined as the ratio between 1890-1914 emigration and 1880-population.
Agriculture is the number of agriculture workers in 1901. Urbanization is the share of people living in cities no
smaller than 10,000 inhabitants in 1901. Literacy is the number of people who could read and write as a share of
the overall population in 1901. South is a dummy equal to zero if the district is in the EU NUTS 2 ITC or ITH
region, and one otherwise. WW1 is the number of deaths due to the First World War, divided by 10,000.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.4: Changes in Industrial Employment

Dep. Var.: Industry Workers Growth

(1) (2) (3) (4) (5) (6) (7) (8)

Quota Exposure × Post 1.825∗∗∗ 1.497∗∗∗ 1.471∗∗∗ 1.469∗∗∗ 1.457∗∗∗ 1.413∗∗ 1.173∗ 0.996∗
(0.427) (0.476) (0.477) (0.488) (0.552) (0.591) (0.604) (0.581)

Population 0.206∗ 0.243∗∗ 0.262∗∗ 0.261∗∗ 0.259∗ 0.266∗ 0.255∗ 0.213
(0.123) (0.123) (0.126) (0.127) (0.137) (0.142) (0.143) (0.142)

Extensive Margin × Post 0.652 0.619 0.621 0.616 0.631 0.709∗ 0.701∗
(0.403) (0.404) (0.409) (0.420) (0.427) (0.422) (0.419)

Agriculture × Post 0.077 0.079 0.075 0.064 0.081 0.068
(0.082) (0.094) (0.108) (0.111) (0.112) (0.110)

Urbanization × Post 0.001 0.000 0.003 0.002 0.000
(0.058) (0.061) (0.062) (0.062) (0.061)

Literacy × Post -0.004 -0.008 0.053 0.052
(0.072) (0.073) (0.085) (0.084)

WW1 × Post -0.026 -0.014 -0.009
(0.065) (0.065) (0.065)

South × Post 0.047 0.046
(0.037) (0.037)

US GDP Growth × QE 0.136∗∗∗
(0.042)

District FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Number of Districts 205 205 205 205 205 205 205 205
Observations 742 742 742 742 742 742 742 742
R2 0.541 0.543 0.543 0.542 0.541 0.540 0.540 0.548
F-stat 6.777 6.951 6.664 5.616 5.194 4.603 4.602 4.748
Mean Dep. Var. 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Notes. This table displays the effect of exposure to the Quota Acts on changes in industrial employment.
Industrial employment growth is defined as the decade-on-decade percentage change in industrial employment.
All regressions include district and year fixed effects. Outcome variables are defined in growth rate. Standard
errors are always clustered at the district level. Extensive margin is the emigration rate defined as the ratio
between 1890-1914 emigration and 1880-population. Agriculture is the number of agriculture workers in 1901.
Urbanization is the share of people living in cities no smaller than 10,000 inhabitants in 1901. Literacy is the
number of people who could read and write as a share of the overall population in 1901. South is a dummy equal
to zero if the district is in the EU NUTS 2 ITC or ITH region, and one otherwise. WW1 is the number of deaths due
to the First World War, divided by 10,000.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.5: Changes in the Share of Industrial Workers

Dep. Var.: Changes in Share of Industrial Workers

(1) (2) (3) (4) (5) (6) (7) (8)

Quota Exposure × Post 1.455∗∗∗ 1.139∗∗∗ 1.118∗∗∗ 1.237∗∗∗ 1.204∗∗ 1.168∗∗ 1.154∗∗ 0.888
(0.356) (0.411) (0.412) (0.425) (0.465) (0.473) (0.520) (0.538)

Population 0.074 0.105 0.124 0.134 0.129 0.134 0.134 0.078
(0.090) (0.088) (0.092) (0.093) (0.096) (0.099) (0.101) (0.097)

Extensive Margin × Post 0.613∗ 0.579 0.509 0.497 0.509 0.513 0.488
(0.353) (0.351) (0.360) (0.372) (0.382) (0.390) (0.384)

Agriculture × Post 0.072 0.004 -0.005 -0.014 -0.013 -0.028
(0.059) (0.075) (0.096) (0.101) (0.104) (0.101)

Urbanization × Post -0.077 -0.081 -0.078 -0.078 -0.074
(0.053) (0.061) (0.062) (0.062) (0.061)

Literacy × Post -0.012 -0.014 -0.011 -0.022
(0.064) (0.063) (0.080) (0.079)

WW1 × Post -0.020 -0.020 -0.019
(0.071) (0.071) (0.069)

South × Post 0.003 -0.001
(0.036) (0.035)

US GDP Growth × QE 0.173∗∗∗
(0.035)

District FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Number of Districts 205 205 205 205 205 205 205 205
Observations 729 729 729 729 729 729 729 729
R2 0.477 0.479 0.479 0.480 0.479 0.478 0.477 0.500
F-stat 6.068 6.487 5.568 5.131 4.430 3.894 3.522 7.913
Mean Dep. Var. 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051

Notes. This table displays the effect of exposure to the Quota Acts on changes in the share of industrial workers
relative to total employment. The share of industrial workers is defined as the ratio between industrial workers
and total employment. All regressions include district and year fixed effects. Outcome variables are defined in
growth rate. Standard errors are always clustered at the district level. Extensive margin is the emigration rate
defined as the ratio between 1890-1914 emigration and 1880-population. Agriculture is the number of agriculture
workers in 1901. Urbanization is the share of people living in cities no smaller than 10,000 inhabitants in 1901.
Literacy is the number of people who could read and write as a share of the overall population in 1901. South is a
dummy equal to zero if the district is in the EU NUTS 2 ITC or ITH region, and one otherwise. WW1 is the number
of deaths due to the First World War, divided by 10,000.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.8: First Stage Regressions

Shift Share Railway

(1) (2) (3) (4) (5)
Pre 1924 Pre WW1 Pre Quota RAP total RAP region

IV QE 0.778∗∗∗ 0.833∗∗∗ 0.791∗∗∗ 3.398∗∗∗ 8.255∗∗∗
(0.038) (0.038) (0.039) (1.169) (2.317)

Extensive Margin × Post 0.012 -0.001 0.011 0.205∗∗∗ 0.187∗∗
(0.015) (0.012) (0.015) (0.077) (0.072)

District FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of Districts 207 207 207 207 207
Observations 754 754 754 754 754
KP Wald rk F 414.366 483.861 422.069 8.456 12.692

Notes. This table reports the result of the first stage instrumental variable estimation. The instrument
(IV Quota Exposure) in the first three columns is defined in (2.4). The first column reports the
correlation between QE and its instrument over the full sample (1890-1939). Instrument in column (2)
restricts the emigrant outflow to the pre-WW1 period (1890-1914). Column (3) reports the results when
considering emigrants over the pre-Quota period (1890-1924). In the last two columns, the instrument
is defined as in equation (2.6). Results in column “RA total” use aggregate emigration instead of
regional emigration. All regressions partial out district and year fixed effects. Further controls are
population, the emigration rate and labor market slackness in 1901 interacted with a post-treatment
dummy. K-P F-stat refers to the Kleibergen-Paap F-statistic for weak instrument.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.9: Urbanization and Employment Share - 2sls

(1) (2) (3)
Urbanization Industrialization Agriculture

Panel A: OLS
Quota Exposure × Post -0.410∗∗∗ 1.316∗∗∗ -0.606∗∗∗

(0.109) (0.414) (0.153)
Panel B: 2SLS Shift Share
Quota Exposure × Post -0.332∗∗∗ 1.382∗∗∗ -0.603∗∗∗

(0.124) (0.474) (0.177)
Panel C: 2SLS Railway Regional
Quota Exposure × Post -0.866∗∗ 2.379 -1.091∗∗∗

(0.359) (1.545) (0.393)

District FE Yes Yes Yes
Year FE Yes Yes Yes
Number of Districts 205 207 208
Observations 995 731 746
Mean Dep. Var. 0.279 0.044 -0.031

Notes. This table reports the effect of exposure to the Quota Acts on urbanization and changes in the
share of industrial and agricultural workers relative to overall employment. Urbanization is defined as
the share of the population living in cities no smaller than 10,000 inhabitants. The share of sector
employment is defined as the ratio between sector and aggregate employment. Panel A presents
reduced form estimates. Panel B reports 2SLS estimates based on the instrument defined in (2.4). All
regressions include district and year fixed effects. Further controls are log-population, labor market
slackness in 1901 interacted with a post-treatment dummy and the emigration rate, defined as the
number of emigrants 1890-1914 relative to 1880-population, interacted with a post-treatment dummy.
Outcome variables are defined in growth rate. Standard errors are robust and clustered at the district
level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.10: Labor intensity and emigration - 2sls

Worker/Firm Worker/Engine Worker/Horsepower

(1) (2) (3) (4) (5) (6)
All Engine Mechanic Electric Mechanic Electric

Panel A: OLS
Quota Exposure × Post 0.208 0.184 1.135∗∗∗ 1.050∗∗∗ 0.248 1.212∗∗∗

(0.239) (0.396) (0.174) (0.339) (0.353) (0.300)
Panel B: 2SLS Shift Share
Quota Exposure × Post 0.482∗ 0.563 1.264∗∗∗ 0.699∗∗ -0.251 0.964∗∗∗

(0.276) (0.428) (0.190) (0.327) (0.403) (0.294)
Panel C: 2SLS Railway Regional
Quota Exposure × Post 1.432∗∗ 1.453 1.588∗∗∗ 1.725∗ -0.337 1.531∗∗

(0.700) (1.200) (0.524) (0.984) (1.157) (0.753)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 209 209 208 207 209 208
Observations 785 787 785 783 786 785
Mean Dep. Var. -0.082 -0.054 -0.077 -0.258 -0.078 -0.195

Notes. This table displays the effect of being exposed to the Quota Acts on various measures for labor
intensity in production. The first and second columns report the effect on, respectively, the
worker-per-firm and the worker-per-firm with engine ratios. The third and fourth columns show the
effect on the ratio between worker and mechanical and electrical engines; the fifth and sixth display the
effect the ratio between workers and mechanical and electrical horsepower. Panel A presents reduced
form estimates. Panel B reports 2SLS estimates based on the instrument defined in (2.4). All regressions
include district and year fixed effects. Further controls are log-population, labor market slackness in
1901 interacted with a post-treatment dummy and the emigration rate, defined as the number of
emigrants 1890-1914 relative to 1880-population, interacted with a post-treatment dummy. Outcome
variables are defined in growth rate. Standard errors are robust and clustered at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.12: Changes in Industry Employment by Sector - 2sls

(1) (2) (3) (4) (5) (6)
Mining Agriculture Steel Construction Textile Chemical

Panel A: OLS
Quota Exposure × Post 0.442 -2.459∗ 1.379 6.103∗∗∗ 5.651∗∗∗ 0.017

(0.388) (1.261) (1.573) (1.626) (1.398) (0.308)
Panel B: 2SLS
Quota Exposure × Post 0.419 -2.275 2.757∗ 5.912∗∗∗ 7.077∗∗∗ 0.158

(0.494) (1.583) (1.575) (2.183) (1.327) (0.361)

Observations 685 776 775 778 774 681
District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 194 200 198 200 200 195
Observations 685 776 775 778 774 681
F-stat 8.111 5.319 5.982 15.309 8.373 1.828
Mean Dep. Var. 0.724 0.422 0.250 0.553 0.291 0.751

Notes. This table displays the effect of exposure to the Quota Acts on changes in employment by
manufacture sector. Hence, column “Agriculture” reports the impact of QE on employment in
manufacture firms working in agriculture, not that on agriculture. We do not show the “public utility”
sector due to data availability, and a residual sector of unassigned firms. Panel A presents reduced
form estimates. Panel B reports 2SLS estimates based on the instrument defined in (2.4). All regressions
include district and year fixed effects. Further controls are log-population, changes in industrial
employment, the emigration rate and 1901 labor market slackness interacted with a post-treatment
dummy. Outcome variables are defined in growth rate. Standard errors are clustered at the district
level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.13: Population Growth Varying the Measurement of Quota Exposure

Baseline Weighted Alternative periods

(1) (2) (3) (4) (5) (6)

QE × Post 0.449∗∗∗
(0.124)

QE × Post: decreasing weight 1.001∗∗
(0.386)

QE × Post: increasing weight 2.328∗∗∗
(0.551)

QE× Post: 1902-1905 1.664∗∗∗
(0.411)

QE× Post: 1906-1909 1.241∗∗∗
(0.414)

QE× Post: 1910-1913 0.953∗∗
(0.436)

Extensive Margin × Post -0.068 -0.045 -0.083 -0.087 -0.047 -0.025
(0.055) (0.057) (0.055) (0.056) (0.055) (0.057)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 204 204 204 204 204 204
Observations 751 751 751 751 751 751
R2 0.452 0.441 0.459 0.459 0.444 0.436
F-stat 9.932 8.538 11.094 11.375 8.965 7.966
Mean Dep. Var. 1.042 1.042 1.042 1.042 1.042 1.042
Std. Beta Coef. 0.240 -0.008 0.268 0.266 0.198 0.149

Notes. This table displays the effect of exposure to the Quota Acts on population growth. Different
measures of Quota Exposure are used, as further robustness. Hence, column “Baseline” reports the
estimate for Quota Exposure as defined and used throughout the paper. Column “Weighted” reports the
coefficients for two measures of Quota Exposure constructed using an exponential smoothing with
coefficient 0.9: “decreasing weight” assigns lower weight to US emigration further back in time;
“increasing weight” assigns lower weight to more recent US emigration. Column “Alternative periods”
shows instead the estimates for Quota Exposure constructed using only US emigration from selected
sub-periods of time: we use three different periods, respectively 1902-1905, 1906-1910, 1910-1913. All
regressions include district and year fixed effects. Further controls are log-population, changes in
industrial employment, the emigration rate and 1901 labor market slackness interacted with a
post-treatment dummy. Outcome variables are defined in growth rate. Standard errors are clustered at
the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.14: Employment in Manufacture Varying the Measurement of Quota Exposures

Baseline Weighted Alternative periods

(1) (2) (3) (4) (5) (6)

Quota Exposure × Post 1.510∗∗∗
(0.475)

QE × Post: decreasing weight 4.241∗∗∗
(1.389)

QE × Post: increasing weight 6.848∗∗∗
(2.304)

QE× Post: 1902-1905 5.356∗∗∗
(1.615)

QE× Post: 1906-1909 4.647∗∗∗
(1.483)

QE× Post: 1910-1913 4.702∗∗∗
(1.458)

Extensive Margin × Post 0.637 0.675∗ 0.626 0.578 0.698∗ 0.724∗
(0.400) (0.406) (0.404) (0.400) (0.398) (0.399)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 205 205 205 205 205 205
Observations 742 742 742 742 742 742
R2 0.542 0.542 0.542 0.543 0.542 0.541
F-stat 7.004 6.400 6.579 7.275 6.653 6.870
Mean Dep. Var. 0.060 0.060 0.060 0.060 0.060 0.060
Std. Beta Coef. 0.123 0.119 0.119 0.126 0.116 0.116

Notes. This table displays the effect of exposure to the Quota Acts on industrial employment growth.
Different measures of Quota Exposure are used, as further robustness. Hence, column “Baseline”
reports the estimate for Quota Exposure as defined and used throughout the paper. Column “Weighted”
reports the coefficients for two measures of Quota Exposure constructed using an exponential
smoothing with coefficient 0.9: “decreasing weight” assigns lower weight to US emigration further back
in time; “increasing weight” assigns lower weight to more recent US emigration. Column “Alternative
periods” shows instead the estimates for Quota Exposure constructed using only US emigration from
selected sub-periods of time: we use three different periods, respectively 1902-1905, 1906-1910,
1910-1913. All regressions include district and year fixed effects. Further controls are log-population,
changes in industrial employment, the emigration rate and 1901 labor market slackness interacted
with a post-treatment dummy. Outcome variables are defined in growth rate. Standard errors are
clustered at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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Table 2.B.15: Investment in Capital Goods Using Time-Weighted Quota Exposure

Firm Engine Horsepower

(1) (2) (3) (4) (5) (6)
All Engine Mechanic Electric Mechanic Electric

QE × Post: decreasing 0.641 1.075 -3.000∗∗∗ -3.331∗∗∗ -2.008∗∗ -4.014∗∗∗
(0.724) (1.161) (0.493) (0.930) (0.985) (0.965)

Extensive Margin × Post -0.086 -0.037 0.215∗∗ 0.015 -0.260∗∗ -0.009
(0.116) (0.185) (0.103) (0.135) (0.117) (0.151)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Districts 208 208 207 207 209 208
Observations 785 785 783 784 785 784
R2 0.963 0.834 0.426 0.953 0.834 0.936
F-stat 0.418 0.272 13.464 4.478 4.915 10.468
Mean Dep. Var. 0.766 0.582 0.018 0.793 0.270 0.828
Std. Beta Coef. 0.012 0.030 -0.367 -0.057 -0.048 -0.088

Notes. This table displays the effect of exposure to the Quota Acts on changes on various measures for
capital and investment and technology adoption. Quota Exposure is constructed using an exponential
smoothing with coefficient 0.9. In this case, we assigns lower weight to US emigration further back in
time. All regressions include district and year fixed effects. Further controls are log-population,
changes in industrial employment, the emigration rate and 1901 labor market slackness interacted
with a post-treatment dummy. Outcome variables are defined in growth rate. Standard errors are
clustered at the district level.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01.
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2.C Additional Figures

Figure 2.C.1: Event-Study of Population Growth and the Quota Acts
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Notes. This figure plots the coefficient of the treatment measure (QE) interacted with census-decade
time dummies. Regressions include district and year fixed effects, and region-by-year fixed effects.
Further controls are the population in level, and 1901 labor market slackness interacted with
census-decade dummies. Standard errors are clustered at the district-by-year level. Bands report 90%
and 95% confidence levels. The red line indicates the 1924 (Johnson-Reed) Quota Act.
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Figure 2.C.2: Event-Study of Industrial and Agriculture Employment
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Notes. This figure plots the coefficients of the treatment measure (QE) interacted with census-decade
time dummies. Regressions include district and year fixed effects, and region-by-year fixed effects.
Further controls are the population in level, and 1901 labor market slackness interacted with
census-decade dummies. Standard errors are clustered at the district-by-year level. Bands report 90%
and 95% confidence levels. The red line indicates the 1924 (Johnson-Reed) Quota Act.
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Figure 2.C.3: Event-Study of Technology Adoption and Capital Investment
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Notes. This figure plots the coefficients of the treatment measure (QE) interacted with census-decade
time dummies. Regressions include district and year fixed effects, and region-by-year fixed effects.
Further controls are the population in level, and 1901 labor market slackness interacted with
census-decade dummies. Standard errors are clustered at the district-by-year level. Bands report 90%
and 95% confidence levels. The red line indicates the 1924 (Johnson-Reed) Quota Act. For capital
variables, 1931 actually refers to the 1927 Census of Manufacture.
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Figure 2.C.4: Jackknife Estimation Routine
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Notes. For each dependent variable shown in the header, each blue dot (on the left y-axis) reports the
coefficient of Quota Exposure in the baseline difference-in-differences model dropping one district at a
time. Red dots (on the left y-axis) are coefficients above and below respectively the 95th and the 5th
percentiles. The green dot (on the right y-axis) reports the Jackknife estimator of the same coefficient,
along with its 90% confidence bands.
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Figure 2.C.5: Standard Error Analysis
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Notes. For a given outcome variable, the blue dots report the estimate of the coefficient of the treatment
(QE) in the baseline difference-in-differences specification. The red bands report the 95% confidence
intervals for a set of estimators for the coefficient’s standard error. We include White standard errors
which allow for heteroskedasticity; several clustered standard errors allowing for within-group
autocorrelation; the Driscoll and Kraay (1998) correction for autocorrelation at two different time lags;
several Conley (1999) estimates allowing for time and spatial autocorrelation. For the Conley SEs, we
set maximal time-autocorrelation at 2 lags, and vary the radius of spatial autocorrelation.
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Notes. For a given outcome variable, the blue dots report the estimate of the coefficient of the treatment
(QE) in the baseline difference-in-differences specification. The red bands report the 95% confidence
intervals for a set of estimators for the coefficient’s standard error. We include White standard errors
which allow for heteroskedasticity; several clustered standard errors allowing for within-group
autocorrelation; the Driscoll and Kraay (1998) correction for autocorrelation at two different time lags;
several Conley (1999) estimates allowing for time and spatial autocorrelation. For the Conley SEs, we
set maximal time-autocorrelation at 2 lags, and vary the radius of spatial autocorrelation.
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Notes. For a given outcome variable, the blue dots report the estimate of the coefficient of the treatment
(QE) in the baseline difference-in-differences specification. The red bands report the 95% confidence
intervals for a set of estimators for the coefficient’s standard error. We include White standard errors
which allow for heteroskedasticity; several clustered standard errors allowing for within-group
autocorrelation; the Driscoll and Kraay (1998) correction for autocorrelation at two different time lags;
several Conley (1999) estimates allowing for time and spatial autocorrelation. For the Conley SEs, we
set maximal time-autocorrelation at 2 lags, and vary the radius of spatial autocorrelation.
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Figure 2.C.4: Emigration towards main destination countries
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Notes. These figures plot the number of Italian emigrants towards the main destination countries over
the period 1876-1930. Overall, these countries account for about the 70% of total emigration from Italy
during the whole period. The blue line represents the actual number of migrants (and its moving
average starting from WWI). The red line reports the predicted number of migrants obtained from an
ARIMA model estimated over the historical number of emigrants before WW1. Bands plot 95% and 80%
confidence interval for the predicted values. The figures suggest that predictions based on historical
emigration patterns reflect variation in the post-Quota period for all destination countries but the US.
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Figure 2.C.5: Counties by Quota Exposure and Emigration Rate’s Quartile

2

4

6

0 5 10 15

North = 30, South = 23 

First Quartile

6

7

8

9

0 5 10 15

North = 34, South = 21 

Second Quartile

8

10

12

14

0 5 10 15 20

North = 20, South = 33 

Third Quartile

14

16

18

20

0 10 20 30

North = 23, South = 28 

Fourth Quartile

Em
ig

ra
tio

n 
ra

te
 (%

)

Quota Exposure (%)

 North  South

Notes. Each dot represents a district and reports its emigration rate (%, on the y-axis) and its quota
exposure (%, on the x-axis). Panels are split by quartiles of the emigration rate. Blue dots are for
districts in northern regions; red dots are for districts in southern regions. Red and blue vertical lines
display the mean quota exposure for northern and southern regions, respectively. In each panel, on the
top-right we report the number of northern and southern districts in the plot. This figure shows that
conditional on the emigration rate, northern districts display substantially lower quota exposure
despite sizable emigration rate. Hence, our identifying variation conditionally compares northern
vis-à-vis southern districts, instead of exploiting within-South variation.
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Figure 2.C.6: Distribution of Capital and Labor
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Notes. Each line represents the density plot of capital and labor variables we use throughout our
analysis. Variables are expressed in logarithm. We plot the distribution over the whole sample period,
1881-1936. On the top left we show the distribution of the number of firms in each district. On the top
right we show the distribution of the total number of workers. On the bottom, we show the
distributions for the number of mechanical (left panel) and electrical (right panel) engines.
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Figure 2.C.7: Number of firms and Urbanization Rate in the Pre Quota Period
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(b) With Controls Below Median
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(c) No Control Above Median
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(d) With Controls Above Median
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Notes. The graphs display binned scatter plots relating the total number of firms (in logarithm) and the
urbanization rate at district level in the pre-Quota period (before 1921). The blue lines refer to those
district whose Quota Exposure is below the median. Red lines, instead, refer to district with Quota
Exposure above the median. The left panels show the results of a binscatter generalized linear
regression of the number of firms in a given district to its urbanization rate in the pre-Quota period. For
the right panels, we also control for the emigration rate (intensive margin), and for year and province
fixed effects. Dashed lines represent the cubic B-spline estimate of the regression function of interest.
95% confidence bands are based on the same spline. The plots show there is no significant difference
between the correlation between number of firms and urbanization rate, by exposure to the Quotas.
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2.D A Model of Directed Technical Adoption

In this section we develop a simple framework to rationalize our main findings in the context

of labor-saving technical change theory. Proofs and further analytical insights on the baseline

environment can be found in section 2.D.3.

