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vest weight of 3 kg. Three experiments were performed
using fish ranging from 145 g to 3 kg and testing different
diets, replacing FO up to 100%. Zootechnical perfor-
mance was similar among treatments in all experiments.
Changing the lipid source in the diet resulted in EPA and
DHA digestibility of greater than 96%. Sensory character-
istics of raw fish fillets were similar among treatments,
supporting a similar sensorial experience with the
replacement of FO with no impact on consumers. Overall,
results confirm that the AO tested here enables the sus-
tainable growth of Atlantic salmon aquaculture by help-
ing to maintain a level of EPA and DHA in the fish fillets,
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without detriment to zootechnical performance and sen-
sory characteristics, while simultaneously contributing to

a reduced marine footprint for aquafeeds.
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1 | INTRODUCTION

Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) are essential for human nutrition and health.
Not only are they precursors of other fatty acids (FA), but they also participate in the activation of meta-
bolic pathways that inhibit the synthesis of proinflammatory compounds (Oliver et al., 2020). Of particular
relevance are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), whose consumption is strongly
recommended because of their well-documented abilities to prevent the onset of cardiovascular diseases
(Bernasconi et al., 2021; Mozaffarian & Wu, 2011), optimize neuronal development (Martins et al., 2020),
and control inflammatory conditions (Calder, 2017). High levels of EPA and DHA are also essential for fish
health and welfare, as increasing levels of these LC-PUFA improve growth performance and intestinal bar-
rier functions in response to chronic stress (Lgvmo et al., 2021), immune function (Thompson et al., 1996),
and tissue integrity (Bou et al., 2017). Fish products are usually the selected nutritional source of the LC-
PUFA necessary for a well-balanced human diet (Tocher et al., 2019). In particular, Atlantic salmon has tra-
ditionally been recognized as very rich in both EPA and DHA and thus as a valuable source of these FA for
humans (Horn et al.,, 2019). As such, the Atlantic salmon industry has potential to further expand from the
current 2.44 million tonnes, and supply growing global demand for salmonids as a healthy food (FAO, 2020).
However, supply limitations and sustainability concerns related to the overuse of marine resources to pro-
duce fish oil (FO), the traditional primary lipid sources of salmon aquafeeds because of its excellent nutri-
tional properties (Ytrestgyl et al., 2015), have led to the innovation of new ingredients rich in omega-3 FA
(Sprague et al., 2017).

Viable alternative ingredients for salmon aquafeeds have included cost-effective vegetable-based oils (Bell
et al.,, 2005; Bell et al., 2004; Nasopoulou & Zabetakis, 2012). However, these sources often contain high quantities
of omega-6 LC-PUFA, such as linoleic acid, and are deficient in omega-3 LC-PUFA, such as EPA and DHA
(Jobling, 2011). Therefore, in recent decades, EPA and DHA levels in salmon fillets have decreased by more than half
(Nichols et al., 2014; Sprague et al., 2016; Sprague et al., 2020), which is disadvantageous for the health of both
farmed salmon (Bou et al., 2017; Horn et al., 2019) and humans (Calder, 2017). The low contribution of omega-3 LC-
PUFA, together with an excess of omega-6 LC-PUFA, may unbalance the optimal omega-3/omega-6 ratios for fish
(Karalazos et al., 2007; Sissener et al., 2020) and humans (Simopoulos, 2011). As such, with the growing demand for
aquaculture products, it is imperative that the industry addresses this significant reduction in total EPA and DHA
(Nichols et al., 2014; Sprague et al., 2016; Sprague et al., 2020). Further study on how changes in the ratio of these
FA in the diet can improve the health and therefore the welfare of fish is needed (Lutfi et al., 2022; Martinez-Rubio
et al., 2012). Such changes can at the same time increase the nutritional quality of fillets for the consumer (Glencross
et al., 2022; Mock et al., 2020). Most experts advise an adequate intake (Al) of 250-500 mg of EPA and DHA per
week (Ngstbakken et al., 2021; Richter et al., 2016; Sprague et al., 2020). Based on the current levels of EPA and
DHA in farmed fish muscle, being around 1 g/100 g of fillet (Sprague et al., 2020; Nifes database), any further reduc-
tion in the content of these FA would increase the number of fish servings per week needed to achieve the Al for
humans, conflicting with the recommendations from various national health authorities (GOED, 2014; USDA, 2015)

regarding the consumption of oily fish, such as salmon. As production volumes continue to rise, it is therefore critical
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to deploy innovative and affordable sources of EPA and DHA to restore the levels of these FA in farmed salmon to
levels that are consistent with nutritional guidelines and National Health Authority Al recommendations.

