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Abstract: A common approach to the pixel-by-pixel atmospheric correction of satellite water colour
imagery is to calculate aerosol and water reflectance at two spectral bands, typically in the near
infra-red (NIR, 700–1000 nm) or the short-wave-infra-red (SWIR, 1000–3000 nm), and then extrapolate
aerosol reflectance to shorter wavelengths. For clear waters, this can be achieved simply for NIR
bands, where the water reflectance can be assumed negligible i.e., the “black water” assumption.
For moderately turbid waters, either the NIR water reflectance, which is non-negligible, must be
modelled or longer wavelength SWIR bands, with negligible water reflectance, must be used. For
extremely turbid waters, modelling of non-zero NIR water reflectance becomes uncertain because
the spectral slopes of water and aerosol reflectance in the NIR become similar, making it difficult
to distinguish between them. In such waters the use of SWIR bands is definitely preferred and
the use of the MODIS bands at 1240 nm and 2130 nm is clearly established although, on many
sensors such as the Ocean and Land Colour Instrument (OLCI), such SWIR bands are not included.
Instead, a new, cheaper SWIR band at 1016 nm is available on OLCI with potential for much better
atmospheric correction over extremely turbid waters. That potential is tested here. In this work, we
demonstrate that for spectrally-close band triplets (such as OLCI bands at 779–865–1016 nm), the
Rayleigh-corrected reflectance of the triplet’s “middle” band after baseline subtraction (or baseline
residual, BLR) is essentially independent of the atmospheric conditions. We use the three BLRs
defined by three consecutive band triplets of the group of bands 620–709–779–865–1016 nm to
calculate water reflectance and hence aerosol reflectance at these wavelengths. Comparison with
standard atmospheric correction algorithms shows similar performance in moderately turbid and
clear waters and a considerable improvement in extremely turbid waters.

Keywords: remote sensing of ocean colour; OLCI; atmospheric correction; extremely turbid waters

1. Introduction

The National Aeronautics and Space Administration (NASA) SeaDAS standard atmospheric
correction algorithm applied to MODIS (Moderate Resolution Imaging Spectroradiometer) imagery
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uses two bands in the near infra-red (NIR) at 765 and 865 nm, assuming zero water-leaving radiance
contribution (“black water” hypothesis) at these bands (Gordon and Wang 1994 [1]) or, for turbid
waters, modelling the NIR water reflectance with an iterative process (Stumpf et al., 2003 [2]). The
aerosol reflectance at the NIR bands is then used to estimate aerosol properties and hence extrapolate
aerosol reflectance (and diffuse transmittance) to the visible (VIS) bands. For extremely turbid waters,
(e.g., ρw(865 nm) > 0.02 with suspended particulate matter (SPM) concentration above 100 g/m3),
this procedure may fail because of one or more problems:

P1. The NIR water reflectance spectrum becomes flatter (Doxaran et al., 2002 [3]) and hence more
similar to aerosol reflectance spectra (Ruddick and Vanhellemont 2015 [4]);

P2. At high reflectance the simple analytic models of NIR water reflectance as polynomial expansions
of the Gordon parameter (the ratio of bb

a+bb
) are no longer accurate (Ruddick et al., 2006 [5]) and

better modelling is needed (Lee et al., 2016 [6], Luo et al., 2018 [7]);
P3. Top of atmosphere (TOA) reflectance may even exceed the photodetector saturation values of

certain ocean colour sensors rendering these wavelengths unusable (Dogliotti et al., 2011 [8]).

