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The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit
must be found to channel the energy to the small scales where it can be dissipated. In turbulence, this
takes the form of an energy cascade, whereas a possible mechanism in a balanced flow is through
the formation of fronts, a common occurrence in geophysics. We show that an iconic configuration
in laboratory and numerical experiments for the study of turbulence, the so-called Taylor-Green or
von Kármán swirling flow, can be suitably adapted to domains with large aspect ratios, leading to the
creation of an imposed large-scale vertical shear. To this effect, we use direct numerical simulations of
the Boussinesq equations without net rotation and with no small-scale modeling. Various grid spacings
are used, up to 20482 × 256 spatial points. The grids are always isotropic, with box aspect ratios of
either 1:4 or 1:8. We find that when shear and stratification are comparable, the imposed shear layer
resulting from the forcing leads to the formation of fronts and filaments which destabilize and evolve
into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, following a cycle
of front creation, instability, and development of turbulence. The results depend on the vertical length
scales of shear and stratification. Published by AIP Publishing. https://doi.org/10.1063/1.5043293

I. INTRODUCTION

The large scales of the atmosphere and the oceans are in
geostrophic balance, an equilibrium between pressure gradi-
ents, Coriolis, and gravity forces due to the presence of both
rotation and stratification.1 This large-scale geostrophy can be
broken through viscous effects,2 through Kelvin-Helmholtz
instabilities of the large-scale vortices,3 or through resonances
between the waves,4 although finite-size effects can weaken
such resonances due to the resulting discretization in wave
numbers.5,6 However, the energy which is injected in the
system (e.g., through solar radiation, tides, or large-scale tem-
perature gradients) has to find a way to small-scale dissipation.
How this process takes place remains a puzzle in atmospheric
and oceanic dynamics. As an example, it was shown in Ref. 7
that a large-scale balanced flow in the presence of both rotation
and stratification remains balanced at a low Rossby num-
ber Ro, with the ageostrophic part of the flow being weak
but increasing as Ro increases. Typically only a fraction of
the energy cascades to small scales, with co-existing con-
stant energy and enstrophy fluxes to small scales.8 Such fluxes
can be diagnosed with third-order structure functions, as mea-
sured in numerical modeling and in the observations of atmo-
spheric flows.9,10 Nevertheless, numerous studies show that
the ageostrophic component of the flow develops for buoyancy
Reynolds numbers sufficiently high, with a threshold around
10 (see Ref. 11 and the references therein) and with a result-
ing increase in dissipation. Once this component develops,
solutions associated with small-scale nonlinearities and tur-
bulent cascades can grow, resulting in enhanced dissipation
rates.12

Evidence of dissipative processes in the ocean, and
of the development of three-dimensional mixing, has been
demonstrated by remarkable visualizations of oceanic surface
motions using plankton as markers. For example, it has been
observed that the phytoplankton density increases significantly
at the passage of a hurricane within chlorophyll-a filaments and
eddies (see, e.g., Ref. 13), which gives a signature of upwelling
and lateral mixing occurring in a turbulent flow.14,15 These
mesoscale and sub-mesoscale motions, affecting nutrients and
organic matter filamentary structures in coastal systems, are
crucial for halieutic management and the fishing industry.16

Ocean tracers can also be studied using large-scale models of
such flows, and it was shown that their dynamics depend on
flow regimes and on their interaction with structures and tur-
bulent eddies.17 Filaments in the upper layers of the oceans
are also commonplace, either at the borders of large eddies18

or as an ensemble of parallel structures (see Ref. 19 for a
recent review). Their typical scale of a few kilometers makes
them part of the sub-mesoscale eddies, between the large
scales in geostrophic balance and the turbulent small scales
that have presumably recovered homogeneity and isotropy.
They presently attract a lot of attention since “eddy-resolving”
numerical models are now able to reach such small scales
and since they are believed to play an important role in the
departure of the flow from a balanced state.

As departure from geostrophic balance develops and tur-
bulent eddies strengthen, nonlinear coupling leads naturally to
the formation of intense localized structures. In the absence of
rotation or stratification, these take the form of shocks in the
Burgers equation or fronts for the passive scalar,20 whereas
in three-dimensional homogeneous isotropic turbulence, it is
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vorticity filaments which prevail in fluids21 and current sheets
and flux ropes in conducting fluids.22,23 Fronts are also a well-
known feature of atmospheric flows;24 as they are embedded in
a turbulent environment, they affect, for example, the growth
of rain droplets and the overall cloud system.25 Stratified flows
can also develop strong intermittency:26 quiescent and strongly
mixed regions are often juxtaposed with sharp edges between
them, with internal gravity waves propagating outward from
the turbulent regions thus redistributing the energy.27

It was clear starting with the pioneering numerical work
of Herring and Métais28,29 that stratified turbulence was dif-
ferent from homogeneous isotropic turbulence, for example,
as a result of the formation of intense horizontal layers30

or because the decay of energy in the absence of external
forcing is slow. Spectral scaling in these flows is thus quite
complex: one has to consider the spectra of the kinetic, poten-
tial, and total energy and their dependence in the vertical
and horizontal directions. Only in some cases (e.g., of suf-
ficiently strong stratification), one can expect spectral laws to
clearly emerge, as shown using two-point closures of turbu-
lence31 and more recently with direct numerical simulations
(DNS) (see, e.g., Refs. 32–36). It is known that angular spectra
show diverse power laws,35 and it is only when one particular
angle in spectral space becomes dominant that a scaling can
be identified straightforwardly. In the decay case, it was also
concluded in Ref. 29 that there may well be a lack of univer-
sality in these flows. These studies laid the ground for further
numerical investigations in which, today, scales are better
resolved.

The development of turbulence in the atmosphere and
the oceans has recently been considered in high resolution
numerical simulations and in theoretical studies of rotating and
stratified flows, or of purely stratified flows, using the Boussi-
nesq approximation. In both cases, secondary instabilities play
a crucial role in the organization of the flow and in the distribu-
tion of kinetic and potential energy among scales. For example,
this was demonstrated by a careful analysis of the evolution of
a simple large-scale vortex:37 The Kelvin-Helmholtz instabil-
ity first sets in and destabilizes scales down to the buoyancy
wave number kB = N /U0 (with U0 being a typical r.m.s. veloc-
ity and N being the Brunt-Väisälä frequency). The associated
buoyancy scale LB = 2π/kB corresponds to the typical thick-
ness of the stratified layers in the vertical direction.38 Further
instabilities of these structures lead to an excitation down
to a scale at which isotropy is recovered. Depending on the
strength of rotation, this can be the Zeman scale `ze = 2π/kze

(the scale at which Coriolis and advection forces balance39),
with kze = ( f 3/εV )1/2, f being the Coriolis frequency, and
εV being the kinetic energy dissipation rate, or the Ozmidov
scale `oz = 2π/koz (the scale at which buoyancy and advection
forces balance), with koz = (N3/εV )1/2. Whether these scales
are properly resolved or not may well alter the efficiency of
mixing and the properties of stratified turbulence, as advocated
in Refs. 3, 40, and 41 (see, in particular, Ref. 3 for a discussion
on the importance of numerically resolving the range of scales
between LB and `oz).

Mixing can be quantified, for example, by the ratio of the
buoyancy flux due to internal waves to the kinetic energy dis-
sipation, by the available and background potential energies42

or, as sometimes advocated, by the ratio of potential energy to
total energy dissipation.43 The amount of mixing in stratified
flows has also been predicted using tools emanating from sta-
tistical mechanics44 and measured in simulations; it is shown
to depend on the background density gradient11,45–47 and on
the global Richardson number, with an irreversible increase
of potential energy. Mixing is also routinely measured in the
ocean (see, e.g., Refs. 41 and 48–50) and can vary by several
orders of magnitude depending on whether the flow is qui-
escent or dominated by instabilities.51 At the smallest scales,
quasi-isotropy, Kolmogorov scaling, and strong mixing are
thought to recover down to the Kolmogorov length scale η at
which dissipation prevails. However, it was shown in Ref. 52
that the anisotropy of dissipation may persist in this range
of scales at least in the presence of an imposed anisotropic
shear.