Within the last decade, a variety of omega-3-rich ingredients have been developed to address the disparity
between EPA and DHA supply and demand in aquaculture (Tocher et al., 2019). The majority of potential products
available originate from genetically modified crops (Betancor et al, 2018) or microalgae biomass (Kousoulaki
et al., 2016). A good alternative is microalgae oil (AO). In addition to being easily incorporated into fish feed formula-
tions (Tocher et al., 2019), it also has the advantage of containing a combination of EPA, DHA, and arachidonic acid
(ARA)—as found in marine ingredients—while minimizing omega-6 LC-PUFA inclusion (Santigosa et al., 2021). Indeed,
previous studies have shown the successful replacement of FO and vegetable oil (VO) with AO in rainbow trout, gil-
thead seabream, and Atlantic salmon diets without any negative effects on fish health and growth (Carvalho
et al., 2020; Carvalho et al., 2022; Miller et al., 2007; Santigosa et al., 2020; Santigosa et al., 2021). As aquafeeds for-
mulated from microalgae show less contamination by heavy metals, dioxins, or dioxin-like PCBs (Ratledge, 2010;
Santigosa et al., 2021), AO also offers enhanced food safety.

The slow uptake of alternative feed ingredients (Aas et al., 2022) and the call to solve remaining challenges to
successfully implement new ingredients in the aquaculture industry (Albrektsen et al., 2022) support the fact that
the effects of using AO on Atlantic salmon (Salmo salar L.) farmed in seawater warrants further study. Therefore, the
novelty of this work lies in clearly documenting the suitability of AO as an alternative salmon feed ingredient
throughout the entire post-smolt production cycle and up to a harvest weight of 3 kg, while maintaining the level of
EPA and DHA in the fish fillets, without detriment to zootechnical performance and sensory characteristics, while
simultaneously contributing to reduce the marine footprint of aquafeeds. To our knowledge, the present study is the
first of its kind in providing such a rounded package of documentation in support of AO as a suitable salmon feed

ingredient.

2 | MATERIALS AND METHODS

Three separate but consecutive experiments were set to assess the impact of substituting FO with AO as a source of
EPA + DHA in Atlantic salmon feeds. These experiments were conducted on fish ranging from 145 g to 3 kg in body

weight (BW) to understand the oil inclusion effects during the post-smolt production cycle.

21 | Fish

The Atlantic salmon used in all three experiments were from the NLA strain (Norwegian breeding program). Fish
were reared from the egg stage at the Matre Research Station of the Institute of Marine Research (IMR, Bergen,
Norway), smoltified, and kept in 3-m tanks (12 m® volume) until they reached the desired sizes of 143 g (Exp 1) and
413 g for (Exp 2). For Exp 3, the fish were transferred to 7-m tanks (38 m®) after smoltification and kept there until
reaching 1.3 kg. The trials were abiding to Norwegian laws and regulations approved through the Norwegian Food
Safety Authority (license 8224, 16,615).

2.2 | Diets and experimental design

Feeds were produced by SPAROS (Olhao, Portugal) for Experiment 1 (Exp 1) and by Nofima AS (Tromsg, Norway)
for Experiments 2 and 3 (Exp 2 and Exp 3) (Table 1). A diet containing FO as the main source of omega-3 LC-PUFA
was used as the control (FO Ctrl) in Exp1, Exp2, and Exp3. Test diets were formulated using different inclusion levels
of AO (oil FA profile is described in Santigosa et al., 2020, Table S1).
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All diets within the same experiment were iso-proteic, iso-lipidic, and iso-energetic (Table 2). Diet crude protein
(CP) was determined by a nitrogen (N) analyzer (FP 528, LECO, St. Joseph, MO, USA) using the Dumas method
(CP = N*6.25). Gross energy measurements were performed using an adiabatic bomb calorimeter (C 2000 basic, IKA,
Staufen, Germany), and then used to calculate lipid levels. Experimental diets had average CP (48.78 + 0.6; 42.0 + 0.2;
36.0 + 0.0) and average lipid levels (23.01 + 0.2; 25.78 + 0.3; 34.0 + 0.0) for Exp 1, Exp 2, and Exp 3, respectively.

Yttrium oxide, an inert marker, was incorporated at 100 ppm in Exp 1 and Exp 2 to calculate the apparent digest-
ibility coefficient (ADC) of EPA and DHA. Each diet was fed to fish in triplicate tanks.

Experiment 1. The aim of this experiment was to provide comparable levels of EPA + DHA across
four treatment groups, based on the level of these LC-PUFA in the FO Ctrl diet. As such, the 10% FO
in the control diet was progressively reduced to 7.5, 5, and 0% in the test diets and combined with
0.88, 1.76, and 3.52 AO in diets 25%RFA, 50%RFA, and 100%RFA, respectively. A fifth treatment
group (50%RFO), aiming to increase the EPA + DHA level, provided FO and AO at equal inclusion
levels, that is, 5%. The analyzed contents of EPA + DHA were 1.37, 1.45, 1.73, 1.78, and 3.44% in FO
Ctrl, 25%RFA, 50%RFA, 100%RFA, and 50%RFO diets, respectively (Table 2). Rapeseed oil was added
to maintain the same energy level across all diets.

