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Abstract: In many scientific fields, the dynamics of the system are often known, and the main chal-
lenge is to estimate the parameters that model the behavior of the system. The question then arises
whether one can use experimental measurements of the system response to derive the parameters?
This problem has been addressed in many papers that focus mainly on data from a deterministic
model, but few efforts have been made to use stochastic data instead. In this paper, we address this
problem using the following procedure: first, we build the probabilistic stochastic differential models
using a natural extension of the commonly used deterministic models. Then, we use the data from
the stochastic models to estimate the model parameters by solving a nonlinear regression problem.
Since the stochastic solutions are not differentiable, we use the well-known Nelder–Mead algo-
rithm. Our numerical results show that the fitting procedure is able to obtain good estimates of the
parameters requiring only a few sample data.

Keywords: stochastic differential models; nonlinear regression

1. Introduction

The most common approach to studying many biological, ecological, or engineering
systems is based on nonlinear dynamic models. One of the major challenges is the calibra-
tion of these dynamical models, also known as the parameter estimation problem, which
involves finding the unknown parameters of the model that best fit a set of experimental
data. Parameter estimation belongs to the class of so-called inverse problems [1], which
require not only a prior assumption about the unknown parameters but also a posterior
study of the determinability of the parameters. This problem has been tackled by many au-
thors in various fields of science (see reference [2] for practical applications and numerical
solutions, and reference [3] for a comprehensive review).

Parameter estimation in finite-dimensional stochastic differential equations (SDEs)
has also been addressed in the literature (see [4–7]).

The classical nonlinear regression problem, which often arises in applications, concerns
how to find the values of the parameters when the equations governing the system are
known. The main challenge then is to use experimental results or experimental data to
derive the values of the system parameters. This problem is currently being addressed by
many machine learning techniques, see [8] (Cap. 9) or [9] (Cap. 7).

In this paper, we address this problem considering stochastic data, which seems to be
a challenging task.

For an n-dimensional system, the stochastic differential equations (SDE) governing its
dynamics are of the form

dX = µ(t, X) + B(t, X) dW, (1)

where X ∈ <n is the n-dimensional state vector, W ∈ <m refers to m independent Wiener
processes, µ(t, X) ∈ <n is the vector drift function, and B(t, X) ∈ <n×m is the diffusion
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matrix. In practice, as we will see in the following sections, these SDEs depend on a number
of parameter α1, · · · , αp whose values determine the behavior of the solutions.

The main idea now is to use the data from Equation (1) to derive the values of the
parameters α1, · · · , αp. To do this, we use the least squares method, which is a common
approach in regression analysis to solve over-determined systems. The error function has
the form for n steps

E(α1, · · · , αp) =
n

∑
j=1

(
Xd(tj)−

1
nrum

nrum

∑
i=1

Xj,i

)2
, (2)

where {Xd(tj)} are the solutions of the deterministic part computed with the "ode45"
command from MATLAB; these solutions are obviously dependent on the values of the
parameters, and {Xj,i} is the stochastic solution ant time tj for the ith run or trial using the
classical numerical Euler–Maruyama method (we refer to [10,11] and more recently [12] for
an overview of numerical solutions of SDEs).

Since we are dealing with a nonlinear optimization problem involving stochastic
data, we used the Nelder–Mead algorithm [13,14] (p. 325) or [15] (p. 368) to minimize
Equation (2), which proved to be more suitable in these cases.

On the order hand, from the two papers [16,17], in our opinion, it would seem that the
most natural extension of moving from a deterministic model to a stochastic model would
be to use probabilities instead of simply adding white noise. In these stochastic models
that we studied in this paper, which we refer to as probabilistic models, we use tables of
probabilities of change and compute the means and variances following [18] .

This article is structured as follows. In Section 2 we consider a classical predator–prey
model, in Section 3 an epidemic model, and finally in Section 4 a chemical-reaction model.
For these three models, we first build the stochastic model and then try to calibrate the
parameters using the Nelder–Mead algorithm and solve the deterministic part using the
"ODE45" Matlab solver. Finally, in Section 5 we analyze the numerical results and draw the
main conclusions and possible future research.

2. A Predator–Prey Model

In this first model, we study the well-known Lotka–Volterra predator–prey system,
where the preys are rabbits, which have an infinite food supply, and the predators are
foxes. This example was previously studied in [17,19], assuming that the changes and their
probabilities are those given in Table 1.