In this paper, we examine stably stratified turbulence in the
absence of rotation and search for front-like and filamentary
structures in an idealized setting, using computations in a box
with an aspect ratio Ar (where Ar is defined as the ratio of the
vertical to horizontal length scales). For the highest Reynolds
number considered, the aspect ratio will be 1:8. Note that in
the absence of rotation, the geostrophic balance of the large
scales does not apply, but it can be replaced by a so-called
cyclostrophic balance which results from the balance between
pressure gradients and the centrifugal force engendered by
strong vorticity; it thus can take place even in the absence of
Coriolis force like at the equator or in sub-mesoscales. We
also consider the effect of varying the background stratifica-
tion with a fixed aspect ratio and of varying the aspect ratio
by doing simulations with Ar of 1:4. In all cases, the fluid is
forced with a configuration which can be viewed as quasi-two-
dimensional with a super-imposed strong vertical shear; it is
called the Taylor-Green (TG) flow and was first proposed in
Ref. 53. The TG flow is a classical flow and has been used in
several numerical studies of non-dissipative neutral and con-
ducting fluids in search of singular structures,54–56 in studies
of the dynamo problem,57,58 and was also considered in the
study of stratified turbulence.59 The TG flow mimics a lab-
oratory configuration of two counter-rotating co-axial disks
stirring a fluid, which is called the von Kármán swirling flow.
This configuration has been used experimentally to detect vor-
tex filaments in hydrodynamic turbulence60 and for turbulent
dynamo experiments in liquid sodium and gallium.61,62

We shall consider the formation of fronts and the subse-
quent development of turbulence, as well as the large-scale
and small-scale cyclic dynamics that ensue. In Sec. II, we
present the equations and a brief description of the flow and
of all the runs analyzed in this paper. We then move on to
describe in detail the temporal evolution of the flow at the
highest Reynolds number in Sec. III, starting from the flow at
rest and until turbulence develops. In Sec. IV, we show that
fronts and filament-like structures easily form in this configu-
ration, using visualizations of the flow and studying its spatial
structures. Section V presents energy spectra and discusses
flow anisotropies, while Sec. VI studies the effect of varying
the Reynolds number (and the spatial resolution), the Brunt-
Väisälä frequency, and the aspect ratio of the domain. Finally,
we give our conclusions in Sec. VII.
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II. FORMULATION OF THE PROBLEM
A. The Boussinesq equations

The incompressible Boussinesq equations are written for
the velocity field u, with Cartesian components u = (u, v , w),
and for density fluctuations ρ as

∂tu + u · ∇u = −∇P − (g/ρ0)ρ ez + ν∆u + F, (1)

∂t ρ + u · ∇ρ = N2(ρ0/g)w + κ∆ρ, (2)

∇ · u = 0. (3)

Here g is the acceleration due to gravity, ρ0 is the mean
background density, P = p/ρ0 is the departure from the
hydrostatic pressure divided by the mean background density,
F is a mechanical force per unit mean background density
to be defined later, ν is the kinematic viscosity, and κ is
a diffusivity. The square of the Brunt-Väisälä frequency is
N2 = −(g/ρ0)(d ρ̄/dz), where d ρ̄/dz is the imposed back-
ground density stratification assumed to be linear.

We can rewrite these equations in terms of “temperature”
fluctuations θ (or a buoyancy field), written in units of velocity,
by multiplying ρ in Eqs. (1) and (2) by g/(ρ0N) (see, e.g.,
Ref. 63). The resulting equations are

∂tu + u · ∇u = −∇P − Nθ ez + ν∆u + F, (4)

∂tθ + u · ∇θ = Nw + κ∆θ, (5)

also with the incompressibility condition ∇ · u = 0. When
linearized in the ideal case (ν = κ = 0) and in the absence of
forcing, Eqs. (1) and (2), or equivalently, Eqs. (4) and (5), lead
to

∂2
tt∆w = −N2(∆ − ∂2

zz)w, (6)

yielding in both cases the correct dispersion relation for
internal gravity waves.

We will consider cases with the unit Prandtl number
Pr = ν/κ = 1, which are suitable for atmospheric turbulence.
For oceanic turbulence, the effect of varying the Prandtl num-
ber can be important, as, e.g., counter-gradient heat transfers in
very strong stratification depend on this parameter.64 However,
as will be shown in Sec. III C, our simulations will not resolve
realistic values of the Kolmogorov dissipation scale, and thus
this parameter can also be interpreted, once turbulence and
strong mixing develop, as an effective turbulent Prandtl num-
ber of order unity. As a reference, typical values of the turbulent
Prandtl number are close to ≈0.7.65,66

In the absence of dissipation and forcing (ν = κ = 0,
F = 0), the Boussinesq equations conserve the total (kinetic
plus potential) energy,

ET =
1
2

〈
|u|2 + θ2

〉
= EV + EP, (7)

and the pointwise potential vorticity

PV = −Nωz + ω · ∇θ, (8)

with ω =∇× u being the vorticity, with Cartesian components
ω = (ωx, ωy, ωz).

The three dimensionless parameters of the problem are
the Reynolds number

Re =
U⊥L⊥
ν

, (9)

where U⊥ and L⊥ are, respectively, the characteristic velocity
and integral scale of the flow in the horizontal direction, the
Froude number

Fr =
U⊥

L⊥N
, (10)

and the Prandtl number defined above. The buoyancy Reynolds
number RB = Re Fr2 is also an important dimensionless num-
ber of the problem, as it measures the amount of small-scale
turbulence present in the flow: for RB > 1, the Ozmidov scale
is larger than the Kolmogorov dissipation scale and strong
quasi-isotropic mixing can be recovered at small scales.

Mixing and small-scale turbulence in stratified flows
is also often quantified by the Richardson number
Ri = N2/(dU⊥/dz)2, where U⊥ is the large-scale horizon-
tal velocity. A local gradient Richardson number can be also
defined pointwise as67

Rig = N(N − ∂zθ)/(∂zu⊥)2, (11)

where u⊥ = (u2 + v2)1/2. When strong temperature gradients
develop, this Richardson number becomes small and in fact
can become negative, with a classical transitional value of 1/4
for local shear instabilities to develop.

B. The code for an elongated box

To solve numerically these equations, we use the GHOST
code (Geophysical High-Order Suite for Turbulence).68–70

GHOST is a pseudo-spectral code with a Fourier decompo-
sition of the basic fields, periodic boundary conditions, and
adjustable-order Runge-Kutta methods to evolve fields in time.
It is parallelized using a hybrid method with both MPI and
OpenMP;69 it scales linearly over 100 000 processors and has
CUDA capability to run in Graphics Processing Units (GPUs),
with simulations done using up to 6250 GPUs.67 Furthermore,
a new version of the code has been developed for this work that
allows for non-cubic boxes. Both the lengths of the domain in
the three space directions (Lx, Ly, Lz) and the number of grid
points in each direction(nx, ny, nz) can be different, with a total
number of grid points n3 ≡ nxnynz.

We chose in this work to set Lx = Ly = 2π in the horizon-
tal plane (in dimensionless units, typical sizes for the domain
with physical dimensions are discussed in Sec. III C). We use
nx = ny = n⊥, and we chose, for the highest resolved flow,
n⊥ = 2048 (see run A8 in Table I). Thus, the wave numbers
in the horizontal direction are integers starting with k⊥,min = 1
and with unit increments up to k⊥,max = n⊥/3 (≈683 for the
highest resolution) assuming a classical 2/3 dealiasing rule;
this corresponds to a horizontal grid spacing of ∆x = ∆y = ∆⊥
= 2π/n⊥ (=2π/2048 ≈ 3 × 10−3 in dimensionless units for the
best resolved case).

The second choice made in this work is to set Lz = LxAr ,
with an aspect ratio Ar of either 1:4 or 1:8. The latter, which
results in Lz = π/4, is the case considered for the run at the
highest resolution (see Table I). Three other runs with the
same aspect ratio were performed at lower Reynolds num-
bers (runs B8, B8∗, and C8 in Table I) using a resolution of
10242 × 128 grid points, while three simulations with an aspect
ratio of 1:4 were performed with resolutions of 7682 × 192
grid points (runs D4, E4, and F4 in Table I). Note that these
choices result in all cases in the grid resolution to be the same
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TABLE I. List of the runs with n⊥ and nz grid points in the horizontal and the vertical direction. Runs A8 to C8 have an aspect ratio Ar = nz/n⊥ = 1/8, whereas
runs D4 to F4 have Ar = 1/4. Run B8∗ has the same parameters as run B8, but is forced both in the velocity and in the temperature, taken to be balanced up to third
order. N is the Brunt-Väisälä frequency, Fr, Re, and RB are, respectively, the Froude, Reynolds, and buoyancy Reynolds numbers, and

〈
Rig

〉
is the mean value

of the local gradient Richardson number. In the ratio Lz/LB, Lz = 2π/Ar is the box height and also the characteristic length of the shear, and LB is the buoyancy
length scale; `oz/`min is the ratio of the Ozmidov length scale to the minimally resolved scale in the run, namely, `min = 2π/n⊥. These ratios have to be equal
or larger than unity for the buoyancy and the Ozmidov scales to be resolved by the run. L0/λ0 is the ratio of the isotropic integral scale to the isotropic Taylor
scale. The quantity rE = EP/(EV + EP) measures the ratio of potential to total energy, rε = εP/(εV + εP) is the ratio of potential energy dissipation rate to total
energy dissipation rate, and β = εV/ε

Kol
V measures the effective to dimensional (Kolmogorovian) kinetic energy dissipation rate. Finally, L⊥/L‖ and λ⊥/λ‖ give,

respectively, the ratios of integral and Taylor perpendicular to parallel scales, quantifying, respectively, the anisotropy at large and at small scales. All quantities
are averaged in time over the turbulent steady state of each simulation.

Run n⊥ nz N Fr Re RB

〈
Rig

〉
Lz/LB `oz/`min L0/λ0 rE rε β L⊥/L‖ λ⊥/λ‖

A8 2048 256 8 0.03 40 000 36 730 0.98 51 4.0 0.19 0.27 1.05 7.0 0.85
B8 1024 128 8 0.03 15 000 14 390 0.98 29 2.6 0.15 0.29 1.20 7.1 1.09
B8∗ 1024 128 8 0.03 15 000 14 680 1.04 27 2.4 0.16 0.25 1.40 7.4 1.19
C8 1024 128 16 0.01 17 000 3.8 370 1.61 11 2.3 0.16 0.33 1.13 8.7 1.52

D4 768 192 4 0.05 10 000 25 120 1.02 44 3.1 0.13 0.27 1.10 3.8 1.06
E4 768 192 8 0.03 13 000 13 200 1.82 17 2.8 0.10 0.23 0.90 4.6 1.39
F4 768 192 16 0.01 14 000 3.1 280 3.33 6 2.1 0.05 0.15 0.35 6.0 3.18

in the three directions. Although it is not the only possibil-
ity in GHOST, the importance of having an isotropic grid is
emphasized in Ref. 71 as it allows for an unbiased simulation
of the small scales, which can thus recover isotropy beyond
the Ozmidov scale. Thus, in our simulation, ∆z = ∆⊥ and
nz = n⊥/Ar , which results in kz ,min = 1/Ar (either 8 or 4). The
simulations with aspect ratio 1:4 will therefore allow for cases
with lesser vertical shear. Also, kz ,max = k⊥,max = n⊥/3.

