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Abstract

This thesis deals with the pricing of American equity options exposed to correlated interest rate

and equity risks.

The first article, American options on high dividend securities: a numerical investigation by F.

Rotondi, investigates the Monte Carlo-based algorithm proposed by Longstaff and Schwartz (2001)

to price American options. I show how this algorithm might deliver biased results when valuing

American options that start out of the money, especially if the dividend yield of the underlying is

high. I propose two workarounds to correct for this bias and I numerically show their strength.

The second article, American options and stochastic interest rates by A. Battauz and F. Rotondi

introduces a novel lattice-based approach to evaluate American option within the Vasicek model,

namely a market model with mean-reverting stochastic interest rates. Interestingly, interest rates

are not assumed to be necessarily positive and non standard optimal exercise policy of American

call and put options arise when interest rates are just mildly negative. The third article, Barrier

options under correlated equity and interest rate risks by F. Rotondi deals with derivatives with

barrier features within a market model with both equity and interest rate risk. Exploiting lattice-

based algorithm, I price European and American knock-in and knock-out contracts with both a

discrete and a continuous monitoring. Then, I calibrate the model to current European data and

I document how models that assume either a constant interest rate, or strictly positive stochastic

interest rates or uncorrelated interest rates deliver sizeable pricing errors.
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Introduction

This thesis deals with the pricing of American equity options within several market models.

Whereas European options can be exercised only at maturity, American ones can be exercise

at any time up to their maturity. As a consequence, the holder of an American option faces each

time an optimization problem as she has to compare what she gets right now exercising the option

to what she would get exercising it later on in the future. This recursive optimization problem

makes the evaluation of American options quite challenging even in the simplest market models

like the pure diffusive one factor model of Black-Scholes. When introducing more complicated,

but yet more realistic, market models and when considering more exotic derivatives the current

literature offers no solution. This thesis aims at solving some open problems when dealing with

American options within market models with more than one risky factor.

This thesis consists of three chapters. Each of them is a self-contained paper, namely

• American options on high dividend securities: a numerical investigation by Francesco Ro-

tondi (published);

• American options and stochastic interest rates by Anna Battauz and Francesco Rotondi

(submitted);

• Barrier options under correlated equity and interest rate risks by Francesco Rotondi.

The abstracts of the three papers are collected below.

American options on high dividend securities: a numerical investigation: I document a sizeable

bias that might arise when valuing out of the money American options via the Least Square Method

proposed by Longstaff and Schwartz (2001). The key point of this algorithm is the regression-

based estimate of the continuation value of an American option. If this regression is ill-posed, the

procedure might deliver biased results. The price of the American option might even fall below the

price of its European counterpart. For call options, this is likely to occur when the dividend yield of

the underlying is high. This distortion is documented within the standard Black–Scholes–Merton

model as well as within its most common extensions (the jump-diffusion, the stochastic volatility
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and the stochastic interest rates models). Finally, I propose two easy and effective workarounds

that fix this distortion.

American options and stochastic interest rates: We study finite-maturity American equity op-

tions in a stochastic mean-reverting diffusive interest rate framework. We allow for a non-zero

correlation between the innovations driving the equity price and the interest rate. Importantly,

we also allow for the interest rate to assume negative values, which is the case for some invest-

ment grade government bonds in Europe in recent years. In this setting we focus on American

equity call and put options and characterize analytically their two-dimensional free boundary, i.e.

the underlying equity and the interest rate values that trigger the optimal exercise of the option

before maturity. We show that non-standard double continuation regions may appear, extending

the findings documented in the literature in a constant interest rate framework. Moreover, we

contribute by developing a bivariate discretization of the equity price and interest rate processes

that converges in distribution as the time step shrinks. The discretization, described by a recom-

bining quadrinomial tree, allows us to compute American equity options’ prices and their related

free boundaries. In particular, we document the existence of non-standard optimal exercise poli-

cies for American call options on a non-dividend-paying equity. We also verify the existence of

a non-standard double continuation region for American equity options, and provide a detailed

analysis of the associated free boundaries with respect to the time and the current interest rate

variables.

Barrier options under correlated equity and interest rate risks: I study European and American

equity derivatives with barrier features exposed to correlated equity and interest rate risks. The

interest rate is modelled as a diffusive mean-reverting stochastic process and its zero lower bound

is removed in order to resemble current European market conditions. Using novel lattice-based

pricing techniques, I carry out a throughout analysis of discretely and continuously monitored

European and American knock-in and knock-out options solving the related numerical issues. I

show how models assuming 1) constant interest rates, 2) independent stochastic interest rates, 3)

strictly positive stochastic interest rates deliver sizeable relative pricing errors with respect to my

benchmark. The relative pricing errors, that in some cases reach values around 15%, are larger

when dealing with path-dependent options, whose dependence on the comovements of the equity

and the interest rate is stronger.



1
American Options on High Dividend
Securities: a numerical investigation
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1.1 Introduction

Whereas1 most of the exchange-traded options on global financial indexes can be exercised only

at maturity, thus being European-style options, the vast majority of equity options are American-

style, as they can be exercised at any time up to their maturity. Evaluation of American-style

options is, therefore, of crucial relevance in the financial industry.2

The fair pricing of this kind of claims is tricky even within simple market models due to their

embedded optimization problem. In fact, since the holder of an American option has the right to

exercise it at any time up to maturity, she will do so at the moment in which the expected payoff

of the option is maximum. Therefore, virtually at each instant in time, she has to compare what

she would get by the immediate exercise of the option to what she would get in the future if she

waits and exercises the option later on. In turns, what she would get in the future depends on her

future decisions: this recursive structure of the decision problem makes the evaluation of American

claims quite complicated. See, e.g., Detemple (2014) for an extensive review of the main pricing

methods of American-style derivatives.

Longstaff and Schwartz (2001) proposed the Least Square Methods (LSM henceforth), an in-

teresting, fast and flexible Monte Carlo-based algorithm to price American options. The key point

of the LMS is a regression-based approximation of the continuation value for the American op-

tion, which overcomes the well known issue of recursively estimating the conditional expectation

of future optimal exercises. At maturity, the option is exercised whenever in the money. Then, the

optimal policy is retrieved going backward by comparing the immediate exercise payoff with the

continuation value, which is approximated by the fitted values of a pathwise regression of all future

payoffs on the immediate payoff. Since this regression is run on the paths along which the option is

in the money, if there are too few of them, the regression is ill-posed and produces biased estimates

of the continuation value. This propagates recursively and the final estimate of the price of the

American option might be biased. Such bias might be so large that the American option price

falls below the price of its European counterpart, delivering a price that violates the no arbitrage

assumption as American options are always worth more than their European counterparts due to

the early exercise premium.

If the option starts even mildly out of the money, the probability that the underlying reverts

1This article is published in Risks, 2019, 7(2), 59.
2See, e.g., the CBOE Market Statistics annual report released by the Chicago Board Options Exchange,

the largest trading market for derivatives. In 2016, the overall dollar value of all the equity options traded
at the CBOE was roughly equal to $66 billion with an average of 1.35 million equity options traded daily
corresponding to 205 million call options and 135 million put through the year.
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back to the in the money region depends on the drift of the risky asset. This drift depends in turns

on the risk-free interest rate, on the dividend yield and on the volatility of the equity. Under re-

alistic combinations of these parameters, the probability that initially out of the money option

ends up in the in the money region is quite low. This damages the regression-based estimation

of the continuation value of the American option thus altering (usually lowering) the final price.

As an example, a high dividend yield relative to a low risk-free interest rate depresses the drift of a

lognormal risky asset and, therefore, the stock is expected to decrease. In this case, the evaluation

of an American option on this stock through the LSM, would most likely deliver a biased result.

My analysis builds on the large literature about the weaknesses and the related improvements

of the Monte Carlo-regression based methods for pricing American options. Among others, García

(2003) and Kan and Reesor (2012) analysed and corrected the biases of the algorithm due to

suboptimal exercise decisions whereas, as an example, Belomestny et al. (2015) and Fabozzi et al.

(2017) proposed further improvements of the original LSM.

Out of the money options play a key role in hedging strategies to protect investors against

sudden drop/peak of the equity. Furthermore, Carr and Madan (2001) showed how to replicate any

derivative whose payoff is a smooth function of the underlying at maturity with fixed positions in

the bond, the stock itself and out of the money European call and put options. As European options

on equity are quite illiquid, American ones are used in practice (delivering a small deviation from

the perfect replication). Therefore, the correct evaluation of American out of the money options

is relevant as well.

The remaining of the paper is organized as follows. Section 1.2 analyses the aforementioned

flaw of the LSM in the standard diffusive framework of Black–Scholes–Merton. The following

three sections address this issue within the three most common extensions of the standard diffusive

framework. Section 1.3 deals with the jump-diffusion model, Section 1.4 with the stochastic interest

rate framework and, finally, Section 1.5 with the stochastic volatility one. Section 1.6 concludes.

1.2 American Equity Options, Constant Interest Rates

I first analyse the LSM in a simple diffusive framework, as the one of Black and Scholes (1973)

and Merton (1973). The risk-free interest rate is assumed to be deterministic. In Section 1.2.1, I

first review the LSM and I highlight the possible flaws that might arise when valuing out of the

money American option. Then, I propose a possible workaround to overcome them. In Section

1.2.2, I propose some numerical example to quantify the size of the flaws and to show how the

workaround delivers correct results.
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1.2.1 Theoretical Framework

1.2.1.1 The Primary Assets

Assume that the market is arbitrage-free and let r ∈ (−1,+∞) be the constant prevailing risk-

free interest rate3. The risk-free interest rate is capitalized through a traded bond with price

B(t) = ert. Consider a traded lognormal risky security S whose price dynamics under the4 risk-

neutral probability measure Q solve the following stochastic differential equation (SDE henceforth):

dS(t) = (r − q)S(t)dt+ σS(t)dW (t), S(0) = S0 (1.1)

with t ∈ R+, where W is a Q-Brownian motion, σ ∈ R+ is the constant volatility of the security,

q its continuous dividend yield and S0 ∈ R+ is its current price at t = 0. It is well known that

the solution to Equation (1.1) delivers the following explicit expression for the price of the risky

security

S(t) = S0 exp

(r − q − σ2

2

)
t+ σW (t)

 , t ≥ 0. (1.2)

Notice that the continuously compounded rate of return over [0, t] on S,

ln S(t)
S0

=
(
r − q − σ2

2

)
t+ σW (t)

has two contributions: the first one is deterministic and depends on the drift µQ := r − q − σ2/2

of the security; the second one is normally distributed with zero mean and variance equal to σ2t.

Globally, the expected rate of return over [0, t] is therefore normally distributed with mean µQt

and variance σ2t. Furthermore, as time goes by, the deterministic component µQt prevails over

the random one σW (t)5. Therefore, the investor expects the security to appreciate as time goes

by proportionally to the constant drift µQ.

1.2.1.2 The Derivatives

Let f(S), S ∈ R+, be the payoff of a derivative written on S(t). For a thorough analysis of many

derivatives in this diffusion framework, see, e.g., Björk (2009). I restrict my investigation only to
3I advisedly allow for r ∈ [−1, 0] in order to possibly replicate also the current situation of the

Eurozone where “risk-free” government bonds, such as German ones, display negative yield up to few
years maturities.

4Under these assumptions, the market is actually also complete; therefore, the risk-neutral measure
Q is unique.

5It holds true (see, e.g., Revuz and Yor (2001)) that lim supt→+∞
W (t)√
2t log2 t

= 1 and

lim inft→+∞
W (t)√
2t log2 t

= −1 almost surely; as ±
√

2t log2 t = o(t), lim supt→+∞
µQt+σW (t)

µQt
= 1.



American Options on high dividend securities 7

plain vanilla options; these are derivatives whose payoff can be cashed in by investors if (and only

if) it is positive and that depends only on the current value of the underlying. The two instances

of these options I will investigate are the call options, with f(S) = (S−K)+, and the put options,

with f(S) = (K − S)+, where in both cases K, the strike price of the option, is the constant

quantity specified on the contract at which the holder of the option has the right to buy or to sell,

respectively, the underlying6.

European-style options can be exercised only at maturity T ∈ R+. As their payoff at maturity

is f(S(T )), the fundamental no-arbitrage pricing equation gives the value of these options at any

time t, from inception, t = 0, up to maturity T

πEf (t) = EQ

f(S(T )) B(t)
B(T )

∣∣∣∣∣Ft
 = EQ

[
f(S(T ))e−r(T−t)

∣∣∣Ft] . (1.3)

For call and put options, πf (t) admits a closed form solution, the celebrated Black–Scholes–

Merton formula first derived by Black and Scholes (1973) and Merton (1973).

American-style options can be exercised at any time up to their maturity T ∈ R+. If exercised

at t ∈ [0, T ], their payoff is f(S(t)). Clearly, a rational investor would exercise an American option

when the payoff it delivers is the greatest possible. Therefore, the value of an American option at

any time t is

πAf (t) = ess sup
τ∈[t,T ]

EQ
[
f(S(τ))e−r(τ−t)

∣∣∣Ft] , (1.4)

where the essential supremum accounts for the fact that the sup is taken on an (uncountable)

family of random variables defined up to zero-probability sets. In other words, the value of the

American option is determined by the optimal stopping time τ that maximizes the discounted

payoff. It is well known that πAf (t) admits closed form expressions for neither call nor put options.

The evaluation of American options has, therefore, to rely on numerical techniques. As greatly

summed up by Detemple (2014), there are broadly three valuation approaches to tackle this issue:

• the variational inequality approach, which generalizes the Black-Scholes PDE and translates

into a free boundary problem;

• the lattice approach, inspired by the seminal work of Cox et al. (1979), who discretized the

evolution of the underlying asset S and evaluated the American option backward along this

discretization; and

6(x)∗ := max{0, x} denotes the positive part. The holder of an option will exercise it if and only if it
delivers a positive payoff; if this is not the case, the option will not be exercised and its payoff is floored
at zero.
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• the least square method, first introduced by Longstaff and Schwartz (2001), who exploited a

Monte Carlo simulation to recursively estimate the expected future payoff of the American

option.

The present work focuses on the last approach, the LSM, as it is widely used thanks to

the simplicity and the flexibility of its algorithm. Nevertheless, I show that, when implemented

without few shrewdnesses, the LSM might deliver biased results under some realistic combinations

of assets’ parameters.

1.2.1.3 The LSM

The general LSM is effectively illustrated in Section 2 of Longstaff and Schwartz (2001). For ease

of reading, I briefly recall here its working flow.

First, the LSM considers a uniform discretization of the investment window [0, T ] and evaluates

a Bermudan-style option that can be exercised at any discrete monitoring date of the time partition.

Then, a large number of sample paths of the security S is simulated; each of them is monitored

at every possible exercise date.

The LSM runs backward in time. At maturity T , the option is exercised only along the paths

in which it ends up in the money. Therefore, the optimal exercise policy at T is known along all the

paths and simply prescribes to exercise the option when it is in the money. At any intermediate

monitoring date ti, the holder of the option considers the immediate payoff she would get by the

early exercise of the option, f(S(ti)). Along all the paths in which the immediate exercise is

positive7, the holder of the option has to decide whether she is better off by exercising it right

at ti or by waiting and exercising it later on. In other words, she has to compare the immediate

exercise value of the option to its continuation value. This continuation value is the discounted

expected value of the option as if it were optimally exercised from ti+1 on and can be expressed

by a conditional expected value as follows

EQ
[
πAf (ti+1)e−r(ti+1−ti)

∣∣∣Fti] . (1.5)

In this discrete time backward recursion, the optimal exercise policy has been found along

all the paths from T to ti+1; consequently, the value of the American option along all the paths

is known as well at ti+1. As the key point of the algorithm, the LSM regresses pathwise the

discounted values of the American option at ti+1 on some polynomials in the immediate exercises

7If the payoff from the immediate exercise at ti of the option is zero, a rational investor would not
exercise it and she would surely hold it on waiting for a positive payoff later on.
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values f(S(ti)) ∈ Fti8. In other words, it is assumed that

EQ
[
πAf (ti+1)e−r(ti+1−ti)

∣∣∣Fti] =
∑
m∈N

βmLm
(
f(S(ti))

)
, (1.6)

where {Lm(·)}m∈N is an orthonormal basis of L2.

The intuition here is that the variation across the paths in which the option is in the money

at ti conveys some information about the value of the option after a “short” time has passed.

The continuation values along all the paths are then obtained as the fitted values of the regression in

Equation (1.6). Once the continuation value of the option is known along all the paths, it can

be compared to the immediate exercise and the optimal exercise policy is updated for all the

paths. As the optimal exercise policy is now known from ti to T , the algorithm moves backward

considering the choice the option holder faces at ti−1.

Once the optimal policy has been derived also at t = 0, the value of the Bermudan–American

option is obtained by the average of the discounted cashflows (which may occur at different instants

in time depending on the particular path of S) across all the paths.

The LSM method is as powerful as flexible. Its implementation is indeed quite straightforward,

requires few lines of code and is reasonably fast in delivering the results. The scope of the LSM

is almost unbounded: as it works pathwise, the investor just needs to be able to simulate path

by path the relevant processes in order to exploit it. This is why it is important to avoid all the

possible flaws that come with it.

1.2.1.4 Possible Flaws of the LSM

As already pointed out, the key point of the algorithm is the regression-based approximation of

the continuation value that overcomes the well known issue of the recursive estimation of the

conditional expectation of future optimal exercises.

If the regression in Equation (1.6) is ill-posed9, there might be severe consequences in the

estimation of the continuation value of the option and, consequently, on the updating of the

optimal exercise policy and, ultimately, on the value of the option at t = 0.

I investigate two issues that might affect negatively the regression in Equation (1.6) at some

ti:

8Notice that, if the conditional expectation of two random variables, E[Y |X], is an element of the L2

space, since L2 is an Hilbert space, E[Y |X] can be represented as a linear combination of the elements
of an orthonormal basis of the space.

9See, e.g., Wooldridge (2013), Section 2.2, for a careful explanation of the linear regression model and
of the related necessary assumptions for its unbiased and efficient estimation.
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1. there are fewer in the money paths than the number M of the polynomial taken from the

orthonormal basis of L2; and

2. the paths along which the option is in the money deliver very low immediate exercise val-

ues that translate into a rank-deficient matrix of regressors, especially when high order

polynomials are considered.

Consider the linear model Y = Xβ + ε with Y, ε ∈ RN×1, X ∈ RN×M , β ∈ RM×1 where M

is the number of regressors, namely the explanatory variables, N is the number of observations

and β is the vector of parameters one is interested in. One crucial assumption for the least

square estimator of β, β̂ = (X ′X)−1X ′Y , to be efficient is that rank(X) = M , namely that all

the regressors are linearly independent. As, by definition, rank(X) ≤ min{M,N}, if there are

not enough observation, namely if N < M , the aforementioned hypothesis cannot hold true by

construction and the estimate β̂ one gets might display quite large variances and be far from the

true value.

In the LSM, at each time step ti, N represents the number of the in the money paths and M

is the number of polynomials included. If the number of the in the money paths is less than the

number of polynomials included, the estimates of the continuation values are not reliable. This

might happen when the option starts out of the money. As concretely shown in the following

subsection, when the maturity of the option is short and the time step small, there are few in

the money paths at the first monitoring dates. The option is clearly not optimally exercised at

these monitoring dates. Nevertheless, the imprecise estimate of β one gets at these dates might

distort the continuation value and make it even negative. If this were the case, the algorithm would

prescribe to exercise the option immediately as a seemingly null payoff is still better than a negative

one. Clearly, this would drastically affect the final value of the Bermudan–American option.

The very same dramatic outcome can be reached if, at any ti, there are enough in the money

paths but the immediate exercise values along them is too close to zero. If this was the case,

the matrix of the regressors can still have no full rank as the high grade polynomials10 get closer

and closer to zero. This would make one or more regressor equal to the null vector which gives no

contribution to the rank of the matrix of regressors, which, in turns, would become rank deficient

delivering the problems outlined above.

These issues are not explicitly debated in Longstaff and Schwartz (2001) probably because of

the few possible exercise dates, 50 per year, they allow and the few basis functions, the first three

10For all the possible choices of basis functions {Lm(X)}m∈N, it holds that limm→+∞,X→0 Lm(X) = 0;
see Chapter 22 of Abramowitz and Stegun (1970) for a comprehensive review of the basis functions of
L2.
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Laguerre polynomials, they exploit in the regressions.

As Clément et al. (2002) proved, the value of the Bermudan option obtained through the LSM

converges to the no-arbitrage price of the related American option as the following three quantities

jointly tend to infinity: the number of time steps, n, the number of simulated paths, NSim, and the

number of basis, m, exploited in the regression in Equation (1.6). When implementing the LSM,

one has to choose finite values of the three aforementioned parameters for sake of feasibility.

As can be seen in Figure 1.1 Left, for the evaluation of American option in the standard

diffusive framework, the LSM needs at least NSim ≥ 104 and n/T ≥ 125 in order to obtain

relative errors smaller than a percentage point. Interestingly, as can be seen in Figure 1.1 Right,

it also turn out that adding more basis function does not improve the estimate of the continuation

value but it rather slows the algorithm and increases the probability that one of the two pitfalls

described above manifests.11
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Figure 1.1: (Left panel): Relative pricing errors with respect to the binomial tree of an
American call option in the standard Black–Scholes–Merton model with S0 = 100, K/S0 = 105,
r = 3%, q = 4%, T = 1, m = 6; the darker the cell, the higher the relative error; (Right
panel): absolute value of the average of the first 8 betas of the regression in Equation (1.6)
for the evaluation of the previous American call option. Twenty independent Monte Carlo (MC
henceforth) simulations were run.

11The same analysis can be carried out within any of the three extensions to the standard diffusive
model: No relevant differences arise though.



12

1.2.1.5 Fixing of the Possible Flaws of the LSM

To fix the issues described above, I propose two workarounds: the first is finance-based whereas

the second is econometric-based12.

The first one prescribes to estimate the continuation values along all the paths as the original

LSM algorithm says, namely as the fitted values of the (possibly ill-posed) regression, and then

to floor these estimates pathwise with the current value of the European option obtained by the

Black–Scholes–Merton formula. This can be seen as a financial sanity check: the expected payoff

that the holder of the American option considers in her exercise decision cannot be lower than the

one she would get by exercising the option at maturity.

The second one prescribes to run a constrained regression where the continuation value is

forced to be non-negative. Since the flaws of the LSM are likely to arise when the early exercise

of the option is never optimal, preventing the continuation value from being negative is enough to

correctly postpone the exercise of the American option.

Both e workarounds fully solve the issue pointed out above. The following subsection shows

it by means of multiple numerical examples.

1.2.2 Numerical Investigation

As pointed out in the previous subsection, the issues with the LSM are more likely to arise when

the option is out of the money.

I focus my numerical investigation on the two most traded options: the American call and the

American put option. Besides the level of the initial moneyness at which the option is written,

also the particular choice of the other parameters plays a role in the determining whether the

underlying is expected to move towards the in the money/out of the money region.

The call option, namely when f(S) = (S − K)+, is out of the money at t if S(t) < K.

Conversely, the put option, with f(S) = (K − S)+, is out of the money at t if S(t) > K. Notice

that, if the options share the same parameters, these two events are clearly complementary: the

call option is out of the money if and only if the related put option is in the money. As it can be

directly derived by Equation (1.2), the unconditional risk-neutral probability evaluated at t = 0

that the call option is out of the money at a given t ∈ (0, T ] is

Q
(
S(t) < K

)
= N

 ln K
S(0) −

(
r − q − σ2

2

)
t

σ
√
t

 =: N(−d2), (1.7)

12I’m grateful to an anonymous referee for suggesting this extremely simple and effective econometric-
based workaround.
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where N(·) : R → (0, 1) is the cumulative distribution function of a 0–1 normal random variable

and d2 :=
ln S(0)

K +
(
r−q−σ2

2

)
t

σ
√
t

= ln S(0)
K +µQt

σ
√
t

varies with t. Analogously, the unconditional risk-

neutral probability evaluated at t = 0 that the put option is out of the money at a given is N(d2).

Table 1.1 shows the sensitivities of these two probabilities to the parameters of the model.

Table 1.1: Sensitivities of N(−d2)/N(d2), the risk-neutral initial probability that the call/put
option ends out of the money at t, to the parameters of the model. + (resp. −) indicates a
positive (resp. negative) sensitivity of the probability to the parameter under investigation. ?
indicates that the sign of sensitivity of the probability to the parameter is not unique and might
change. S0 is always kept constant.

K r q σ

N(−d2) + − + ?

N(d2) − + − ?

The probability in Equation (1.7) and its complementary one are of great interest in investi-

gating whether the pitfalls described in the previous subsection are likely to arise or not.

Consider the call option and fix a monitoring date ti. If at the first step of the LSM one

simulates NSim paths of the underlying, then the call option is expected to be in the money at ti
along NSim ·N(d2) paths. If NSim ·N(d2) < M , whereM is the number of the basis polynomials

included in the regression, or NSim · N(d2) > M but along these very few paths the option is

mildly in the money, the issues described above may arise. If the call option starts even a little

bit out of the money, the number of in the money paths expected at the first monitoring dates is

extremely low; this worsens for security with high dividend yield q and if the prevailing risk-free

interest rate r is low.

Figure 1.2 shows the impact of the moneyness S0/K on the probability that a call option is

in the money at the first monitoring dates. As can be seen, few paths are expected to be in the

money when the option has a moneyness roughly larger than 1.04.

Figure 1.3 shows the same probability that a call option on S that starts mildly out of the

money (K/S0 = 105%) reaches the in the money region at the first monitoring dates for different

(and realistic) values of r and q. As an example, if one million paths are generated (NSim = 106),

none of them is expected to be in the money at the first three monitoring dates when r = 3% and

q = 4%; only three paths are expected to be in the money at the fourth monitoring date and, since

usually M ≈ 6 basis functions are exploited in the regression, one would introduce four times a

bias in the estimate of the continuation value.
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Figure 1.2: Probability that a call option on S is in the money at the first eight monitoring
dates. Daily monitoring (250 dates for a T = 1 year maturity). The darker is the line, the higher
is the strike price K. The panel on the right zooms in the one on the left focusing on more out
of the money call options.
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Figure 1.3: Probability that a call option on S is in the money at the first eight monitoring
dates. Daily monitoring (250 dates for a T = 1 year maturity).

Table 1.2 shows some numerical examples. Three levels of moneyness are considered. In the

first case, K/S0 = 1.02, the LSM provides good results even without any correction, but in the case

large dividend yield: nevertheless, the distortion here is quite small and the price of the American

option is much larger than its European counterpart and quite close to the benchmark. However,

the correction of the LSM fixes this issue and delivers coherent results. In the other two levels of

moneyness, when the option starts a little bit more out of the money, the LSM without correction

heavily underprices the American call delivering also large standard errors.

When any of the corrections to the LSM is implemented instead, the results basically coincide
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with the ones derived in the binomial model of Cox et al. (1979), which, for the large number of

the steps considered, can be assumed as a benchmark. Numerical imprecisions appear also when

early exercise is never optimal (r ≈ q) and, therefore, the price of the European option and of the

American are roughly the same. In this case, the tiny difference between the two is much smaller

than the confidence interval of the LSM’s estimates and such approach delivers unreliable results.

Completely analogous (and symmetric) results are obtained for out of the money put options,

especially when the dividend yield q is low and the risk-free interest rate r is high. See, e.g., Carr

and Chesney (1997); Detemple (2001) for a throughout discussion on the put-call symmetry for

American-style options.

1.3 American Equity Options, Jump-Diffusion Model

In this Section, I propose a first variation of the standard Black–Scholes market. More specifically,

I allow for stock price process to jump at random dates and with an idiosyncratic intensity. For the

sake of simplicity, the risk-free interest rate is kept constant. The result is the well known jump-

diffusion model first introduced by Merton (1976), which can be seen as the first generalization of

the standard Black–Scholes–Merton model.

As in the previous section, Section 1.3.1 describes the theoretical aspects of the analysis,

whereas Section 1.3.2 contains the related numerical examples.

1.3.1 Theoretical Framework: The Primary Assets and the Deriva-
tives

Assume that the market is arbitrage free. Two assets are traded: the usual riskless bond B(t) = ert

and a risky asset S. To match some features of real market data like high peaks and heavy tails,

it is convenient to relax the continuity hypothesis of the risky stock’s price and allow it to jump

at random times. This introduces a new source risk in the market: The jump risk. Following the

seminal work of Merton (1976) and as greatly explained by Glasserman (2003), I postulate that,

since jumps are assumed to be independent of each other and of the stock’s level, the jump risk

can be diversified away by investing in many difference stocks. Hence, the investors require no

jump risk premium. This hypothesis being made, the risk-neutral measure Q becomes unique and

derivatives on S can be priced uniquely.

Under Q, the price process of S solves

dS(t) = S(t−)
(

(r − q)dt+ σdWQ(t) + dJ(t)
)
, S(0) = S0, (1.8)
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where J(t) =
∑N(t)
j=1 (Yj−1) is a jump process, Yjs are i.i.d. positive random variables and N(t) is a

Poisson process with intensity λ > 0 that counts how many jumps occurred before t included (with

the convention N(0) = 0). As outlined before, WQ, the Yjs and N are assumed to be independent

of each other. Jumps arrive at random instants and the waiting time before to consecutive jumps

is exponentially distributed with parameter λ. Furthermore, it is convenient to assume that the

jumps Yjs are Q-lognormally distributed with mean a and volatility b2.

Under all of these assumptions and settingm := EQ [Yj − 1
]

= ea+b2/2−1, the explicit solution

of S(t) in Equation (1.8) is

S(t) = S0 exp

(r − q − λm− σ2

2

)
t+ σWQ(t)

N(t)∏
j=1

Yj

and, conditioning on n jumps having occurred before t, namely, conditioning on N(t) = n,

S(t)|N(t)=n = S0 exp

(r − q − λm− σ2

2

)
t+ σWQ(t) + an+ b

√
nZ

 ,
where Z is standard normal random variable independent of WQ(t). It also holds true in distri-

bution

S(t)|N(t)=n = S0 exp

(rn(t)− q − σ2
n(t)
2

)
t+ σn(t)WQ(t)

 (1.9)

with rn(t) := r −mλ + n
t

(
a+ b2

2

)
and σ2

n(t) := σ2 + n
t b

2. The deterministic drift of S(t)|N(t)=n

here is µQ = r −mλ+ na/t− q − σ2/2, strictly lower than in the standard model when a ≥ 0.

The price at t of European and American derivatives within the present jump-diffusion model

are still given by the risk-neutral expected values in Equations (1.3) and (1.4). For the European

call, with f(S(T )) = (S(T )−K)+ and suppressing the argument of rn(t) and σ2
n(t), it holds

πEJD(t) =
∞∑
n=0

e−λ
′(T−t) (λ′(T − t))n

n! πEBS(t; rn, σn) (1.10)

with λ′ := λ(1 +m), πEBS(t; rn, σn) = S(t)e−q(T−t)N(dn)−Ke−r(T−t)N(dn − σn
√
T − t) and

dn := 1
σn
√
T − t

ln S(t)
K

+
(
rn − q + σ2

n

2

)
(T − t)

 . (1.11)

As usual, the pricing formula for a European put option can be retrieved by put-call parity.

The pricing of American options within the jump-diffusion model has to rely on numerical

techniques instead, based on extensions of the celebrated Black–Scholes partial differential equation

(see, e.g., Kinderlehrer and Stampacchia (2000) for a complete analysis on how to price American

options through variational inequalities and Friedman (2003) for general solving schemes for PDEs

and free boundary problems). Zhang (1997) provided an extremely useful characterization of a

finite difference scheme to price American options in the jump-diffusion model.



American Options on high dividend securities 17

1.3.2 Numerical Investigation

With the very same technique exploited to derive πEJD(t) and starting from Equation (1.9), it can

be shown that the risk-neutral probability that a call option on S is in the money at t ∈ (0, T ] is

Q
(
S(t) > K

)
=
∞∑
n=0

e−λt
(λt)n

n! N(dn − σn
√
t). (1.12)

This probability is again increasing in r and decreasing in q, as Figure 1.4 shows. Nevertheless,

as the drift of the underlying is now smaller due to the non negligible probability of a downward

jump, this probability is slightly larger than the same one in the standard diffusive model.

This implies a lower expected growth of S that translates into smaller call option prices, as it

can be seen comparing Tables 1.2 and 1.3 that share the same parameters.

As can be seen from the numerical examples in Table 1.3, the LSM works almost fine also at

an intermediate level of out of moneyness, but when the dividend rate is too large.

This is coherent with the numerical figures of the previous section. Again, when the early

exercise is almost never optimal, the price of the European option falls inside the confidence

interval of the Monte Carlo estimate for the American price, making it not really reliable.
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Figure 1.4: Probability that a call option on S in jump-diffusion framework is in the money at
the first eight monitoring dates. Daily monitoring (250 dates for a T = 1 year maturity).