2.D.1 Theoretical Framework

In this section we develop a simple analytical framework inspired to Zeira (1998) and San (2022)

to clarify the empirical implications of directed technical change and adoption theory. The core

assumption we make is that capital goods—hereafter, machines—substitute labor as a produc-

tion input. We thus implicitly restrict technological progress to be labor-saving, differently from

e.g. Acemoglu (2002, 2007). The decision of the firm to adopt productivity-enhancing machines

will depend on their price relative to the cost of labor. In the equilibrium a labor supply shock—

such as the one induced by IRPs—dampens the incentive to adopt machines because it pushes

down the wage, hence prompting firms to substitute capital with labor.

Consider a closed economy with one consumption good, and a representative household

supplying labor. The consumption good is produced by a continuum of tasks 𝑗 ∈ [0, 1]. Each

task can be performed with either labor or machines. The amount of machines in task 𝑗 is

denoted by 𝑥 ( 𝑗), whereas the amount of labor employed is 𝑒( 𝑗). Note that each task can be

fulfilled with either machines or labor, but not both. This is intended to model in a stylized

manner labor-saving machines. To simplify the analysis and following Zeira (1998) we assume

that machines fully depreciate at the end of the period, hence the model is essentially static.

The final consumption good is produced by identical perfectly competitive firms with the

following production function:

𝑌 = 𝐴

[∫ 𝜄

0
𝑚𝑥 ( 𝑗)𝛼 𝑑 𝑗 +

∫ 1

𝜄
𝑒( 𝑗)𝛼 𝑑 𝑗

]
(2.13)

where 𝐴 is a technology parameter, 𝑚 is the relative productivity of machines and 𝛼 ∈ (0, 1) is

a production parameter. We assume 𝑚 ∈ (0, 1) following San (2022), and restrict machines to

be equally productive across tasks 𝑗. The choice variable 𝜄 ∈ [0, 1] denotes industrialization de-

fined as the share of automatized tasks, which are those fulfilled by machines. We assume that

tasks are ordered by degree of complexity. Because the marginal cost of producing machines—

which we define below—is increasing in complexity, the price of machines is non-decreasing in

𝑗. It is therefore without loss of generality to assume that the first 𝜄 tasks are automatized. This

is because the final good producer will first automatize tasks whose machine costs the least,
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since the relative productivity of machines is constant across tasks. We assume that there is a

fixed stock of labor 𝐿 > 0 which is supplied inelastically by the household.

The problem of the representative final good producer is therefore to choose the industri-

alization level 𝜄, and input quantities 𝑥 ( 𝑗) and 𝑒( 𝑗) for each task, to maximize profits

max
𝜄,{𝑥 ( 𝑗),𝑒( 𝑗)} 𝑗∈[0,1]

𝑌 −
∫ 𝜄

0
𝑝( 𝑗)𝑥 ( 𝑗) 𝑑 𝑗 − 𝑤

∫ 1

𝜄
𝑒( 𝑗) 𝑑 𝑗 (2.14)

where 𝑝( 𝑗) is the price of a machine for task 𝑗,𝑤 is the nominal wage, subject to the technology

constraint (2.13). Note that the price of the consumption good is implicitly normalized to one.

In section 2.D.3, we formally show that the demand for machines and labor are given by the

following demand schedules:

𝑥 ( 𝑗) = 𝑝( 𝑗)− 1
1−𝛼 (𝛼𝐴𝑚)

1
1−𝛼 ∀ 𝑗 ∈ [0, 𝜄] (2.15a)

𝑒( 𝑗) = 𝑤− 1
1−𝛼 (𝛼𝐴)

1
1−𝛼 ∀ 𝑗 ∈ [𝜄, 1] (2.15b)

Combining (2.15a)-(2.15b) with the first order condition for the industrialization rate, it follows

that in the equilibrium 𝜄∗ is pinned down by the following:

𝑚 =

[
𝑝(𝜄∗)
𝑤

]𝛼
(2.16)

The economic intuition behind condition (2.16) is that at the marginal task, i.e. the last automa-

tized task, the price of the machine fulfilling the task must be equal to the cost of labor, adjusted

by the technology parameter and the relative productivity of machines.

Each machine is produced by a monopolist, following Zeira (1998). The machine producer

will seek to set the monopoly price which maximizes its profits subject to demand for machines

(2.15a). We assume that the marginal cost of machines 𝜓(·) is increasing in the complexity of

tasks, i.e. 𝜓′(·) > 0. Moreover, we assume that the marginal cost function satisfies basic Inada

conditions.52 This is intended to capture the idea that machines substituting low-skill tasks are

not as expensive as those replacing tasks on the right side of the skill distribution of workers.

The problem of the machine producer is therefore

max
𝑝( 𝑗)

[𝑝( 𝑗) − 𝜓( 𝑗)] 𝑥 ( 𝑗) (2.17)

52In this setting, this simply boils down to lim 𝑗↑1 𝜓( 𝑗) = +∞ and lim 𝑗↓0 𝜓( 𝑗) = 0. The economic intuition behind
these is that it is never profitable for the representative firm to automatize all tasks. Similarly, there is always
at least one task that is automatized. Note that while these assumptions are sufficient for the existence of an
equilibrium, they are not necessary.
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subject to (2.15a). In section 2.D.3, we show that the first-order conditions imply

𝑝( 𝑗) = min
{
𝑚𝑤,

𝜓( 𝑗)
𝛼

}
(2.18)

where the minimum descends from the observation that because each task can be performed by

labor as well as by machines, setting a price greater than the productivity-adjusted wage simply

pushes the final goods producer not to automatize the task. We now obtain two technical results

to ensure existence and uniqueness of the equilibrium. The formal definition of the competitive

equilibrium in this economy as well as the proofs of all lemmas and propositions can be found

in section 2.D.3.

Lemma 2.D.1. In the equilibrium, the marginal task 𝜄∗ is such that 𝑝(𝜄∗) = 𝜓(𝜄∗)/𝛼 = 𝑤𝑚1/𝛼.

Combining this result with the equilibrium conditions of the final goods producer, we de-

rive the following strong existence result.

Proposition 2.D.1. There exists one and only one 𝜄∗ ∈ [0, 1] which solves the problem of the final

good producer (2.15a)-(2.15b)-(2.16) as well as the problem of the machine producers (2.18) and

verifies labor market clearing. In particular, the equilibrium industrialization 𝜄∗ is the solution to

the following:

𝜓(𝜄∗) = 𝐿𝛼−1(1 − 𝜄∗)1−𝛼𝛼2𝐴𝑚1/𝛼.

This concludes our analytical characterization of the environment. We now exploit the

model to deliver a number of testable predictions which will guide our empirical analysis.

2.D.2 Empirical Testable Implications

Having established the existence of the equilibrium, we can now derive two key empirical im-

plications of this directed technical adoption setting. First, note that Lemma 2.D.1 conveys the

basic intuition of the model. In particular, we have 𝜓(𝜄∗) = 𝛼𝑚1/𝛼𝑤, hence an increase in the

nominal wage induces industrialization to rise because 𝜓′(·) > 0 by assumption. The economic

intuition behind this result is that if the cost of labor increases, then the final good producer

will seek to automatize more tasks in order to avoid paying the increase in the wage. This is

summarized in the following implication statement.

Implication 2.D.1. Following an exogenous increase (resp. decrease) in the nominal wage 𝑤,

the share of tasks performed by machines 𝜄∗ increases (resp. decreases).

A similar comparative static result follows considering an increase in the labor stock. To
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see it, notice that because the nominal wage is invariant across tasks, from (2.15b) and labor

market clearing the total labor stock 𝐿 is evenly allocated across the (1 − 𝜄∗) non-automated

tasks. Using this insight, we obtain the following empirical prediction.

Implication 2.D.2. Following an exogenous increase (resp. decrease) in the labor supply stock

𝐿, the share of tasks performed by machines 𝜄∗ decreases (resp. increases).

This is the key implication of the model that we test in the paper. In our setting, we provide

evidence that immigration restriction policies induce positive labor supply shocks, hence in-

creasing the labor stock. We show that firms operating in districts which were more exposed to

the Quota Acts decreased investment in machinery—section 2.4.2—and increased employment—

-section 2.4.4. These findings are fully in line with the empirical predictions 2.D.2 of the model

and hence provide evidence in favor of labor-saving directed technical adoption.

Implications 2.D.1-2.D.2 are tested using aggregate data on manufacture employment and

investment in physical capital. We provide some results at a more disaggregated sector-level.

We refer to relatively backward and modern sectors as respectively “First” and “Second In-

dustrial Revolution” sectors. For concreteness, the former comprise textiles and construction

whereas the latter mainly refer to the chemical and metalworking industries. To capture this

difference in the model, we assume that machines in the relatively modern sector are more

productive than in the relatively backward one. The following result holds.

Implication 2.D.3. Let 𝑀 and 𝐿 respectively denote a modern and a backward sector which

differ by the productivity of machines 1 > 𝑚𝑀 > 𝑚𝐵 > 0. Then, following a positive (resp. neg-

ative) labor supply shock, the share of industrialized tasks if𝑚 = 𝑚𝐵 decreases (resp. increases)

more than if 𝑚 = 𝑚𝑀 .

We test this prediction using data on employment and technology adoption at the sector

level of aggregation. We find that in First Industrial Revolution sectors investment in capital

goods and employment respectively decreased and increased considerably more than in Second

Industrial Revolution industries. This finding is fully consistent with prediction 2.D.3.

2.D.3 Proofs of Analytical Results

Solution of the problem of the final good producer. Plugging the technology constraint into prob-

lem (2.14), the problem of the final good producer reads out as follows:

max
𝜄,{𝑥 ( 𝑗),𝑒( 𝑗)} 𝑗∈[0,1]

𝐴

[∫ 𝜄

0
𝑚𝑥 ( 𝑗)𝛼 𝑑 𝑗 +

∫ 1

𝜄
𝑒( 𝑗)𝛼 𝑑 𝑗

]
−
∫ 𝜄

0
𝑝( 𝑗)𝑥 ( 𝑗) 𝑑 𝑗 − 𝑤

∫ 1

𝜄
𝑒( 𝑗) 𝑑 𝑗
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The—necessary and sufficient—first-order conditions with respect to labor and capital in the

generic task 𝑗 are
𝑥 ( 𝑗) = 𝑝( 𝑗)− 1

1−𝛼 (𝛼𝐴𝑚) 1
𝛼 ∀ 𝑗 ∈ [0, 𝜄]

𝑒( 𝑗) = 𝑤− 1
1−𝛼 (𝛼𝐴) 1

𝛼 ∀ 𝑗 ∈ [𝜄, 1]

To obtain the first-order condition for the optimal industrialization rate, apply the Leibniz in-

tegral rule with respect to 𝜄 to get:

𝑥 (𝜄∗)
[
𝑚𝑥 (𝜄∗)𝛼−1 − 𝑝(𝜄∗)

]
= 𝑒(𝜄∗)

[
𝑒(𝜄∗)𝛼−1 − 𝑤

]
Plugging (2.15a)-(2.15b) into the expression above we get 𝑚 = (𝑝(𝜄∗)/𝑤)𝛼.

Solution of the problem of the monopolist. The solution is trivial upon plugging (2.15a) into the

objective function (2.17).

Proof of Lemma 2.D.1. From (2.18) and (2.16), it is

𝑝(𝜄∗) = min
{
𝜓(𝜄∗)
𝛼

, 𝑚𝑤

}
𝑝(𝜄∗) = 𝑚1/𝛼𝑤

Hence, we have

𝑚 =


min

{
𝜓(𝜄∗)
𝛼 , 𝑚𝑤

}
𝑤


𝛼

We can distinguish two cases. Assume 𝑚𝑤 ≤ 𝜓(𝜄∗)/𝛼. This implies that 𝑚 = 𝑚𝛼, which is only

verified if 𝑚 = 1 or 𝑚 = 0. Since by assumption 𝑚 ∈ (0, 1), this can never hold. We are left

with the case𝑚𝑤 > 𝜓(𝜄∗)/𝛼. We show that this is consistent with all the parameter restrictions.

Note first that since 𝑚 ∈ (0, 1), it must be 𝜓(𝜄∗)/𝛼 < 𝑤, since otherwise it would be 𝑚 ≥ 1. We

therefore have 𝜓(𝜄∗)/𝛼 < 𝑤 and 𝜓(𝜄∗)/𝛼 < 𝑚𝑤. Because 𝑚 < 1, the only binding constraint is

𝜓(𝜄∗)/𝛼 < 𝑚𝑤. It is

𝑚 =

[
𝜓(𝜄∗)
𝛼

· 1
𝑤

]𝛼
which implies 𝜓(𝜄∗)/𝛼 = 𝑤𝑚1/𝛼. Because 𝑚 ∈ (0, 1), 𝑚1/𝛼 < 𝑚 since 𝛼 ∈ (0, 1), and therefore

𝜓(𝜄∗)/𝛼 = 𝑤𝑚1/𝛼 < 𝑤𝑚. This implies that the solution is acceptable. Hence, 𝑝(𝜄∗) = 𝜓(𝜄∗)/𝛼 and

this concludes the proof.
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Proof of Proposition 2.D.1. Because𝑤( 𝑗) = 𝑤 for all 𝑗 ∈ [0, 1], from (2.15b) we get that 𝑒( 𝑗) does

not depend on 𝑗 and:

𝑒( 𝑗) = 𝑒 = 𝑤− 1
1−𝛼 (𝛼𝐴) 1

1−𝛼 =
𝐿

1 − 𝜄∗

where the last equality holds by labor market clearing, which requires (1 − 𝜄∗)𝑒 = 𝐿. From

Lemma 2.D.1, it is 𝑤 = 𝜓(𝜄∗)/(𝛼𝑚1/𝛼). Plugging this into the previous equation we get(
𝜓(𝜄∗)
𝛼𝑚1/𝛼

)− 1
1−𝛼

(𝛼𝛽) 1
1−𝛼 =

𝐿

1 − 𝜄∗

𝜓(𝜄∗)
𝛼𝑚1/𝛼 (𝛼𝛽)

−1 =

(
𝐿

1 − 𝜄∗

)−1+𝛼
𝜓(𝜄∗)𝐿1−𝛽 = (1 − 𝜄∗)1−𝛼𝛼2𝐴𝑚1/𝛼

Because 𝜓′(·) > 0, the left hand side is strictly increasing in 𝜄∗. Moreover, because 𝛼 ∈ (0, 1),
the right hand side is strictly decreasing in 𝜄∗. By the Inada conditions, lim𝑧↑1 𝜓(𝑧) = +∞ and

lim𝑧↓0 𝜓(𝑧) = 0. If 𝜄∗ = 0, the right hand side is strictly positive, whereas it is zero if 𝜄∗ = 1.

Hence, because both are trivially continuous, by the intermediate value theorem there exists at

least one 𝜄∗ which verifies the equation. Since both are strictly monotone, 𝜄∗ is unique.

Proof of Implication 2.D.1. From Lemma 2.D.1, it is 𝑚1/𝛼 = 𝜓(𝜄∗)/(𝛼𝑤), or

𝛼𝑤𝑚1/𝛼 = 𝜓(𝜄∗)

Because 𝜓′(·) > 0, an increase in 𝑤 in the equilibrium implies an increase in 𝜓(𝜄∗), hence in

𝜄∗.

Proof of Implication 2.D.2. First note that because 𝑤 is invariant across tasks, then by (2.15b)

𝑒( 𝑗) = 𝑒 for all 𝑗. Moreover, since the productivity of labor is constant across tasks, it is optimal

to divide evenly 𝐿 across the (1−𝜄∗) non-automatized tasks. Therefore, by labor market clearing

𝑒 = 𝐿/(1 − 𝜄∗). Plug this in the left-hand side of (2.15b), yielding

𝑤− 1
1−𝛼 (𝛼𝐴) 1

1−𝛼 =
𝐿

1 − 𝜄∗

Using Lemma 2.D.1 into the previous equation we get

𝜓(𝜄∗)
𝛼𝑚1/𝛼 =

(
𝐿

1 − 𝜄∗

)𝛼−1
𝛼𝐴

𝐿1−𝛼 =
(1 − 𝜄∗)1−𝛼
𝜓(𝜄∗) 𝛼2𝐴𝑚1/𝛼
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Figure 2.D.1: Equilibrium of the Model
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This figure plots the equilibrium of the model. The blue and red lines respectively display the
left and right-hand side of the final equation of the proof of Proposition 2.D.1. We assume
𝜓( 𝑗) = 𝛾 𝑗2 even though quadratic costs do not verify the Inada conditions. Parametrization:
𝛼 = .55, 𝛽 = .45, 𝛾 = .2, 𝐴 = .5, 𝐿 = 1, 𝑚 = .5.

Because𝛼 ∈ (0, 1) and𝜓′(·) > 0, the right-hand side is decreasing in 𝜄∗. Therefore, an exogenous

increase in 𝐿 leads to an increase in the right-hand side, hence a decrease in 𝜄∗. Following an

increase in the labor supply, the share of automatized tasks decreases.

Proof of Implication 2.D.3. Let 𝑚𝑀 > 𝑚𝐵. From the previous proof, we have

𝐿1−𝛼

𝛼2𝐴𝑚
1/𝛼
𝑖

=
(1 − 𝜄∗)1−𝛼
𝜓(𝜄∗)

for 𝑖 = 𝑀, 𝐵. Holding everything else constant, an increase in 𝐿 translates into an increase in

the left-hand side which is smaller if 𝑚 = 𝑚𝑀 than under 𝑚 = 𝑚𝐵 because 𝑚𝐵, 𝑚𝑀 ∈ (0, 1).
Therefore, the right-hand side shall increase more under 𝑚𝐵. Hence, the compensating change

in 𝜄∗ is larger if 𝑚 = 𝑚𝐵, i.e. in the relatively backward sector, than if 𝑚 = 𝑚𝑀 , i.e. in the

relatively modern sector.
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Figure 2.D.2: Model Comparative Statics

(a) Equilibrium industrialization and the labor supply.
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(b) Industrialization response to changes in labor supply.
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Figures plot the relationship between industrialization and the labor supply. The red and blue
lines respectively display the backward and modern sectors. We assume 𝜓( 𝑗) = 𝛾 𝑗2 even
though quadratic costs do not verify the Inada conditions. Parametrization: 𝛼 = .55, 𝛽 = .45,
𝛾 = .2, 𝐴 = .5, 𝐿 = 1, 𝑚𝐻 = .5, 𝑚𝐿 = .2.
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Chapter 3

Dealing with Adversity: Religiosity or Science?*

Evidence from the Great Influenza Pandemic

3.1 Introduction

Throughout history, the occurrence of adverse events—such as natural disasters and pandemics—

has posed challenges to societies worldwide and continues to do so today. Understanding how

individuals cope with adverse events has key social, economic, and political implications and

has been the focus of a vast literature in economics and in other social sciences. Specifically, a

strand of research documents that negative shocks lead to an increase in religiosity (Bentzen,

2019). Another strand finds that economies react by boosting innovation efforts (Miao and Popp,

2014; Moscona and Sastry, 2022).2

In this paper, we show that these two responses can occur simultaneously, making societies

both more religious and more innovative—a finding at odds with the existing evidence docu-

menting a negative relationship between religiosity and science (e.g., Bénabou et al., 2015, 2022;

Lecce et al., 2021). To investigate the possible mechanism behind this pattern, we study how in-

dividuals within society react to an adverse shock. We uncover heterogeneous responses, with

religion and science acting as substitute ways through which different individuals react to ad-

versity. These individual-level findings help reconcile our aggregate results with the existing

*This chapter is jointly authored with Enrico Berkes, Gaia Dossi, and Mara Squicciarini. We are grateful to Ran
Abramitzky, Ainoa Aparicio Fenoll (discussant), Sascha Becker, Roland Bénabou, Leah Boustan, Davide Cantoni, Gi-
acomo de Giorgi, Martin Fiszbein, Roberto Galbiati, Sergei Guriev, Reka Juhasz, Nathan Nunn, Daniele Paserman,
Michele Pellizzari, Thomas Piketty, Marco Tabellini, John Van Reenen, Nico Voigtländer, Bruce Weinberg, and Katia
Zhuravskaya for comments and discussions. We thank seminar audiences at the 2022 ASREC Annual Conference,
the ASREC Workshop on the Economics of Religion, Bergen, Bocconi, Bolzano, Boston University, Geneva, Har-
vard, Louvain la Neuve, LSE, LUISS, the 6th Marco Fanno Alumni Workshop, Northwestern, Parthenope, Pavia,
PSE/Sciences Po PEPES, Stanford, UC Berkeley, and the University of British Columbia for feedback and sugges-
tions. We also thank Luca Favero, Lorenzo Pedretti, Luisa Pomarici, and Sara Veronesi for excellent assistance
during the construction of the dataset, and Ran Abramitzky, Andy Ferrara, and Marco Tabellini for kindly sharing
data.

2For example, Bentzen (2019) documents that, across countries and within regions, individuals become more
religious when hit by earthquakes. Moscona and Sastry (2022), instead, finds an increase in innovation efforts
towards technologies that mitigate environmental distress in U.S. counties more exposed to the Dust Bowl during
the 1930s.

255



literature.

The setting of our study is the Great Influenza Pandemic (1918–1919) in the United States.

Historical records document that many people turned to or strengthened their religious faith to

cope with the pandemic. At the same time, the period following the pandemic saw an increase

in innovation activity and fundamental medical advances.3 To conduct our empirical analysis,

we construct a novel data-driven measure of religiosity at a geographically disaggregated level.