Note that as a result of these choices for the two sets of
runs, kz increases by increments of 4 or 8: the resolution in
wave numbers is scarce at large scales in the vertical direction.
The physical implication is that, in elongated boxes such as the
ones considered here, the (exact) resonant condition between
three waves becomes more difficult to satisfy and resonant
interactions become scarcer. Thus the waves can be expected
to be less efficient at transferring energy to the small scales:
any large-scale balance should be stronger in such a domain,
compared to a flow in a cubic box with the same physical
dimensionless parameters. Indeed, finite-size effects in wave
turbulence are well known,5 although the analysis in wave
turbulence theory is generally confined to a cubic box in which
only the overall length of the box is considered. However, even
for isotropic boxes, in rotating and stratified flows for which
parameters are chosen to enforce the absence of resonances,72

one can still find nonlinear interactions leading to direct or
inverse turbulent cascades.41,47,73,74 The aspect ratio is also
known to alter the strength of direct and inverse cascades when
compared to cubic boxes even in the case of homogeneous
isotropic turbulence,75 as well as for geophysical flows with
either rotation76 or stratification.77

Given the choices made for the spatial resolutions and
the choices made for the dimensionless parameters described
above, we set in the following the viscosity and diffusivity
ν = κ = 1.2 × 10−4 for the highest resolution run (run A8),
ν = κ ≈ 3.2 × 10−4 for runs B8, B8∗, and C8, and ν = κ ≈ 4
× 10−4 for the remaining runs. The Brunt-Väisälä frequency
for all runs is given in Table I.

We will also consider in the following the isotropic, per-
pendicular, and parallel integral and Taylor scales, defined

as

Lα =
2π
EV

∫
EV (kα)

kα
dkα, α = 0, ⊥, ‖ (12)

and similarly

λα = 2π

[
EV

/ ∫
k2
αEV (kα)dkα

]1/2

, α = 0, ⊥, ‖, (13)

where the subindex α = 0 stands for the isotropic quantities.
The spectra EV (kα) are the reduced energy spectra defined
below. In all cases, the integral scale is a characteristic of
the energy-containing eddies (and thus also called the energy-
containing scale), and the Taylor scale is the scale at which the
dissipation would equal the dissipation of the actual flow if all
its energy were to be concentrated at only one scale. Thus, the
Taylor scale is a characteristic scale lying in the inertial range,
and the smaller the scale, the more developed the turbulence.
Similarly, the buoyancy and Ozmidov scales, LB and `oz, are
defined (for the dimensionless box of length 2π) as

LB = 2πU⊥/N , `oz = 2π(εV/N
3)1/2, (14)

under the assumption that a Kolmogorov ∼k−5/3 spectrum is
recovered at scales sufficiently smaller than `oz. Table I gives
the following ratios of these length scales for all the runs: Lz/LB

and `oz/`min (indicating, when larger or equal to unity, that the
buoyancy and Ozmidov scales are resolved in the simulation,
where `min is the minimal resolved scale in the run), L0/λ0

(which estimates the scale separation dynamically), L⊥/L ‖ and
λ⊥/λ ‖ (which can be considered, respectively, as estimations
of the anisotropy at large and at small scales in the flows), and

rE = EP/ET , rε = εP/εT , β = εV/ε
Kol
V , (15)

with εT = εV + εP being the total energy dissipation rate, where
εP is the dissipation rate of potential energy and εKol

V = U3
⊥/L⊥

is the dimensional (Kolmogorovian) estimate of the kinetic
energy dissipation rate. Note that β is observed to vary linearly
with the Froude number.11 These ratios can be used as the
estimations of the strength of turbulence and of the efficiency
of mixing. We also computed the available potential energy
(as defined in Ref. 42) in all runs, which provides another



086601-5 Sujovolsky, Mininni, and Pouquet Phys. Fluids 30, 086601 (2018)

quantification of turbulent mixing: in the turbulent steady state,
the available potential energy is a small fraction of the potential
energy, but at fixed N, it grows as we increase the Reynolds
number and the spatial resolution.

Finally, the above expressions are defined using isotropic
and anisotropic Fourier spectra for the fields, which in the elon-
gated box are built from the correlation functions in Fourier
space or, equivalently, from the power spectral densities. As
an example, for the kinetic energy using the velocity correla-
tion function in Fourier space U(k) (see, e.g., Ref. 39), we can
define the axisymmetric spectrum

eV (k⊥, k‖) = eV (k, ϑ) =
∫

U(k)k sin ϑdφ, (16)

with ϑ being the co-latitude in Fourier space, φ being the lon-
gitude in Fourier space, k⊥ = (k2

x + k2
y )1/2, k ‖ = kz, and k =

(k2
⊥ + k2

‖
)1/2. From this spectrum, one can also define reduced

isotropic, perpendicular, and parallel spectra, respectively, as

EV (k) =
∫

eV (k, ϑ)kdϑ, (17)

EV (k⊥) =
∫

eV (k⊥, k‖)dk‖ , (18)

EV (k‖) =
∫

eV (k⊥, k‖)dk⊥. (19)

Similar definitions hold for the potential energy spectra built
on the temperature fluctuations.

C. The forcing

For all runs but run B8∗, the forcing is only incorporated
in the momentum equation, and initial conditions for both the
velocity and temperature fluctuations are zero. Run B8∗ has
the same zero initial conditions but a balanced forcing and will
be discussed in Sec. VI. In all cases, the mechanical forcing
is based on the Taylor-Green (TG) vortex53 and is applied
only to the horizontal components of the velocity. As stated
in the Introduction, the TG vortex is a classical flow in the
study of turbulence. It consists of two counter-rotating vortices,
with a shear layer in between, and mimics many experimental
configurations in the laboratory. In isotropic periodic domains,
the TG flow is written as

uTG = u0 sin(k0x) cos(k0y) cos(k0z),

vTG = −u0 cos(k0x) sin(k0y) cos(k0z),

wTG = 0,

(20)

with k0 being a characteristic wave number. This flow was used
in the studies of stratified flows,59 where it was shown that its
vertical characteristic scale decreases with time, as predicted,
e.g., in Refs. 30 and 78, and these regions with strong shear
are prone to many instabilities leading to the development of
small-scale turbulence.

The TG flow has strong differential rotation as well as
point-wise helicity, defined as the correlation between veloc-
ity and vorticity, HV (x) = u(x) · ω(x); although on aver-
age, because of the symmetries of the flow, it has no global
helicity. Furthermore, for homogeneous isotropic turbulence,
this flow develops in time a vertical velocity in the form of
a recirculation, as shown analytically in Ref. 53 using an

expansion in time to fourth order. This secondary flow is cre-
ated by the vertical pressure gradient. However, in the stratified
case, such a recirculation has to fight against gravity and, as
shown later, an energetically more favorable secondary flow
develops.

We use the TG flow as mechanical forcing and adapt it to
the particular elongated geometry chosen here, by stating that
the forcing must fill the box both in the horizontal plane and
in the vertical direction. This results in

FTG
x = F0 sin(x) cos(y) cos(z/Ar),

FTG
y = −F0 cos(x) sin(y) cos(z/Ar),

FTG
z = 0 ,

(21)

a forcing which we label TGz8 for Ar = 1/8 and TGz4 for
Ar = 1/4. The choice of F0 is such that U⊥ is of order unity
in the turbulent steady state. This formulation of the forcing
leads to the formation of elongated vortices, with an aspect
ratio which is that of the box. Such a forcing has strong shear
in the vertical direction (corresponding to kz = 1/Ar) and is thus
intended to mimic the vertical shear that is often encountered
in the atmosphere or the ocean. The TGz8 forcing is depicted
schematically in Fig. 1 in two-dimensional (x, y) and (x, z)
slices. The arrows indicate the direction of the forcing. On the
top is a horizontal cut: for kx = ky = 1, as depicted here, there
are basically four circular cells to this flow. In the vertical,
the box is 8 times smaller, as shown in the bottom of Fig. 1,
and the cells are flattened. The TGz8 forcing is maximum (in
absolute value) at zmax = 0, Lz/2, and Lz and is zero at z0 = Lz/4
and 3Lz/4, the two planes where vertical shear is the strongest
(indicated by two dashed horizontal lines). The shaded region
with a bell-like curve represents the amplitude of the flow,
with the amplitude going from zero at the intersection of the

FIG. 1. Sketch of the Taylor-Green forcing with a strong vertical shear corre-
sponding to kz = 8 in a box with aspect ratio 1:8; see Eq. (21). Top: a horizontal
cut of the domain, with sides Lx = Ly = 2π. Bottom: a vertical cut, with Lz =
Lx /8 = π/4. Dashed lines indicate each von Kármán cell. In the bottom figure,
the horizontal lines also correspond to the regions of the strongest vertical
shear and zero forcing amplitude.
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bell-like curve with the horizontal dashed lines to its maximum
absolute values in between these horizontal lines.