1.4 American Equity Options, Stochastic Interest Rates

In this section, I propose a second generalized market where the short-term risk free interest rate

is stochastic. More specifically, I assume that the interest rate follows a mean-reverting stochastic

process, as described first by the seminal work of Vasicek (1977). For the sake of simplicity,
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the volatilities of both the stock price process and of the locally risk-free interest rate are assumed

to be constant. As in Sections 1.2 and 1.3, Section 1.4.1 describes the theoretical aspects of the

analysis, whereas Section 1.4.2 contains the related numerical examples.

1.4.1 Theoretical Framework: The Primary Assets and the Deriva-
tives

Assume that the market is arbitrage-free. The locally risk-free interest rate r follows an Ornstein–

Uhlenbeck process. The locally risk-free rate is capitalized through a bond whose price at t is

B(t) = e
∫ t

0
r(s)ds. A zero-coupon bond is traded in market as well. It pays out 1 at maturity

T and its price at t is labeled by p(t, T ). As in the previous Section, this markets involves two

sources of uncertainty: The standard diffusive market risk and the interest rate one. Nevertheless,

since the investor can hedge from both through S and the T-bond, the market is complete and

all the derivatives can be uniquely priced. The explicit formula for the price of the zero-coupon

bond p(t, T ) can be found, for example, in Brigo and Mercurio (2007). Finally, a lognormal risky

security S is traded. I allow for a non-zero correlation between the two processes. Under the

risk-neutral measure Q, the two solve the following SDEs:

dS(t) = S(t)
(

(r(t)− q)dt+ σSdWQ
S (t)

)
, S(0) = S0

dr(t) = κ
(
θ − r(t)

)
dt+ σrdWQ

r (t), r(0) = r0
(1.13)

with 〈dWQ
S (t),dWQ

r (t)〉 = ρdt. According to standard notation, the new parameters in Equation

(1.13) represent: σS > 0 the volatility of the risky asset, κ the speed of mean-reversion of the

short-term interest rate, θ its long-run mean, σr > 0 the volatility of the short-term interest rate

and ρ ∈ [−1, 1] the correlation between the Brownian shocks on S and r. The explicit solution to

the SDEs in Equation (1.13) is

S(t) = S0 exp

∫ t

0
r(s)ds−

(
q + σ2

S

2

)
t+ σSWS(t)

 ,
r(t) = r0e

−κt + θ(1− e−κt) + σr

∫ t

0
e−κ(t−s)dWr(s).

(1.14)

As before, the contribution of the drift of S,
∫ t
0 r(s)ds−

(
q + σ2

S

2

)
t, prevails over its volatility

part σSWS(t). Therefore, the expected behaviour of the paths of S depends mostly on the drift.

The pricing formulas for European and American derivatives with maturity T ∈ R+ and payoff
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f(S(·)) closely recall Equations (1.3) and (1.4):

πEf (t) = EQ

f(S(T )) B(t)
B(T )

∣∣∣∣∣Ft
 = EQ

[
f(S(T ))e−

∫ T
t
r(s)ds

∣∣∣∣Ft
]

πAf (t) = ess sup
τ∈[t,T ]

EQ
[
f(S(τ))e−

∫ τ
t
r(s)ds

∣∣∣∣Ft
]
.

For European call and put options, the pricing formulas depart slightly from the standard

Black–Scholes–Merton ones as now the variability of the locally risk-free interest rate has to

be accounted for. The full derivation of the modified formulas can be found in the Appendix

of Battauz and Rotondi (2019). For the European call option, f(S(T )) = (S(T ) − K)+ and it

holds

πEf (t) = S(t)e−q(T−t)N(d̃1)−Kp(t, T )N(d̃2) (1.15)

with

d̃1 = 1√
Σ2
t,T

(
ln S(t)
Kp(t, T ) + 1

2Σ2
t,T − q(T − t)

)
,

d̃2 = d̃1 −
√

Σ2
t,T ,

Σ2
t,T = σ2

S(T − t) + 2σSσrρ
(
−1 + e−κ(T−t) + κ(T − t)

k2

)
+ (1.16)

−σ2
r

(
3 + e−2κ(T−t) − 4e−κ(T−t) − 2κ(T − t)

2k3

)
,

whereas the related formula for the European put option can be retrieved by put-call parity.

The extension of the pricing to American options is less trivial. The variational inequal-

ity approach can be generalized including the new state variable r but it becomes quite tricky.

On the contrary, the generalization of the binomial tree of Cox et al. (1979) is less involved:

Battauz and Rotondi (2019) proposed a quadrinomial tree that models the joint evolution of S

and r within a lattice structure. This allows for a relatively simple and fast evaluation of Ameri-

can claims.

Longstaff and Schwartz (2001) already allowed in their original work for a stochastic interest

rate, which actually changes a little the LSM described in the previous Section. Nevertheless,

the valuation algorithm suffers from the same drawbacks of the constant interest rate framework

as the following subsection shows.

1.4.2 Numerical Investigation

Since the core of the LSM is unchanged, the drawback spotted out in the previous section might

affect the pricing exercise also in this framework. The risk-neutral probability that the option
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is in the money is still pivotal. Going through the proof of Equation (1.15), it turns out that,

in the present framework, the risk-neutral probability evaluated at t = 0 that a call option is in

the money at a given t ∈ (0, T ] is

Q(S(t) > K) = N

 1√
Σ2

0,t

(
ln S0

Kp(0, t) + 1
2Σ2

0,t − qt
) = N(d̃2), (1.17)

where Σ2
0,t is defined in Equation (1.16). At the first steps of the LSM, this probability is again

extremely low if the option starts even a little bit out of the money.

Figure 1.5 shows that also when the short-term interest rate is stochastic, very few paths of a

simulation are expected to be in the money at the first monitoring dates. Without the numerical

correction proposed at the end of Section 1.2.1, the LSM is likely to provide again wrong estimates.
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Figure 1.5: Probability that a call option on S in a stochastic interest rate framework is in
the money at the first eight monitoring dates. Daily monitoring (250 dates for a T = 1 year
maturity).

Table 1.4 shows some numerical examples that match the ones of Table 1.2.

First, it is interesting to notice that prices do not vary much when r0 = 3% with respect to

the ones obtained with a deterministic interest rate r = 3%. This is due to the fact that, in the

stochastic interest rate case, the long-run value is exactly θ = r0; therefore, r is simply expected

to oscillate around r0 = θ in a symmetric (and thus not very relevant) way. Prices are a little bit

higher in the stochastic rate framework to account for the variability in the interest rate itself.

This variability is relevant when r0 is significantly different from θ. When r0 > θ, r is expected to

decrease towards θ: This implies a lower expected drift of S and a smaller call option’s price with

respect to the standard case with a deterministic r = r0. The converse holds true when r0 < θ,

thus delivering a larger call option’s price with respect to the standard model. If the pitfalls of the
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LSM are not corrected as proposed, the prices of the American call options fall constantly below

their European counterpart. If the correction is made, instead, the LSM produces results that are

comparable to the benchmark.

1.5 American Equity Options, Stochastic Volatility

Finally, in this section, I propose a third generalization of the standard Black–Scholes market.

More specifically, I allow for the volatility of the stock price process to be stochastic while setting,

for the sake of simplicity, the risk-free interest rate to be constant. The result is the celebrated

model of stochastic volatility first introduced by the seminal work of Heston (1993).

As in the previous sections, Section 1.5.1 describes the theoretical aspects of the analysis,

whereas Section 1.5.2 contains the related numerical examples.

1.5.1 Theoretical Framework: The Primary Assets and the Deriva-
tives

Assume that the market is arbitrage-free. The instantaneous variance ν of the stock process S

follows a Cox-Ingersoll-Ross (CIR henceforth) process, namely, a mean-reverting, non-negative13

stochastic process first introduced by Cox et al. (1985). In this setting, the market involves two

state variables: the risky asset’s price and the volatility level. Consequently, there are two types of

risks: the standard diffusive risk associated to S and the new volatility risk associated to ν. Since

only the risky stock S and the riskless bond B(t) = ert are traded, the market is not complete

as the investor cannot hedge from the volatility risk. Therefore, the risk neutral measure Q is

not unique. Nevertheless, uniqueness of contingent claims’ prices in this incomplete market is still

attainable by making an assumption on the price of volatility risk. As proposed by Heston (1993),

I assume that the price of volatility risk is proportional to the instantaneous volatility itself and I

denote the constant of proportionality by λν , which becomes another exogenous parameter of the

model. Thanks to this assumption, the risk-neutral measure Q is unique and the processes that

drive the markets solve the following SDEs

dS(t) = (r − q)S(t)dt+
√
ν(t)S(t)dWQ

S (t), S(0) = S0

dν(t) =
[
κ
(
ν∞ − ν(t)

)
− λνν(t)

]
dt+ ξ

√
ν(t)dWQ

ν (t), ν(0) = ν0
(1.18)

13With respect to the specification of ν(t) in Equation (1.18), if the so-called Feller condition holds
true, namely if 2κθ > ξ2, ν(t) is also strictly positive almost surely.
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with 〈dWQ
S ,W

Q
ν 〉 = ρdt. According to standard notation, the new parameters in Equation (1.18)

represent: κ the speed of mean-reversion on the volatility, ν∞ its long-run mean, ξ the volatility

of the volatility process (the so called “vol of vol”), and ρ ∈ [−1, 1] the correlation between the

Brownian shocks on S and ν. Although ν(t) admits no explicit solution14, the one for S(t) in

Equation (1.18) is

S(t) = S0 exp

(r − q − ν(t)
2

)
t+

√
ν(t)WQ

S (t)

 , t ≥ 0. (1.19)

As before, the contribution of the drift of S,
(
r − q − ν(t)

2

)
t prevails over its diffusive part√

ν(t)WQ
S (t) and it is still the main driver of its expected future behaviour.

The price at t of European and American options are still given by the risk-neutral expected

values in Equation (1.3) and (1.4), where now the dynamics of S is shown by Equation (1.19).

For European options, the closed-form pricing formula are derived in the first section of Heston (1993).

For the European call option, namely when the payoff function is f(S(T )) = (S(T )−K)+, it holds

at any t ∈ [0, T ]

πEH(t) = S(t)e−q(T−t)P1 −Ke−r(T−t)P2 (1.20)

with

Pj = 1
2 + 1

π

∫ +∞

0
Re
[ 1
ix

exp
(
ix
(
S(t)− ln(K)

)
+ Cj(T − t, x) +Dj(T − t, x)ν(t)

)]
dx, j = 1, 2,

(1.21)

where i is the imaginary unit, Re[·] the real part operator and, for j = 1, 2,

Cj(τ, x) = (r − q)xiτ + κν∞
ξ2

(bj − ρξxi+ dj(x))τ − 2ln
(

1− gj(x)edj(x)τ

1− gj(x)

) ,
Dj(τ, x) = bj − ρξxi+ dj(x)

ξ2 ,

gj(x) = bj − ρξxi+ dj(x)
bj − ρξxi− dj(x) ,

dj(x) =
√

(ρξxi− bj)2 − ξ2(2ujxi− x2),

u1 = 0.5, u2 = −0.5, b1 = κ+ λνν − ρξ, b2 = κ+ λ.

The analogous formula for the European put option can be retrieved by put-call parity.

The pricing of American option within this stochastic volatility framework is quite challenging.

This is precisely one of the cases in which the LSM is of great help as, on the contrary, one can
14As effectively explained in Subsection 3.4 of Glasserman (2003), a CIR process is not explicitly

solvable; nevertheless, it can be shown that it is distributed, up to a scale factor, as a non-central chi-
squared random variable.
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easily simulate the paths of Equation (1.18). The benchmark I will compare the performance of

the modified LSM to is a finite difference approach to the free boundary problem for the American

call option (see, e.g., Pascucci (2008) on this approach). The following numerical investigation

focuses on the American call option in the Heston model; analogous results can be retrieved by

the put–call symmetry for American options within the Heston model described by Battauz et al.

(2014).

1.5.2 Numerical Investigation

By analogy with the standard Black–Scholes–Merton formula and as carefully described by Heston (1993),

P2 in Equation (1.20) represents the risk-neutral probability that an European call option on S

closes in the money. As in the previous cases, this probability depends heavily on the drift of S,(
r − q − ν(t)

2

)
t, and it is increasing with respect to the risk-free interest rate and decreasing with

respect to the dividend yield.

Figure 1.6 provides a graphical illustration of this intuition. Notice that, as in the previous

cases, at the first monitoring dates, very few paths are expected to be in the money if the option is

even mildly out of the money at inception. As before, this worsens when the drift of the underlying

becomes negative.
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Figure 1.6: Probability that a call option on S in within the Heston model is in the money at
the first eight monitoring dates. Daily monitoring (250 dates for a T = 1 year maturity).

Table 1.5 shows some numerical examples in the spirit of the previous sections. First, prices

of the options are a little bit larger here with respect to the standard model due to the positive

volatility risk premium. Then, the LSM fails in providing correct estimates in the very same cases

of the standard model. Nevertheless, the correction is still effective.
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1.6 Conclusions

The Least Square Methods proposed by Longstaff and Schwartz (2001) is one of the most widely

used algorithms to price American equity options. I quantified and corrected a sizeable bias

that could arise if the regression exploited for the approximation of the continuation value of the

option is ill-posed. I showed that this might happen when the option is even mildly out of the

money at inception and when the underlying is not likely to go back into the in the money region.

For American call options, this is likely to happen when the risk-free interest rate is low and the

dividend yield is higher within the all the most commons financial market models.
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Table 1.2: Numerical results, Black–Scholes–Merton model. S0 = 100, T = 1, σ = 10%, 150
possible exercise dates per year. πEBS(0): initial price of the European call option computed with
the Black–Scholes–Merton formula. πACRR(0): initial price of the American call option computed
with the Cox–Ross–Rubinstein binomial tree (average of the price obtained with 250 and 251
steps). πALSM(0)∗ (πALSM(0)): initial price of the American call option computed with the LSM not
corrected (corrected) for the pitfalls previously described; the first six Laguerre polynomials are
used for the regression: Lm(x) = e

x
2
m!

dm

dxm (xme−x), with m = 0, · · · , 6; NSim = 105, standard
errors obtained by 20 independent MC simulations. MC estimates that do not include the
benchmark value within the confidence interval are denoted by ?.

K/S0 r q πEBS(0) πACRR(0) πA˜LSM(0)∗ s.e. πA˜LSM(0) s.e.

102% 5% 4% 3.3955 3.3965 3.3953 (0.0031) 3.3942 (0.0026)
6% 2.5558 2.6513 2.6504 (0.0023) 2.6489 (0.0035)
8% 1.8765 2.1129 2.1133 (0.0034) 2.0134 (0.0021)

3% 4% 2.6074 2.6881 2.6879 (0.0035) 2.6900 (0.0043)
6% 1.9144 2.1376 2.1369 (0.0027) 2.1384 (0.0018)
8% 1.3694 1.7149 1.7096 ? (0.0049) 1.7118 (0.0032)

1% 4% 1.9531 2.1628 2.1602 (0.0032) 2.1609 (0.0040)
6% 1.3971 1.7324 1.7343 (0.0025) 1.7248 (0.0041)
8% 0.9724 1.3973 1.3896 ? (0.0052) 1.3976 (0.0027)

105% 5% 4% 2.2971 2.2983 1.7515 ? (0.3618) 2.2988 (0.0036)
6% 1.6672 1.7209 1.4135 ? (0.4398) 1.7193 (0.0019)
8% 1.1782 1.3048 0.9535 ? (0.3175) 1.3045 (0.0024)

3% 4% 1.7009 1.7468 1.0236 ? (0.3757) 1.7494 (0.0057)
6% 1.2020 1.3222 0.9634 ? (0.2135) 1.3204 (0.0025)
8% 0.8262 1.0018 0.7122 ? (0.2588) 1.0093 (0.0029)

1% 4% 1.2263 1.3399 0.8669 ? (0.2495) 1.3375 (0.0038)
6% 0.8429 1.0140 0.7095 ? (0.2236) 1.0124 (0.0028)
8% 0.5629 0.7667 0.3622 ? (0.2486) 0.7415 (0.0032)

108% 5% 4% 1.4930 1.4930 1.1524 ? (0.2163) 1.4921 (0.0037)
6% 1.0433 1.0719 0.8451 ? (0.2461) 1.0695 (0.0039)
8% 0.7088 0.7741 0.5428 ? (0.1856) 0.7745 (0.0026)

3% 4% 1.0644 1.0890 0.6342 ? (0.3154) 1.0894 (0.0032)
6% 0.7231 0.7853 0.5526 ? (0.2866) 0.7841 (0.0019)
8% 0.4771 0.5635 0.3623 ? (0.1849) 0.5626 (0.0032)

1% 4% 0.7377 0.7968 0.4255 ? (0.2121) 0.7965 (0.0025)
6% 0.4868 0.5711 0.3574 ? (0.1937) 0.5723 (0.0021)
8% 0.3117 0.4066 0.2114 ? (0.0984) 0.4073 (0.0024)
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Table 1.3: Numerical results, jump-diffusion. S0 = 100, T = 1, σ = 10%, a = 0, b = 1%,
λ = 1; 150 possible exercise dates per year. πEJD(0): initial price of the European call option
computed with Equation (1.10). πAFD(0): initial price of the American call option computed
solving the free boundary problem by finite differences. πA˜LSM(0)∗ (πA˜LSM(0)): initial price of
the American call option computed with the LSM not corrected (corrected) for the pitfalls
previously described; the regression involves the first six Laguerre polynomials for the values
of the immediate exercise payoff; NSim = 105, standard errors obtained by 20 independent
MC simulations. MC estimates that do not include the benchmark value within the confidence
interval are denoted by ?.

K/S0 r q πEJD(0) πAFD(0) πA˜LSM(0)∗ s.e. πA˜LSM(0) s.e.

102% 5% 4% 2.7297 2.7321 2.7301 (0.0025) 2.7312 (0.0031)
6% 2.1466 2.2184 2.2158 (0.0034) 2.2175 (0.0062)
8% 1.6861 1.9121 1.9134 (0.0028) 1.9103 (0.0043)

3% 4% 2.1900 2.2448 2.2442 (0.0033) 2.2456 (0.0037)
6% 1.7201 1.9289 1.9293 (0.0024) 1.9301 (0.0024)
8% 1.3339 1.7143 1.6887 ? (0.0206) 1.7142 (0.0026)

1% 4% 1.7549 1.9461 1.9436 (0.0025) 1.9458 (0.0019)
6% 1.3608 1.7283 1.7274 (0.0031) 1.7296 (0.0032)
8% 1.0425 1.5446 1.5101 ? (0.0329) 1.5439 (0.0027)

105% 5% 4% 1.9863 1.9878 1.9857 (0.0034) 1.9885 (0.0024)
6% 1.5511 1.5982 1.5998 (0.0026) 1.5997 (0.0036)
8% 1.1962 1.3516 1.3519 (0.0012) 1.3489 (0.0042)

3% 4% 1.5824 1.6182 1.6189 (0.0032) 1.6168 (0.0037)
6% 1.2204 1.3640 1.3625 (0.0048) 1.3638 (0.0031)
8% 0.9304 1.1968 1.1789 ? (0.0107) 1.1999 (0.0048)

1% 4% 1.2450 1.3766 1.3739 (0.0027) 1.3748 (0.0028)
6% 0.9492 1.2068 1.2041 (0.0029) 1.2045 (0.0026)
8% 0.7162 1.0671 0.6845 ? (0.0714) 1.0701 (0.0052)

108% 5% 4% 1.4367 1.4376 1.1214 ? (0.4147) 1.4369 (0.0028)
6% 1.1027 1.1332 0.8427 ? (0.2845) 1.1327 (0.0014)
8% 0.8370 0.9414 0.6854 ? (0.2656) 0.9402 (0.0023)

3% 4% 1.1249 1.1480 0.9697 ? (0.3274) 1.1459 (0.0043)
6% 0.8539 0.9503 0.6369 ? (0.1667) 0.9489 (0.0034)
8% 0.6419 0.8234 0.4214 ? (0.2546) 0.8251 (0.0037)

1% 4% 0.8711 0.9595 0.6214 ? (0.2652) 0.9602 (0.0026)
6% 0.6549 0.8306 0.4886 ? (0.2145) 0.8295 (0.0028)
8% 0.4882 0.7265 0.3215 ? (0.1341) 0.7255 (0.0017)



American Options on high dividend securities 27

Table 1.4: Numerical results, Vasicek model. S0 = 100, T = 1, σ = 10%, σr = 1%, κ = 1,
θ = 3%; 150 possible exercise dates per year. πE

B̃S
(0): initial price of the European call option

computed with Equation (1.15). πABR(0): initial price of the American call option computed
with the quadrinomial tree of Battauz and Rotondi (2019) (average of the price obtained with
150 and 151 steps). πA˜LSM(0)∗ (πA˜LSM(0)): initial price of the American call option computed with
the LSM not corrected (corrected) for the pitfalls previously described; the regression involves
the first four Laguerre polynomials for the values of the immediate exercise payoff and the first
four Laguerre polynomials for the current value of r; NSim = 105, standard errors obtained by
20 independent MC simulations. MC estimates that do not include the benchmark value within
the confidence interval are denoted by ?.

K/S0 r0 q πE
B̃S

(0) πABR(0) πA˜LSM(0)∗ s.e. πA˜LSM(0) s.e.

102% 5% 4% 3.1074 3.1424 3.1433 (0.0021) 3.1412 (0.0036)
6% 2.3141 2.4910 2.4901 (0.0025) 2.4896 (0.0032)
8% 1.6847 1.9970 1.9958 (0.0036) 1.9982 (0.0023)

3% 4% 2.6170 2.7026 2.7011 (0.0029) 2.7028 (0.0017)
6% 1.9232 2.1473 2.1452 (0.0039) 2.1464 (0.0026)
8% 1.3772 1.7213 1.7195 (0.0036) 1.7215 (0.0019)

1% 4% 2.1930 2.3223 2.3205 (0.0027) 2.3231 (0.0030)
6% 1.5858 1.8467 1.8452 (0.0031) 1.8450 (0.0022)
8% 1.1160 1.4803 1.4764 ? (0.0032) 1.4816 (0.0020)

105% 5% 4% 2.0746 2.0950 1.4113 ? (0.1999) 2.0941 (0.0030)
6% 1.4935 1.5882 1.0263 ? (0.2665) 1.5896 (0.0035)
8% 1.0461 1.2088 0.7596 ? (0.2133) 1.2092 (0.0031)

3% 4% 1.7116 1.7553 1.2524 ? (0.2932) 1.7569 (0.0051)
6% 1.2111 1.3275 0.8142 ? (0.3120) 1.3288 (0.0036)
8% 0.8331 1.0053 0.6368 ? (0.2743) 1.0033 (0.0042)

1% 4% 1.3966 1.4653 0.9235 ? (0.2293) 1.4658 (0.0036)
6% 0.9709 1.1037 0.8097 ? (0.1773) 1.1015 (0.0027)
8% 0.6557 0.8312 0.4521 ? (0.1884) 0.8323 (0.0017)

108% 5% 4% 1.3303 1.3430 0.9593 ? (0.2273) 1.3411 (0.0027)
6% 0.9213 0.9747 0.6695 ? (0.2874) 0.9749 (0.0020)
8% 0.6211 0.7055 0.4241 ? (0.2132) 0.7063 (0.0031)

3% 4% 1.0723 1.0966 0.7946 ? (0.1537) 1.0967 (0.0037)
6% 0.7297 0.7910 0.4215 ? (0.1632) 0.7923 (0.0021)
8% 0.4821 0.5675 0.2559 ? (0.1241) 0.5670 (0.0023)

1% 4% 0.8538 0.8903 0.4178 ? (0.1896) 0.8914 (0.0025)
6% 0.5703 0.6371 0.3558 ? (0.1181) 0.6352 (0.0028)
8% 0.3695 0.4528 0.2036 ? (0.1087) 0.4531 (0.0012)
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Table 1.5: Numerical results, Heston model. S0 = 100, T = 1, ν0 = 0.01, ξ = 10%, κ = 1,
ν∞ = 0.01, λν = 10%; 150 possible exercise dates per year. πEH(0): initial price of the European
call option computed with Equation (1.20). πABR(0): initial price of the American call option
computed solving the free boundary problem by finite differences. πA˜LSM(0)∗ (πA˜LSM(0)): initial
price of the American call option computed with the LSM not corrected (corrected) for the
pitfalls previously described; the regression involves the first four Laguerre polynomials for the
values of the immediate exercise payoff and the first four Laguerre polynomials for the current
value of ν; NSim = 105, standard errors obtained by 20 independent MC simulations. MC
estimates that do not include the benchmark value within the confidence interval are denoted
by ?.

K/S0 r q πEH(0) πAFD(0) πA˜LSM(0)∗ s.e. πA˜LSM(0) s.e.

102% 5% 4% 3.2587 3.2588 3.2530 (0.0065) 3.2580 (0.0036)
6% 2.3580 2.4389 2.4401 (0.0042) 2.4405 (0.0039)
8% 1.6416 1.8626 1.8601 (0.0028) 1.8647 (0.0038)

3% 4% 2.4057 2.4741 2.4809 (0.0070) 2.4762 (0.0024)
6% 1.6748 1.8841 1.8802 (0.0045) 1.8890 (0.0040)
8% 1.1198 1.4607 1.4572? (0.0021) 1.4589 (0.0047)

1% 4% 1.7087 1.9062 1.9063 (0.0023) 1.9058 (0.0036)
6% 1.1424 1.4746 1.4736 (0.0013) 1.4759 (0.0028)
8% 0.7326 1.1628 1.1604? (0.0017) 1.1597 (0.0053)

105% 5% 4% 2.0737 2.0738 1.4938? (0.3181) 2.0744 (0.0029)
6% 1.4186 1.4820 0.6268? (0.2667) 1.4835 (0.0032)
8% 0.9316 1.0361 0.5911? (0.1911) 1.0395 (0.0039)

3% 4% 1.4473 1.4820 0.6037? (0.2722) 1.4796 (0.0035)
6% 0.9504 1.0500 0.5094? (0.1900) 1.0524 (0.0027)
8% 0.5976 0.7486 0.4932? (0.1214) 0.7471 (0.0024)

1% 4% 0.9697 1.0643 0.5353? (0.1909) 1.0644 (0.0023)
6% 0.6107 0.7574 0.5181? (0.1281) 0.7568 (0.0017)
8% 0.3686 0.5440 0.2180? (0.1039) 0.5436 (0.0021)

108% 5% 4% 1.2346 1.2347 0.3744? (0.1680) 1.2336 (0.0029)
6% 0.7975 0.8168 0.2408? (0.1277) 0.8176 (0.0035)
8% 0.4940 0.5408 0.2372? (0.0880) 0.5400 (0.0024)

3% 4% 0.8136 0.8304 0.2964? (0.1243) 0.8329 (0,0027)
6% 0.5040 0.5488 0.2497? (0.0823) 0.5508 (0.0028)
8% 0.2992 0.3616 0.1409? (0.0534) 0.3638 (0.0020)

1% 4% 0.5142 0.5570 0.4261? (0.1136) 0.5544 (0.0023)
6% 0.3053 0.3664 0.2439? (0.0935) 0.3691 (0.0018)
8% 0.1736 0.2410 0.1273? (0.0636) 0.2399 (0.0015)
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2.1 Introduction

In1 an arbitrage-free financial market the role of the short-term interest rate is twofold: on one

hand it represents the rate at which the equity price appreciates; on the other hand it drives the

locally risk-free asset and the related discount rate. Therefore, neglecting the variability of short-

term interest rates may induce significant mispricing on both interest rates and equity derivatives.

This issue is particularly relevant when derivatives are path-dependent and therefore sensitive to

the entire path of the short-term interest rate, and not just to its expected value at maturity.

American equity call and put options, due to the optionality of their exercise policy, fall within

this category. In fact, the holder of an American option has to timely chose when to cash in by

exercising the option, balancing the effects from the discount rate and from the expected rate of

return of the underlying asset. When both of these effects depend on a stochastic process, the

valuation of the option becomes tricky. Our paper develops an extensive analysis of American call

and put options written on equity with constant volatility in a stochastic interest rate framework

of Vasicek type (see Vasicek (1977)). We employ the Vasicek mean-reverting model for the interest

rate, because it allows the interest rate to assume mildly negative values, as the ones documented

in recent years in the Eurozone2. The feasibility of negative interest rates within the Vasicek

model, once a source of major criticism, has very recently become the reason of renewed interest in

the model itself because of the aforementioned market circumstances. We also allow for a non-zero

constant correlation between the Brownian innovations of the interest rate and the equity price

processes. A positive (resp. negative) correlation between the interest rate and the equity price

corresponds to a negative (resp. positive) correlation between the bond price and the equity price.

After 2000 the market observed persistent negative stock-bond correlation as shown by Connolly

et al. (2005). Perego and Vermeulen (2016) find that the correlation between equities and bonds

is now consistently negative also in the Eurozone but for Southern Europe. Thus, in line with the

recent empirical evidence, in our numerical examples we consider a positive correlation between

the interest rate and the equity price.

The literature on American equity options has so far focused on alternative stochastic interest

rates models, such as the CIR one, based on the seminal work of Cox et al. (1885) (See Medvedev

and Scaillet (2010) and Boyarchenko and Levendorskǐi (2013)). Our paper is, to our knowledge,

the first that addresses the evaluation of American equity options in a stochastic interest rate

framework of Vasicek type, allowing for the possibility of negative interest rates (see Detemple

1This is a joint work with Anna Battauz.
2It is widely accepted to proxy the risk-free rate in Europe by the recently negative rates of German

bonds.
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(2014) for an exhaustive review of the state of the art.3)

We contribute to the literature by offering an intuitive and effective lattice method to compute

the price,the optimal exercise policies and the related free boundaries of American equity options

in the presence of market risk and interest rate risk. In the spirit of Cox et al. (1979), building

on Nelson and Ramaswamy (1990), who provide a tree approximation for an univariate process,

we construct a discrete joint approximation for the both the equity price and the interest rate

processes. Hahn and Dyer (2008) develop a similar discretization for a correlated two-dimensional

mean reverting process representing the price of two correlated commodities and they use it to

evaluate the value of an oil and gas switching option. Our paper is different, as the mean reverting

stochastic interest rate process enters the risk-neutral drift of our equity price, that has constant

volatility and correlates with the interest rate. In this framework, we provide a throughout investi-

gation of American equity call and put options and their free boundaries. Our findings contribute

to the literature on American options with stochastic interest rates, that usually restricts on non-

negative interest rates. In particular, we unveil two novel significant features of the free boundary

that appear when the stochastic interest rate may take mildly negative values.

First, we show that for American put (resp. call) options the early exercise region is not always

downward (resp. upward) connected. The early exercise region is downward (resp. upward) con-

nected if optimal exercise at t of the put (resp. call) option for some underlying equity price

implies optimal exercise at t for all lower (resp. greater) values of the underlying equity price. In

a stochastic interest rate framework Detemple (2014) retrieves the free boundary by a discretiza-

tion of an integral equation for the early exercise premium decomposition. For American call

options he argues that the exercise region is connected in the upward direction. Our results show

that this property holds true if interest rates are always non-negative, but may fail if the interest

rates’ positivity assumption is not satisfied. In this case, we document the existence of a non

standard double continuation region first described by Battauz et al. (2015) in a constant interest

rate framework. In particular, a non-standard additional continuation region appears where the

3Fabozzi et al. (2016) provide a new recent quasi-analytic method to price and hedge American options
on a lognormal asset with constant interest rate. Jin et al. (2013) introduce a computationally effective
pricing algorithm for American options in a multifactor setting. First attempts to evaluate the impact
of stochastic interest rates on American derivatives date back to Amin and Bodurtha Jr. (1995) and Ho
et al. (1997). Nevertheless, both of them proxy American with Bermudan options with few exercise dates.
Although this allows them to obtain closed form solutions for both the price of the options and their
optimal exercise policy, the approximation of a continuum of exercise dates by just a couple of possible
exercise dates leads to a heavy mispricing of the options and provides no accurate insight on the free
boundary.
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option is most deeply in the money and the underlying pays a negative dividend.4 Under these

circumstances a mildly negative interest rate may lead to optimal postponment of the deeply in

the money option as the holder is confident the option will still be in the money later and prefers

to delay the cash-in.

Second, we show that early exercise may be optimal for an American call option even if the under-

lying equity does not pay any dividend. This happens when a mildly negative initial interest rate

causes the underlying equity’s drift to be negative as well, pushing the underlying equity towards

the out of the money region. In this case, immediate exercise turns out to be optimal as soon as

the option is sufficiently in the money. The critical equity price that triggers optimal early exercise

is increasing with respect to the interest rate value, as the higher the interest rate, the higher the

underlying equity drift, the lower the risk of ending up in the out of the money region for the call op-

tion, and thus the higher has to be the immediate payoff to be optimally exercised before maturity.

