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Abstract:

Background:

Spontaneous human neural activity is organized into resting state networks, complex patterns of synchronized activity that account for the major
part of brain metabolism. The correspondence between these patterns and those elicited by the performance of cognitive tasks would suggest that
spontaneous brain activity originates from the stream of ongoing cognitive processing.

Objective:

To investigate a large number of meta-analytic activation maps obtained from Neurosynth (www.neurosynth.org), establishing the extent of task-
rest similarity in large-scale human brain activity.

Methods:

We applied  a  hierarchical  module  detection  algorithm to  the  Neurosynth  activation  map similarity  network,  and  then  compared  the  average
activation maps for each module with a set of resting state networks by means of spatial correlations.

Results:

We found that the correspondence between resting state networks and task-evoked activity tended to hold only for the largest spatial scales. We
also established that this correspondence could be biased by the inclusion of maps related to neuroanatomical terms in the database (e.g. “parietal”,
“occipital”, “cingulate”, etc.).

Conclusion:

Our results establish divergences between brain activity patterns related to spontaneous cognition and the spatial configuration of RSN, suggesting
that anatomically-constrained homeostatic processes could play an important role in the inception and shaping of human resting state activity
fluctuations.
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1. INTRODUCTION

Brain metabolism consumes near 20% of the daily energy
intake  and this  demand increases  only 4%  during  cognitive
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effort,  indicating  that  most  of  the  energetic  cost  of  brain
activity  is  related  to  the  spontaneous  baseline  fluctuations
measured during rest, i.e., in the absence of sensory stimulation
and task performance [1].  Due to this high metabolic cost,  it
has  been  conjectured  that  spontaneous  brain  activity  is
evolutionarily  advantageous,  playing  a  central  role  in  the
support  of  cerebral  function  [2].
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Resting-state neuroimaging has been extensively explored
to address this conjecture, with the objective of characterizing
the  properties  of  spontaneous  brain  activity  in  healthy  and
diseased  participants,  as  well  as  during  different  levels  of
arousal  and  responsiveness  [3].  The  study  of  blood  oxygen
level-dependent  coordinated  functional  magnetic  resonance
imaging  (BOLD)  (fMRI)  signals  have  evolved  considerably
after  the  pioneering  study  of  Biswal  and  colleagues,  who
demonstrated  significant  synchronization  (i.e.,  functional
connectivity)  of  spontaneous  brain  activity  measured  at
anatomically-distant brain regions [4]. This study demonstrated
that  resting-state  BOLD  signal  fluctuations  should  not  be
dismissed  as  measurement  noise,  since  their  spatial
organization reflects the underlying architecture of the cerebral
cortex [5]. Moreover, the statistical properties of spontaneous
BOLD signal time series in the time and frequency domains are
characteristic of other biological systems capable of complex
information  processing,  further  suggesting  a  neurobiological
origin for resting-state brain activity [6 - 8].

The non-trivial spatiotemporal organization of resting-state
activity  was  investigated  using  data-driven  methods,  such  as
independent component analysis (ICA), revealing large-scale
brain-wide patterns of synchronized spontaneous activity [9].
These  patterns,  which  are  frequently  known  as  resting-state
networks (RSN), outline well-known functional systems of the
brain,  such  as  the  medial  and  lateral  visual  cortices,  the
auditory  and  sensorimotor  cortices,  and  temporal-frontal-
parietal  networks linked to  spontaneous conscious mentation
(default  mode  network),  executive  control,  and  attention  [9,
10].  RSN can be reproduced robustly across species [11, 12]
and human subjects [10], can be obtained from single-subject
fMRI  recordings  [13],  present  idiosyncratic  alterations  in
several  neurological  and  psychiatric  conditions  [14],  and  are
correlated  with  simultaneous  electrophysiological  measure-
ments of brain activity [15, 16]. Taken together, these results
underscore  the  significance  of  RSN  and  the  relevance  of
understanding  their  origin  and  their  functional  role.