III. TEMPORAL EVOLUTION OF RUN A8

In this section and in the following, we analyze run A8,
which has the highest Reynolds and buoyancy Reynolds num-
bers in a box with aspect ratio 1:8 (and thus, with TGz8 forc-
ing). The Brunt-Väisälä frequency is 8, and thus the horizontal
scales associated with the shear and with buoyancy are com-
parable. The effects of varying the Brunt-Väisälä frequency
and the vertical shear are studied in Sec. VI.

A. Global quantities and correlations

We first show in Fig. 2(a) the temporal evolution
of the energy in run A8 decomposed into its kinetic
and potential components, EV and EP, and the kinetic

FIG. 2. Temporal evolution for run A8 of (a) energy, with different partitions,
kinetic (EV ) and potential (EP), as well as kinetic energy in perpendicular
(EV,⊥) and in parallel motions (EV , ‖ ). (b) Kinetic and potential enstrophies
ZV and ZP (dissipation rates are given by 2νZV and 2κZP , respectively).
(c) Mean gradient Richardson number and the r.m.s. value of the potential
vorticity. The shaded region indicates the minimum and maximum values of
Rig when averaged in horizontal planes.

energy in perpendicular and parallel motions, respectively,
EV ,⊥ = 〈u2

⊥〉/2 and EV , ‖ = 〈w2〉/2. For all of them, after an ini-
tial increase starting from zero, a maximum is reached around
t = 4 and, after a short relaxation, the flow settles into a sta-
tistical steady state with r.m.s. velocity U0 ≈ 1.1 and r.m.s.
temperature fluctuations θ0 ≈ 0.5. In the following, all time
averages will be thus computed in a window between t = 5 and
15. The kinetic energy in horizontal motions is dominant, and
the ratio of the potential to total energy for this run can be seen
in Table I.

An increase similar to that of energy is observed in run A8
for kinetic enstrophy and its potential equivalent, both shown
in Fig. 2(b), with ZV =

〈
|ω |2

〉
/2 =

(〈
|ω⊥ |

2
〉

+
〈
ω2

z

〉)
/2 and

ZP =
〈
|∇θ |2

〉
/2. With these definitions, the energy dissipation

rates for each energy component are εV = 2νZV and εP = 2κZP.
They display a sharper peak than the energies; for longer times,
the εP/εT ratio also converges to a slightly higher value than
the ratio of energies (see Table I). This is indicative of a more
efficient mixing in the small scales, as expected for a flow that
has developed turbulent structures.

In Fig. 2(c), we also show the r.m.s. potential vorticity
PV and the gradient Richardson number 〈Rig〉, averaged over
the entire domain for run A8. They display the same type of
evolution as the enstrophies, except for a sharper double peak
in PV , the trace of which can be seen also in ZP. This indicates
that in the evaluation of PV , the nonlinear term ω · ∇θ is dom-
inant at the peak of dissipation. At later times, the evolution of
the r.m.s. value of PV is quite similar to that of kinetic dissi-
pation; the rather strong closeness of the two evolutions now
suggests that the kinetic enstrophy is dominated by the vertical
component of the vorticity. Concerning the averaged gradient
Richardson number, although its values are large, note that
fluctuations are also very large. In Fig. 2(c), we indicate with
a shaded area the minimum and maximum values of Rig after
averaging in horizontal planes, 〈Rig〉⊥ (i.e., averaged over the
x and y coordinates). After t & 4, min{〈Rig〉⊥} > 0, i.e., all
horizontal planes are (on average) stable against local shear
and overturning instabilities. However, pointwise fluctuations
of Rig in each plane are still very large, and the flow has unsta-
ble points with Rig < 0.25 and with Rig < 0 at all times, as will
be seen in Secs. IV–VII.

When examining the characteristic scales of the flow in
run A8, we see in Fig. 3(a) that all scales are smaller than
unity except for the perpendicular integral scale since the TGz8
forcing is applied at kx = ky = 1 and kz = 8. Between t ≈ 2 and 4,
the Taylor scales decrease abruptly and become smaller than
the integral scales, indicating that the flow becomes unstable
and develops small scale turbulence. After this transient, the
flow is strongly anisotropic at large scales since L⊥ and L ‖
are quite different (resulting both from the spectral anisotropy
of the forcing and from the stratification), but isotropy seems
to recover at small scales in the sense that λ⊥ ≈ λ ‖ ≈ 0.15
(see Table I). Anisotropy will be studied in more detail in
Sec. V.

Finally, Fig. 3(b) gives the temporal evolution of the ver-
tical temperature flux, which is proportional to the vertical
buoyancy flux N〈wθ〉, and of the correlation between the verti-
cal vorticity and temperature fluctuations 〈ωzθ〉. Zero initially,
they both grow with time, although the onset of the cross
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FIG. 3. (a) Time evolution of integral (L) and Taylor (λ) scales in run A8:
isotropic (L0 and λ0), perpendicular (L⊥ and λ⊥), and parallel (L‖ and λ‖ ).
(b) Vertical flux of temperature fluctuations 〈wθ〉 and correlation between
vertical vorticity and temperature fluctuations 〈ωzθ〉.

correlation between ωz and θ has a later departure with at first
smaller fluctuations. We note that the buoyancy flux is always
positive, indicating that upward currents are associated with
lighter (warmer) fluid, and colder patches of fluid are correlated
with downdrafts. This sign of the buoyancy flux is traditionally
associated with the formation of front-like structures,19 which
are observed in this flow, as discussed in Sec. IV. In Sec. V, we
will also see from the spectrum of 〈wθ〉 that this positive cor-
relation takes place both at large and at small scales, indicating
a direct transfer of this flux.

Correlations between temperature and vertical vorticity in
Fig. 3(b) undergo instead large semi-regular excursions around
〈ωzθ〉 = 0, on a time scale of the order of the horizontal large-
scale turn-over time T⊥ = L⊥/U⊥ ≈4.3, as will be confirmed for
other runs with different Brunt-Väisälä frequencies in Sec. VI.
As shown in Sec. IV, these oscillations correspond to a cycle
of (1) creation of front- and filament-like structures and (2)
dissipation through the destabilization of these structures with
the creation of turbulence. The 〈ωzθ〉 correlation can also be
linked to the pointwise conservation of potential vorticity as
temperature fronts are pushed together by the coherent large-
scale velocity, as will be observed in flow visualizations. As
will be seen in the spectra in Sec. V, in this case, the sign
of the correlation is dominated by the contribution from the
large-scale circulation.

B. Dimensionless numbers

With these data, we can now compute the dimensionless
parameters for run A8, evaluated in a dynamical sense in the

quasi-stationary regime; we find (see Table I)

Re ≈ 40 000, Fr ≈ 0.03.

Of course, as in all direct numerical simulations, the Reynolds
number is low compared to geophysical flows but, as we shall
see below, this flow is already in an efficient regime in which
energy is strongly dissipated.

We can also deduce several derived parameters of interest,
averaged over the developed turbulent regime. For example,
the buoyancy Reynolds number in run A8 is RB ≈ 36, and
the Taylor Reynolds number is Rλ = U⊥λ⊥/ν ≈ 1700. The
Richardson number can be estimated as 1/Fr2 ≈ 1100, of the
order of the averaged gradient Richardson number

〈
Rig

〉
shown

in Fig. 2 and in Table I. The buoyancy wave number and length
scale are, respectively, kB ≈ 8 and LB ≈ 0.8 (note that the
parallel integral scale of the flow is L ‖ ≈ 0.65). We also find that
the Ozmidov and dissipation wave numbers can be estimated as
koz ≈ 40 and kη = (εV/ν

3)1/4 ≈ 650, with kη being evaluated
assuming Kolmogorov-like scaling, that is, for RB > 1, which
is the case for all runs of Table I. This gives kη /kmax ≈ 0.9,
indicating that the dissipative range in this flow is reasonably
resolved.

The kinetic energy dissipation rate measured directly from
the run A8 is εV ≈ 0.24, while the potential energy dissipation
rate is εP ≈ 0.09 ≈ εV /3. Using Kolmogorov phenomenology,
the kinetic energy dissipation rate can be estimated as

εKol
V = U3

⊥/L⊥ ≈ 0.23. (22)

This is quite comparable to the actually measured kinetic
energy dissipation, indicative of a strongly turbulent flow
which is efficient at dissipating all the available energy at
small scales (see Table I for more details). The level of tur-
bulent dissipation observed here is strong for the Fr and RB

considered in this run; typically, direct numerical simulations
of stably stratified turbulence have εV smaller than εKol

V up to
RB ≈ 200.11 Strong effective dissipation rates have already
been reported in the literature for flows at a low Froude num-
ber. Using hyper-viscosity (with a higher power in the vertical
than in the horizontal since stronger gradients are expected in
the vertical), it was shown in Ref. 33 that β = εV/ε

Kol
V ≈ 1; this

is for effective high buoyancy Reynolds numbers RB, compa-
rable to those in the ocean and in the atmosphere. This was
also found using a normal Laplacian for the dissipation in
Refs. 11 and 47 for rotating stratified flows in the absence
of forcing. Moreover, smaller dissipation rates can also be
found in our runs, especially at lower values of RB (see, e.g.,
run F4 in Table I). Thus, the values of β observed in run
A8 indicate a very efficient mixing and dissipation at small
scales.