The remaining of the paper is organized as follows: in Section 2 we introduce the financial

market and develop its lattice-based discretization, that we call quadrinomial tree. In Section

3 we deal with American put and call equity options in our stochastic interest rate enviroment,

charachterizing their optimal exercise policies and the main analytical features of their free bound-

aries. We also provide numerical pricing results for the discretized market via our quadrinomial

tree, showing the pricing differences from the standard constant interest rate case, and providing

a graphical characterization of the free boundaries that confirm their analytical features in the

continuous-time setting. Section 4 concludes. All proofs are in the Appendix.

2.2 The market and the Quadrinomial Tree

2.2.1 The Assets in the Market

Consider a stylized financial market in a continuous time framework with investment horizon

T > 0. A risky security S(t) is traded. Following the seminal work of Vasicek (1977), we assume

a mean-reverting stochastic process for the prevailing short term interest rate on the market r(t).

We allow for a non zero correlation between the innovations of S and r. A market player can invest

in the short-term interest rate, which is locally risk-free, through the money market account B(t).

The dynamics of the risky equity price, of the short-term interest rate and of the money market

4A negative dividend can be interpreted as a storage cost for commodities (e.g. gold or silver) or
as the result of the interplay of domestic and foreign interest rates when evaluating options on foreign
equities (see Battauz et al. (2018), (2015)).
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account under the risk-neutral measure Q are:

dS(t)
S(t) = (r(t)− q)dt+ σSdWQ

S (t)

dr(t) = κ
(
θ − r(t)

)
dt+ σrdWQ

r (t)

dB(t) = r(t)B(t)dt

(2.1)

with 〈dWQ
S (t),dWQ

r (t)〉 = ρdt and given some initial conditions S(0) = S0, r(0) = r0 and B(0) = 1.

The parameter q is the constant annual dividend rate of the equity, σS > 0 the volatility of the

equity price, κ the speed of mean-reversion of the short-term interest rate, θ its long-run mean,

σr > 0 the volatility of the short-term interest rate and ρ ∈ [−1, 1] the correlation between the

Brownian shocks on S and r.

The stochastic differential equations (SDEs) of System (2.1) can be rewritten equivalently in the

following vectorial specification: 
dS(t)
S(t) = µSdt+ νS · dWQ(t)

dr(t) = µrdt+ νr · dWQ(t)
(2.2)

where µS = (r(t) − q), µr = κ(θ − r(t)), νS = [σS 0], νr = [σrρ σr
√

1− ρ2], WQ(t) =[
WQ

1 (t) WQ
2 (t)

]′
is a standard two-dimensional Brownian motion and · is the matrix product.

The explicit solution to the System (2.1) is

S(t) = S0 exp

∫ t

0
r(s)ds−

(
q + σ2

S

2

)
t+ σSWS(t)


r(t) = r0e

−κt + θ(1− e−κt) + σr

∫ t

0
e−κ(t−s)dWr(s)

B(t) = exp
[∫ t

0
r(s)ds

] (2.3)

The zero-coupon bond with maturity T pays 1 at its holder at T and its price at t ∈ (0, T ) is

labelled with p(t, T ). By no arbitrage valuation, we have

p(t, T ) = EQ

 1
B(T )

∣∣∣∣∣Ft
 = eA(t,T )−B(t,T )r(t), (2.4)

where the deterministic functions A(t, T ) and B(t, T ) are defined in Section 3.2.1 of Brigo and

Mercurio (2007).

In this fairly general pricing framework, the price of European put and call options on S can

be derived in closed formulae. Indeed, exploiting a change of numèraire as described in Geman

et al. (1995), it is possible to obtain the following:
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Proposition 2.1 (Value of the European put/call equity option) In the financial market

specified in (2.1), the price at t ∈ [0, T ] of an European put option on S with strike K is equal to

πputE (t, S(t), r(t)) = Kp(t, T )N(−d̃2)− S(t)e−q(T−t)N(−d̃1) (2.5)

with5:

d̃1 = 1√
Σ2
t,T

(
ln S(t)
Kp(t, T ) + 1

2Σ2
t,T − q(T − t)

)
,

d̃2 = d̃1 −
√

Σ2
t,T ,

Σ2
t,T = σ2

S(T − t) + 2σSσrρ
(
−1 + e−κ(T−t) + κ(T − t)

k2

)
+

−σ2
r

(
3 + e−2κ(T−t) − 4e−κ(T−t) − 2κ(T − t)

2k3

)
.

The price at t ∈ [0, T ] of an European call option on S with strike K is equal to

πcallE (t, S(t), r(t)) = S(t)e−q(T−t)N(d̃1)−Kp(t, T )N(d̃2). (2.6)

Proof See Appendix 2.B. �

Within this market model, Bernard et al. (2008) price European barrier options by properly

approximating the hitting time of the equity price of the exogenously given barrier. Unfortunately

the same approach does not work when the derivative is of American style, as the barrier has to be

endogenously determined. For this reason we develop in the next session the lattice discretization

of our market that will allow us to compute the American free boundaries.

2.2.2 The Quadrinomial Tree

In their seminal work, Cox et al. (1979) show how to discretize a lognormal risky security and

how to easily exploit such a binomial discretization in order to evaluate derivatives written on

the primary asset. Embedding this geometric Brownian motion case into a more general class of

diffusion processes, Nelson and Ramaswamy (1990) propose a one-dimensional scheme to properly

define a binomial process that approximates a one-dimensional diffusion process. They do so by

matching the diffunsion’s instantaneous drift and its variance and imposing a recombining structure

to their discretized process.

5Notice that the current value of the interest rate r(t) enters the current price of the zero-coupon bond
p(t, T ) in d̃1 and d̃2.
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The discretization via a tree/lattice structure of correlated processes, possibly of different kind,

is more challenging. Gamba and Trigeorgis (2007) model two or more correlated geometric Brown-

ian motion representing the price processes of different risky assets exploiting a log-transformation

of the processes first and then an orthogonal decomposition of the shocks. In this way they are

able to efficiently price derivatives on five correlated assets. Moving away from lognormality, Hahn

and Dyer (2008) construct a quadrinomial lattice to approximate two mean-reverting processes in

order to model two correlated one-factor commodity prices and evaluate derivatives on them.

We propose here a quadrinomial tree to jointly model a mean-reverting process for the short

term interest rate as suggested first by Vasicek (1977) and the process for the risky equity’s price

with constant volatility and the drift that embeds the stochastic interest rate as in Equation (2.1).

Non constant short-term interest rates are surely more suitable from an option pricing perspective

and an Ornstein–Uhlenbeck process enables us to investigate some interesting features of options

when the discount rate becomes slightly negative, as documented in the Euro zone in recent years.

We first show how to build the discretization of the processes (S(t), r(t)) described by (2.1)

and then we address the convergence issue of the discretization itself.

We apply Itô’s Lemma to Y (t) := ln(S(t)) and we get dY (t) = µY dt+ σSdWS(t)

dr(t) = µrdt+ σrdWr(t)
(2.7)

where µY :=
(
r(t)− q − σ2

S

2

)
and µr := κ(θ − r(t)). Again, the vectorial version of (2.2) is:

d

 Y (t)

r(t)

 =


(
r(t)− q − σ2

S

2

)
κ(θ − r(t))

dt+

 σS 0

σrρ σr
√

1− ρ2

 · dW (t). (2.8)

We refer here to the general technique of Section 11.3 of Stroock and Varadhan (1997) exploiting

the very convenient notation introduced in Section 3.2.1 of Prigent (2003). For the ease of the

reader we recall here their template. Consider the following bivariate SDE:

dX(t) = µ(x, t)dt+ σ(x, t) · dW (t) (2.9)

where X(t)t≥0 = (Y (t), r(t))t≥0, W (t) is a standard two-dimensional Brownian motion, µ(x, t) :

(R×R+)×R+ → R2, σ(x, t) : (R×R+)×R+ → R2×2 and an initial condition X(0) = (x0, r0) is

given.

Consider a discrete uniform partition of the time interval [0, T ] like
{
iTn , i = 1, . . . , n

}
and define

∆t := T
n . For each n consider a bivariate stochastic process {Xn} on [0, T ] which is constant
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between the nodes of the partition. At each node, both of the components of Xn jump up (or

down) a certain distance with a certain probability. The sizes of the jumps and the probabilities

are allowed to be time-dependent and state-contingent. Since after any jump each component of

Xn can assume two new different values, there will be globally four possible outcomes after each

jump. For sake of clarity, fix n and consider the generic i-th step of the bivariate discrete process

Xi = (Yi, ri). In the following step, the process can assume only one of the following four values:

(Yi+1, ri+1) =



(Yi + ∆Y +, ri + ∆r+) with probability quu
(Yi + ∆Y +, ri + ∆r−) with probability qud
(Yi + ∆Y −, ri + ∆r+) with probability qdu
(Yi + ∆Y −, ri + ∆r−) with probability qdd

(2.10)

where ∆Y ±,∆r± are the jumping increments and the four transition probabilities are both time-

dependent and state-contingent. Figure (2.1) provides a graphical intuition for the bivariate bino-

mial discretization over one step.

Figure 2.1: One step of the bivariate
binomial discretization.

Figure 2.2: Two steps of the bivariate
binomial discretization.

Globally, there are 8 parameters to pin down at each step: ∆Y ±, ∆r±, quu, qud, qdu and qdd.

In order to obtain a discretization that converges in distribution to the solution of (2.9), we need

to match the first two moments of Y (t) and r(t) as well as their cross variation. In this way we

impose five conditions on the eight parameters we need to determine. One more constraint has

to be imposed on the four transition probabilities that need to sum up to one. Finally, we may

want to impose a recombining structure to our quadrinomial tree in order to preserve tractability.

Setting ∆Y − = −∆Y + := ∆Y and ∆r− = −∆r+ := ∆r makes the number of different outcomes
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of our discretization grow quadratically (and non exponentially) in the number of steps. Figure

(2.2) provides a graphical intuition of this trick: starting from (Y0, r0), after two steps the bivari-

ate binomial process may assume nine possible values, namely all the possible ordered couples of

{Y0 − 2∆Y, Y0, Y0 + 2∆Y } and of {r0 − 2∆r, r0, r0 + 2∆r}. Thus, for a generic number of time

steps n, the final possible outcomes of the discretization are (n+1)2 rather than 2n+1, the number

of possible outcomes along a non recombining tree.

We now derive the explicit expressions of the increments and of the transition probabilities of our

discretization for the bivariate SDEs (2.2).

Matching the first two moments of Y (t) and S(t) as well as their cross-variation, neglecting the

∆t-second order terms, imposing the proper constraint on the probabilities and imposing a recom-

bining tree as explained above lead to the following system of eight equations in eight unknowns:

Et[∆Y ] = (quu + qud)∆Y + + (qdu + qdd)∆Y −
!= µY ∆t

Et[∆r] = (quu + qdu)∆r+ + (qud + qdd)∆r−
!= µr∆t

Et[∆Y 2] = (quu + qud)(∆Y +)2 + (qdu + qdd)(∆Y −)2 != σ2
S∆t

Et[∆r2] = (quu + qdu)(∆r+)2 + (qud + qdd)(∆r−)2 != σ2
r∆t

Et[∆Y∆r] = quu∆Y +∆r+ + qud∆Y +∆r−+

+qdu∆Y −∆r+ + qdd∆Y −∆r− != ρσSσr∆t

quu + qud + qdu + qdd
!= 1

∆Y + != −∆Y −

∆r+ != −∆r−

Imposing ∆Y + > ∆Y − and ∆r+ > ∆r− we get:

∆Y + = σS
√

∆t = −∆Y − := ∆Y

∆r+ = σr
√

∆t = −∆r− := ∆r
(2.11)

quu = µY µr∆t+ µY ∆r + µr∆Y + (1 + ρ)σrσS
4σrσS

qud = −µY µr∆t+ µY ∆r − µr∆Y + (1− ρ)σrσS
4σrσS

qdu = −µY µr∆t− µY ∆r + µr∆Y + (1− ρ)σrσS
4σrσS

qdd = µY µr∆t− µY ∆r − µr∆Y + (1 + ρ)σrσS
4σrσS

.

(2.12)

As noted in Nelson and Ramaswamy (1990), the four transition probabilities are not necessarily

positive. In the limit, namely as ∆t→ 0, we have ∆Y,∆r → 0 and, therefore, quu, qdd → (1+ρ)
4 > 0

and qud, qdu → (1−ρ)
4 > 0. For ∆t > 0, some of the four probabilities in (2.12) may become non-

positive. In Appendix 2.A we derive conditions leading to four non-negative probabilities in (2.12).

Summing up, negative probabilities arise for very extreme values of r, namely for values very far
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from the interest rate’s long term mean. If r is way below zero and far from θ, further downward

movements might are unlikely. If such an already unlikely movement is against the sign of the

correlation between r and S, a negative probability might arise. Nevertheless, the model remains

still arbitrage-free as this is a minor flaw of the numerical procedure.

Once we obtained a discretization of (2.2), we can map back the rate of return Y (t) to the

level S(t) of the equity. In this way we have a lattice discretization of the solution of (2.2) and we

name this discretization quadrinomial tree.

The following theorem shows that our quadrinomial tree converges in distribution to the solution

of (2.2).

Theorem 2.2 (Convergence of the quadrinomial tree) The bivariate discrete process (Xi)i
defined in (2.10) with the parameters in (2.11) and (2.12) converges in distribution to X(t) =

(Y (t), r(t)).

Proof See Appendix 2.B. �

2.3 American Options

In this section we focus on American equity put (resp. call) options, whose final payoff is ϕ(S) :=

(K − S)+ (resp. ϕ(S) := (S − K)+). The value at t ≤ T of the American equity option with

maturity T is:

V (t) = ess sup
t≤τ≤T

EQ

 B(t)
B(τ)ϕ(S(τ))

∣∣∣∣∣Ft


= ess sup
t≤τ≤T

EQ
[
e
−
∫ τ
t
r(s)ds

ϕ(S(τ))
∣∣∣∣Ft

]
(2.13)

where τ ranges among all possible stopping times (see for instance Chapter 21 in Björk (2009)).

It is well known that Equation (2.13) admits no explicit formulation even in the standard Black

and Scholes market. In our case, since r is stochastic and not independent of S, we cannot

split the conditional expected value in (2.13) into two simpler separate ones. Nevertheless, the

following proposition shows that the value of an American option V (t) can be expressed as a

deterministic function of time t (or, equivalently, of time to maturity T − t) and of the current

value of both the underlying asset S = S(t) and the short term interest rate r = r(t). Moreover,

this deterministic function inherits the same monotonicity properties with respect to t and S

variables as in the constant interest rate enviroment. We also prove that the American equity put

option is decreasing with respect to the current value of the interest rate r, whereas the American
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equity call option is increasing with respect to r. An increase in r has a direct effect on American

equity options via the discounting of future cashflows, that becomes more severe. It has also an

indirect effect, channelled through the equity drift, that increases if r increases. For an American

equity put option this implies that the likelihood of lower payoffs increases. Thus an increase in r

diminishes the value of an American equity put option. On the contrary, for an American equity

call option, the drift increase determined by the increase of r pushes the underlying equity towards

higher payoffs’ regions, thus potentially increasing the call option value. We show that this positive

effect prevails over the negative effect of the increased discounting, and the American call option

is actually increasing with respect to r. This result is achieved by a change of the numeraire for

the call option, that allows to disentangle the opposite effects of the interest rate’s increase on the

discounting and the call payoffs’ likelihood.

Proposition 2.3 (Value of the American option as a deterministic function) In the

market described by (2.1), the value of an American put option on S (2.13) is of the form:

V (t) = F (t, S(t), r(t))

with F : [0, T ]× R+ × R 7→ R+ given by:

F (t, S, r) = sup
0≤η≤T−t

EQ
[
exp

(
−
∫ η

0
r(s)ds

)
·

·ϕ

S exp
(∫ η

0
r(s)ds−

(
q + 1

2σ
2
S

)
η + σSWS(η)

)
 . (2.14)

The function F is decreasing with respect to time t, convex with respect to S and increasing (resp.

decreasing) in the call (resp. put) case. Moreover, F is increasing (resp. decreasing) in the call

(resp. put) case with respect to r.

Proof See Appendix 2.B. �

As the American equity option value is a deterministic function of (t, S, r), at each t ∈ [0, T ],

the plane (S, r) ∈ R+ × R can be divided into two complementary regions:

• the continuation region CR(t) =
{
(S, r) ∈ R+ × R : F (t, S, r) > ϕ(S)

}
, the set of couples

(S, r) where it is optimal to continue the option at t; the r-section of the continuation region

at t is CRr(t) =
{
S ∈ R+ : F (t, S, r) > ϕ(S)

}
;
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• the early exercise region EER(t) =
{
(S, r) ∈ R+ × R : F (t, S, r) = ϕ(S)

}
, the set of couples

(S, r) where it is optimal to exercise the option at t; the r-section of the early exercise region

at t is EERr(t) =
{
S ∈ R+ : F (t, S, r) = ϕ(S)

}
.

The boundary separating the continuation region and the early exercise region as t varies in

[0, T ] is a surface called free boundary in the three-dimensional space (t, S, r). In Theorem 2.5

we describe the main features of the free boundary surface, that can be single (the standard

case) or double, generalizing the results of Battauz et al. (2015). In the constant interest rate

enviroment, the American equity option value depends only on time t and the equity value S.

Thus, the early exercise region and the continuation region are separated by a one-dimensional

free boundary, called critical price. When the interest rate is positive, there is always a single

(if any) free boundary. Consider the put option, in the limiting case where S = 0. Its value is

sup0≤η≤T−t EQ [e−rη(K − 0)+] = K. Thus the value of the put option and its immediate payoff

coincide at S = 0 for any t. Convexity and value dominance of the option value imply that, if

early exercise is optimal at t for some underlying value S, then it is optimal to exercise as well

for all values of the underlying that are smaller than S. The early exercise region is the area

bounded from above by the single critical price t 7→ S
∗(t) and is therefore downward connected

(see Figure 1 in Battauz et al. (2015)). On the contrary, if r < 0, then the American put value

when S = 0 is sup0≤η≤T−t EQ [e−rη(K − 0)+] = Ke−r(T−t) > K. Thus if early exercise is optimal

at t, the exercise region stops strictly above S = 0. In a neighborhood of S = 0 a deeply in the

money continuation region appears, bounded from above by the new lower critical price t 7→ S∗(t)

(see Figure 2 in Battauz et al. (2015) and the related comments for a discussion on the economic

intuition behind this result). The exercise region for the American put option in this case is no

more downward connected.

A similar reasoning applies also in our stochastic interest rate setting. If S = 0 the value of the

American put option defined in Equation (2.14) becomes F (t, 0, r) = sup0≤η≤T−t EQ
[
exp

(
−
∫ η
0 r(s)ds

)
·K
]
.

Suppose that there exist some deterministic η such that p(0, η) > 1. Then F (t, 0, r) ≥ K ·p(0, η) >

K. In this case, if early exercise is optimal at t, r for some value of S, then the early exercise region

will be bounded from below by a strictly positive equity value. A non-standard continuation region

then appears when the put is most deeply in the money.

The following proposition formalizes this intuition for both American put and call options,

and provides necessary conditions for the existence of optimal early exercise opportunities when

the current interest rate value determines the existence of a zero-coupon-bond price greater than

1. This is very likely to occur when the current interest rate value is non-positive.

Proposition 2.4 (Asymptotic necessary conditions for the existence of optimal early
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exercise opportunities) In the market described by (2.1), at any point in time t and given the

current value of the interest rate r(t) = r, suppose that

[NC0] rα− θ(α+ (T − t)) > 0 with α = e−κ(T−t)−1
κ ≤ 0

Then the following are jointly necessary conditions for the existence of optimal exercise opportu-

inites at t, for T − t ≈ 0:

[NC1] the dividend yield is non positive, q ≤ 0;

[NC2] for some S, πE(t, S, r) = ϕ(S), where πE(t, S, r) is the value of the European put (resp.

call) option defined in Proposition 2.1.

Proof See Appendix 2.B. �

The condition [NC0] is very likely satisfied when r < 0, as the long-run mean of the interest rate

θ is commonly assumed to be positive. [NC0] is equivalent to have a bump in the yield-curve,

namely to have an instant in time in which the price or a zero-coupon bond is larger than one. If

that is the case, it might be optimal to exercise the American option at that moment to gain from

the temporary increase in the value of money. The formal argument is described in the proof of

the Proposition, in Appendix 2.B. [NC1] ensures that the discounted price of the risky security

is not a supermartingale. If this was the case, we show in the proof that, under condition [NC0],

this would lead automatically to optimal exercise of the American put option at maturity only.

For the American put option, if early exercise is optimal under condition [NC0], then EERr, the

early exercise region section at r, is bounded by below by a strictly positive (non standard) lower

boundary. A similar reasoning works for American equity call options. We remark that our results

cannot be obtained from standard symmetry results for American options (see Battauz et al.

(2015) and the references therein) due to the stochasticity of our interest rates. In the standard

Black-Scholes case, the American put-call symmetry swaps the constant interest rate with the

constant dividend yield. Being our interest rate stochastic and our dividend yield constant, such

symmetry result is not viable.

Under [NC0], [NC2] ensures that the price of the European option πE(t, S, r) does not dominate the

immediate payoff value. If this was the case, the American option would dominate the immediate

payoff value as well, thus preventing the existence of optimal early exercise opportunities. Although

the formal proof of the necessary conditions in Proposition 2.4 requires the time to maturity to

be small enough, we show in the following section that actually those conditions correctly identify

nodes on the tree in which a double continuation region appears along the whole lifetime of the

option (see Figure 2.5).
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In the following theorem we describe the main properties of the free boundary surface, under the

assumption that the early exercise region is non-empty. We distinguish between the standard case

of a non-negative interest rate and the case of a negative interest rate, where unusual optimal

continuation policies may appear.

Theorem 2.5 (The free-boundary surface)

1. Suppose r ≥ 0 and assume that EERr(t) is non-empty for some t ∈ (0, T ).

For the American put option

S
∗(t, r) = sup

{
S ≥ 0 : F (t, S, r) = ϕ(S)

}
(2.15)

defines the (standard upper) free boundary and early exercise is optimal at any t ≥ t for S(t)

and r(t) = r if S(t) ≤ S∗(t, r). The free boundary S∗(t, r) is increasing with respect to t ≥ t

and r ≥ 0.

For the American call option

S∗(t, r) = inf
{
S ≥ 0 : F (t, S, r) = ϕ(S)

}
(2.16)

defines the (standard lower) free boundary and early exercise is optimal at any t ≥ t for S(t)

and r(t) = r if S(t) ≥ S∗(t, r). The free boundary S∗(t, r) is decreasing with respect to t ≥ t

and increasing with respect to r ≥ 0.

2. Suppose r < 0, T − t ≈ 0 and that the necessary conditions of Propositions 2.4 are satis-

fied with q < 0 and assume that EERr(t) is non-empty. Then the segment with extremes

[S∗(t, r), S∗(t, r)] (see Equations (2.15), (2.16) ) is non-empty for any t ∈
[
t, T

]
. The option

is optimally exercised at any t ≥ t for S(t) and r(t) = r whenever S(t) ∈
[
S∗(t, r), S∗(t, r)

]
.

The lower free boundary, S∗(t, r), is decreasing with respect to t and the upper free boundary

S
∗(t, r) is increasing with respect to t for any t ≥ t.

For the American put
rK

q
≤ S∗(t, r) < S

∗(t, r) ≤ K.

Their limits at maturity are limt→T S
∗(t, r) = K = S

∗(T, r) and S∗(T−, r) = limt→T S
∗(t, r) =

rK
q > S∗(T, r) = 0. The lower free boundary, S∗(t, r), is decreasing with respect to r and the

upper free boundary S∗(t, r) is increasing with respect to r.

For the American call

K ≤ S∗(t, r) < S
∗(t, r) ≤ rK

q
.

Their limits at maturity are limt→T S
∗(t, r) = K = S∗(T, r) and S∗(T−, r) = limt→T S

∗(t, r) =
rK
q < S

∗(T, r) = +∞. The lower free boundary, S∗(t, r), is increasing with respect to r and

the upper free boundary S∗(t, r) is decreasing with respect to r.
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3. Suppose r < 0 and q = 0. Then the early exercise region for the American put option at t is

empty.

For the American call, suppose EERr(t) is non-empty for some t ∈ (0, T ). Then early

exercise is optimal at any t ≥ t for S(t) and r(t) = r if S(t) ≥ S∗(t, r) (see Equation

(2.16)). The free boundary S∗(t, r) is decreasing with respect to t ≥ t and increasing with

respect to r ≥ 0

Proof See Appendix 2.B. �

An interesting extension

The quadrinomial tree proposed in the present Chapter can be also used for the pricing of American

securities written on foreign securities. These kind of options are called quanto options.

Assume that there are two integrated, efficient, arbitrage-free and complete markets: a domestic

and a foreign market. Two assets are traded in each market: a locally risk free bond B, and a

risky security S. Assume that the prevailing risk-free rate of the foreign market, rf , is constant

whereas the one in the domestic market, rd(t), follows a mean-reverting stochastic process as in

(2.1). Consequently, the SDEs (and the ODEs) that characterized this domestic-foreign market

are 

dSd(t)
Sd(t)

= (rd(t)− qd)dt+ σddWQ
d

dSf (t)
Sf (t) = (rf − qf )dt+ σfdWQ

f

dBd(t)
Bd(t)

= rd(t)dt
dBf (t)
Bf (t) = rfdt

drd(t) = κ
(
θ − rd(t)

)
dt+ σrdWQ

r

(2.17)

with 〈WQ
f ,dWQ

r 〉 = ρdt. Furthermore, assume that the exchange rate between the two currency

is X, where 1 unit of the domestic currency is equivalent to X units of the foreign security. Given

the dynamics in (2.17), it is natural to assume that X solves the following SDEs

dX(t)
X(t) = µQ

X(t)dt+ σXdWQ(t)

where σX ∈ R and µQ
X = rd(t)− rf due to the interest rate parity.

Let ϕ(Sf ) be the payoff of an American option with maturity T written of Sf and traded in the

domestic market. Its price at inception for an investor in the domestic market is

V (0) = ess sup
τ∈[0,T ]

EQ
[
e
−
∫ τ

0
rd(s)ds

ϕ(Sf (τ))
]
.
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Nevertheless, Sf must be express in the domestic currency. Computing the stochastic differential

of Sf (t)X(t) allows us to determine the dynamics of the foreign risky security with respect to the

domestic investor as
dSf (t)
Sf (t) = (rd(t)− q̃f )dt+

(
σf + σX

)
dWQ

f

where q̃f = rf − qf − σXσf is an artificial dividend yield that might well take negative values.

Therefore, all of the results of the previous Section can be exploited also in this framework and a

double continuation region can arise when valuing American quanto options.

2.3.1 Numerical examples

We now present and describe three illustrative numerical examples that show the optimal exercise

strategies and the possible characterizations of the continuation region for the American put and

call options in the market described by (2.1), highlighting the free boundary’s features derived in

Theorem (2.5).

We exploit our quadrinomial tree to evaluate American options by backward induction. Once the

whole quadrinomial tree, namely all the couples (S, r) and the related transition probabilities, have

been generated, we start from the values of the state variables S and r at maturity T . At maturity,

the American option is exercised in all the nodes in which it is in the money; the resulting payoff is

the value of the American option at T . At any other generic instant t ∈ {0,∆t, 2∆t, . . . , T −∆t},

and for any couple (S(t), r(t)), we compute the immediate payoff ϕ(S) and we compare it to

the continuation value of the option. The continuation value is obtained as the discounted (by

the current realization of r(t)) expected value (according the transition probabilities computed

at (S(t), r(t))) of the four values of the American option at t + ∆t connected on the tree to the

current node. From the comparison between the immediate exercise and the continuation value,

we get the value of the American option in the node (S(t), r(t)). Going backward, we finally get

the price of the American option at t = 0.

Theorem 2.2 showed that the quadrinomial tree we proposed converges in distribution to the bi-

variate process that solves (2.1), as the time step shrinks. Mulinacci and Pratelli (1998) prove

that the convergence in distribution of the lattice-based approximation of the underlying state

variables implies that the price of the American option evaluated according to the backward pro-

cedure described above converges to its theoretical value given by (2.13).

In all of the three following examples the parameters are: T = 1, n = 125, S0 = K = 1, σS = 0.15,

r0 = 0, θ = 0.02, κ = 1, σr = 0.01 and ρ = 0.05. The dividend yield q of the equity is the only

parameter that varies across the examples: in the first one we set q = 0, in the second q = 0.02
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and q = −0.02 in the last one.

For each example we:

• compute the value at inception of the European counterpart πE obtained both with the

formula of Proposition 2.1 and along the quadrinomial tree (the values obtained in the two

ways are indistinguishable);

• compute the value at inception of the American option πA along the quadrinomial tree;

• compute the price of the American option, πr0
A , evaluated along the standard binomial tree

of Cox et al. (1979) with a deterministic interest rate r = r0 = 06. Our aim is to quantify

the error that an “unsophisticated” investor would make by evaluating American options

within a flat term structure framework rather than within a fluctuating one;

• graphically show how the single, or double (if any), free boundaries look like in the space

(t, S, r). These graphs characterize the optimal exercise policy: at any t, the investor should

look at the current values of (S(t), r(t));

• graphically highlight the nodes of the quadrinomial tree where the necessary conditions of

Proposition 2.4 are satisfied.

We first show the numerical results for the American put option that are summed up in Table 2.1.

Figure q πE πA πr0
A |πA − πr0

A |/πA
2.3 0% 5.620% 5.712% 5.979% 4.67%
2.4 2% 6.565% 6.570% 6.962% 5.96%
2.5 -2% 4.763% 5.030% 5.230% 3.97%

Table 2.1: Results from the three numerical examples for the American put option.

First example: q = 0%. If the underlying pays no dividend and its volatility is reasonably

small, the expected drift of S basically coincides with r(t) = r. This splits the domain of r in two

complementary regions according to the sign of r, as can be seen in the right panel of Figure 2.3
6we also evaluate the American option with a deterministic interest rate equal to the expected value

of r over the investment period; namely, we also set r = EQ [r(T )
]

= 1.26%. This exercise delivers
qualitatively similar results. With respect to the last column of Table 2.1, the relative errors in this case
are, respectively, 4.58%, 4.64%, 4.52%.
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Figure 2.3: First example, American put: q = 0%.

Figure 2.4: Second example, American put: q = 2%.

(that displays the free boundary section at t = T
2 ). In the left region where r and µ = r − q − σ2

S

2

are both negative, the investor is willing to wait and postpone the exercise as much as possible in

order to gain from both the negative discount rate and the implied expected depreciation of S. In

the right region, on the contrary, where r and µ are both positive, we have the standard tradeoff

between a positive discount rate (that makes the investor willing to exercise the option as soon as

possible) and a negative expected drift of S (that makes the investor willing to wait for a larger

payoff). This generates the standard upper boundary shown in the left panel of Figure 2.3. We

notice that the standard upper boundary is increasing with respect to r. Indeed, early exercise is

more profitable when r increases and S is likely to appreciate.

The investor who believes that the term structure is flat and evaluates the American put option

with a constant discount rate equal to our r0 makes a relative error almost equal to 5%. This
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Figure 2.5: Third example, American put: q = −2%. Green points in the bottom panels
show the nodes of the quadrinomial tree in which necessary conditions [NC0], [NC1] and
[NC2] of Proposition 2.4 for a double continuation region hold simultaneously.

figure is economically significant as it is greater than the maximal error due to suboptimal exercise

delay of the option as estimated7 in Chockalingam and Feng (2015).

Second example: q = 2%. If the underlying pays (positive) dividends, the drift of S is equal to

r plus a negative quantity (−q − σ2
S

2 < 0). This splits the domain of r into three complementary

regions. The first one in which r and µ are both negative, the one in which r is positive but small

so that µ is still negative, the last one in which r and µ are both positive. In the first one, the

7Our relative error of 4.67% in the first line of Table 2.1 corresponds to an absolute pricing error
of 27.8 bps. This figure is indeed significant compared to the maximal error obtained in Figure 3 by
Chockalingam and Feng (2015). In particular, Figure 3, second row, right column, in Chockalingam and
Feng (2015), displays a pricing error of 4 bps, after a rescaling to unit moneyness and with volatility
equal to 20%.
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Figure 2.6: r−sections of free boundaries for the American put option. Left panel r = 2%
and q = 0%. Right panel r = −1% and q = −2%.

option is optimally exercised at maturity, as before. In the middle region there is a new tradeoff:

the investor would like to cash in as soon as possible due to r > 0 but the value of S is expected to

decrease as µ < 0. This allows for a standard upper boundary. The critical price below which the

investor will exercise, though, becomes smaller as r approaches 0: as r decreases the threat of the

positive discount rate weakens and, therefore, the investor would postpone the exercise unless the

underlying reaches a very low level. In other words, if the discount is not that strong, the investor

prefers to gain the relative high dividend yield keeping the asset as long as possible. In the last

region, we find the standard behaviour already outlined in the first example.

The investor who believes that the term structure is flat and evaluates the American option with

a constant interest rate makes here an even higher relative error than before (5.96%).