Table 1. Population changes and their probabilities.

Change Probability

∆X(1) = (1, 0)T p1 = β R ∆t
∆X(2) = (0, 1)T p2 = α R F ∆t

∆X(3) = (−1, 0)T p3 = α R F ∆t
∆X(4) = (0,−1)T p4 = F ∆t

That is, given the parameter α > 0, the fox encounters the rabbit with a probability
proportional to the product of their numbers, and β > 0 is a coefficient for the reproduction
of the rabbits.

Fixing X(t) at time t, we calculate the expected change for X = (R, F)T

E(∆X) =
4

∑
j=1

pj ∆X(j) =

(
R (β− αF)
F (αR− 1)

)
∆t, (3)
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and the covariance matrix

E(∆X(∆X)T) =
4

∑
j=1

pj (∆X(j))(∆X(j))T =

(
R(β + αF) 0

0 F(αR + 1)

)
∆t, (4)

results in the following SDE system:{
dR = R (β− αF) dt +

√
R(β + αF) dW1(t),

dF = F (αR− 1) dt +
√

F(αR + 1) dW2(t).
(5)

where W1 and W2 are two independent Wiener processes.

Fitting Model to Data

In this example, the error function is

E(α, β) =
n

∑
j=1

(
| R(tj)− Rj|2 + | F(tj)− Fj|2

)
, (6)

where Rj and Fj are the stochastic data averaged over a given number of trials (nrum) using
the Euler–Maruyama method. R(t) and F(t) are the solution of the deterministic equations.
The goal is then to find the values of α and β using a fitting method. To evaluate the error
function for a given solution (α, β), the deterministic part of the system (5) is first solved
numerically. This solution is then used to construct a clamped cubic spline interpolation
function that can be evaluated to obtain values for R and F at the various tj’s appearing in
the error function.

Table 2 reports the average values of the parameters obtaind using the Nelder–Mead
algorithm as a function of the number of trials and the number of iteration steps. The initial
point is R(0) = 150, F(0) = 50, and the parameters are α = 0.05, β = 2 and 0 ≤ t ≤ 5.

Table 2. Estimated average values of the parameters obtained using the Nelder–Mead algorithm as a
function of the number of trials and the number of iteration steps for α = 0.05, β = 2, and 0 ≤ t ≤ 5.

Trials Steps α β

1 59 0.04972620 1.933725
5 60 0.04924106 1.922077
10 62 0.05020194 1.929457

100 61 0.05099946 2.071467
1000 58 0.05018393 1.935545

Given these results, it is perhaps most surprising that our algorithm achieves good
approximation of the actual parameters with just a single trial. On the other hand, we note
that the performance of the algorithm is achieved with few iterations, regardless of the
number of trials.

For graphical illustration, we have plotted (see Figure 1) the phase space corresponding
to a stochastic simulation of the Lotka–Volterra model with the estimated parameters (red
colour) and the actual parameters (blue colour). The results are shown for a single trial (left
panel) and the average over 100 trials (right panel). We also plotted the average values of
the parameters as a function of the number of trials (see Figure 2).
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Figure 1. Predator–prey model. Phase space corresponding to a stochastic simulation of the Lotka–
Volterra model using the estimated parameters (red color) compared to the actual ones (blue color).
Results are shown for a single trial (left panel) and average over 100 trials (right panel).
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Figure 2. Predator–prey model. Average values of the parameters estimated using the Nelder–Mead
algorithm as a function of the number of trials.

3. A Stochastic SIS Model with Deaths

Here, we review the main points of the SIS model with demography [20,21]. In this
paper, we consider an infection model of the population where only deaths of infected
individuals are considered. The changes and their first-order probabilities in the 4t are
those in Table 3.

Table 3. Population changes and probabilities of infection, death, and recovery of infected individuals.

Change Propability

∆X(1) = (−1, 1)T p1 = α SI/(S + I) ∆t
∆X(2) = (0,−1)T p2 = β I ∆t
∆X(3) = (1,−1)T p3 = γ I ∆t

As in the previous example, the mean and variance were calculated according to [18]
(p. 148) and using Symbolic Math Toolbox of Matlab©. The obtained stochastic model
is then:

d
(

S
I

)
=

(
µ1(S, I)
µ2(S, I)

)
dt + B(S, I)

(
dW1
dW2

)
, t > 0, (7)

where

µ1(S, I) = − α S I
S + I

+ γ I, µ2(S, I) =
α S I
S + I

− (γ + β) I,
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and

B(S, I) =
1
q

γI + p +
αSI

S + I
−γI − αSI

S + I

−γI − αSI
S + I

γI + βI + p +
αSI

S + I

,

with

p2 = γ β I2 +
α β S I2

S + I
and q2 = 2 γ I + β I + 2 p +

2 α S I
S + I

.