Two weeks before the start of the trial, 525 Atlantic salmon post-smolts (average BW of 143 g) were randomly dis-
tributed into 15 standard fiberglass tanks (1 m3), each holding 35 fish. The tanks were equipped with feed collectors
and programmable feeders (Arvo-Tec T drum 2000, Arvo-Tec Oy, Huutokoski, Finland). Aerated seawater at 28 ppt
(8.0 £ 0.5°C) was supplied at 15 L/min. The lid of each tank contained fluorescent light tubes that provided 24 h of
light. Once transferred to these tanks, the fish were adapted to the experimental FO Ctrl diet for 1 week. Three days
prior to the start of the trial, the fish were anesthetized with 0.4% benzocaine. At this stage, weight (to the nearest
0.1 g) and length (to the nearest 5 mm) were determined. The fish were returned to the tanks, fasted overnight, and fed
the experimental diets twice a day, from 08:00 to 10:00 and from 12:00 to 14:00. The fish were overfed at 20%,
adjusted once every 3 days. The surplus of feed pellets was collected for feed conversion ratio (FCR) assessment. The
trial lasted 132 days until the final sampling, and the duration of the experimental feeding period was 117 days.

Experiment 2. This relatively short experiment aimed mainly to get data on the digestibility of EPA and
DHA provided by new omega-3 sources to complement the digestibility data obtained from smaller fish
(Exp 1). Five treatment groups were set up to test different inclusion levels of AO as an alternative to FO,
allowing for different levels of EPA + DHA. As such, AO inclusion level was 2.5%, 5.0%, 7.5%, and 10%,
the latter corresponding to the total replacement of FO by AO (Table 1). The levels of EPA + DHA ana-
lyzed ranged from 1.54% in the FO Ctrl diet to 5.59% in the diet AO10% diet (Table 2).

Atlantic salmon previously held in 12-m® tanks (average weight 413 g) were lightly anesthetized in 0.15% benzo-
caine and distributed into 15 square indoor tanks (400 L), each holding 20 fish. The tanks were supplied with aerated
seawater (35 ppt; 12.0°C) at a rate of 15 L/min. The tanks were equipped with lids containing fluorescent light tubes
and automatic feeders (Arvo-Tec T drum 2000). Fish were fed ad libitum (1.5% BW, at 08:00, 12:00, and 16:00) and
they received the experimental FO Ctrl diet during the acclimation period. After 2 weeks, all fish were anesthetized in
0.4% benzocaine, and length and weight were determined as described for Exp 1. The fish were returned to the tanks

and the trial began after a 2-day fasting period. The experimental feeding lasted for 35 days until the final sampling.

Experiment 3. Here, fish with higher initial body weight (IBW) were used to understand the effects of
AO inclusion on performance, muscle FA profile, and sensory characteristics of the fillet. In this experi-
ment, three treatment groups were a FO Ctrl, and two test groups, where the level of EPA + DHA in
the FO Ctrl diet was substituted at 50% (Diet 50RFA) and 100% (Diet 100RFA), with AO aiming to
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maintain a constant EPA + DHA level of 2.2%. The EPA + DHA contents of the analyzed diets were
1.82% in the FO Ctrl diet, and 2.21% and 2.30% in Diet50RFA and Diet100RFA, respectively (Table 2).
Atlantic salmon (average weight 1.3 kg) were collected from 7-m tanks (35 m?), anesthetized in 0.4%
benzocaine, and transferred to 9 x 3 m (12 m®) tanks, each containing 35 fish. The tanks were supplied
with aerated seawater at constant temperature (35 ppt, 9.0°C). As large fish often have slow acclima-
tion, they were left in the tanks until feeding had returned to normal (1% BW d~1). When appetite was
good, the fish were lightly anesthetized in 0.2% benzocaine, weighed in groups of five, and returned to

the tanks. The salmon were then fed the experimental diets for 132 days.

2.3 | Sampling and analyses

Survival and growth parameters were monitored in all three experiments. IBW and final body weight (FBW) were
determined and used to calculate specific growth rate (SGR, %BW d~?) as follows: Specific growth rate (SGR; %
/day) = (Ln FBW - Ln IBW) x 100/days, where d is the number of days between FBW and IBW. FCR was calculated
as feed intake (g) x weight gain (g7 1) for Exp 1 only. The ADCs of EPA and DHA were calculated for Exp 1 and Exp

2. Dry matter, total lipids, total astaxanthin, and colorimetric scores were calculated for Exp 3 only.

231 | Sampling

At the end of Exp 1 and Exp 2, fish feces were collected by stripping, pooled per tank, and kept at —80°C until fur-
ther analyses. To ensure a full gut and an improved feces collection, the daily ration was fed as a single meal 12 h
before sampling. In addition, muscle samples (5 x 5 cm) from five fish per tank were obtained at the end of the
experiment following anesthesia and frozen at —80°C until further analyses. Unused fish were discarded.

At the end of Exp 3, three fish per tank (nine fish per treatment) were examined for sensory characteristics. They
were sacrificed by a blow to the head and then filleted on both right and left sides using the Norwegian Quality Cut
(NQQ). Fillets for organoleptic testing were immediately stored in vacuum bags at —20°C. Another 10 fish per tank
were filleted on the right side only using the NQC. After visual and digital measurement of muscle color, the fillet
was cut into two pieces, each individually vacuum packed for (1) pigment, dry matter, and total lipid analysis, and

(2) for FA analysis. Unused fish were discarded.