C. Typical dimensional values

Sub-mesoscale structures in the ocean have horizontal
scales of 1-10 km. To compare with dimensional quantities,
we must choose some setup and dimensionalize all quantities
using typical velocities and length scales. Here we do so not-
ing that the motivation is to see if the ordering of scales and
the orders of magnitudes are reasonable, but keeping in mind
that our geometrical setup is different from those in oceanic
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measurements. Any sub-mesoscale configuration with suf-
ficient measurements can then be used to this end. We
thus consider the Kuroshio current, for which detailed mea-
surements of turbulence and enhanced dissipation in fronts
are available.79 Mean horizontal velocities in this flow are
≈0.3 m s−1.80 Associating energy-containing structures in run
A8 with these observed structures, dimensions can be obtained
by multiplying dimensionless lengths by L∗ = 10 km/L⊥
= 10 km/4.5 ≈ 2.2 km, velocities by U∗ = 0.3 m s−1/U⊥
= 0.3 m s−1/1.03 ≈ 0.29 m s−1, and times by T ∗ = L∗/U∗

≈ 7600 s.
Based on these numbers, run A8 has a horizontal size Lx

= Ly ≈ 14 km, a vertical size Lz ≈ 1700 m, r.m.s. horizontal
velocity U⊥ ≈ 0.3 m s−1, and r.m.s. vertical velocity U ‖ ≈ 7
× 10−2 m/s. This later value is comparable to those measured
in sub-mesoscale ocean fronts.79 The Brunt-Väisälä frequency
is N ≈ 10−3 s−1. The spatial resolution of the simulation is ∆x
= ∆y = ∆z ≈ 7 m, clearly insufficient to realistically resolve
the Kolmogorov dissipation scale of turbulence in the ocean.
Thus, all turbulent length scales will be overestimated when
compared with realistic values. However, the kinetic energy
dissipation rate measured in run A8 is εV ≈ 2.6 × 10−6 W
kg−1. This value is directly comparable with measurements of
energy dissipation rates in ocean fronts within the Kuroshio
current,79 which yield values between 1.6 × 10−7 and 4.3
× 10−6 W kg−1.

In Sec. IV, we will present visualizations of front- and
filament-like structures in run A8. In these units, typical
widths of the numerically computed structures of run A8
range between 700 m and 1.5 km. Velocity gradients in these
structures are |∂xu| ≈ 1 × 10−4–3 × 10−4 s−1. Measure-
ments of fronts in the Kuroshio current79 yield gradients of
≈10−5 s−1. However, as mentioned above, it is important
to note that the formation of structures in our simulation is
driven by the Taylor-Green flow, and important ingredients
for ocean modeling such as surface winds and the boundary
layer are missing. Thus, the dimensional values are only con-
sidered to give a better idea of scale separation and of typical
strengths when comparing with turbulence in more realistic
setups.

IV. SPATIAL STRUCTURES FOR RUN A8

The dynamics of the flows computed in this work are
rather classical in terms of temporal evolution, except perhaps
for the cyclic behavior in 〈ωzθ〉 observed in run A8 (and also
observed in the other runs, as discussed later in Sec. VI). But
to what type of structures does such behavior correspond?

We show in Fig. 4 the vertical cuts of the temperature
fluctuations at three different times for run A8, one close to
the maximum of dissipation, one after the maximum, and one
at the latest time of the computation. Black lines correspond to
instantaneous velocity field lines. Examining in Fig. 4(a) the
field at the earlier time in the vicinity of (x ≈ π/2, z ≈ 0.25),
we observe hot fluid which is ascending to the left of the front
and to the right cold fluid which is descending. Hot fluid in
this region is also pushed to the right and cold fluid to the left.
At this time, the symmetries of the TGz8 forcing are evident,
and thus one can observe three other such contrasting frontal
configurations (one between each von Kármán cell, i.e., all
lying in the vicinity of the shear layer; compare the flow with
the sketch in the bottom of Fig. 1). This structure is reminiscent
of a classical front, as proposed in Ref. 81. In all these fronts,
hot and cold fluid elements are being pushed against each other
by the flow, forming ever sharper fronts. As turbulence has not
fully developed yet, the formation of the front-like structure is
only arrested by the dissipation wavelength. Note that at early
times, the detailed dynamics of these fronts can be sensitive
to the Prandtl number (here, Pr = 1), as this number controls
the ratio of the dissipation wavelengths for the temperature
fluctuations and for the velocity field. Thus, values of Pr , 1
would allow for different length scales in the gradients of the
temperature and of the velocity.64

Figure 5 shows horizontal cuts of temperature fluctuations
and instantaneous velocity field lines in two (x, y) planes at
z = Lz/8 ≈ 0.1 and at z = Lz/4 ≈ 0.2 (at the shear layer, where
the TGz8 forcing is zero) and at two times t = 4.8 (before the
maximum of enstrophy) and t = 8.2 (once turbulence has fully
developed), also for run A8. As in Fig. 4, the large-scale flow
generated by the TGz8 forcing is clearly seen. At early times
in the von Kármán cell, see Fig. 5(a), cold fluid concentrates

FIG. 4. Vertical (x, z) slices at y = 0
of temperature fluctuations for run A8
at (a) t = 4.8, (b) t = 8.2, and (c)
t = 15, with super-imposed velocity vec-
tors. The same color map applies to all
three snapshots; dark blue corresponds
to θ = −2 (in units of velocity), and
red corresponds to θ = 2. Note at large-
scales the Taylor-Green flow as sketched
in Fig. 1 (bottom), with the flow at z =
π/8 going from the center of the box
to the boundary, and vice-versa at z =
0 and π/4. At late times, a circulation
develops, with cold downdrafts and hot
updrafts (see x = 0, π, and 2π).
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FIG. 5. Horizontal cuts, for run A8, of temperature fluctuations, with super-imposed velocity fields at various times and at different heights: (a) t = 4.8 at z =
Lz/8, (b) the same time at z = Lz/4 (i.e., at the shear layer, where forcing is zero), (c) t = 8.2 at z = Lz/8, and (d) the same time at z = Lz/4. The white boxes
indicate a region with fronts near the shear layer, where perspective volume renderings will be performed (see Fig. 6). The color map is the same as in Fig. 4.

(and descends) in the center of each TG vortex, and hot fluid
concentrates (and ascends) in the surroundings of the vortices.
In the shear layer, see Fig. 5(b), the hot and cold fluid meet in
regions in which hot and cold are pushed against each other,
creating sharp fronts as the one indicated by the white box.
Note that, as a result of the symmetries of the forcing, many
other front-like structures can be seen.

In the presence of gravity, the recirculation associated
with the TG flow is quite different from the homogeneous and
isotropic case with, unsurprisingly, descending cold and ris-
ing hot fluid parcels. This unbalanced secondary circulation,
in the form of vertical motions, is created first by pressure gra-
dients. This can be seen by a Taylor expansion of the flow at
early times in terms of a small time dt, by solving Eqs. (4)
and (5) iteratively, as done in Ref. 53. To the lowest non-zero
order, the velocity components and temperature fluctuations
for TGz8 forcing are

u = dtF0 sin(x) cos(y) cos(8z), (23)

v = −dtF0 cos(x) sin(y) cos(8z), (24)

w = −2dt2F0[cos(2x) + cos(2y)] sin(16z), (25)

θ = −2dt3NF0[cos(2x) + cos(2y)] sin(16z), (26)

where viscous contributions were neglected. Note that the flow
has no vertical component to the lowest order (only u and v are
different from zero at order dt), but vertical displacements at
twice the wave numbers of the large-scale flow arise from the
pressure gradient term −∂zp in Eq. (4) at order dt2. This cre-
ates a circulation with vertical displacements in each Kármán
cell, which in turn excites temperature fluctuations at order
dt3 and with the periodicity of the large-scale pattern seen in
Fig. 5. Furthermore, potential vorticity PV is created by the
forcing, but it must be conserved pointwise by the equations.
This implies immediately that density gradients that are quasi-
aligned with the vorticity will be counter-balanced by vertical
vorticity and that the two may be correlated; see Fig. 3(b).
Once the descending cold elements and rising hot elements
are excited, frontogenesis can arise from the instability of
the buoyancy field when submitted to a large scale horizontal
shear,24,81,82 as observed in the atmosphere and the ocean and
also found in direct numerical simulations (see, e.g., Refs. 83
and 84).

The evolution of the sharp front and the subsequent cre-
ation of turbulence in run A8 are shown in Fig. 6, where we
present perspective volume renderings of the temperature and
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FIG. 6. Three-dimensional renderings,
for run A8, of temperature fluctuations
(first three rows) and of vorticity inten-
sity (last three rows), at t = 4.3 when
the first fronts are created (left column),
at t = 4.8 (middle column), and t =
5.2 (right column) when turbulence has
developed. Red, green, and blue arrows
are, respectively, the x, y, and z direc-
tions. For both quantities, the top row
is a perspective volume rendering of the
region indicated in white in Fig. 5, mid-
dle row is a top view, and bottom row is a
side view. Observe the vertically slanted
destabilizing fronts for t ≈ 4.8 and ≈5.2.
Also note, in the vorticity at t = 4.8 (bot-
tom row, middle column), the creation of
pairs of Kelvin-Helmholtz-like vortices
that feed the turbulence on the left side
of the domain. Color maps are linear,
from −2 (light yellow) to 2 (dark blue)
for the temperature; for the vorticity,
only regions with intensity larger than
3σ are shown, where σ is the variance.

of vorticity intensity in the subdomain indicated by the white
boxes in Fig. 5, using the VAPOR software.85 Three different
times are shown, respectively, at t = 4.3 (before the peak of
enstrophy), t = 4.8, and t = 5.2 (after turbulence develops). At
early times, the gradient is very sharp, and gradients increase
further as hot fluid is pushed against cold fluid. Note also that
above this structure, the large-scale flow resulting from the
TGz8 forcing moves fluid along the structure (see Fig. 5). The
destabilization of the sharp gradient through shear instabilities
at intermediate times (note the vortex sheets in light yellow at
t = 4.8 in the bottom row) further allows the development of
turbulence, with no discernible structures beyond vortex fil-
aments and which fill the bulk of the flow. The creation of

vortex filaments and of Kelvin-Helmholtz-like billows can be
seen more clearly in Fig. 7, which shows the three compo-
nents of the vorticity in a slice of the domain at t ≈ 4.8. This
excitation of turbulence gives a path for energy dissipation and
for the arrest of the growth of the gradient. Finally, note that,
overall, the geometry of the structure in Fig. 6 is reminiscent
of one of the mechanisms for the creation of fronts depicted
in Ref. 19.