The deterministic version of this model is given by

dS
dt

= − α S I
S + I

+ γ I, (8)

dI
dt

=
α S I
S + I

− (γ + β) I.

The asymptotic behavior of this system depends on the basic reproduction number
R = α/(γ + β), and according to [22], this model reaches a disease-free equilibrium
when R ≤ 1. In this paper, we consider the particular case with the parameters α = 0.0429,
β = 0.00137, and γ = 0.02011, such that R = 1.9972 > 1.

Fitting Model to Data

For this model, the error function is given as a function of three parameters,

E(α, γ, β) =
n

∑
j=1
{| S(tj)− Sj|2 + |I(tj)− Ij|2 }, (9)

where Sj and Ij refer to the average stochastic data over a number of trials using the Euler–
Maruyama method, while S(t) and I(t) are the solution of the deterministic equations.

The results given in Table 4 were obtained with initial conditions R(0) = 150, F(0) = 50,
and parameters α = 0.0429, γ = 0.02011, β = 0.00137, and 0 ≤ t ≤ 300. The phase space
corresponding to a stochastic simulation of the SIS model with the estimated parameters
(red colour) and the actual parameters (blue colour) is shown in Figure 3.

Unlike the Lotka–Volterra model, the SIS model appears to be more sensitive to
random data and requires averaging stochastic data over a sufficient number of trials
to obtain good estimates for the parameters. As can be seen in Figure 4, the estimated
parameters converge toward the actual values as the number of trials increases.

Table 4. Average values of the parameters estimated using the Nelder–Mead algorithm as a function
of the number of trials. The number of required iteration steps to achieve these estimated parameters
is also reported. The values of actual parameters are α = 0.0429, γ = 0.02011, β = 0.00137.

# Trials # Steps α γ β

1 47 0.0823 0.0375 0.0057
5 51 0.0453 0.0188 0.0019
10 43 0.0425 0.0156 0.0017
50 47 0.0387 0.0159 0.0014

100 48 0.0345 0.0126 0.0013
1000 46 0.0390 0.0155 0.0013
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Figure 3. SIS model. Phase space corresponding to a stochastic simulation using the estimated
parameters (red color) compared to the actual ones (blue color). Results are shown for a single trial
(left panel) and average over 100 trials (right panel).
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Figure 4. Average values of the parameters estimated using the Nelder–Mead algorithm as a function
of the number of trials.

4. A Chemical-Reaction Model

In our third experiment, we consider the Michaelis–Menten model for chemical reac-
tions. In this model, we consider a system with four nonnegative variables: S1(t), S2(t),
S3(t), and S4(t), which refer to the concentrations of substrate, enzyme, complex, and
product, respectively. These chemical reactions are described in the following form:

S1 + S2
k1−→ S3,

S3
k2−→ S1 + S2,

S3
k3−→ S4 + S2.

where k1, k2, and k3 are the reaction constants.
To construct the stochastic system, we define the new variables

Xi(t) = Si(t) · nA ·Vol, i = 1, · · · , 4, (10)

where nA ≈ 6.023× 1023 is the Avogadro’s number. The possible random changes at each
time step4t are given in Table 5 where

a1(t) = k1 X1(t)X2(t), a2(t) = k2 X3(t), a3(t) = k3 X3(t). (11)
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Table 5. Possible change in X = (X1, X2, X3, X4)
T and their probabilities.

Change Propability

∆X(1) = (−1,−1, 1, 0)T p1 = a1(t) ∆t
∆X(2) = (1, 1,−1, 0)T p2 = a2(t) ∆t
∆X(3) = (0, 1,−1, 1)T p3 = a3(t) ∆t

In this paper, we set the values of the parameters as given in [23]. The molecular data
corresponding to concentrations within a volume of Vol = 10−15 liters are given as follows:

X1(0) = 5× 10−7(nA ×Vol), X2(0) = 2× 10−7(nA ×Vol), X3(0) = 0, X4(0) = 0,

k1 =
106

(nA ×Vol)
, k2 = 10−4, k3 = 10−1,

Following [24], we obtain a stochastic differential system with four independent Brownian
motions and show that is equivalent to the chemical Langevin model (see e.g. [25–27] or [28]), i.e.,

dX(t) =
3

∑
j=1

vjaj(X(t)) +
3

∑
j=1

vj

√
aj(X(t))dWj(t), (12)

with only three independent Brownian motions and the state change vectors

v1 =


−1
−1

1
0

, v2 =


1
1
−1

0

, v3 =


0
1
−1

1

,

we will use this second model (12) because it is easier to simulate.