Third example: q = −2%. In the case of negative dividends8, the drift of S is equal to r plus

a quantity which is now positive (−q − σ2
S

2 > 0). As a result, µ may be positive also when r is

mildly negative. This splits again the domain of r into three complementary regions, as shown in

the top-right panel of Figure 2.4: the one in which r and µ are both negative, the one in which r is

negative but µ is positive and the last one in which r and µ are both positive. In the first region,

the option is again optimally exercised at maturity as in the previous examples. In the middle

section a double continuation region appears: this is the case in which the necessary conditions

in Proposition 2.4 are satisfied as documented in the bottom panels of Figure 2.4. To the best of

our knowledge, this is the first paper that documents the existence of a non standard double free

boundary in a stochastic interest rates framework, generalizing the result obtained in the constant

8As previously discussed, negative dividends might model storage and insurance cost for commodities
such as gold or domestic risk-neutral drifts of foreign equities in quanto options.
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interest rates setting by Battauz et al. (2015). In the last region where both r and µ are positive,

we find the standard behaviour already outlined in the first two examples.

We conclude our analysis of the American put option’s free boundaries, by displaying in Figure

2.6 their time-dependence structure. In particular, we show that, for fixed values of r, the upper

critical price of the American put is increasing with respect to time t whereas the lower critical

price (if any) is decreasing, as already proved in Theorem 2.5 and documented in the constant

interest rate framework by (Battauz et al., 2015).

In Appendix 2.C we also document the impact of the correlation on the American equity options’

prices.

We now turn to the American call options. Numerical pricing results for the American call

option in the same scenarios analysed above for the American put option are summed up in Table

2.2. We notice that in all cases the investor who believes that the term structure is flat and

evaluates the American call option with a constant discount rate equal to our r0 makes a relative

error between 4% and 5%.

It is well known that American call options on non-paying dividend assets do not display any early

exercise premium. This is true under usual market circumstances, i.e. when interest rates are non

negative. In fact, in this case, the zero-coupon bonds of any maturity have initial prices that are

smaller than one, i.e. p(0, τ) < 1 for any τ ∈ [0, T ]. This implies that the option is optimally

exercised at maturity only, as Jensen’s inequality implies that

EQ
[(
S(τ)−K

)+
e
−
∫ τ

0
r(s)ds

]
≥
(
S(0)−Kp(0, τ)

)+
>
(
S(0)−K

)+
.

The same holds true if S pays a negative dividend yield as EQ
[
S(τ)e−

∫ τ
0
r(s)ds

]
= S(0)e−qτ >

S(0).

Within our framework, interest rates are not always positive and zero-coupon bonds may have

initial prices larger than one. Thus, early exercise may be optimal under some circumstances as

one can indeed see in the following first example.

Figure q πE πA πr0
A |πA − πr0

A |/πA
2.7 0% 6.339% 6.339% 5.979% 5.69%
2.8 2% 5.314% 5.396% 5.163% 4.32%
2.9 -2% 7.511% 7.511% 7.102% 5.44%

Table 2.2: Results from the three numerical examples for the American call option.
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Figure 2.7: First example, American call: q = 0%.

Figure 2.8: Second example, American call: q = 2%.

First example: q = 0%. As explained above, early exercise may be optimal in this case only

if zero-coupon bonds display initial prices larger than one for some maturity. This is the case

portraited in Figure 2.7, where a (standard lower) free boundary for the American call option is

documented for initial interest rates values smaller than −1%. To our knowledge, this is the first

paper that shows the existence of optimal early exercise opportunities for an American call option

when the dividend yield is zero. We notice that the critical price, and thus the continuation region,

is increasing in r, as the increasing drift µ of S pushes the option towards the in the money region.

The impact of these optimal early exercise opportunities on the price of the option, however, is

negligible because the risk-neutral probability of the equity price entering the early exercise region

is quite small, as one can see from the first row of Table 2.2.

Second example: q = 2%. When the dividend yield is positive, early exercises of the American
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Figure 2.9: Third example, American call: q = −2%. Green points in the bottom panels
show the nodes of the quadrinomial tree in which necessary conditions [NC0], [NC1] and
[NC2] of Proposition 2.4 for a double continuation region hold simultaneously.

call option become profitable. In Figure 2.8 we document the existence of a (lower standard)

free boundary that is again increasing in r. Interestingly, the slope of the free boundary becomes

steeper when µ, the drift of S, turns positive, and the continuation region increases substantially

as S is expected to appreciate. Consequently, early exercise in this case is optimal only if S is very

deeply in the money.

Third example: q = −2%. As already discussed for the American put option example, when the

dividend yield is negative, the instantaneous drift of S, µ, is always positive but for very negative

values of r. As a result, early exercise for the American call option is never optimal unless r is

very negative. In this case, for negative values of r, a non standard early exercise region appears

surrounded by two continuation regions (see the top panels of Figure 2.9). However, as in the

first example with q = 0%, the early exercise premium does not significantly contribute to the

price of the American call option because the equity price enters the early exercise region with
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Figure 2.10: r−sections of free boundaries for the American call option. Left panel
r = −2% and q = 0%. Right panel r = −5% and q = −2%.

a very small risk-neutral probability, as one can see from the third row of Table 2.2. The green

dots in the bottom panels of Figure 2.9 mark the region where our necessary conditions for non

standard early exercise of Proposition 2.4 are satisfied. We notice that this region overlaps very

accurately with the area where early exercise is optimal as portrait in the top-left panel of Figure

2.9. We conclude our analysis of the American call option’s free boundaries, by portraying in

Figure 2.10 their time-dependence structure. In particular, we see that for American call options

the upper critical price (if any) is increasing with respect to time t whereas the lower critical price

is decreasing (see Figure 2.10), thus confirming the results of Theorem 2.5 and of (Battauz et al.,

2015) in a constant interest rate framework.

2.4 Conclusions

In this paper we have studied American equity options in a correlated stochastic interest rate

framework of Vasicek (1977) type. We have introduced a tractable lattice-based discretization of

the equity price and interest rate processes by means of a quadrinomial tree. Our quadrinomial

tree matches the joint discretized moments of the equity price and the stochastic interest rate and

converges in distribution to the continuous time original processes. This allowed us to employ

our quadrinomial tree to characterize the two-dimensional free boundary for American equity put

and call options, that consists of the underlying asset and the interest rate values that trigger the

optimal exercise of the option. Our results are in line with the existing literature when interest

rates lie in the positive realm. In particular, for the American put options, the higher the dividend
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yield, the higher the benefits from deferring the option exercise. Moreover, in this case, the exercise

region is downward connected with respect to the underlying asset value. On the contrary, when

interest rate are likely to assume even mildly negative values, optimal exercise policies change,

depending on the trade-off between the interest rate and the expected rate of return on the equity

price. If such expected rate of return is negative, optimal exercise occurs at maturity only as the

option goes (on average) deeper in the money as time goes by and the negative interest rates make

the investor willing to cash in as late as possible. If the expected rate of return on the equity

asset is positive, the option is expected to move towards the out of the money region. This effect

is compensated by the preference to postponement due to negative interest rates. The trade-off

results in a non-standard double continuation region that violates the aforementioned downward

connectedness of the exercise region for American put option. We quantified the pricing error that

an investor would make assuming a constant interest rate and therefore neglecting the variability

(and the related risk) of the term structure. Finally, we documented similar non standard optimal

exercise policies also for American call options. In particular, we find that early exercise of the

American call option might be optimal even when the equity does not pay any dividend. This

results confirm the analytical features of the free boundaries retrieved in Theorem 2.5 for the

continuous-time framework described in System (2.1).
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Appendix

2.A Bounds of the probabilities in the Quadrinomial
Tree

Recall that at each t the four probabilities of an upward/downward movement of r/Y on the tree

are:
quu = µY µr∆t+ µY ∆r+ + µr∆Y + + (1 + ρ)σrσS

4σrσS
qud = −µY µr∆t+ µY ∆r+ − µr∆Y + + (1− ρ)σrσS

4σrσS
qdu = −µY µr∆t− µY ∆r+ + µr∆Y + + (1− ρ)σrσS

4σrσS
qdd = µY µr∆t− µY ∆r+ − µr∆Y + + (1 + ρ)σrσS

4σrσS

(2.A1)

with ∆r+ = σr
√

∆t, ∆Y + = σS
√

∆t, µY = r(t) − q − σ2
S

2 and µr = κ(θ − r(t)). From now on

we light the notation writing r instead of r(t). Nevertheless, it is crucial to remember that these

probabilities are different for each node of the quadrinomial tree.

As already pointed out, the four probabilities sum up to one by construction. Unfortunately, they

do not necessarily lie in (0,1). As a first control, we investigate what happens as the length of the

time step goes to zero, namely, as ∆t→ 0. We have

lim
∆t→0

quu = lim
∆t→0

qdd = 1 + ρ

4 ,

lim
∆t→0

qud = lim
∆t→0

qdu = 1− ρ
4

which are all positive quantities (at least as ρ ∈ (−1, 1)). Therefore, the problem of having possibly

negative probabilities is only due to the discretization procedure.

For instance, with n = 250 steps and T = 1 (that corresponds to ∆t = 0.004), we need to impose

the positivity constraint on all the four numerators in (2.A1).

Imposing quu ≥ 0 and solving with respect to r leads to:

Auur
2 +Buur + Cuu ≤ 0 (2.A2)
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where:

Auu = κ

Buu = − κ
(
θ + q + σ2

S

2 −
σS√
∆t

)
− σr√

∆t

Cuu = − κθ
(
−q − σ2

S

2 + σS√
∆t

)
− σr√

∆t

(
−q − σ2

S

2

)
− (1 + ρ)σrσS

∆t .

Provided that the discriminant of Equation (2.A2) is positive, which surely holds true as ∆t→ 0,

the solution is ruu ≤ r ≤ ruu, where, of course,

ruu = −Buu −
√
B2
uu − 4AuuCuu

2Auu
and ruu = −Buu +

√
B2
uu − 4AuuCuu

2Auu
.

Similarly, we can work out all of the other probabilities.

Imposing qud ≥ 0 leads to:

Audr
2 +Budr + Cud ≥ 0

where:

Aud = κ

Bud = − κ
(
θ + q + σ2

S

2 −
σS√
∆t

)
+ σr√

∆t

Cud = − κθ
(
−q − σ2

S

2 + σS√
∆t

)
− σr√

∆t

(
q + σ2

S

2

)
+ (1− ρ)σrσS

∆t ,

that is solved by r ≤ rud ∪ r ≥ rud.

Imposing qdu ≥ 0 leads to:

Adur
2 +Bdur + Cdu ≥ 0

where:

Adu = k

Bdu = − κ
(
θ + q + σ2

S

2 + σS√
∆t

)
− σr√

∆t

Cdu = − κθ
(
−q − σ2

S

2 −
σS√
∆t

)
+ σr√

∆t

(
q + σ2

S

2

)
+ (1− ρ)σrσS

∆t ,

that is solved by r ≤ rdu ∪ r ≥ rdu.

Finally, imposing qdd ≥ 0 leads to:

Addr
2 +Bddr + Cdd ≤ 0
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where:

Add = κ

Bdd = − κ
(
θ + q + σ2

S

2 + σS√
∆t

)
+ σr√

∆t

Cdd = − κθ
(
−q − σ2

S

2 −
σS√
∆t

)
+ σr√

∆t

(
−q − σ2

S

2

)
− (1 + ρ)σrσS

∆t .

that is solved by rdd ≤ r ≤ rdd.

Summing up, probabilities in (2.A1) stay positive as long as r satisfies:



ruu ≤ r ≤ ruu
r ≤ rud ∪ r ≥ rud
r ≤ rdu ∪ r ≥ rdu
rdd ≤ r ≤ rdd

The solution to the previous system of inequalities depends on the sign of the correlation ρ. Given

the sign of ρ, the eight extremes values ruu, rud, . . . , rdu, rdd always satisfy the same chain of

inequalities. Furthermore, notice that this eight values depend only on the parameters of the

model and not on t.

When ρ ∈ (0, 1], the only interval on which all of the inequalities hold true is rud ≤ r ≤ rdu as it

can be conveniently seen in Figure 2.A.1.

The intuition here is that when r and S move together and the discretization of r reaches values

rud ruu rdd rud rdu ruu rdd rdu0
quu ≥ 0
qud ≥ 0
qdu ≥ 0
qdd ≥ 0

Figure 2.A.1: Graphical solution to the system of inequalities when ρ ∈ (0, 1].

far away from its long run mean θ, a further movement of r away from θ and in the opposite

direction of S is extremely unlikely and, eventually, happens “with a negative probability”.

If, for example, r(0) = 0, θ = 0.02, σr = 0.01, κ = 0.7, S(0) = 1, σS = 0.15, q = 0, ρ = 0.5, T = 1

and n = 125, after m = 100 steps, namely at t = m · ∆t = m · Tn = 0.8, r(t) spans the interval

[-0.0885, 0.0885] and S(t) the interval [-1.3282, 1.3282], both of them assuming m = 101

different values. Hence, at t = 0.8 there are 1012 = 10201 possible nodes on tree. As an instance,
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at the node
(
S(t), r(t)

)
t=0.8 = (0.5847,−0.0751) the four probabilities are:

quu = 0.4885

qud = −0.0143

qdu = 0.2780

qdd = 0.2478.

Indeed, with the given parameters, probabilities are all positive as long as rud = −0.0660 ≤ r(t) ≤

0.0861 = rdu, which is not our case. As r(t) is extremely far away from its long-run mean and

since ρ > 0 implies that r and S are likely to move together in the same direction, qud, namely

the probability that r deviates even further from its long-run mean and also against S, becomes

negative. Notice that qud > qdd, meaning that the force that drives r towards its long-run mean

prevails on the positive correlation between the two processes.

When such a scenario happens, we adjust the probabilities by setting the negative one to 0 and

normalizing to 1 the others. From the example above we would then get:

quu = 0.4816

qud = 0

qdu = 0.2741

qdd = 0.2443.

A very similar situation happens when ρ ∈ [−1, 0) and the four probabilities stay positive as long

as rdd ≤ r ≤ ruu. Figure 2.A.2 shows the solution to the system of inequalities in this case.

Now quu or qdd might become negative. This is due to the negative correlation: as r and S are

likely to move in the opposite direction, when r is far away from its long-run mean, moving even

further in the same direction of S may result in a negative probability. Again, we correct for such

a phenomenon with the normalization described above.

ruu rud rdurdd ruurud rdu rdd0
quu ≥ 0
qud ≥ 0
qdu ≥ 0
qdd ≥ 0

Figure 2.A.2: Graphical solution to the system of inequalities when ρ ∈ [−1, 0).

For sake of completeness, we briefly discuss also the limit of zero correlation between r and S.

When ρ = 0, ruu = rud, rud = rdd, ruu = rdu and rdu = rdd. Hence, the two intervals we found
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for the two previous cases, rud ≤ r ≤ rdu when ρ ∈ (0,−1] and rdd ≤ r ≤ ruu when ρ ∈ [−1, 0),

coincide. When ρ = 0, probabilities stay positive as long as r belong to that interval.

Since the support of the discretization of r(t) is known at each t, we can retrieve the maximum

t before which no normalization of the probabilities is needed.

Given the two thresholds r and r (where r = rud, r = rdu if ρ > 0 and r = rdd, r = ruu if ρ < 0)

we can set t and t as:

t := min
s∈{0,∆t,2∆t,...,T}

{
r(s) ≥ r

}
and t := max

s∈{0,∆t,2∆t,...,T}

{
r(s) ≤ r

}
.

Given the binomial structure of the discretization, after m steps we have we have:

r(0)−m∆r− = r(0)−mσr∆t ≤ r(t) ≤ r(0) +mσr∆t = r(0) +m∆r+

and, therefore, from

r(0)−mσr∆t ≥ r

r(0) +mσr∆t ≤ r
(2.A3)

we can explicitly compute:

t = m∆t = r(0)− r
σr
√

∆t
∆t = r(0)− r

σr

√
∆t

t = m∆t = r − r(0)
σr
√

∆t
∆t = r − r(0)

σr

√
∆t.

Of course, neither r, r nor t, t are likely to correspond to any node of the discretized process r(t)

or to the discretized time line {0,∆t, 2∆t, . . . , T}. In this case, we set r, r and t, t equal to the

smallest values on the grid of r(t) and t that satisfy the constraints in (2.A3). Going back to the

numerical example above, we have that t = 0.5840 and t = 0.7680. A section of the quadrinomial

tree in this case is displayed in Figure 2.A.3.

2.B Proofs of the Claims

Proof of Proposition 2.1: Value of the European put/call equity option. We

first derive the price of the European put option at t = 0. As the payoff of the derivative depends

only on the final value of S, the price at any t is obtained straightforwardly thanks to the Marko-

vianity of (S, r) by replacing S0 by S(t), r0 by r(t) and T by T − t.

In the market described by (2.1), the risk-neutral price at t = 0 of the European put option on S
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Figure 2.A.3: Section of the quadrinomial tree for S = 0. Red points indicate nodes
at which one transition probability becomes negative. Parameters: r(0) = 0, θ = 0.02,
σr = 0.01, κ = 0.7, S(0) = 1, σS = 0.15, q = 0, ρ = 0.5, T = 1, n = 125.

with strike price K and maturity T is given by:

πputE (0) = EQ[e−
∫ T

0
r(s)ds(K − S(T ))+]

= EQ
[

(K − S(T ))
B(T ) 1{K−S(T )>0}

]

= KEQ
[

1{K−S(T )>0}

B(T )

]
− EQ

[
S(T )1{K−S(T )>0}

B(T )

]
. (2.B1)

Since B(T ) depends on r which is correlated with S, in order to compute the two expected values

we would need to know their joint distribution under Q and then evaluate a double integral. This

turns out to be rather complicated. Nevertheless, we can greatly simplify the computation of the

two expected values applying a change of numèraire.

We start from the first expectation in (2.B1). Consider the T-forward measure QT , namely the

martingale measure for the numèraire process p(t, T ). The Radon-Nikodym derivative of QT with

respect to Q (whose numèraire process is the money market B(t) = e
∫ t

0
r(s)ds) is:

dQT

dQ = LT (t) = p(t, T )
B(t)p(0, T ) on Ft, 0 ≤ t ≤ T.
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As p(T, T ) = 1 and since p(0, T ) is a scalar, we get:

EQ
[

1{K−S(T )>0}

B(T )

]
= p(0, T )EQ

[
p(T, T )

B(T )p(0, T )1{K−S(T )>0}

]
= p(0, T )EQ[LT (T )1{K−S(T )>0}]

= p(0, T )EQT [1{K−S(T )>0}]

= p(0, T )QT
(
S(T ) < K

)
= p(0, T )QT

(
S(T )
p(T, T ) < K

)
.

By definition, under the T-forward measure QT the discounted process of the risky asset, when

accounting for the dividend, Z0,T (t) := S(t)eqt

p(t, T ) is a martingale. Applying the multidimensional

Itō’s Lemma to Z0,T (t) under Q we get:

dZ0,T (t) = (. . . ) dt+ (νS +B(t, T )νr) · dWQ(t)

where, νS = [σS 0], νr = [σrρ σr
√

1− ρ2] and WQ(t) = [WQ
1 (t) WQ

2 (t)]′ is standard two-

dimensional Brownian motion under Q. Since the volatility process σ0,T (t) := νS + B(t, T )νr is

constant, we can apply a suitable change of measure from Q to QT to get rid of the deterministic

drift of Z0,T (t). Under the T-forward measure we get:

dZ0,T (t) = +σ0,T (t) · dWQT (t)

as we expected. The process Z0,T (t) is now a geometric Brownian motion driven by a bi-

dimensional Wiener process. Hence, its solution is:

Z0,T (t) = Z0,T (0) exp
{
−1

2

∫ t

0
||σ2

0,T (s)||ds+
∫ t

0
σ0,T (s) · dWQT (s)

}

= S(0)
p(0, T ) exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds+
∫ t

0
σ0,T (s) · dWQT (s)

}
.

Notice that, due to Itō’s Isometry,

−1
2

∫ t

0
||σ2

0,T (s)||ds+
∫ t

0
σ0,T (s) · dWQT (s) ∼ N

(
−1

2Σ2
0,T (t),Σ2

0,T (t)
)

where:

Σ2
0,T (t) :=

∫ t

0
||σ2

0,T (s)||ds

=
∫ t

0
σ2
S + 2σSσrρB(s, T ) +B(s, T )2σ2

rds

=σ2
St+ 2σSσrρ

κt− e−kT
(
−1 + ekt

)
k2

+ σ2
r

e−2κT
(
−1 + e2κt + 4eκT − 4κ(t+T ) + 2e2κTκt

)
2k3

 .
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When t = T , the expression above simplifies to:

Σ2
0,T (T ) = σ2

ST + 2σSσrρ
(
−1 + e−κT + κT

k2

)
+ σ2

r

(
−3 + e−2κT − 4e−κT − 2κT

2k3

)
.

Finally, we can compute the T-forward probability that the put option closes in the money as:

QT
(

S(T )
p(T, T ) < K

)
= QT

(
S(T )eqT

p(T, T ) < KeqT
)

= QT
(
Z0,T (T ) < KeqT

)
= QT

 S(0)
p(0, T ) exp

{
−1

2

∫ T

0
||σ0,T ||2(s)ds+

∫ T

0
σ0,T (s) · dWQT (s)

}
< KeqT


= QT

(
N
(
−1

2Σ2
0,T (T ),Σ2

0,T (T )
)
< ln p(0, T )KeqT

S(0)

)
= N(−d̃2)

with d̃2 = 1√
Σ2

0,T (T )

(
ln S(0)
p(0, T )K −

1
2Σ2

0,T (T )− qT
)
. Hence,

EQ
[

1{K−S(T )>0}

B(T )

]
= p(0, T )N(−d̃2).

We now turn to the second expected value in (2.B1). Consider the martingale measure QS with

numèraire process S(t)eqt. The Radon-Nikodym derivative of QS with respect to Q is:

dQS

dQ = LS(t) = S(t)eqt

S(0)B(t) on Ft, 0 ≤ t ≤ T. (2.B2)

As both S(0) and eqT are scalars, we have:

EQ
[
S(T )1{K−S(T )>0}

B(T )

]
= S(0)e−qTEQ

[
S(T )eqT

S(0)B(T )1{K−S(T )>0}

]
= S(0)e−qTEQ

[
LS(T )1{K−S(T )>0}

]
= S(0)e−qTEQS [1{K−S(T )>0}]

= S(0)e−qTQS(S(T ) < K).

Under QS , the process Y0,T (t) := p(0, t)
S(t)eqt is a martingale. Notice that Y0,T (t) = Z0,T (t)−1. Then,

Itō’s Lemma tells us immediately that:

dY0,T (t) = (. . . ) dt− (νS +B(t, T )νr) · dWQ(t)

and after a suitable change of measure we get that under QS :

dY0,T (t) = −σ0,T (t) · dWQS (t).
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As before, we get:

Y0,T (t) = Y0,T (0) exp
{
−1

2

∫ t

0
||σ2

0,T (s)||ds−
∫ t

0
σ0,T (s) · dWQ2

(s)
}

= p(0, T )
S(0) exp

{
−1

2

∫ t

0
||σ2

0,T (s)||ds−
∫ t

0
σ0,T (s) · dWQS (s)

}
.

and, since again p(T, T ) = 1, the QS probability that the put option closes in the money is:

QS
(
S(T ) < K

)
= QS

(
1

S(T ) >
1
K

)

= QS
(
p(T, T )
S(T )eqT >

1
KeqT

)

= QS
(
Y0,T (T ) > 1

KeqT

)

= QT
p(0, T )

S(0) exp
{
−1

2

∫ T

0
||σ2

0,T (s)||ds−
∫ T

0
σ0,T (s) · dWQT (s)

}
>

1
KeqT


= QT

(
N
(
−1

2Σ2
0,T (T ),Σ2

0,T (T )
)
> ln S(0)

p(0, T )KeqT

)

= QT

N (0, 1) > 1√
Σ2

0,T (T )

(
ln S(0)
p(0, T )K + 1

2Σ2
0,T (T )− qT

)
= N(−d̃1)

where d̃1 = 1√
Σ2

0,T (T )

(
ln S(0)
p(0, T )K + 1

2Σ2
0,T (T )− qT

)
= d̃2 +

√
Σ2

0,T (T ). Hence,

EQ
[
S(T )1{K−S(T )>0}

B(T )

]
= S(0)e−qTN(−d̃1).

Finally, putting everything together we find the initial price of the put option:

πputE (0) = KEQ[p(0, T )1{K−S(T )>0}]− EQ[p(0, T )S(T )1{K−S(T )>0}]

= Kp(0, T )N(−d̃2)− S(0)e−qTN(−d̃1).

The price of the related call option can be derived by the put-call parity that at t ∈ [0, T ] reads

πcallE (t) = S(t)e−q(T−t) −Kp(t, T ) + πputE (t)

as e−q(T−t) units of S(t) at time t lead to one unit of S at time T by continuously investing the

dividends in S itself.
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Proof of Theorem 2.2: Convergence of the quadrinomial tree. We now need to

show that the bivariate discrete process (Xi)i defined in (2.10) with the parameters in (2.11) and

(2.12) converges in distribution to X(t) = (Y (t), r(t)) that solves (2.7). With the notation of the

general case in (2.9) and exploiting the result of Section 11.3 of Stroock and Varadhan (1997), the

desired result holds true if the following four conditions are met:

(A1) the functions µ(x, t) and σ(x, t) are continuous and σ(x, t) is non negative;

(A2) with probability 1 a solution (Xt)t to the SDE:

Xt = X0 +
∫ t

0
µ(Xs, s)ds+

∫ t

0
σ(Xs, s) · dW (s)

exists for 0 < t < +∞ and it is unique in law;

(A3) for all δ, T > 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|∆Y ±| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|∆r±| = 0;

(A4) let Xi,j indicate the j-th entry of Xi and let Fi = σ(X1, . . . , Xi) be the filtration generated

by the discrete bivariate process (Xi). Define:

µi(x, t) :=

 µi,1(x, t)

µi,2(x, t)

 and σ2
i (x, t) :=

 σ2
i,1(x, t)

σ2
i,2(x, t)


where µi,j(x, t) = EQ[Xi+1,j −Xi,j |Fi]

T
n

and σ2
i,j(x, t) = EQ[(Xi+1,j −Xi,j)2|Fi]

T
n

for j = 1, 2.

Let ρi(x, t) = EQ[(Xi+1,1 −Xi,1)(Xi+1,2 −Xi,2)|Fi]
T
n

and ρ(x, t) = σ1(x, t) · σ2(x, t)′ where

σj(x, t) is the j-th row of σ(x, t). Then, for all δ, T > 0,

lim
n→+∞

sup
||x||≤δ,0≤t≤T

||µi(x, t)− µ(x, t)|| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

||σ2
i (x, t)− σ2(x, t) · I2|| = 0

lim
n→+∞

sup
||x||≤δ,0≤t≤T

|ρi(x, t)− ρ(x, t)| = 0

where In is the column vector with all of the n entries equal to one.

For our quadrinomial tree we have Xt = [Y (t), r(t)]′,

µ(Xt, t) =


(
r(t)− q − σ2

S

2

)
κ(θ − r(t))

 and σ(Xt, t) =

 σS 0

σrρ σr
√

1− ρ2

 .
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Assumption (A1) trivially holds true.

Assumption (A2) holds true if the standard conditions for the existence and the uniqueness of the

solution to an SDE are met. According, e.g., to Proposition 5.1 in Björk (2009), it is sufficient

to show that there exists a constant K such that the following are satisfied for all xi = [yi, ri]′,

i = 1, 2 and t:

||µ(x1, t)− µ(x2, t)|| ≤ K||x1 − x2||,

||σ(x1, t)− σ(x2, t)|| ≤ K||x1 − x2||,

||µ(x1, t)||+ ||σ(x1, t)|| ≤ K
(
1 + ||x1||

)
.

Notice that the second and the third conditions involve the operator norm of a matrix A ∈ Rn

defined as ||A|| := sup||x||=1{||A · x|| : x ∈ Rn}.

As ||µ(x1, t) − µ(x2, t)|| =
√

1 + κ2|r1 − r2| and (r1 − r2)2 ≤ ||x1 − x2||2, the first condition is

surely satisfied for any K ≥
√

1 + κ2. As σ(xi, t) is actually constant and independent of xi and

t, ||σ(x1, t)− σ(x2, t)|| = 0 and the second condition is surely satisfied for any K ≥ 0. Finally, as

||σ(x1), t)|| = σ2
S + ρ2σ

2
r

2 + |ρ|σr2

√
4σ2

s + σ2
r

is constant and as

||µ(x1, t)|| =

√√√√(r1 − q −
σ2
S

2

)2

+ κ2(θ − r1)2

can be bounded from above by
√

2(1 + κ2)r2
1, we have

||µ(x1, t)||+ ||σ(x1, t)|| ≤
√

2(1 + κ2)||x1||+ ||σ(x1, t)|| ≤ K(1 + ||x1||)

for any K ≥ max{
√

2(1 + κ2), ||σ(x1, t)||}. As the three conditions hold true simultaneously for

any K ≥ max{
√

2(1 + κ2), ||σ(x1, t)||}, assumption (A2) is satisfied.

As the increments of the bivariate discrete process ∆Y ± = ±σS
√

∆t = ±σS
√
T
n , ∆r± = ±σr

√
∆t =

±σr
√
T
n are constant and do not depend neither on xi, i = 1, 2, nor on t,

sup
||x||≤δ,0≤t≤T

|∆Y ±| = |∆Y ±| = σS

√
T

n
,

sup
||x||≤δ,0≤t≤T

|∆r±| = |∆r±| = σr

√
T

n
.

As both of the sups are infinitesimal with respect to n, (A3) holds true as well.

As the parameters in (2.11) and (2.12) of the bivariate discretization Xi = (Yi, ri) are chosen

in order to match the first two moments and the cross-variation of X(t) = (Y (t), r(t)), we have

µi(x, t) = µ(x, t), σ2
i (x, t) = σ2(x, t) · I2 and ρi(x, t) = ρ(x, t). Hence, assumption (A4) is satisfied

by construction.

Theorem 11.3.3 of Stroock and Varadhan (1997) allows us to conclude.
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Proof of Proposition 2.3: Value of the American option as a deterministic
function. Let η := τ − t. Then we can rewrite the value of the American option (2.13) as:

V (t) = ess sup
0≤η≤T−t

EQ
[
e
−
∫ t+η
t

r(s)ds
ϕ(S(t+ η))

∣∣Ft] . (2.B3)

Recalling the dynamics of the equity price conditional on S(t) = S we can further rewrite Ṽ (t) as:

V (t) = ess sup
0≤η≤T−t

EQ

exp
(
−
∫ t+η

t
r(s)ds

)
·

·ϕ

S exp
(∫ t+η

t
r(s)ds−

(
q + 1

2σ
2
S

)
η + σS(WS(t+ η)−WS(t))

)∣∣∣∣∣∣Ft
 .

Therefore, V depends on the expectation of two random variables: the Brownian incrementWS(t+

η) −WS(t) and the integral
∫ t+η
t r(s)ds, which appears both in the drift part of the underlying

and in the discount factor. The first of the two random variables is Ft-independent by definition:

WS(t+ η)−WS(t) ⊥⊥ Ft,

and, moreover,

WS(t+ η)−WS(t) Q∼WS(η).

We now show that also
∫ t+η
t r(s)ds is independent of Ft and that

∫ t+η
t r(s)ds Q∼

∫ η
0 r(s)ds as well.

Recalling the solution to the SDE driving the short term interest rate conditional on r(t) = r we

have: ∫ t+η

t
r(s)ds =

∫ t+η

t

[
re−κ(s−t) + θ(1− e−κ(s−t)) + σr

∫ s

t
e−κ(s−y)dWr(y)

]
ds

= −e
−κη

κ
(r − θ) + r − θ

κ
+ θη + σr

∫ t+η

t

∫ s

t
e−κ(s−y)dWr(y)ds.

The constant α := −e
−κη

κ (r − θ) + r−θ
κ + θη does not depend on t. Exploiting the definition of

stochastic integral with {ti}i=1,...,N such that t0 = t, tN = t+ η and ||{ti}|| → 0, we get:∫ t+η

t
r(s)ds = α+ σr

∫ t+η

t

N−1∑
i=0

e−κ(s−ti)(Wr(ti+1)−Wr(ti))ds.

Since ti+1 > ti > t for any i = 1, . . . , N − 1, Wr(ti+1) −Wr(ti) ⊥⊥ Ft by definition and for any

value of s. Hence,
N−1∑
i=0

e−κ(s−ti)(Wr(ti+1)−Wr(ti)) ⊥⊥ Ft ∀s.

Since the sum is independent of Ft for any s, the outer integral in ds preserves such independence.

As a result, ∫ t+η

t
r(s)ds ⊥⊥ Ft.
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Furthermore, we need to show that the distribution of∫ t+η

t
r(s)ds

does not depend on t. Recalling that:∫ t+η

t
r(s)ds = α+ σr

∫ t+η

t

∫ s

t
e−κ(s−y)dWr(y)ds

and setting a := s− t in the outer integral in ds, we get:∫ t+η

t
r(s)ds = α+ σr

∫ η

0

∫ a+t

t
e−κ(a+t−y)dWr(y)da.