This measure is based on naming patterns of babies born between 1900 and 1930 from the

historical full-count censuses. Complementing this dataset with information from the Census of

Religious Bodies, we empirically identify religious names and construct a measure of “revealed

religiosity.” The underlying idea is that the first name given to a child conveys information on

the religiosity of their parents. Our main metric of scientific progress is the universe of geo-

coded patents granted during this period in the U.S. (Berkes, 2018).4

Using a difference-in-differences framework, we first show that counties hit harder by the

shock experienced an increase in religiosity, an effect stronger for Catholicism. A one-standard-

deviation increase in excess deaths—our main measure of intensity of the influenza shock—led

to a 0.11 standard deviations increase in overall religiosity. We further document that these

same counties also experienced an increase in innovative activities, an effect driven by patents

granted in pharmaceuticals. A one-standard-deviation increase in excess deaths led to a 0.21

standard deviations increase in overall patenting activity. In addition, we find that employment

in scientific occupations—our alternative indicator of scientific progress—grew in counties hit

harder by the pandemic. This effect is mainly due to the occupational choices of young co-

horts. Event-study analyses illustrate the absence of pretrends, providing further support for

the validity of the research design. As a result of the contemporaneous increase of religiosity

and science, their relationship turned from negative before the pandemic to positive afterward.

The latter is especially puzzling, because it contrasts with the existing evidence documenting a

negative relationship between the two (Bénabou et al., 2015, 2022; Lecce et al., 2021).

What is the mechanism behind the contemporaneous increase in religiosity and science?

To answer this question, in the second part of the analysis, we study individual-level responses

within counties. We obtain three main results.

First, we find that individuals from more religious backgrounds were more likely to turn

3An increase in religiosity and innovation activity has also been documented after the COVID-19 outbreak.
Bentzen (2021), using Google search data, finds a sharp increase in the intensity of prayers during the early days
of the pandemic. Agarwal and Gaule (2022) show that the COVID-19 pandemic catalyzed R&D expenditure on
pharmaceuticals and digital technologies.

4We refer to science and scientific progress interchangeably, and we use two main proxies: the number of
granted patents and the share of individuals in scientific occupations.
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to religion in the aftermath of the pandemic, while those from less religious backgrounds were

more likely to select a scientific occupation.5 This suggests that individuals coped with negative

shocks in heterogeneous ways: some turned to religion, while others turned to science. Second,

we show that science-oriented individuals, who were initially less religious than the rest of the

population, became even less religious after the shock. Third, we document that the pandemic

widened preexisting differences in religious sentiment. Individuals from more (less) religious

backgrounds became even more (less) religious. As a consequence, the distribution of religiosity

in counties more exposed to the pandemic became more polarized. Importantly, the individual-

level analysis reconciles the county-level findings with the existing literature. In fact, while a

county may have become both more religious and more innovative, individuals seemed to react

differently to the same shock—based, for instance, on their religious background or on their

prepandemic scientific orientation. Religiosity and science appear to have been alternative

ways of reacting to the pandemic, with individual becoming even more distant in terms of their

religious sentiment than they were before the shock.

We perform several checks to gauge the robustness of our findings. First, we internally

validate our measure of religiosity across several dimensions (e.g., by computing our indica-

tor excluding firstborn babies and accounting for potential heterogeneity in fertility patterns).

Second, we externally validate our data-driven measure of religiosity by using alternative in-

dicators. In particular, we show that results are robust to using the share of biblical and saints’

names, as well as the share of people affiliated with a religious denomination. In addition, to

ensure that the increase in religiosity is not driven by internal or external migration, we run

a placebo exercise where we test for the impact of the pandemic on the names of adults. The

results show no impact of the shock on adults’ names, which we interpret as evidence that

the observed increase in religiosity was not driven by ex ante more-religious people moving

to areas hit harder by the shock. Third, we show that the increase in patenting activity was

not driven by low-quality innovations. Patent quality increased after the pandemic in exposed

counties, especially in pharmaceuticals. Finally, we address the concern that other factors may

be related to the pandemic and may have contemporaneously affected the evolution of reli-

giosity and science, confounding our results. To do so, we start by documenting that initial

religiosity and innovation activity are not related to the intensity of the shock. Using an event-

study design, we then show that religiosity and innovation were on a similar path across treated

and control groups before the shock. Additionally, we rule out that a separate yet overlapping

shock—World War I—may partly explain our findings. Taken together, our empirical results,

5We measure religious background using individuals’ own names (as opposed to their children’s), aiming to
capture the religious upbringing of a person instead of their current faith.
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supported by historical records, provide evidence that the influenza pandemic was conceivably

the main driver behind the aggregate increases in both religiosity and scientific progress.

Concerning our within-county results, one key question is why some individuals became

more religious while others selected a scientific occupation. Our findings on religiosity are in

line with the religious coping hypothesis, which posits that religious faith can represent a cop-

ing device to deal with personal distress following a negative shock.6 What motivated people

to turn to science is less obvious. We propose a broad interpretation of “scientific coping,” with

individuals turning to science either to deal with their psychological distress—as in the case of

religious coping—or to try to actively mitigate the negative (e.g., health- and economic-related)

effects of the pandemic.7 While our findings cannot directly uncover the individual-level moti-

vations behind these different behaviors—this would go beyond the scope of this paper—they

show that people from different backgrounds may have reacted in different ways to the same

shock and that this may have increased the polarization of religiosity within society.

Related Literature This paper is most closely related to the literature studying how soci-

eties react to negative shocks. Previous work has shown that, in accordance with the religious

coping hypothesis (Pargament, 2001; Ano and Vasconcelles, 2005; Norenzayan and Hansen,

2006), natural disasters are associated with an increase in religiosity, both historically (e.g.

Belloc et al., 2016; Bentzen, 2019) and in contemporary scenarios (Sibley and Bulbulia, 2012;

Bentzen, 2021).8 Another set of studies documents that economic crises (Babina et al., 2021),

wars (Gross and Sampat, 2021), climate change (Miao and Popp, 2014; Clemens and Rogers,

2020; Moscona, 2021), and pandemics (Gross and Sampat, 2021; Agarwal and Gaule, 2022) all

shape innovation activity. To the best of our knowledge, this is the first study to provide evi-

dence that natural disasters may foster a contemporaneous increase in religiosity and innova-

tion, and also the first to document the ensuing polarization of religiosity within society.9

Additionally, we inform the broad literature on the economics of religion, pioneered by

Weber (1905). In particular, we contribute to those studies that analyze the linkage between

6An alternative explanation could be that individuals turn to religion as an insurance mechanism against the
negative economic effects of the pandemic. While we cannot fully exclude this channel, we believe it is unlikely
(as discussed in Section 3.5).

7Another possibility is that individuals turned to science because of increased labor demand in STEM occupa-
tions. However, the heterogeneity by religious background suggests that, beyond market forces, individual preex-
isting religiosity played a key role in their decision to turn to science.

8The religious coping hypothesis, first developed in the psychology literature, posits that people who are subject
to economic and social shocks turn to religious faith as a coping device to deal with personal distress.

9Many studies have looked at the impact of natural disasters on, among others, social norms (e.g. Posch, 2022),
migration (e.g. Boustan et al., 2012), and economic activity (e.g. Boustan et al., 2020).
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religiosity and science.10 While most papers adopt a historical (Deming, 2010; Mokyr, 2011),

theoretical (Bénabou et al., 2022), or cross-sectional perspective (Bénabou et al., 2015, 2022), to

our knowledge, we are the first to study the interaction between religion and science in a panel

setting and to uncover the individual-level dynamics behind their coevolution.11

Finally, we contribute to a growing literature that exploits the informational content of

names to capture individuals’ characteristics. Names have been used, for example, to measure

race and ethnicity (Abramitzky et al., 2016; Fouka, 2020), individualism (Bazzi et al., 2020), so-

cioeconomic background (Biavaschi et al., 2017; Olivetti et al., 2020), and religiosity (Andersen

and Bentzen, 2022). While all of these papers assume a preexisting rule to classify names (e.g.,

whether one has a biblical or saint name), to the best of our knowledge, we are the first to

identify the religiosity of names directly from the data.12

The rest of the paper is structured as follows. In Section 3.2, we summarize the Great In-

fluenza Pandemic in the United States and discuss the historical evidence concerning its effects

on religiosity and innovation. In Section 3.3, we describe the data and our new indicator of re-

ligiosity. In Section 3.4, we present the empirical strategy and results. In Section 3.5, we discuss

our findings. Section 3.6 concludes.

3.2 Historical Background

In this section, we provide an overview of the Great Influenza Pandemic in the United States

and how it influenced religion and innovation.

3.2.1 The Great Influenza Pandemic

Between 1918 and 1919, the Great Influenza Pandemic—also known as the “Spanish Flu”13—

killed an estimated 40 million people worldwide (approximately 1 in 30 people); it was one of

the deadliest natural disasters in modern times (Barro et al., 2020). In the United States, the

10Other studies analyze the relationship between religion and accumulation of human capital, more broadly
(Becker and Woessmann, 2009; Botticini and Eckstein, 2012; Squicciarini, 2020). For an overview of the literature
on the economics of religion, see Iannaccone (1998) and Iyer (2016).

11Lecce et al. (2021) study how religiosity impacts the birth and migration of scientists in 19th-century French
cantons, but they do not analyze how an adverse shock affects society’s dual response in terms of religion and
science and the underlying individual-level dynamics.

12For details on how we construct our religiosity measure, see Section 3.3.
13The Great Influenza Pandemic is popularly known as “Spanish Flu” because media in Spain—which was neu-

tral during World War I (WWI)—were free to report news on this disease. Conversely, countries involved in WWI
imposed press censorship on the topic. This gave the (incorrect) impression that Spain was either more severely
hit by the disease, or that the pandemic had originated in Spain.
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pandemic started in the spring of 1918 with sporadic outbreaks. Then a second, more severe

wave began in September 1918. The final wave started in January 1919, ending that spring. In

total, it killed about 500,000 Americans, corresponding to 0.7% of the U.S. population (Crosby,

1989).14

Historical and modern accounts suggest that the pandemic hit the U.S. in a quasi-random

fashion. The National Research Council stated that neither demographic characteristics, such as

the ethnic composition of the population, nor geographic factors seemed to explain the differ-

ence in intensity of the pandemic across the country. Crosby (1989) writes that the states with

the highest mortality displayed diverse geographical, climatic, and demographic characteris-

tics. The pandemic hit with varying intensity within states as well. For example, in Minnesota,

the death rate in Saint Paul was about 70% higher than in Minneapolis, despite the two cities be-

ing just 8 miles apart. In Ohio, Dayton experienced an 80% higher mortality rate than Columbus,

even though the two cities had similar demographic characteristics (Huntington, 1923; Almond,

2006).

The infection was caused by strains of the A/H1N1 influenza virus, whose origin is still un-

known. Neither antiviral drugs to treat the primary disease nor antibiotics to cure secondary

bacterial infections were available. Doctors had to rely on an array of mostly ineffective—

sometimes fatal—medicines such as aspirin and quinine (Spinney, 2018). It is debated whether

nonpharmaceutical interventions (NPIs)—such as using masks, cancelling public events, clos-

ing schools, and implementing isolation measures and quarantines—were effective in limiting

the spread of the disease.15

3.2.2 The Pandemic and Religion

A large literature documents that individuals become more religious in response to adverse

events. One explanation for why comes from the “religious coping hypothesis,” which posits

that individuals turn to religious beliefs or practices as a way to cope with sudden dramatic

circumstances (Pargament, 2001).16

14By comparison, COVID-19 caused 1.13 million deaths in the United States, approximately 0.3% of the U.S. pop-
ulation, between March 2020 and February 2023 (https://covid.cdc.gov/covid-data-tracker/#datatracker-home; ac-
cessed February 12, 2023).

15Some authors assert that NPIs were effective in reducing mortality (e.g., Markel et al., 2007; Berkes et al., 2020),
while others show that the effect of NPIs on overall deaths was small and statistically insignificant (e.g., Barro,
2022).

16For example, Bentzen (2019) documents that individuals become more religious when hit by earthquakes.
Religion may also represent an insurance mechanism when negative shocks occur: Ager et al. (2016) shows that
after the 1927 Great Mississippi Flood, demand for social insurance led to higher churchgoing, while Ager and
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The influenza pandemic inflicted substantial emotional and socioeconomic distress and

could have acted as a powerful amplifier of religious sentiments (Phillips, 2020). Historical

records document that spiritualism gained momentum in the aftermath of the pandemic. Not

all confessions reacted in the same way. In the United States, modern evangelism benefited from

the pandemic, as evidenced by a sharp rise in the circulation of evangelical magazines (Frost,

2020). Membership in Christian Science also soared during these years, reaching an all-time

peak in the 1930s.17 Catholics and Orthodox Jews identified the influenza as a manifestation

of divine anger, the expiation of which called for prayers. On the other hand, some groups

of progressive Protestants called for a more scientific interpretation of the pandemic (Phillips,

2020).18 These heterogeneous responses find empirical support in our analysis discussed in

Section 3.4.

3.2.3 The Pandemic and Science

Historical evidence suggests that the period after 1918 was one of sharp intellectual and scien-

tific progress and that the Great Influenza Pandemic was particularly influential in shaping the

development of medical sciences (Barry, 2020). Despite being ineffective during the pandemic,

medicine evolved enormously in subsequent years. In 1928, Alexander Fleming discovered the

medical use of penicillin in treating bacterial infections. By the 1930s, virology had become an

established branch of medicine, and the first influenza vaccines were being developed (Spin-

ney, 2018). During this time, medicine became more “scientific” and, hence, effective (Barro

et al., 2020).

These advancements in medicine went hand in hand with increased trust in scientific progress.

For instance, in her personal journal, Canadian author L. M. Montgomery wrote, “[...] the Spirit

of God no longer works through the church for humanity. It did once but it has worn out its

instrument and dropped it. Today it is working through Science” (Montgomery, 1992[1924],

p. 211). Barry (2020) argues that the pandemic was the key driver behind this paradigm shift

because it fostered scientific thinking in the face of such a sudden and dramatic shock.

Ciccone (2018) document that in 19th-century United States, a larger share of the population was organized in
religious communities in counties that were exposed to higher common agricultural risk.

17Christian Science, founded in 1879, is part of the religious movements belonging to the metaphysical family.
It seeks to restore the healing and thaumaturgic virtues of primitive Christianity and has been associated with
avoidance of mainstream medicine (Stark, 1998).

18There were also conservative Protestant churches, such as those in the Bible Belt—i.e., the region chiefly com-
prising Alabama, Arkansas, Georgia, Kentucky, Louisiana, Mississippi, Missouri, North Carolina, Oklahoma, South
Carolina, Tennessee, and large parts of Florida and Texas—refractory to scientific and medical advancements.
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This overview suggests that the 1918–1919 pandemic fostered both scientific progress and

religiosity—a result that might seem at odds with theoretical and empirical evidence, which

depicts religion and science as opposing forces (e.g., Bénabou et al., 2015, 2022; Lecce et al.,

2021). In this paper, we provide causal evidence that the influenza shock led to a simultaneous

increase in religiosity and scientific progress, and we reconcile this apparent puzzle by showing

that it induced polarization within society, with some people turning to religion and others

turning to science.

3.3 Data

To conduct our analysis, we construct a new dataset that combines information on religios-

ity, on innovation activity, and on the incidence of the Great Influenza Pandemic. This section

describes the outcome variables and the main explanatory variables. Appendix 3.A describes

the data in detail. In the first part of the analysis, counties are the geographical unit of obser-

vation.19 In the second part of the analysis, we use individual-level data. Table 3.1 provides

descriptive statistics of the main variables.

3.3.1 Religiosity Measure

The key challenge when studying religiosity is that it is difficult to measure, both today and in

the past. It is especially challenging to find an indicator of religiosity that combines geographical

granularity and high-frequency time variation.20

In our analysis, we propose a novel measure of revealed religiosity based on naming pat-

terns of newborn babies. The motivating argument is that parents who give comparatively

more religious names are more likely to be religious themselves. Therefore, naming patterns

provide a measure of “revealed religiosity” of parents, rather than of the children themselves.21

19To address concerns related to counties changing their boundaries over time, we use 1920 counties as our
geography of reference.

20This is clear in historical settings—Squicciarini (2020), for instance, uses different measures of religiosity, but
these are available for only a few points in time—but it poses substantial limitations to contemporary studies as
well. Recent papers leverage information from surveys such as the World Value Survey to measure religiosity
(Bénabou et al., 2015, 2022). Yet, because waves are typically years apart and geographically aggregated, survey-
based measures are not useful for studying the dynamics of religiosity at high time frequency and fine spatial
granularity.

21A natural corollary is that names carry informational content on the religiosity of an individual’s background:
while we cannot infer that an individual called “Paul” is comparatively more religious than one called “Harold,”
we assume that the parents of “Paul” are likely to be more religious than those of “Harold.”
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We now describe how we compute the religiosity score associated with first names. The

key advantage of this approach is that it allows us to obtain a disaggregated yearly measure of

religiosity and to study its changes in the short-to-medium term. The metric we define is concep-

tually similar to that developed by Andersen and Bentzen (2022) who measure, in premodern

and early-modern times, revealed parental religiosity, depending on whether children were

named after church-dedicated saints. Our approach differs from theirs: we empirically identify

our religious names, using data on the entire population of newborns and existing indicators

of religiosity.

3.3.1.1 Estimating Religiosity Scores for First Names

We use two main sources to compute religiosity scores. First, we construct naming patterns at

the county-cohort level from the full-count U.S. censuses between 1900 and 1930 (Ruggles et al.,

2021). More precisely, we take the first name of all babies born between 1896 and 1930 and

collapse them at the name-county-cohort level, thus obtaining a panel of name-county pairs at

a yearly frequency.22 Next, we use county-level data from the Census of Religious Bodies. This

census—taken once every ten years between 1906 and 1936—allows us to construct, for every

county and census-decade, the share of people affiliated with any religious denomination, as

well as the share of people affiliated with a Catholic or Protestant one.23

To obtain the religiosity scores, we proceed in two steps. First, we compute the relative

frequency of names. More precisely, let 𝑁𝑐𝑑 be the total number of individuals born in county 𝑐

in decade 𝑑. We define the relative frequency of a given name (Name𝑘) in decade 𝑑 ∈ [𝑡 − 10, 𝑡)
as the ratio of all babies in that cohort called (Name𝑘) to the overall size of that cohort 𝑁𝑐𝑑 :

Name Share𝑘𝑐𝑑 ≡ 1
𝑁𝑐𝑑

𝑁𝑐𝑑∑︁
𝑖=1

111(Name𝑖𝑐𝑑 = Name𝑘) (3.1)

where 111(Name𝑖𝑐𝑑 = Name𝑘) is an indicator function that returns the value one if individual

𝑖 in county 𝑐 born in decade 𝑑 is called (Name𝑘), and zero otherwise. In the second step, we

22A cohort is defined as all babies born in a given year. The first cohort in our sample is composed of all the
babies born in 1896. Our reasoning here is that the first Census of Religious Bodies was published in 1906, and we
consider the ten cohorts preceding that year.

23To gather information on the number of religious members in each county, a report was obtained directly from
local churches and congregations. The shares are computed as the number of people affiliated with these groups,
normalized by the population of each county. Our analysis focuses on Catholics and Protestants, as they jointly
account for more than 90% of the people enumerated by the census.
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estimate the following model:

𝑦𝑐𝑠𝑑 = 𝛼𝑐 + 𝛼𝑠×𝑑 +
𝐾∑︁
𝑘=1

𝛿𝑘 × log
(
1 + Name Share𝑘𝑐𝑠𝑑

)
+ 𝜀𝑐𝑠𝑑 (3.2)

where 𝑦 denotes either the share of people affiliated to any denomination, or the share of

Catholics, or the share of Protestants; 𝑑 corresponds to the two prepandemic decades of the

religious censuses (1906 and 1916); 𝛼𝑐 and 𝛼𝑠×𝑑 are, respectively, county and state-by-decade

fixed effects.24 The term 𝐾 is the total number of names that occur in at least 0.3% of the over-

all sample.25 To measure name shares, we include all babies born within ten years before each

prepandemic census, hence we restrict the sample to cohorts between 1896 and 1916. Then, we

aggregate these shares by decade to estimate equation (3.2).

We label the coefficient (𝛿𝑘) as the religiosity score associated with name 𝑘; we interpret

names with larger estimated religiosity scores (𝛿𝑘) as conveying a more-intense religious senti-

ment. Because model (3.2) includes county fixed effects, larger religiosity scores are attached to

names that become comparatively more frequent in counties that experienced larger increases

in religiosity. In Figure 3.1, we report the estimated religiosity scores from model (3.2), where

the outcome variable is the share of people affiliated with any religious organization. The fig-

ure shows that typically religious-sounding names, such as “Esther,” “Paul,” and “Grace,” all

feature positive and large estimated religiosity scores. Because our estimation method seeks to

isolate distinctively religious names, relatively common ones such as “Mary” or “John” end up

not having large scores. A zero-religiosity score does not imply that the name carries no reli-

gious content. In the case of “Mary,” for instance, its popularity during this period is such that

religious and nonreligious people alike used it, thus preventing it from being associated with

distinctively religious people. Moreover, we find that names with little connection to saints or

biblical episodes are associated with negative religiosity scores. This is the case for Germanic

names, such as “Edith”, “George,” and “Harold”. By considering the shares of people affiliated

with Catholicism or Protestantism, we can also obtain religiosity scores for both religious de-

nominations separately. Figure B.1 reports the results.

24In one of our robustness checks, we compute an alternative measure of religiosity that does not include any
fixed effect. The results are robust.

25We follow Fouka (2020) and restrict the number of names included in model (3.2) primarily to avoid overfitting.
Fouka (2020) uses a threshold of 1,000 for a name to be included in the analysis. In our preferred specification, we
instead consider all names whose share in our overall sample is at least 0.3% and run checks around this threshold
to assess the robustness of our results.
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3.3.1.2 A Yearly County-Level Measure of Religiosity

From model (3.2), we obtain a set of estimated religiosity scores {𝛿𝑘}𝐾
𝑘=1, which we use to con-

struct a yearly indicator of religiosity at the county level. More specifically, our synthetic mea-

sure of religiosity is defined as the predicted values of model (3.2):

𝑦̂𝑐𝑡 =
𝐾∑︁
𝑘=1

𝛿𝑘 × log
(
1 + Name Share𝑘𝑐𝑡

)
(3.3)

where 𝑡 denotes a cohort between 1900 and 1930. In addition, by considering religiosity scores

associated with different denominations, we can construct synthetic series for Catholic and

Protestant religiosity separately.

A concern about our religiosity indicator is how much variation in county-religiosity names

explain, net of that captured by fixed effects. In Appendix 3.B, we discuss a number of ro-

bustness and validation exercises for our synthetic measure. First, Figure B.2 provides county-

binned scatters of synthetic and measured religiosity by denomination. The figure summarizes

the results from two distinct exercises. Plots in the left column show in-sample correlations,

thus comparing Census-measured and predicted religiosity in 1906 and 1916. Plots in the right

column, instead, compare synthetic and measured religiosity in 1926.26 We refer to this as an

“out-of-sample” correlation, as data from the Censuses of Religious Bodies carried out after the

pandemic are not used to estimate religiosity scores. All graphs show a positive correlation

between actual and predicted religiosity across all denominations. This provides reassuring

evidence that naming patterns capture meaningful variation in overall religiosity and further

validates our measure.