2.3.2 | Apparent digestibility coefficient

The ADCs of selected FA were calculated as the fractional net absorption of nutrients from diets using yttrium oxide
(Y,03) as the nonabsorbable indicator. Yttrium concentration in dry matter feed and feces was determined by induc-
tively coupled plasma-optical emission spectrometry (ICP-OES, 5100 Dual View, Agilent Technologies, Inc., Santa
Clara, CA, USA) according to DIN EN 15011885:1997 (DIN EN 1SO1998; AOAC, 2006) after sulfuric acid mineraliza-
tion. ADC (%) was calculated according to NRC (2011): ADC = [1-(% Y5035 in feed x %nutrient in feces)/(% Y,O3 in

feces x %nutrient in feed)] x 100.

2.3.3 | Muscle FA profile

The extraction and analysis of muscle lipid were performed with the chloroform-methanol method according to

Folch et al. (1957). The data are given as percent of FA and as mg/g wet weight of the muscle. Data are given as
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means of n = 10. In Exp 1 and Exp 2, the FA profiles of the different diets and pooled fish muscle tissues were ana-
lyzed at DSM Nutritional Products Dartmouth (Nova Scotia, Canada) by gas chromatography using a flame ionization
detector (GC-FID) as described in Santigosa et al. (2021). Lipids were saponified in potassium hydroxide in methanol
and then methylated with hydrochloride in methanol in a water bath at 72°C. FA methyl esters were extracted with
hexane and then separated via GC (HP6890, Agilent Technologies Inc.) with a fused silica capillary column (007-CW,
Hewlett Packard, Palo Alto, CA, USA). The column temperature was programmed to rise from 150°C to 200°C at
15°C min~?, and then from 200°C to 250°C at 2°C min~*. The injector and detector temperature was 250°C.

For analysis of FA in Exp 3, lipid samples were saponified with 0.5 M sodium hydroxide and methylated using
12% boron trifluoride in methanol at 100°C. After cooling the solution, the FA methyl esters were extracted with
hexane. The FA composition was analyzed as previously described by Lie and Lambertsen (1991) and Torstensen
et al. (2004). FA methyl esters were separated using a Perkin Elmer (Waltham, MA, USA) Auto System XL2000 GC
(“cold on column” injection; 60°C for 1 min; 25°C min~! to 160°C; hold for 25 min; 25°C min~* to 190°C; hold for
17 min; 25°C min~! to 220°C; hold for 6 min), equipped with a 50-m CP-sil 88 fused silica capillary column (id:
0.32 mm; Chromopack Ltd., Middelburg, The Netherlands). The FA methyl esters were detected on an FID (Perkin
Elmer) and peaks were identified based on retention time using standard mixtures of FA methyl esters (Nu-Chek
Prep Inc., Elysian, MN, USA), thus determining the FA composition (area %). All samples were integrated using Chro-
meleon™ (ThermoFisher Scientific, Waltham, MS, USA) connected to the gas liquid chromatography (GLC).

For all experiments, the amount of FA per gram of sample was calculated using 19:0 methyl ester as the internal

standard.

2.34 | Muscle total lipids and dry matter

For muscle total lipid analysis, one of the individually packed NQC fillets was thawed and immediately homogenized
following addition of butylated hydroxytoluene (BHT, 100 mg/L) to stabilize the lipids. After weighing, the tubes
were added ethyl acetate and left overnight on a shaker. The ethyl acetate was then collected, evaporated, and the
lipids were weighted gravimetrically. Means of the duplicate runs were used for further analysis. For dry matter anal-
ysis, duplicates of homogenized muscle (ca. 3 g) were dried in test tubes at 105°C for 24 h. Data are given as means
of n = 10 fish per tank.

2.35 | Muscle color assessment

Muscle color was initially measured by both visual and digital fans (SalmoFan®, DSM Nutritional Products, Heerlen,
The Netherlands). Three sensor readings on each NQC were performed above the sideline and two readings below.

The results are given as means of these five readings.

2.3.6 | Muscle astaxanthin content

For analysis of astaxanthin, one of the duplicated NQC fillets was thawed and immediately homogenized following
addition of BHT (100 mg/L) to stabilize the pigments. Duplicate samples, each containing 1.5 g muscle, were loaded
onto the extraction columns with 1.5 g water-free sodium sulfate. The astaxanthin was extracted with 5 mL of ace-
tone with freshly made BHT/vitamin C (100/100 mg/L acetone). The sample was allowed to extract for 10 min
before the supernatant was collected. The procedure was repeated three times. The combined phases were evapo-
rated under nitrogen and dissolved in 10 mL mobile phase (heptane: acetone 86:14) and stored at —80°C until analy-

sis. The analysis was performed at room temperature using a Hewlett Packard 110 series high-performance liquid
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chromatography (HPLC) system equipped with a G1315A diode array detector set at 476 nm. The column was a
C18 column (Lichrospher 5um C18) using heptane:acetone (86:14) as the mobile phase. Flow rate was 1.2 mL/min
and 20 pL of each sample was injected twice. Astaxanthin was quantified using authentic standards. Data are the
sum of isomers. Means of the duplicate runs were used for further analysis. Data are given as the means of n = 10
fish per tank.