The argument of the inner stochastic integral is deterministic in y and, therefore:

∫ a+t

t
e−κ(s−y)dWr(y) Q∼ N

(
0,
∫ a+t

t
e−2κ(s−y)dy

)
Q∼ N

(
0, 1

2κ

(
1− e−2κa

))
,

which does not depend on t. Thanks to a little abuse of notation we see that:∫ t+η

t
r(s)ds = α+ σr

∫ η

0
N
(

0, 1
2κ

(
1− e−2κa

))
da,

where the right-hand side of the equation does not depend on t. Hence:∫ t+η

t
r(s)ds Q∼

∫ η

0
r(s)ds.

We now go back to the original expression (2.B3). Thanks to the independence of Ft, the condi-

tional expected value turns into the unconditional one:

EQ
[
e
−
∫ t+η
t

r(s)ds
ϕ(S(t+ η))

∣∣∣∣Ft
]

= EQ
[
e
−
∫ t+η
t

r(s)ds
ϕ(S(t+ η))

]
,

and setting S(0) = S(t) = S, r(0) = r(t) = r,

EQ
[
e
−
∫ t+η
t

r(s)ds
ϕ(S(t+ η))

]
= EQ

[
e
−
∫ η

0
r(s)ds

ϕ(S(η))
]
.

Therefore, the value on an American option on S defined in (2.13) reduces to

V (t) = F (t, S(t), r(t))

with

F (t, S, r) = sup
0≤η≤T−t

EQ
[
exp

(
−
∫ η

0
r(s)ds

)
·
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·ϕ

S exp
(∫ η

0
r(s)ds−

(
q + 1

2σ
2
S

)
η + σSWS(η)

)
 .

where t enters only the upper bound of η, namely the time to maturity of the option. From this

last expression it is immediate to see that F enjoys the same monotonicity properties of ϕ w.r.t.S,

and that it is decreasing w.r.t. t, and convex w.r.t. S. For the put option we show now that F is

decreasing in r. To this aim we rewrite

F (t, S, r) = sup
0≤η≤T−t

EQ
[
e
−
∫ η

0
r(s)ds)

(
K − Se

∫ η
0
r(s)ds−(q+ 1

2σ
2
S)η+σSWS(η)

)+
]

(2.B4)

where r = r(0). If r′ > r then F (t, S, r′) ≤ F (t, S, r). In fact,
∫ η
0 r(s)ds started at r(0) = r′ > r is

larger than
∫ η
0 r(s)ds started at r(0) = r. As the object of the expectation in (2.B4) is a decreasing

function of
∫ η
0 r(s)ds, we conclude that F (t, S, r) is decreasing in r.

To show that the American call option is increasing with respect to r, we apply a change of

numeraire to isolate the effect of the interest rate in the underlying drift only (as under the original

risk neutral measure an increase in r has opposite effects in the discount factor and in the call’s

payoff).

EQ
[(
S(τ)−K

)+
e
−
∫ τ

0
r(s)ds

]
= EQ

 S(τ)eqτ

S(0)B(τ)

(
1
K
− 1
S(τ)

)+

Ke−qτS(0)


= EQ

LS(τ)
(

1
K
− 1
S(τ)

)+

Ke−qτS(0)


where LS(τ) is the Radon-Nikodym derivative of QS with respect to Q defined in (2.B2). Thus

the call option is a put option under the new measure on K/S with strike S(0) and interest rate q

EQ
[(
S(τ)−K

)+
e
−
∫ τ

0
r(s)ds

]
= EQS

(S(0)− K

S(τ)

)+

e−qτ


Recalling the dynamics of the equity price and of the interest rate under Q,

dS(t)
S(t) = (r(t)− q)dt+ [σS 0] · dWQ(t)

dr(t) = κ(θ − r(t))dt+ [σrρ σr
√

1− ρ2] · dWQ(t)
(2.B5)

Girsanov’s theorem implies that dWQ(t) = dWQS (t) + [σS 0]′dt and, therefore, (2.B5) becomes
dS(t)
S(t) = (r(t)− q + σ2

S)dt+ [σS 0] · dWQS (t)

dr(t) = κ(θ − r(t) + ρσSσr
κ )dt+ [σrρ σr

√
1− ρ2] · dWQS (t)

(2.B6)
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Ito’s formula implies that

d
(

1
S(t)

)
= 1
S(t)

(
(q − r(t))dt− [σS 0] · dWQS (t)

)
and therfore the new underlying

d
(
K

S(t)

)
= K

S(t)

(
(q − r(t))dt− [σS 0] · dWQS (t)

)
has drift q− r(t). Thus the call option is a put option whose underlying under the new measure is

K

S(t) = K

S(0)e
∫ η

0
(q−r(s))ds− 1

2σ
2
Sη−σSW

QS
1 (η)

Thus, if the process r starts at r(0) = r′ > r the factor
∫ η
0 (q − r(s))ds is smaller than the one

started at r(0) = r, and thus the put’s payoff is larger, and the value of the American option larger

as well. This shows that for the call option r′ > r implies F (t, S, r′) > F (t, S, r).

Proof of Proposition 2.4: Asymptotic necessary conditions for the existence
of a double continuation region. When the interest rate is constant, the value at t of

the American put option defined in Equation (2.14) becomes a deterministic function G(t, S) :

R+ × R→ R+ of the time and the current value of the underlying:

G(t, S) = sup
0≤η≤T−t

EQ

e−rη
K − S exp

(r − q − σ2
S

2

)
η + σSWS(η)




+
 . (2.B7)

As Battauz et al. (2015) show in Section 2, necessary conditions for the double continuation region

to appear for a put option at a generic t are that the drift of S is positive and G(t, 0) > K. This

last condition is verified if there exists some η such that p(0, η) > 1, as discussed in the comments

before Proposition 2.4. We now deduce [NC0] by imposing p(0, η) > 1 for some η ∈ [0, T − t].

Exploiting Jensen’s inequality and the uniform integrability of r(s), we get:

EQ
[
exp

(
−
∫ η

0
r(s)ds

)]
≥ exp

(
−EQ

[∫ η

0
r(s)ds

])
= exp

(
−
∫ η

0
EQ [r(s)]ds

)
.

As before, thanks to (2.3), we have:

EQ
[
exp

(
−
∫ η

0
r(s)ds

)]
≥ exp

(
−
∫ η

0
re−κs + θ(1− e−κs)ds

)
= exp

(
rα− θ(α+ η)

)

where we set α := e−κη − 1
κ

. Notice that α ≤ 0 for any κ and η ∈ [0, T − t].

If rα− θ(α+ η) > 0, then F (t, 0, r) > K.
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For the American put option, under [NC0], if [NC1] is not satisfied, i.e. q > 0, than the

discounted risky security S̃ is driven by

dS̃(t) = −qdt+ σSdWQ
S (t),

and S̃ is a supermartingale. Thus, for any t < τ < T ,

EQ
[
S(τ)e−

∫ τ
t
r(s)ds

∣∣∣∣Ft
]
≤ S(t)

and, by Jensen’s inequality,

EQ
[(
K − S(τ)

)+
e
−
∫ τ
t
r(s)ds

∣∣∣∣Ft
]
≥

KEQ
[
e
−
∫ τ
t
r(s)ds

∣∣∣∣Ft
]
− S(t)e−q(τ−t)

+

≥ (K − S(t))+,

where the last inequalities holds under [NC0]. This shows that, for the American put option,

under [NC0], if [NC1] is violated, early exercise is never optimal at t.

We deal now with the American call option. For 0 < τ < T , we have by Jensen’s inequality,

EQ
[(
S(τ)−K

)+
e
−
∫ τ
t
r(s)ds

∣∣∣∣Ft
]
≥

S(t)e−q(τ−t) −KEQ
[
e
−
∫ τ
t
r(s)ds

∣∣∣∣Ft
]+

=
(
S(t)e−q(τ−t) −Kp(t, τ)

)+

≥ (S(t)−K)+,

if q ≤ 0 and p(t, τ) ≤ 1. Therefore, to ensure the existence of optimal early exercise opportunities

for the American call option, we must assume that q > 0, or q ≤ 0 and p(t, τ) > 1 for some τ .

Under [NC0], if [NC2] is not satisfied, then πA(t, S, r) ≥ πE(t, S, r) > (K − S)+, that means

that early exercise is never optimal at t.

Proof of Theorem 2.5. The case r ≥ 0 is standard (see Detemple, 2014), and therefore

we focus on r < 0. The continuity, the monotonicity of the r-sections of the put option’s free

boundaries with respect to t and S and their limits as t → T− follow by adapting the proof of

Theorem 2.3 in (Battauz et al., 2015) where now the operator L becomes LF = ∂F
∂S S(r − q) +

∂F
∂r κ(θ−r)+ 1

2
∂2F
∂S2 σ

2
SS

2+ 1
2
∂2F
∂r2 σ

2
r+ ∂2F

∂r∂SρσrσS . The monotonicity properties of the free boundaries

with respect to r follow from the monotonicity properties of F . In fact, let r′ > r, and assume

S ∈ EERr. Then (K − S)+ ≤ F (t, S, r′) ≤ F (t, S, r) = (K − S)+, where the first inequality

follows from value dominance and the second one from the fact that F is decreasing in r. Thus if

S ∈ EERr, then S ∈ EER′r, and EER′r ⊇ EERr. By passing to the infimum (resp. supremum)
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we conclude that the lower (resp. upper) free boundary is decreasing (resp. increasing) with

respect to r.

For the call option, we start from the monotonicity properties of the free boundaries with respect

to r. As the call option is increasing in r, we have that if r′ > r and S ∈ EER′r then (S −K)+ ≤

F (t, S, r) ≤ F (t, S, r′) = (K − S)+, where the first inequality follows from value dominance and

the second one from the fact that F is increasing in r. This means that EER′r ⊆ EERr. By

passing to the infimum (resp. supremum) we conclude that the lower (resp. upper) free boundary

is increasing (resp. decreasing) with respect to r.

For the other call option’s properties, we cannot simply adapt the proof of Theorem 3.3 in (Battauz

et al., 2015), as it relies on a simmetry result in a constant interest rate enviroment that fails to

be applicable to our setting. The monotonicity properties of S∗ and S∗ with respect to t follow

from the fact that F is decreasing with respect to t, similarly to the put case. We then prove the

inequalities satisfied by the free boundaries. In the EER the function F satisfies

∂F

∂t
+ LF ≤ rF (2.B8)

On the EER in the call case F (t, S, r) = S − K and therefore Equation (2.B8). simplifies to

1 · S(r − q) ≤ r(S −K). Thus −Sq ≤ −rK for all S ∈ EERr, i.e. S ≤ r
qK for all S ∈ EERr, as

q < 0. By passing to the supremum we get K ≤ S∗(t, r) < S
∗(t, r) ≤ rK

q .

At maturity S∗ (T, r) = K and S
∗ (T, r) = +∞, as the option is exercised at T whenever

S(T ) ≥ K.

We now show that S∗
(
T−, r

)
= K and S

∗ (
T−, r

)
= rK

q . By construction S∗ (t, r) ≥ K for

all t ∈
(
t;T

)
, and hence S∗

(
T−, r

)
≥ K. Suppose by contradiction that S∗

(
T−, r

)
> K. The

set
(
t;T

)
×
(
K;S∗

(
T−, r

))
⊂ CRr and therefore (L − r)F = − ∂

∂tF ≥ 0, as F is decreasing

w.r.t. t. As t ↑ T we have (L − r)F → (L − r) (S −K) = −qS + rK for S ∈
(
K;S∗

(
T−, r

))
.

This implies −qS + rK ≥ 0 for S ∈
(
K;S∗

(
T−, r

))
and passing to the supremum over S ∈(

K;S∗
(
T−, r

))
this delivers S∗

(
T−, r

)
≥ rK

q which is a contradiction. We deal now with the

upper free boundary limit. Suppose (by contradiction) that S∗
(
T−, r

)
< rK

q . But then the set(
t;T

)
×
(
S
∗ (
T−, r

)
; rKq

)
⊂ CRr and (L − r)F = − ∂

∂tF ≥ 0 for S ∈
(
S
∗ (
T−, r

)
; rKq

)
. As t ↑ T

we have (L − r)F → (L − r) (S −K) = −qS + rK for S ∈
(
S
∗ (
T−, r

)
; rKq

)
(here the limits are

in distribution). Then −qS + rK ≥ 0 for all S ∈
(
S
∗ (
T−, r

)
; rKq

)
and therefore also for the

infimum −qS∗
(
T−, r

)
+ rK ≥ 0 that implies the contradiction S∗

(
T−, r

)
≥ rK

q .



74

2.C Additional numerical analysis of the free bound-
ary

In this section we provide additional numerical analysis of American equity options in our Vasicek

interest rate framework.9

The impact of the correlation between S and r is addressed in Tables 2.C.1 and 2.C.2.

Tables 2.C.3 and 2.C.4 address the impact of the speed of mean reversion κ on the price of American

call and put options. Tables 2.C.3 and 2.C.4 assume κ = 0.25, namely one forth of the baseline

case whose pricing results are reported in Tables 2.1 and 2.2. We notice that, as the interest

rates are now expected to move much slower, the relative pricing errors with respect to a model

with constant interest rates are smaller. Interestingly, this is more pronounced for American put

options. Furthermore, it is interesting to notice also how the free boundaries (if any) change for

this new value of κ. Figure 2.C.1 shows two r-sections of the free boundaries for the call and the

put option respectively when q = −2%. We notice that, everything else being equal, with respect

to the baseline graphs in Figures 2.6 and 2.10, the early exercise region widens for the call option

but reduces for the put one.

Tables 2.C.5 and 2.C.6 address the impact of the volatility coefficient of the interest rate σr on

the price of American and put options. In particular, Tables 2.C.5 and 2.C.6 assume σr = 5%

while in the baseline model its value was equal to 1%. A larger volatility impact positively on the

price of the American call option as its payoff is increasing in the value of S which, in turns, is

increasing in the value of r. Therefore, relative errors with respect to a constant interest rates are

much larger. For the American put option, the errors are comparable to the baseline case as the

payoff of the option now does not benefit from possibly higher values of r. Furthermore, Figure

2.C.2 shows how the free boundaries look like when q = −2%. As before, we notice that the early

exercise regions widen.

9Medvedev and Scaillet (2010) introduce an analytical approach to price American options using a
short-maturity asymptotic expansion. They perform a throughout numerical investigation for Ameri-
can call and put options with both stochastic CIR interest rates and stochastic underlying’s volatility.
Analogously, Boyarchenko and Levendorskǐi (2013) consider a stochastic volatility equity and stochastic
interest rates depending on two CIR factors, allowing for non-zero correlations between all the underlying
processes. They provide a sophisticated iterative algorithm to price American derivatives that exploits a
sequence of embedded perpetual options and their pricing results are in line with those of the Longstaff
and Schwartz method and the asymptotics of Medvedev and Scaillet (2010). Pressacco et al. (2008)
perform a throughout comparison between lattice and analytical approximation of the early exercise
premium in the Black-Scholes framework.
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ρ q πE πA πr0
A |πA − πr0

A |/πA
American put option

-50%
0% 5.540% 5.674% 5.979% 5.37%
2% 6.486% 6.499% 6.962% 7.12%
-2% 4.683% 5.002% 5.230% 4.55%

-5%
0% 5.606% 5.705% 5.979% 4.79%
2% 6.551% 6.557% 6.962% 6.17%
-2% 4.748% 5.025% 5.230% 4.07%

0%
0% 5.613% 5.709% 5.979% 4.72%
2% 6.558% 6.563% 6.962% 6.08%
-2% 4.755% 5.028% 5.230% 4.01%

5%
0% 5.620% 5.712% 5.979% 4.67%
2% 6.565% 6.570% 6.962% 5.96%
-2% 4.763% 5.030% 5.230% 3.97%

50%
0% 5.672% 5.745% 5.979% 4.06%
2% 6.629% 6.630% 6.962% 5.00%
-2% 4.827% 5.053% 5.230% 3.50%

Table 2.C.1: Results from the three numerical examples for the American put option.

Figure 2.C.1: r−sections of free boundaries for the American call (left panel) and put
(right panel) option with κ = 0.25 and q = −2%.
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ρ q πE πA πr0
A |πA − πr0

A |/πA
American call option

-50%
0% 6.269% 6.271% 5.979% 4.66%
2% 5.235% 5.356% 5.163% 3.61%
-2% 7.432% 7.432% 7.102% 4.44%

-5%
0% 6.335% 6.336% 5.979% 5.64%
2% 5.230% 5.390% 5.163% 4.22%
-2% 7.497% 7.497% 7.102% 5.26%

0%
0% 6.342% 6.343% 5.979% 5.75%
2% 5.307% 5.393% 5.163% 4.27%
-2% 7.505% 7.505% 7.102% 5.37%

5%
0% 6.339% 6.339% 5.979% 5.68%
2% 5.314% 5.396% 5.163% 4.32%
-2% 7.511% 7.511% 7.102% 5.45%

50%
0% 6.415% 6.415% 5.979% 6.80%
2% 5.378% 5.431% 5.163% 4.94%
-2% 7.576% 7.576% 7.102% 6.25%

Table 2.C.2: Results from the three numerical examples for the American call option.

Figure q πE πA πr0
A |πA − πr0

A |/πA
- 0% 6.181% 6.193% 5.979% 3.46%
- 2% 5.170% 5.281% 5.163% 2.23%

2.C.1 -2% 7.317% 7.327% 7.102% 3.01%

Table 2.C.3: Results from the three numerical examples for the American call option with
κ = 0.25.
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Figure q πE πA πr0
A |πA − πr0

A |/πA
- 0% 5.871% 5.883% 5.979% 1.63%
- 2% 6.841% 6.856% 6.962% 1.55%

2.C.1 -2% 4.986% 5.183% 5.230% 1.00%

Table 2.C.4: Results from the three numerical examples for the American put option with
κ = 0.25.

Figure q πE πA πr0
A |πA − πr0

A |/πA
- 0% 6.726% 6.746% 5.979% 11.37%
- 2% 5.686% 5.746% 5.163% 10.15%

2.C.2 -2% 7.886% 7.895% 7.102% 10.04%

Table 2.C.5: Results from the three numerical examples for the American call option with
σr = 5%.

Figure q πE πA πr0
A |πA − πr0

A |/πA
- 0% 6.011% 6.192% 5.979% 3.44%
- 2% 6.982% 7.089% 6.962% 1.80%

2.C.2 -2% 5.125% 5.410% 5.230% 3.33%

Table 2.C.6: Results from the three numerical examples for the American put option with
σr = 5%.



78

Figure 2.C.2: r−sections of free boundaries for the American call (left panel) and put
(right panel) option with κ = 0.25 and q = −2%.
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3.1 Introduction

“You can’t get a risk-free rate above zero, and everything else is relative”

M. Bradshow, head of global aggregate fixed income at Amundi,

Financial Times, August 13 2019

The risk-free interest rate plays a crucial role in derivative pricing; indeed, it is well known that

the interest rate drives both the discount factor and the expected drift of risky equity processes

under the risk neutral measure. Furthermore, current European market conditions challenge the

traditional assumption of non negative interest rates. This assumption, which is pervasive in the

economic and financial literature, underestimates the relevant impact negative interest rates may

have on the discount rate and on the expected growth of equity price processes. Moreover, also

the correlation between the interest rate and the equity risk factors, which is usually neglected, is

of great relevance when dealing with derivatives pricing.

In the present paper I investigate the impact of stochastic, possibly negative and correlated interest

rates on the price of derivatives with barrier features. Besides being actively traded by investors,

this particular kind of path-dependent derivatives has indeed many applications also in corporate

valuation theory.

Exploiting a Vasicek (1977) model, rather than a pure diffusive Black and Scholes (1973) or a Cox

et al. (1885) model, I document critical mispricings that arise if constant, or exogenously positive,

or uncorrelated interest rates are used to price this kind of path-dependent derivatives. This pric-

ing errors are the result of non-trivial interplays of the two channels through which the interest

rate process affects the pricing of barrier derivatives: 1) the discount rate, 2) the expected drift

of the equity process under the risk neutral measure, which is the main driver of the probability

that a given threshold is crossed or not.

Depending on the specific parameters of the option considered, relative pricing errors may be as

large as 15%. For American options, this mispricing is easily observable from the different optimal

exercise policies implied by the alternative models.

It is well known that financial derivatives are priced as if agents were risk-neutral. In such

a world, the risk-free interest rate plays two roles: on one hand it represents the rate at which

the risky equity appreciates and on the other hand it drives the dollar-value of time, namely

the discount rate. As a consequence, a careful modelling of interest rates is crucial when pricing

derivatives written on risky equity and a constant interest rate is clearly not a realistic assumption.

Furthermore, current market conditions challenge also the so called zero lower bound assumption,

https://www.ft.com/content/2b829d1c-bcff-11e9-89e2-41e555e96722
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namely the hypothesis that interest rates are always non negative. As of late 2019, yields on

European AAA-rated sovereign bonds are negative up to very long maturities1 and from 2010

to 2016 also the US 3 Month Treasury Bill’s yield has been critically close to zero and, on some

occasions, also below this lower bound, at least intradaily2. It is economically compelling, though,

to assume that interest rates will revert back to the positive domain sooner or later. Therefore,

capturing this expected path is of great relevance when pricing equity derivatives.

On a parallel note, traditional macroeconomic and fiscal policy literature (see, e.g. Woodford

(2003)) postulates a significant correlation between risk-free interest rates and returns on the stock

market: according to the traditional view, if the market is performing bad, interest rates should

be kept low to boost investments; on the contrary, when the stock market is expanding, interest

rates should be kept high in order to curb the market and avoid bubbles or sudden harmful drops.

Evidence of this correlation is mixed: although the empirical literature almost unanimously agrees

on its statistical significance, its sign appears to be a more debatable issue and to surely change

over time. Nevertheless, and regardless of the sign, the correlation between interest rates and

the risky equity plays a relevant role when pricing derivatives whose payoff depends on both the

equity price and the interest rate. In this perspective, path dependent derivatives are surely the

ones more exposed to the comovements of the risky equity and of in interest rate as their payoff

depends on the whole trajectories of both of them.

Considering the wide class of traded path-dependent derivatives, barrier options are surely

among the most relevant ones. Generally speaking, barrier options are financial derivatives, written

on an underlying, whose payoff depends on whether the underlying’s price or value crosses or not

an exogenous threshold (the so-called barrier) during the life of the option. Derivatives with

barrier features have been studied since the very begging of mathematical finance and, indeed,

the first barrier option is discussed and priced in the seminal work of Merton (1973)3. Since the

payoff of these derivatives is paid out if and only if the barrier event occurs, they trade at a lower

price than their plain Vanilla counterparts. This discount makes derivatives with barrier features

1More precisely, as of October 1 2019, yields of AAA-rated Euro area central government bonds are
negative up to 28 years; source: European Central Bank, www.ecb.europa.eu.

2Source: www.cnbc.com.
3Section 26.9 of Hull (2018) and Chapter 18 of Björk (2009) are entirely devoted to barrier options and

may serve as an effective introduction to this kind of derivatives. Standard literature references for barrier
options include Rich (1994), Ritchken (1995) and Cheuk and Vorst (1996) that carry on their analysis
within the standard Black-Scholes diffusive framework and its traditional lattice approximations, namely
the binomial and the trinomial tree. More recent works, like Fusai and Recchioni (2007), Bernard et al.
(2008) and Carr and Crosby (2010), expand the class of financial market models considered accounting
for local or stochastic volatility, jumps and stochastic interest rates.

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.cnbc.com/quotes/?symbol=US3M
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appealing. Although pure barrier options are often traded over the counter, many other derivatives

that embed barrier features are traded on exchanges: exchange-traded notes in US market and

certificates in the European one are prominent examples of this kind of derivatives.

Besides being directly traded or embedded in more complex securities, barrier options have

many applications to several valuation problems outside derivatives pricing. For example, barrier

options pricing is relevant when valuing executive stock options (ESOs henceforth), which are

options granted to a company’s executives as part of their compensation and whose value depend

on the performance of the company itself 4. These options are usually at-the-money American

call options on the company’s stock granted for free to executives. As explained in Carr (1995),

these options are long-lived (usually 10 years) and they might display also an initial vesting period

(usually 3 years) during which their early exercise it is not allowed. Hull and White (2004a) provide

sound evidence that ESOs are exercised when the stock price reaches a certain multiple of the strike

price. Therefore, this kind of ESOs can be treated and priced as American up-and-out call option

with an exogenous barrier that, if crossed, makes the option worthless: as a consequence, the

optimal exercise policy for this kind of option is to exercise it when the stock price approaches the

barrier and the probability of been knocked-out is high.

Derivatives with barrier features are also widely considered in capital structure theory, especially

when valuing corporate securities. Since the influential work of Black and Cox (1976), barrier

options have been recognised as a useful tool when modelling features of debt and equity. As an

example, bondholders might have the legal right to claim the property of the assets if the firm

is performing poorly, namely, if the firm’s asset value falls below a given threshold. Therefore,

this feature can be modelled and priced within debt securities as a down-and-out barrier option.

Furthermore, Brockman and Turtle (2003) and Wong and Choi (2009) argue and prove empirically

that barrier option models perform well when used to estimate the default barrier of a firm, namely

the firm’s asset level below which the firm is forced to fill for bankruptcy.

Finally, derivatives with barrier features have many applications also in the evaluation of certain

insurance financial products. As an example, Grosen and Jørgensen (2002) show how having a

regulatory authority that monitor solvency requirements of insurance companies can be efficiently

embedded in a barrier options framework.

Guided by all of these applications, I study barrier options exposed to correlated market and

interest rate risks. Building on Battauz and Rotondi (2019), I propose lattice-based algorithms to

price European and American discretely monitored knock-in/knock-out options. Furthermore, I

4ESOs have been extensively discussed in the literature. Classical references include the seminal works
of Yermack (1995) and Core and Guay (2002), whereas Devers et al. (2007) provide an effective review
of the state of the art.
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show how to efficiently extend these algorithms to price also continuously monitored options, re-

ducing the well known biases5 Then, I document the sizeable impact of both assuming a stochastic

term structure and a non-zero correlation between the equity price and the interest rate by means

of several numerical examples.

The rest of the paper is organized as follows. Section 3.2 contains the description of the

financial market model considered, of the primary assets traded therein and of the barrier options

I introduce in the market. Pricing techniques for these options are then formalized. Section 3.3

contains numerical examples of the results in the previous Section. More precisely, the market

model is first calibrated to real European market data. Then illustrative numerical examples

deliver the relative pricing errors of several alternative models with respect to mine. Finally,

two concrete examples of my framework are illustrated: a European equity-linked note and an

American executive stock option. Section 3.4 concludes.

3.2 Barrier Options

The current Section contains the theoretical contribution of my paper. The financial market model

I choose and the assets and derivatives traded therein are described in Subsection 3.2.1. Subsection

3.2.2 provides the pricing algorithm for discretely monitored barrier options whereas Subsection

3.2.3 deals with their continuously monitored counterparts and tackles all the related numerical

issues. The formal proofs of all the propositions stated are deferred to Appendix 3.A.

3.2.1 The market: primary assets and derivatives

Short-term interest rates have been modelled in many ways in the literature6. Restricting to one-

factor models, the most famous ones include the generalized Brownian motion of Merton (1973),

the mean-reverting stochastic process of Vasicek (1977), the so-called square-root diffusion of Cox

et al. (1885) and their extensions proposed by Ho and Lee (1986) and Hull and White (1990).

Since it is economic compelling to assume some stationarity of the interest rates (at least up to

a trend) and since I have to remove the zero lower bound, I choose the mean-reverting model in

Vasicek (1977).

I consider a simplified financial market with just two (correlated) risk factors/sources of ran-

domness: a “equity” risk factor driving an underlying’s risky price process S(t) and a interest rate

5See, e.g., Chapter 26, Section 7 of Hull (2018) that affect lattice-based pricing of barrier derivatives.
6As a standard reference, Chapter 23 of Björk (2009) is entirely devoted to short rate models.
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risk factor driving a short-term interest rate process r(t). I assume that the financial market is

both arbitrage-free and complete. As a consequence7, there exists a unique risk-neutral measure

Q. Following Vasicek (1977), I assume that, under Q, the short-term interest rate r follows a mean

reverting stochastic process and that the continuously compounded log return of the underlying’s

risky price process S follows a generalized Brownian motion. Therefore, the stochastic differential

equations (SDEs henceforth) characterizing the financial markets are



dS(t)
S(t) = (r(t)− q)dt+ σSdWQ

S (t)

dr(t) = κ
(
θ − r(t)

)
dt+ σrdWQ

r (t)

dB(t) = r(t)B(t)dt

(3.1)

where q is the constant dividend yield of the underlying, σS is its volatility, κ is the speed of

mean-reversion of the interest rate process, θ its long-term mean and σr its volatility. B(t) is the

money market account8 the allows the investor to capitalize the interest rate r. The solution of

the SDEs in (3.1) is



S(t) = S(0) exp

∫ t

0
r(s)ds−

(
q + σ2

S

2

)
t+ σSWS(t)


r(t) = r(0)e−κt + θ(1− e−κt) + σr

∫ t

0
e−κ(t−s)dWr(s)

B(t) = exp
[∫ t

0
r(s)ds

] (3.2)

To actually complete the market, I assume that a continuum of τ -zero coupon bonds is traded

in the market with τ ∈ (0, T ]. Consider a generic T -zero coupon bond. This asset pays 1 to its

holder at maturity T and its price at t ∈ (0, T ) is labelled with p(t, T ). By no arbitrage valuation,

we have

p(t, T ) = EQ

 1
B(T )

∣∣∣∣∣Ft
 = EQ

exp
[
−
∫ T

0
r(s)ds

]∣∣∣∣∣∣Ft
 ,

that admits a closed formula solution as derived in Section 3.2.1 of Brigo and Mercurio (2007):

p(t, T ) = eA(t,T )−B(t,T )r(t) (3.3)

7See Delbaen and Schachermayer (1994) for the general version of the First Fundamental Theorem of
Asset Pricing in a continuous time framework.

8B(t) serves as numéraire of the unique risk-neutral measure Q. Therefore, any traded security
discounted by B has to be a Q-martingale.
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where:

B(t, T ) = 1
κ

(
1− e−κ(T−t)

)
A(t, T ) =

(
θ − σ2

r

2κ2

)(
B(t, T )− (T − t)

)
− σ2

rB
2(t, T )
4κ .

Within this market model, at t < T the investor can trade (without frictions) S, B, and p(t, τ),

τ ≤ T : these are the primary assets of the market.

Derivatives are traded in the market as well and, since Q is unique, they can be priced uniquely.

If ϕ(S(T )) is the terminal payoff of a European derivative written on S, its unique price at t ≤ T

is given by

πEϕ (t) = E
[
e
−
∫ T
t
r(s)ds

ϕ(S(T ))
∣∣∣∣Ft

]
. (3.4)

If, on the contrary, the derivative is of American- style, its holder can cash in its payoff ϕ(S(τ))

at any time τ before the maturity T . The rational holder of the American derivative will timely

exercise it when its payoff is maximum. Therefore, the unique price at t ≤ T of the American

derivative is given by

πAϕ (t) = ess sup
τ∈[t,T ]

E
[
e
−
∫ τ
t
r(s)ds

ϕ(S(τ))
∣∣∣∣Ft

]
. (3.5)

Whichever the payoff function ϕ, the expected value in (3.4) is rarely known explicitly and the

one in (3.5) is actually never known explicitly.

As they will be useful later one, I acknowledge that the price of plain Vanilla European put

and call options admits an explicit expression. In particular9, within the financial market specified

in (3.1), the price at t ∈ [0, T ] of an European put option on S with strike K is equal to

πEput(t, S(t), r(t)) = Kp(t, T )N(−d̃2)− S(t)e−q(T−t)N(−d̃1) (3.6)

with:

d̃1 = 1√
Σ2
t,T

(
ln S(t)
Kp(t, T ) + 1

2Σ2
t,T − q(T − t)

)
,

d̃2 = d̃1 −
√

Σ2
t,T ,

Σ2
t,T = σ2

S(T − t) + 2σSσrρ
(
−1 + e−κ(T−t) + κ(T − t)

k2

)
+

−σ2
r

(
3 + e−2κ(T−t) − 4e−κ(T−t) − 2κ(T − t)

2k3

)
.

9See Battauz and Rotondi (2019) for the full derivation.
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The price at t ∈ [0, T ] of an European call option on S with strike K is equal to

πEcall(t, S(t), r(t)) = S(t)e−q(T−t)N(d̃1)−Kp(t, T )N(d̃2). (3.7)

I now turn my analysis to derivatives with barrier features.

A barrier option is an exotic derivative whose payoff depends on whether the underlying reaches

(or not) a pre-specified threshold during the life of the option.

