
����������
�������

Citation: Elaskar, S.; del Rio, E.;

Schulz, W. Analysis of the Type V

Intermittency Using the

Perron-Frobenius Operator.

Symmetry 2022, 14, 2519.

https://doi.org/10.3390/

sym14122519

Academic Editor: Christos Volos

Received: 28 October 2022

Accepted: 21 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Analysis of the Type V Intermittency Using the
Perron-Frobenius Operator
Sergio Elaskar 1,* , Ezequiel del Rio 2 and Walkiria Schulz 3

1 Departamento de Aeronáutica, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT), FCEFyN,
Universidad Nacional de Córdoba and CONICET, Córdoba 5000, Argentina

2 Departamento de Física Aplicada, ETSI de Aeronáutica y Espacio, Universidad Politécnica de Madrid,
28040 Madrid, Spain

3 Departamento de Aeronáutica, FCEFyN, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
* Correspondence: selaskar@unc.edu.ar or sergio.elaskar@gmail.com

Abstract: A methodology to study the reinjection process in type V intermittency is introduced. The
reinjection probability density function (RPD), and the probability density of the laminar lengths
(RPDL) for type V intermittency are calculated. A family of maps with discontinuous and continuous
RPD functions is analyzed. Several tests were performed, in which the proposed technique was
compared with the classical theory of intermittency, the M function methodology, and numerical data.
The analysis exposed that the new technique can accurately capture the numerical data. Therefore,
the scheme presented herein is a useful tool to theoretically evaluate the statistical variables for type
V intermittency.

Keywords: reinjection process; type V intermittency; one-dimensional maps

1. Introduction

Dynamical systems model numerous phenomena, processes, and mechanisms, that can
evolve into chaos using different routes. One of these routes is chaotic intermittency, where
a dynamical system solution alternates chaotic bursts with laminar or regular phases. The
regular phases correspond with pseudo-equilibrium regions or pseudo-periodic solutions,
but at the bursts the evolution is chaotic [1–4].

Classic chaotic intermittency was grouped into three types, I, II and III, according to
the periodic orbit stability loss evaluated by the Floquet multipliers, or to the fixed point
loss of stability evaluated by the eigenvalues of the map. Subsequent papers introduced
other types of intermittencies: on–off (in–out), V, X, eyelet, and ring [5–10].

We emphasize that a more complete understanding of chaotic intermittency could
expand its application to various fields of study, due to previous experiences observed in
physics, chemistry, medicine, and economics [11–21].

One-dimensional maps are widely utilized to analyze chaotic intermittency [1–4,22].
Maps with intermittency are characterized by a local map that determines the intermittency
type, and a non-linear map that generates the reinjection process. The reinjection probability
density function (RPD) is utilized to describe the reinjection process, and establishes the
probability of the trajectories to be reinjected in the laminar interval [1,4]. Accordingly, the
proper calculation of the RPD function is fundamental to accurately outline the chaotic
intermittency phenomenon. There was no universal methodology to determine the RPD,
and distinct methods were used of which the uniform reinjection mechanism (constant
RPD function) was the most utilized [1–3,22]. However, a more extensive methodology to
calculate the RPD function, the M function, has been developed over the last decade. It has
accurately worked for different maps with types I, II, III, and V intermittencies [23–27].

Type V intermittency was previously described in the literature by [28–30], and occurs
when a fixed point loses its stability via a collision with a non-differentiable point (NDP)
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forming a channel between the bisector line and the map. However, at this point, the
local map is non-differentiable or discontinuous and there is no tangent bifurcation. More
recent studies to calculate the RPD in type V intermittency are presented in Refs. [26,27].
Applications of type V intermittency can be found in neuronal activity studies [31–33].
For example, in the Hindmarsh–Rose model, there is an intermittent behavior between
irregular bursting and laminar phases close to a period-3 bursting [32].

In this paper, we utilize the Perron–Frobenius operator to elaborate a methodology
to compute the reinjection probability density function and the probability density of the
laminar lengths (RPDL) for type V intermittency [34,35]. Hereafter, this methodology is
referred to as the continuity technique. To validate the continuity technique in order to
evaluate the RPD and RPDL functions for type V intermittency, a family of maps is analyzed.
Comparisons between analytical results calculated using this technique, the classical theory
of intermittency, the M function methodology, and numerical data are carried out. Finally,
the advantages and drawbacks of the continuity technique are described.

2. Study of Type V Intermittency

Prior to discussing the application to type V intermittency, a short description about
the evolution of densities is necessary (the Perron–Frobenius operator). A more complete
and deeper explanation of this subject can be found in Refs. [36,37]. We consider a family
of evolution operators Ft(x) : D → D, such as Ft1+t2 = Ft1 ◦ Ft2 and F0 = identity, x ∈ D,
being D a compact manifold, and t the evolution variable. If t varies over the real numbers
(t ∈ R), Ft(x) represents a dynamical system. Nevertheless, if t acquires exclusively discrete
values, the operator Ft(x) is a map. There are, at least, two formulations to explain the
functioning of Ft(x). One alternative is to analyze the trajectories evolution, the other
considers the density and the probability measure concepts.