2.3.7 | Muscle sensory characteristics

Samples for sensory analysis were shipped frozen and held at —18°C until assessment. The three salmon diets were
assessed in three replicates. Samples were served in a randomized order in a plastic beaker marked with a random
three-digit code covered with metal lid. The serving temperature of the samples was 17°C + 1.

Analysis was performed by Nofima AS according to the “General guidance for establishing a sensory profile by a
sensory panel consisting of trained assessors” (ISO 13299:2016 method). These assessors are selected based on
their abilities to recognize smell and taste that meet the requirements of the “General guidelines for the selection,
training, and monitoring of selected assessors and expert sensory assessors” (ISO 8586:2012 method). The sensory
panel, consisting of 10 people, is trained, tested, and calibrated regularly. Twenty-six sensory attributes have been
defined for raw salmon and scored using a 1-9 scale (1 = no intensity; 9 = strong intensity). Among them are odor
(total intensity, sour, sea, cloying, fish, pungent, and rancid), appearance/color (color hue, color strength, and white-
ness), taste (total intensity, sour, salty, acidic, bitter, sea, cucumber, metallic, cloying, fish, muddy, rancid, and after-
taste), and texture (hardness, juiciness, and tenderness) characteristics.

24 | Statistical analyses

Each tank was treated as an experimental unit. Sample size per treatment was determined based on previous growth
trials, performed in the same facilities and with Atlantic salmon of similar initial BW. Statistical analyses were per-
formed using Statgraphics Centurion XVII statistical software (Statpoint Technologies, Inc., Warrenton, VA, USA).
One-way analysis of variance (ANOVA) was used to analyze data to determine whether statistical differences existed
between treatment groups. Newman-Keuls multiple comparison tests were performed to compare treatment means.
In addition, to analyze differences between diet groups, Student's t-tests were performed on the growth parameters
measured at the end of each experiment. Data were arcsine transformed when necessary. Differences were consid-
ered significant at p < 0.05.

The statistical method for the analysis of sensory characteristics was as follows. ANOVA using F-tests was first
performed to find significant differences (p < 0.05) between groups for each of the sensory attributes. When the F-
test was significant, a Tukey's multiple comparison test was performed to determine which samples were different. If
the difference between two means were larger than the critical value the test was calculating for, these two groups
were significantly different. The means were the average of the assessors and two replicas. EyeQuestion and
EyeOpenR software (Logic8 BV, Utrecht, Holland) and PanelCheck V.1.4.2 (Nofima AS) were used.

3 | RESULTS
3.1 | Survival, growth, and FCR

Table 3 shows the survival, growth, and FCR for Exp 1, Exp 2, and Exp 3 after 117, 35, and 216 days of experimental

feeding, respectively. Recorded SGR was within the expected values in all groups, averaging 1.11 for Exp 1 and 1.01
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TABLE 3 Survival and performance of Atlantic salmon fed in Experiment 1, Experiment 2, and Experiment 3 for
117, 35, and 216 days, respectively.

Exp 1
FO ctrl 25%RFA 50%RFA 100%RFA 50%RFO Sign.
Survival 100 100 100 100 100
IBW 1411 +1.34 140.3 + 4.02 1414 +1.43 139.6 + 1.22 140.6 + 4.82 p > 0.05
FBW 525.6 £ 28.01 526.2 +8.01 524.1 + 17.95 485 + 8.84 532.9 £ 70.47 p > 0.05
SGR 1.12 £ 0.051 1.13 £ 0.031 1.11 £ 0.03 1.06 + 0.023 1.13 £ 0.089 p > 0.05
FCR 0.69 + 0.044 0.70 £ 0.023 0.65 + 0.034 0.71 £ 0.016 0.66 + 0.026 p > 0.05
Exp 2
FO Ctrl AO2.5% AO5.0% AO7.5% AO10% Sign.
Survival 100 100 100 100 100
IBW 401.6 + 12.6 4219 +15.3 408.2 + 14.8 422.6 +17.2 4180+ 15.7 p > 0.05
FBW 552.5+30.3 618.4 +31.0 589.3 £31.8 599.0 £38.1 595.2 +38.3 p > 0.05
SGR 0.95 + 0.146 1.09 + 0.043 1.04 + 0.051 0.99 + 0.099 1.00 + 0.079 p > 0.05
Exp 3
FO Ctrl Diet50RFA Diet100RFA Sign.
Survival 100 100 100
IBW 1299 + 27 1282 + 23 1289 + 16 p > 0.05
FBW 3192 + 218 3280 + 114 3248 + 200 p > 0.05
SGR 0.639 + 0.0877 0.593 + 0.0225 0.697 + 0.0478 p > 0.05

Note: Data are shown as mean * SD (standard deviation) (nh = 3).
Abbreviations: AO, algal oil; FBW, final body weight; FCR, feed conversion ratio (feed intake/weight gain); FO, fish oil; IBW,
initial body weight; SGR, specific growth rate (% body weight/day); Survival (%), survival percentage referred to the whole

duration of the trial.

TABLE 4 Apparent digestibility coefficient of EPA and DHA of Atlantic salmon fed in Experiment 1 and

Experiment 2.