As the payoff of barrier options is triggered by the highest/lowest value reached by the underlying

during the life of the option, let

m(T ) := min
t∈[0,T ]

S(t) (3.8)

denote the running minimum of S, namely the lowest value reached by S in the time window [0, T ]

and let

M(T ) := max
t∈[0,T ]

S(t) (3.9)

denote the running maximum of S, namely the highest value reached by S in the time window

[0, T ]. If S is a geometric Brownian motion (namely if r(t) in (3.1) is constant), the marginal

densities of m(t)/M(t) and the joint ones (m(t), S(t))/(M(t), S(t)) are known and can be found in

Section 18.1 of Björk (2009). If r(t) in (3.1) is stochastic, none of the aforementioned distributions

is known explicitly.

Let ϕ(S(T )) a generic function of the underlying at maturity. There exist two basic kinds of

barrier options:

• the knock-out barrier option that grants the payoff to its holder if and only if the underlying

never crosses a given threshold during the life of the option; assuming that S0 > B, the

payoff of a knock-out barrier option at maturity T can be written as

X(T ) = ϕ(S(T ))1
(

min
t∈[0,T ]

S(t) > B

)
= ϕ(S(T ))1

(
m(T ) > B

)
, (3.10)

where 1(A) denotes the indicator function of the event A.

• the knock-in barrier option that grants the payoff to its holder if and only if the underlying

reaches a given threshold during the life of the option; assuming that S0 < B, the payoff of

a knock-in barrier option at maturity T can be written as

X(T ) = ϕ(S(T ))1
(

max
t∈[0,T ]

S(t) > B

)
= ϕ(S(T ))1

(
M(T ) > B

)
. (3.11)

Similar payoffs can be defined for knock-out barrier options if S0 < B and for knock-in ones if

S0 > B. Finally, a third kind of barrier option that involves both knock-out and knock-in features

is often traded:
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• the double barrier option that grants the payoff to its holder if and only if the underlying

strictly lies always between two barriers during the life of the option; assuming BL < S0 <

BU , the payoff of a double barrier option at maturity T can be written as

X(T ) = ϕ(S(T ))1
(

min
t∈[0,T ]

S(t) > BL ∩ max
t∈[0,T ]

S(t) < BU

)
= ϕ(S(T ))1

(
m(T ) > BL ∩M(T ) < BU

)
. (3.12)

Before moving on to the main pricing results of the paper, it is worth to notice that barrier options

are surely not the only path-dependent derivatives that can be priced with the methodologies

hereafter. Indeed, these methodologies work for any kind of European/American derivative that

meets the following conditions:

• the payoff of the derivative must depend only on a function f of the current value of the

state variables and of their past realizations ;

• it must be possible to evaluate f at t + ∆t starting solely from f at t and the value of the

state variables at t+ ∆t.

As an instance, lookback options or Asian options both meet the two requirements above and

could be priced exploiting similar methodologies.

3.2.2 Discretely monitored barrier options

Assume that the derivative’s contract requires a discrete monitoring of the underlying. Namely,

assume that the contract specifies a finite set of monitoring dates {ti}i=0,...,N at which the level

of the underlying is checked. Usually, short-term derivatives require a daily monitoring of the

underlying at the closing price, whereas long-term derivative, such as equity-linked notes, might

prescribe monthly or even semi-annual monitoring.

Even when S is lognormally distributed, the distribution of the discrete versions of the running

maximum (resp. minimum) of S, namely maxt∈{t0,...,tN} S(t) (resp. mint∈{t0,...,tN} S(t)), is not

known explicitly. Neither do they when r(t) is stochastic as in my market model (3.1). Therefore,

the pricing of discretely monitored barrier options has to rely on numerical techniques.

I first focus my attention on European and American knock-out contracts that can both be obtained

by backward recursion along the monitoring dates. Then, I move to European and American

knock-in contracts. I first state the general in-out parity that readily delivers the price of the

European knock-in contract and then I describe a numerical algorithm to price American knock-in

derivatives.
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3.2.2.1 Knock-out contracts

Without loss of generality, I focus my analysis on so-called down-and-out options which are knock-

out barrier options with S0 > B; the name derives from the fact that if at any of the monitoring

dates S falls down, below B, the barrier option goes out of the money and its payoff at maturity

is null.

Consider a discretely monitored European down-and-out option. Similarly to (3.10), its payoff at

maturity T is

XDO(T ) = ϕ(S(T ))1
(

min
t∈{t0,...,tN}

S(t) > B

)
(3.13)

where {t0 = 0, . . . , tN = T} is a set of monitoring dates specified in the contract and B < S0 is

the knock-out barrier. The value of this derivative at inception can be computed by backward

induction as the following Proposition shows.

Proposition 3.1 (Price of an European down-and-out option). The price at inception

of the European derivative in (3.13) is given by vEDO(0) where

vEDO(tN ) = ϕ(S(T ))1
(
S(T ) > B

)
(3.14)

and

vEDO(ti) = EQ

exp
(
−
∫ ti+1

ti

r(s)ds
)
vEDO(ti+1)1

(
S(ti) > B

)∣∣∣∣∣∣Fti
 (3.15)

for i = N − 1, . . . , 0.

Proof See Appendix 3.A. �

It is interesting to notice that Proposition 3.1 just prescribes to check whether the underlying

is above the barrier date by date: it is not necessary to keep track of the whole path of S. On the

contrary, only a local check is needed. This is due to the fact that

1

(
min

t∈{t0,...,tN}
S(t) > B

)
=

∏
i=0,...,N

1
(
S(ti) > B

)
, (3.16)

and therefore, if S is always above the barrier, necessarily also its running minimum is.

Proposition 3.1 provides the value of the down-and-out option at maturity only. Nevertheless, the

price of the same option at any intermediate monitoring date ti, i = 0, . . . , N , conditional on not

having been knocked out before, is given by

πEϕ,DO(ti) =


vEDO(ti) if min

t∈{ti,...,tN}
S(t) > B

0 else.
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Namely, the intermediate values of vEDO(ti) in Proposition 3.1 represent also the prices of the

option conditional on not having crossed the barrier at previous monitoring dates.

Consider now the American version of the discretely monitored down-and-out option. Its holder

has now the additional opportunity to exercise the option and cash in the payoff ϕ(S(ti)) at any

monitoring date {ti}i=0,...,T , provided that the underlying never crossed the barrier before ti. The

following Proposition shows how to price this American-style down-and-out barrier option.

Proposition 3.2 (Price of an American down-and-out option). The price at inception

of the American down-and-out derivative with payoff ϕ(S(ti)) is given by vADO(0) where

vADO(tN ) = ϕ(S(T ))1
(
S(T ) > B

)
and

vADO(ti) = max

EQ

e− ∫ ti+1
ti

r(s)ds
vADO(ti+1)

∣∣∣∣∣ (S(ti), r(ti)
) , ϕ(S(ti))

1
(
S(ti) > B

)
for i = N − 1, . . . , 0.

Proof See Appendix 3.A. �

As before, Proposition 3.2 explicitly provides the price of the American down-and-out option

only at inception. Nevertheless, the price of the American option at any intermediate ti, i =

0, . . . , N , conditional on not having been knocked-out before, is given by

πAϕ,DO(ti) =


vADO(ti) if min

t∈{ti,...,tN}
S(t) > B

0 else.

3.2.2.2 Knock-in contracts

As for the knock-out contracts, I focus my analysis on the so-called down-and-in options which

are knock-in barrier options with S0 > B; the name derives from the fact that if at any of the

monitoring dates S falls down, below B, the holder of the option goes in and she can hence claim

the payoff of the option whenever positive.

Consider a discretely monitored European down-and-in option. Similarly to (3.11), its payoff at

maturity T is

XDI(T ) = ϕ(S(T ))1
(

min
t∈{t0,...,tN}

S(t) < B

)
(3.17)

where {t0 = 0, . . . , tN = T} is a set of monitoring dates specified in the contract and B < S0 is

the knocking-in barrier.
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Unfortunately, for in contracts an equivalence between indicator functions similar to (3.16) does

not hold as

1

(
min

t∈{t0,...,tN}
S(t) < B

)
6=

∏
i=0,...,N

1
(
S(ti) < B

)
.

Indeed, it is not necessary that S is below the barrier at all the monitoring dates to receive the

final payoff. The sufficient condition is that S is below the barrier at least once.

Nevertheless, the following simple parity result allows to retrieve the price of European down-and-

in options from the price of the related down-and-out one and of the plain Vanilla European option

with payoff ϕ(S(T )).

Proposition 3.3 (European in-out parity). The price of the European knock-out option with

payoff ϕ(S(T )) and of the European knock-in option with the same payoff satisfy

πEϕ,DO(t) + πEϕ,DI(t) = πEϕ (t), ∀t ∈ [0, T ]

where πEϕ (t) = EQ

[
e
−
∫ T
t
r(s)ds

ϕ(S(T ))
∣∣∣∣Ft

]
is the no-arbitrage price of the plain European deriva-

tive that pays ϕ(S(T )) at T .

Proof See Appendix 3.A. �

Unfortunately, this Proposition does not apply to American-style barrier options as

πAϕ = sup
τ∈{t0,...,tn}

EQ
[
e
−
∫ τ

0
r(s)ds (

Xϕ,DO(τ) +Xϕ,DI(τ)
)]

6= sup
τ∈{t0,...,tn}

EQ
[
Xϕ,DO(τ)

e
∫ τ

0
r(s)ds

]
︸ ︷︷ ︸

πA
ϕ,DO

+ sup
τ∈{t0,...,tn}

EQ
[
Xϕ,DI(τ)

e
∫ τ

0
r(s)ds

]
︸ ︷︷ ︸

πA
ϕ,DI

.

Actually, as πAϕ , πAϕ,DO and πAϕ,DI are all non negative numbers, it holds πAϕ ≤ πAϕ,DO + πAϕ,DI and

we can quantify the deviation from parity of American options, if any, as

DFP = πAϕ,DO + πAϕ,DI − πAϕ . (3.18)

DFP is clearly zero for European options and it is non negative for American ones.

First attempts to price these American in-contracts date back to Gao et al. (2000) that extended

the traditional free boundary approach to American options accounting for the new boundary con-

dition dictated by the barrier. Nevertheless, this technique is developed in a continuous-time (and

continuous monitoring) standard diffusive market, under the assumption of constant interest rate.

More recently, Jun and Ku (2015), inspired by Ingersoll (1998), tackle the same issue exploiting

an approximation of the barrier feature of the American option by a convenient mix of digital (or
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binary) contracts.

I follow and extend the approach first suggested by Hull and White (1993) and Ritchken et al.

(1993), the so-called forward shooting grid (FSG henceforth). The key tool is the “Markovian-

ization” of the payoff that simplifies the evaluation of the American options’ continuation value.

Indeed, the following Proposition shows how the continuation value of the American option at ti
does not depend on whole history contained in Fti but only on the current value of the two state

variables (S(ti), r(ti)) and of the auxiliary state variable m(ti), the running minimum.

Proposition 3.4 (Price of an American down-and-in option). The price at inception of

the American down-and-in derivative with payoff ϕ(S(ti)) is given by vADI(0) where

vADI(tN ) = ϕ(S(T ))1
(
m(T ) ≤ B

)
and

vADI(ti) = max

ϕ(S(ti))1
(
m(ti) ≤ B

)
,EQ

e− ∫ ti+1
ti

r(s)ds
vADI(ti+1)

∣∣∣∣∣ (S(ti), r(ti),m(ti)
)

for i = N − 1, . . . , 0.

Proof See Appendix 3.A. �

In particular, the dependence of S(ti+1) and r(ti+1) on S(ti) and r(ti) is trivial; on the contrary,

m(ti+1) depends on m(ti) (and on S(ti)) since

m(ti+1) = min{m(ti), S(ti+1)}. (3.19)

Assuming a generic discretization of the market model (3.1), this forward-shooting grid approach

works as follows. Exploiting a forward induction, I first consider each node (S(ti), r(ti) and I

compute all the compatible possible values of m(ti), namely, the minimum values reached along

all possible paths that connects (S(0), r(0)) to (S(ti), r(ti)).

As {S(ti)} =
{
S(0) exp

(
MσS

√
∆t
)}

M∈{−i,−i+2,...,i−2,i}
, it holds

{m(ti)} =



{
S(0) exp

(
−JσS

√
∆t
)}

J=0,..., i−M2
M ≥ 0{

S(ti) exp
(
−JσS

√
∆t
)}

J=0,..., i+M2
M < 0

Therefore, each node of the lattice is enlarged to (S(ti), r(ti),m(ti)1, . . . ,m(ti)J) with J ≤ i/2.

Then, I start the backward recursion part of the algorithm. At tN = T and for each

(S(tN ), r(tN ),m(tN )1, . . . ,m(tN )J) I compute the payoff of the option according to each possible
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value of the running minimum thus getting at most i/2 values of the option. Then, at tN−1,

I consider each triplet (S(tN−1), r(tN − 1),m(tN − 1)j)j≤N/2, I compute the immediate exercise

value of the option and I look for the compatible following nodes along the tree exploiting (3.19).

Then, I compute the continuation value discounting back the values of the options in the nodes I

found. As the number of possible values of the running minimum compatible with a generic S(ti)

is decreasing in i, S(0) will have only one compatible running minimum, m(0) = S(0). In this

way, I obtain the unique price of the option.

3.2.3 Continuously monitored barrier options

The extension from discretely monitored barrier options to their continuously monitored counter-

parts relies on the convergence of the discrete approximation chosen for the market model (3.1).

Proposition 3.5 (Convergence of the continuously monitored barrier options) As-

sume that (S(ti), r(ti))i=0,...,N is a discrete time stochastic process that converges in distribution

to (S(t), r(t)) in (3.2) as N → +∞. Then the price of the down-and-out/down-and-in Euro-

pean/American barrier options discretely monitored at {Si(t)}i=0,...,N evaluated by means of Propo-

sitions 3.1, 3.2, 3.3, 3.4 converges to the price of the related continuously monitored barrier options

as N → +∞.

Proof See Appendix 3.A. �

The discrete approximation of the market model (3.1) I will work with is the quadrinomial tree

proposed in Section 2.2 of Battauz and Rotondi (2019). Loosely speaking, the quadrinomial tree

adds an extra dimension to the binomial tree of Cox et al. (1979) to account for the evolution of

the stochastic interest rate. More precisely, the continuous time stochastic process (S(t), r(t)) over

[0, T ] in (3.1) is approximated by a discrete time stochastic process (S̃(ti), r̃(ti)) over the uniform

discrete partition {iTn }i=0,...,n, where n ∈ N is the number of time steps chosen. At each step the

discrete process evolves according to

(
S̃(ti+1), r̃(ti+1)

)
=



(
S̃(ti)e∆Y , r̃(ti) + ∆r

)
with probability quu(

S̃(ti)e∆Y , r̃(ti)−∆r
)

with probability qud(
S̃(ti)e−∆Y , r̃(ti) + ∆r

)
with probability qdu(

S̃(ti)e−∆Y , r̃(ti)−∆r
)

with probability qdd

(3.20)

where, for sake of readability, the explit expressions of the parameters ∆Y , ∆r and of the four

transition probabilities are deferred to Appendix 3.C. It is worth to notice that, differently from

the standard binomial tree of Cox et al. (1979), the transition probabilities of the quadrinomial
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tree are state-dependent and time contingent. Furthermore, notice that the quadrinomial tree is

recombining (namely, it has a lattice structure) and the number of possible states grows quadrati-

cally in the number n of steps. Finally, it holds that the quadrinomial tree converges in distribution

to the continuous time processes that solve system (3.1) as the time step shrinks or, equivalently,

as the number of steps n grows to infinity.

Of course, any finite n chosen to retain computational feasibility leads to a discretization error

in the discrete time approximation of the state variables (S(t), r(t)) and thus in the related option

pricing. I analyse the resulting numerical issues in the following subsection.

3.2.3.1 Numerical issues

When dealing with numerical methods for option pricing, the accuracy and the stability of al-

gorithms proposed are of great relevance. As an example, it is well known that the price of

at-the-money Vanilla European call and put options obtained along the binomial tree of Cox et al.

(1979) overestimates or underestimates the related Black-Scholes price depending on the parity of

the finite number of steps chosen for the tree. A straightforward correction of this inaccuracy is

to average out the prices obtained along the tree using n steps first and then n+ 1 steps.

As effectively explained in Section 6.4 of Glasserman (2003), dealing with barrier features remark-

ably slows down the rate of convergence option prices due to the singularity of the distribution of

the running maximum/minimum even in the standard Black-Scholes framework.

Without loss of generality, consider a down and out contract. When approximating a continuous

monitoring with a discrete one, the main issue is that the possibility that the barrier is hit between

two subsequent monitoring dates (both of them above the barrier) is neglected. Therefore, the

discrete monitoring version of a down and out contract systematically overestimate its continuous

monitoring version. The size of this error is directly proportional to the distance between the

barrier and the nearest nodes of S on the tree as it can be seen graphically in Figure 3.1. To

eliminate this source of error I propose to conveniently choose the number of discretization steps

so that the barrier falls precisely on one node of the tree. Let n be the number of time steps. At

maturity T the possible values of S on the tree are of the form

S(T ) = S(0) exp
(
mσS

√
T

n

)
with m ∈ Z, |m| ≤ n.

Therefore, the barrier level B is precisely on one node of the tree if

n(m) = m2σ2
ST

(
ln B

S(0)

)−2
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Figure 3.1: Possible paths of S between S(t) and S(t + ∆t). If the barrier is close to a
node of the tree (left panel) then it more likely that a continuous path of S gets knocked-
out before going back to S(t + ∆t): in the illustrative example this happens for 4 out
of 10 paths. If the barrier is farther from the nodes (right panel), the probability of the
aforementioned event is lower: in the illustrative example it happens for just 1 out of 10
paths.

with m ∈ Z and m ≤ n. Granting at least a monitoring each two days, the “optimal” number of

time steps to choose is therefore n(m∗) with

m∗ := min
m∈Z,m≤n

m2σ2
ST

(
ln B

S(0)

)−2

> 125 · T (3.21)

This workaround allows to efficiently price barrier options along a lattice even with a relative small

number of time steps.

As an illustrative example consider a European down-and-out put option on S with S(0) = K =

100, B = 90 and T = 1. The parameters of S and r are as in Table 3.1 (which displays the result of

the model’s calibration exercise performed in Section 3.3.1). Figure 3.2 shows πEput,DO, the price at

inception of a continuously monitored European down-and-out put option computed by means of

different techniques. The benchmark is a Monte Carlo estimate (solid black line) that exploits 107

paths and 250 monitoring dates, and whose confidence interval is highlighted by the two dashed

lines. Notice that the Monte Carlo estimate is only available when pricing European options: the

price of American ones can not be estimated directly by Monte Carlo. The performance of different

lattice-based approaches, as a function of the number of time steps chosen, are compared. The

lattice considered is always the quadrinomial tree of Battauz and Rotondi (2019).

With no adjustments, the algorithm suggested in Proposition 3.1 heavily overestimate the value

of the continuously monitored option. Even with more than 250 time steps, the error one might
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Figure 3.2: Lattice-based prices vat inception of a continuously monitored European
down-and-out put option as the number of time steps increases.

get is still sizeable as the blue line in the left panel of Figure 3.2 suggests. Broadie et al. (1997)

suggest a barrier shifting adjustment (BS-adj.) that improves the estimate of the price as the

orange line in the left panel of Figure 3.2 shows. The intuition behind this correction is that

shifting the barrier down a little bit reduces the probability that the barrier itself is hit between

two subsequent nodes that lay above the barrier. A even more effective workaround is proposed

by Glasserman (2003) in Section 6.4. This Brownian bridge adjustment (BB-adj.) prescribes to

correct for the probability that the underlying price process falls below the barrier conditional of

starting and ending at two subsequent nodes above the barrier. As the yellow line in left panel of

Figure 3.2 shows, this BB-adjustment delivers prices that are very close to the benchmark even for

a reasonably small number of time steps. Finally, the choice of the optimal number of time steps

I proposed in Equation (3.21) precisely picks out the points of the plain algorithm without any

adjustment that are as close as possible to the benchmark. As it can be seen in the right panel

of Figure 3.2, the optimal numbers of steps I suggest to consider deliver stable results even from

a small number of steps. Therefore, when pricing a continuously monitored barrier option I will

always choose the number of time steps according to (3.21).

3.2.4 Alternative market models

Although fairly general, the market model in (3.1) is commonly modified along two directions:

• setting a zero lower bound for the interest rate process;

• relaxing the hypothesis of constant volatility (at least) for the underlying equity price pro-

cess.
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Macroeconomic literature has focused a lot on the zero lower bound of interest rates, mostly due to

its implications on the effectiveness of central banks’ monetary policy. Indeed, it has been argued

that when (nominal) interest rates are close to zero, “traditional” monetary policy interventions,

like lowering the nominal interest rates, fail. On the contrary, under these particular circumstances,

only “unconventional” policies like large-scale asset purchases and forward guidance seem to be

effective to boost the economy. See the groundbreaking theoretical work of McCallum (2000) and

the further empiric considerations of Hamilton and Wu (2012) and Wu and Xia (2016), among

others. Furthermore, earning a negative rate on the riskless asset (namely, saving $100 in the bank

account today and withdrawing $99 in one year) is a contingency that also asset pricing literature

usually avoided: indeed, in such a circumstance, the investor is rather assumed to “hide the cash

under the mattress” and preserve the nominal value of her asset. Nevertheless, nowadays these

assumptions are challenged by real market circumstances.

Due to these reasons, though, short-term rate models with strictly positive interest rates have been

preferred over the ones that allowed for negative values. Among the latter ones, the most famous

and the most widely used is the celebrated CIR model proposed by Cox et al. (1885). Therefore,

I will include this model as an alternative benchmark in my numerical examples.

With respect to the other natural extension of the market model in (3.1), it is well known that a

constant volatility for the underlying equity process is not consistent with many empirical stylized

facts in option pricing such as the volatility smile. In order to overcome this limitation, two

extensions have been proposed: local volatility models, like the constant elasticity of variance

(CEV, henceforth) model10, and stochastic volatility ones, like the celebrated model of Heston

(1993). The main difference between local volatility and stochastic volatility models is that the

latter introduces a new risk factor that needs to be modelled independently; on the contrary, local

volatility models assume that the volatility of the underlying process depends on the level of the

underlying itself and therefore introduces no new state variables. The CEV model captures the

so-called leverage effect, which is a pattern observed in equity markets: the volatility of an equity

is usually low when the equity is performing well and, on the contrary, its volatility increases when

the equity is performing poorly. Therefore, for sake of simplicity, I will add the CEV model for

the underlying as another alternative benchmark in my numerical examples.

Accounting for the zero lower bound of the interest rate process and for the local volatility

of the underlying equity price process leads to a generalized financial where the risk factors are

10The CEV model was developed in an unpublished draft titled “Notes on option pricing I: constant
elasticity of diffusions” by J. Cox in 1975. See Linetsky and Mendoza (2009) for a throughout review of
the CEV model.
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driven by the following SDEs dS(t) = S(t)(r(t)− q)dt+ σSS(t)γdWQ
S (t)

dr(t) = κ
(
θ − r(t)

)
dt+ σrr(t)βdWQ

r (t)
(3.22)

with γ, β > 0. Notice that β = 0.5 delivers the CIR model of Cox et al. (1885). Both of the

SDEs in (3.22) admit no explicit solution11 like (3.2). Nevertheless, they can still be fitted in the

quadrinomial tree of Battauz and Rotondi (2019). See the formal derivation of the lattice in this

case in Appendix 3.C.

3.3 Empirics

In this Section I carry out a throughout analysis of barrier options pricing within my market model

as opposed to several other benchmarks. In order to assume parameters that are as more realistic

as possible, in Subsection 3.3.1 I calibrate the market model in (3.1) to European data. Then, I

use the resulting parameters as input for the wide numerical exercised proposed in Subsection 3.3.2

and I quantify the pricing errors generated by assuming constant/ non correlated/ strictly positive

interest rates. Finally, Subsection 3.3.3 contains two applications of the techniques developed in

this paper to more sophisticated option pricing problems.

3.3.1 Calibration

I calibrate the model described by (3.1) to European market data as of November 2018 the 30th.

Full details of this calibration exercise are provided in Appendix 3.B.

The five parameters that have to be calibrated are κ, θ, σr, σS , ρ. I select the EuroStoxx 50 Index

as equity price process and the three months yield of AAA-rated Euro-denominated bonds as the

interest rate process.

I collect the prices of several frequently traded European call and put options on the EuroStoxx

along with the prices of AAA-rated Euro-denominated bonds of many maturities. Then, I look

for the parameters that minimize the distance between the current market prices and the ones

implied by the model ((3.6) and (3.7) for the options and (3.3) for the bonds). See Appendix 3.B

for further details on the options used in the calibration exercise.

The result of this calibration exercise is shown in Table 3.1. Figure (3.1) shows graphically the

remarkably small distance between the prices implied by the calibrated model and the real market

11See Section 3.4 of Glasserman (2003) for the exact and approximated simulation schemes of this kind
of processes. Those can be useful when exploiting Monte Carlo-based pricing techniques.
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κ θ σr σS ρ

11.99% 3.16% 1.54% 14.37% 85.42%

Table 3.1: Results of the calibration of market model (3.1).
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Figure 3.1: Market prices of bonds and options (blue markers) and prices obtained
from the calibrated model (orange markers). Left panel: prices of AAA-rated Euro-
denominated zero coupon bonds; right panel: prices of call and put options on EuroStoxx
50 with 3 months maturity.

ones.

Table 3.1 suggests that he mean reversion towards the long run interest rate value is slow and

the process itself displays low volatility. Nevertheless, both of the coefficients are quite relevant

when dealing with long maturity derivatives as it will be clear in the following examples. The

correlation between the equity and the bonds is estimated to be largely positive, which reflects

the current situation of a negative correlation between the interest rates and the equity prices (as

recently documented by, e.g., Perego and Vermeulen (2016)). Finally, the value of the volatility

of the equity is coherent with the levels of the Stoxx 50 Volatility Index that aims to measure the

volatility of the EuroStoxx 50 as the CBOE VIX index does analogously for the S&P 500.

3.3.2 Numerical examples

Table 3.2 and Table 3.3 collect the results of the main numerical example.

The options priced in Table 3.2 are European-style whereas the ones in Table 3.3 are American-

style. Three different payoff function ϕ(S) are considered each time: the digital payoff, constantly

equal to 1, the put’s and the call’s payoff. Furthermore, three different barrier events are consid-
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ered: no barrier event at all (thus leading to a plain Vanilla option); the down-and-out event that

makes the investor obtain the payoff if the barrier is not crossed throughout the life of the option;

the down-and-in event the makes the investor obtain the payoff if and only if the barrier is touched

at least once. Considering all the possible combinations, nine different options are priced. Finally,

these nine options are priced within the following seven different market models. The baseline case

is the Vasicek market model in (3.1) with the parameters in Table 3.1. Then, in order to quantify

the error an unsophisticated investor who neglects interest rate risk would make, pure diffusive

models, with constant interest rates, are considered: the interest rate is set equal to r(0), r∗, the

yield to maturity of the AAA-rated bond expiring at T , and θ∗, the estimated long-term mean.

Furthermore, in order to quantify the error an investor who neglects the correlation between the

two risk factors or wrongly flips its sign would make, I consider again the baseline model with ρ

equal to either zero or the opposite of the estimated parameter. Finally, the other more promi-

nent alternative to the baseline model, namely the CIR model introduced in Subsection 3.2.4 is

considered.

The other parameters of the numerical exercise are: S(0) = K = 100, where K is the strike of

the call/put options. T = 2, that, together with L = 70, delivers, according to (3.21), an optimal

number of time steps m∗ = 259.

For each option, and across all models, the tables display options’ prices along with relative errors

with respect to the baseline case. Furthermore, for American options, also the Early Exercise

Premium (EEP henceforth) is computed. The EEP is the difference between the price of any

American option and its European counterpart and it represents the dollar-value of the early ex-

ercise opportunity provided by American-style contracts.

The following considerations can be made:

• although less interesting from the applications point of view, European digital options offer

useful insights. The Vanilla versions of the these digital options are basically zero coupon

bonds. Their price depends solely on the interest rate and, consequently, it is not sensitive

to the correlation between the risk factors. In this case r impacts only the discount rate and

assuming a constant interest rate (as long as not too different from r(0)) does not change

the price much. As a consequence, relative errors with respect to the benchmark case are

small.

• On the other hand, the payoff of European down-and-out and down-and-in digital options

depends also on the path of the underlying equity process through the barrier event. As an

instance, the price of a digital down-and-out option is given by

EQ
[
e
−
∫ T

0
r(s)ds

1
(
m(T ) > L

)]
,



102
European Options

payoff model
Vanilla Down-and-out Down-and-in

price rel. error price rel. error price rel. error

Digital

baseline 0.9950 0.5077 0.4873
r(t) ≡ r(0) 1.0131 1.82 % 0.5215 2.72 % 0.4916 0.88 %
r(t) ≡ r∗ 1.0121 1.72 % 0.5219 2.80 % 0.4902 0.60 %
r(t) ≡ θ∗ 0.9388 5.65 % 0.5446 7.27 % 0.3942 19.11 %
ρ = 0 0.9950 0.00 % 0.5233 3.07 % 0.4717 3.20 %
ρ = −ρ∗ 0.9950 0.00 % 0.5412 6.60 % 0.4538 6.87 %
CIR 0.9997 0.47 % 0.5258 3.57 % 0.4739 2.75 %

Put

baseline 17.9580 1.6715 16.2865
r(t) ≡ r(0) 17.8640 0.52 % 1.8784 12.38 % 15.9856 1.85 %
r(t) ≡ r∗ 17.8021 0.87 % 1.8757 12.22 % 15.9264 2.21 %
r(t) ≡ θ∗ 13.5771 24.40 % 1.6608 0.64 % 11.9163 26.83 %
ρ = 0 16.8462 6.19 % 1.7955 7.42 % 15.0507 7.59 %
ρ = −ρ∗ 15.6479 12.86 % 1.9410 16.12 % 13.7069 15.84 %
CIR 17.0602 5.00 % 1.8414 10.16 % 15.2188 6.56 %

Call

baseline 16.4712 15.8051 0.6661
r(t) ≡ r(0) 14.5723 11.53 % 13.9732 11.59 % 0.5991 10.06 %
r(t) ≡ r∗ 14.6117 11.29 % 14.0117 11.35 % 0.6000 9.92 %
r(t) ≡ θ∗ 17.7203 7.58 % 17.0606 7.94 % 0.6597 0.96 %
ρ = 0 15.3589 6.75 % 14.7136 6.91 % 0.6453 3.12 %
ρ = −ρ∗ 14.1599 14.03 % 13.5358 14.36 % 0.6241 6.31 %
CIR 15.1125 8.25 % 14.5007 8.25 % 0.6118 8.15 %

Table 3.2: European options prices. S(0) = 100, q = 1% and T = 2. The payoff at
maturity of digital options is ϕ(S(T )) = 1; of (at the money) put options is ϕ(S(T )) =
(S(0)−S(T ))+; of (at the money) call options is ϕ(S(T )) = (S(T )−S(0))+. The baseline
model is the Vasicek market model in (3.1) with the parameters specified in Table 3.1.
The models r(t) ≡ r(0)/r∗ = −0.60%/θ∗ are pure diffusive models (Black-Scholes ones)
where the interest rate is constant and equal respectively to its initial value/ the yield on
T -bond riskless bond/ the long-run mean. The models ρ = 0/−ρ∗ differ from the baseline
one only with respect to the correlation which is assumed to be 0/ the opposite of the
result from the calibration exercise. The CIR model is the one in (3.22) with γ = 0.5.
The barrier is L = 70.
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error EEP price rel. error EEPDO price rel. error EEPDI DFP

Digital

baseline 1.0138 0.02 1.0138 0.51 0.4890 0.00 0.49
r(t) ≡ r(0) 1.0131 0.07 % 0.00 1.0131 0.07 % 0.49 0.4916 0.53 % 0.00 0.49
r(t) ≡ r∗ 1.0121 0.17 % 0.00 1.0121 0.17 % 0.49 0.4902 0.25 % 0.00 0.49
r(t) ≡ θ∗ 1.0000 1.36 % 0.06 1.0000 1.36 % 0.46 0.4072 16.73 % 0.01 0.41
ρ = 0 1.0138 0.00 % 0.02 1.0133 0.05 % 0.49 0.4778 2.29 % 0.01 0.48
ρ = −ρ∗ 1.0138 0.00 % 0.02 1.0137 0.01 % 0.47 0.4671 4.48 % 0.01 0.47
CIR 1.0000 1.36 % 0.00 1.0000 1.36 % 0.47 0.4741 3.05 % 0.00 0.47

Put

baseline 17.9807 0.02 15.5266 13.86 17.9774 1.69 15.52
r(t) ≡ r(0) 17.8640 0.65 % 0.00 16.0052 3.08 % 14.13 17.8578 0.67 % 1.87 16.00
r(t) ≡ r∗ 17.8021 0.99 % 0.00 15.9742 2.88 % 14.10 17.7961 1.01 % 1.87 15.97
r(t) ≡ θ∗ 14.1292 21.42 % 0.55 13.7137 11.68 % 12.05 14.1292 21.41 % 2.21 13.71
ρ = 0 17.1479 4.63 % 0.30 15.5886 0.40 % 13.79 17.1429 4.64 % 2.09 15.58
ρ = −ρ∗ 16.4252 8.65 % 0.78 15.6273 0.65 % 13.69 16.4232 8.65 % 2.72 15.63
CIR 17.0602 5.12 % 0.00 17.0602 9.88 % 15.22 15.4178 14.24 % 0.20 15.42

Call

baseline 16.4753 0.00 15.8091 0.00 0.6661 0.00 0.00
r(t) ≡ r(0) 14.8508 9.86 % 0.28 14.2449 9.89 % 0.27 0.7245 8.77 % 0.13 0.12
r(t) ≡ r∗ 14.8828 9.67 % 0.27 14.2763 9.70 % 0.26 0.7350 10.34 % 0.13 0.13
r(t) ≡ θ∗ 17.7205 7.56 % 0.00 17.0607 7.92 % 0.00 0.6597 0.96 % 0.00 0.00
ρ = 0 15.5759 5.46 % 0.22 14.9255 5.59 % 0.21 0.7053 5.89 % 0.06 0.05
ρ = −ρ∗ 14.8354 9.95 % 0.68 14.1976 10.19 % 0.66 0.7241 8.71 % 0.10 0.09
CIR 15.2841 7.23 % 0.17 15.2841 3.32 % 0.78 0.6818 2.36 % 0.07 0.68

Table 3.3: American options prices. S(0) = 100, q = 1% and T = 2. The immediate payoff of digital
options is ϕ(S(t)) = 1; of (at the money) put options is ϕ(S(t)) = (S(0) − S(t))+; of (at the money)
call options is ϕ(S(t)) = (S(t) − S(0))+. The baseline model is the Vasicek market model in (3.1) with
the parameters specified in Table 3.1. The models r(t) ≡ r(0)/r∗ = −0.60%/θ∗ are pure diffusive models
(Black-Scholes ones) where the interest rate is constant and equal respectively to its initial value/ the yield
on T -bond riskless bond/ the long-run mean. The models ρ = 0/ − ρ∗ differ from the baseline one only
with respect to the correlation which is assumed to be 0/ the opposite of the result from the calibration
exercise. The CIR model is the one in (3.22) with γ = 0.5. The barrier is L = 70. The EEP is the Early
Exercise Premium, namely the difference between the price of the American option and of its European
counterpart. The deviation from parity, DFP, is defined in Equation (3.18).
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where, as usual, m(T ) is the running minimum of the equity price process S. In this case,

r impacts both the discount rate and the expected drift of S that is the main driver of the

probability that the barrier is reached. The interplay of these two effects delivers larger

relative pricing error. If a constant interest rate is considered, the relative pricing errors can

be as large as 2.80%. If, on the contrary, the correlation between the effects is ignored or if

its sign is flipped, relative pricing errors rise up to 6.87%.