Let us introduce a map y = F(x), that transforms some interval ∆ ⊂ R into another
interval ∆a ⊂ R. Hence, x ∈ ∆ and y ∈ ∆a. In ∆, the density of trajectories can be defined
as ρ(x), while in ∆a the trajectories density is ρa(y). We can transform the density ρ in ρa,
and we write ρa = L ◦ ρ. If we consider ∆ = [y0, y], where the upper limit y is variable, the
density ρa(y) results

ρa(y) =
d

dy

∫
F−1[y0,y]

ρ(x)dx = ρ(F−1(y))
∣∣∣∣dF−1(y)

dy

∣∣∣∣ . (1)

This equation assumes that F(x) is piecewise differentiable and invertible. Further-

more, the derivative d F−1(x)
d x is piecewise continuous [36].

To apply Equation (1) in type V intermittency, we introduce the following family of
maps

F(x) =


F1(x) = λ1 x + ε x̂ ≤ x < 0,
F2(x) = ε + x + λ2 x2 0 ≤ x < xm,
F3(x) = x̂ + (ym−x̂)(ym−x)γ

(ym−xm)γ xm ≤ x ≤ ym ,
(2)

where ym = F(xm) = 1, ε is the control parameter, λ1 is the slope of the straight line
(0 < λ1 < 1), λ2 is the quadratic term coefficient in F2(x), γ is the exponent in F3(x), and
x̂ is the lower boundary of reinjection [4]. For ε = 0, x0 = 0 is a fixed point of the map,
and for 0 < ε � 1 type V intermittency occurs. To carry out a more general study, this
family of maps does not have symmetry around the fixed point, and it can generate type V
intermittency with continuous and discontinuous RPD functions.

If we apply Equation (1) to the map given by Equation (2), for the sub-interval [x̂, F1(x̂))
we obtain

L ◦ ρ (x) = ρ(F−1
3 (x))

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ , (3)
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for the sub-interval [F1(x̂), 0) results

L ◦ ρ (x) = ρ(F−1
1 (x))

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣+ ρ(F−1
3 (x))

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ , (4)

and for the sub-interval [0, ym] we have

L ◦ ρ (x) = ρ(F−1
2 (x))

∣∣∣∣∣dF−1
2 (x)
dx

∣∣∣∣∣+ ρ(F−1
3 (x))

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ . (5)

Figure 1 shows how the intervals are mapped to obtain Equations (3)–(5). Blue, red,
and green arrows correspond to Equations (3)–(5), respectively. Furthermore, Figure 1 and
Equations (4) and (5) show that there is symmetry in the process of density evolution.

F (x)1

3F (x)

F (x)1

ym

x

x

F(x)

Figure 1. Density evolution. Blue arrow: Equation (3). Red arrows: Equation (4). Green arrows:
Equation (5).

On the other hand, for a map F(xn) : H → H where H ⊂ R, the probability measure
of an interval S ⊂ H can be written as

P(S) = lim
N→∞

1
N

N

∑
n=0

IS(xn) , (6)

where IS(x) is the characteristic function of the interval S

IS(x) =
{

1, if x ∈ S
0, if x 6∈ S .

(7)

Consequently, the probability measure indicates the frequency that the trajectory
reaches the corresponding interval, and is related to the invariant density ρ(x) by

P(S) =
∫

S
ρ(x)dx . (8)

Let L ≡ S be the laminar region. Before considering the probability P(L) given by
Equation (6), we divide the whole data series into three subsets

{xn} = {xn′} ∪ {xn′′} ∪ {xn′′′} . (9)
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First, we choose xn′ ∈ L, and in the preceding iteration it has already been there, that is
IL(xn′) = 1 and IL(xn′−1) = 1. Furthermore, we have xn′′ ∈ L but in the preceding iteration
it has not been there, that is IL(xn′′) = 1 and IL(xn′′−1) = 0. Finally, xn′′′ 6∈ L. It is notable
that there exists no intersection between them

{xn′} ∩ {xn′′} = {xn′′} ∩ {xn′′′} = {xn′′′} ∩ {xn′} = ∅ . (10)

Therefore, P(L) is

P(L) = lim
N→∞

1
N

N

∑
n′=0

IL(xn′) + lim
N→∞

1
N

N

∑
n′′=0

IL(xn′′) , (11)

The first term in Equation (11) is the probability for the trajectory to be in L when in
the preceding iteration it has already been there. Subsequently, only the second term in
the RHS of Equation (11) defines the RPD function, denoted here by φ(x), by means of the
following relation

lim
N→∞

1
N

N

∑
n′′=0

IL(xn′′) = w
∫

L
φ(x)dx , (12)

where the weight w is introduced because it is common to normalize the function φ(x)
over the whole laminar interval L as

∫
L φ(x)dx = 1. Next, to evaluate the RPD function the

sums in Equation (3)–(5) have to exclude the contributions that do not produce reinjection
inside of the laminar interval [4,35]

φ(x) =
n

∑
j 6=l

∣∣∣∣∣dF−1
j (x)

dx

∣∣∣∣∣ρ(F−1
j (x)) , (13)

where l indicates the integrals that do not generate reinjection and ρ(F−1
j (x)) is the density

in the preceding iteration to reinjection. The normalization condition is

n

∑
j 6=l

∫ Fj
−1(x0+c)

Fj
−1(x0−c)

ρ(F−1
j (x))dx = 1 , (14)

where c is the semi-amplitude of the laminar interval, and x0 is the fixed point, L =
[x0 − c, x0 + c].

