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We advance the threshold resummation formalism for semi-inclusive deep-inelastic scattering (SIDIS)
to next-to-next-to-next-to-leading logarithmic (NLL) order, including the three-loop hard factor.
We expand the results in the strong coupling to obtain approximate next-to-next-to-next-to-leading

order (N3LO) corrections for the SIDIS cross section. In Mellin moment space, these corrections include
all terms that are logarithmically enhanced at threshold, or that are constant. We also consider a set of
corrections that are suppressed near threshold. Our numerical estimates show modest changes of the
cross section by the approximate N3LO terms, suggesting a very good perturbative stability of the SIDIS

process.
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I. INTRODUCTION

The semi-inclusive deep-inelastic scattering (SIDIS)
process £p — £hX has become a widely used probe of
hadronic structure and hadronization phenomena. Its main
uses are extractions of (polarized) parton distribution
and fragmentation functions or combinations thereof
[1-10]. In global analyses of these quantities SIDIS data
can add useful information on, for example, the flavor
structure of the sea quarks. The future Electron Ion
Collider (EIC) will allow precise measurements of SIDIS
observables over wide kinematic regimes [11].

In a recent paper [12], we studied higher-order QCD
corrections to the SIDIS cross section. Our approach was to
use the threshold resummation formalism for SIDIS and
carry out fixed-order expansions of the resummed cross
section. Threshold resummation for SIDIS was originally
discussed in Ref. [13] and then further developed in more
general terms in [14,15]. These papers formulated the
resummation at next-to-leading logarithmic (NLL) accu-
racy. In [12] we extended the resummation to next-to-next-
to-leading logarithm (NNLL), which also allowed us to
obtain approximate fixed-order corrections to the hard
scattering cross section for SIDIS at next-to-next-to-leading
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order (NNLO) level. These results were used recently to
obtain the first NNLO set of fragmentation functions fit
“globally” to SIDIS and electron-positron annihilation
data [10].

The purpose of the present paper is to advance our
previous study to N’LL and to again use the resummed
cross section to derive approximate fixed-order corrections
to the SIDIS cross section, in this case at N°LO. Our main
motivation for this analysis is to further improve the
perturbative framework for SIDIS and to set the stage
for precision analyses of SIDIS data from the future EIC in
terms of parton distributions or fragmentation functions at
high perturbative order. While such analyses at N°LO may
presently still seem far off, the study of the perturbative
stability of the SIDIS cross section and its associated
threshold resummation is in any case valuable. This
becomes indeed possible by going to N’LL and N3LO
and carrying out comparisons with lower orders. We also
note that in our previous paper [12] we presented phe-
nomenological results only for the fixed-order (NNLO)
corrections. Here we wish to carry out numerical studies
also for the resummed case, which provides another
motivation for this study.

In Sec. II we give an overview of the kinematics of the
process, introducing Mellin moments. Section III descri-
bes the threshold resummation framework. Section IV is
dedicated to the derivation of the three-loop hard factor to
be used for obtaining N’LL or N°LO results. In Sec. V we
carry out the expansion of the resummed results to N°LO.
Finally, Sec. VI presents some numerical studies in the
EIC kinematical regime.
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II. PERTURBATIVE SIDIS CROSS SECTION

We consider the semi-inclusive deep-inelastic scatter-
ing process £ (k) p(P) — ¢£'(k')h(P;,)X with the momentum
transfer g = k — k’. Tt is described by the variables

2 2 "2 Q2
= — :—k—k s = s
0°=—q (k=K)% x P g
P.gq PP,
9 , 1
Y=Px TPy (1)

We have Q% = xys, with /s the center-of-mass energy of the
incoming electron and proton. We follow Ref. [14] to write
the spin-averaged SIDIS cross section as

do" dra® [1+ (1=-y) _, )

dxdydz  Q? { 2y Fi(x.2.0%)
1—

+Tyf?‘(x7Z7 Qz):|7 (2)

where a is the fine structure constant and F% = 2F" and
F! =F!/x are the transverse and longitudinal structure
functions. In what follows we will only treat the transverse
structure function in the ¢ — g or § — g channels, which is
the only channel that appears already at the lowest order (LO)
of perturbation theory. We write all equations for the spin-
averaged case, although they will equally apply to the
helicity-dependent one [12,15].