It  has  been  proposed  that  RSN  could  originate  from  the
spontaneous  and  unconstrained  cognitive  processes  that  take
place  during  conscious  wakefulness  (e.g.  mind-wandering)
[17]. This hypothesis is compatible with the small increase in
metabolism seen during mentally effortful tasks since the level
of baseline spontaneous brain activity would already reflect the
demands of ongoing cognitive processes; furthermore, it is also
consistent with studies showing that resting-state activity can
be used to decode mental states [18, 19], as well as to predict
performance in motor and perceptual tasks [20 - 24]. Adding
further  support  to  this  hypothesis,  a  seminal  study  by  Smith
and colleagues demonstrated a direct correspondence between
the  spatial  configuration  of  RSN  and  task-evoked  activity
patterns, obtained by applying ICA to a large database of brain
activation maps (www.brainmap.org)  [25].  The authors  were
capable  of  matching  all  major  RSN  to  the  independent
components extracted from this database, resulting in the data-
driven assignment  of  a  functional  role  to  each network,  thus
favoring the hypothesis  of  RSN as the byproduct of  ongoing
spontaneous cognition.

The findings of Smith et al. have been corroborated using

other methods and databases [26 - 30], in particular, using the
Neurosynth  platform  [31],  which  combines  natural  language
processing and machine learning to mine activation coordinates
from a very large set of published articles (>15.000 articles at
the time the present analyses were conducted). The similarity
between spontaneous and resting-state activity patterns informs
the  theoretical  perspective  of  a  dynamic  baseline,  where
spontaneous  brain  activity  can  be  understood  as  a  trajectory
unfolding in the proximity of attractors representing different
task-related brain configurations, thus being capable of rapidly
transitioning  towards  these  configurations  as  a  response  to
environmental  threats  and  demands  [32]  (in  this  context,
“similarity”  indicates  the  spatially  correlated  distribution  of
values across maps, usually corresponding to z scores or other
voxel-wise  test  statistics).  While  theoretically  attractive,  this
account is challenged by the persistence of RSN during deeply
unconscious  states  (and  presumably  lacking  cognitive
processing), such as slow-wave sleep, general anesthesia, and
unresponsive wakefulness syndrome in brain-injured patients
[33 - 35]. These observations are consistent with the alternative
hypothesis  of  RSN  originating  from  homeostatic  processes
constrained  by  brain  anatomy,  especially  by  long-range
structural connections between cortical and subcortical regions
[5],  which  limit  the  disintegration  of  RSN  during
unresponsiveness  [36,  37].

Here, we review the correspondence between evoked and
spontaneous brain activity, establishing that it could be inflated
by  two  sources  of  bias  that  failed  to  be  considered  in  most
previous studies. Instead of focusing on task-rest similarity at
the  coarsest  spatial  resolution  by  default,  we  performed
hierarchical clustering of the Neurosynth activation maps and
showed  that  this  similarity  held  only  for  the  largest  spatial
scales.  We  also  showed  that  this  correspondence  could  be
biased  by  the  inclusion  of  maps  related  to  anatomical  terms
(e.g.  “parietal”,  “occipital”,  “cingulate”,  etc.),  resulting  in
clusters that more closely resemble the outline of major RSN.
Taken together, these results constitute a challenge to ongoing
cognition as the only source of spontaneous brain activity and
suggest  that  anatomically-constrained  homeostatic  processes
could also represent an important contributing factor.

2. MATERIALS AND METHODS

2.1. Neurosynth Association Test Maps

Neurosynth  is  an  automated  framework  to  extract
activation  coordinates  and  synthesize  association  and
uniformity  test  maps  based  on  text-mining  and  machine
learning techniques. Each of these maps is linked to a term that
is  frequently  found  in  the  neuroimaging  literature,  e.g.
“language”, “parietal”, and “motor”. The uniformity test map
of a given term contains high z-score values in a brain region if
the  articles  using  that  term  consistently  report  activations  in
that region. The association test map of a given term is similar,
except that it also considers the likelihood of the region being
reported as activated in articles  that  do not  include the term,
thus controlling for the base rate occurrence of the terms and
increasing the specificity of the resulting activation maps (For
more  information,  see  www.neurosynth.org  or  the  original
publication  by  Yarkoni  and  colleagues)  [31].

http://www.brainmap.org
http://www.neurosynth.org
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A  total  of  3072  association  test  maps  were  downloaded
from Neurosynth, each corresponding to an individual term in
the database. Repeated or redundant terms were discarded after
manually verifying that their associated maps presented a high
degree of overlap with maps already included in the analysis.
The  resulting  terms  were  divided  into  a  set  that  referenced
cognitive  processes  (e.g.  “vision”,  “language”,  “emotion”,
“decision  making”;  N=400)  and  another  that  contained
neuroanatomical terms (e.g. “occipital”, “parietal”, “temporal”,
“pre-frontal”;  N=409).  The  terms  that  did  not  fit  into  either
category  (e.g.  names  of  neuropsychiatric  diseases)  were
discarded  from  further  analysis.