2.1. Continuous RPD

Let us consider the lower boundary of reinjection in the family of maps described by
Equation (2) with x̂ = x0 − c, x0 = 0, and ym = 1. Therefore, there is no reinjection from
points x < x0 − c because the lower limit of the laminar interval is the lower boundary of
reinjection. To obtain the RPD function we use Equations (13) and (14). Note that F1(x) and
F2(x) do not produce reinjection, and the RPD can then be calculated as

φ(x) = ρ(F−1
3 (x))

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ , (15)

where ∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ = (1− xm) (x + c)1/γ−1

γ (1 + c)1/γ
. (16)
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To apply Equation (15) we have to evaluate the density at pre-reinjection points,
ρ(F−1

3 (x)). Let us expand ρ by a Taylor series around the pre-image of the lower boundary
of the reinjection F−1

3 (−c). Using the notation y = F−1
3 (x) and y−c = F−1

3 (−c) we get

ρ(y) = ρ(y−c) +
d ρ(y)

d y

∣∣∣∣
y=y−c

(y− y−c) +
1
2

d2 ρ(y)
d y2

∣∣∣∣
y=y−c

(y− y−c)
2 + ... . (17)

Using the normalization condition, Equation (14), we obtain

ρ(y) ∼= 1
∆y(c) +

d ρ(y)
d y

∣∣∣
y=y−c

(
∆y(x)− ∆y(c)

2

)
+ d2 ρ(y)

d y2

∣∣∣
y=y−c

(
∆y2(x)− ∆y2(c)

3
2

)
,

(18)

where we define ∆y(x) = F−1
3 (−c)− F−1

3 (x), hence we have ∆y(c) = F−1
3 (−c)− F−1

3 (c).

As c << 1, the family of maps described by Equation (2) verifies that ∆y(x) <
∆y(c) << 1. Note that for c = 0.05, the linear term has the same magnitude as the first one
in the Taylor series if the derivative d ρ(y)

d y

∣∣∣
y=y−c

is approximately one order of magnitude

greater than the first term, 1
∆y(c) . Following a similar analysis, the second derivative,

d2 ρ(y)
d y2

∣∣∣
y=y−c

has to be approximately two orders of magnitude greater than the first term in

the series. Furthermore, from Equations (15) and (18) the RPD can be written as

φ(x) ∼=
(

1
∆y(c) +

d ρ(y)
d y

∣∣∣
y=y−c

(
∆y(x)− ∆y(c)

2

)) ∣∣∣ dy
dx

∣∣∣
+

(
d2 ρ(y)

d y2

∣∣∣
y=y−c

(
∆y2(x)− ∆y2(c)

3
2

)) ∣∣∣ dy
dx

∣∣∣ .
(19)

If the derivative
∣∣∣ dy

dx

∣∣∣ = ∣∣∣∣ dF−1
3 (x)
dx

∣∣∣∣ has very high or close to zero values, and the variation

generated by the linear and quadratic terms in Equation (18) is not really significant in
comparison with the first term, 1

∆y(c) , they do not significantly modify the RPD. Therefore,
the first term in Equation (18) can be considered the most important, and we can assume that

ρ(F−1
3 (x)) ∼=

1
F−1

3 (−c)− F−1
3 (c)

=
1

1− xm

(
1 + c

2 c

)1/γ

, (20)

then the RPD results

φ(x) =
(x + c)1/γ−1

γ (2c)1/γ
. (21)

This is a power function with exponent α = 1
γ − 1. This same result was calculated

using the M function methodology [27].
To validate the new theoretical evaluations, we perform a comparison between the

RPDs here obtained with numerical data, with those calculated by the M function method-
ology and with the classical theory of intermittency. A detailed explanation of the M
function methodology can be found in Refs. [4,23–25], and is not described here. On the
other hand, the classical theory uses a constant RPD to describe the reinjection process,
i.e., uniform reinjection (see Refs. [1,3,4,22]). To obtain the numerical data, we produce
an iterative process for the map and also split the laminar interval into Ns sub-intervals.
After that, we calculate the histogram of reinjections and the numerical RPD. To obtain the
histogram we consider at least 10 Ns reinjections, which indicates millions of iterations.

For all tests in this section, the following parameters are used a1 = 0.9, a2 = 1, and
x̂ = −c. Thus, the reinjection process is driven only by F3(x). The reinjected points in the
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laminar interval, L = [x0 − c, x0 + c], are mapped only by F3(x) from points in the interval
I3(x) = [F−1

3 (x0 − c), F−1
3 (x0 + c)]. For the first test, we also use γ = 1, ε = 0.001, and

c = 0.05. To obtain the RPD function, we consider Equation (21), and it results

φ(x) =
1

2 c
. (22)

To validate this result, we conduct a complete set of numerical simulations for a
different number of reinjected points N, and we divide the laminar interval into Ns sub-
intervals, where the RPDs are evaluated. To analyze the difference between numerical data
and the theoretical RPD given by Equation (22), we calculate

Dr =

√√√√∑
j=Ns
j=1

(φt(j)−φn(j))2

(φt(j))2

N2
s

, Er =
∑

j=Ns
j=1

|φt(j)−φn(j)|
φt(j)

Ns
, (23)

where φn(j) and φt(j) are the numerical and theoretical values of the RPD in the sub-interval
j. Note that Dr, Er ≥ 0.