Exp 1
FO ctrl 25%RFA 50%RFA 100%RFA 50%RFO Sign.
EPA (%) 98.82 + 0.86 99.29 £ 0.03 99.52 £ 0.42 99.15 +0.03 100 £ 0.0 p > 0.05
DHA (%) 96.61 +1.23 97.15+0.9 9745+ 1.0 98.3£0.13 98.48 + 0.3 p > 0.05
Exp 2
FO Ctrl AO2.5% AO5.0% AO7.5% AO10% Sign.
EPA (%) 98.59 £ 04 98.63 £ 0.4 99.13 +£0.09 99.01 £0.17 99.12 +0.12 p > 0.05
DHA (%) 97.18 £0.58 b 97.75 £ 0.46 ab 98.53+0.16 a 9842 +0.27 a 98.56 £ 0.43 a p=0.01

Note: Different letters show significant differences (p < 0.05) between the experimental treatments.

for Exp 2. The average FCR was 0.68 for Exp 1. At the end of Exp 3, fish doubled their IBW. All diets appeared to be
well suited for Atlantic salmon, and there were no significant differences in BW among treatment groups. SGR and

FCR for Exp 3 averaged 0.64 and 0.68, respectively. Overall, statistical analyses showed no significant effect of diet
on FBW, SGR, or FCR for any of the experiments (Table 3).
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FIGURE 1 Muscle EPA + DHA levels in relation to dietary contents in 500-g Atlantic salmon post-smolts from
Experiment 1 (dotted line) and Experiment 2 (plain line). N = 10.

TABLE 6 Dry matter (DM), total lipids (TL), total astaxanthin (Tot Ax), and colorimetric scores obtained for
Atlantic salmon muscle after 132 days of feeding (Experiment 3).

Initial Control Diet50RFA Diet100RFA Sign.
DM% 32+117 34.1 £ 0.69 34.9 £0.46 344 +£0.38 p > 0.05
TL% 10.3+2.23 14.2 + 1.07 14.6 + 1.39 14.5 + 0.02 p > 0.05
Tot Ax mg/kg 4.3 +1.09 3.46 £0.30 37+0.11 3.6+0.18 p > 0.05
Visual SalmoFan 23.8 £0.15 242 £1.49 244 +0.48 p > 0.05
Digital SalmoFan 243 +£0.31 24.2 £ 0.55 24.2 £ 0.10 p > 0.05
CIE_L* 28.5+£0.92 28.7 £ 0.67 28.4 £ 0.65 p > 0.05
CIE_a* 9.88 £0.34 9.9+0.70 9.8+0.14 p > 0.05

Note: a, redness; CIE, commission internationale de I'éclairage; L, lightness.

3.2 | ADCs of EPA and DHA

ADCs of EPA and DHA were calculated for Exp 1 and Exp 2 (Table 4). In both experiments, the ADC of EPA was
above 98.5% in all diets and at any level of AO replacement. The ADC of DHA was slightly lower than that of EPA,
ranging from 96.61% in the FO Ctrl (Exp 1) to 98.56% in the AO10% diet in Exp 2. In this latter experiment, the ADC
of DHA increased with the level of inclusion of AO in a dose-dependent manner, following a linear regression
(y = 0.1372x + 97.402; R? = 0.8019).
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TABLE 7 Sensory characteristics of 3 kg Atlantic salmon muscle in Experiment 3.

Total odor intensity
Sour odor

Sea odor
Cloying odor
Fish odor
Pungent odor
Rancid odor
Color hue

Color strength
Whiteness

Total flavor intensity
Sour flavor

Salty taste
Acidic taste
Bitter taste

Sea flavor
Cucumber flavor
Metallic flavor
Cloying flavor
Fish flavor
Muddy flavor
Rancid flavor
Hardness
Juiciness
Tenderness

Aftertaste

Control
4.09
1.53
1.36
3.25
324
255
1.32
5.75
522
4.98ab
5.10
1.75
251
3.70
4.32
1.56
1.74
4.19
3.06
3.80
343
1.37
2.98
6.26
7.20
5.99

SANTIGOSA ET AL.

Diet50RFA Diet100RFA Sign.

4.46 4.10 p > 0.05
1.53 1.70 p > 0.05
1.38 1.23 p > 0.05
3.60 3.57 p > 0.05
3.40 3.10 p > 0.05
3.11 291 p > 0.05
1.46 1.38 p > 0.05
5.75 5.82 p > 0.05
5.39 5.15 p > 0.05
471a 5.05b p < 0.05
5.20 5.00 p > 0.05
1.55 1.67 p > 0.05
2.62 2.56 p > 0.05
3.62 3.72 p > 0.05
452 4.66 p > 0.05
1.49 1.60 p > 0.05
1.55 1.45 p > 0.05
4.32 430 p > 0.05
344 3.27 p > 0.05
3.74 3.74 p > 0.05
342 3.57 p > 0.05
1.38 1.53 p > 0.05
3.16 2.75 p > 0.05
6.34 6.46 p > 0.05
7.04 7.43 p > 0.05
5.99 6.03 p > 0.05

Note: Scale 1-9, 1 = no intensity, 9 = strong intensity. Different letters within the same row show significant differences

(p < 0.05) between the experimental treatments.