One caveat of our religiosity measure is that we do not observe the religious affiliation of

individuals. If we knew, for every person, their name and religion, we could infer the relative

“Catholicism” of a name by measuring how frequent that name occurs within the Catholic popu-

lation, relative to the overall population.27 This is not possible using U.S. data, as the census does

not contain questions about individuals’ religious faith. This information is, however, avail-

able in Canadian censuses, which explicitly report the religion of every registered individual

(Abramitzky et al., 2020). We therefore construct alternative religiosity scores using the 1881,

26Our results do not change if we include data from the 1936 Census of Religious Bodies. However, growing
discontent resulted in substantially lower reporting rates in this last Census for some religious groups. Following
Stark (1992), we, therefore, consider it less reliable and exclude it from our analysis.

27As explained above, in this paper, we compute the intensity of Catholicism or Protestantism conveyed by each
name by estimating model (3.2) separately for the (Share of Catholics) or the (Share of Protestants) as reported in
the Census of Religious Bodies.
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1911, and 1921 Canadian censuses.28 We focus on Protestantism and Catholicism as the two ma-

jor denominations in Canada and, for each name, we calculate two separate scores expressing

the intensity of Catholicism and Protestantism that each name conveys.29 In Online Appendix

3.A.6, we elaborate on how we construct this index. Additionally, following Abramitzky et al.

(2016), we use biblical and saint names as an alternative name-based measure of religiosity.

Finally, we also use as another indicator of religiosity the county-level share of the popula-

tion with a religious affiliation (for all affiliations, and separately for Catholics and Protestants)

recorded by the Census of Religious Bodies for the years 1906, 1916, and 1926.

3.3.2 Measuring Scientific Production

We measure local innovative activities using patent data from the Comprehensive Universe of

U.S. Patents (CUSP; Berkes, 2018). The CUSP contains information about the universe of U.S.

patents issued between 1836 and 2015. The data for the time period considered in our paper

(1900–1930) are extracted from digitized patent documents obtained from the U.S. Patent and

Trademark Office.

For the purpose of our analysis, we first assign each patent to a county, based on the res-

idence of its inventor, and a year, based on the year in which the patent was filed. When a

patent lists multiple inventors, we give equal weights to the location of each inventor. From the

CUSP, we also collect the technology classes associated with each grant (according to the U.S.

Patent Classification system) and assign them to technology groupings following the crosswalk

provided by the National Bureau of Economic Research (Hall et al., 2001).30

In a second step, we build a measure of scientific inclination for a given county by looking at

the share of individuals employed in STEM occupations. The underlying idea is that STEM occu-

pations require science-based education. Thus, individuals in STEM occupations are plausibly

more science-oriented than non-STEM ones. For each county and census year (1900 to 1930),

we compute the share of individuals employed in a STEM occupation relative to (i) the entire

28Unfortunately, the 1891 and 1901 individual census records no longer exist. The 1881 census covers the uni-
verse of the Canadian population, whereas the 1911 and 1921 censuses cover a 25% sample of the population.

29Each score is calculated as the excess frequency a given name appears within that denomination, relative to
the overall population.

30Whenever a patent is assigned to more than one field, we split it with equal weights across fields. We conflate
the “chemical” and “drugs” NBER classes into a single class which we label “pharmaceuticals.” This is because
most patents classified as “drugs” would also appear as “chemical,” since each patent is usually assigned multiple
US Patent Classification codes. All results for the pharmaceutical class hold also if we consider drug and chemical
patents separately. An example of pharmaceutical patent is shown in Figure B.3. For historical consistency, we
relabel the “computer and communication” class as simply “communication.”
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population; (ii) the number of people employed in high-skilled occupations.31 We also use these

two classifications into STEM and non-STEM occupations when performing the individual-level

analysis.

3.3.3 Exposure to the Great Influenza Pandemic

To measure the incidence of the Great Influenza Pandemic across U.S. counties, we use mortality

statistics assembled by the U.S. Department of Commerce. These were first collected in 1915

and, throughout the 1915–1918 period, they cover 1274 counties (40% of the total), accounting

for more than 60% of the U.S. population. We follow the methodology developed by Beach et al.

(2020) and measure mortality caused by the flu as average deaths during the flu period (1918–

1919) relative to the three years before the pandemic (1915–1917). Formally, excess mortality

in county 𝑐 is defined as

Excess Deaths𝑐 =
1
2
∑1919
𝑡=1918 Deaths𝑐𝑡

1
3
∑1917
𝑡′=1915 Deaths𝑐𝑡′

(3.4)

This measure represents our baseline treatment. We also report results from a categorical

treatment variable equal to one if the baseline treatment (Excess Deaths𝑐) is above its median,

and zero otherwise. Figure 3.2 displays the geographical variation in the intensity of the pan-

demic in terms of excess deaths. We find that the severity of the pandemic varies substantially

across counties, even geographically close ones. The rationale behind our excess-mortality mea-

sure is that—all else being equal—deaths during the pandemic that exceed those before the

pandemic are likely due to the pandemic itself. A possible threat to this argument might be the

U.S. involvement in WWI and that WWI deaths are confounding our results. However, this does

not seem to be the case. In Figure B.4, we show that there is no significant correlation between

deaths from WWI and our measure of excess deaths. In Section 3.4, we show that our results

are robust to controlling for a post-1918 time indicator interacted with WWI-related deaths.

3.4 Empirical Results

In this section, we describe two main results. First, we show that exposure to the influenza pan-

demic led to an increase in both religiosity and innovation activity across counties. Second, we

31This second measure increases the comparability of the control group with STEM individuals. Table B.1 lists the
set of occupations that we label as STEM (Panel A) and the occupations that we classify as high-skilled (Panel B). By
construction, STEM occupations are also high-skilled. Individuals in STEM occupations represent approximately
6% of those employed in skilled professions in the 1930 census.
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provide evidence of heterogeneous responses to the pandemic within counties. Specifically, we

find that individuals from more religious backgrounds further embraced religion, while those

from less religious backgrounds were more likely to choose a scientific occupation. In addi-

tion, we show that the pandemic widened the distance in religiosity between science-oriented

individuals and the rest of the population, and that it led to the polarization of religiosity.

3.4.1 County-Level Evidence

In the first part of the analysis, we study the impact of the pandemic separately on religiosity

and innovation at the county level. Our sample consists of a panel of U.S. counties observed over

the 1900–1929 period at a yearly frequency. In particular, we leverage quasi-random variation

in exposure to the pandemic across U.S. counties in a difference-in-differences (DiD) setting and

estimate regression models of the form:

𝑦𝑐𝑡 = 𝛼𝑐 + 𝛼𝑡 + 𝛿 × (Post𝑡 × Excess Deaths𝑐) + 𝑥𝑥𝑥′𝑐𝑡𝛽𝛽𝛽 + 𝜀𝑐𝑡 (3.5)

where the subscripts 𝑐 and 𝑡 denote county and year, respectively; 𝑦𝑐𝑡 measures either reli-

giosity or innovation activity; 𝛼𝑐 and 𝛼𝑡 are county and year fixed effects; Post𝑡 is an indicator

variable equal to one if 𝑡 ≥ 1918 and zero otherwise; Excess Deaths𝑐 measures the intensity of

the pandemic in terms of excess deaths, as explained in Section 3.3.3; and 𝜀𝑐𝑡 is the error term.

In addition, in all regressions we control for the interaction between 1900-population and the

post indicator 𝑥𝑥𝑥′𝑐𝑡. Standard errors are clustered at the county level. Our coefficient of interest,

𝛿, captures the impact of the pandemic on religiosity or innovation. To investigate possible het-

erogeneity of treatment effects over time, we also estimate a more flexible model that, rather

than interacting Excess Deaths with the Post indicator, interacts Excess Deaths with biennial

time dummies:32

𝑦𝑐𝑡 = 𝛼𝑐 + 𝛼𝑡 +
∑︁
𝜏∈T

𝛿𝜏 [111(𝜏 ≤ 𝑡 ≤ 𝜏 + 1) × Excess Deaths𝑐] + 𝑥𝑥𝑥′𝑐𝑡𝛽𝛽𝛽 + 𝜀𝑐𝑡 (3.6)

where T = {1912, 1914, . . . , 1928} and 111(𝜏 ≤ 𝑡 ≤ 𝜏 + 1) is an indicator variable that takes value

one if 𝑡 is in the two-year window indexed by 𝜏, and zero otherwise.

Did the influenza spread randomly? We perform three main exercises to test this in the

data. First, in Table B.2, we report the correlation between the intensity of the pandemic and

32In the dynamic DiD specifications, we code time periods over two-year windows to reduce noisy fluctuations
in estimated treatment effects and to improve efficiency by pooling observations.
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a set of census-measured county covariates measured in 1910, the last census before the pan-

demic, accounting for population and state-level fixed effects.33 Counties more exposed to the

pandemic are observationally equivalent with respect to all variables, except for the share of

men, and the share of foreigners. This is in line with the pandemic being comparatively more

severe in urban areas and for men. Then, to rule out that these differences confound our analy-

sis, we check whether control and treatment counties were on different trends before the shock,

and we estimate an event study.

Formally, in Equation (3.6), this implies that the estimates of 𝛿𝜏 would not be statistically

different from zero before the pandemic hit,34 i.e., for all 𝜏 < 1918. We find support for the

parallel-trends assumption. However, our approach could still be invalid in the presence of

shocks correlated with the intensity of the pandemic that positively affected both science and

religiosity but that were not caused by the pandemic itself. A plausible candidate is the number

of soldiers that counties lost in WWI: their deaths might have driven either the religiosity of

their families or the ability (or motivation) of a county to produce innovation (or both). To test

for this, in Tables B.3 and B.11, we control for the number of deaths in WWI in our regression

model and show that the results remain robust.

3.4.1.1 The Effect of the Influenza Pandemic on Religiosity

Table 3.2 displays the DiD estimates obtained using religiosity as dependent variable. In columns

(1–3), the dependent variable is the share of individuals affiliated with the religious denomina-

tions enumerated in the Census of Religious Bodies, normalized by county population in 1900.35

In columns (4–6), instead, we use the name-based measure of religiosity described in Section

3.3.1, which allows us to observe counties every year between 1900 and 1929. The estimates

reported in columns (1) and (4) show that counties comparatively more exposed to the pan-

demic experienced an increase in overall religiosity. A one-standard deviation increase in ex-

cess deaths led to a 0.11 standard deviations increase in name-based religiosity at the county

33State fixed effects control for the fact that the pandemic spread from East to West between August 1918 and
November 1918.

34Since the setting is not staggered—because the pandemic hit each county in the same period—models (3.5) and
(3.6) can be estimated through standard two-way fixed effects (Callaway and Sant’Anna, 2021; Sun and Abraham,
2021). Callaway et al. (2021), however, caution against using continuous treatments. We code a binary indicator
equal to one for counties with above-median excess deaths. Throughout the paper, we show that the continuous
and binary treatments yield qualitatively similar results.

35This has the advantage of including the U.S. population across different age groups—not just individuals who
had children a decade before and a decade after the pandemic. On the other hand, this measure has two caveats:
(i) census-based religiosity is available only at three points in time (1906, 1916, and 1926) and thus does not allow
us to study high-frequency variation in religiosity; (ii) the choice to join a religious denomination could be more
likely to be affected by social insurance considerations (rather than by religious reasons), thus inducing an upward
bias in our results.
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level. Similarly, moving from a county at the 25th percentile of the excess mortality distribution

to one at the 75th percentile led to an increase in religiosity of 7%. In columns (2) and (5) and (3)

and (6), we explore possible heterogeneous effects of the pandemic on, respectively, Catholics

and Protestants. We estimate comparable treatment effects for these two denominations.

In Figure 3.3, we report the coefficients of the interactions between the treatment variable

and the biennial dummies for overall religiosity. The flexible specification supports the patterns

observed in the DiD analysis and confirms the absence of pretrends. In addition, we observe

that the increase in religiosity seems to persist over the decade after the pandemic. This is in

line with the literature documenting a substantial persistence of religiosity (e.g., Squicciarini,

2020).

In Table B.3, we show that our results hold through a series of robustness checks. First,

we code the treatment as a binary variable equal to one if the baseline treatment is above its

median, and zero otherwise (column 2). Second, we explicitly control for mortality due to WW1

in column (3). One concern related to our religiosity measure could be that firstborns are of-

ten named after a deceased grandparent and thus their names reflect the higher religiosity of

previous generations rather than their parents’ religious attitudes. If, due to higher mortality,

households in areas more affected by the pandemic were also more likely to have recently lost

a grandparent, then our results might simply reflect a mechanical effect. Column (4) reports

estimates dropping firstborn children in every household. Another concern is that numerous

households may display different naming behaviors for later-born children. In column (5) we

drop children beyond the fourth. In addition, if religious families displayed higher fertility

rates, one may worry that our results are driven by an increase in the number of religious

names due to the higher fertility of already-religious households. In column (6) we compute

within-household average religiosity to check whether our findings are driven by larger house-

holds and differential fertility. All results hold through these alternative specifications. Finally,

another concern could be that comparatively more religious people moved into counties where

the pandemic had been more severe, perhaps motivated by slacker labor markets. If that were

the case, our estimated effect of the pandemic on name-based religiosity would reflect movers’

religiosity and their fertility. To deal with this concern, we compute a county-decade measure

of religiosity based on the names of the adult population only. The in-migration mechanism

would predict a positive impact of the pandemic on this variable. Estimates reported in column

(7) show no evidence of any such effect, thus ruling out this potential alternative interpretation.

Lastly, one may be worried that the results presented in columns (1–3) of Table 3.2 were driven

by small counties, where the variation in both the share of affiliated to religious denominations

and in naming patterns may have been more substantial. In table B.9, we weight counties by
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their population in 1900 and confirm the baseline results.

In a second step, we test whether the results are robust to alternative ways of constructing

our religiosity measure. First, in Table B.4 we report the baseline result, but using religiosity

scores estimated through equation (3.2) without county fixed effects. These scores are thus ob-

tained using the “stock” of religiosity in a given county, instead of its deviations from the mean.

The results from this alternative strategy are consistent with our baseline estimates. Second,

we test the robustness of our results to the number of names included in the sample. In our

baseline analysis, we exclude names appearing in less than 0.3% of the overall population. In

Table B.5, we show that our findings are qualitatively unchanged under different frequency

thresholds. Finally, a possible concern could be that the results are capturing a “fashion” effect,

whereby more-religious names became more fashionable after the pandemic. If this were the

case, even though the initial increase in religious names would suggest a positive shift in reli-

giosity, the effect for the following periods would be biased upwards and driven by this fashion

effect. In Table B.6, we regress a set of indices reflecting the concentration of the name distri-

bution against our baseline treatment and find no evidence of such mechanism.

In the third set of robustness checks, we perform our analysis using alternative indicators

of religiosity. First, we validate the distinction between Catholic and Protestant names by using

the Canadian census. The advantage of this census is that, unlike in the United States, individ-

uals were explicitly asked to report their religious affiliation. Columns (1) and (2) of Table B.8

replicate the baseline results using the Canada-based religiosity scores assigned to the names

of newborns in the United States—these confirm the increase in the intensity of Catholicism

in counties that were more exposed to the pandemic. Since the near-universe of the Canadian

population in this period reported being Catholic or Protestant, religiosity scores can measure

only the intensity of Catholicism relative to Protestantism, and vice versa.36 Second, in columns

(3)–(5) of Table B.8, we use biblical and saint names as an alternative name-based measure of

religiosity, following Abramitzky et al. (2016). We find that the pandemic exerted a positive im-

pact on the share of either biblical or saint names. Interestingly, this effect is stronger for saints’

names—a result in line with previous findings on Catholicism and Protestantism.37

36In the Canadian census, fewer than 1% report either a religious affiliation different than Catholic or Protes-
tant or no religious affiliation at all. For details on the construction of the Canadian-census religiosity scores, see
Appendix Section 3.A.6.

37Perl and Wiggins (2004) argue that historically Catholic parents tended to give newborns the name of a saint,
required for the child’s baptism. Conversely, Protestants—who stress the centrality of the Bible but do not recognize
the cult of saints—tended to give biblical names. In addition, in Figure B.5, we show that the county-level share of
Biblical and Saints names, computed using data from Abramitzky et al. (2016), is strongly and positively correlated
with the religiosity measure constructed using our data-driven approach.
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Finally, we explore the effect of the pandemic within urban areas using the city-level sam-

ple constructed by Clay et al. (2019) and detailed in Appendix 3.A.9. In columns (1–3) of Table B.7

we estimate model (3.6) using a balanced panel of cities observed over 1900–1929. The name-

based religiosity measure is computed leveraging variation in naming patterns of children born

in each city. The city-level results are consistent with the baseline county-level analysis. Reli-

giosity increased in cities that were more severely affected by the pandemic. We estimate a

larger treatment effect for Catholics. This exercise ensures that our results are not driven by

individuals residing in rural areas. Moreover, the city-level sample includes several cities in

Southern states, which were plausibly more religious.38 We thus view the city-level exercise as

shedding additional internal validity to the county-level analysis.

Throughout different specifications and indicators, we find that the pandemic had a posi-

tive effect on religiosity. This finding is consistent with the religious coping hypothesis, which

posits that religion may serve as a coping device to deal with mental and psychological distress

(e.g., Pargament, 2001; Bentzen, 2019, 2021). In addition, the heterogeneity between Catholics

and Protestants is in line with the psychology literature studying the impact of mental distress

across confessions (Pargament, 2002), as well as with a recent study on the COVID-19 pandemic,

showing that the increase in Google searches for Catholic prayers was substantially higher than

for Protestant ones (Bentzen, 2021).

3.4.1.2 The Effect of the Influenza Pandemic on Innovation

We now turn to study how the influenza pandemic impacted innovation. We show that the

pandemic had a positive impact on overall innovation (measured by the total number of patents

granted during the period), driven mainly by an increase in patents in pharmaceuticals.

In column (1) of Table 3.3, we report the estimated impact of the influenza shock on the

volume of innovation—measured as the log(1 + number of patents) in a given county-year. We

find that a one standard deviation increase in excess deaths led to an 0.21 standard deviations

increase in the number of patents. Similarly, moving from a county at the 25th percentile to

one at the 75th percentile of the excess-deaths distribution leads on average to an increase of

19% in the number of patents granted by county-year. Figure 3.4 displays the effect in an event-

study framework. Each dot in the plot reports the dynamic treatment effect of the pandemic

on innovation in the indicated two-year window, as specified in model (3.6). The coefficients

show that the number of patents granted after the pandemic increased significantly more in

38Figure B.7 reports the number of cities included in the sample by state and their location.
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more-exposed counties, implying that the pandemic induced a sizable increase in innovative

activities that persisted for at least one decade after the shock.

We also investigate heterogeneous effects of the pandemic across technology classes. Specif-

ically, we ask whether the influenza shock affected not only the volume but also the direction of

innovation. To do so, we study the effect of the shock on the number of patents in each sector,

controlling for the total number of patents filed in each county-year. Columns (2)–(6) of Table

3.3 show the results of this exercise. For each field, we report the estimated DiD coefficients. We

find that the influenza shock has a positive and statistically significant effect only on pharma-

ceutical patents. Keeping the total number of patents constant, a county at the 75th percentile

of the excess-deaths distribution saw an average increase of 11% in pharmaceutical patents,

compared to one at the 25th percentile.

In Table B.11, we report a number of robustness checks, separately for the total number

of patents irrespective of their field (columns 1–4) and for those in pharmaceuticals (columns

5–9). Columns (1) and (5) report the baseline estimates for comparison. In columns (2) and

(7), we restrict the sample to an unbalanced county-year panel that includes only county-years

with at least one filed patent. Columns (3) and (8) report results coding the treatment as a

binary variable. Columns (4) and (9) control for WWI deaths interacted with the posttreatment

indicator and confirm that WWI-related mortality is not driving our result. Column (6) omits

the total number of patents as a control, thus reporting the impact of the pandemic on the

volume of pharmaceutical patents. The corresponding coefficient should be interpreted as the

impact of the pandemic on the total number of pharmaceutical patents. The estimated DiD

coefficients remain positive and statistically significant throughout. An additional concern is

that our results were driven by small counties, where innovation activity was comparatively

low during the pandemic. If this was the case, the actual increase in patenting activity would be

more modest than what our estimates would suggest. In columns (4–6) of Table B.10 we weigh

counties by their 1900 population and find that the magnitude of the estimated treatment effect

is comparable to the baseline, unweighted model.

In the baseline specifications, we take the logarithm of the number of patents, and we add

one to avoid dropping zeros. In Tables B.12 and B.13, we show that alternative transformations

of the dependent variable yield quantitatively similar results, respectively for all patents and for

patents in pharmaceuticals. In particular, while in the baseline regressions we control for the

total number of patents—to show that the influenza shock altered the direction of innovation

in favor of pharmaceuticals—in columns (7) and (8) of Table B.13, we use the share of patents

in pharmaceuticals as our dependent variable. These exercises yield consistent results.

In Table B.15 we show that the positive impact of the influenza shock on innovation was
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driven both by the higher productivity of existing inventors (intensive margin) and by an in-

crease in the number of inventors (extensive margin).39 In Table B.15, the dependent variable is

the number of patents per inventor (columns 1–3) and the total number of inventors (columns

4–6). We document a large increase in the productivity and number of inventors active in any

field (columns 1 and 4), as well as in pharmaceuticals only (columns 2–3, 5–6), even when con-

trolling for average productivity and for the overall number of active inventors.

A plausible concern is that our results may be driven by "low-quality" innovation. News-

papers of the day often advocated remedies for influenza that were not science- or evidence-

based, some of which may have been granted a patent in subsequent years. To address this

concern, we use the text-based measures of “importance” developed by Kelly et al. (2021).40 Ta-

ble B.16 shows the results. Column (1) uses the measure of average patent importance in all

sectors and shows no significant effect of the pandemic. In column (4), instead, we find that the

average importance of pharmaceuticals patents increases. We then focus on “breakthrough”

patents. Specifically, we assign to every patent a dummy equal to one if the patent’s importance

is in the top 20% of the distribution, and zero otherwise. We find that the number and share

of breakthrough patents substantially increase in counties hit harder by the pandemic, both

in all sectors and in only pharmaceuticals (columns 2–3, 5, and 7). In addition, in column (6)

we show that the number of breakthrough patents in pharmaceuticals grows more than the

average number in other sectors.

The increase in patenting activity in counties more exposed to the pandemic may reflect

demand- or supply-side factors. While we cannot exhaustively distinguish between the two,

the data allow exploring one possibly informative margin. Specifically, we distinguish between

patents with an assignee from those whose owners are the inventors themselves (approxi-

mately 40% of the total). The underlying idea is that patents produced by inventors employed

in firms are more likely to reflect demand-driven innovation because firms would be faster to

respond to changing market conditions. On the other hand, patents produced by self-employed

inventors may reflect their inventors’ personal motivation and experience. In Table B.14, we in-

vestigate the heterogeneous response to the pandemic of patents with and without an assignee.

In columns (1–2), the dependent variable is the share of patents with and without an assignee;

in columns (3–4), we divide pharmaceutical patents by the total number of patents; in columns

39To disambiguate among homonym inventors, we use the sample of inventors linked to the U.S. full-count census
developed by Bazzi et al. (2022).