Figure 2a,b show ln(Dr) and ln(Er) for a different number of reinjected points, N from
5× 104 to 25× 105 with Ns = 100. We highlight that as the number of reinjected points
grows, the differences between the theoretical formulations and the numerical data decrease.
Notice that the M function methodology calculates α ≈ 0. This result coincides with Equa-
tion (22). Numerical and theoretical RPDs are shown in Figure 3. From Figures 2a,b and 3
we observe a good agreement between the RPD functions.

0 1 2

10 6

-8

-7

-6

-5

(a)

0 1 2

10 6

-5.5

-5

-4.5

-4

-3.5

-3

(b)

Figure 2. (a) ln(Dr), and (b) ln(Er) vs. N for γ = 1, ε = 0.001, c = 0.05, and Ns = 100. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology.

-0.05 0 0.05
9

9.5

10

10.5

11

Figure 3. Continuous RPD function for γ = 1, ε = 0.001, c = 0.05, Ns = 100, and N = 25× 105. Blue
line: continuity technique. Red line: classical theory. Green line: M function methodology. Black
points: numerical data.
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To evaluate the rate of convergence, we utilize the sequence { 1
Np }∞

N=1 that converges
to zero for p > 0 (N are positive integer numbers), and we must verify

Dr ≤ Kd
1

Npd
, Er ≤ Ke

1
Npe

, (24)

for Kd, Ke, pd and pe fixed positive real numbers. Therefore, {Dr}∞
N=1 and {Er}∞

N=1 con-
verge to zero with order, or rate, of convergence O( 1

Npd ) and O( 1
Npe ), respectively, [38]. For

this test we obtain pd ≈ pe ≈ 0.45. Subsequently, Dr and Er converge to zero for N → ∞.
The parameters γ = 0.5, ε = 0.005, and c = 0.15 are utilized for the second test. By

Equation (21) we obtain

φ(x) =
(x + c)

2 c2 = 50 (x + 0.1) . (25)

The calculated RPD using the M function methodology is [27]

φ(x) = 48.99 (x + 0.1)0.9999 . (26)

Figure 4a,b show ln(Dr) and ln(Er) for a number of reinjected points, respectively. For
these figures, we use N from 5× 104 to 25× 105 and Ns = 1500. We can observe that the
differences between RPDs calculated with the continuity technique and the M function
methodology with numerical data decrease while N increases. However, this behavior is
not verified by the classical RPD.

0 0.5 1 1.5 2 2.5

10 6

-7

-6

-5

-4

(a)

0 0.5 1 1.5 2 2.5

10 6

-4

-3

-2

-1

(b)

Figure 4. (a) ln(Dr), and (b) ln(Er) vs. N for γ = 0.5, ε = 0.005, c = 0.15, and Ns = 1500. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology.

Figure 5 shows the comparison between theoretical and numerical RPDs. From this
figure, and Figure 4a,b we note that the classical theory does not obtain correct results for
this test. However, we observe that both methodologies, M function, and continuity, work
better than classical theory, capture the numerical data, and Dr and Er decrease while N
increases. For the continuity technique, we find that pd ≈ pe ≈ 0.45; therefore, Dr and Er
converge to zero for N → ∞.

For the third test, we use γ = 0.8, ε = 0.01, c = 0.1, N from 5× 104 to 30× 105 and
Ns = 1000. From Equation (21) we calculate

φ(x) = 9.346 (x + 0.1)0.25 . (27)

The M function methodology obtains

φ(x) = 9.414 (x + 0.1)0.253 . (28)
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-0.1 0 0.1
0

2

4

6

8

Figure 5. Continuous RPD function for γ = 0.5, ε = 0.005, c = 0.15, Ns = 1500 and N = 25× 105.
Blue line: continuity technique. Red line: classical theory. Green line: M function methodology. Black
points: numerical data.

Figure 6a,b show ln(Dr) and ln(Er) vs. the number of reinjected points for N from
5× 104 to 3× 106. We observe that the Dr and Er calculated with continuity and M function
methodologies decrease while N increases. Again, this behavior is not obtained for the
classical RPD.

The RPD functions are shown in Figure 7. We note that the RPDs calculated with
the continuity and M function methodologies adequately represent the numerical data.
However, the classical RPD function cannot accurately reproduce the numerical data. If we
use Equation (24) for the continuity technique, we obtain pd ≈ 0.5 and pe ≈ 0.45, i.e., Dr
and Er converge to zero for N → ∞.

The fourth test uses γ = 1.5, ε = 0.0001, c = 0.015, N from 5× 104 to 25× 105 and
Ns = 1000. From Equation (21) we calculate

φ(x) = 6.905 (x + 0.015)−1/3 . (29)

The M function methodology obtains

φ(x) = 7.091 (x + 0.015)−0.328 . (30)

0 1 2 3

10 6

-8

-7

-6

-5

(a)

0 1 2 3

10 6

-4

-3

-2

-1

(b)

Figure 6. (a) ln(Dr), and (b) ln(Er) vs. N for γ = 0.8, ε = 0.01, c = 0.1, and Ns = 1000. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology.
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-0.1 -0.05 0 0.05 0.1
0

2

4

6

8

Figure 7. Continuous RPD function for ε = 0.01, γ = 0.8, N = 30× 105, c = 0.1. Blue line: continuity
technique. Red line: classical theory. Green line: M function methodology. Black points: numerical
data.