After turbulence develops, we see in Figs. 4(b) and 4(c)
and in Figs. 5(c) and 5(d) that several such front-like structures
are formed and that the flow can make them almost collide into
filament-like structures,19 i.e., a succession of cold-hot-cold
fluid or vice-versa. This is visible in Figs. 4(b) and 4(c) near
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FIG. 7. Three-dimensional renderings, for run A8, of the three components
of the vorticity at t ≈ 4.8. From top to bottom,ωx ,ωy, andωz are shown. The
same region as in the bottom row of Fig. 6 is displayed. The ωx component
of the vorticity is thus normal to the slice shown in this rendering.

x ≈ π, with the velocity indicating the convergence of the two
sharp gradients. These structures are deep in the third (y) direc-
tion, as seen in Fig. 5(c) (look, for example, at x = π, y = 0, or
y = 2π). Once the system reaches the fully turbulent regime,
these front- and filament-like structures are cyclically created
by the large-scale flow and dissipated by small-scale turbu-
lence, giving rise to the cyclic behavior observed in Fig. 3(b).
Note also that at these late times, the symmetries of the TGz8
forcing are broken, with each von Kármán cell still discernible
but showing different small-scale features.

While the width of the sharp gradient at early times (before
the development of turbulence) is controlled by viscous dissi-
pative processes, the typical width of the structures afterwards
is larger and is determined by the large-scale flow in which
they are embedded, as will be confirmed by varying Ar and
the Brunt-Väisälä frequency in Sec. VI. This can also be seen
in Fig. 8, which shows, for the sharp gradient at early times
and for a cold filament-like structure at late times (both along
the y direction), the averaged velocity profile 〈u〉y (where the
average in y is done over the extension of the structure) and
the averaged temperature profile 〈θ〉y. In the case of the sharp
gradient, both the velocity and the temperature change sign
rapidly. In the case of the filament-like structure, temperature
drops while the velocity changes sign more smoothly.

V. SPECTRAL BEHAVIOR FOR RUN A8

We finally examine the properties of run A8 in Fourier
space, to study the turbulence that develops after the peak

FIG. 8. Instantaneous temperature and velocity (u) profiles, for run A8, aver-
aged in the horizontal (y) direction in the vicinity of the structure of (a) a front
at early time (t = 4.8) and (b) a cold filament-like structure at a later time
(t = 8.2).

of enstrophy. Thus, except when explicitly indicated, all spec-
tra shown in this section correspond to averages in time over
the turbulent steady state (i.e., from t ≈ 7 to 15). Because the
discretization in the horizontal and vertical directions is not the
same in terms of wave numbers, we display first in Fig. 9(a)
the isotropic energy spectrum (for the kinetic and potential
energy) as defined in Eq. (17). In the discrete case, the integral
is replaced by a sum, and all modes in spherical shells of width
∆k are summed up. We show these spectra using two summa-
tions over Fourier shells, of respective widths ∆k = 1 (thin
lines) and ∆k = 8 (thick lines). The oscillations in the spec-
tra with ∆k = 1 are due to the fact that all shells with k ‖ mod
8 , 0 are depleted because of the aspect ratio of the box and of
the different densities of modes in parallel and perpendicular
directions in Fourier space.

The intensity of the peaks for ∆k = 1 is quite strong,
although they become much less visible as we move on to
higher wave numbers since the density of wave numbers in
shells with high k is substantially larger (∼k2). However, these
peaks are also related to, on the one hand, the lack of reso-
nances in the elongated box so that the energy accumulates
at the large-scale flow, and on the other hand, the growth in
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FIG. 9. (a) Total energy isotropic spectrum for run A8, separated into its
kinetic (EV ) and potential (EP) components. Thin and thick lines correspond
to different ∆k widths of the Fourier shells over which the data are averaged
(see the inset). The Kolmogorov slope is shown as a reference. (b) Isotropic
total energy flux Π(k) and perpendicular total energy flux Π(k⊥). The two
vertical dashed lines indicate the buoyancy and Ozmidov wave numbers.

stratified flows of the zero mode at k⊥ = 0 leads to strong
mean flows35,72 that are known to dominate the dynamics.86

Smoothing out these harmonics (e.g., for ∆k = 8), a slope is
discernible; it is steeper at large scales and compatible with a
Kolmogorov spectrum at wave numbers larger than the Ozmi-
dov wave number. This behavior for k > koz is consistent with
the ratio β = εV/ε

Kol
V ≈ 1 found for this simulation and for

most simulations in Table I and further suggests that the small
scales in run A8 begin to recover isotropy at these wave num-
bers, resulting in enhanced mixing and turbulent dissipation.
The behavior for k > koz is also consistent with the small-scale
billows and vortex filaments observed in Figs. 6 and 7, which
are a common occurrence in isotropic turbulence.

Even with ∆k = 8, an oscillation remains in the spectrum
of the potential energy; the first peak is at k = 16, the next peak
at k = 2 × 16, and the following peaks have period 16. It cor-
responds to the spatial frequency of the dominant temperature
fluctuations being created by the flow circulation. Note that this
is compatible with the argument derived in Eq. (26), where we
showed that to the lowest order in a short-time expansion, the
TG flow acting at kx = ky = 1 and kz = 8 excites temperature
fluctuations at kx = ky = 2 and kz = 16 (corresponding to the
isotropic wave number k = [162 + 2 × 22]1/2 ≈ 16.2).

The total energy flux Π for run A8 is shown in
Fig. 9(b). Just as was done for the energy in Eqs. (17)–(19),

by integrating over isotropic wave numbers or perpendicular
wave numbers, we can obtain the reduced isotropic energy flux
Π(k) or the reduced perpendicular energy flux Π(k⊥). There
is no evidence of an inverse cascade (the isotropic energy flux
is zero at large scales, and the perpendicular energy flux is
positive at all wave numbers), and the fluxes remain approxi-
mately constant in the inertial range. In Fig. 9, the two vertical
dashed lines always indicate the buoyancy and Ozmidov wave
numbers. Their ratio is proportional to Fr−1/2 ≈ 5.8. Note that
LB is barely resolved in the computation, given the choice of
parameters. The approximate constancy of the positive flux in
a wide range of wave numbers indicates a turbulent transfer of
energy toward smaller scales, all the way down to wave num-
bers smaller than koz. This confirms the observation made in
Sec. IV that the filaments and front-like structures are efficient
at generating small-scale turbulence.

The kinetic and potential energy spectra for run A8, now
reduced in terms of the perpendicular and parallel wave num-
bers, as defined by Eqs. (18) and (19), are shown in Fig. 10.
Data points are denser in terms of k⊥, and the behavior of
the spectrum at large scales is more visible here. The large-
scale kinetic energy spectrum follows a k−3

⊥ law, in agreement
with a large-scale flow close to balance for these small Froude
numbers, and at scales smaller than the Ozmidov scale, a
Kolmogorov spectrum ∼ k−5/3

⊥ is plausible although not well

FIG. 10. Reduced spectra of kinetic (EV ) and potential (EP) energy, defined
in Eq. (16), for run A8 as a function of (a) perpendicular and of (b) parallel wave
numbers. The two vertical dashed lines indicate the buoyancy and Ozmidov
wave numbers. Several power laws are given as references. The inset in (a)
shows the energy densities k⊥EV (k⊥) and k⊥EP(k⊥) and that in (b) shows the
energy densities k‖EV (k‖ ) and k‖EP(k‖ ), with the same labels as in the main
plots.
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resolved. Between the buoyancy and the Ozmidov scale, the
spectrum is shallower. Moreover, in the spectra in terms of
k ‖ , the break at k ‖ ∼ koz is more clear, with at large scales an
approximate law ∼ k−5/2

‖
shown as a reference. Just as with

the fluxes, these spectra confirm the development of a direct
transfer of energy and of strong turbulence, as reported from
the flow structures in Sec. IV. Also, the scaling of both the
reduced parallel and perpendicular spectra compatible with
a Kolmogorov law further indicates a possible recovery of
isotropy at small scales.