Using factorization, the unpolarized structure functions
may be written as double convolutions. For example, for
the transverse one we have

S 5o (Gr)
~HF

Xw,?f <x Zoag(ug), ”QR ”QF>f<AuuF> (3)

Here f (&, up) is the distribution of parton f = ¢, g, g in the
nucleon at momentum fraction &£ and factorization scale y,
while D;},(C ,ir) is the corresponding fragmentation func-

Fh(x,2,0%) =

tion for parton f’ going to the observed hadron h. For
simplicity, the factorization scales are chosen to be equal in
the initial and final state. up is the renormalization scale
entering also the strong coupling a,. The functions a);, ;are
the transverse spin-averaged hard-scattering coefficient

functions which can be computed in QCD perturbation
theory. Their expansions read

Wyp = Wpry rf rf

() o+ ot “)

T 7wT,(O)+as(/"R)wT.(l)+ <as(ﬂR>>2wT,<2)

At LO we have for the ¢ — ¢ and § — g channels
w0y (3.2) = €§5(1 = 2)3(1 - 2), ()

with the quark’s fractional charge ¢,. The well-known first-

order coefficient function a);,’f<1>
in [14,16].

In the following, it is convenient to take double Mellin
moments of the SIDIS cross section, for which the con-
volutions in Eq. (3) turn into ordinary products. We define

is for example available

~ 1 1
FL(N.M, Q%) = /0 dxxN~! A dzzZM= Fh(x,2,0?)

:ZD?/(M,/JF)CI)J];,J@ <N,M,as(,uR),%,%>
(

ff
XJNC(N’MF)’ 6)

where

5 1
F(Nor) = /) eV £ (xag),

- 1
D (M) = [ dzz Dl o),
' 0
HR HF
f’f<N M a( ),§,§>

R RN an Hr H
:A dizN- Ad M=l f,f<xza(uR) QR QF> (7)

As a result the structure functions can be obtained from the
moments of the parton distribution functions and fragmen-
tation functions, and the double-Mellin moments of the
partonic hard-scattering functions.

For the perturbative expansion given in Eq. (4) we have
in moment space at lowest order according to Eq. (5)

wqq( )(N M) = (8)

The corresponding moments of the next-to-leading order

(NLO) terms @ ij ) may be found in Refs. [14,16]. In the

following, we consider logarithmic higher-order correc-
tions to the hard-scattering functions that arise at large
values of X and Z or, equivalently, at large N and M.

III. THRESHOLD RESUMMATION
AT N’LL ACCURACY

The resummation of threshold logarithms for SIDIS
was extensively studied in Refs. [12-14,17]. The NNLL
resummation formula for the unpolarized SIDIS transverse
structure function was discussed in Ref. [12]. The
resummed partonic transverse structure function takes
the form
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o M

which actually holds to any logarithmic order. As stated
earlier, our goal is to set up the formalism for resummation
to N°LL. In Eq. (9) we have

N = Ne’t  and M = Me’*, (10)

with the Euler constant yp. Each of the functions A,

D, HSIPS, C,, is a perturbative series in the strong
coupling. We write the corresponding expansions generi-
cally as

o- i <as(:R)>kQ(k)’ (11)

k=0
|

- T res H
o (.M. ). 2.

Anm

Hr HF) 2 H
= S () 2 20 (). 24

Q2
X ex
b {/QZ/(NM)

2 du? _ fu
dLAq(aS(M)H-InM —qu(as(ﬂ))}

2’0 Q.
d_/‘; {Aq(as (1)) In <”232M> - %Dq(as (u))}

where Q = A, Dq, HSPSS, C'qq. We note thatAE,O) = ﬁ(qm =
15,(11) = 0. To achieve N°LL accuracy, we need A, to order o
and all other functions to order &;. The corresponding

coefficients are collected in Appendix A. The main new

ingredient not directly known from the literature is the

N, M-independent coefficient Hyp®) whose derivation

will be presented below in Sec. IV. The other prefactor C’q ¢ 1N
Eq. (9) collects all moment-independent terms of the
resummed exponent; see [12,18,19]. The formulas needed
for its derivation to order a} may be found in Ref. [18].

In order to explicitly obtain the structure function
resummed to N’LL we now expand the exponents in
Eq. (9) appropriately. The operations are quite standard.
We obtain

HR HF\ 5 p
= e?]HlS]}]DIS (as('“R)’ER’EF) Cyq (aS(MR),§R>

(1) ANy (2) ANM MR HF
M 5 a h AL S
Xexp{Zboax(ﬂk) ! <2 >+ ! <2 0 Q)

+ A (/‘R)h‘(;) (

where

vy = boay(ug)(In N + In M).