2.2. Map Similarity Network

Two weighted undirected networks were constructed from
the  association  test  maps  linked  to  cognitive  and
neuroanatomical terms, respectively. In these networks, nodes
corresponded  to  activation  maps,  and  the  edge  weights
reflected the degree of spatial similarity between the connected
maps.  To  estimate  this  similarity,  each  map  was  first
thresholded using a false discovery rate (FDR) criterion of 0.01
(i.e. 1% false positives) and then downsampled from 2 x 2 x 2
mm to 4 x 4 x 4 mm. This step was performed to reduce the
computational  costs  of  obtaining  and  storing  in  memory  the
3072 x 3072 adjacency matrix of the graph similarity network
(considering the spatially homogeneous downsampling and the
typical  number of  voxels  in  each activation map,  this  step is
unlikely to distort the similarity metric between maps). Given
maps Mi and Mj (corresponding to the i-th and j-th nodes of the
network),  their  similarity  was  computed  using  the  Jaccard
index,  i.e.  Wij  = |Mi∩  Mj|/|Mi  ∪ Mj|,  where Wij  represents  the
weighted adjacency matrix of the network.

2.3. Hierarchical modular decomposition of map similarity
networks

An algorithm based on the spectral decomposition of the
weighted  adjacency  matrix  [38]  was  employed  to  obtain
modules  at  different  spatial  scales.  This  algorithm  explores
partitions  into  modules  with  the  purpose  of  maximizing  the
generalized  definition  of  Newman’s  modularity,  given  by

. In this equation, m
is the total number of edges in the network, Wij is the weighted
adjacency matrix, ki is the sum of weights attached to the i-th

node, and  if nodes i-th and j-th belong to the same module
in the partition,  and 0 otherwise (here  gi  indexes the module
containing node i). The parameter  determines the resolution
of the modular decomposition, i.e., the characteristic size of the
resulting modules. By increasing the value of , the algorithm
yields  progressively  smaller  modules  that  are  hierarchically
contained  into  those  obtained  using  smaller   values.  A
diagram outlining this procedure is shown in Fig. (1).

For  each  value  of  ,  the  modularity  maximization
algorithm  grouped  nodes  (i.e.,  activation  maps)  into  disjoint
sets according to their pairwise spatial similarity. Each module
was  summarized  by  computing  the  average  of  all  maps  it
contained.  Afterward,  the  Pearson’s  linear  correlation
coefficient between the average map and each of the individual
maps  was  computed,  and  a  word  cloud  representation  of  the
associated  terms  was  constructed  using  the  correlation
coefficient to determine the size of each term in the cloud.

To  guarantee  robust  partitions,  the  modularity
maximization  procedure  was  applied  1000  times,  and  the
partition  corresponding  to  the  highest  modularity  was
identified  with  the  optimal  modular  decomposition.

Fig. (1). A schematic diagram of the process followed to cluster the Neurosynth activation maps using a module detection algorithm. Each association
map corresponds to a node in a network, where the edge weights indicate the degree of spatial similarity (computed using Jaccard’s index) between
pairs of maps. In the example provided in the upper panel, edge weights are represented by the width of the lines joining the maps. The network can
be decomposed into two modules, one containing maps that are generally associated with “attention” (within-module links shown in red) and the
other containing maps generally associated with “language” (within-module links are in green). Between-module links are shown in light blue. After
increasing the resolution parameter , the algorithm yields progressively smaller modules that are hierarchically contained into those obtained using
smaller  values, as illustrated in the bottom panel.
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Fig. (2). Visualization of the RSN maps used in this study. These maps correspond to those published by Beckmann and colleagues [39] and include
the following networks: medial visual (VisM), medial-lateral (VisL), auditory (Aud), sensorimotor (SM), default mode (DM), executive control (EC),
dorsal right (DorR), and dorsal left (DorL).