Fitting Model to Data

Following the same procedure as in the previous two cases, the error function is

E(k1, k2, k3) =
n

∑
j=1

(
3

∑
i=1
| Xi(tj)− (Xi)j|2

)
, (13)

where (Xi)j refer to the average stochastic data over a number of trials using the Euler–
Maruyama method, while Xi(tj) are the solution of the deterministic equations.

The average values of the estimated parameters obtained by the Nelder–Mead al-
gorithm as a function of the number of trials and the number of iterations are given in
Table 6.

Table 6. Average values of the parameters obtained using the Nelder–Mead algorithm as a function
of the number of trials and the number of iteration steps. The original values of parameters are
k1 = 0.0017, k2 = 0.0001, and k3 = 0.1.

# Trials # Iteration k1 k2 k3

1 41 0.0014 0.0001 0.1134
5 42 0.0016 0.0002 0.1074
10 44 0.0016 0.0004 0.1179
50 41 0.0016 0.0002 0.1141

100 42 0.0016 0.0002 0.1131
1000 37 0.0016 0.0002 0.1146

In this case, the achieved results are less dependent on the level of randomness of
the data and show a stable behavior as can be seen in Figure 5. We also plotted the phase
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space corresponding to a stochastic simulation of the Higham chemical model using the
estimated parameters (red color) compared to the actual parameters (blue color). The
results are shown in Figure 6 for a single trial (left panel) and the average over 100 trials
(right panel).
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Figure 5. Average values of the parameters estimated using the Nelder–Mead algorithm as a function
of the number of trials.
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Figure 6. Phase space corresponding to a stochastic simulation of the Higham chemical model using
the estimated parameters (red color) compared to the actual parameters (blue color). The results are
shown for a single trial (left panel) and average over 100 trials (right panel).

5. Conclusions

The main conclusion we draw from our research is that the fitting procedure used
in this paper to determine parameters from data is valid even when the data come from
stochastic models. The approach has been successfully tested on three stochastic models
from different domains. Moreover, in all cases it seems that few samples are sufficient to
obtain good estimates for the parameters.

We wonder if this procedure will be applicable in general SDE. The error function (2)
for nrum large can be written as

E(α1, · · · , αp) =
n

∑
j=1

(
Xd(tj)− E(Xj)

)2
, (14)

assuming that the mean of the stochastic solution equals the deterministic solution. In
particular when the drift is linear is true [12] (p. 66) but is false when the SDE is nonlinear,
for example, the SDE

dX(t) = − 0.25 X3(t) + 0.5 X2(t) dW(t), X(0) = 0.5, (15)

the mean satisfies E(X(t)) = 0.5− 0.03125t, while the solution of the deterministic part is

Xd(t) =
2√

2t + 16
.



Fractal Fract. 2022, 6, 707 9 of 10

However, for our models, the procedure achieves excellent results. Perhaps the
previous hypothesis applies to our models; we do not know at the moment.

Consistent with the work and our preliminary studies, techniques developed in recent
years [29,30] for discovering nonlinear dynamical equations from data, without making
assumptions about the underlying equations of motion, appear to work with stochastic
data and provide promising results. In the future, we plan to investigate various differ-
ential models and attempt to discover their dynamics using data from the corresponding
stochastic models.

On the other hand, since derivatives of a non-integer order [31] are a natural generaliza-
tion of the ordinary differentiation of integer order, mathematical models using fractional-
order differential equations have proven to be a suitable tool to study and understand tem-
poral memory and intrinsic dissipative processes in many physical and biological systems.
To our knowledge, however, there have been few attempts to estimate the parameters
of fractional-order stochastic systems. In [32], the authors investigated estimation prob-
lems for difusion processes satisfying SDEs driven by mixed fractional Brownian motion.
In the future, we hope to be able to extend the approach presented in this paper to consider
fractional-order SDEs.
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