The functions hflk)

Avu MR @) R (M_M 23 &)}

12
2°0°0 2°0°0 12)

(13)

impart resummation to N*~'LL accuracy. The first three are well known in the literature:

(1
A
hM(2) = ﬂb"M 24+ (1 —22)In(1 = 22)],
(2 (1
2 A A
h51>(,1):—”2—qb%[2/1+1n(1—22)]+ Zg
At A
=1 22n"E —
+77-'b() nQ2 b

2912+ In(1 - 22)] In 22
0

1
bbl 24 +1In(1 =22) +§ln2(1 —2))

2

0>
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AD (12
3) by 1 2 ¢ b 2 2
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The function h514), needed for N3LL resummation, is found to be
()72
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@ () (1-2,1)2(;;%3 3 FA4 (1 =24) 45l -22)
) (1,3
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0
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by 3 2
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by |3 2
(3) (4)
ADb, [8 1 8
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AT [3 5 In )] * 4b2[ 3 }
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q 1 2 q 2
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This result is in agreement with that given in Ref. [20] for
the Drell-Yan process. For simplicity, we have set the
renormalization and factorization scales to Q. The results
presented in Eq. (12) may be used to obtain N°LO [that is,
O(a3)] expansions of the hard-scattering function @ . This
expansion will be carried out in Sec. V.

We stress that all terms generated by Eq. (12) are either
logarithmic or constant near threshold. The full hard-
scattering function in Mellin space will, at any order in
perturbation theory, also contain terms that are suppressed
by powers of 1/N and/or 1/M. Such terms are often
referred to as “next-to-leading power (NLP)” corrections.
As discussed in our previous paper [12] (see also references
therein), one can straightforwardly account for the dom-
inant NLP terms by multiplying the resummed cross
section in Eq. (9) by the two factors

Q*/(N 1) dy? ay(u) Cp

ol-f
HE

> m 2N
Q*/(N M) dy® arg () Cr
- draw) Crl g6
xexp{ /ﬂ% Z x 2M} (16)

where the coefficients —Cr/(2N) and —Cy/(2M) in the
exponents correspond to the NLP terms in the LO diagonal

evolution kernels for the quark parton distributions and the
quark fragmentation functions, respectively. At N°LO the
two exponential factors, when combined with the resummed
exponents in Eq. (9), will generate all terms of the form
o In"(N) In™(M)(1/N + 1/M), with n +m = 5.

IV. THE HARD FACTOR AT THREE LOOPS

The factor H5iP™S is derived from the finite part of the
virtual corrections to the process y*q — ¢q. The basic
ingredient is the renormalized spacelike form quark factor,
from which one needs to subtract the infrared divergencies
via a suitable method developed in Refs. [21,22]. For our
present purposes, we will need the renormalized three-loop
form factor, which was derived in [23-25]" and reads in
dimensional regularization with d =4 — 2e¢ space-time

dimensions:
0 Ag (1 ag L) Ay 3 3
Fy(?) = F + 7 F) + <;> FP + <;> F{
+ O(a), (17)

'We note that recently even the four-loop results were
published [26].
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121 1 /52> 47 1 (53¢(3) 517 1192%\ 1/ 241£(3) 8659 1297z* 11z
+CFCANf[W+e_3<F92_97_2> +?< 42(2>_3888_7776>+E<_ 12(:9(6)_139968 46656 8640)
67¢(3) % (3) ¢(5) 1700171 1155557>  x* C:—4\ (7¢(3) 5¢(5) 572 1 7
TT27 TT288 48 419904 | 279936 31104]+CFNJ‘"V< 2C, >< 48 6 9_6+§_M>
+ O(e). (18)

Here we have kept terms of higher order in ¢ in the one-loop
and two-loop results since these turn out to make finite
contributions in the end. In the above expressions, {(j) is
the Riemann zeta function, N is the number of flavors, and
Cr =4/3,C4 = 3. For purely electromagnetic interactions
the factor Ny y_, becomes [24]

_ 2 4%

N,
! e

(19)

Y
q

As shown in Refs. [21,22], the hard coefficient may be
extracted from the form factor in the following way.
Adapted to the case of SIDIS we have from [22]

where 1 4 1s an operator that removes the poles of the form
factor and makes the necessary soft and collinear adjust-
ments needed to extract the hard coefficient. It is given in
[22] in terms of a convenient all-order form:

1=1,(e.a,) = exp{R,(e.a,) — i®, (€, )}, (21)

with functions R, and @, that each are perturbative series.
The phase @, does not contribute in our case since we take
the absolute square in Eq. (20). The function R, effects the
cancellation of infrared divergences from the quark form
factor. It can be expressed in terms of a soft and a collinear
part:

R,(e.a;) = qu"ﬁ(e, ag) + R;""(e, ay), (22)
HPS (ag(0)) = [[1 =T, (e.a(Q)IFg P (20)  where for N°LL accuracy
|
Rit(en) = G (%R0 + (%) R0+ (%) Re) + 00 ).
R ) = R0 + (%) R0+ (%) B+ Ola 23)
with
R0 = -
rea(~a v 1 o) ("5 e n)
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L [ci (— e R O LULLE) —24c<5)>
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T Caly <_:£;8§ " 27759195356”2 - 9330”4 +%C(3) _%”QCG) - %“‘”)

TCRNy (‘2%32 6690152”2 T12060" © 15279]6€(3) _%”25(3 ) +37_6C(5)>

+Nj (‘ 6561 7170716 o 7737760 - 1198545(3)> ’ 4
and
Rff"“)(e) _ 4%CF,
R (e) = - 3;;(’ Cr é {c% (645(3) - ”; + g) +CaCr (—36 (3)+ 111 gz + g) +CrNy (—% - %Zﬂ :
e 7 2 - )

+ CACr (—35(3) + 1]1g2 + Z) + CpN; (— - ’j)]

T [c% (f? e T ) o) - 30:(5>)

+ CiCy (135—21 - %fﬂ - 1%0”4 + %6(3) + éfﬂa(z) + 156(5>>

+ o (-4 B - ) st0))

O e R 10) REE Y] CETEE )

oo, (-1ae s 2+ 2| (25)

The coefficients by and b; can be found in Appendix A.
Inserting all terms into Eq. (20) and expanding in aj, all
poles in powers of 1/e cancel. The final expression for
HSP'S up to three loops can be found in Appendix A.

V. EXPANSION TO N3L.O

We are now ready to present the N’LO (O(a}))
expansion for the SIDIS ¢ — ¢ hard-scattering function

near threshold. To write our formulas compactly we
introduce
L=

(In(N) + In(#1)). (26)

N —

The coefficients d)g’m and @5,(2) in Eq. (4) were already
given in our previous paper [12]; for completeness, we
recall them in Appendix B. For the approximate N3LO
terms we find:
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1 8 2N 11
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q
67 =2\ 121
2 2
RARL I N
+CCA<9 3>+108CFC —c f+27CFN]
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445
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2 2 N2
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32

511
2|3
. {c ( 55

15 = 572 2051
- - N =Y
2 (G > +CrCa f(54 648)

oG (13% 121 ¢6)- 61707:3 " 115259063> i 2652 CFNQ}
st e e~ T2 )

19 437
+c%Nf(—c(3)+”— -z

2
> +CFCANf<£C(3) +

10372 _7z_4_ 31313)}

18 180 ' 32 81 108 1944 360 11664
G (c:(;)z * Sia 3)- QC( )+ %C(S )+ 17366107;60 * Z’g; - 5358949 B lf??;)
I =
+ Gy (%861 ¢B)- _C( )= % - % - 5372[0) +Crhj (2(2342 - 24337;2 - 175058512 - 119747jo)
(- 2 - 2 S 2 e
S R (%« =0 -5 e e 15553
+ CpNyy (C’%C; 4 <7i(83) - Sgé i 9% + % —~ 2;;()) +2C3.L5 @ ;4) (27)

As before, we have set up = up = Q for simplicity. We
stress that the corrections given by this expression include
all terms that are logarithmically enhanced at threshold,
or that are constant. In physical space these are terms
with double distributions (that is, “plus” distributions and
S-functions) in % and Z.

The last term in Eq. (27) represents the dominant NLP
contributions. Note that upon expansion beyond NLO the
exponential factors in (16) will also generate terms with
inverse powers 1/N2,1/M? and higher, which we have
discarded for consistency since they are far beyond the

approximations we make. We will see later that these terms
are numerically very small.

VI. PHENOMENOLOGICAL PREDICTIONS

We will now present some phenomenological predic-
tions for the transverse SIDIS cross section at NNLL and
N3LL, as well as for the expansion to N*LO. We will also
compare to our previous NNLO results of [12].