40As discussed by Berkes (2018) and Andrews (2021), citation-based quality measures during this period are
noisy and mostly uninformative due to the lack of a mandatory reference section until 1947. The measure built
by Kelly et al. (2021) identifies important patents based on the textual similarity of a given patent to previous and
subsequent work. Important patents are those that are distinct from previous work, but are similar to subsequent
innovations.
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(5–6), we divide pharmaceutical patents by all pharmaceutical patents. We find that the pan-

demic exerted a statistically significant, positive, and quantitatively large impact on patents

without an assignee. By contrast, we find no such effect on patents with an assignee. These

results provide suggestive, albeit not exhaustive, evidence that the effect of the pandemic on

innovation may have operated primarily by influencing its supply side.

While most innovation activity clusters in urban areas, we perform our baseline analysis

at the level of counties. To ensure that the results do not conflate rural-urban disparities, we

estimate the effect of the pandemic on innovation at the city level. Columns (4–6) of Table B.7

report the estimates of model (3.2) for the panel of cities described in Section 3.A.9. The results

confirm the county-level evidence: despite the smaller sample size, we estimate a positive and

statistically significant effect of the pandemic on innovation, especially in pharmaceuticals.

Another concern is that patents may be an imperfect measure for innovation and scien-

tific attitudes, since not all innovation is patented (Moser, 2005). We complement our anal-

ysis by using the share of people employed in STEM occupations as an alternative indicator.

The rationale for this measure is that a STEM occupation requires that an individual receive a

science-oriented education. In turn, receiving a science-based education plausibly correlates

with more-favorable attitudes toward, and more trust in, science (Deming and Noray, 2018;

Bianchi and Giorcelli, 2020).

We start by running the same specification as in models (3.5) and (3.6) using as dependent

variables the share of individuals employed in STEM relative to the overall population. We

perform the analysis at the decade level, since this measure is taken from population censuses

(1900–1930). Column (1) of Table 3.4 shows an increase in the share of workers in STEM occu-

pations in counties more severely hit by the pandemic. A one standard deviation increase in

excess deaths is associated with a 0.86-standard deviations increase in the share of individu-

als in scientific occupations. Equivalently, moving from the 25th to the 75th percentile of the

excess-mortality distribution leads to a 29% increase in the share of individuals in STEM.41 Col-

umn (4) replicates this result, focusing on the skilled sub-sample of the population.

To better understand what drives the change in occupational shares, we use individual-

level data on occupations. Specifically, we test whether individuals who were young at the time

of the shock, i.e., between 18 and 25 years old, were more likely to be employed in a STEM

occupation ten years later compared to older cohorts, in areas that were comparatively more

41These coefficients are computed using decade-level data. This explains why the beta coefficients are particu-
larly high, compared to those obtained using yearly-level data, as in Table 3.3.
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exposed to the pandemic.42 We estimate the following linear probability model, where we de-

fine as treated individuals aged 18 to 25 in 1918:

STEMℎ𝑐𝑡 = 𝛼𝑐 + 𝛼𝑡 + 𝛿 ×
(
Excess Deaths𝑐 × Youngℎ

)
+ 𝑥𝑥𝑥′ℎ𝛽𝛽𝛽 + 𝜀ℎ𝑐𝑡 (3.7)

where 𝛼𝑐 and 𝛼𝑡 respectively denote county and cohort fixed effects, STEM𝑖𝑐𝑡 is a dummy vari-

able equal to one if head of household ℎ is employed in a STEM occupation, and zero otherwise;

𝑥𝑥𝑥ℎ includes urban status and race. The categorical variable Youngℎ is equal to one if individ-

ual ℎ is between 18 and 25 in 1918, and zero otherwise. Our coefficient of interest is 𝛿, which

measures the causal effect of the pandemic on the probability of being employed in a STEM

occupation.

Columns (2)–(3) in Table 3.4 report the results: in counties more exposed to the pandemic,

young individuals were significantly more likely to sort into STEM occupations.43 Why did

young cohorts respond disproportionately more to the shock? We have two potential expla-

nations for this finding. The first is mechanical: the pandemic may have affected everyone in

similar ways, but young cohorts were the only ones in the process of choosing an occupation.

The second is that the pandemic may have specifically affected the attitudes and preferences

of individuals in their impressionable years (i.e., the young cohorts), and thus the differential

occupation choice reflects a change in attitudes occurring only for these cohorts.44 Next, we

replicate the analysis of columns (1)–(3), using non-STEM high-skilled individuals as the com-

parison group. In particular, in column (4) we use as dependent variable the share of STEM indi-

viduals relative to the number of people employed in high-skilled occupations, and in columns

(5)-(6), we only include individuals in STEM and other high-skilled in the sample. The results

are quantitatively similar.

3.4.1.3 Joint Dynamics of Religiosity and Innovation

After studying the impact of the pandemic separately on religiosity and scientific progress, we

now look at their joint evolution. Specifically, we test whether the same counties were affected

42To construct the sample, we use the cross-section of all individuals in the 1930 full-count census. We drop all
individuals born after 1905, as they may have been too young to have already selected an occupation, and we
restrict the sample to the working population. We drop individuals who were in prison, retired, or reported no
occupation.

43In the baseline specification, a young individual is someone between 18 and 25 years old in 1918; in Table B.17,
we extend the sample to those aged 18 to 30 in 1918, and the results hold.

44According to the “impressionable years” hypothesis—which represents a long-standing argument in
psychology—economic, social, and cultural attitudes and beliefs are formed during early adulthood, approxi-
mately between the ages of 18 and 25, and change slowly thereafter (Giuliano and Spilimbergo, 2023).
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along both dimensions, or whether some counties saw an increase in religiosity while others

saw an increase in scientific progress.

We estimate the following model:

𝑦𝑐𝑡 =𝛼𝑐 + 𝛼𝑡 + 𝛿1 × (Excess Deaths𝑐 × Post𝑡) + 𝛿2 × Religiosity𝑐𝑡+

+ 𝛿3 ×
(
Excess Deaths𝑐 × Post𝑡 × Religiosity𝑐𝑡

)
+ 𝑥𝑥𝑥′𝑐𝑡𝛽𝛽𝛽 + 𝜀𝑐𝑡

(3.8)

where 𝑦𝑐𝑡 is the log(1+ total patents),45 and (Religiosity𝑐𝑡) is the religiosity measure described in

Section 3.3.1. The coefficient 𝛿1 measures the impact of the pandemic on innovation, 𝛿2 captures

the correlation between the outcome and religiosity before the pandemic, and the term 𝛿3—

alongside 𝛿2—captures how the correlation between the outcome and religiosity changes after

1918 as a function of exposure to the pandemic. As before, the vector𝑥𝑥𝑥𝑐𝑡 includes an interaction

term between county population in 1900 and a posttreatment indicator.

In Table B.18, we report the estimates of model (3.8). The results suggest that counties that

were comparatively more affected by the pandemic experienced a joint increase in religiosity

and innovation.

Interestingly, as a consequence of this contemporaneous increase in religiosity and science,

their relationship shifts from negative to positive—as shown in Figure B.6. In the period before

the shock, there was a negative correlation between the intensity of innovation activity (mea-

sured as the number of patents per 10,000 individuals) and religiosity at the county level. This

is in line with contemporary evidence reported by Bénabou et al. (2015). In the lower panel,

we show that, in the period after the pandemic, religiosity and science became positively cor-

related. In Section 3.4.2, we use individual-level data to uncover the possible mechanisms un-

derlying these results.

3.4.2 Mechanisms: Individual-Level Analysis

After observing a contemporaneous increase in religiosity and innovation, two questions natu-

rally arise. Within counties, who turns to religion and who turns to science? Are these the same

or different individuals? In this section, we leverage individual-level data to answer these ques-

tions. In particular, we focus on individuals who are heads of household in the 1930 census.46

45Total patents are normalized by county population in 1900, as in Bénabou et al. (2022).
46The “head of household” variable is provided by the census. During this period, the father and/or husband was

usually the head of the household whenever he was present.
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First, we show that the pandemic led to an increase in the religiosity of individuals who

came from initially more religious backgrounds while individuals from less religious back-

grounds were more likely to select STEM occupations. Second, we show that STEM individuals,

who were less religious before the pandemic, become even less religious compared to the rest

of the population. Third, we document that the pandemic led to the polarization of religiosity.

Taken together, these three results suggest that the pandemic shock led to different reac-

tions within society—based, for instance, on individuals’ religious background or initial sci-

entific orientation—with people becoming even more distant in terms of their religiosity than

they were before the pandemic. This within-county analysis reveals important heterogeneities

in how individuals react to a negative shock, and it helps reconcile our aggregate findings with

the existing literature on the negative relationship between religion and scientific progress.

3.4.2.1 Turning to Religion or Turning to Science

We start by studying whether preexisting differences in individuals’ religious background could

have led to a heterogeneous response to the influenza shock. The full-count census data, on

top of covering the universe of the U.S. population, have the advantage of being deanonymized.

This allows us to construct two measures of religiosity for each individual: one is their revealed

religiosity, based on the names individuals gave to their children; the other is their religious

background, based on their own name. Specifically, we interpret an individual’s own name as

conveying information about the religiosity of their parents and, thus, the religious background

of that individual.

Combining these measures, we first study how an individual’s religious background shaped

their response to the pandemic in terms of religiosity. Next, we explore whether, following the

pandemic, the religious background of an individual may have also shaped their propensity to

work in a scientific occupation. To measure this, we use an indicator equal to one if they were

employed in a STEM occupation, and zero otherwise.47

We estimate two triple-differences specifications, one for religiosity and one for the likeli-

hood of selecting a STEM occupation:

Religiosity 𝑗𝑖𝑐𝑡 = 𝛼𝑐×𝑡 + 𝛼𝑐×𝐵 + 𝛼𝐵×𝑡+

+ 𝛿1 ×
(
Excess Deaths𝑐 × Post𝑡 × High Religious Background𝑖

)
+ 𝑥𝑥𝑥′𝑖𝛽𝛽𝛽 + 𝜀 𝑗𝑖𝑐𝑡

(3.9)

47A natural way to construct a measure of scientific background, symmetric to the religiosity one, would be to
look at whether individuals had a parent working in a scientific occupation. Unfortunately, due to data limitations,
this is not possible, as this exercise would require tracking individuals across several census waves, thus greatly
reducing our sample size. The advantage of our measure of religious background is that it can be constructed for
every individual without requiring any direct information on, or linking to, their parents.
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where 𝑗 represents a child, 𝑖 denotes the household head, 𝑐 and 𝑡 are respectively county of

residence and child birth-year; and

STEM𝑖𝑐𝑡 = 𝛼𝑐×𝑡 + 𝛼𝑐×𝐵 + 𝛼𝐵×𝑡+

𝛿2 ×
(
Excess Deaths𝑐 × Young𝑡 × High Religious Background𝑖

)
+ 𝑥𝑥𝑥′𝑖𝛽𝛽𝛽 + 𝜀𝑖𝑐𝑡

(3.10)

where 𝑖 denotes a head of household, residing in county 𝑐, born in year 𝑡.

In both equations, the terms𝛼𝑐×𝑡,𝛼𝑐×𝐵, and𝛼𝐵×𝑡 denote, respectively, county-by-year, religious-

background-by-county, and religious-background-by-year fixed effects, and 𝑥𝑥𝑥𝑖 includes urban

status and race of the household head. The term “High Religious Background” is a categorical

variable returning the value one if the religiosity score of the household head’s name is in the

top 20% of the religiosity distribution, and zero otherwise. We estimate model (3.9) on the sam-

ple of children born between 1900 and 1929. The dependent variable is the religiosity score

associated with the name of child 𝑗. Children are weighted by the inverse of the number of

children in each household. In model (3.10), the sample is composed of heads of households,

observed once in the 1930 census. The dependent variable is an indicator variable returning

the value one if the head of household 𝑖 is employed in a STEM occupation in 1930, and zero oth-

erwise. The coefficients 𝛿1 and 𝛿2 quantify the effect of county-level exposure to the pandemic,

comparing individuals in the top quintile of the background religiosity distribution with the

rest of the population on, respectively, religiosity and STEM employment.48

Table 3.5 presents the results of the analysis. In columns (1)–(3), the dependent variable

is revealed religiosity. Our variable of interest is the interaction between the excess-deaths

measure, a dummy “Post” equal to one if a child is born after the pandemic, and the religious

background of the household head. In columns (4)–(6), the outcome variable is a dummy equal

to one if the household head is employed in a STEM occupation. Our main variable of interest

is the interaction between the excess-deaths measure, a dummy “Young” equal to one if a given

individual was between 18 and 25 in 1918, and their religious background. 49 All regressions

include year-by-county fixed effects, which also absorb the effects of the interaction between ex-

cess deaths and the birth year, as well as county-by-background and background-by-year fixed

effects.

We find that individuals originating from more religious backgrounds, who were already

48While in model (3.9) the treatment is at the level of the birth year of the children of the household head (i.e.,
𝑃𝑜𝑠𝑡 refers to a child born after 1918), in model (3.10) the treatment is at the level of the cohort of the household
head (i.e., 𝑌𝑜𝑢𝑛𝑔 refers to a household head who turned 25 years old after 1918).

49In Table 3.5 columns (1)–(3) we observe multiple realizations—one for each child—of a head of household’s
religious attitude. In columns (4)–(6), on the other hand, we observe a cross-section of individuals whose scientific
attitudes—which we proxy with their occupational choices—are observed only once.
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more religious before the influenza shock, became even more religious afterward in more-

exposed counties (columns 1–3).50 By contrast, individuals who were young during the pan-

demic and came from less religious backgrounds were more likely to choose a scientific occu-

pation (columns 4–6). Evidence in Table 3.5 suggests that an individual’s religious background

affected their way of dealing with negative shocks. In particular, those who were raised by re-

ligious parents were more likely to resort to religion to deal with adversity. On the other hand,

growing up in a less religious household made individuals more likely to approach science,

possibly as a coping device in the face of the negative shock.

3.4.2.2 Science-Oriented Individuals Became Less Religious

In this part of the analysis, we focus on science-oriented individuals and study whether their

religiosity changed after the pandemic, compared to the rest of the population.

In Appendix Table B.19, we show the average religiosity of STEM (column 2) and non-STEM

(column 1) individuals before the pandemic, as well as their differences (columns 3–4).51 STEM

individuals are less religious than non-STEM ones. This holds both unconditionally (column

3), and when we condition on county fixed effects, cohort fixed effects, and household-level

controls (column 4).

We now turn to study the impact of the pandemic on religiosity for these two types of indi-

viduals. We estimate the following triple-differences model:

Religiosity 𝑗𝑖𝑐𝑡 = 𝛼𝑐×STEM+𝛼𝑡×STEM+𝛼𝑐×𝑡+𝛿×(Excess Deaths𝑐 × STEM𝑖 × Post𝑡)+𝑥𝑥𝑥′𝑖𝛽𝛽𝛽+𝜀 𝑗𝑖𝑐𝑡 (3.11)

where 𝑗 denotes a child, 𝑖 denotes the household head, 𝑐 and 𝑡 are respectively county and birth-

year of the child; Post𝑡 is a dummy variable taking the value one if child 𝑗 is born after 1918, and

zero otherwise; STEM𝑖 is an indicator variable that takes the value one if the household head is

employed in a STEM occupation, and zero otherwise; and 𝑥𝑥𝑥 includes urban status and race of

the household head. The coefficient 𝛿 compares STEM and non-STEM individuals, before and

after the pandemic, by county-level exposure to the pandemic. The sample is composed of all

children born between 1900 and 1929. Children are weighted by the inverse of the number of

children in each household. Table 3.6 shows the results. In columns (1)–(3), the comparison

group is the entire population, while in columns (4)–(6), we focus on high-skilled workers. We

find that, for both comparison groups, individuals in STEM occupations become less religious

50The correlation between revealed religiosity and background religiosity is equal to 0.13 and highly statistically
significant (p< .001), in line with a large literature on cultural transmission (Bisin and Verdier, 2001).

51To construct these variables, we consider only children born before 1918, and we take the within-household
average religiosity.
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than non-STEM ones in counties more exposed to the influenza shock (columns 1 and 4). This

pattern is stronger for Catholics (columns 2 and 5) than for Protestants.

These findings further show that, within society, different groups reacted in different ways

to an adverse shock. In particular, STEM individuals appeared to turn further away from reli-

gion compared to their non-STEM counterparts.

3.4.2.3 Polarization of Religious Beliefs

In this section, we analyze the impact of the influenza pandemic on the distribution of religiosity

within counties. Precisely, we estimate heterogeneous treatment effects of the pandemic across

the initial distribution of background religiosity.

To study this question, we discretize the distribution of background religiosity into quin-

tiles, which we label QBR, and we estimate the following model:

Religiosity 𝑗𝑖𝑐𝑡 = 𝛼𝑐×𝑡 + 𝛼𝑐×𝑄 + 𝛼𝑄×𝑡+

+
5∑︁
ℓ=1

𝛿ℓ ×
[
Excess Deaths𝑐 × Post𝑡 × 1

(
𝑄BR
𝑖 = ℓ

)]
+ 𝑥𝑥𝑥′𝑖𝛽𝛽𝛽 + 𝜀𝑖𝑐𝑡

(3.12)

where 𝑗 denotes a child, 𝑖 denotes the household head, 𝑐 and 𝑡 are respectively county and child

birth-year; Equation (3.12) includes county-by-time, county-by-background, and background-

by-time fixed effects, and the term𝑥𝑥𝑥𝑖 includes urban status and race of the household head. The

term 1
(
𝑄BR
𝑖

= ℓ
)

is a dummy variable that takes the value one if household head’s background

religiosity is in the ℓ-th quintile, and zero otherwise. If the pandemic caused an increase in

polarization of religiosity, the set of coefficients {𝛿ℓ}5ℓ=1 in equation (3.12) would be monoton-

ically increasing in ℓ. On the other hand, a decreasing sequence of coefficients would provide

evidence that the pandemic led to a convergence of religiosity. In model (3.12), the sample is

composed of all children born between 1900 and 1929. Children are weighted by the inverse of

the number of children in each household.

In Figure 3.5, we report the set of {𝛿ℓ} coefficients by religious denominations. We nor-

malize the third quintile as the baseline category. The figure provides evidence in favor of an

increase in polarization: for individuals with below-median religious backgrounds, the coeffi-

cients on exposure to the pandemic are negative, while they are positive for those with above-

median religious backgrounds. This suggests that, within the same county, individuals from dif-

ferent religious backgrounds become even more distant in terms of their religiosity, increasing

the polarization of religiosity within society. In Table B.20 we report the results of the corre-

sponding regressions.
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Taken together, these three individual-level exercises help us understand the contempo-

raneous increase in both religiosity and science at the county level. They suggest that, within

counties, individuals reacted differently to the same shock, based, for instance, on their reli-

gious background or on their prepandemic scientific orientation. Thus, while a county may

have become both more religious and more innovative, individuals seemed to turn either to

religion or to science, leading to within-county polarization of religiosity.

3.5 Discussion: Interpretation and Limitations of the Results

Our analysis shows two clear patterns: (i) the 1918–1919 influenza pandemic led to an increase

in religiosity and production of innovation across U.S. counties and, as a result of the shock,

the same counties became both more religious and more innovative; (ii) within counties, there

was a heterogeneous response to the same shock, with some individuals turning to religion and

others turning to science.

One concern is that other factors related to the pandemic may have affected the evolution

of religiosity and science, confounding our results. To address this concern, we proceed in three

steps. First, we document that neither initial religiosity nor innovation activity are related to

the intensity of the shock. Second, our event-study analysis shows the absence of pretrends,

suggesting that religiosity and innovation were on a similar path in treated and control groups

before the shock. Third, we account for other potentially confounding characteristics, such as

differential fertility, WWI deaths, and migration patterns. Our results are robust in all these

cases. Taken together, the empirical evidence, supported by the historical records, makes it

hard to imagine that the pandemic did not trigger an increase in both religiosity and scientific

progress.

A second concern regards our main measures of religiosity and scientific progress. First,

does our name-based indicator indeed capture religiosity at the local level? We show that our

results are robust to alternative ways of constructing our naming measure and when using

alternative classifications of religious names. In addition, we show that in counties hit harder

by influenza, the share of people affiliated with a religious denomination increases, providing

further evidence that the pandemic led to an increase in local religiosity. Similarly, patents

could be an imperfect measure of scientific progress (Moser, 2005). To address this concern, we

show that our findings hold when using the share of individuals in scientific occupations as an

alternative proxy.

One puzzle emerging when looking at the aggregate patterns is whether these results are
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driven by individuals becoming both more religious and more innovative or by different indi-

viduals reacting differently to the same shock. Our findings suggest that the second mechanism

is at play. Individuals from more religious backgrounds further embrace religion, while those

from less religious backgrounds are more likely to choose a scientific occupation. This suggests

that a group of individuals within society used religion as a coping device, while a separate

group turned to science. In addition, we show that the shock widened the distance in religiosity

between science-oriented individuals and the rest of the population: people in scientific occupa-

tions, already less religious than the rest of the population, moved further away from religion.

Finally, the pandemic increased the polarization of religiosity in the population: individuals

from more (less) religious backgrounds became even more (less) religious.

One key question regarding our individual-level results is, what explains the increase in re-

ligiosity or the choice of a scientific occupation? The findings on religiosity are in line with the

religious coping hypothesis, which suggests that religious faith can represent a coping device

to deal with personal distress following a negative shock. An alternative explanation for why

individuals may turn to religion is for social insurance. While we are not able to fully rule this

out (and it goes beyond the scope of our paper), we read our evidence as being in favor of the

religious coping hypothesis. First, this is in line with the literature showing that intrinsic reli-

giosity (rather than churchgoing) responds to unexpected events, as noted by Bentzen (2019).

Second, as the increase in religiosity persists up to ten years after the shock, it is more likely

to be related to a change in beliefs rather than to a temporary increase in the need for social

insurance.

What motivates people to turn to science is less obvious. Individuals may turn to science to

deal with their psychological distress, similarly to religious coping, or in an attempt to actively

mitigate the negative (e.g., health-related or economic) effects of the pandemic. Another pos-

sibility could be that individuals turn to science because of increased labor demand in STEM

occupations, but our results suggest that, beyond market forces, the individual’s religious back-

ground plays a key role in the decision to turn to science. While our findings cannot directly

speak to the individual-level motivations behind these different behaviors, they provide evi-

dence of a heterogeneous response to the same adverse event.

Finally, one limitation of our individual-level analysis is that, while we can construct the

religious background for every individual, we cannot directly measure their scientific one. This

is due to our measure of scientific orientation based on occupational choice, which—contrary

to our measure of religious background—does not allow us to know an individual’s occupation
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and the parents’ occupation from the same census.52 However, since we know that science-

oriented people are less religious than the overall population (Appendix Table B.19), it is plau-

sible to assume that religious background and scientific background are similarly negatively

correlated. Taken together, we interpret our results as suggestive evidence that, while individ-

uals from religious backgrounds turned to religion as a coping device in the aftermath of the

pandemic, those from a scientific background turned to science.

3.6 Conclusions

In this paper, we provide new evidence on how societies react to adversities, studying an exem-

plary historical episode: the Great Influenza Pandemic of 1918–1919.