Although the reduced parallel and perpendicular spectra
give some information of the anisotropy (or isotropy) of the
flow, a better quantification of the scale-by-scale anisotropy
can be obtained from the axisymmetric spectrum, as defined
in Eq. (16). In Fig. 11, we thus show the two-dimensional
axisymmetric spectrum as a function of k ‖ and k⊥ for the
kinetic and potential energy in run A8. The isocontours of
these angular spectra are ellipsoidal at large scales and with
strong accumulation of energy in modes with k⊥ ≈ 0 and

FIG. 11. Contour plots for run A8 of (a) the kinetic and (b) the potential
axisymmetric energy spectra [see Eq. (16)]. Contour levels are separated in a
logarithmic scale. Note that contours are elongated for small wave numbers,
but become closer to circles for large wave numbers, indicative of a recovery
of isotropy at small scale.

k ‖� k⊥ (i.e., on modes corresponding to strong vertical shear).
This spectral anisotropy is compatible with the formation of
large-scale horizontal layers, as seen in Figs. 4 and 6, with
larger horizontal than perpendicular integral scales as seen in
the ratio L⊥/L ‖ for run A8 in Table I, and with the formation of
pancake-like structures, as reported in Refs. 28 and 29. How-
ever, the isocontours in Fig. 11 tend to be more spherical as the
wave number increases, confirming that small scales are more
isotropic (see also the ratio λ⊥/λ ‖ for run A8 in Table I). Also,
note that this trend in the isocontours is slower for EP, suggest-
ing that the isotropization process at small scales is slower for
the temperature fluctuations. This is compatible with the struc-
tures observed in Figs. 6 and 7, where the vorticity at small
scales seems more isotropic than the temperature fluctuations.

Overall, all these spectra, which are consistent with spec-
tra reported for stably stratified turbulence in previous studies
and which become more isotropic and closer to Kolmogorov
scaling at small scales, confirm the generation of strong
turbulence by the fronts in the flow.

Finally, we turn our attention to the spectra of the corre-
lations wθ and ωzθ, two quantities for which we studied their
time evolution in Fig. 3(b). Figure 12(a) shows the instan-
taneous spectrum of wθ at different times. The first time
(t = 4.8) corresponds to an early time when turbulence is still
developing, while the later times correspond to the turbulent
state when 〈wθ〉 has reached a steady positive value. Thin lines
correspond to the absolute value of the spectra (note that these
spectra can be negative), while thick lines indicate positive
correlations (the inset shows the spectrum multiplied by k⊥ in
the lin-log scale, to make changes in sign more visible). The
correlation ofwθ is positive at almost all wave numbers, except
near the forcing wave number and at scales much smaller than
koz, where it changes sign (the drop in the log-log plot of the
spectrum around k ≈ 100 corresponds to this change). As will
be shown when studying the runs at lower Re, this wave num-
ber is controlled by viscous effects. While flat at large scales
(k ≈ kB), the spectrum develops a power law for k > kB as
time evolves (at t = 4.8, the large fluctuations in this spectrum
indicate that the correlation changes sign rapidly from wave
number to wave number). The development of a power law,
and the consistency in the sign across different wave numbers,
indicates a direct transfer of this quantity and is in agreement
with our previous observations of front-like structures with hot
updrafts and cold downdrafts being associated with the sign of
the buoyancy flux at all scales. On the contrary, the spectrum
of ωzθ is noisier, see Fig. 12(b), and also different in its time
evolution (see Fig. 14 for the temporal evolution of 〈ωzθ〉).
The correlation grows (in absolute value) at large scales from
intermediate scales (compare the spectrum at t = 4.8 peaking at
k ≈ koz to the spectra at later times peaking at k = 1). Moreover,
the sign of 〈ωzθ〉 is dominated by the contribution from these
large scales, confirming that the time evolution of this correla-
tion is associated with the dynamics of the large-scale eddies.
Also, which Fourier shells are positive or negative changes
with time, with a power law at intermediate wave numbers
that follows from the transfer of the large-scale correlation to
smaller scales. Note that the noisier spectrum in this case can
also be expected, as this correlation involves the vorticity and
thus changes in sign at small scales can be rather rapid.
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FIG. 12. Spectrum as a function of k⊥ of the correlations (a) wθ and (b)ωzθ,
for run A8 at different times (see Fig. 3 for temporal evolutions). The thin lines
are the absolute value of the spectra, while the thick lines correspond to the
interval of wave numbers where the spectra are positive. Two power laws are
indicated as references. The vertical dashed lines indicate, from right to left,
the buoyancy wave number kB and the Ozmidov wave number koz . The insets
in each plot show the same correlation spectra multiplied by k⊥ and, in lin-log
scale, so changes in sign can be more easily appreciated.

VI. VARIATION OF ASPECT RATIO
AND OF THE BRUNT-VÄISÄLÄ FREQUENCY

We now examine how the results described in Secs. III–V
are affected by a change in the Brunt-Väisälä frequency, and
thus in the Froude number, as well as by a change in the aspect
ratio of the box, which also results in a change in the ver-
tical scale of the shear. Six simulations were done for this
parametric study (see Table I): A first set of three runs com-
prises runs B8, B8∗, and C8, which have the same aspect
ratio as run A8 (i.e., Ar = 1/8) but with a spatial resolution of
10242 × 128 grid points. Except for the change in resolution
(and thus of viscosity and diffusivity and thus different Re and
RB), run B8 is identical to run A8. Run C8 has the same TGz8
forcing with N = 16, and thus, the buoyancy length scale in
this run is approximately half that in runs A8 and B8. Finally,
run B8∗ has the same parameters as run B8 but is forced also in
the temperature, with a thermal source that opposes in sign the
thermal fluctuations induced by the TG forcing [see Eq. (26)],
in an attempt to generate a more balanced flow; this is intended
to be contrasted with the other runs. In the second set, runs D4,

E4, and F4 have an aspect ratio Ar = 1/4 (and thus are forced
with a TGz4 forcing) and a resolution of 7682 × 192 grid
points. In this set of runs, the Brunt-Väisälä frequency is var-
ied from N = 4 to 16, and as a result, the buoyancy length scale
varies from the box height (which is also the forcing scale)
to less than 1/3 of the box height. Note that in all runs, the
Brunt-Väisälä frequency is always chosen to have the buoy-
ancy length scale equal or smaller than the box height; in other
words, we do not perform simulations with N smaller than the
minimum required to have LB ≤ Lz.

A. Variation of the Brunt-Väisälä frequency
at a fixed aspect ratio

We start discussing the runs with the same aspect ratio
as run A8, i.e., with Ar = 1:8. In Fig. 13, we show the spa-
tially averaged gradient Richardson number

〈
Rig

〉
for runs

B8, B8∗, and C8. Both runs with N = 8 (B8 and B8∗) show
the same behavior (qualitatively similar to run A8), while for
run C8 (with N = 16), the averaged gradient Richardson num-
ber keeps increasing for longer times and saturates at a larger
value. Figure 13 also shows the PDFs of the local gradient
Richardson number for the same runs. The thermal forcing,
intended to keep run B8∗ more balanced, reduces the proba-
bility of finding points with Rig < 0 when compared with run
B8 (i.e., the probability of overturning is reduced). However,
the peak and the probability near Rig ≈ 1/4 (associated with the
upper threshold for local shear instabilities) remain relatively
unchanged. Thus, overall, the runs studied in this work have
points that can suffer local shear or overturning instabilities.
In comparison, run C8 (with stronger stratification) has signif-
icantly lower probabilities of having points with Rig < 1/4 or
Rig < 0.

FIG. 13. (a) Spatially averaged gradient Richardson number
〈
Rig

〉
(over the

entire domain) as a function of time for the set of runs with aspect ratio Ar = 1/8:
runs B8, B8∗, and C8 (see Table I). (b) PDFs of the local gradient Richardson
number Rig for the same runs during the developed turbulent regime.
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FIG. 14. Mean correlation between vertical vorticity and temperature fluctu-
ations, 〈ωzθ〉, as a function of time and for runs with Ar = 1/8: B8 (with N = 8,
solid line), B8∗ (with N = 8 and thermal forcing, dotted line), and C8 (with
N = 16, dashed line). Note that the large oscillations are significantly slower
than the period of internal gravity waves and, in fact, independent of N. Faster
fluctuations, associated with the internal gravity waves, can also be seen.

Figure 14 shows the correlation between vertical vorticity
and temperature fluctuations for runs B8, B8∗, and C8. Runs
B8 and C8, with a different Brunt-Väisälä frequency, display
slow fluctuations (similar to those in run A8) on a time scale
that is much larger than (and seems independent of) 1/N and
which is proportional to the eddy turnover time in each run.
Superimposed to these slow oscillations, fast fluctuations at a
time scale inversely proportional to the buoyancy frequency
can be also observed. However, run B8∗, which has a forcing
intended to counteract temperature fluctuations, displays much
smaller slow oscillations, and thus the fast wave fluctuations
are more prominent in the dynamics of 〈ωzθ〉.

To further confirm this behavior, Fig. 15 shows the spectra
of the correlations of wθ and ofωzθ for run B8, using the same
labels as in Fig. 12. The behavior is similar to that observed
in run A8. However, two differences are worth pointing out.
First, although the kB and koz wave numbers do not change
significantly between runs A8 and B8, the wave number in
which the spectrum of wθ changes sign, i.e., the drop at k ≈ 60
in Fig. 15(a), changes as the result of the change in Re. The
same spectrum for run C8 (not shown) shows a sign change
in wθ at approximately the same wave number, even though
koz is substantially larger for that run. We can thus confirm
that the sign change in the correlation of wθ at small scales
is caused by viscous effects. Second, as a result of the lower
value of Re in the runs at lower resolution, it takes longer times
for turbulence (and for these correlations) to develop. This is
seen more clearly in Fig. 15(b): note that the spectrum of ωzθ
at t ≈ 5 has a much smaller amplitude than that in Fig. 12(b)
for run A8. But except for this difference, the same behavior
is observed, with a growth of the correlation of ωzθ at large
scales and the sign of 〈ωzθ〉 in Fig. 14 being dominated by the
contribution of its spectrum at small wave numbers.