In order to obtain results for the transverse structure
function F%(x, z, Q%) in physical x, z space we need to
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invert its Mellin moments F }T’(N ,M, Q?) in Eq. (6). This is
achieved by the inverse double-Mellin transform

dN aM
Fh(x,z,0%) —/ —x‘N

cy 2Tl 2m T r(NV.M.0%). (28)

where Cy and C, denote integration contours in the
complex plane, one for each Mellin inverse. We adopt
the minimal prescription of Ref. [27] to treat the Landau
pole present in the resummed exponents in Egs. (12) and
(14) at Ay = 1, or [see Eq. (13)]

N M = el/(boas(ur)) (29)

According to the minimal prescription, the two contours
need to be chosen such that all singularities in the complex
plane lie to their left, except for the Landau pole. We
parametrize the two contours as

N = cy £ Cetion, M = cy + &P, (30)
with ¢, & € [0, o] as contour parameters, where ¢y = 1.8
and c,; = 3.3. The precise values do not matter as long
as cy and cy; are chosen to the right of the poles of the
PDFs and FFs, respectively, and their product is below the
Landau pole. We found the values ¢y = 1.8 and ¢, = 3.3
(which reflect the slightly steeper behavior of the FFs
compared to the PDFs at low momentum fractions) to be
optimal for good convergence of the numerical integration
in our code. We furthermore choose ¢y = 37/4; the two
signs for the N-contour in (30) select the two branches in
the complex plane. As N moves along its contour, the
position of the Landau pole relevant for the M-integral will
move as well, mapping out a trajectory in the plane. This
implies that the angle ¢, needs to be chosen as a function
of N, so that during the M integration this trajectory is
never crossed. A more detailed description of the inverse
double-Mellin transform can be found in Ref. [14].

We note that we only consider the transverse structure
function in (2) here. The longitudinal one is suppressed
near threshold, even beyond the dominant NLP terms we
have included for F”. While it would be very interesting to
also investigate higher-order corrections to F%, this is
beyond the scope of this work. In what follows, we also
discard the contributions by the ¢ — g and g — ¢ channels
to the structure function. These are fully known only to
NLO. We could include the contributions at NLO level in
our approximate NNLO, N°LO results to be presented
below, but this would simply amount to a uniform shift of
all results by a few percent, which is not really relevant for
our main goal of analyzing the structure of higher-order
contributions in the ¢ — ¢ channel.

For the parton distribution functions and fragmentation
functions we choose the NNLO sets of Ref. [28] and
Ref. [29], respectively. Clearly, in order to present true
N3LL or N3LO results, we would need PDFs and FFs

evolved at those same orders, which are currently not yet
available. We therefore keep the renormalization and
factorization scales at up = ur = Q and do not investigate
the scale dependence of our results. In this sense we use the
NNLO parton distributions and fragmentation functions as
templates for the N°LO ones, which should be adequate for
a first analysis of the beyond-NNLO effects we are
interested in. We note that the scale dependence of the
transverse SIDIS cross section was anyway found to be
rather small already at NNLO in Ref. [12]. Note that we
“match” all results to NLO, so that the NLO corrections for
the ¢ — ¢ channel are always included exactly.
Our predictions will refer to the unpolarized Zp —
ZntX process appropriate for the future EIC with
/s =100 GeV. We focus on the z dependence of the
cross section and, unless stated otherwise, integrate over
y €[0.1,0.9] and x € [0.1,0.8]. We choose x and z to be
rather large so that we are safely in the threshold regime.
Because of the relation Q> = xys, our choice of kinematics
implies Q? > 100 GeV? for the EIC. We furthermore
require W > 7 GeV, where W? = Q*(1 — x)/x + m3, with
m,, the proton mass.
We begin by comparing fully resummed results obtained
at various different levels of logarithmic accuracy. The
upper left part of Fig. 1 shows the NLL, NNLL, and N°LL
resummed cross sections as functions of z, normalized to
the LO one. As one can see, the NNLL terms show an
enhancement over NLL, and the additional terms arising at
N3LL lead to a very modest further increase of the cross
section. This result demonstrates that the resummed SIDIS
cross section has excellent perturbative stability.
We can further investigate the improvements provided by
going to NNLL and N3LL. To this end, we note that even at
a given logarithmic order the resummation formula in
Eq. (9) may actually be used in various ways that are all
equivalent in terms of their perturbative content, but differ
numerically. Let us refer to the corresponding choices as
resummation schemes. We consider three such schemes:
Scheme (a) Here we use Eq. (9) as written. That is, we
keep the functions H5I’'S and C,, as separate factors,
each its own penurbatlve series of the form (11). Also,
we use the Mellin moments N and M precisely in the
form N and M as defined in (10). This scheme has
been used for the first plot in Fig. 1.