2.4. Similarity to RSN

The  average  map  obtained  from  each  module  was
compared to the original set of 8 RSN published by Beckmann
and colleagues [39],  as shown in Fig.  (2).  The average maps
were characterized by their linear correlation coefficient with
the  following  RSN:  medial  visual  (VisM),  medial-lateral
(VisL),  auditory  (Aud),  sensorimotor  (SM),  default  mode
(DM), executive control (EC), dorsal right (DorR), and dorsal
left  (DorL).  A  threshold  of  R  =  ±0.3  was  used  to  report  the
correlations; all correlations within this range were statistically
significant  with  p<0.05,  Bonferroni  corrected  for  multiple
comparisons.

An  additional  metric  of  statistical  significance  for  the
correlations was introduced, based on a spatial randomization
procedure  [40].  For  this  purpose,  for  each  map  500  new
instances  were  introduced  by  randomizing  its  phase  on
frequency space, i.e., applying a Fast Fourier Transform to the
3D volume of the map, randomizing the phases, and then back-
transforming  to  the  spatial  domain.  Next,  the  correlation
coefficients  between  the  RSN  and  the  500  randomized
instances  were  computed,  leading  to  p-values  obtained  by
counting the number of instances, where the correlation with
the spatially randomized maps was higher than the correlation
computed  using  the  unshuffled  maps,  divided  by  the  total
number  of  instances  (500).  The  main  advantage  of  this
procedure  is  that  significance  is  assigned  relative  to  the
correlations obtained for a null model consisting of maps with
preserved first-order statistics (including spatial extent), but the
randomized spatial distribution.

3. RESULTS

The main results of our analysis are summarized in Fig. (3)
(for the terms related to cognitive functions) and Fig. (4) (for
the  neuroanatomical  terms).  Each  figure  represents  a
hierarchical  set  of  modules  obtained  by  progressively
increasing  the  resolution  parameter   (the  parameter  values
used to obtain each module are given in the figure captions).
Each module is summarized by the average of all its activation
maps, by the word cloud indicating the relative importance of
its  terms,  and  by  the  similarity  (i.e.,  linear  correlation
coefficient) between its average map and the RSN defined by
Beckmann and colleagues [39]. As  increases, the modules
can unfold into  smaller  sub-modules;  in  Figs.  (3  and 4),  this
process is represented by a colored outline that contains both
the “parent” and “children” modules.

3.1. Terms linked to cognitive functions

Association  test  maps  corresponding  to  terms  linked  to
cognitive  functions  were  first  divided  into  two  modules:
emotion/reward  and  memory/speech/language  (Fig.  3,  red
hierarchy).  The first  of  these two contains  the amygdala  and
nucleus accumbens, and is related to terms, such as “emotion”,
“happy”, “anxiety”, “reward”, “anticipation” and “prediction”.
As  increased, this module unfolded into one module specific
to emotion-related terms (map 2, including the amygdala) and
another specific to reward-related terms (map 3, including the
nucleus  accumbens).  None  of  the  maps  in  this  hierarchy
presented  significant  similarities  to  any  of  the  RSN.
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Fig. (3). Hierarchical decomposition of Neurosynth association test maps corresponding to terms linked to cognitive functions. Each number indicates
a module, represented by its average spatial map, its word cloud representation of term importance, and the correlation between the average map and
the RSN published by Beckmann and colleagues. The hierarchical unfolding of the maps is represented by the colored outlines, i.e., map 1 unfolded
into maps 2 and 3 as the resolution parameter  was increased; map 4 into maps 9, 5, and 6; map 9 into maps 10, 11, and 12; map 6 into maps 7 and
8. Insets contain the name of each module as inferred from the word clouds. The abbreviated names of RSN present significant (|R| 0.3) correlations
with the average map appear next to the module name. The  values used to obtain this hierarchical modular decomposition were 0.1 (maps 1 and
4), 0.6 (maps 2, 5, 6, 9), 1.2 (map 11), and 2 (maps 3, 7, 8, 10,12).
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Fig. (4). Hierarchical decomposition of Neurosynth association test maps corresponding to neuroanatomical terms only. Each number indicates a
module, represented by its average spatial map, its word cloud representation of term importance, and the correlation between the average map and
the RSN published by Beckmann and colleagues. The hierarchical unfolding of the maps is represented by the colored outlines, i.e., map 1 unfolded
into maps 9, 2, and 6 as the resolution parameter  was increased; map 3 into maps 4 and 5; map 9 into maps 10 and 11; map 6 into maps 7 and 8.
Insets contain the name of each module as inferred from the word clouds. The abbreviated names of RSN present significant (|R| 0.3) correlations
with the average map appear next to the module name. The  values used to obtain this hierarchical modular decomposition were 0.3 (maps 1 and
3), 0.4 (map 9), 0.9 (maps 4, 5, 10, 11), 1.2 (maps 2, 6), and 1.4 (map 7, 8).