The ln(Dr) and ln(Er) are shown in Figure 8a,b for N from 5× 104 to 25× 105 and
Ns = 1000. We observe that the Dr and Er calculated with continuity and M function
methodologies decrease for increasing N. Similar to the previous tests, the classical theory
obtains poor results. For the RPD function calculated by the continuity methodology,
we obtain pd ≈ 0.4 and pe ≈ 0.45, then Dr and Er converge to zero for N → ∞ (see
Equation (24)).

Figure 9 shows the RPDs functions. The RPDs calculated using the continuity and M
function methodologies can describe the numerical data behavior. On the other hand, the
classical RPD function cannot accurately reproduce the numerical data.

For the fifth test, we consider γ = 2, ε = 0.0005, c = 0.02, and Ns = 2000. If we use the
continuity technique, Equation (21), we obtain

φ(x) = 2.5 (x + 0.02)−0.5 . (31)

The RPD calculated using the M function methodology is

φ(x) = 2.474 (x + 0.02)−0.502 . (32)

0 1 2

10 6

-7

-6

-5

-4

(a)

0 1 2

10 6

-4

-3

-2

-1

(b)

Figure 8. (a) ln(Dr), and (b) ln(Er) vs. N for γ = 1.5, ε = 0.0001, c = 0.015 and Ns = 1000. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology.
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-0.01 0 0.01
20

40

60

80

Figure 9. Continuous RPD function for γ = 1.5, ε = 0.0001, c = 0.015 and N = 25× 105. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology. Black points:
numerical data.

For N = 5× 104 − 25× 105, Figure 10a,b show ln(Dr) and ln(Er). From these figures,
we observe that for the continuity technique and the M function methodology Dr and Er
decrease whereas N increases. However, Dr and Er are approximately constant for the
classical theory. For the RPD given by Equation (31), we obtain that pd ≈ 0.35 and pe ≈ 0.4,
accordingly Dr , Er → 0 for N → ∞.
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Figure 10. (a) ln(Dr), and (b) ln(Er) vs. N for γ = 2, ε = 0.0005, c = 0.02, and Ns = 2000. Blue line:
continuity technique. Red line: classical theory. Green line: M function methodology.

The RPD functions are shown in Figure 11. The RPDs calculated by the M function
methodology and continuity technique reproduce the numerical results whereas classical
theory does not.

The results for the five sets of tests are summarized in Table 1. In these tests, we use
different values of the exponent γ, the length of the laminar interval c, the parameter ε, and
the number of sub-intervals Ns, despite that in all these tests for the continuity technique Dr
and Er diminish as the number of re-injected points increases, showing that the theoretical
evaluation given by Equation (21) approximates with more accuracy the numerical RPD as
the number of reinjected points increases. For all tests, the convergence process verifies
0.35 < pd < 0.5 and 0.4 < pe < 0.45. Furthermore, from the tests we highlight that the
continuity technique works better than the classical theory, and obtains RPD functions
with approximately the same accuracy as the M function methodology. In addition, the
continuity technique has the advantage of being able to predict analytic RPD functions
knowing only the map without using numerical or experimental data.
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Figure 11. Continuous RPD function for γ = 2, ε = 0.0005, c = 0.02, N = 25× 105, and Ns = 2000.
Blue line: continuity technique. Red line: classical theory. Green line: M function methodology. Black
points: numerical data.

Table 1. Results for the five sets of tests with continuous RPD functions.

ε γ c Ns pe pd

0.001 1.0 0.05 100 0.45 0.45
0.005 0.5 0.15 1500 0.45 0.45
0.010 0.8 0.10 1000 0.45 0.50

0.0001 1.5 0.015 1000 0.45 0.40
0.0005 2.0 0.02 2000 0.40 0.35

Only the first and second tests produce symmetric RPD functions around the fixed
point. For γ 6= 0.5 and γ 6= 1 the symmetry is lost.

Note that to obtain the previous results, we have assumed a constant density at pre-
reinjection points. This assumption is based on two concepts. The first one is, when the
density can be approximated by a Taylor series because the laminar interval is small, large
values of the first and second derivatives are needed to affect the density (see Equation (18)).
The second one is related with Equation (15), from this equation the RPD function is
calculated as the product of two factors, one is the density at pre-reinjection points and the

other is
∣∣∣∣ dF−1

3 (x)
dx

∣∣∣∣, which can reach very high or close to zero values. Therefore, this factor

has a greater influence in determining the RPD than first and second derivatives in the
Taylor series.

2.2. Discontinuous RPD

If the lower boundary of reinjection verifies x̂ < x0 − c, type V intermittency shows
discontinuous RPD functions. These RPDs occur because there are two different processes
of reinjection, one is generated by F3(x) and the other one by F1(x). To obtain the RPDs,
we use Equation (13) with j 6= 2

φ(x) = φ1(x) + φ3(x) =
∣∣∣∣ dF−1

1 (x)
dx

∣∣∣∣ρ1
1(F−1

1 (x)) +
∣∣∣∣ dF−1

3 (x)
dx

∣∣∣∣ρ3(F−1
3 (x)) , (33)

where ρ1
1(x) and ρ3(x) are the trajectory densities inside the intervals I1

1 = [F−1
1 (x0 −

c), x0 − c) and I3 = [F−1
3 (x0 − c), F−1

3 (x0 + c)], respectively. Hence

φ1(x) =

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣ρ1
1(F−1

1 (x)) , (34)
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is only defined in the interval [x0− c, F1(x0− c)). However, φ3(x) is defined in the complete
laminar interval L = [x0 − c, x0 + c]

φ3(x) =

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ρ3(F−1
3 (x)) . (35)

Accordingly, the RPD is

φ(x) =
{

φI(x) = φ1(x) + φ3(x) x < F1(x0 − c),
φI I(x) = φ3(x) x ≥ F1(x0 − c) .