Scheme (b) Here we expand the product H3IP'S x C,, in
Eq. (9) strictly to the desired order. That is, suppose

we are at NLL where H3P'S = 1 +% HSIDIS( ) and
C =1+% CEM, then we use HSIDIS x qu — 14+

(HSIDIS( i + Cf]q) and drop terms of O(a?). We
contlnue to use the variables N and M.
Scheme (c) Here we first use the expansion of H3>'S x C,,
as for scheme (b). In addition, we use (10) and (13)
to write
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Ratios of resummed results for the unpolarized £p — ¢z X transverse cross section in the ¢ — ¢ channel to the LO one, for

EIC kinematics with x € [0.1,0.8]. Upper left: comparison of NLL (black), NNLL (blue), and N’LL (red) resummation. Upper right and
lower panel: Results for resummation schemes (a),(b),(c) as described in the text at NLL, NNLL, and N3LL.

Avm = boas(ur)(InN +InM) + 2ypboas(ug). (31)

The terms with the Euler constant lead to modifications

of the functions A" in Eq. (14) [18.20]. They
evidently also generate nonlogarithmic corrections in
the resummed exponent. These may be expanded out
perturbatively, so that they migrate from the exponent to
an N, M-independent prefactor. This prefactor is then
expanded along with the factor H5PS x C,, into a
single perturbative function that now multiplies the
resummed exponent, the latter now being a function of
N and M rather than of N and M.
It is immediately clear that the three resummation schemes
are indeed equivalent for a given logarithmic accuracy. The
remaining three plots in Fig. 1 compare the three schemes
at NLL (upper right), NNLL (lower left), and N’LL (lower
right). It is striking to see how the difference among the

three schemes is still rather large at NLL, then strongly

decreases at NNLL, and finally becomes extremely small at
N°LL. [We note in passing that this means that the
enhancement over NLL seen in the first plot in Fig. 1 is
a feature only present in scheme (a) but does not really
occur in the other two schemes.] Of course, one does
expect the details of how the expansions are performed to
matter less and less with increasing logarithmic order.
Nevertheless, the level at which the resummed predictions
become independent of the resummation scheme at NNLL
and especially at N°LL is truly remarkable.

Encouraged by these observations, we now turn to fixed-
order expansions of our resummed results. Figure 2 (left)
shows again the NNLL-resummed result for scheme (a),
along with its expansion to NNLO as given by Eqs. (B1)
and (B2) (black solid line) and already obtained in
Ref. [12]. All results are again normalized to the LO cross
section. We note that finite-order expansions are indepen-
dent of the resummation scheme chosen. We observe that
resummation within scheme (a) leads to a suppression of
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FIG. 2. Left: NNLO and NNLL-resummed results for the unpolarized £p — £z X transverse cross section in the g — ¢ channel
normalized to the LO one, for EIC kinematics with x € [0.1,0.8]. We also show numerical expansions of the NNLL result to O(a?) and
O(a?). Right: same as left, but for N*LL, N3LO and expansions to O(a}) and O(a?).

the cross section at lower z and to the expected enhance-
ment at high z where the threshold logarithms become
particularly important. In addition to these two results, we
also expand the resummed cross section numerically to
orders a2 and ;. As expected, the result for the O(a?)
expansion (dash-dotted line) is extremely close to the
NNLO one. The only difference between these two results
comes from the fact that the formal expansion of the NLP
factors in (16) will produce also terms with higher inverse
powers of N and M, as noted at the end of Sec. V. These
terms are not included in our explicit NNLO expansions,
but do contribute to the numerical O(a?) expansion of the
cross section. As one can see by comparing the two
corresponding curves, they are of very small size. The
dashed line in the left part of Fig. 2 shows the O(a3)
expansion of the NNLL resummed cross section. We
observe that this result is already very close to the full
NNLL one, indicating that terms of order O(a?) or higher
are small.