First, we show that society reacted to the pandemic by becoming both more religious and

more innovative. Second, using individual-level data from full-count censuses, we suggest that

religiosity and science are substitute ways of reacting to the shock. When facing adversity,

individuals from more religious backgrounds turned to religion, while those from less religious

backgrounds turned to science. Third, we show that the pandemic shock widened the distance

in religiosity between scientific-oriented individuals and the rest of the population, and that it

increased preexisting differences in religious sentiment. As a consequence, the distribution of

religiosity in counties more exposed to the pandemic became more polarized.

Our paper sheds new light on the relationship between religiosity and science. Throughout

history, science and religion have often been in conflict, and recent evidence by Bénabou et al.

(2015, 2022) shows that the two are negatively correlated, both across countries and across U.S.

states. We provide novel evidence that—at the individual level—the two are substitute ways of

dealing with adversity.

Our analysis helps shed light on modern events such as the reaction of society to the COVID-

19 pandemic. Even though the modern context differs in many ways from the one that wit-

nessed the influenza pandemic, including the medical advancements of the past century, the

reaction of today’s society seems in line with what we document for the 1918–1919 pandemic.53

In particular, our findings can help explain the opposing views that have emerged since the

COVID-19 pandemic on science-based responses to the shock, such as the opposing attitudes

toward vaccines.

52A natural way to construct a measure of scientific background, symmetric to the religiosity one, would be to
look at whether individuals had a parent working in a scientific occupation. Unfortunately, this is not possible due
to data limitations; this exercise would require tracking individuals across several census waves.

53One key difference between the two pandemics is that no medical remedy or vaccine became available until
many years after the earlier pandemic ended.
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Finally, our results suggest that, in the aftermath of a negative shock, societies may become

more polarized in their religiosity. Because religion has become an increasingly polarizing el-

ement in the current political debate, facing adversity may strongly affect not only religious

polarization but also the polarization of political views, and more broadly, the polarization of

society itself.
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Tables

Table 3.1: Summary Statistics

(1) (2) (3) (4) (5)
Mean Std. Dev Min Max Counties

Panel A. Mortality
Flu excess deaths (%) 1.134 .148 .853 1.779 1220
WW1 deaths 20.864 85.414 .5 2414 1220
Net Flu Excess Deaths (%) 1.099 .159 -.897 1.714 1220

Panel B. County Demographics
Population 36.905 79.468 .076 1298.405 1217
Area 218.356 283.698 0 5205.831 1217
Share of Whites .936 .126 .311 1 1217
Share of African Americans .058 .127 0 .689 1217
Share of Foreign Born .119 .112 0 .498 1217
Share of Illiterates .045 .047 .001 .264 1217
Income per Capita 833.501 24.243 746.105 913.328 1217

Panel C. Religious Affiliations
Total Affiliated 21.635 62.262 .148 982.279 1219
Catholics 9.415 36.48 0 589.856 1219
Protestants 10.386 18.697 .056 309.439 1219

Panel D. Innovation Activity
All 106.456 409.376 0 5598.142 1220
Pharmaceuticals 13.785 54.099 0 710.225 1220
Communications 3.132 14.761 0 292.194 1220
Electrical 11.224 52.666 0 1039.469 1220
Mechanical 37.472 142.788 0 2026.215 1220
Other 40.843 152.003 0 1872.377 1220

Notes: This table displays the mean, standard deviation, minimum, maximum, and total number of
counties of the main variables. Data are measured at the county level. Panel A and B report data from
the 1910 census. Data in Panels C and D are at decade level. Hence, for instance, column (1) of Panel C
“Total Affiliated” reports the average number of individuals affiliated with any denomination over the
period 1900-1930. Column (1) of Panel D “All” reports the average number of patents in any class in
each decade between 1900 and 1930. “Excess deaths” is defined as the ratio between total deaths
during the pandemic, and total deaths in the three years before. County demographics are measured
through the IPUMS full-count census (Ruggles et al., 2021). Income per capita is measured through
occupational income scores based on the 1950 Census. Religious affiliation data are from the Census of
Religious Bodies. Patent data are from Berkes (2018). All variables are crosswalked to 1920 borders.
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Table 3.2: The Impact of the Influenza on Religiosity

Share of Affiliated Name-Based Religiosity

(1) (2) (3) (4) (5) (6)
All Catholics Protestants All Catholics Protestants

Excess Deaths × Post 0.202∗∗∗ 0.082∗∗∗ 0.082∗∗∗ 0.007∗∗ 0.009∗∗∗ 0.006∗∗
(0.027) (0.015) (0.015) (0.003) (0.003) (0.003)

County FE Yes Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes – – –
Year FE – – – Yes Yes Yes
Number of Counties 1219 1219 1219 1201 1201 1201
Observations 3657 3657 3657 36030 36030 36030
R2 0.861 0.908 0.931 0.450 0.306 0.471
Std. Beta Coef. 0.635 0.337 0.301 0.109 0.184 0.100

Notes: This table displays the impact of exposure to the Great Influenza Pandemic on religiosity. The
unit of observation is a county, observed at a decade frequency between 1906 and 1926 (in columns
1–3) and yearly frequency between 1900 and 1929 (in columns 4–6). “Post” is a categorical variable
equal to one during and after the pandemic—i.e., over the years 1918 to 1929—or zero otherwise. The
baseline treatment “Excess Deaths” is defined in Equation (3.4). In columns (1–3), the dependent
variable is the number of individuals affiliated with religious denominations enumerated in the Census
of Religious Bodies, normalized by county population in 1900; in columns (4–6), the dependent variable
is the name-based religiosity measure described in the main text. Columns (1) and (4) report the effect
of the influenza on overall religiosity, whereas columns (2) and (5)—resp. (3) and (6)—display it on the
intensity of Catholicism—resp. Protestantism. Regressions include county and time (decades in
columns 1–3 and years in columns 4–6) fixed effects and the interaction between population in 1900
and a post-treatment indicator. Standard errors, clustered at the county level, are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 3.3: The Impact of the Influenza on the Volume and Direction of Innovation

Dep. Var.: log(1 + Number of Patents)

(1) (2) (3) (4) (5) (6)
All Patents Pharmaceuticals Communication Electrical Mechanical Other

Excess Deaths × Post 0.503∗∗∗ 0.091∗∗∗ 0.000 0.022 0.014 0.018
(0.064) (0.033) (0.021) (0.027) (0.023) (0.022)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
All Patents No Yes Yes Yes Yes Yes
Number of Counties 1220 1220 1220 1220 1220 1220
Observations 37820 37820 37820 37820 37820 37820
R2 0.832 0.836 0.717 0.819 0.925 0.935
Std. Beta Coef. 0.211 0.066 0.000 0.018 0.008 0.009

Notes: This table displays the impact of exposure to the Great Influenza Pandemic on the level and
direction of innovation. The unit of observation is a county, observed at a yearly frequency between
1900 and 1929. “Post” is a categorical variable equal to one during and after the pandemic—i.e., over
the years 1918 to 1929—or zero otherwise. The baseline treatment “Excess Deaths” is defined in
Equation (3.4). In column (1), the dependent variable is the (log) total number of patents granted. In the
other columns, the dependent variable is the (log) number of patents granted in each column field,
controlling for the overall (log) number of patents. In all models, we take ln(1 + Patents) as the
dependent variable to ensure that we do not drop counties without patents. Column (1) estimates the
impact of the pandemic on the level of innovation, while columns (2)–(6) display this on the direction of
innovation because we control for the total number of patents. Regressions include county and year
fixed effects and the interaction between population in 1900 and a post-treatment indicator. Standard
errors, clustered at the county level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 3.4: Impact of the Influenza on Occupational Choice

Entire Population Skilled Population

STEM / Population Dummy = 1 if STEM STEM / Skilled Dummy = 1 if STEM

(1) (2) (3) (4) (5) (6)
No Controls Controls No Controls Controls

Excess Deaths × Post 0.004∗∗∗ 0.049∗∗∗
(0.000) (0.007)

Excess Deaths × Young 0.003∗∗∗ 0.004∗∗∗ 0.033∗∗∗ 0.031∗∗∗
(0.001) (0.001) (0.010) (0.009)

County FE Yes Yes Yes Yes Yes Yes
Decade FE Yes – – Yes – –
Cohort FE – Yes Yes – Yes Yes
Household Controls – No Yes – No Yes
Number of Counties 1218 1217 1217 1216 1217 1217
Observations 4868 30679634 30679634 4864 4285423 4285423
R2 0.656 0.002 0.002 0.584 0.005 0.010
Std. Beta Coef. 0.799 0.021 0.021 0.845 0.076 0.071

Notes: This table displays the effect of the pandemic on occupational choice. In columns (1) and (4), the
unit of observation is a county, observed at decade frequency between 1900 and 1930. In columns (2–3)
and (5–6), the unit of observation is an individual, observed once in the 1930 population census. In
columns (1) and (4), the treatment interacts a “Post” variable equal to one for each census decade after
the pandemic, or zero otherwise, with the standard “Excess Deaths” measure defined in Equation (3.4).
In column (1), the dependent variable is the (log 1+) share of people employed in STEM occupations, as
a share of the population in 1910. In column (4) the share is computed relative to the number of people
employed in skilled occupations in 1910. The lists of STEM occupations and of high-skilled occupations
are reported in Table B.1. In columns (2–3) and (5–6), the treatment is an interaction between a dummy
variable equal to one if the person is employed in a STEM occupation and zero otherwise, and an
indicator variable returning value one for all those aged 25 or less at the time of the inception of the
pandemic. In columns (2–3) the sample includes the entire population; in columns (5–6) we only
include individuals employed in skilled occupations. In columns (3) and (6) we control for race and
urban status of the head of household. Regressions in columns (1) and (4) include county and year fixed
effects and the interaction between population in 1900 and a post-treatment indicator; regressions in
columns (2–3) and (5–6) include county and cohort fixed effects. Standard errors are clustered at the
county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 3.5: Religious Background, Religiosity, and STEM Occupations

Religiosity STEM Occupation

(1) (2) (3) (4) (5) (6)
All Catholics Protestants All Catholics Protestants

Excess Deaths × Post × High Religious Background 0.066∗∗∗ 0.037∗∗∗ 0.020
(0.016) (0.014) (0.013)

Excess Deaths × Young × High Religious Background -0.003∗ -0.004∗∗ -0.003∗∗
(0.001) (0.001) (0.001)

County-Year FE Yes Yes Yes Yes Yes Yes
County-Background FE Yes Yes Yes Yes Yes Yes
Background-Year FE Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Number of Counties 1217 1217 1217 1217 1217 1217
Observations 7641683 7641686 7641678 13569024 13569024 13569024
R2 0.029 0.023 0.026 0.006 0.007 0.006
Std. Beta Coef. 0.037 0.022 0.013 -0.010 -0.012 -0.013

Notes: This table displays the impact of exposure to the pandemic on religiosity—columns (1)–(3)—and
occupational choice—columns (4)–(6)—by individual-level background religiosity. The unit of
observation in columns (1)–(3) is a head of household, who is observed once for each child born
between 1900 and 1930 in the household. In columns (4)–(6), the unit of observation is an adult.
Religiosity is defined as the religiosity score associated with the child’s name. “Post” is a categorical
variable equal to zero for children born during and after the pandemic—i.e., over the years
1918–1929—or zero for those born before the pandemic—i.e., before 1918. The baseline treatment
“Excess Deaths” is defined in Equation (3.4). “STEM” is an indicator variable returning value one if an
individual is employed in a STEM occupation—as defined in Table B.1—or zero otherwise. “Young” is
an indicator variable equal to one if an individual is younger than 25 years old in 1918, or zero
otherwise. "High Background Religiosity" is an indicator variable returning the value one if the
religiosity score of the name of the head of the household is in the top 20% of the overall distribution,
or zero otherwise. The table displays the coefficient of the interaction between these terms. Each
regression includes county-by-cohort, county-by-background, and background-by-cohort fixed effects.
We include race and urban status as further household-level controls in each regression. Standard
errors are clustered at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table 3.6: Effect of the Influenza on Individual Religiosity: STEM and Non-STEM

Entire Population Skilled Population

(1) (2) (3) (4) (5) (6)
All Catholics Protestants All Catholics Protestants

Excess Deaths × Post × STEM -0.107∗∗ -0.084∗∗∗ -0.030 -0.081∗ -0.060∗ -0.011
(0.048) (0.032) (0.040) (0.045) (0.036) (0.040)

STEM-County FE Yes Yes Yes Yes Yes Yes
STEM-Year FE Yes Yes Yes Yes Yes Yes
County-Year FE Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Sample All All All Skilled Skilled Skilled
Number of Counties 1217 1217 1217 1217 1217 1217
Observations 15096725 15096725 15096725 2275587 2275587 2275587
R2 0.009 0.006 0.008 0.024 0.022 0.022
Std. Beta Coef. -0.012 -0.011 -0.004 -0.023 -0.020 -0.004

Notes: This table displays the impact of exposure to the pandemic on STEM and non-STEM individuals’
religiosity. The unit of observation is a child, born between 1900 and 1930. Religiosity is defined as the
religiosity score associated with the child’s name. “Post” is a categorical variable equal to zero for
children born before the pandemic—i.e., before 1918—or one for those born after the pandemic—i.e.,
after 1918. The baseline treatment “Excess Deaths” is defined in Equation (3.4). “STEM” is an indicator
variable returning a value of one if one parent of the child is employed in a STEM profession, or zero
otherwise. The table displays the coefficient of the interaction between these terms. This estimates the
causal effect of the influenza shock on the religiosity of heads of households employed in STEM
occupations vis-à-vis non-STEM occupations, leveraging variation in county-level exposure to the
influenza. All models include STEM-by-county, STEM-by-cohort, and county-by-cohort fixed effects. In
columns (1)–(3), the estimation sample includes all individuals; in columns (4)–(6) we include only
those employed in skilled occupations, which we enumerate in table B.1. Standard errors are clustered
at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Figures

Figure 3.1: Estimated Names Religiosity Scores

Edith
Emma

George
Harold
Martha

Elizabeth
Henry

Joseph
Louise
Hazel
Ruth
Roy

Howard
Edna
Harry

Gladys
Mary
Viola

Mildred
Annie

William
Arthur
James
Anna

Robert
Thomas

Mabel
Clarence

Earl
Rose
John

Lillian
Edward

Frank
Carl

Florence
Charles

Irene
Francis

Ethel
Dorothy
Virginia
Richard

Ernest
Margaret

Willie
Albert
Clara
Alice

Walter
Grace
Helen

Katherine
Evelyn

Paul
Raymond

Ralph
Esther

Donald
Sarah
Louis

Fi
rs

t N
am

e

-2 -1 0 1 2

Religiosity Score
Notes: This figure displays the religiosity scores estimated from model (3.2). Regressions are based on
data from the 1906–1916 Censuses of Religious Bodies; they include individuals born between 1896 and
1916. We estimate religiosity scores for names appearing in at least 0.3% of the overall sample. We
conflate variations of a single name together—e.g., Anne and Anna—but keep endearments
separate—e.g., Anna and Annie. Coefficients are reported in increasing order. In Figure B.1, we report
religiosity scores split by confessions.
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Figure 3.2: Spatial Distribution of Excess Mortality During the Great Influenza Pandemic

Notes: This figure displays geographic variation in influenza excess deaths, defined in Equation (3.4).
Excess mortality is the ratio between the average number of deaths during the pandemic (1918–1919)
and the average number of deaths in the three years before the pandemic (1915–1917). Mortality
statistics prior to 1915 are not available. Excess mortality is displayed in percentage terms. Lighter to
darker blue indicates increasing exposure to the influenza. Counties are displayed at their 1920
borders.

293



Figure 3.3: Impact of the Influenza on Religiosity
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Notes: This figure displays the dynamic treatment effects of the pandemic on overall religiosity. The
unit of observation is a county, observed at a biennial frequency. Each dot reports the coefficient of an
interaction between the baseline measure of excess deaths, defined in Equation (3.4), and a biennial
time dummy. The coefficient for the biennial 1916–1917, i.e., the last two-year window prior to the
inception of the Great Influenza Pandemic, serves as the baseline. The model includes county and year
fixed effects and the interaction between population in 1900 and a post-treatment indicator. Bands
report 90% and 95% confidence intervals. Standard errors are clustered at the county level. The dashed
vertical line indicates the timing of the pandemic.
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Figure 3.4: Impact of the Influenza on Innovation
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Notes. The Figure reports dynamic treatment effects of the pandemic on innovation. The dependent
variable is the (log 1+) total number of patents filed in a given year. The unit of observation is a county,
observed at a biennial frequency. Each dot reports the coefficient of an interaction between the
baseline measure of excess deaths and a biennial time dummy. The coefficient for the biennial
1916–1917, i.e., the last two-year window prior to the inception of the Great Influenza Pandemic, serves
as the baseline. The model includes county and year fixed effects and the interaction between
population in 1900 and a post-treatment indicator. Bands report 90% and 95% confidence intervals.
Standard errors are clustered at the county level. The dashed vertical line indicates the timing of the
pandemic.
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Figure 3.5: Impact of the Influenza on the Polarization of Religious Beliefs
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Notes: This figure reports the estimated impact of the pandemic on the polarization of religious beliefs
by religious denomination. Each dot reports the coefficient of an interaction between the baseline
measure of excess deaths, a posttreatment indicator, and an indicator for the quintile of background
religiosity. The unit of observation is a child, born between 1900 and 1930. Treated children are those
born after the influenza, i.e., after 1918. The dependent variable is the religiosity score associated with
the child’s name. Background religiosity is measured as the religiosity score of the child’s head of
household. Results are reported by confession, and the third quintile serves as the baseline. Regression
models include fixed effects for county by cohort, county by quintile of religious background, and
cohort by quintile of religious background. Standard errors are clustered at the county level, and the
bands report the 95% confidence interval for each coefficient.
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Appendix

3.A Data: Description and Sources

In this section, we list the sources of the data and describe how we construct the variables used

in the analysis.

3.A.1 Patents

3.A.1.1 Patent Data

Patent data are from Berkes (2018), who performed optical character recognition (OCR) on orig-

inal patent documents issued by the United States Patents and Trademark Office between 1836

and 2010. Information includes the filing and issue year, author name, latitude and longitude

of the inventor(s), and inferred USPC technology class. The data contain a set of additional vari-

ables, including the complete text of the patent document and the issue year of the patent, not

used in our analysis. We geo-code each patent to its 1920 county using boundary shapefiles

supplied by NHGIS. When we collapse by county year, we weigh each patent by the inverse of

the number of technology classes, as well as by the inverse of the number of authors. Hence, a

patent with two authors and two technological classes appears four times in the original patent-

level dataset, and each instance is assigned a .25 weight when aggregating at the county level.

We code USPC classes to the NBER classification (Hall et al., 2001). We modify the canonical

NBER classification and conflate the “Chemical” and “Drugs” categories into a single “Pharma-

ceuticals” class. Since multiple USPC codes are typically assigned to a single patent, most patents

that would fall under “Drugs” would also appear as “Chemical.” To avoid this, we simply recast

them into one single category. It is worth noting that all the results that we present in terms of

pharmaceutical patents also hold if we keep the “Chemical” and “Drugs” classes separate.

3.A.1.2 Quality Data

We measure patent quality using the measure developed by Kelly et al. (2021). From their data,

we derive two metrics. One is the average quality. The second, which we label “Breakthrough”,

is an indicator variable returning value one if the patent’s quality is in the top 25% of the overall

quality distribution, and zero otherwise. Both measures are net of grant-year fixed effects. We
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take forward and backward similarity within a 5-year window around the issue year of the

patent.

3.A.1.3 Linked Inventor-Census Data

Patent data alone do not allow to uniquely identify an inventor. Because in Table B.15 we need

to measure inventor productivity as well as the number of unique inventors, we exploit a novel

sample of inventors linked to the census by Bazzi et al. (2022). This allows us to assign a unique

identifier to each inventor in our sample, and compute the related statistics. We defer the in-

terested reader to the accompanying paper describing the data in more detail. An inventor can

be matched to multiple census entries. In this paper, we disregard all inventors with more than

five matches (about 5% of the overall stock). Then, we weigh the remaining by the inverse of

the number of matches, as is standard in the census-linking literature.

3.A.2 Names

We take name data from the individual full-count US 1930 population census (Ruggles et al.,

2021). First names require some cleaning. First, we remove non-ASCII characters and drop all

those reporting the initial only. Then, we manually identify common diminutives (e.g., “Thos”

for “Thomas”). Finally, we agglutinate variations and minor spelling mistakes on the same

underlying name. To do so, we code a simple script that collects a set of reference names as

those appearing more than 50 times in the entire population census. We then compute the

Jaro-Winkler similarity between each name and the reference names, and normalize it to lie

between 0 and 1. If, for a given name, there is one reference name with a similarity above .99

we conflate that name to the reference. Otherwise, we just keep the name as is. This simple

procedure is not intended to agglutinate either translations (e.g., “Tommaso” and “Thomas) or

endearments (e.g., “Willie” and “William”). We thus take a conservative stand as to whether

the same name in different languages–or its endearments–may convey different religious atti-

tudes. It is merely an algorithmic approach to correct minor spelling mistakes. Overall, after

the manual trimming we are left with 1,366,844 single names, which decrease to 623,792 af-

ter the algorithmic trimming procedure. However, weighting these figures by the number of

children reveals that less than 20,000 names account for more than 95% of the total number of

newborns.

3.A.3 Religious Affiliations

Data on religious affiliations are supplied by NHGIS, and are originally from the Census of Reli-

gious Bodies which took place at decade frequency between 1906 and 1936. We discard the 1936
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census because previous research shows that the uptake was low and unequal across counties

(Stark, 1992). Census enumerators asked churches, congregations, and other local organiza-

tions to provide a list of their members. The data was then aggregated at the county level. In

our analysis, “Total Religiosity” is computed as the simple sum of religious members across all

possible denominations; “Catholics” are enumerated as such. We collectively refer as “Protes-

tants” to a set of denominations which we manually mapped to some branch of Protestantism

(including, e.g., the Methodist, Evangelical, and–various–Baptist churches.)

3.A.4 Occupational Structure

Individual-level data on occupations is extracted from the 1930 individual-level population cen-

sus. More precisely, we use the 1950 harmonized occupation classification. We then manually

map occupational codes to STEM occupations as described in Table B.1.

3.A.5 Controls & Mortality Statistics

We extract a battery of individual-level characteristics from the IPUMS full count data. Among

those, we use the the race and urban-rural status as additional individual-level controls.

County-level covariates are provided by NHGIS, which in turn aggregates individual-level

data from population censuses, and reports data from manufacturing and agricultural cen-

suses. All data come at historical county borders.