(36)

Following the previous subsection, we use ρ3(x) = k = constant in the interval
Is
3 = [F−1

3 (x̂), F−1
3 (x0 + c)]. As I3 is included in Is

3 (I3 ⊂ Is
3), the density ρ3(F−1

3 (x)) is
constant in Equations (33) and (35). To evaluate ρ1

1(x), which is defined inside the interval
I1
1 = [F−1

1 (x0 − c), x0 − c), we must consider the iteration procedure for Equation (2)
because ρ1

1(x) depends on the density at the preceding iteration.
The interval Ia

3 = [F−1
3 (F−1

1 (x0 − c), F−1
3 (x0 − c))) maps on the interval I1

1

Ia
3 −→ I1

1 : [F−1
3 (F−1

1 (x0 − c)), F−1
3 (x0 − c))→ [F−1

1 (x0 − c), x0 − c) . (37)

Moreover, points in the interval I2
1 = [F−1

1 (F−1
1 (x0 − c)), F−1

1 (x0 − c)) map on the
interval I1

1 = [F−1
1 (x0 − c), x0 − c)

I2
1 −→ I1

1 : [F−1
1 (F−1

1 (x0 − c)), F−1
1 (x0 − c))→ [F−1

1 (x0 − c), x0 − c) , (38)

consequently, the density ρ1
1(x) in the interval I1

1 receives two contributions (see
Equations (37) and (38)), one is generated by ρ3(x) from the interval Ia

3 and the other
is given by ρ2

1(x) from the interval I2
1

ρ1
1(x) =

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣ρ2
1(F−1

1 (x)) +

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ρ3(F−1
3 (x)) . (39)

As ρ3(x) = k in Is
3 = [F−1

3 (x̂), F−1
3 (x0 + c)], Equation (39) simplifies

ρ1
1(x) =

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣ρ2
1(F−1

1 (x)) +

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣k , (40)

where k is obtained from the normalization condition∫ F−1
3 (x0+c)

F−1
3 (x̂)

−k dx = 1 ⇒ k =
(ym − x̂)1/γ

(xm − ym) (x0 + c− x̂)1/γ
. (41)

Now, we must calculate ρ2
1(x) in the interval I2

1 . Let us consider that points in the
interval In

1 = [x̂, F1(x̂)) need n iterations to reinject. The density ρn
1 in In

1 is determined only
by ρ3 = k

ρn
1 (x) = k

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ . (42)

The density ρn−1
1 (x) in In−1

1 = [F1(x̂), F1(F1(x̂))) can then be calculated as

ρn−1
1 (x) =

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣ρn
1 (F−1

1 (x)) + k

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ . (43)
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In the interval In−2
1 = [F1(F1(x̂)), F1(F1(F1(x̂)))), the density ρn−2

1 (x) results

ρn−2
1 (x) =

∣∣∣∣∣dF−1
1 (x)
dx

∣∣∣∣∣ρn−1
1 (F−1

1 (x)) + k

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ , (44)

where

F−1
1 (x) =

x− ε

a1
;

dF−1
1 (x)
dx

= 1/a1 , (45)

and

F−1
3 (x) = ym −

ym − xm

(ym − x̂)1/γ
(x− x̂)1/γ,

dF−1
3 (x)
dx

=
xm − ym

γ(ym − x̂)1/γ
(x− x̂)−1+1/γ . (46)

If we introduce Equations (41), (45) and (46) into Equations (42)–(44), we find

ρn
1 (x) =

(x− x̂)−1+1/γ

γ (x0 + c− x̂)1/γ
, (47)

ρn−1
1 (x) =

(x− x̂)−1+1/γ

γ (x0 + c− x̂)1/γ
+

(F−1
1 (x)− x̂)−1+1/γ

a1 γ (x0 + c− x̂)1/γ
, (48)

ρn−2
1 (x) =

(x− x̂)−1+1/γ

γ (x0 + c− x̂)1/γ
+

(F−1
1 (x)− x̂)−1+1/γ

a1 γ (x0 + c− x̂)1/γ
+

(F−2
1 (x)− x̂)−1+1/γ

a2
1 γ (x0 + c− x̂)1/γ

. (49)

In consequence, we can generalize the previous equations as

ρn−h
1 (x) =

∑l=h
l=0

(F−l
1 (x)−x̂)−1+1/γ

al
1

γ (x0 + c− x̂)1/γ
, (50)

where h = 0, 1, 2, ..., n. For h = n, φI(x) is calculated (see Equation (36))

φI(x) =
∑l=n

l=0
(F−l

1 (x)−x̂)−1+1/γ

al
1

γ (x0 + c− x̂)1/γ
. (51)

The second RPD in Equation (36), φI I(x), results

φI I(x) = k

∣∣∣∣∣dF−1
3 (x)
dx

∣∣∣∣∣ = (x− x̂)−1+1/γ

γ (x0 + c− x̂)1/γ
. (52)

We highlight that φI I(xn) considers only points coming from F3(xn−1), where xn =
F3(xn−1). Figure 12 shows the reinjection process governed by F1(x) and F3(x). In the
larger figure, the evolution of the density generated by F3(x) is indicated with thick arrows
and the red discontinuous lines show the laminar interval. In the smaller box, the evolution
produced by F1(x) is shown with thin blue arrows. In this figure, a trajectory needs three
iterations to move from x̂ to x0 − c.