The right part of Fig. 2 presents the same analysis one
order higher. We show the N*LL-resummed cross section for
scheme (a), and now the expansion to N°LO as given by
Egs. (B1), (B2), and (27). This time, we numerically expand
the N°LL result to orders &’ and af. Again the numerical
expansion to O(a?) essentially coincides with the approxi-
mate N*LO one, up to tiny corrections suppressed as
1/N?,1/M? or higher. The result at O(a) is almost
indistinguishable from the full N3LL-resummed one, dem-
onstrating again that corrections beyond third order are all
but negligible. We note that the O(a?) expansion obtained
from the N°LL-resummed result is more complete than the
O(a?) expansion shown in the left part of Fig. 2: It contains
all seven “towers” of threshold logarithms, that is, terms of
the form & In"(N) In” (M) with 0 < n + m < 6, whereas

NNLL resummation can only correctly reproduce the five
towers with 2 <n+m < 6.

We finally also briefly consider the x dependence of the
resummed results, integrating over the region z € [0.2,0.9].
Figure 3 shows the corresponding results obtained at NLO
and for NLL, NNLL, and N3LL resummation within our
scheme (a). One can observe that, as before for the z
dependence, resummation leads to a strong enhancement of
the cross section, especially so at large values of x.
Compared to the upper left plot of Fig. I, the various
resummed curves tend to lie closer to one another. This may
in part be due to the fact that larger x kinematically
correspond to larger values of Q% = xys, where the strong

3.5 T T T T T T T
- SLL
3 ——— NNLL
I —— NLL
----- full NLO
+Q
[ -
)
=
~
n
ki
S _
3 .
01 02 03 04 05 06 07 08 0.9
x
FIG.3. NLO, NLL, NNLL, and N3LL-resummed results for the

unpolarized £p — £zt X transverse cross section in the ¢ — ¢
channel, as functions of x, normalized to LO. The plot is for EIC
kinematics with z € [0.2,0.9].
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coupling becomes smaller and hence the threshold vari-
able Ay, as well. This effect is not present in the case of the
z dependence of the cross sections.

VII. CONCLUSIONS AND OUTLOOK

We have explored higher-order QCD corrections to the
quark-to-quark hard-scattering cross section relevant for
semi-inclusive DIS. We have developed the threshold
resummation framework for SIDIS to N3LL accuracy,
hereby extending previous work carried out at NNLL
[12]. Among the main tasks to be completed for achieving
N3LL resummation was the derivation of the three-loop
hard factor from the spacelike form factor. We have used
our N3LL results to derive approximate N3LO corrections
for SIDIS. These corrections contain all seven “towers” of
threshold logarithms that are present at this order. We have
also included dominant subleading logarithmic terms that
are suppressed near threshold.

We have presented phenomenological results for
resummed and approximate fixed-order SIDIS cross sec-
tions for EIC kinematics. These show an excellent pertur-
bative stability of the cross section in the sense that the
N3LL cross section is only modestly enhanced over the
NNLL one, and that generally corrections beyond O(a))
seem unimportant. A particularly striking result is that the
actual treatment of resummation, in terms of how the
relevant expansions are carried out in practice, matters less
and less when the logarithmic accuracy of resummation
increases, so that the N3LL result is essentially insensitive
to the resummation scheme adopted. Clearly, our results
show that the SIDIS cross section may serve as an excellent

|
)

2p,
—InX
bon +

as(:u) - (ZS()?R) -

(%) (5

test bed for studies of higher orders in perturbation theory.
We believe that our results are a valuable addition to the
general “library” of QCD observables that are known to
NNLO and beyond.

Future extensions of this work should also address non-
perturbative power corrections to the SIDIS cross section,
very little about which is currently known. It would be an
interesting phenomenlogical study to confront experimental
data with our perturbative results at various high orders
ranging from NLO to N3LL, ascertaining how the size of
phenomenlogically extracted power corrections depends on
the order of perturbation theory that is employed.