Mortality statistics are likewise provided by NHGIS. For the period we are interested in,

namely, 1915-1919, they were collected for about 1,200 counties, covering approximately 60% of

the US population. We measure Influenza-related mortality as the ratio between deaths during

the pandemic, and deaths in the three years which preceded the Influenza.54

3.A.6 Canadian Data

Following Abramitzky et al. (2020) we use the Canadian Census to construct an alternative mea-

sure of religiosity. This has the advantage of reporting information on individuals’ religious af-

filiations as well as their first names. We use three waves of the census: 1881 (full count), 1911,

and 1921, and construct religiosity scores by first name for the cohorts born between 1800 and

1916. Using the same procedure outlined in Fouka (2020), we construct the following metric:

54The original documents report, for major cities, deaths broken down by (alleged) cause. We do not use this
data for two main reasons. First, they are incomplete and are only available for cities. Second, Beach et al. (2020)
criticize the methodology adopted to impute the cause of deaths.
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Religiosity scorename,𝑟,𝑐 =
Pr

(
name | 𝐼𝑟,𝑐

)
Pr

(
name | 𝐼𝑟,𝑐

)
+ Pr

(
name | 𝐼𝑅\𝑟,𝑐

) × 100 (3.13)

where (name) is first name, r is religion, c is birth cohort, and I is an indicator for individuals

of a given religion and birth cohort. 𝐼𝑅\𝑟,𝑐 indicates individuals of religion other than r. The

score ranges from 0 to 100: a score of 0 implies a name is never found among individuals of

religion r; a score of 100 implies a name is never found among individuals of a different religion.

We define two religious groups in the Canadian Census: Catholics and Protestants.55 First, we

compute the scores in equation 3.13 for each religion and birth cohort. Second, we average the

score within-decade (where one decade corresponds to ten birth cohorts), for each religion and

name. Finally, we generate a Catholic dummy and a Protestant dummy. Each dummy takes the

value 1 if the corresponding religiosity score is larger than its 80, and zero otherwise.

3.A.7 Other Data

In several robustness regressions, we control for WW1 mortality. The underlying data were

collected by Ferrara and Fishback (2020).

3.A.8 Boundary Harmonization

County-level data from NHGIS and other sources are typically provided at historical borders. To

ensure comparability and consistency, we adopt the method developed by Eckert et al. (2020) to

compute geographical crosswalks between US counties over time. In a nutshell, their method-

ology is as follows. Suppose that we know the distribution of a given variable 𝑦 across counties

at decade frequency between 1900 and 1930. To harmonize borders to one single year, Eckert

et al. (2020) overlay the shapefile of counties in a given year, say, 1900, to that in the reference

year, say, 1920. They then compute the percentage of land that a given county shares with itself

between the two years, and that which is assigned to other counties. To construct the harmo-

nized variable, one simply multiplies these overlapping area weights by the variable recorded

in 1900, and aggregates up by 1920-counties. The underlying assumption is that 𝑦 is evenly

distributed over the county territory. While this may seem untenable in most cases, departures

from this assumption are plausibly innocuous in our setting. County borders had in fact un-

dergone major consolidations before 1900 and remained stable thereafter. Moreover, mortality

55We only define two groups as, over this period, less than 1% of individuals reported a religious affiliation other
than Catholic or Protestant.
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data are mostly available for the Northwest and Midwest areas. Boundary changes in these re-

gions were rare and minor after the 1890s. In our application, we map all county-level variables

to 1920-borders.

3.A.9 Details on Sample Construction

In this paragraph, we provide additional technical details on the way we construct the esti-

mation samples. The main sample restriction that we impose descends from the fact that we

observe mortality for 1265 out of 2917 counties. We then discard 45 counties with implausibly

large (above 200%) or low (below 50%) values of excess mortality during the pandemic. Be-

cause such figures are due to scarcely-inhabited areas, these 45 counties account for less than

1% of the population in the 1265-counties sample. We are left with a set of 1220 counties. In the

rest of the paragraph, we explain why we may not always be able to leverage all 1220 for the

estimation.

3.A.9.1 County-Level Religiosity

The county-level religiosity estimation sample is a balanced panel dataset where each county

is observed at a yearly frequency between 1900 and 1929. This implies that the number of

counties in this balanced panel may not be 1220 as long as at least one county is not observed

at least once between 1900 and 1929. This happens because, especially in scarcely-inhabited

areas, the name-frequency threshold that we impose may imply that we are not able to match

any newborn in a given cohort. If that is the case, the county’s religiosity will not be observed

every year of the sample, and the county will subsequently be dropped from the estimation

sample. This is the case for 19 out of 1220 counties, so the estimation sample, in this case,

consists of 1201 counties accounting for 98.5% of the population in the 1220-counties sample.

In one robustness check shown in column (7) of Table B.3 counties are observed at decade

frequency instead. In this case, the sample is constructed from adults observed once per census

decade between 1900 and 1930, and the post-treatment indicator returns value one for decades

1920 and 1930, and zero otherwise. In table B.4 we employ an alternative measure of religiosity

from the 1906 Census of Religious Bodies that does not include fixed effects in the estimation

equation of the names religiosity scores. This measure is considerably more volatile than the

baseline, so we exclude the top and bottom 5% most extreme observations in the associated

synthetic religiosity distribution.
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3.A.9.2 County-Level Innovation

The county-level innovation sample is a balanced panel dataset where each county is observed

at a yearly frequency between 1900 and 1929. Thus, an observation in the dataset can either

be a number above zero (if there are one or more patents observed in that county-year) or

zero (if no patents are observed). The estimation sample in this case thus encompasses all 1220

counties for which we observe mortality. In columns (2) and (7) of Table B.11 we do not fill the

panel with zeros when no patents are observed. This results in an unbalanced panel dataset

where a county may not be observed every year over the estimation time period.

3.A.9.3 Other County-Level Samples

In Table B.6 we use as dependent variables various measure of name concentration. Because

these measures display sizable variability, we restrict the sample to exclude counties at the top

and bottom 1% of the excess deaths distribution. Results would remain qualitatively unchanged

using the full sample, but they would conflate pre-treatment statistically significant–selection–

effects that would induce a spurious downward bias in the estimated treatment effects.

3.A.9.4 Individual-Level

We construct two individual-level datasets. In both samples, the unit of observation is the head

of the household. In the first, each head of household is observed once. Regressions (3.7) and

(3.10) are estimated on this “adult” sample. In the second sample we observe the kids of each

head of household. We interpret the kids as realizations of the religiosity of their parent. Re-

gressions (3.9), (3.11), and (3.12) are estimated on this “kid” sample.

3.A.9.5 City-Level

To build the city-level sample, we construct the baseline excess deaths treatment variable from

data by Clay et al. (2019). The dataset contains mortality information on 976 cities. For 444,

however, we observe the number of deaths in one year only, and we do not observe 48 other

cities continuously between 1915 and 1919. Moreover, we do not observe population data in

1900 for 41 additional cities. The final sample consists of 443 cities. In Figure B.7 we report the

location of each city and the number of cities included in the sample, by state. We geo-code

patents to historical city borders and construct the name-based religiosity measure from the

individuals that were recorded living in each city in the 1930 census. The city-level sample is

used in the regressions displayed in Table B.7.
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3.B Additional Tables and Figures

3.B.1 Tables

Table B.1: STEM Professions

Occ. Code Occupation Label Share (%) Occ. Code Occupation Label Share (%)

(1) (2) (3) (4) (5) (6)

Panel A. STEM Occupations

12 Agricultural sciences 0.00 18 Mathematics 0.00
61 Agricultural scientists 0.03 19 Medical sciences 0.03
13 Biological sciences 0.00 772 Midwives 0.42
62 Biological scientists 0.32 69 Miscellaneous natural scientists 0.08
14 Chemistry 0.04 26 Natural science (n.e.c.) 0.00
7 Chemists 6.07 92 Surveyors 1.05

32 Dentists 12.39 67 Mathematicians 0.01
34 Dietitians and nutritionists 0.64 240 Officers, pilots, pursers and engineers, ship 8.06
16 Engineering 0.01 94 Technicians, medical and dental 1.49
49 Engineers (n.e.c.) 0.88 70 Optometrists 1.33
41 Engineers, aeronautical 0.05 71 Osteopaths 0.73
42 Engineers, chemical 0.61 25 Statistics 0.00
43 Engineers, civil 13.31 75 Physicians and surgeons 30.98
44 Engineers, electrical 9.32 68 Physicists 0.04
45 Engineers, industrial 0.34 23 Physics 0.00
46 Engineers, mechanical 7.13 17 Geology and geophysics 0.00
47 Engineers, metallurgical, metallurgists 0.31 98 Veterinarians 1.77
48 Engineers, mining 1.11 83 Statisticians and actuaries 1.07
63 Geologists and geophysicists 0.33 61 Agricultural Scientists 0.07

Panel B. Other Skilled Occupations

1 ≤ · ≤ 99 Liberal and Skilled Professions 200 ≤ · ≤ 299 Managers
700 ≤ · ≤ 790 Service Workers

Notes: Panel A displays the occupations which we classify as Science, Technology, Engineering, and
Mathematics (STEM). Panel B displays the occupations that we classify as skilled: these include all
STEM occupations, in addition to the ones listed. Occupation codes and labels are from the IPUMS
harmonized 1950 occupation taxonomy. Column “Share” indicates the percentage share of individuals
in the given occupation, relative to total employment in STEM occupations in the baseline
individual-level sample. STEM occupations account for about 6% of total skilled employment, which in
turn accounts for approximately 14% of total employment.

309



Table B.2: Balance Checks Regressions

(1) (2) (3)
Coefficient Standard Error 95% C. I.

Panel A. Income and Demographics
Population Density −0.098 (0.221) [−0.531, 0.336]
Income per Capita 0.332 (0.407) [−0.466, 1.131]
Share of Men 0.520∗∗∗ (0.163) [0.200, 0.840]
Share of Illiterates 0.339 (0.362) [−0.369, 1.048]
Share of Young 0.366 (0.311) [−0.244, 0.976]
Panel B. Ethnic Composition
Share of Whites 0.255 (0.246) [−0.228, 0.738]
Share of African Americans −0.308 (0.235) [−0.769, 0.153]
Share of Foreign Population 0.444∗∗∗ (0.159) [0.131, 0.757]
Immigrants from:

Italy 0.287 (0.282) [−0.265, 0.840]
Ireland 0.088 (0.126) [−0.159, 0.336]
Austria 0.172 (0.356) [−0.527, 0.870]
France 0.244 (0.188) [−0.123, 0.612]
Spain 0.419 (0.365) [−0.295, 1.134]
Portugal 0.000 (0.291) [−0.569, 0.570]

Panel C. Religion
All Denominations −0.126 (0.246) [−0.609, 0.356]
Catholics 0.175 (0.226) [−0.269, 0.619]
Protestants −0.263 (0.288) [−0.827, 0.302]
Panel D. Patents
Total 0.169 (0.103) [−0.032, 0.370]
Pharmaceutical 0.132 (0.097) [−0.058, 0.321]
Communication 0.100 (0.101) [−0.097, 0.297]
Electrical 0.226 (0.172) [−0.110, 0.562]
Mechanical 0.186∗ (0.096) [−0.003, 0.375]
Other 0.147 (0.091) [−0.031, 0.324]

Notes: This table displays the correlation between the Excess Death (defined in (3.4)) and a set of
covariates in 1910, i.e., the last census year before the pandemic. Column (1) reports the standardized
coefficient of a regression between the row variable and our measure of excess deaths; column (2)
reports the associated standard error in round brackets; column (3) reports the confidence interval of
the point estimate at the 95% confidence level in square brackets. All variables are expressed as shares
of total population, except for population density. Regressions control for county population and
include state fixed effects.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.3: Impact of the Influenza on Religiosity: Robustness Analysis

Baseline Sample Family Size Cuts Household Adults

(1) (2) (3) (4) (5) (6) (7)
Cont. Treat. Disc. Treat. WW1 No firstborn < 5 Kids

Excess Deaths × Post 0.007∗∗ 0.007∗∗ 0.006∗ 0.007∗∗ 0.003∗∗ 0.014
(0.003) (0.003) (0.003) (0.004) (0.001) (0.012)

Excess Deaths Dummy × Post 0.003∗∗
(0.001)

WW1 Deaths × Post 0.000
(0.000)

County FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Sample Baseline Baseline Baseline No Firstborn < 5 Kids Household Adults
Number of Counties 1201 1201 1201 1200 1200 1201 1201
Observations 36030 36030 36030 36000 36000 36030 4804
R2 0.450 0.450 0.450 0.366 0.370 0.364 0.860
Std. Beta Coef. 0.109 0.021 0.110 0.086 0.099 0.101 0.081

Notes: This table displays the impact of exposure to the Influenza on overall religiosity. The unit of
observation is a county, observed at a yearly frequency between 1900 and 1929 in columns (1)-(6), and
at a decade frequency in column (7). “Post” is a categorical variable equal to one during and after the
pandemic–i.e. over the years 1918-1929 in columns (1)-(6) and the decades 1920-1930 in column (7)–and
zero otherwise. The baseline treatment “Excess Deaths” is defined in equation (3.4). The dependent
variable is the name-based measure of aggregate religiosity described in the main text. Column (1)
displays the baseline results. Column (2) reports the results coding the treatment as a binary variable
returning value one if the continuous treatment is above its median, and zero otherwise. In column (3)
we control for WW1-related deaths. Column (4) drops first-born children in every household. In
column (5) we compute religiosity dropping all children beyond the fourth in each household. In
column (6) we first compute within-household average religiosity and then aggregate the resulting
religiosity series at the county-year level. Column (7) reports results measuring county religiosity using
the names stock of adults–which serves as a placebo check. All regressions in columns (1)-(6) include
county and year fixed effects; the regression in column (7) includes county and decade fixed effects.
Additionally, each regression includes the interaction between population in 1900 and a post-treatment
indicator. Standard errors are clustered at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.4: Impact of the Influenza on Religiosity: Names Scores without Fixed Effects

Unweighted Weighted

(1) (2) (3) (4) (5) (6)
All Catholics Protestants All Catholics Protestants

Excess Deaths × Post 0.037∗∗ 0.029∗ 0.014 0.100∗∗∗ 0.089∗∗∗ 0.021
(0.018) (0.016) (0.011) (0.034) (0.030) (0.025)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Counties 1201 1201 1201 1201 1201 1201
Observations 29612 29612 29612 29612 29612 29612
R2 0.387 0.540 0.282 0.636 0.804 0.557
Std. Beta Coef. 0.130 0.098 0.082 0.392 0.288 0.128

Notes: This table displays the impact of exposure to the Influenza on religiosity. The unit of observation
is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical variable equal
to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise. The baseline
treatment “Excess Deaths” is defined in equation (3.4). Religiosity is measured using religiosity scores
obtained by estimating equation (3.2), except that we do not include the fixed effects in the regression
specification. In columns (4)–(6) counties are weighted by their population in 1900. Columns (1) and (4)
report the results for total religiosity; columns (2) and (5) refer to Catholics; columns (3) and (6) refer to
Protestants. Regressions include county and year fixed effects and the interaction between population
in 1900 and a post-treatment indicator. Standard errors are clustered at the county level and are
reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.5: Impact of the Influenza on Religiosity: Alternative Thresholds

All Catholics Protestants

(𝜏 = 2) (𝜏 = 3) (𝜏 = 5) (𝜏 = 2) (𝜏 = 3) (𝜏 = 5) (𝜏 = 2) (𝜏 = 3) (𝜏 = 5)

Excess Deaths × Post 0.012 0.007∗∗ 0.004∗∗ 0.007∗ 0.009∗∗∗ 0.004∗ 0.003 0.006∗∗ 0.004
(0.008) (0.003) (0.002) (0.003) (0.003) (0.002) (0.004) (0.003) (0.002)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Number of Counties 1201 1201 1200 1201 1201 1200 1201 1201 1200
Observations 36030 36030 36000 36030 36030 36000 36030 36030 36000
R2 0.378 0.450 0.356 0.248 0.306 0.483 0.353 0.471 0.416
Std. Beta Coef. 0.115 0.109 0.097 0.117 0.184 0.093 0.047 0.100 0.091

Notes: This table displays the impact of exposure to the Influenza on religiosity. The unit of observation
is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical variable equal
to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise. The baseline
treatment “Excess Deaths” is defined in equation (3.4). Religiosity is measured using religiosity scores
obtained estimating equation (3.2). The term 𝜏 denotes the frequency threshold a name must exceed to
be included in our sample, in ‰ terms. For instance, 𝜏 = 2 implies that at least 2‰ children in our
sample must be called with a given name, for that name to be included in the sub-sample of names
used to compute the religiosity score. We report the baseline results, with 𝜏 = 3, as well as those with
lower and larger thresholds. As 𝜏 decreases, the number of names for which we compute a religiosity
score increases. Regressions include county and year fixed effects and the interaction between
population in 1900 and a post-treatment indicator. Standard errors are clustered at the county level
and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.6: Impact of the Influenza on the Concentration of Names

HHI CCI Rosenbluth C-5 C-7 C-9 C-10

(1) (2) (3) (4) (5) (6) (7)

Excess Deaths × Post -0.090 -0.005∗∗ -0.115∗ -0.007 -0.007 -0.007 -0.008
(0.065) (0.002) (0.059) (0.004) (0.005) (0.006) (0.006)

County FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Number of Counties 1150 1150 1150 1150 1150 1150 1150
Observations 34490 34490 34490 34490 34490 34490 34490
R2 0.853 0.779 0.875 0.779 0.807 0.824 0.830
Std. Beta Coef. -0.092 -0.162 -0.109 -0.109 -0.094 -0.085 -0.085

Notes: This table displays the impact of exposure to the Influenza on name concentration. The unit of
observation is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical
variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise.
The baseline treatment “Excess Deaths” is defined in equation (3.4). The dependent variables measure
the concentration of names, and are: in column (1) the Herfindahl-Hirschman (HHI) index; in column
(2) the Comprehensive Concentration index (CCI), which relative to the HHI assigns more weight to
relatively uncommon names; in column (3) the Rosenbluth index (RI), which further refines the CCI
because it is more sensitive to the number of uncommon names. In columns (4)–(7) the dependent
variable is the 𝑘-concentration ratio, i.e. the share of children called with the 𝑘 most common names.
More formally, let 𝑠𝑛 denote the share of kids with name 𝑛, and let 𝑁 be the total number of names.
Suppose that shares are ranked in increasing order, meaning that rank(𝑛) ≤ rank(𝑛′) if and only if
𝑠𝑛 ≥ 𝑠𝑛′ , and rank(𝑛) < rank(𝑛′) if and only if 𝑠𝑛 > 𝑠𝑛′ for all 𝑛, 𝑛′. Then, 𝐻𝐻𝐼 ≡ ∑𝑁

𝑛=1 𝑠
2
𝑛;

𝐶𝐶𝐼 ≡ 𝑠1 +
∑𝑁
𝑛=2 𝑠

2
𝑛(2 − 𝑠𝑛), 𝑅𝐼 ≡ 1

2
∑𝑁
𝑛=1 𝑛𝑠𝑛−1

; 𝐶𝐾 ≡ ∑𝐾
𝑛=1 𝑠𝑛. Regressions include county and state-by-year

fixed effects and the interaction between population in 1900 and a post-treatment indicator. Standard
errors are clustered at the county level, and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.7: Impact of the Influenza on Religiosity and Innovation: City-Level Analysis

Religiosity Innovation

(1) (2) (3) (4) (5)
All Catholics Protestants All Pharmaceutical

Excess Deaths × Post 0.007∗∗∗ 0.006∗∗∗ 0.003 0.152∗ 0.159∗∗
(0.002) (0.002) (0.002) (0.086) (0.077)

City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of Cities 443 443 443 478 478
Observations 13290 13290 13290 14340 14340
R2 0.456 0.375 0.533 0.865 0.782
Std. Beta Coef. 0.125 0.131 0.048 0.062 0.081

Notes: This table displays the city-level effect of exposure to the Influenza on religiosity and innovation.
The unit of observation is a city, observed at a yearly frequency between 1900 and 1929. We report the
location of each city in the sample in figure B.7. The baseline sample is from Clay et al. (2019). We
include only cities for which we can construct the baseline excess mortality measure. In columns (1–3),
the dependent variable is the name-based religiosity measure constructed on the universe of children
born between 1900 and 1929 and residing in each city in the 1930 census; in columns (4–5), the
dependent variable is the number of patents and pharmaceutical patents, respectively. “Post” is a
categorical variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero
otherwise. The baseline treatment “Excess Deaths” is defined in equation (3.4). Each regression
includes city and year fixed effects. Standard errors, clustered at the city level, are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.8: Impact of the Influenza on Canadian and Saint-Biblical Religiosity Scores

Canada Scores Biblical and Saints Scores

(1) (2) (3) (4) (5)
Catholics Protestants Biblical/Saints Saints Biblical

Excess Deaths × Post 0.013∗∗ 0.006 0.055∗∗∗ 0.051∗∗∗ 0.013∗∗∗
(0.005) (0.020) (0.009) (0.008) (0.003)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Number of Counties 1200 1200 1200 1200 1200
Observations 36000 36000 36000 36000 36000
R2 0.327 0.491 0.959 0.958 0.958
Std. Beta Coef. 0.173 0.016 0.151 0.147 0.095

Notes: This table displays the impact of exposure to the Influenza on religiosity. The unit of observation
is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical variable equal
to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise. The baseline
treatment “Excess Deaths” is defined in equation (3.4). In columns (1)-(3), religiosity is measured using
religiosity scores obtained as described in section 3.B from the Canadian census. In column (3), the
dependent variable is the share of children by cohort whose name either appears in the bible, or is
carried by a saint; in column (4), the dependent variable only includes biblical names; in column (5), it
only includes names of saints. Biblical and saints names are from Abramitzky et al. (2016). Regressions
include county and year fixed effects and the interaction between population in 1900 and a
post-treatment indicator. Standard errors are clustered at the county level and are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.9: Impact of the Influenza on Religiosity: Weighted Regressions

Share of Affiliated Name-Based Religiosity

(1) (2) (3) (4) (5) (6)
All Catholics Protestants All Catholics Protestants

Excess Deaths × Post 0.493∗∗ 0.212∗∗∗ 0.242∗∗∗ 0.009∗∗ 0.009∗∗ 0.004
(0.218) (0.073) (0.047) (0.004) (0.004) (0.005)

County FE Yes Yes Yes Yes Yes Yes
Decade FE Yes Yes Yes – – –
Year FE – – – Yes Yes Yes
Number of Counties 1219 1219 1219 1201 1201 1201
Observations 3657 3657 3657 36030 36030 36030
R2 0.713 0.847 0.779 0.606 0.498 0.640
Std. Beta Coef. 0.198 0.247 0.197 0.191 0.242 0.084

Notes: This table displays the impact of exposure to the Great Influenza Pandemic on religiosity. The
unit of observation is a county, observed at a decade frequency between 1906 and 1926 (in columns
1–3) and yearly frequency between 1900 and 1929 (in columns 4–6). “Post” is a categorical variable
equal to one during and after the pandemic—i.e., over the years 1918 to 1929—or zero otherwise. The
baseline treatment “Excess Deaths” is defined in Equation (3.4). In columns (1–3), the dependent
variable is the number of individuals affiliated with religious denominations enumerated in the Census
of Religious Bodies, normalized by county population in 1900; in columns (4–6), the dependent variable
is the name-based religiosity measure described in the main text. Columns (1) and (4) report the effect
of the influenza on overall religiosity, whereas columns (2) and (5)—resp. (3) and (6)—display it on the
intensity of Catholicism—resp. Protestantism. Regressions include county and time (decades in
columns 1–3 and years in columns 4–6) fixed effects and the interaction between population in 1900
and a post-treatment indicator. Counties are weighted by population in 1900. Standard errors,
clustered at the county level, are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.10: Influenza and Innovation: Weighted Regressions