The module related to memory/speech/language presented a significant overlap with the auditory RSN and also included
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voxels  within  parietal,  cingulate,  and  hippocampal  regions
(Fig. 3, blue hierarchy). This module unfolded into three maps:
one related to speech and language (map 9), another related to
memory,  attention,  and  imagery  (map  5),  and  a  third  map
related to memory and self-processing (map 6). Map 9 presents
a significant overlap with the auditory RSN and contains the
temporal lobes, but excluded the bilateral hippocampus (hence
the term “memory” is  absent from its  word cloud).  Map 5 is
related to cortical regions involved with memory, imagery, and
attention,  and  presents  a  significant  overlap  with  the  DMN.
Map 6 contains the bilateral hippocampi and related regions,
consistently  with  the  words  represented  in  its  word  cloud
(“memory”,  “encoding”,  “retrieval”,  “episodic”,  etc.);
however, this module did not present a significant correlation
with any of the RSN.

Maps 9 and 6 could be further subdivided by increasing the
resolution parameter  (Fig. 3, purple and green hierarchies).
The  auditory/speech/language  module  (map  9)  was  divided
into a module specific to language comprehension (map 10),
another specific to auditory perception (map 11, presenting a
high  overlap  with  the  auditory  RSN),  and  a  map  linked  to
visual  object  recognition,  including  terms,  such  as  “visual”,
“word”,  “form”,  “face”,  “recognition”,  “object”,  and  others
(map 12, overlapping with the lateral visual RSN).

Finally,  map  6  (memory/mind/self)  unfolded  into  map  7
(cortical regions related to self-consciousness and the theory of
mind,  overlapping  with  the  DMN)  and  map  8  (hippocampal
and related regions, related to memory encoding and retrieval).

When  determined  using  the  non-parametric  spatial
randomization procedure described in Section 2.4, only map 11
presented a significant (p<0.05) correlation with an RSN (Aud
network).

3.2. Neuroanatomical Terms

The network of activation maps linked to neuroanatomical
terms  (Fig.  4)  was  first  divided  into  two  modules,  roughly
representing  temporal,  frontal,  and  pre-frontal  and  certain
subcortical structures (map 1) and another representing motor
and  sensory  areas  in  the  prefrontal  and  parietal  lobe,
respectively  (map  3,  with  significant  overlap  with  the
sensorimotor  RSN).

The  first  of  these  two  modules  (Fig.  4,  red  hierarchy)
unfolded into a map outlining the temporal and occipital lobes
(map  9,  overlapping  with  the  temporal  RSN),  another
representing  the  amygdala/orbitofrontal  cortex/hippocampus
(map 2), and a third module including the prefrontal cortex and
the anterior cingulate (overlapping with the default mode and
executive control RSN).

The  second  of  the  two  initial  modules,  the  motor
cortex/parietal module (Fig. 4, blue hierarchy), unfolded into a
module including parietal regions (map 4, overlapping with left
and  right  dorsal  attention  RSN)  and  another  outlining  motor
and prefrontal areas (map 5, overlapping with the sensorimotor
RSN).

Map  9  (Fig.  4,  purple  hierarchy)  was  further  subdivided
into  a  module  specific  to  the  temporal  lobe  (map  10,
overlapping with the auditory RSN) and an occipital module,
including  the  fusiform  gyrus  (map  11,  correlated  with  the
lateral visual RSN). Map 6 (Fig. 4, green hierarchy) unfolded
into  a  prefrontal/dorsolateral  map  overlapping  with  the
executive control RSN (map 7) and another map containing the
insula  and  the  anterior  cingulate  cortex  (map  8),  which
correlated  with  the  auditory  RSN.