3.3 | Muscle FA profile and quality
3.3.1 | FA profile

The FA profile of Atlantic salmon muscle obtained for each experiment is detailed in Table 5. Figure 1 illustrates the
positive correlation between the gradual increase in dietary levels of EPA + DHA and the muscle content of these
FA in Exp 1 and Exp 2. When the EPA + DHA content in the diet was higher than that in the FO Ctrl diet (10% FO),
a concomitant increase was observed in the fish muscle. In the larger fish from Exp 3, the FA compositions of the
muscle mirrored that of the diets (Table 5). The EPA + DHA in the diets ranged from 1.82% in the FO Ctrl diet to
2.30% in Diet100RFA. These levels translated into 8.55 mg/g and 10.14 mg/g in salmon fed the FO Ctrl diet and
Diet100RFA, respectively. Among PUFA, a significant increase in ALA, ARA, EPA, and DHA was observed in the two
AO-supplied diets compared with the control diet (Table 6). LA and stearidonic acid levels also increased significantly

in Diet50RFA and Diet100RFA and differed significantly between these two levels of AO supplementation.
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FIGURE 2 Overlap of sensory description of raw fillets from Atlantic salmon fed with the different diets in
Experiment 3. Asterisk shows significant differences (p < 0.05) across treatments.

3.3.2 | Color, sensory characteristics, and astaxanthin content

Muscle quality was measured in Exp 3 through sensory characteristics, color attributes, and pigment deposition
(Tables 7; Figure 2). The dry matter of muscle was approximately 34% across all tanks and diets. Total lipid content
was approximately 14% and also similar between treatments. There was no difference in most of the sensory attri-
butes between the three dietary groups (Tables 7 and 8). The only appearance/color attribute with significant differ-
ence among groups was whiteness (Table 7). However, the difference in the mean values was relatively small (4.98,
4.71, and 5.05 for diets FO Ctrl, Diet50RFA, and Diet100RFA, respectively), and there was no trend associated with
the level of AO inclusion rate. All fish fillet sensorial quality parameters recorded in the present study, such as those
related to odor, flavor, taste, and consistency, showed similar results among experimental groups (Table 7). The over-
lap of sensory characteristics for the three dietary groups clearly reflects the results of the statistical analysis, thus

suggesting no difference between the muscle quality of Atlantic salmon fed the different diets (Figure 2).
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No significant differences were observed in muscle color and astaxanthin content (Table 6). Total astaxanthin
measured by HPLC ranged from 3.46 to 3.67 mg/kg of muscle and it was similar between all dietary groups. The ini-
tial content averaged 4.32 mg/kg of salmon muscle. The results of color assessment using the visual and digital fans
followed the same trend, with no difference between the control fish and those fed the diets with AO inclusion.
There was also no difference in color assessment between visual and digital fans with average treatment values of
24.1 +0.3 and 24.1 + 0.1, respectively. Overall average CIE lightness (L*) and redness (a*) of the muscle were
28.5 £ 0.2 and 9.8 + 0.1, respectively.

4 | DISCUSSION

EPA and DHA levels in seafood are critical for both fish and human health, with national health authorities rec-
ommending a weekly consumption of one portion of oily fish per week to attain their weekly Al of EPA and DHA
Omega-3 (GOED, 2014; USDA, 2015). However, salmon flesh fed low amounts of FO and high levels of VO fails to
meet the FA levels in fish fillet needed to address human requirements (Sprague et al., 2016). This gap can and
should be closed. One option is to add the inclusion of AO as in salmon diets to restore EPA and DHA levels as
recorded in the present study. For instance, the calculated total levels of EPA + DHA obtained here for the 3 kg
salmon fed the FO control diet (1.11 g/130 g) suggests that 1.6 portions (130 g) of salmon would be required per
week (Table S1) to meet the recommended daily intake of 250 mg EPA + DHA for humans (EFSA Panel on Dietetic
Products Nutrition, 2010). With the higher EPA and DHA deposition levels recorded in this study driven by AQ, it is
thus possible to help human consumers attain the minimum recommended intake levels, consistently with the advice
from national health authorities, and positively contribute to a healthier human population.

To this end, the use of AO in the aquafeed industry is a worthy alternative to FO, especially when compared
with VO (Tocher et al., 2019), as they lack the omega-3 LC-PUFA, while having an excess of omega-6 PUFA. More-
over, the utilization of AO also minimizes dependency on marine resources as measured by the forage fish depen-
dency ratio for fish oil (FFDRoil), thereby improving the sustainability of aquafeeds. FFDRoil is a metric describing
the quantity of wild fish meal or wild FO used in feeds in relation to the farmed fish produced. FFDRoil is calculated
following the ASC Salmon Standard (https://www.asc-aqua.org/). In Exp 3, the FFDRoil decreased from 2.54 to O,
demonstrating that the inclusion of AO instead of FO can improve the marine footprint during the grow-out phase.
In addition, AO can be used to address disparities in the supply-to-demand gap for EPA + DHA (Panchal &
Brown, 2021). The global demand for EPA + DHA has been estimated at 1.27 million tonnes, with a supply-to-
demand gap between 0.4 and 1 million tonnes per year (Tocher et al., 2019). This is even more critical when consid-
ering the supply of EPA + DHA from Marine Stewardship Certified (MSC) sustainable small pelagic species, as 19%
of global marine pelagic catches end up in fishmeal and FO, but only 20% of these are MSC certified (Marine Stew-
ardship Council, 2021). Further increases in salmon production (FAO, 2020) would stretch current FO sources to an
extent where farmed fish would likely reach deficient levels of omega-3 LC-PUFA, particularly EPA and DHA.