In Fig. 16(a), we show the average temperature profile
〈θ〉y (averaged over y in the vicinity of the structure) at early
time for runs B8, B8∗, and C8, which can be directly com-
pared with Fig. 8(a) (for clarity, only the temperature is shown
in this case). Run B8 displays a clear sharp front similar to the
one observed in run A8, while run B8∗ displays a smoother
gradient, as expected since the thermal forcing opposes the
temperature profile excited by the mechanical TG forcing.

FIG. 15. Spectrum as a function of k⊥ of (a) wθ and (b)ωzθ, for run B8 (Ar
= 1/8, N = 8) at different times. The thin lines are absolute value of the spectra,
while the thick lines correspond to the wave numbers where the spectra are
positive. Power laws are indicated as references. The vertical dashed lines
indicate, from right to left, the buoyancy wave number kB and the Ozmidov
wave number koz .

However, a gradient in the temperature is still visible. Run
C8 displays a different behavior, with no front. The front at
early times develops when the buoyancy length scale and the
length scale of large-scale shear (associated with the mechan-
ical forcing) are comparable, a result which is also confirmed
by runs D4, E4, and F4 with a different aspect ratio (see
below). Figure 16(b) shows again the temperature profile 〈θ〉y
but now at later times and in the region where filament-like
structures develop. The width of the temperature drop is con-
trolled by the large-scale forcing, but it has a dependence on
the Brunt-Väisälä frequency: for larger values of N, the drop
in the temperature becomes wider. Also, in run B8∗, the drop
is smoother, as expected for the choice of the thermal forcing
that partially counter-balances the TG forcing.

B. Variation of the aspect ratio

We finally briefly discuss runs D4, E4, and F4, which
have an aspect ratio of 1:4 with mechanical TGz4 forcing and
without thermal forcing. In these runs, the Brunt-Väisälä fre-
quency is N = 4, 8, and 16, respectively. The overall behavior
of run D4 is similar to that of runs A8 and B8. Figure 17 shows
the PDFs of the local gradient Richardson number Rig for all
these runs. Run D4 displays non-negligible probabilities of
points with Rig < 1/4 and Rig < 0 [with a sharp peak of the
probability distribution function (PDF) in between these two
values], while runs E4 and C4 have lower probabilities of
local shear instabilities and overturning as the Brunt-Väisälä
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FIG. 16. (a) Instantaneous temperature profiles, averaged in the horizontal
(y) direction in the vicinity of a front-like structure at early time (t = 5.0) in
runs B8, B8∗, and C8 (solid, dotted, and dashed lines, respectively). (b) The
Same as in (a) for a cold filament-like structure at a later time. Compare with
Fig. 8 which shows the temperature profiles in run A8.

frequency is increased (compare the PDFs with those in Fig. 13
for runs with an aspect ratio of 1:8).

The sharp structures observed in Secs. III–V are also
affected by the change in the aspect ratio and in the Brunt-
Väisälä frequency. As an illustration, Fig. 18 shows the instan-
taneous temperature profiles averaged in y in the vicinity of
the structures, 〈θ〉y, for the fronts at early times in Fig. 18(a)
and for the filament-like features observed at late times in the
simulations in Fig. 18(b). In run D4 (which has LB ≈ Lz, as
runs A8 and B8 but with a different aspect ratio), the early-
time front is sharp and with length scales again given by the
dissipation, although its position is shifted with respect to the
other simulations, a result of the turbulent fluctuations in the

FIG. 17. PDFs of the local gradient Richardson number Rig for runs D4, E4,
and F4, with aspect ratio Ar = 1/4 and, respectively, with N = 4, 8, and 16.

FIG. 18. Instantaneous temperature profiles, averaged in the horizontal (y)
direction in the vicinity of the structure, for the filament-like features observed
in the simulations (a) at early and (b) at late times, for runs D4, E4, and F4
(see Table I).

flow. And as before, see runs E4 and F4 in Fig. 18(a), increas-
ing N results in a smoother temperature gradient in the same
region. At late times, see Fig. 18(b), the drop in the tempera-
ture is clear for runs D4 and E4 and significantly smoother for
run F4 (with the largest value of N), as also observed in the
simulations with Ar = 1/8.

VII. CONCLUSION
A. Summary of results

In this paper, we considered a classical flow in turbu-
lence studies, the Taylor-Green flow, suitably adapted to have
an aspect ratio that mimics that of geophysical flows as in
the atmosphere or the ocean (although much less extreme).
The resulting forcing configuration corresponds to a large-
scale two-dimensional field, with no vertical component and
with a modulation in the vertical direction that locally creates
strong shear. We performed multiple direct numerical sim-
ulations of stably stratified turbulence using this forcing, in
which the Ozmidov scale was always resolved (with RB ≈ 36
for the highest Reynolds number considered). As a result,
unbalanced dynamics, quasi-isotropic turbulence, and the for-
mation of vortex filaments can all be expected to take place
at small scales. A simulation also forced in the temperature
to try to counteract temperature fluctuations induced by the
Taylor-Green forcing, and intended to develop a more balanced
configuration, was also considered.
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We have shown the following in this paper: (1) The Taylor-
Green forcing in elongated domains is able to create front- and
filament-like structures. (2) When the shear stemming from the
TG forcing and the background stratification are comparable
[as measured by the ratio of the vertical forcing scale Lz to the
buoyancy scale LB as shown in Table I, or equivalently, by the
Richardson number Ri = N2/(dU⊥/dz)2 ∝ L2

z /L
2
B], the strat-

ified TG flow develops turbulence in the following way: the
front-like structures form first, then destabilize through a local
shear instability, and finally quasi-isotropic turbulence ensues
with a Kolmogorov spectrum and vortex filaments. (3) The
origin of this small-scale turbulence is not the classical self-
similar destabilization of vortex sheets,87 but the formation
of the sharp temperature gradients that become unstable. (4)
Once turbulence is generated, sharp gradients and turbulence
are regenerated in a cyclic behavior governed by the turnover
time of the eddies at the largest scale available. One of the
mechanisms behind this cycle may be the restratification of
fronts observed in previous studies (see, e.g., Ref. 88).

The observed dynamics allow the strong gradients which
prevail in front- and filament-like structures to excite small
scale structures, carving the road to dissipate energy through a
nonlinear process with a direct energy cascade which is clearly
observed. This is the case even in the presence of the forcing in
the temperature that attempts to sustain a more balanced state.
The sharp gradients in our simple setup, although lacking sev-
eral important ingredients in oceanic configurations (see, e.g.,
Ref. 79), give enhanced dissipation and realistic values for the
energy dissipation rate, which is also of the order of dissipation
rates in isotropic and homogeneous turbulent flows.

B. Discussion

Of the many open issues left in the understanding of
sub-mesoscale structures in stratified turbulence such as those
observed in the ocean, as mentioned in the conclusion in
Ref. 19, a few may be addressed with the type of studies
we present here. For example, one could add rotation which
is rather strong in the oceans, with N /f ≈ 5, contrary to the
case of the atmosphere for which N /f ≈ 100 (where f is
the Coriolis frequency). Another example is that, as already
mentioned, the rate of the energy cascade as measured for
TGz8 forcing is quite close to its dimensional (Kolmogorov)
evaluation. Together with the multitude of vortex tubes that
are visible in the flow, this indicates that the generation of
fully developed turbulence by the strong stirring linked with
the large-scale vertical shear can be studied in this simplified
setup. The ratio of dissipation of kinetic to potential energy
is roughly 3 for the high-resolution run A8; thus, rε ≈ 1/4,
comparable to what was found in Refs. 47, 89, and 90 for an
ensemble of rotating stratified flows in the absence of forcing.
Similarly, when measuring the so-called mixing efficiency,
Γ = BV /εV , with BV = N〈wθ〉 the properly dimensionalized
vertical heat flux, we find Γ ≈ 0.4 for run A8, again com-
parable with previous studies and observations. However, a
marked difference between the results presented here and those
from some previous studies11,35,36,89,91,92 is the aforemen-
tioned level of dissipation. This indicates again that the specific
configuration employed here, namely, that of a strong vertical
shear, plays an important role in energizing the flow toward

the small scales through the formation of strong gradients and
shear-induced instabilities.

Other processes, such as the arrest in the growth of the
sharp gradients, which may also be linked to enhanced turbu-
lent dissipation, and the coupling of these structures with grav-
ity waves and nonlinear eddies, can be considered using these
TG flows. Finally, von Kármán cells have helicity (although
the TG flow has zero net helicity), and little is known of its
role in stratified flows. It has been observed that the decay
of energy can be substantially slowed down in the presence
of strong helicity93,94 and that its presence may be associated
with flat spectra, as observed in the strongly stratified nocturnal
planetary boundary layer.35,95 However, most of the numerical
studies considered flows in isotropic boxes and thus the role
of helicity in the specific context of fluids with a small aspect
ratio remain to be examined. It will be interesting to see if the
presence of net helicity affects the creation and further devel-
opment of fronts and other phenomena, such as the dispersion
of Lagrangian particles by the flow.
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