To validate the previous theoretical equations, we performed four sets of tests. The
first one used ε = 0.001, γ = 0.5, ym = 1, x0 = 0, c = 0.1128, x̂ = −0.158449931412894,
N = 1 × 105 − 15 × 105, and Ns = 300. For this set of tests, a trajectory took three
iterations to displace from x̂ to x0 − c. We calculated the RPD function using the continuity
technique, the M function methodology, and numerically. Figure 13a shows the comparison
between the three RPDs. Black points are the numerical data, the green line is the RPD
calculated using the M function methodology, and the RPD obtained by the continuity
technique is the dashed blue line. We can observe that both methodologies, M function and
continuity technique, capture the behavior of the numerical RPD. However, the continuity



Symmetry 2022, 14, 2519 14 of 19

technique captures the numerical results more accurately. The rates of convergence using
the continuity technique for Dr and Er are O( 1

N0.1 ) and O( 1
N0.37 ), respectively. The values of

Dr and Er for N = 15× 105 are 2.314× 10−3 and 1.426× 10−2, respectively.
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Figure 12. Reinjection process governed by F1(x) and F3(x) functions.

The parameters for the second set of tests were the same but γ = 1.5. Again, the
trajectories took three iterations from x̂ to x0 − c. Results are shown in Figure 13b. Again,
both methodologies capture the behavior of the numerical data. We have calculated the
rates of convergence for the continuity technique: for Dr it is approximately O( 1

N0.06 ), and
for Er is O( 1

N0.15 ). For N = 15× 105, we obtained Dr = 5.497× 10−3 and Er = 3.925× 10−2.
The parameters for the third and fourth sets of tests were ε = 0.001, ym = 1, x0 = 0,

c = 0.1128, x̂ = −0.12644444444, N = 1× 105 − 15× 105, and Ns = 300. However, γ = 0.5
for the third set of tests, and γ = 1.5 for the fourth one. For both sets of tests, a trajectory
needed only one iteration to move from x̂ to x0 − c. The theoretical and numerical results
are shown in Figure 14a,b. The continuity technique and the M function methodology
reproduce the behavior of the numerical RPD. However, from Figure 14a we can observe
that the density technique approximates the numerical data more accurately. For the third
set of tests, we have obtained O( 1

N0.35 ) for Dr, and Er, and for the fourth set of tests we have
calculated O( 1

N0.15 ) for Dr, and Er.

-0.1 -0.05 0 0.05 0.1
0

2

4

6

8

(a)

-0.1 -0.05 0 0.05 0.1
0

10

20

30

40

50

(b)

Figure 13. Discontinuous RPD function for, ε = 0.001, N = 15 × 105, c = 0.1128,
x̂ = −0.158449931412894. (a) γ = 0.5. (b) γ = 1.5. Green line: M function methodology. Blue
line: continuity technique. Black points: numerical data.
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The results of these four sets of tests are summarized in Table 2. The first column is the
lower boundary of reinjection x̂, the second one gives the exponent γ, the third and fourth
columns are the order of convergence exponents for Er and Dr, respectively, and the last two
columns show the calculated values of Er and Dr for N = 15× 105. We note that the rate of
convergence and the values of Dr and Er display a better behavior for γ = 0.5 than for γ = 1.5.
This occurs mainly because for γ = 1.5, the value of the numerical RPD in the first sub-interval
is slightly larger than predicted by the continuity technique (see Figures 13a and 14b).
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Figure 14. Discontinuous RPD function for ε = 0.001, N = 15× 105, c = 0.1128, x̂ = −0.12644444444.
(a) γ = 0.5. (b) γ = 1.5. Green line: M function methodology. Blue line: continuity technique. Black
points: numerical data.

Table 2. Results for the four tests. pe and pd are the order of convergence exponents for Er, and Dr,
respectively.

x̂ γ pe pd Er Dr

−0.158449931412894 0.5 0.37 0.10 1.426× 10−2 2.314× 10−3

−0.158449931412894 1.5 0.15 0.06 3.925× 10−2 5.497× 10−3

−0.12644444444 0.5 0.35 0.35 1.424× 10−2 1.255× 10−3

−0.12644444444 1.5 0.15 0.15 3.185× 10−2 2.559× 10−3

From Figures 13 and 14 and Table 2, we can notice that the theoretical evaluations
obtained using the continuity technique and the M function methodology capture the
numerical RPD behavior. In addition, we can observe that the continuity technique displays
a better behavior than the M function methodology.

Probability Density of the Laminar Lengths

Once the RPD function is evaluated, we are able to calculate the probability density
of the laminar lengths, ψ(l), which determines the probability of finding laminar lengths
between l and l + dl [4]

ψ(l, c) = φ[X(l, c)]
∣∣∣∣dX(l, c)

dl

∣∣∣∣ , (53)

X(l, c) is the inverse of l(x, c), which is the laminar length for each reinjected point x. For
the maps described by Equation (2), dX(l,c)

dl is approximated by

dX(l, c)
dl

=

{
ε + x (λ1 − 1) x < 0 ,
ε + λ2 x2 x ≥ 0 .