Importantly, the inclusion of high LC-PUFA sources in salmon feed ensures the requirements of these FA for
optimum fish growth and health, as previously discussed by Bou et al. (2017) and Lgvmo et al. (2021), and recently
confirmed using high levels of FO to increase the amount of omega-3 FA in Atlantic salmon diets (Lutfi et al., 2022).
However, few data exist on the benefits of high LC-PUFA diets in Atlantic salmon when omega-3 FA are provided
by alternative sources such as microalgal oil. Previous studies incorporating Schizochytrium sp. oil into salmonid
aquafeeds (Miller et al., 2007; Osmond et al., 2021; Rosenlund et al., 2018; Santigosa et al., 2018; Santigosa
et al,, 2020; Santigosa et al., 2021; Wei et al., 2021) showed no negative impact on the performance of Atlantic
salmon and rainbow trout at a specific life stage. Results from the three experiments summarized here demonstrate
that AO has no negative impact on Atlantic salmon growth performance at any stage (Table 3) and support that AO
can be used throughout the entire production cycle of Atlantic salmon. Changing the lipid source from FO to
AO maintained digestibilities of EPA and DHA above 96% in post-smolt salmon, which was comparable to those fed
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FO only. This was within the range of previous reports for Atlantic salmon fed Camelina oil (Betancor et al., 2016)
and rainbow trout fed AO (Santigosa et al., 2020). A dose-dependent and significant increase in DHA digestibility
with increased inclusion of AO was also recorded, which can be associated with increasing unsaturation of the FA
pool (Olsen & Ringg., 1998; Torstensen et al., 2000).

Importantly, sensory and quality characteristics of Atlantic salmon are also preserved when AO is used to
increase the nutritional value of the aquafeed. Muscle pigmentation is a critical factor in the consumer's perception
of quality in salmonid fillets (Amaya & Nickell, 2015). The AO used maintained the same muscle pigmentation across
all 3-kg salmon (Table 6). These results are consistent with those previously obtained for similar-sized fish (Bente
E. Torstensen et al., 2005), indicating that AO does not contain FA combinations or other components affecting the
pigmentation of Atlantic salmon muscle. Recent studies have also addressed the effect of DHA-rich biomasses on
Atlantic salmon pigmentation with positive results; however, data need to be carefully interpreted as EPA + DHA
dietary levels were inadequate for the species (Kousulaki et al., 2020). In the future, higher LC-PUFA levels should
be tested to reinforce data recently recorded on the benefits of high omega-3 diets on salmon fillet pigmentation, as
recent studies suggest that increased levels of EPA + DHA can not only maintain but even improve fillet pigmenta-
tion (Hatlen et al., 2022; Lutfi et al., 2022; Ruyter et al., 2022). Interestingly, sensory characteristics of raw salmon
muscle such as odor, appearance, taste, and texture did not differ between salmon-fed FO diets and those fed AO
diets, supporting previous results obtained for other species (Meigs et al., 2020; Santigosa et al., 2021). Moreover,
the muscle of salmon-fed AO diets was relished in the same way as that of salmon-fed FO diets, thus contributing to
a similar sensorial experience with no impact for consumers.

The results obtained here also confirm in this species that the inclusion of this AO had no adverse effects on the
performance at all tested life stages, while improving the FA profile of salmon muscle. Indeed, the restoration of LC-
PUFA levels in salmon feed benefits not only the nutritional quality of the fish fillet but also the health, welfare, and
product quality of the salmon when reared in sea cages (Ruyter et al., 2021). This is in agreement with research on
other cultured species, such as rainbow trout (Santigosa et al., 2020), gilthead seabream (Santigosa et al., 2021), and
yellowtail flounder (Stuart et al., 2021). As such, the use of LC-PUFA-rich alternatives throughout the full production
cycle might enable the sustainable growth of the industry, further reducing its marine footprint to FFDRoil below
1, with benefits for the marine ecosystem without compromising fish health.

5 | CONCLUSION

Results obtained in this study confirm the use of the tested AO as an efficient source of omega-3 LC-PUFA through-
out the full production cycle for both partial and full replacement of FO. Both strategies showed no difference in the
zootechnical performance compared with the FO control treatment. Sensory and quality properties of fish fillets
were also similar across experimental treatments. The use of high LC-PUFA in the diet improved the EPA and DHA
profile of the muscle, thereby contributing to attaining the recommendations of global organization for the minimum
intake of these omega-3 LC-PUFAs. Ultimately, the results from this study provide scientific evidence to support the
salmon farming industry further decoupling from its reliance on marine FO.
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