• When moving to European put and call options, relative pricing errors with respect to the

benchmark models widen. This is due to a third effect of r as now the payoff of the option

depends explicitly on the level of the underlying at T and not just only on the probability

of the barrier event, if any. Overall, if a constant interest rates (either r(0) or r∗) is chosen,

the relative pricing error ranges from 0.52% (for the Vanilla put) to 12.38% (for the down-

and-out put). If the interest rate is assumed to be positive and a CIR model is used, the

relative pricing error is on average equal to 8%. If correlation between the risk factors is

neglected or, even worse, its sign is flipped, the relative pricing error ranges from 3.12% (for

the down-and-in call option) to 16.12% (for the down-and-out put option).

• American options carry always a non negative early exercise premium as shown in Table

3.3. In general, this premium is particularly sizeable for out contracts as, if the equity price

process approaches the barrier and the threat of being knocked out becomes relevant, the

holder of the American contract will surely exercise it whereas the holder of the European

one has no such a possibility. In the present example, the related deviation from in-out

parity is particularly large for put options as, if the underlying equity process goes down,

the put is in the money and, if of American-style, it can be profitably exercised before the

barrier is touched.

• Relative pricing errors with respect to the baseline case are slightly smaller for American

options, due to the early exercise possibility. Nevertheless, optimal exercise policies (namely

the instant in time at which the option is optimally exercised) may vary a lot, as the second

example of the following Section shows. Overall, assuming a flat term structure with r

equal to either r(0) or r generates relative pricing errors that range between 0.65% (for the

Vanilla put option) and 10.34% (for the down-and-in call option). On the other hand, a

wrong choice of the correlation leads to relative pricing errors between 0.4% and 10.19%.

Appendix 3.C contains similar numerical exercises with longer-lived options (T = 5 years) and

different barrier levels (L = 80, L = 60).
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t (years) CFt

0 -N
1 C11(minτ∈I1 S(τ) > S(0))
. . . . . .
T CT1(minτ∈IM

S(τ) > S(0))
T N

Table 3.4: Cashflow of the equity-linked note of the first example. C =
[30 37 44 51 58 65 72] and, assuming 250 trading days per year, Ii = [i − 7

250 , i] for
i = 1, . . . , 7.

3.3.3 Applications

First example: a equity-linked note

This first example I make is about an actually traded equity-linked note12 written on the EuroStoxx

50, that I label by S. The note, whose full name is “Standard long barrier protected digital certificate

on EuroStoxx 50 index due 11.28.2025” was announced on November 30 2018 when the index was

standing at S(0) = 3173.13. Its price at inception was set equal to N = 100013. Since this is a

capital protected note, N is given back to the investor at T . Using the same notation of Section

3.2, the cashflow of the equity-liked note is shown in Table 3.4.

Looking at its cashflow, this note can be seen as the combination of seven correlated down-and-

out digital options on the same underlying and therefore, it can be priced using the algorithm

developed in the previous Section. Table 3.5 displays the pricing results from the first example.

As it can be seen from the left panel, the baseline model, namely the Vasicek one, delivers a small

relative pricing error (1.96%) with respect to the market price.

As this note can be seen as a combination of digital down-and-out option, the main drivers of its

price are the discount rate and the expected drift of the underlying. In particular,

• if r(t) ≡ r(0), since r0 is constantly mildly negative, the discount rate is always greater than

one and the present value of the expected cashflows is too high. Even though the note is

supposed to go out of the money due to a negative expected drift, the first effect prevails

and the note is way overpriced;

12This note, “certificato” in Italian, is issued by Banca IMI S.p.a., an Italian financial company, and
its unique identification code is XS1898262578. The official webpage (in English) of this product is
https://www.bancaimi.prodottiequotazioni.com.

13All the priced are quoted in Euros. Therefore, I suppress everywhere the currency symbol.

https://www.bancaimi.prodottiequotazioni.com/EN/Products-and-Prices/Product-Details/XS1898262578
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constant volatility
model price relative error

mkt. price 1000 -
baseline 1019.60 1.96%
r(t) ≡ r(0) 1129.40 12.94%
r(t) ≡ r∗ 1089.32 8.93%
r(t) ≡ θ∗ 930.86 6.91%
ρ = 0 1025.62 2.56%
ρ = −ρ∗ 1030.23 3.02%
CIR 964.21 3.58%

local volatility
model price relative error

mkt. price 1000 -
baseline 1035.25 3.53%
r(t) ≡ r(0) 1153.67 15.37%
r(t) ≡ r∗ 1102.41 10.24%
r(t) ≡ θ∗ 945.58 5.44%
ρ = 0 1046.17 4.62%
ρ = −ρ∗ 1053.62 5.36%
CIR 978.36 2.16%

Table 3.5: Prices of the equity-linked note. The cashflow of the derivative is described in
Table 3.4. S(0) = L = 3173.13, q = 0%. The baseline market model is the Vasicek model
with the parameters specified in Table 3.1. The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are
pure diffusive models (Black-Scholes ones) where the interest rate is constant and equal
respectively to its initial value/ the yield on T -bond riskless bond/ the long-run mean.
The models ρ = 0/− ρ∗ differ from the baseline one only with respect to the correlation
which is assumed to be 0/ the opposite of the result from the calibration exercise. For
the CIR model in (3.22), β = 0.5 and r(0) = 10−4 > 0. For the local volatility model,
γ = 0.8.

• if r(t) ≡ θ∗, since the long-term mean of interest rate is a good proxy only for long maturities,

the discount rate at near maturities is too severe. Even if the expected drift of the underlying

is positive, thus pulling the price process towards the in the money region, the discounting

effect prevails and the note is sensibly underpriced;

• the case r(t) ≡ r∗ = −0.23% consistently delivers an intermediate pricing error;

• if ρ is set equal to zero or if its sign is flipped, the relative pricing error is not large: this is

due to the fact this is a digital option whose payoff does not explicitly depend on the level

of the underlying but just on its running minimum. Therefore, the comovements of r and

S are less relevant within this framework;

• the CIR model forces the interest rate to assume strictly positive values. This translates

into a stronger discount rate and the price is again underestimated.

Numerical results from the local volatility model are similar to the ones described above. In
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particular, prices are a little bit higher due to the variability of the volatility of the underlying

price process. Nevertheless, the relative errors are coherent with the ones of the constant volatility

case. Interestingly, the combination of the CIR and the CEV model delivers a remarkably small

relative error.

Figure 3.C.1 in Appendix 3.C shows the sensitivities of the price at inception of the equity-linked

note to the parameters of the models.

Finally, it interesting to discuss a possible replicating strategy of this note. As it has been

already pointed out, this note can be seen as the sum of seven down-and-out European digi-

tal options. Therefore, the natural replicating strategy of this derivative is to go long on seven

down-and-out European digital options with matching maturities and coupons. Nevertheless, this

hedging strategy completely neglects the inter-temporal correlation between the barrier events:

if the first coupon is paid, namely if the underlying is always above the barrier during the first

monitoring period, then it is more like that it will stay above the barrier also during the other

monitoring periods. On the contrary, digital options are priced independently of each other and

thus they are overall more expensive than the note itself. As an example, such an hedging strategy

for the note would cost 1112.11, thus delivering a 11.12% relative error.

Second example: an executive stock option

According to the Financial Accounting Standard Board (FASB henceforth), a firm is required to

estimate and report the “fair” value of share options granted to its employees or executives. Never-

theless, FASB Statement No. 12314, Accounting for Stock-based Compensation, which is the legal

statement that establishes the accounting standards for share- and option-based compensations,

leaves quite a lot of freedom with respect to the methods that should be used to estimate the “fair”

value of this kind of compensation. In particular, paragraphs A13. and A14. of this statement

read

This Statement does not specify a preference for a particular valuation technique or model

in estimating the fair values of employee share options and similar instruments [...]. A

lattice model (for example, a binomial model) and a closed-form model (for example, the

Black-Scholes-Merton formula) are among the valuation techniques that meet the criteria

required by this Statement for estimating the fair values of employee share options and

similar instruments.

Despite this freedom, the particular valuation technique and the assumptions made play a crucial

role in estimating the “fair” value of these instruments. In particular, a constant interest rate (but
14The latest version of the FASB Statement No. 123 can be found at www.fasb.org.

https://www.fasb.org/pdf/fas123r.pdf
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also a constant volatility for the underlying equity process) is not realistic when valuing this kind

of derivatives as they usually display very long maturities15. As a result, the error with respect a

stochastic interest rate model might be sizeable as shown in the following realistic example.

The numerical example I make is about a fictional option granted to one of an European large

bank’s executives. As of November 2018 the 30th, the annual dividend yield was 1.8% and its

implied volatility was 29.7%. The executive stock option considered is an at the money American

call option with maturity T = 5 years and vesting period equal to T ∗ = 1 years. Following Hull

and White (2004a) and Hull and White (2004b), I assume that the American option is exercised

(when the vesting period is over) if the underlying reaches the value B = M · S(0). Therefore,

this option can be seen as a continuously monitored up-and-out American call option and it can

be priced through Proposition 3.2.

The only peculiarity of these executive options is that, most of the times, they can not be sold:

if the manager wants to cash in, she has to exercise the option and sell the share she gets. As

a consequence, when being fired or when voluntarily leaving the job, the executive will surely

exercise her option if in the money. To account for this “forced” (and, thus, possibly suboptimal)

exercise decision, the continuation value at ti > T ∗ of the American option is set equal to

(1− α)πAcall,UO(ti+1) + α(S(ti)−K)+1(S(ti) < B)

namely, a weighted average of the standard continuation value and of the payoff from the imme-

diate “forced” exercise that happens with probability α, the exit rate of the employee.

Table 3.6 collects the numerical results from this pricing exercise. Its structure mimics the one of

Table 3.4 and the models considered are precisely the same.

The relative pricing error with respect to the baseline case is around 10%. In this case the payoff

of the option depends explicitly also on the level of the underlying. Therefore, the effect of r on

the expected drift of the underlying dominates the one on the discount rate: if r is constantly

equal to r(0), which is mildly negative, the price of the option is lower than in the baseline case

as the equity is not expected to appreciate much even though the negative discount rate inflates

all the expected cashflows. On the contrary, if r is set equal to θ∗, which is sensibly positive, the

equity is expected to appreciate a lot and this translates into an overestimation of the baseline

price. As it can be seen from the relative error when the correlation is neglected or its sign is

flipped, the comovements of r and S plays a crucial role this time. The CIR model delivers the

smallest relative error but it neglects a large fraction of the state space of r. This has a sizeable

impact on the optimal exercise policy.
15See, e.g., Aboody et al. (2006) for a throughout analysis on why and how firms are likely to misreport

the price of ESOs.
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Figure 3.2: Sections at r = 0.01% of the free boundaries of the early exercise region of the
American up-and-out call option of the second example. Top-left panel: baseline case,
Vasicek model; top-right panel: CIR case. Bottom-left panel: r(t) ≡ r0 case; bottom-right
panel: Vasicek model with ρ = 0.
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constant volatility
model price relative error

baseline 20.75 -
r(t) ≡ r(0) 18.50 10.84%
r(t) ≡ r∗ 18.89 8.96%
r(t) ≡ θ∗ 22.49 8.39%
ρ = 0 19.46 6.22%
ρ = −ρ∗ 18.07 12.92%
CIR 19.27 7.13%

local volatility
model price relative error

baseline 25.83 -
r(t) ≡ r(0) 22.12 14.36%
r(t) ≡ r∗ 23.47 9.14%
r(t) ≡ θ∗ 24.27 6.04%
ρ = 0 22.85 11.54%
ρ = −ρ∗ 21.42 17.07%
CIR 21.50 16.76%

Table 3.6: Price of the up-and-out American call option with vesting period and exogenous
exit rate described in the second example. Left panel: equity process with constant
volatility. Right panel: equity process with local volatility, CEV model, γ = 0.8. Common
parameters: S(0) = K = 100, T = 5, q = 1.8%, σS = 29.7%, r∗ = −0.23%, barrier level
B = 2S(0), vesting period T ∗ = 1, exit rate α = 5%; parameters of the interest rate
process as in Table 3.1. For the CIR model in (3.22), β = 0.5 and r(0) = 10−4 > 0. For
the CEV model, γ = 0.8.

Figure 3.2 shows the sections at r(t) = 0% of the early exercise region and of the continuation

region within the alternative models. The interpretation of the plots is as follows: if r(t) = 0%,

the American call option is optimal exercised at t if S(t) lies between the upper and the lower

boundary (the blue and the red line, respectively). It is easy to see how the continuation region

of the baseline case is wider than the one obtained with the CIR model: since the CIR model

contemplates no negative values for r, r is therein expected to move towards its positive long-run

level θ∗, that delivers a higher expected drift and, therefore, a more juicy payoff. On the contrary,

in the baseline case r is likely to fall below zero: in this case, the executive may prefer to cash in

even at lower value of S to gain from the negative discount and to protect herself from the depre-

ciation of the underlying. As a small final remark, notice that the shape of the lower boundary of

the early exercise region within the baseline case challenges traditional results on strict concavity

of optimal stopping boundary for American options in constant interest rate frameworks. (see,

e.g., Ekström (2004)).

Figure 3.C.2 in Appendix 3.C collects the sensitivities of the price at inception of the American

call option with respect to the parameters of the model.

Third example: a Double Barrier Note on the S&P 500 Index
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κ θ σr σS ρ

4.48% 5.65% 0.92% 17.08% 77.27%

Table 3.7: Results of the calibration of market model (3.1) in the US market.

While the first two examples deal with products traded in the European market, it is interesting

to validate the model also in the other major market, namely the US market.

First of all I calibrate the market model (3.1) to US data as of November 2018 the 30th. Details

of the calibration are provided in the second part of Appendix 3.B. The equity price process S I

chose is the S&P 500 index while I proxy the short term interest rate process r with the United

States Treasury Securities yield. The main difference between European market conditions is the

actual level of the interest rate: in the US market I have r0 = 2.37% while in the European market

I had r0 = −0.6728%. The results of the calibration are displayed in Table 3.7. We notice that,

with respect to the European counterparts in Table 3.1, the interest rate process reverts to its

long-run mean more slowly and also with a smaller volatility coefficient. Nevertheless, both the

volatility of the equity process and the correlation between the two risk factors are comparable to

the European market.

The derivative I analyze is an at the money double barrier European option on the S&P 500 issued

by a large American Bank16. The option was issued on February 21 2019 when the index closed

at S(0) = 2774.88. Recalling the general definition of a double barrier option in (3.12), the payoff

of this Note is

X(T ) = 1
S(0)

∣∣S(T )− S(0)
∣∣1 (m(T ) > L ∩M(T ) < U

)
plus the initial capital. As it can be seen, if the underlying does not go out of the interval (L,U)

throughout the life of the option, the payoff to its holder combines the one of a call and of a put

option. In other words, the holder of the option always gets the relative distance between the initial

and the final level, no matter the direction. The payoff to the holder of the option is therefore

minimal if the underlying does not very much from the starting level and it is maximum if the

underlying at maturity is far from the starting level (but still within (L,U)). The two barriers are

continuously monitored.

At inception, the index stand at S(0) = 2743.79. The upper barrier is set equal to U = 3329.86

and the lower one is set equal to L = 1803.67. The maturity of the Note is in T = 2 years,

February 22 2021. The price at inception of the Note was 100$, which coincides with the capital

16The full name of the product is “2 year Capital Protected Note with Double Barrier on the S&P
500 Index”. Its ISIN code is XS0347496538. The issuer is JP Morgan Chase Bank, one of the largest
investment banks in the world.
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constant volatility
model price relative error

market price 100
baseline 106.32 6.32%
r(t) ≡ r(0) 108.21 8.21%
r(t) ≡ r∗ 109.18 9.18%
r(t) ≡ θ∗ 109.98 9.98%
ρ = 0 108.75 8.75%
ρ = −ρ∗ 110.87 10.87%
CIR 105.23 5.23%

Table 3.8: Price of the American up-and-out call option on the S&P 500 described in the
third example. Parameters: S(0) = K = 2743.79, T = 2.

that is surely given back at maturity to the investor.

Table 3.8 reports the pricing results for this third numerical example. Interestingly, the baseline

model and all of the alternative ones overprice the Note. However, the relative pricing error of

the baseline case is quite small. The CIR model here, is actually performing better whereas, as in

the case of the equity-linked note of the first example any model assuming constant interest rates

deliver worse results.

3.4 Conclusions

In the present paper I investigate barrier options, one of th widest class of path-dependent deriva-

tives, exposed to both interest rate and equity risks. Interestingly, I allow for a non-zero correlation

between the two and I remove the zero lower bound of the interest rates. More precisely, I fo-

cus on the Vasicek market model, where the interest rate is assumed to follow a mean-reverting

stochastic process that can take also negative values. Using lattice-based pricing techniques, I de-

velop pricing algorithms for European/American in and out contracts in the case of both discrete

and continuous monitoring. Then, I quantify by means of several numerical examples the relative

errors an unsophisticated investor who believes that interest rates are constant/ uncorrelated with

the equity market/ bounded below from zero would make. It turns out that, depending on the

specific option and on the parameters chosen, the relative pricing error can reach remarkably large

values, exceeding also 15%.

Future research can be aimed at introducing jumps in the equity price process as their impact
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when the equity is close to the barrier is surely relevant.
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Appendix

The Appendix is divided into 3 subsections:

• Subsection 3.A collects all the proofs of the propositions stated in the paper; for the ease of

reading, I recall also the statements of the propositions when providing the proof;

• Subsection 3.B contains the full details of the calibration exercised briefly discussed in sub-

section 3.3.1;

• Subsection 3.C develops further details that are omitted in the main paper for sake of brevity

and readability.

3.A Proofs of the propositions

Proposition 3.1. (Price of an European down-and-out option). The price at inception of

the European derivative in (3.13) is given by vEDO(0) where

vEDO(tN ) = ϕ(S(T ))1
(
S(T ) > B

)
and

vEDO(ti) = EQ

exp
(
−
∫ ti+1

ti

r(s)ds
)
vEDO(ti+1)1

(
S(ti) > B

)∣∣∣∣∣∣Fti


for i = N − 1, . . . , 0.

Proof Since

1

(
min

t∈{t0,...,tN}
S(t) > B

)
=

∏
i=0,...,N

1
(
S(ti) > B

)
,

the fundamental risk-neutral pricing equation for the European derivative with payoff XDO(T ) in
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(3.13) reads

πEϕ,DO(0) = EQ

e− ∫ T0 r(s)ds
ϕ(S(T ))1

(
min

t∈{t0,...,tN}
S(t) > B

)
= EQ

e− ∫ T0 r(s)ds
ϕ(S(T ))

∏
i=0,...,N

1
(
S(ti) > B

)
= EQ

e− ∫ tN−1
0

r(s)ds−
∫ T
tN−1

r(s)ds
ϕ(S(T ))1

(
S(T ) > B

) ∏
i=0,...,N−1

1
(
S(ti) > B

) .

Exploiting the tower property of the conditional expectation and since both exp(−
∫ tN−1
0 r(s)ds)

and
∏
i=0,...,N−1 1

(
S(ti) > B

)
are FtN−1-measurable, the previous expression becomes

πEϕ,DO(0) = EQ

EQ

e− ∫ tN−1
0

r(s)ds−
∫ T
tN−1

r(s)ds
ϕ(S(T ))1

(
S(T ) > B

) ∏
i=0,...,N−1

1
(
S(ti) > B

)∣∣∣∣∣∣FtN−1




= EQ

e− ∫ tN−1
0

r(s)ds ∏
i=0,...,N−1

1
(
S(ti) > B

)
EQ

e− ∫ TtN−1
r(s)ds

ϕ(S(T ))1
(
S(T ) > B

)∣∣∣∣∣FtN−1




= EQ

e− ∫ tN−1
0

r(s)ds ∏
i=0,...,N−1

1
(
S(ti) > B

)
EQ

e− ∫ TtN−1
r(s)ds

vEDO(tN )
∣∣∣∣∣FtN−1




= EQ

e− ∫ tN−1
0

r(s)ds ∏
i=0,...,N−1

1
(
S(ti) > B

)
vEDO(tN−1)

 .

Going backward, writing e−
∫ tN−1

0
r(s)ds as e

−
∫ tN−2

0
r(s)ds−

∫ tN−1
tN−2

r(s)ds
and

∏
i=0,...,N−1 1

(
S(ti) > B

)
as 1

(
S(tN−1) > B

)∏
i=0,...,N−2 1

(
S(ti) > B

)
and exploiting again the tower property of the con-

ditional expectation, πEϕ (0) becomes

πEϕ,DO(0) = EQ

e− ∫ tN−1
0

r(s)ds ∏
i=0,...,N−1

1
(
S(ti) > B

)
vEDO(tN−1)


= EQ

e− ∫ tN−2
0

r(s)ds ∏
i=0,...,N−2

1
(
S(ti) > B

)
EQ

e− ∫ tN−1
tN−2

r(s)ds
vEDO(tN−1)1

(
S(tN−2) > B

)∣∣∣∣∣FtN−2




= EQ

e− ∫ tN−2
0

r(s)ds ∏
i=0,...,N−2

1
(
S(ti) > B

)
vEDO(tN−2)

 .



Barrier options under correlated equity and interest rate risks 117

The second-last step of this backward recursion will deliver

πEϕ,DO(0) = EQ

e− ∫ t10
r(s)ds ∏

i=0,...,1
1
(
S(ti) > B

)
vEDO(t1)


= vEDO(0)

that concludes the proof. �

Proposition 3.2. (Price of an American down-and-out option). The price at inception of

the American down-and-out derivative with payoff ϕ(S(ti)) is given by vADO(0) where

vADO(tN ) = ϕ(S(T ))1
(
S(T ) > B

)
and

vADO(ti) = max

EQ

e− ∫ ti+1
ti

r(s)ds
vADO(ti+1)

∣∣∣∣∣ (S(ti), r(ti)
) , ϕ(S(ti))

1
(
S(ti) > B

)
for i = N − 1, . . . , 0.

Proof The fundamental risk-neutral pricing equation for the discretely monitored American op-

tion with payoff ϕ(S(ti)) reads

πAϕ,DO(0) = max
τ∈{t0,...,tN}

EQ
[
e
−
∫ τ

0
r(s)ds

XDO(τ)
]

= max
τ∈{t0,...,tN}

EQ

e− ∫ τ0 r(s)ds
ϕ(S(τ))1

(
min

t∈{t0,...,τ}
S(t) > B

)
As explained in Section 21.4 of Björk (2009), πAϕ,DO(0) can be computed by the following backward

recursion

Vti = max

XDO(ti),EQ

e− ∫ ti+1
ti

r(s)ds
Vti+1

∣∣∣∣∣Fti
 for i = 0, . . . , N − 1

VtN = XDO(tN ) = ϕ(S(T ))1
(

min
t∈{t0,...,tN}

S(t) > B

)
(3.A1)

as πAϕ,DO(0) = Vt0 .

As shown below, it turns out that Vti = vADO(ti)
∏
j=0,...,i 1

(
S(ti) > B

)
for all i = 0, . . . , N .

Hence, at t0, πAϕ,DO(0) = Vt0 = vADO(0) that concludes the proof.

I now show that Vti = vADO(ti)
∏
j=0,...,i 1

(
S(ti) > B

)
for all i = 0, . . . , N . The first step of the

backward recursion (3.A1) can be written as

VtN = ϕ(S(T ))1
(
S(T ) > B

) ∏
i=0,...,N−1

1
(
S(ti) > B

)
= vADO(tN )

∏
i=0,...,N−1

1
(
S(ti) > B

)
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since

1

(
min

t∈{t0,...,tN}
S(t) > B

)
=

∏
i=0,...,N

1
(
S(ti) > B

)
.

The second backward step of the recursion reads

VtN−1 = max

XDO(tN−1),EQ

e− ∫ tNtN−1
r(s)ds

VtN

∣∣∣∣∣FtN−1


= max

ϕ(S(tN−1))
∏

i=0,...,N−1
1
(
S(ti) > B

)
,

EQ

e− ∫ tNtN−1
r(s)ds

vADO(tN )
∏

i=0,...,N−1
1
(
S(ti) > B

)∣∣∣∣∣∣FtN−1


 .

Since
∏
i=0,...,N−1 1

(
S(ti) > B

)
is FtN−1-measurable, VtN−1 can be rewritten as

VtN−1 = max

ϕ(S(tN−1)),EQ

e− ∫ tNtN−1
r(s)ds

vADO(tN )
∣∣∣∣∣FtN−1

 ∏
i=0,...,N−1

1
(
S(ti) > B

)
.

Notice that, since e
−
∫ tN
tN−1

r(s)ds
depends only on r(tN−1) and vADO(tN ) only on S(tN−1),

EQ

e− ∫ tNtN−1
r(s)ds

vADO(tN )
∣∣∣∣∣FtN−1

 = EQ

e− ∫ tNtN−1
r(s)ds

vADO(tN )
∣∣∣∣∣ (S(tN−1), r(tN−1)

)
that delivers

VtN−1 = vADO(tN−1)
∏

i=0,...,N−1
1
(
S(ti) > B

)
.

By induction,

Vti = vADO(ti)
∏

j=0,...,i
1
(
S(tj) > B

)
for all i = 0, . . . , N . �

Proposition 3.3. (In-out parity). The price of the European knock-out option with payoff

ϕ(S(T )) and of the European knock-in option with the same payoff satisfy

πEϕ,DO(t) + πEϕ,DI(t) = πEϕ (t), ∀t ∈ [0, T ]

where πEϕ (t) = EQ

[
e
−
∫ T
t
r(s)ds

ϕ(S(T ))
∣∣∣∣Ft

]
is the no-arbitrage price of the plain European deriva-

tive that pays ϕ(S(T )) at T .
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Proof Since

1 =

1( min
t∈{t0,...,tN}

S(t) > B

)
+ 1

(
min

t∈{t0,...,tN}
S(t) < B

) ,
the linearity of the expectation delivers at any t ∈ [0, T ]

πEϕ (t) = EQ
[
e
−
∫ T
t
r(s)ds

ϕ(S(T ))
∣∣∣∣Ft

]

= EQ

e− ∫ Tt r(s)ds
ϕ(S(T ))

1( min
t∈{t0,...,tN}

S(t) > B

)
+ 1

(
min

t∈{t0,...,tN}
S(t) < B

)∣∣∣∣∣∣Ft


= EQ

e− ∫ Tt r(s)ds
ϕ(S(T ))1

(
min

t∈{t0,...,tN}
S(t) > B

)∣∣∣∣∣∣Ft
+

+ EQ

e− ∫ Tt r(s)ds
ϕ(S(T ))1

(
min

t∈{t0,...,tN}
S(t) < B

)∣∣∣∣∣∣Ft


= πEϕ,DO(t) + πEϕ,DI(t).

�

Proposition 3.4. (Price of an American down-and-in option). The price at inception

of the American down-and-in derivative with payoff ϕ(S(ti)) is given by vADI(0) where

vADI(tN ) = ϕ(S(T ))1
(
m(T ) ≤ B

)
and

vADI(ti) = max

ϕ(S(ti))1
(
m(ti) ≤ B

)
,EQ

e− ∫ ti+1
ti

r(s)ds
vADI(ti+1)

∣∣∣∣∣ (S(ti), r(ti),m(ti)
)

for i = N − 1, . . . , 0.

Proof As recalled in the proof of Proposition 3.2, the price of American down-and-in option

πAϕ,DI(0), can be computed by the following backward recursion

Vti = max

XDI(ti),EQ

e− ∫ ti+1
ti

r(s)ds
Vti+1

∣∣∣∣∣Fti
 for i = 0, . . . , N − 1 (3.A2)

VtN = XDI(tN ) = ϕ(S(T ))1
(
m(T ) ≤ B

)
as πAϕ,DI(0) = Vt0 .

The only difference between the backward recursions {vADI(ti)}i=0,...,N and {Vti}i=0,...,N is the
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conditioning of the expected value in the evaluation of the continuation value of the American

option. In (3.A2), Fti is the standard sigma-algebra generated by (S(t), r(t)) and contains all

the realizations of (S(tj), r(tj)) from j = 0 up to j = i. Consequently, the running minimum

m(ti) = mint∈{t0,...,ti} S(t) is Fti-measurable. As m(ti+1) = min{m(ti), S(ti+1)}, the expected

value in (3.A2) depends only on the current value of (S(ti), r(ti),m(ti)) as its argument is now

Markovian with respect to the two standard state variables and the running minimum. Therefore,

EQ

e− ∫ ti+1
ti

r(s)ds
Vti+1

∣∣∣∣∣Fti
 = EQ

e− ∫ ti+1
ti

r(s)ds
Vti+1

∣∣∣∣∣ (S(ti), r(ti),m(ti)
)

that concludes the proof. �

Proposition 3.5. (Convergence of the continuously monitored barrier options).

Assume that (S(ti), r(ti))i=0,...,N is a discrete time stochastic process that converges in distri-

bution to (S(t), r(t)) in (3.2) as N → +∞. Then the price of the down-and-out/down-and-in

European/American barrier options discretely monitored at {Si(t)}i=0,...,N evaluated by means of

Propositions 3.1, 3.2, 3.3, 3.4 converges to the price of the related continuously monitored barrier

options as N → +∞.

Proof The result is standard for European options. Indeed, if a sequence of random variables

{Xn}n∈N converges in distribution to X so does its expected value, E [Xn] n→+∞−→ E [X].

On the contrary, Mulinacci and Pratelli (1998) prove the analogous result for American options

showing that, if {Xn}n∈N converges in distribution to X, then ess supE [Xn] n→+∞−→ ess supE [X].

�

3.B Details of the calibration

I calibrate my market model (3.1) under the risk-neutral measure Q to European market data as

of November 2018 the 30th.

The underlying equity price process I calibrate my model to is the Euro Stoxx 50. Introduced in

February 1998 and designed by STOXX, an index provider owned by Deutsche Börse Group, the

Euro Stoxx 50 collects fifty of the largest and most liquid European stocks. All the details about

this index can be found on STOXX’s official website at https://www.stoxx.com.