(54)

We calculated the RPDL functions for the four sets of tests previously presented. The
results are shown in Figures 15 and 16. We can observe a good accuracy between the
continuity technique, the M function methodology, and the numerical data.
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From Figures 13 and 14, we can observe the different behaviors of the RPD functions.
For γ < 1, the number of trajectories that return close to the lower limit of the laminar
interval is low, and the RPDs are increasing functions. For γ > 1, the number of trajectories
that return close to the lower limit of the laminar interval is high, and the RPDs are
decreasing functions. These behaviors are also observed for the probability density of
the laminar lengths (see Figures 15 and 16). However, in all tests, we can observe two
sub-intervals [x0 − c, F1(x0 − c)) and [F1(x0 − c), x0 + c] with different behaviors described
by Equation (36).

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

(a)

0 20 40 60
0

0.1

0.2

0.3

(b)

Figure 15. RPDL function for ε = 0.001, N = 15 × 105, c = 0.1128, x̂ = −0.158449931412894.
(a) γ = 0.5. (b) γ = 1.5. Green line: M function methodology. Blue line: continuity technique. Black
points: numerical data.

0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

(a)

0 20 40 60
0

0.05

0.1

0.15

0.2

(b)

Figure 16. RPDL function for ε = 0.001, N = 15× 105, c = 0.1128, x̂ = −0.12644444444. (a) γ = 0.5.
(b) γ = 1.5. Green line: M function methodology. Blue line: continuity technique. Black points:
numerical data.

3. Conclusions

In this paper, we presented a new methodology to calculate the statistical properties
of type V intermittency. This methodology is obtained from the evolution of densities
(Perron–Frobenius operator), and we refer to it as the continuity technique. We introduced
and utilized this technique to obtain the reinjection probability density function (RPD),
φ(x), and the probability density of the laminar lengths (RPDL), ψ(l), for the family of
maps described by Equation (2).

To the authors’ best knowledge, this is the first time that the continuity technique has
been used to calculate the RPD and RPDL functions in type V intermittency. Furthermore,
it is the first time that this technique is implemented where multiple iterations are needed
to obtain the RPD and where the reinjection is generated simultaneously by two different
processes.
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We performed comparisons between the theoretical results obtained by the continuity
technique with those calculated by the classical theory of intermittency, the M function
methodology, and with numerical data. We found that both methodologies, continuity
and M function, produce similar φ(x) and ψ(l) functions for different parameters, either
with continuous or discontinuous RPD functions and with one or two functions governing
the reinjection process. Furthermore, the theoretical results for the continuity technique
accurately capture the numerical data. In addition, the results obtained with the continuity
technique are more accurate than those calculated by the classical theory. We highlight that
φ(x) and ψ(l) functions, calculated with the continuity technique, exhibit a wider range of
behaviors than those expected by uniform reinjection.

The classical studies on type V intermittency use the assumption that the RPD is
uniform [28–30]. More recent studies consider a less restrictive hypothesis of a constant
density at pre-reinjection points, i.e., points that govern the reinjection process [26,27,35].
Here, the assumption of constant density at pre-reinjection points was analyzed for the
family of maps described by Equation (2). The classic formulation of chaotic intermittency
used a constant RPD. In this work, this condition was relaxed, allowing the RPD to be a
more complex function. However, the hypothesis of constant density at pre-reinjection
points was assumed. This assumption works accurately because the length of the laminar
interval is small, and the RPD function depends, in addition to the density, on the derivative
of the function at pre-reinjection points, which can take very large or close to zero values.

For continuous RPD functions, we have conducted several tests using different values
of the exponent γ, the length of the laminar interval c, the parameter ε, the number of
reinjected points N, and the number of sub-intervals Ns. In all these tests for the continuity
technique, the values of Dr and Er decrease as the number of re-injected points grows,
showing that the theoretical evaluation given by Equation (21) approximates the numerical
RPD more accurately as the number of reinjected points increases. Furthermore, we have
computed the rate of convergence of Dr and Er for all tests, and detected that the process is
convergent with a rate of convergence O( 1

Np ) within 0.35 < p < 0.5. We emphasize that
the continuity technique converges better than classical theory, and obtains RPDs with
similar accuracy to the M function methodology.

A similar study was developed for discontinuous RPD functions using different values
of γ and the lower boundary of reinjection x̂. For all tests, we observe that the continuity
technique captures the behavior of the numerical data. Furthermore, the RPDs calculated
using the continuity technique are more accurate for several tests than those obtained with
the M function methodology. For all tests performed with the continuity technique, Dr and
Er decrease as the number of re-injected points increases. The exponents to evaluate the
order of convergence, pe and pd were always positive. In addition, the continuity technique
has the advantage of allowing the prediction of analytic RPD functions, continuous or
discontinuous, only knowing the map without the need for using numerical or experimental
data. If the assumption of constant density at the pre-reinjection points can be used, the
RPD function mainly depends on the map derivative at the pre-reinjection points (see
Equation (13)).

We can conclude that the continuity technique has the ability to accurately calculate
the RPD and RPDL functions for type V intermittency.
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