In summary, all except two of the modules obtained from
neuroanatomical  terms  presented  significant  overlap  with  at
least  one  RSN.  When  determined  using  the  non-parametric
spatial  randomization  procedure  described  in  Section  2.4,
several maps presented significant correlations with RSN (map
3 with SM network, map 6 with DMN and EC networks, map 5
with SM network, map 11 with VisL network, and map 8 with
Aud network).

Finally,  we  investigated  whether  these  results  could  be
related  to  systematic  differences  in  the  spatial  extent  of  the
average activation maps, as shown in Figs. (3-5) shows the size
(in  voxels,  normalized  by  the  total  amount  of  grey  matter
voxels)  of  all  the  maps.  Clearly,  the  extent  of  the  averaged
activation  maps  was  systematically  smaller  compared  to  the
RSN; however, this was observed for both sets of maps, except
for the maps 1, 3, and 9 associated with neuroanatomical terms
(Fig. 5, right panel). Interestingly, only two of these maps (1
and 3) presented significant overlap with an RSN, and several
maps  with  a  small  spatial  extent  showed  significant
correlations with RSN, suggesting that the normalized number
of voxels does not directly predict the similarity between RSN
and  averaged  activation  maps.  It  should  be  noted  that  the
procedure introduced in Section 2.4. to estimate the statistical
significance of the overlap between maps is not biased by their
size.

4. DISCUSSION

The  origin  and  function  of  spontaneous  brain  activity
remain  two  of  the  most  outstanding  unsolved  problems  in
human neuroimaging. Early studies investigated whether RSN
could be dismissed as artefacts resulting from brain vasculature
and  physiological  noise  related  to  respiration  [41  -  43];
however,  the  neural  origin  of  these  fluctuations  was  amply
supported by multimodal imaging studies conducted in humans
and  animal  models  [15,  16,  44,  45].  In  particular,  the
hypothesis  of  unconstrained  cognitive  processing  as  the
principal  source  of  coordinated  spontaneous  activity
fluctuations  gained  acceptance  after  a  seminal  study  proved
that RSN could be put in correspondence with the independent
components  obtained  from  a  large  number  of  meta-analytic
task activation maps [25]. This result received further support
from the study on task co-activation networks, as well as from
studies  that  directly  compared  independent  components
obtained during task performance versus those obtained during
rest [26 - 30].
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Fig. (5). The spatial extent of average maps associated with cognitive functions (left) and neuroanatomical terms (right), computed as the number of
voxels normalized by the total number of gray matter voxels. Horizontal lines indicate the spatial extent of the RSN.

The hypothesis of spontaneous cognitive processing as the
origin of RSN is very attractive from a theoretical viewpoint.
As  a  self-organized  non-equilibrium  dynamical  system,  the
human  brain  continuously  transverses  different  large-scale
activity patterns [46]; in turn, the proximity of these patterns to
those  observed  during  cognitive  processing  ensures  rapid
reactivity upon environmental threats and demands [32]. This
transient  proximity  can  be  realized  by  different  dynamical
mechanisms;  for  instance,  an  attractor  ruins  that  drive  the
configuration  of  brain  activity  towards  patterns  reflecting
different  activation  maps  [47].  One  problem  with  this
hypothesis is that other factors seem to play an important role
in  resting-state  activity  fluctuations,  even during brain  states
characterized by diminished or absent conscious cognition. For
instance, resting-state activity fluctuations are constrained by
large-scale  anatomical  connectivity  [5]  and  local  gene
expression  profiles  [48],  suggesting  the  presence  of
background homeostatic processes unfolding independently of
task-evoked activity.