Prices and trading volumes of options on the Euro Stoxx 50 are provided by Eurex Exchange, the

largest European futures and options market at https://www.eurexchange.com.

More specifically, I collect the weekly average of daily settlement prices of several European call

https://www.stoxx.com/index-details?symbol=SX5E
https://www.eurexchange.com/exchange-en/products/idx/stx/blc/EURO-STOXX-50-Index-Options-46548
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T # opt. # call # put # traded cnt.

1 m 28 14 14 304’868
3 m 45 17 28 21’697
6 m 29 15 14 18’525
1 y 27 10 17 2991

Table 3.B.1: Summary statistics of the options considered for the calibration exercise. T
is the maturity of the option, “m”, “y” stand for month and year respectively. # opt.
(resp. # call, # put) are the number of options (resp. call, put) with maturity T and
different strike price. Strike price increments are either 25 or 50 points large. # traded
cnt. is the total number of options with maturity T traded on 30th, 2018.

and put options on the index with moneyness (defined as K/S(0)) ranging from 0.8 to 1.2 and

maturities equal to 1,3,6 months and 1 year. I neglect options with poor trading volume (less

than 100 daily traded contracts) and this excludes most of the options with maturities longer

than 1 year. The average number of contracts traded per option is roughly equal to 2000 per day.

Summary statistics of the final sample of options exploited for the calibration are displayed in

Table 3.B.1.

The interest rate process is calibrated to the AAA-rated zero coupon bonds of the Eurozone. The

prices of the AAA-rated zero coupon bonds are collected and elaborated by the European Central

Bank and are available for maturities equal to 3, 6, 9 months and 1,. . . , 30 years on its website at

https://www.ecb.europa.eu. As the short-term interest rate has by definition an instantaneous

holding period, the natural candidate for its approximation is the overnight rate. Nevertheless,

this rate turns out to be quite volatile depending on the business day and poorly correlated to

the even the short-term yields. Therefore, I proxy the short-term rate by the yield with shortest

maturity, namely the three months one. As of November 2018 the 30th, I have r0 = −0.6728%.

The parameters that have to be calibrated in (3.1) are (κ, θ, σr, σS , ρ) =: Θ. I set the continuous

dividend yield equal to q = 3.6% as reported by Eurex Exchange as of the calibration date. First,

I address the calibration of the baseline model.

Market prices of the zero coupon bonds {pM (0, T )}, T ∈ {0.25, 0.5, 1, . . . , 30} are compared to

the prices {p(0, T ; Θ)} delivered by the model in (3.3). Market option prices17 {πMput(t), πMcall(t)},

T ∈ {1/12, 0.25, 0.5, 1}, {K/S0 ∈ 0.8, . . . , 1.2} are compared to the prices {πEput(t; Θ), πEcall(t; Θ)}

17For ease of reading, I drop the superscript E , characterizing the exercise style of the options and I
leave only the superscript M that labels real market prices.

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
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derived in (3.6) and (3.7).

To find the optimal vector of parameters Θ∗ I solve

Θ∗ := arg min
Θ∈D



α{pM (0, T )− p(0, T ; Θ)}

β{πMput(t)− πEput(t; Θ)}

β{πMcall(t)− πEcall(t; Θ)}


′ 
{pM (0, T )− p(0, T ; Θ)}

{πMput(t)− πEput(t; Θ)}

{πMcall(t)− πEcall(t; Θ)}


 , (3.B3)

where α := #prices/#bonds = 163/34 and β := #prices/#options = 163/129 are two constant

weights that compensate the different number of zero coupon bonds and options in the sample

and D is a bounded domain where the optimal parameters are assumed to take values. More

specifically, D = (0, 2)× (0, 0.1)× (0, 0.1)× (0, 0.2)× (−1, 1).

The minimization in (3.B3) is solved numerically exploiting 500 different initial points uniformly

distributed in D. At the random initial points the objective function is equal to 12.3236 on average.

The numerical solution to (3.B3) is

Θ∗ =



κ∗

θ∗

σ∗r

σ∗S

ρ∗


=



0.1199

0.0316

0.0154

0.1437

0.8542


that delivers a residual value of the objective function equal to 0.0028.

Now, the alternative models need to be calibrated as well. For each alternative model, the set of

parameters that need to be calibrated, Θ, is modified accordingly. As an example, when calibrat-

ing the model with r assumed to be constant, the parameters κ, θ, σr and ρ do not belong to Θ,

which boils down to Θ = (σS). When calibrating the CIR model, r is forced to be strictly positive.

Despite the theoretical inapplicability of the CIR model in the present market conditions, it is left

among the alternative models as it is extremely common among practitioners.

Table 3.B.2 collects the results of the calibration of the different models. We notice that if r is

assumed to be constant, the volatility of the equity process is a little bit larger than in the baseline

case. In other words, in these cases, σS accounts also for the possible variability of the neglected

risk factor. When we assume that the two risk factors are uncorrelated, the calibration exercise

delivers an extremely low level of mean-reversion speed associated to a remarkably large long-run

mean. The volatility of the equity price process, on the contrary, is quite stable.

For sake of completeness, I also calibrate my market model (3.1) under the risk-neutral mea-

sure Q to US market data as of February 2019 the 21st.
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model κ∗ θ∗ σ∗r σ∗S ρ∗

baseline 0.1199 0.0316 0.0154 0.1437 0.8542
r(t) ≡ r0 0.1502
r(t) ≡ r∗ 0.1505
r(t) ≡ θ∗ 0.1621
ρ = 0 0.0230 0.1290 0.0130 0.1503
ρ = −ρ∗ 0.1334 0.0169 0.0081 0.1507
CIR 0.0926 0.0381 0.0192 0.1473 0.7391

Table 3.B.2: Results of the calibration exercise for all the alternative models.

T # opt. # call # put # traded cnt.

1 m 45 25 30 57’146
3 m 42 23 29 13’277
6 m 22 9 13 12’745
1 y 21 8 1 6985

Table 3.B.3: Summary statistics of the options considered for the calibration exercise in
the US market. T is the maturity of the option, “m”, “y” stand for month and year
respectively. # opt. (resp. # call, # put) are the number of options (resp. call, put)
with maturity T and different strike price. Strike price increments are either 25 or 50
points large. # traded cnt. is the total number of options with maturity T traded on
November 30th, 2018.

The underlying equity price process I calibrate my model to is the S&P 500. Data on options on

the index are taken from Option Metrics. The annualized average annual dividend yield is now

equal to q = 1.9%.

More specifically, I collect the weekly average of daily settlement prices of several European call

and put options on the index with moneyness (defined as K/S(0)) ranging from 0.8 to 1.2 and

maturities equal to 1,3,6 months and 1 year. I neglect options with poor trading volume (less than

100 daily traded contracts) and this excludes most of the options with maturities longer than 1

year. The average number of contracts traded per option is roughly equal to 1500 per day. Sum-

mary statistics of the final sample of options exploited for the calibration are displayed in Table

3.B.3.
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The interest rate process is calibrated to the yield curve of Treasury Bills. The data on the US

Government treasury yield curve are available at the US Department of the Treasury website18. As

before, I proxy the short-term rate by the yield with shortest maturity, namely the three months

one. As of February 2019 the 21st, I have r0 = 2.37%.

The numerical solution to (3.B3) for the US market is

Θ∗ =



κ∗

θ∗

σ∗r

σ∗S

ρ∗


=



0.0448

0.0565

0.0092

0.1708

0.7727


.

We notice that, with respect to the optimal parameters for the European market, there are many

differences. First of all, the speed of mean reversion κ is now small, only 4.48%. The long-term

mean θ is two percentage points higher, which is coherent with the initial state of r as r0 is 2

percentage points higher in the US market than in the European one. Along with a smaller mean-

reversion, also the volatility of the interest rate σr is here smaller and equal to 0.92%. On the

contrary, the volatility of the equity process and the correlation between r and S are comparable

to the ones of the European market.

The results of the calibration of the other alternative US market are shown in Table 3.B.4. We

notice that, as in the European case, the volatility of the equity price process is quite stable

across all the alternative market models. As before, when we assume that the two risk factors are

uncorrelated, we get a little smaller speed of mean reversion and a little higher mean reversion

level.

Finally, we acknowledge that, dealing with the US market, we have no problem working with the

CIR model as interest rates are non negative.

3.C Further details

3.C.1 The quadrinomial tree

The parameters of the quadrinomial tree introduced in (3.20) are

∆Y = σS
√

∆t

∆r = σr
√

∆t

18The link is https://www.treasury.gov.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldYear&year=2019
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model κ∗ θ∗ σ∗r σ∗S ρ∗

baseline 0.0448 0.0565 0.0092 0.1708 0.7727
r(t) ≡ r0 0.1739
r(t) ≡ r∗ 0.1756
r(t) ≡ θ∗ 0.1801
ρ = 0 0.0343 0.0619 0.0078 0.1739
ρ = −ρ∗ 0.0371 0.0498 0.0087 0.1738
CIR 0.1036 0.0582 0.0152 0.1721 0.7987

Table 3.B.4: Results of the calibration exercise for all the alternative models in the US
market.

quu = µY µr∆t+ µY ∆r + µr∆Y + (1 + ρ)σrσS
4σrσS

qud = −µY µr∆t+ µY ∆r − µr∆Y + (1− ρ)σrσS
4σrσS

qdu = −µY µr∆t− µY ∆r + µr∆Y + (1− ρ)σrσS
4σrσS

qdd = µY µr∆t− µY ∆r − µr∆Y + (1 + ρ)σrσS
4σrσS

.

where µY :=
(
r(t)− q − σ2

S

2

)
and µr := κ(θ − r(t)). For the full derivation of the quadrinomial

tree and for the complete discussion of the positivity of the four transition probabilities refer to

Battauz and Rotondi (2019).

3.C.2 CEV models

Assume that the zero lower bound for the interest rate is present, namely assume r(t) > 0 for all

t ∈ [0, T ]. Allowing for local volatility for both the risky equity price and the interest rate the

market model reads  dS(t) = S(t)(r(t)− q)dt+ σSS(t)αdWQ
S (t)

dr(t) = κ
(
θ − r(t)

)
dt+ σrr(t)βdWQ

r (t)
(3.C4)

with α, β > 0. Notice that β = 0.5 leads to the celebrated CIR model for the short term interest

rates proposed by Cox et al. (1885).

Following the derivativation of the quadrinomial tree in Section 2.2 of Battauz and Rotondi (2019),

I first need to define two new processes (Y (t), Z(t)) with constant diffusion coefficients. Therefore,

I set

Y (t) := S(t)1−α

1− α ,
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Z(t) = r(t)1−β

1− β
that deliver also the inverse transformations

S(t) =
[
(1− α)Y (t)

] 1
1−α

r(t) =
[
(1− β)Z(t)

] 1
1−β .

Applying Itô’s Lemma to both Y and Z leads to dY (t) = µY dt+ σSdWQ
S (t)

dZ(t) = µZdt+ σrdWQ
r (t)

where

µY = S(t)1−α(r(t)− q)− σS
2 αS(t)α−1,

µZ = κ(θ − r(t))r(t)−β − σ2
r

2 βr(t)β−1.

Therefore, I can exploit the transition probabilities and the increments recalled in Appendix 3.C.1

for the standard quadrinomial tree.

3.C.3 Additional plots

This Subsection contains additional plots for the two applications of Subsection 3.3.3.

Figure 3.C.1 shows the Greeks of the equity-linked note of the first example of Subsection 3.3.3.

Figure 3.C.2 shows Greeks of the American up-and-out call option of the second example of

Subsection 3.3.3.

3.C.4 Additional numerical examples

This Section contains additional numerical examples within the same framework and with the

same structure of the two main numerical examples of Subsection 3.3.2. All of the parameters of

the two examples stay the same but the maturity of the options and the barrier level.

More precisely, Table 3.C.1 and Table 3.C.2 repeat the numerical exercise of Subsection 3.3.2. On

average, we see that relative pricing errors are larger than the ones of Table 3.2 and Table 3.3 as

the misspecification of the models worsens when the investment horizon moves forward.

The barrier events, if any, of the options priced in Table 3.C.3 and Table 3.C.4 (resp. Table 3.C.5

and Table 3.C.6) is set equal to L = 60 (resp. L = 80). The relative pricing errors are consistent

with the benchmark numerical examples. The most relevant difference is that as the barrier is now

higher (resp. lower) in contracts appreciate (resp. depreciate) as it is easier to cross the barrier
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Figure 3.C.1: Sensitivities of the price at inception of the equity-linked note of the first
example with respect to the five parameters of the market model.
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Figure 3.C.2: Sensitivities of the price at inception of the American up and out call option
of the second example with respect to the five parameters of the market model.
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whereas out contracts depreciate (resp. appreciate) as now the probability of being knocked out

is larger (resp. smaller).
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European Options

payoff model
Vanilla Down-and-out Down-and-in

price rel. error price rel. error price rel. error

Digital

baseline 0.9493 0.2715 0.6778
r(t) ≡ r(0) 1.0330 8.82 % 0.2892 6.52 % 0.7438 9.74 %
r(t) ≡ r∗ 1.0101 6.40 % 0.2929 7.88 % 0.7172 5.81 %
r(t) ≡ θ∗ 0.8538 10.06 % 0.3147 15.91 % 0.5391 20.46 %
ρ = 0 0.9493 0.00 % 0.2903 6.92 % 0.6590 2.77 %
ρ = −ρ∗ 0.9493 0.00 % 0.3135 15.47 % 0.6358 6.20 %
CIR 0.9968 5.00 % 0.2931 7.96 % 0.7037 3.82 %

Put

baseline 27.4619 0.4495 27.0124
r(t) ≡ r(0) 29.4747 7.33 % 0.6161 37.06 % 28.8586 6.83 %
r(t) ≡ r∗ 27.9387 1.74 % 0.6049 34.57 % 27.3338 1.19 %
r(t) ≡ θ∗ 18.3446 33.20 % 0.5083 13.08 % 17.8363 33.97 %
ρ = 0 24.4079 11.12 % 0.5281 17.49 % 23.8798 11.60 %
ρ = −ρ∗ 20.8423 24.10 % 0.6416 42.74 % 20.2007 25.22 %
CIR 27.1634 1.09 % 0.5925 31.81 % 26.5709 1.63 %

Call

baseline 27.6291 22.8470 4.7821
r(t) ≡ r(0) 21.2750 23.00 % 17.5728 23.08 % 3.7022 22.58 %
r(t) ≡ r∗ 22.0411 20.23 % 18.2544 20.10 % 3.7867 20.82 %
r(t) ≡ θ∗ 28.0760 1.62 % 23.7215 3.83 % 4.3545 8.94 %
ρ = 0 24.5746 11.06 % 20.1730 11.70 % 4.4016 7.96 %
ρ = −ρ∗ 21.0035 23.98 % 17.0224 25.49 % 3.9811 16.75 %
CIR 22.5912 18.23 % 18.7298 18.02 % 3.8614 19.25 %

Table 3.C.1: European options prices. S(0) = 100, q = 1% and T = 5. The payoff at
maturity of digital options is ϕ(S(T )) = 1; of (at the money) put options is ϕ(S(T )) =
(S(0)−S(T ))+; of (at the money) call options is ϕ(S(T )) = (S(T )−S(0))+. The baseline
model is the Vasicek market model in (3.1) with the parameters specified in Table 3.1.
The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models (Black-Scholes ones)
where the interest rate is constant and equal respectively to its initial value/ the yield on
T -bond riskless bond/ the long-run mean. The models ρ = 0/−ρ∗ differ from the baseline
one only with respect to the correlation which is assumed to be 0/ the opposite of the
result from the calibration exercise. The CIR model is the one in (3.22) with γ = 0.5.
The barrier is L = 70.
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error EEP price rel. error EEPDO price rel. error EEPDI DFP

Digital

baseline 1.0268 0.08 1.0247 0.75 0.6779 0.00 0.68
r(t) ≡ r(0) 1.0330 0.60 % 0.00 1.0330 0.81 % 0.74 0.7439 9.74 % 0.00 0.74
r(t) ≡ r∗ 1.0101 1.63 % 0.00 1.0101 1.42 % 0.72 0.7172 5.80 % 0.00 0.72
r(t) ≡ θ∗ 1.0000 2.61 % 0.15 1.0000 2.41 % 0.69 0.5392 20.46 % 0.00 0.54
ρ = 0 1.0268 0.00 % 0.08 1.0217 0.29 % 0.73 0.6590 2.79 % 0.00 0.65
ρ = −ρ∗ 1.0268 0.00 % 0.08 1.0251 0.04 % 0.71 0.6359 6.20 % 0.00 0.63
CIR 1.0000 2.61 % 0.00 1.0000 2.41 % 0.71 0.7037 3.81 % 0.00 0.70

Put

baseline 27.8110 0.35 18.5489 18.10 27.0124 0.00 17.75
r(t) ≡ r(0) 29.4747 5.98 % 0.00 19.9257 7.42 % 19.31 28.8586 6.83 % 0.00 19.31
r(t) ≡ r∗ 27.9387 0.46 % 0.00 19.5808 5.56 % 18.98 27.3338 1.19 % 0.00 18.98
r(t) ≡ θ∗ 20.1142 27.68 % 1.77 17.0076 8.31 % 16.50 17.8363 33.97 % 0.00 14.73
ρ = 0 26.0891 6.19 % 1.68 19.0255 2.57 % 18.50 23.8798 11.60 % 0.00 16.82
ρ = −ρ∗ 24.4080 12.24 % 3.57 19.6001 5.67 % 18.96 20.2007 25.22 % 0.00 15.39
CIR 27.1634 2.33 % 0.00 18.8956 1.87 % 18.30 26.5709 1.63 % 0.00 18.30

Call

baseline 27.6375 0.01 22.8550 0.01 4.7822 0.00 0.00
r(t) ≡ r(0) 22.0788 20.11 % 0.80 18.2894 19.98 % 0.72 3.9622 17.15 % 0.26 0.17
r(t) ≡ r∗ 22.6938 17.89 % 0.65 18.8380 17.58 % 0.58 3.8766 18.94 % 0.09 0.02
r(t) ≡ θ∗ 28.0979 1.67 % 0.02 23.7430 3.89 % 0.02 4.3645 8.73 % 0.01 0.01
ρ = 0 25.0189 9.47 % 0.44 20.5696 10.00 % 0.40 4.6017 3.77 % 0.20 0.15
ρ = −ρ∗ 22.6444 18.07 % 1.64 18.4753 19.16 % 1.45 4.8711 1.86 % 0.89 0.70
CIR 23.0585 16.57 % 0.47 21.0585 7.86 % 2.33 4.3728 8.56 % 0.51 2.37

Table 3.C.2: American options prices. S(0) = 100, q = 1% and T = 5. The immediate payoff of digital
options is ϕ(S(t)) = 1; of (at the money) put options is ϕ(S(t)) = (S(0) − S(t))+; of (at the money)
call options is ϕ(S(t)) = (S(t) − S(0))+. The baseline model is the Vasicek market model in (3.1) with
the parameters specified in Table 3.1. The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models
(Black-Scholes ones) where the interest rate is constant and equal respectively to its initial value/ the yield
on T -bond riskless bond/ the long-run mean. The models ρ = 0/ − ρ∗ differ from the baseline one only
with respect to the correlation which is assumed to be 0/ the opposite of the result from the calibration
exercise. The CIR model is the one in (3.22) with γ = 0.5. The barrier is L = 70. The EEP is the Early
Exercise Premium, namely the difference between the price of the American option and of its European
counterpart. The deviation from parity, DFP, is defined in Equation (3.18).
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error price rel. error price rel. error

Digital

baseline 0.9950 0.6866 0.3084
r(t) ≡ r(0) 1.0131 1.82 % 0.7124 3.76 % 0.3007 2.50 %
r(t) ≡ r∗ 1.0121 1.72 % 0.7124 3.76 % 0.2997 2.82 %
r(t) ≡ θ∗ 0.9388 5.65 % 0.7128 3.82 % 0.2260 26.72 %
ρ = 0 0.9950 0.00 % 0.7097 3.36 % 0.2853 7.49 %
ρ = −ρ∗ 0.9950 0.00 % 0.7356 7.14 % 0.2594 15.89 %
CIR 0.9997 0.47 % 0.7129 3.83 % 0.2868 7.00 %

Put

baseline 17.9580 5.0867 12.8713
r(t) ≡ r(0) 17.8640 0.52 % 5.6074 10.24 % 12.2566 4.78 %
r(t) ≡ r∗ 17.8021 0.87 % 5.5967 10.03 % 12.2054 5.17 %
r(t) ≡ θ∗ 13.5771 24.40 % 4.7758 6.11 % 8.8013 31.62 %
ρ = 0 16.8462 6.19 % 5.3543 5.26 % 11.4919 10.72 %
ρ = −ρ∗ 15.6479 12.86 % 5.6436 10.95 % 10.0043 22.27 %
CIR 17.0602 5.00 % 5.4646 7.43 % 11.5956 9.91 %

Call

baseline 16.4712 16.3670 0.1042
r(t) ≡ r(0) 14.5723 11.53 % 14.4854 11.50 % 0.0869 16.60 %
r(t) ≡ r∗ 14.6117 11.29 % 14.5246 11.26 % 0.0871 16.41 %
r(t) ≡ θ∗ 17.7203 7.58 % 17.6244 7.68 % 0.0959 7.97 %
ρ = 0 15.3589 6.75 % 15.2648 6.73 % 0.0941 9.69 %
ρ = −ρ∗ 14.1599 14.03 % 14.0771 13.99 % 0.0828 20.54 %
CIR 15.1125 8.25 % 15.0244 8.20 % 0.0881 15.45 %

Table 3.C.3: European options prices. S(0) = 100, q = 1% and T = 5. The payoff at
maturity of digital options is ϕ(S(T )) = 1; of (at the money) put options is ϕ(S(T )) =
(S(0)−S(T ))+; of (at the money) call options is ϕ(S(T )) = (S(T )−S(0))+. The baseline
model is the Vasicek market model in (3.1) with the parameters specified in Table 3.1.
The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models (Black-Scholes ones)
where the interest rate is constant and equal respectively to its initial value/ the yield on
T -bond riskless bond/ the long-run mean. The models ρ = 0/−ρ∗ differ from the baseline
one only with respect to the correlation which is assumed to be 0/ the opposite of the
result from the calibration exercise. The CIR model is the one in (3.22) with γ = 0.5.
The barrier is L = 60.
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error EEP price rel. error EEPDO price rel. error EEPDI DFP

Digital

baseline 1.0138 0.02 1.0138 0.33 0.3984 0.09 0.40
r(t) ≡ r(0) 1.0131 0.07 % 0.00 1.0131 0.07 % 0.30 0.3007 24.52 % 0.00 0.30
r(t) ≡ r∗ 1.0121 0.17 % 0.00 1.0121 0.17 % 0.30 0.2996 24.80 % 0.00 0.30
r(t) ≡ θ∗ 1.0000 1.36 % 0.06 1.0000 1.36 % 0.29 0.2260 43.27 % 0.00 0.23
ρ = 0 1.0138 0.00 % 0.02 1.0136 0.02 % 0.30 0.2854 28.36 % 0.00 0.29
ρ = −ρ∗ 1.0138 0.00 % 0.02 1.0138 0.00 % 0.28 0.2594 34.89 % 0.00 0.26
CIR 1.0000 1.36 % 0.00 1.0000 1.36 % 0.29 0.2868 28.01 % 0.00 0.29

Put

baseline 17.9807 0.02 16.9953 11.91 12.9538 0.08 11.97
r(t) ≡ r(0) 17.8640 0.65 % 0.00 17.4290 2.55 % 11.82 12.3468 4.69 % 0.09 11.91
r(t) ≡ r∗ 17.8021 0.99 % 0.00 17.3829 2.28 % 11.79 12.2955 5.08 % 0.09 11.88
r(t) ≡ θ∗ 14.1292 21.42 % 0.55 14.1922 16.49 % 9.42 8.8880 31.39 % 0.09 8.95
ρ = 0 17.1479 4.63 % 0.30 16.7921 1.20 % 11.44 11.5804 10.60 % 0.09 11.22
ρ = −ρ∗ 16.4252 8.65 % 0.78 16.4694 3.09 % 10.83 10.1002 22.03 % 0.10 10.14
CIR 17.0602 5.12 % 0.00 17.1490 0.90 % 11.68 11.6845 9.80 % 0.09 11.77

Call

baseline 16.4753 0.00 16.4701 0.10 0.1082 0.00 0.10
r(t) ≡ r(0) 14.8508 9.86 % 0.28 14.8476 9.85 % 0.36 0.0874 19.22 % 0.00 0.08
r(t) ≡ r∗ 14.8828 9.67 % 0.27 14.8800 9.65 % 0.36 0.0875 19.13 % 0.00 0.08
r(t) ≡ θ∗ 17.7205 7.56 % 0.00 17.7245 7.62 % 0.10 0.0928 14.23 % 0.00 0.10
ρ = 0 15.5759 5.46 % 0.22 15.5709 5.46 % 0.31 0.0943 12.85 % 0.00 0.09
ρ = −ρ∗ 14.8354 9.95 % 0.68 14.8303 9.96 % 0.75 0.0906 16.27 % 0.01 0.09
CIR 15.2841 7.23 % 0.17 15.3643 6.71 % 0.34 0.0971 10.26 % 0.01 0.18

Table 3.C.4: American options prices. S(0) = 100, q = 1% and T = 5. The immediate payoff of digital
options is ϕ(S(t)) = 1; of (at the money) put options is ϕ(S(t)) = (S(0) − S(t))+; of (at the money)
call options is ϕ(S(t)) = (S(t) − S(0))+. The baseline model is the Vasicek market model in (3.1) with
the parameters specified in Table 3.1. The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models
(Black-Scholes ones) where the interest rate is constant and equal respectively to its initial value/ the yield
on T -bond riskless bond/ the long-run mean. The models ρ = 0/ − ρ∗ differ from the baseline one only
with respect to the correlation which is assumed to be 0/ the opposite of the result from the calibration
exercise. The CIR model is the one in (3.22) with γ = 0.5. The barrier is L = 60. The EEP is the Early
Exercise Premium, namely the difference between the price of the American option and of its European
counterpart. The deviation from parity, DFP, is defined in Equation (3.18).
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error price rel. error price rel. error

Digital

baseline 0.9950 0.3264 0.6686
r(t) ≡ r(0) 1.0131 1.82 % 0.3293 0.89 % 0.6838 2.27 %
r(t) ≡ r∗ 1.0121 1.72 % 0.3297 1.01 % 0.6824 2.06 %
r(t) ≡ θ∗ 0.9388 5.65 % 0.3591 10.02 % 0.5797 13.30 %
ρ = 0 0.9950 0.00 % 0.3323 1.81 % 0.6627 0.88 %
ρ = −ρ∗ 0.9950 0.00 % 0.3387 3.77 % 0.6563 1.84 %
CIR 0.9997 0.47 % 0.3344 2.45 % 0.6653 0.49 %

Put

baseline 17.9580 0.3361 17.6219
r(t) ≡ r(0) 17.8640 0.52 % 0.3827 13.86 % 17.4813 0.80 %
r(t) ≡ r∗ 17.8021 0.87 % 0.3823 13.75 % 17.4198 1.15 %
r(t) ≡ θ∗ 13.5771 24.40 % 0.3471 3.27 % 13.2300 24.92 %
ρ = 0 16.8462 6.19 % 0.3642 8.36 % 16.4820 6.47 %
ρ = −ρ∗ 15.6479 12.86 % 0.3983 18.51 % 15.2496 13.46 %
CIR 17.0602 5.00 % 0.3764 11.99 % 16.6838 5.32 %

Call

baseline 16.4712 13.6285 2.8427
r(t) ≡ r(0) 14.5723 11.53 % 11.9884 12.03 % 2.5839 9.10 %
r(t) ≡ r∗ 14.6117 11.29 % 12.0231 11.78 % 2.5886 8.94 %
r(t) ≡ θ∗ 17.7203 7.58 % 14.7922 8.54 % 2.9281 3.00 %
ρ = 0 15.3589 6.75 % 12.6014 7.54 % 2.7575 3.00 %
ρ = −ρ∗ 14.1599 14.03 % 11.4971 15.64 % 2.6628 6.33 %
CIR 15.1125 8.25 % 12.4618 8.56 % 2.6507 6.75 %

Table 3.C.5: European options prices. S(0) = 100, q = 1% and T = 5. The payoff at
maturity of digital options is ϕ(S(T )) = 1; of (at the money) put options is ϕ(S(T )) =
(S(0)−S(T ))+; of (at the money) call options is ϕ(S(T )) = (S(T )−S(0))+. The baseline
model is the Vasicek market model in (3.1) with the parameters specified in Table 3.1.
The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models (Black-Scholes ones)
where the interest rate is constant and equal respectively to its initial value/ the yield on
T -bond riskless bond/ the long-run mean. The models ρ = 0/−ρ∗ differ from the baseline
one only with respect to the correlation which is assumed to be 0/ the opposite of the
result from the calibration exercise. The CIR model is the one in (3.22) with γ = 0.5.
The barrier is L = 80.
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payoff model
Vanilla Down-and-out Down-and-in

price rel. error EEP price rel. error EEPDO price rel. error EEPDI DFP

Digital

baseline 1.0138 0.02 1.0137 0.69 0.6686 0.00 0.67
r(t) ≡ r(0) 1.0131 0.07 % 0.00 1.0131 0.06 % 0.68 0.6838 2.27 % 0.00 0.68
r(t) ≡ r∗ 1.0121 0.17 % 0.00 1.0121 0.16 % 0.68 0.6823 2.05 % 0.00 0.68
r(t) ≡ θ∗ 1.0000 1.36 % 0.06 1.0000 1.35 % 0.64 0.5797 13.30 % 0.00 0.58
ρ = 0 1.0138 0.00 % 0.02 1.0124 0.13 % 0.68 0.6627 0.88 % 0.00 0.66
ρ = −ρ∗ 1.0138 0.00 % 0.02 1.0124 0.13 % 0.67 0.6563 1.84 % 0.00 0.65
CIR 1.0000 1.36 % 0.00 1.0000 1.35 % 0.67 0.6653 0.49 % 0.00 0.67

Put

baseline 17.9807 0.02 17.9807 17.64 17.6220 0.00 17.62
r(t) ≡ r(0) 17.8640 0.65 % 0.00 17.8640 0.65 % 17.48 17.4815 0.80 % 0.00 17.48
r(t) ≡ r∗ 17.8021 0.99 % 0.00 17.8021 0.99 % 17.42 17.4283 1.10 % 0.01 17.43
r(t) ≡ θ∗ 14.1292 21.42 % 0.55 14.1292 21.42 % 13.78 13.2435 24.85 % 0.01 13.24
ρ = 0 17.1479 4.63 % 0.30 17.1479 4.63 % 16.78 16.4821 6.47 % 0.00 16.48
ρ = −ρ∗ 16.4252 8.65 % 0.78 16.4252 8.65 % 16.03 15.2502 13.46 % 0.00 15.25
CIR 17.0602 5.12 % 0.00 16.7843 6.65 % 16.41 16.6840 5.32 % 0.00 16.41

Call

baseline 16.4753 0.00 13.6321 0.00 2.8427 0.00 0.00
r(t) ≡ r(0) 14.7508 10.47 % 0.18 12.2333 10.26 % 0.24 2.5839 9.10 % 0.00 0.07
r(t) ≡ r∗ 14.7828 10.27 % 0.17 12.2616 10.05 % 0.24 2.5885 8.94 % 0.00 0.07
r(t) ≡ θ∗ 17.7205 7.56 % 0.00 14.7923 8.51 % 0.00 2.9282 3.01 % 0.00 0.00
ρ = 0 15.4759 6.07 % 0.12 12.7928 6.16 % 0.19 2.7575 3.00 % 0.00 0.07
ρ = −ρ∗ 14.5354 11.77 % 0.38 11.9014 12.70 % 0.40 2.6628 6.33 % 0.00 0.03
CIR 15.2841 7.23 % 0.17 13.2156 3.06 % 0.75 2.6508 6.75 % 0.00 0.58

Table 3.C.6: American options prices. S(0) = 100, q = 1% and T = 5. The immediate payoff of digital
options is ϕ(S(t)) = 1; of (at the money) put options is ϕ(S(t)) = (S(0) − S(t))+; of (at the money)
call options is ϕ(S(t)) = (S(t) − S(0))+. The baseline model is the Vasicek market model in (3.1) with
the parameters specified in Table 3.1. The models r(t) ≡ r(0)/r∗ = −0.23%/θ∗ are pure diffusive models
(Black-Scholes ones) where the interest rate is constant and equal respectively to its initial value/ the yield
on T -bond riskless bond/ the long-run mean. The models ρ = 0/ − ρ∗ differ from the baseline one only
with respect to the correlation which is assumed to be 0/ the opposite of the result from the calibration
exercise. The CIR model is the one in (3.22) with γ = 0.5. The barrier is L = 80. The EEP is the Early
Exercise Premium, namely the difference between the price of the American option and of its European
counterpart. The deviation from parity, DFP, is defined in Equation (3.18).
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