Dep. Var.: log(1 + Number of Patents)

(1) (2) (3) (4) (5) (6)
All Patents Pharmaceuticals Communication Electrical Mechanical Other

Excess Deaths × Post 0.695∗∗∗ 0.265∗∗∗ -0.068 0.050 -0.009 -0.014
(0.166) (0.094) (0.198) (0.106) (0.059) (0.055)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
All Patents No Yes Yes Yes Yes Yes
Number of Counties 1220 1220 1220 1220 1220 1220
Observations 37820 37820 37820 37820 37820 37820
R2 0.950 0.950 0.868 0.939 0.979 0.983
Std. Beta Coef. 0.193 0.098 -0.036 0.019 -0.003 -0.004

Notes: This table displays the impact of exposure to the Great Influenza Pandemic on the level and
direction of innovation. The unit of observation is a county, observed at a yearly frequency between
1900 and 1929. “Post” is a categorical variable equal to one during and after the pandemic—i.e., over
the years 1918 to 1929—or zero otherwise. The baseline treatment “Excess Deaths” is defined in
Equation (3.4). In column (1), the dependent variable is the (log) total number of patents granted. In the
other columns, the dependent variable is the (log) number of patents granted in each column field,
controlling for the overall (log) number of patents. In all models, we take ln(1 + Patents) as the
dependent variable to ensure that we do not drop counties without patents. Column (1) estimates the
impact of the pandemic on the level of innovation, while columns (2)–(6) display this on the direction of
innovation because we control for the total number of patents. Regressions include county and year
fixed effects and the interaction between population in 1900 and a post-treatment indicator. Standard
errors, clustered at the county level, are reported in parentheses. Counties are weighted by population
in 1900.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.11: Influenza and Innovation: Robustness Regressions

All Patents Pharmaceutical Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Baseline Unbalanced Disc. Treat WW1 Deaths Baseline No All Patents Unbalanced Dummy WW1 Deaths

Excess Deaths × Post 0.503∗∗∗ 0.474∗∗∗ 0.503∗∗∗ 0.091∗∗∗ 0.276∗∗∗ 0.134∗∗∗ 0.091∗∗∗
(0.064) (0.087) (0.064) (0.033) (0.047) (0.051) (0.033)

Excess Deaths Dummy × Post 0.118∗∗∗ 0.032∗∗∗
(0.020) (0.010)

WW1 Deaths × Post 3.739 3.574
(17.019) (3.057)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
All Patents No No No No Yes No Yes Yes Yes
Number of Counties 1220 1184 1220 1220 1220 1220 1184 1220 1220
Observations 37820 23909 37820 37820 37820 37820 23909 37820 37820
R2 0.832 0.861 0.832 0.832 0.836 0.786 0.824 0.836 0.836
Std. Beta Coef. 0.211 0.223 0.036 0.211 0.066 0.201 0.085 0.017 0.066

Notes: This table displays the impact of exposure to the Influenza on innovation. The unit of
observation is a county, observed at yearly frequency between 1900 and 1929. In columns (1)–(4) the
dependent variable is the number of patents across all fields; in columns (5)–(9) it is the number of
patents in chemical and drugs fields, according to the NBER standard classification. “Post” is a
categorical variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero
otherwise. The baseline treatment “Excess Deaths” is defined in equation (3.4). Columns (1) and (5)
display the baseline results. Columns (2) and (7) report results for the unbalanced panel of counties
(i.e., the subsample of county-year observations for which we observe at least one filed patent).
Columns (3) and (8) report the results when the treatment is coded as a binary variable equal to one if
the continuous variable is above its median, and zero otherwise. Columns (4) and (9) further control
for WW1 deaths interacted with the post-treatment indicator. In column (6) we report the estimated
effect without controlling for the total number of patents. All regressions include county and year fixed
effects and the interaction between population in 1900 and a post-treatment indicator. Columns (5,7-9)
further control for the total number of patents. Standard errors are clustered at the county level and
are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.12: Influenza and Innovation: Alternative Measures of Overall Innovation

𝑓 (All Patents)
(1) (2) (3)

𝑙𝑛(1 + ·) Count arcsinh(·)
Excess Deaths × Post 0.503∗∗∗ 6.787∗∗ 0.617∗∗∗

(0.064) (3.343) (0.078)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Number of Counties 1220 1220 1220
Observations 37820 37820 37820
R2 0.832 0.908 0.810
Std. Beta Coef. 0.211 0.069 0.220

Notes: This table displays the effect of the Influenza on overall innovation. The unit of observation is a
county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical variable equal to
one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise. In column (1), the
dependent variable is the log-number of patents, to which we add one to avoid dropping zeros. In
column (2) the dependent variable is the raw patent count. In column (3) the dependent variable is the
inverse hyperbolic sine of the raw count of patents. Each regression includes county and year fixed
effects and the interaction between population in 1900 and a post-treatment indicator. Standard errors
are clustered at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.13: Influenza and Innovation: Alternative Measures of Pharmaceutical Innovation

𝑓 (Pharmaceutical Patents)
(1) (2) (3) (4) (5) (6) (7) (8)

𝑙𝑛(1 + ·) 𝑙𝑛(1 + ·) Count Count arcsinh(·) arcsinh(·) Share 𝑙𝑛(1 + Share)
Excess Deaths × Post 0.091∗∗∗ 0.246∗∗∗ 0.793∗∗∗ 1.777∗∗∗ 0.117∗∗∗ 0.302∗∗∗ 0.110∗∗∗ 0.071∗∗∗

(0.033) (0.045) (0.228) (0.592) (0.042) (0.055) (0.031) (0.017)

County FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Total Patents Yes No Yes No Yes Yes No No
Number of Counties 1220 1220 1220 1220 1220 1220 1220 1220
Observations 37820 37820 37820 37820 37820 37820 37820 37820
R2 0.836 0.788 0.959 0.856 0.820 0.773 0.171 0.228
Std. Beta Coef. 0.224 0.179 0.059 0.132 0.177 0.178 0.190 0.191

Notes: This table displays the effect of the Influenza on innovation in pharmaceuticals. The unit of
observation is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical
variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise.
In columns (1) and (2), the dependent variable is the log-number of patents, to which we add one to
avoid dropping zeros. In columns (3) and (4), the dependent variable is the raw patent count. In
columns (5) and (6) the dependent variable is the inverse hyperbolic sine of the raw count of
pharmaceutical patents, with and without controlling for the inverse hyperbolic sine of the total
number of patents. In column (7) the outcome is the number of pharmaceutical patents, relative to
patents in all other fields. In column (8), this is taken in log. Each regression includes county and year
fixed effects and the interaction between population in 1900 and a post-treatment indicator. In columns
(1), (3), and (6) we further control by the total number of patents by county-year, transformed
according to the column-specific labeled function. Standard errors are clustered at the county level and
are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.14: Influenza and Innovation: Assignee Heterogeneity

Share of All Patents... Share of Pharma w.r.t. All Patents... Share of Pharma w.r.t. Pharma Patents...

(1) (2) (3) (4) (5) (6)
with Assignee w/out Assignee with Assignee w/out Assignee with Assignee w/out Assignee

Excess Deaths × Post -0.005 0.196∗∗∗ 0.000 0.032∗∗∗ 0.004 0.090∗∗∗
(0.008) (0.023) (0.002) (0.008) (0.003) (0.019)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of Counties 1220 1220 1220 1220 1220 1220
Observations 37820 37820 37820 37820 37820 37820
R2 0.094 0.596 0.051 0.197 0.067 0.627
Std. Beta Coef. -0.005 0.196 0.000 0.032 0.004 0.090

Notes: This table displays the impact of exposure to the Influenza on innovation, by assignee status of
each patent. The unit of observation is a county, observed at yearly frequency between 1900 and 1929.
“Post” is a categorical variable equal to one during and after the pandemic–i.e. over the years
1918-1929–and zero otherwise. The baseline treatment “Excess Deaths” is defined in equation (3.4). In
column (1) the dependent variable is the share of patents that list at least one assignee (approximately
60% of the sample); in column (2), the dependent variable is the share of patents that do not report an
assignee (approximately 40% of the sample). In columns (3–4), the dependent variables are computed
as the share of pharmaceutical patents with and without an assignee, relative to the total number of
granted patents. In columns (5–6), the share is computed relative to all pharmaceutical patents.
Regressions include county and year fixed effects and the interaction between population in 1900 and a
post-treatment indicator. Standard errors are clustered at the county level and are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.15: Influenza and Innovation: Intensive and Extensive Margins

Patents Per Inventor N. of Inventors

(1) (2) (3) (4) (5) (6)
All Pharma Pharma All Pharma Pharma

Excess Deaths × Post 0.164∗∗∗ 0.079∗∗∗ 0.038∗∗ 0.348∗∗∗ 0.175∗∗∗ 0.070∗∗
(0.025) (0.020) (0.018) (0.059) (0.040) (0.031)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N. of Inventors No No No No No Yes
Patents Per Inventor No No Yes No No No
Number of Counties 1220 1220 1220 1220 1220 1220
Observations 37820 37820 37820 37820 37820 37820
R2 0.477 0.464 0.509 0.823 0.750 0.791
Std. Beta Coef. 0.249 0.140 0.068 0.164 0.132 0.053

Notes: This table displays the impact of exposure to the Influenza on the (log 1+) number of patents per
inventor (intensive margin) and the (log) number of inventors (extensive margin). The unit of
observation is a county, observed at yearly frequency between 1900 and 1929. “Post” is a categorical
variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero otherwise.
The baseline treatment “Excess Deaths” is defined in equation (3.4). In column (1) the dependent
variable is the number of patents per inventor in any field; in columns (2)–(3) we restrict to
pharmaceutical patents per inventors; in column (4) the dependent variable is the number of
inventors; in columns (5)–(6) we only consider inventors with at least one patent in pharmaceuticals. In
column (3) we control for the average productivity, measured as the number of patents per inventor, to
capture differential trends in productivity of pharmaceuticals, relative to the aggregate productivity;
similarly, in column (6) we control for the number of inventors to disentangle differential patterns for
the subgroup of inventors active in pharmaceuticals. Regressions include county and year fixed effects
and the interaction between population in 1900 and a post-treatment indicator. Standard errors are
clustered at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.16: Impact of the Influenza on the Quality of Innovation

All Patents Pharmaceuticals

(1) (2) (3) (4) (5) (6) (7)
Avg. Quality Breakthrought Share Breakthrough Avg. Quality Breakthrought Breakthrought Share Breakthrough

Excess Deaths × Post 0.099 1.548∗∗ 0.021 0.302∗∗∗ 0.991∗∗∗ 0.609∗∗∗ 0.021∗∗
(0.150) (0.642) (0.015) (0.107) (0.309) (0.225) (0.009)

County FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Total Patents No No No No No Yes No
Number of Counties 1220 1220 1220 1220 1220 1220 1220
Observations 37818 37818 37818 37818 37818 37818 37818
R2 0.314 0.786 0.131 0.477 0.681 0.793 0.107
Mean Dep. Var. 0.037 1.790 0.080 0.081 0.480 0.480 0.020
Std. Beta Coef. 0.031 0.092 0.062 0.220 0.197 0.011 0.131

Notes: This table displays the impact of the Influenza on the quality of innovation. In the first three
columns, the quality indicators refer to the total patent flow; in the last four columns we restrict the
sample to patents in pharmaceuticals. The unit of observation is a county, observed at yearly frequency
between 1900 and 1929. “Post” is a categorical variable equal to one during and after the pandemic–i.e.
over the years 1918-1929–and zero otherwise. The baseline treatment “Excess Deaths” is defined in
equation (3.4). Quality measures are from Kelly et al. (2021). They measure the “innovativeness” of a
patent based on textual similarity between that patent and previous and future works, and flag it as
important if it is different from previous work, but similar to subsequent ones. In columns (1) and (4),
“Avg. Quality” denotes their baseline quality measure (equation (10) in Kelly et al. (2021)); in columns
(2) and (5)–(6) “Breakthrough” is the raw count of patents in the top quintile of the quality distribution;
in columns (3) and (7) “Share Breakthrough” is the share of patents in the top quintile in the quality
distribution. Regressions include county and year fixed effects and the interaction between population
in 1900 and a post-treatment indicator. Standard errors are clustered at the county level, and are
displayed in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.17: Impact of the Influenza on Occupational Choice: Alternative Threshold

Dummy = 1 if in STEM

(1) (2) (3)
Baseline No Controls Controls

Excess Deaths × Younger than 30 in 1918 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗
(0.002) (0.001) (0.002)

County FE Yes Yes Yes
Cohort FE Yes – –
State-Cohort FE No Yes Yes
Household Controls No No Yes
Number of Counties 1217 1217 1217
Observations 13573144 13573098 13573098
R2 0.003 0.003 0.004
Std. Beta Coef. 0.026 0.030 0.030

Notes: This table displays the effect of the pandemic on the probability of being employed in a STEM
occupation. The unit of observation is an individual, observed once in the 1930-population census. For
every person, we define a dummy equal to one if the person is employed in a STEM
occupation–enumerated in Table B.1–and zero otherwise. We drop individuals born after 1905 because
they could still be completing their education spell in 1930, i.e. when we observe their occupational
choice. An individual is defined to be treated if she is 30 years old or less in 1918, i.e. at the beginning of
the pandemic. Compared to the baseline estimates, we enlarge the sample of treated individuals to
those that were between 25 and 30 at the time of the inception of the pandemic. The baseline treatment
“Excess Deaths” is defined in equation (3.4). Column (1) reports the baseline estimates; in column (2)
we add state-by-year fixed effects to the baseline model. Column (3) further includes a set of
individual-level controls. Individual controls are race and urban status. Standard errors are clustered
at the county level and are reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.18: Religiosity and the Intensity of Innovation by Exposure to the Influenza

(log) Patents per Capita

(1) (2) (3)
All Affiliations Catholics Protestants

Excess Deaths × Post 0.032∗∗∗ 0.039∗∗∗ 0.033∗∗∗
(0.012) (0.013) (0.012)

All Affiliations -0.042
(0.025)

Excess Deaths × Post × All Affiliations 0.104∗∗
(0.041)

Catholics 0.023
(0.026)

Excess Deaths × Post × Catholics 0.097∗∗
(0.047)

Protestants -0.079∗
(0.041)

Excess Deaths × Post × Protestants 0.085∗
(0.048)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Number of Counties 1201 1201 1201
Observations 36030 36030 36030
R2 0.749 0.750 0.749

Notes: This table displays the correlation between innovation and religiosity by exposure to the
pandemic. The dependent variable is the log of patents, normalized by county-population in 1900. The
unit of observation is a county, observed at yearly frequency between 1900 and 1929. “Post” is a
categorical variable equal to one during and after the pandemic–i.e. over the years 1918-1929–and zero
otherwise. The baseline treatment “Excess Deaths” is defined in equation (3.4). Religiosity by
denomination is measured as described in the main text. Counties are weighted by their population in
1900. Regressions include county and year fixed effects and the interaction between population in 1900
and a post-treatment indicator. Standard errors are clustered at the county level and are reported in
parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.19: Religiosity of Individuals in STEM Compared to the Rest of the Population

Non-STEM STEM Difference

(1) (2) (3) (4)

All 0.021 0.015 –0.006∗ –0.011∗∗∗
(0.086) (0.001)

Catholics –0.156 –0.176 –0.020∗∗∗ –0.017∗∗∗
(0.000) (0.000)

Protestants 0.027 0.010 –0.016∗∗∗ –0.022∗∗∗
(0.000) (0.000)

County FE No No No Yes
Birth Year FE No No No Yes
Controls No No No Yes

Notes: Columns (1) and (2) report the average religiosity of the non-STEM and the STEM populations;
columns (3)–(4) report the difference between the two groups. Denomination varies by row (hence, for
instance, average Catholic religiosity for Non-STEM is .181, it is .085 for STEM individuals, and their
unconditional difference is -.096). To construct religiosity, we take all children in our baseline sample
born before the Influenza, i.e. 1917. Observations are weighted by the inverse of the total number of
kids in each household. In columns (1), (2), and (3) we report the unconditional statistics. In column (4)
we include a set of county and (child) birth year fixed effects and we control for race and urban status.
Standard errors are clustered at the county level. In columns (3)–(4), we report in parentheses the
𝑝-value associated with the estimates.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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Table B.20: Impact of the Influenza on the Polarization of Religious Beliefs

All Catholics Protestants

(1) (2) (3)

Overall Religiosity Background=1 × Excess Deaths × Post -0.031∗
(0.019)

Overall Religiosity Background=2 × Excess Deaths × Post 0.006
(0.017)

Overall Religiosity Background=4 × Excess Deaths × Post 0.010
(0.019)

Overall Religiosity Background=5 × Excess Deaths × Post 0.080∗∗∗
(0.020)

Catholic Religiosity Background=1 × Excess Deaths × Post -0.043∗∗
(0.017)

Catholic Religiosity Background=2 × Excess Deaths × Post -0.021
(0.015)

Catholic Religiosity Background=4 × Excess Deaths × Post 0.002
(0.015)

Catholic Religiosity Background=5 × Excess Deaths × Post 0.020
(0.016)

Protestant Religiosity Background=1 × Excess Deaths × Post -0.039∗∗
(0.017)

Protestant Religiosity Background=2 × Excess Deaths × Post -0.021
(0.014)

Protestant Religiosity Background=4 × Excess Deaths × Post -0.021
(0.016)

Protestant Religiosity Background=5 × Excess Deaths × Post 0.014
(0.017)

County × Background FE Yes Yes Yes
County × Birthyear FE Yes Yes Yes
Background × Birthyear FE Yes Yes Yes
Household Controls Yes Yes Yes
N. of Counties 1217 1217 1217
Observations 7641690 7641690 7641690
R2 0.026 0.021 0.024

Notes: This table displays the impact of exposure to the pandemic on the polarization of religious
beliefs, for all denominations. The unit of observation are children born between 1900 and 1930. “Post”
is a categorical variable equal to zero for children born before the pandemic–i.e. before 1918–and one
for those born after the pandemic–i.e. after 1918. The baseline treatment “Excess Deaths” is defined in
equation (3.4). Background religiosity is measured as the religiosity score of the name of the head of the
household, and it is discretized in quintiles. The third quintile serves as the baseline category and its
coefficient is not reported. The dependent variable is overall religiosity (column 1), Catholic religiosity
(column 2), and Protestant religiosity (column 3). Each regression includes county-by-background,
background-by-year, and county-by-year fixed effects. Children are weighted by the inverse of the
number of children within each household. Standard errors are clustered at the county level, and are
reported in parentheses.
∗: 𝑝 < 0.10, ∗∗: 𝑝 < 0.05, ∗∗∗: 𝑝 < 0.01
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3.B.2 Figures

Figure B.1: Estimated Names Religiosity Scores, by Confession
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(b) Protestants
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Notes: The Figures display the religiosity scores estimated from model (3.2). Bars report the point
estimate of each coefficient. Regressions are based on data from the 1906-1916 Censuses of Religious
Bodies, and include individuals born between 1896 and 1916. We estimate religiosity scores for names
appearing in at least 0.3% of the overall sample. We conflate variations of a single name together–e.g.
Anne and Anna—but keep endearments separate—e.g., Anna and Annie. Coefficients are reported in
increasing order. Panel B.1a reports scores for Catholicism; Panel B.1b reports scores for Protestantism.
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Figure B.2: In-sample and Out-of-sample Fit of the Religiosity Measure

(a) In-sample: All Denominations
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Notes. Regression Coefficient = 89.222 (Std. Err. = 12.079). R2=0.856.

(b) Out-of-sample: All Denominations
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Notes. Regression Coefficient = 59.950 (Std. Err. = 31.614). R2=0.349.

(c) In-sample: Catholics
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Notes. Regression Coefficient = 13.746 (Std. Err. = 12.634). R2=0.911.

(d) Out-of-sample: Catholics
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Notes. Regression Coefficient = 138.124 (Std. Err. = 41.434). R2=0.432.

(e) In-sample: Protestants
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Notes. Regression Coefficient = 40.904 (Std. Err. = 7.767). R2=0.947.

(f) Out-of-sample: Protestants
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Notes. Regression Coefficient = 90.009 (Std. Err. = 22.835). R2=0.606.

Notes: These figures are county-level binned scatter plots reporting the correlation between our
religiosity measure and the number of affiliated member to: all denominations (B.2a-B.2b), Catholicism
(B.2c-B.2d) and Protestantism (B.2e-B.2f) normalized by population in 1900. In-sample figures report
data for 1906 and 1916 censuses of religious affiliations. Out-of-sample figures instead report data for
1926. In-sample regressions control for county fixed effects; out-of-sample regressions include state
fixed effects. Counties are weighted by their population in 1900. In the note we report the regression
coefficients and the associated 𝑅2.
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Figure B.3: Example of Pharmaceutical Patent
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Figure B.4: Correlation Between WW1 and Influenza Deaths
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Notes. Regression Coefficient = 0.170 (Std. Err. = 0.157). R2=0.001.

Notes: This figure displays the correlation between WW1 and Influenza-related deaths. Gross Excess
Mortality is the baseline treatment. WW1 deaths are taken as logs. In the note, we report the regression
coefficient between the two variables, along with the 𝑅2 of the model. Data on WW1 deaths are from
Ferrara and Fishback (2020).
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Figure B.5: Correlation Between Abramitzky et al. (2016) and Our Religiosity
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Notes. Regression Coefficient = 1.013 (Std. Err. = 0.022). R2=0.390.

Notes: This figure reports the correlation between our baseline religiosity measure (multiplied by 100)
and the share of biblical and saints names, as defined in Abramitzky et al. (2016). The unit of
observation is a county, observed at a yearly frequency between 1900 and 1930. Counties are weighted
by their population in 1900. The graph partials out county fixed effects. We report in note the regression
coefficient and the associated standard error, clustered at the county level, and R2 coefficient.
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Figure B.6: Correlation Between Religiosity and Science

(a) Before the Great Influenza Pandemic (1910–1917)
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Notes. Regression Coefficient = -0.157 (Std. Err. = 0.066). R2=0.868.

(b) After the Great Influenza Pandemic (1920–1929)
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Notes. Regression Coefficient = 0.197 (Std. Err. = 0.084). R2=0.915.

Notes: These figures display county-level binned scatter plots reporting the correlation between
science–measured as patenting activity normalized by 1900-county population–and religiosity. The unit
of observation is a county, observed at yearly frequency. Counties are weighted by their
1900-population. Religiosity is defined as described in section 3.3.1 and refers to overall religiosity.
Graphs absorb for county and year fixed effects. We report the regression coefficients and associated
𝑅2 separately in each graph.
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Figure B.7: Distribution of Cities in the Alternative Sample

Notes: This figure reports the spatial distribution of the cities in the city-level sample used in Table B.7.
We use data from Clay et al. (2019), which contains information on 483 large cities. The red dots report
the coordinates of the 478 cities for which we can construct the excess mortality treatment measure.
Lighter to darker shades of blue indicate the state-level number of cities included in the final sample.
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