We  attempted  to  replicate  the  meta-analytic  results
published  by  Smith  and  colleagues  using  a  different  method
applied to a newer database of brain activations [31]. The main
distinctive  features  of  our  study  comprised  the  independent
analysis  of  maps  related  to  cognitive  and  neuroanatomical
terms and the hierarchical clustering of overlapping activation
maps. This analysis revealed that patterns similar to RSN tend
to appear in the set of maps linked to neuroanatomical terms
and  that  the  similarities  between  RSN  and  proper  cognitive
activation  maps  are  scale-dependent,  i.e.,  at  finer  scales,  the
meta-analytic  maps  reflect  activations  localized  at  specific
neuroanatomical structures (e.g. amygdala, hippocampus) that
diverge from the distributed nature of RSN. As shown in Fig.
(5),  activation  maps  tended  to  be  smaller  (in  terms  of  their
normalized number of voxels) and more localized.

We highlight that our analyses can only question the strict
correspondence  between  RSN and  task-related  maps  derived
from  large  meta-analytic  databases.  Other  studies  (including

replication  of  Smith  et  al.,  2008  [30])  found  similarities
between resting-state activity and activity patterns elicited by
experimental  tasks  in  a  group  of  participants  (i.e.,  without
resorting  to  the  analysis  of  BrainMap  or  Neurosynth),  while
others found significant modulations of resting-state activity by
cognitive  tasks  [49].  A  limitation  of  these  analyses  is  the
restricted  number  of  tasks  that  could  be  examined,
complicating the direct comparison with our results, especially
considering that some of these studies also found discrepancies
between resting state and evoked brain activity [50, 51].

It  is  important  to  note  that  spontaneous  brain  activity
fluctuations could simultaneously emerge from unconstrained
cognition and background homeostatic processes that are also
present in states of deep unconsciousness (presumably lacking
cognitive  processing).  Thus,  the  similarity  between
spontaneous and task-evoked activity could be time-dependent
or even subject-dependent, depending on the extent of mind-
wandering  and  other  individual  traits.  Future  studies  should
replicate  these  analyses  in  resting-state  fMRI  data  combined
with psychometric questionnaires or other instruments to assess
the level of spontaneous cognition of the participants [17].

The  hierarchical  organization  of  brain  structure  and
function has been repeatedly demonstrated in humans and other
animal models by means of an ample spectrum of experimental
techniques [52 - 54]. Our clustering of the Neurosynth database
was consistent  with the following observation:  by increasing
the resolution parameter of the module detection algorithm, we
were  able  to  unfold  larger  modules  (i.e.,  clusters)  into  sub-
modules,  which progressively  reflected  specialized cognitive
functions  restricted  to  more  precise  neuroanatomical
boundaries.  For  example,  a  DMN-like  map  linked  to  self-
consciousness, social cognition, and memory was subdivided
into  a  cortical  frontoparietal  network  of  regions  strongly
resembling  the  DMN  (bilateral  precuneus,  temporoparietal
junction,  and  orbitofrontal  cortex)  linked  to  the  first  two
aforementioned  functions,  and  another  network  restricted  to
regions  within  the  medial  temporal  lobe  (i.e.,  hippocampus,
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parahippocampus).  The  task-positive  network  comprising
sensory,  motor,  executive,  and  attentional  regions,  was  also
subdivided  as  expected,  with  terminal  clusters  reflecting
specific  functions,  such  as  auditory  perception,  object
recognition (secondary visual areas), and language production
and  comprehension.  In  contrast,  hierarchical  clustering  of
resting-state  brain  activity  yields  distributed  spatial  patterns,
which are very similar to RSN (or parts of RSN) and cannot be
easily put in correspondence with the more specific maps, as
presented in Fig. (3) [48, 55, 56].

CONCLUSION

In conclusion, we showed that the hierarchical grouping of
Neurosynth activation maps associated with different cognitive
functions  departs  from  the  RSN  patterns  that  are  robustly
reproduced in humans. This observation does not eliminate the
possibility  of  task-evoked  activity  patterns  being  similar  to
spontaneous  activity  fluctuations;  however,  this  should  be
validated  by  experiments  designed  for  this  purpose,  ideally
gathering resting-state and task-evoked activity from the same
sample  of  participants  and  characterizing  the  extent  of
spontaneous  cognition  and  mind-wandering.  Since  both
spontaneous  cognition  and  baseline  physiological  processes
constrained  by  neuroanatomy are  likely  to  play  a  role  in  the
origin  of  RSN,  these  contributions  could  be  disentangled  by
factoring individual anatomical connectivity into the analyses,
as  well  as  by  manipulating  the  level  and  content  of
unconstrained  cognition.
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