We finally note that while we have focused our studies
entirely on the spin-averaged SIDIS cross section, all of our
results equally apply to the helicity-dependent one. More
precisely, the N°LL result and hence its approximate N*LO
expansion are identical in the spin-averaged and the spin-
dependent cases. This further corroborates the finding of
Ref. [15] that the SIDIS spin asymmetry is insensitive to
higher-order perturbative QCD corrections.
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APPENDIX A: COEFFICIENTS FOR
RESUMMATION TO N3LL

We use the following expansion of the running strong
coupling [18,30]:

b
(1n2X—1nX+X—1)—b—2(X—1)>
0

a(ur)\* (b1 L P R 1
| X=X -1 X+-In*X+2(1 —-X)InX — =
+<X)<b(3) 3 n°X +5ln +2( )In 5
+b1b2 X b3 2
—2(— (I1-X)+2XInX -3InX) +—(1-X*) ), (A1)
bg 2by
where
2
X =1+ bya,(ug) In—, (A2)
HER
and
1 2
bo :E(IICA _2Nf)7 bl - W(I7CA _SCANf _3CFNf)7
1 2857 o 1415 205 ) 79 , 11 )
b2_647[3<54 CA_ 54 CANj_KCACFN]C+CFNf+§CANf+?CFNf B
1 149753 1078361 6508 50065 6472 1093
by =— 3564((3) )| = | ————+—¢C(3) |N 4+ —Z¢(3) |N2+—=N3, A3
: 256714[( o 6Ll )> < 162 77 ¢ )) f+< 62 a1 o )> 7+ 729 f} (A3)
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with N f the number of flavors and

, Cy=N.=3. (A4)

For the b5 coefficient we have inserted the values of Cr, Cy; the full expression can be found in [31]. The relevant expansion
coefficients for A, in Eq. (11) read [30,32-38]

(1)_ (2)_1 67 71'2 5
Aq —CF, Aq ECF[CA(E—E _§Nf 5
o Lo @ 00 Mg Moo ooy (59
AP =10 |aGE - S ae) + e+ Ser) + ey (-5 + 2%0)
209 10 7 1
T Ee2)) - = — N2
+CANf( 08 T 9@ 3‘:(3)> 27Nf}

AD _ o |3 1309¢;  112%¢ &3 451C5+42139_55257[2+451ﬂ'4_313ﬂ'6
! LA\ 432 144 16 288 10368 7776 5760 90720

361¢,  T72¢,  131¢s 24137 6352 11zt
54 36 72 10368 ' 1944 2160

+mnq(

29¢3 ¢y | 5¢s 17033 55z* 1zt
T —_— = -
+ Ny FCFCA< 9 6 + 4 5184 * 288 720

378, 5¢s 143 35¢, T2t 1922 923
N TpCh =22 - 22— NTp)*C - -
+ANTE F< 2% 2 Tass) TWTH Gl 57 " 1080 " 972 Fsiea

4
+ (NyTr)*Cr <—%+ i +299> + (NyTp)? <_8_11+22—§73>}

9 180 ' 648 :
LAt (G 385 55Cs _mt_31a\ o diflditd (&3 5¢s (AS)
N, 6 2 12 12 7560 N, 6 3 3)
with
dgbeddsbed N (N2 +6) dgbeddgbed Nt — 6N% + 18 o1 (A6)
N2-1 48 N2-1 96N2 ' F=a
Furthermore for the expansion of the function Dq we have [18,19,22,30,39]
) 101 7 14
D =Cr|Cy| ——+=¢(3 —N,
q F|: A< 77 +2C() TN
< 3) VAR U 1541¢(3) 1z*  7997% 297029
Dy =Cr|C | ——=112%(3) + ——=—2—-6£(5 —
1 F[ A< 36 7B+ 108 £5)+ 720 T 1944 ~ 23328

108 360 1944 11664

1363) t _103n2+31313> A2 <_C(3) 58> +CFNf<_19C(3)_”_4+17“>], (A7)

f "~ 729 18 180 ' 864

CuN,( -
+*‘f( 9 729

The expansion coefficients for C‘qq in Eq. (9) read [18]
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Finally, for H3;"' we find for an arbitrary renormalization scale yg, but for up = 0,

”2
HP Y = ¢ (~4-7% ),
° Uz 15¢(3) 61z 511 z*
Hs;DIS(z)—Cp(—4—g>ﬂboanR+C2< %%‘ 43 +6—4_@)
7¢(3) 3z* 1535 40377 ¢(3)  297% 127
CrC - CpN, (> —
+FA<4+80 192 " 432 ) T2 T 216 T s

and, in Sec. IV, the three-loop contribution
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APPENDIX B:

NLO AND NNLO HARD-SCATTERING COEFFICIENT FUNCTIONS

The full NLO coefficient function can be found in [14,16]. Its near-threshold approximation was given in [12] and reads

0’0 6

2
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i (v 25 ) e forr o oa (2 e (b ),
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(B1)

)). The corresponding approximate NNLO result is given by
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