In these cases, improvements to the standard “NIR-extrapolation” procedure are needed. One
approach is to apply the black water assumption at bands in the short-wave-infra-red (SWIR) (e.g., 1240,
1640 and 2130 nm in MODIS), where water absorption is much higher giving negligible water-leaving
radiance even in highly turbid waters (Wang and Shi 2005 [9]). Although the European Space
Agency’s (ESA) Ocean and Land Colour Instrument (OLCI) on Sentinel-3 lacks far-SWIR bands
(e.g., 1240 nm, 2130 nm in MODIS), it incorporates a new SWIR band at 1016 nm (nominally 1020
nm, although here the value of 1016 nm is preferred, which corresponds to the mean wavelength of
the spectral response function of the band). While the black water assumption does not hold at 1016
nm for extremely turbid water (Knaeps et al., 2012 [10]), the pure water absorption is much higher
at this band than at the NIR, meaning that the flattening of the NIR water reflectance spectrum in
extremely turbid waters (P1) does not extend to 1016 nm—with inclusion of this band, water-reflectance
spectra have clearly different shape from aerosol reflectance spectra and decomposition of the TOA
(or Rayleigh-corrected) reflectance into water and aerosol reflectance components can be achieved.
NIR/SWIR extrapolative algorithms are the most conventional but clearly not the only possible
approach to atmospheric correction. Considerable success has also been achieved by full spectrum
coupled water-atmosphere optical models which use an optimization or iterative approach to obtain a
best-fitting combination of water and atmosphere unknowns, such as in, e.g., Doerffer and Schiller
2007 [11], Chomko and Gordon 2001 [12]. Such approaches have even achieved extraordinary success
in removing strong but spectrally simple sunglint (e.g., POLYMER, Steinmetz et al., 2011 [13]) and tend
to always provide a water reflectance spectrum that looks like water, avoiding for example negative
reflectances, and proving very robust even for data with calibration bias. The operational potential of
such approaches is fully recognized, but the extrapolative approach is preferred here because each
step of the process has a clear physical basis, facilitating troubleshooting and improvement. For
example, a poor water reflectance model or inaccurate calibration or inappropriate aerosol model
will be clearly made evident with an extrapolative approach but may be less obvious with a full
spectrum coupled water–atmosphere approach. In this work, we design a pixel-by-pixel aerosol
correction algorithm for turbid waters by identifying, for the OLCI Red-NIR-SWIR (RNS) bands,
“atmospheric invariant” quantities which are sensitive to water reflectance but insensitive to aerosols,
e.g., Philpot 1991 [14]. This approach is based on the fact that in the RNS region, aerosol reflectance is
spectrally smoother than water reflectance (Ruddick and Vanhellemont 2015 [4]). To calculate directly
the water reflectance, assuming only that aerosol reflectance is spectrally smooth, a “baseline residual”
(BLR) algorithm is proposed here for Rayleigh-corrected reflectances at 3 RNS bands. A baseline is
formed between the shortest and longest wavelength of the triplet and is subtracted from the middle
wavelength to give the BLR. This approach is similar to that adopted, for example, in the fluorescence
line height product (Letelier and Abott 1996 [15]) and gives a quantity, the BLR, that is invariant under
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spectrally-linear (or sufficiently smooth) signal addition. By calculating three different atmospherically
“quasi-invariant” BLRs, defined by the Rayleigh-corrected (RC) reflectances at triplets (620–709–779 nm),
(709–779–865 nm) and (779–865–1016 nm), and by applying over them an “equivalent transmittance”
correction factor, it is then possible to calculate water reflectance in the RNS on a pixel-by-pixel
basis even in the case of extremely turbid waters. Once the RNS water reflectance is calculated, the
atmospheric correction can then revert to standard NIR/SWIR extrapolative algorithms by removing
water reflectance from the Rayleigh-corrected reflectance to give aerosol reflectance in the RNS and
then estimating an aerosol type and concentration in the NIR/SWIR and using tabulated models to
extrapolate aerosol reflectance to all wavelengths as in Gordon and Wang 1994 [1]. Alternatively, if a
full spectrum atmospheric correction is not required, it is possible to use the RNS water reflectance
directly to estimate products such as turbidity (Dogliotti et al., 2015 [16], Dogliotti et al., 2016 [17])
or SPM (Nechad et al., 2010 [18], Shen et al., 2010 [19], Moreira et al., 2013 [20]), or chlorophyll-a
concentration in turbid waters (Gilerson et al., 2010 [21], Gitelson 1992 [22], Gons et al., 2005 [23]).

2. Materials and Methods

The following subsections describe the different datasets used to calibrate and validate the
algorithm.

2.1. In Situ Radiometric Measurements

In the present study, in situ above-surface radiometric measurements were used: (i) as input to
radiative transfer simulations to compute a transmittance factor to be applied to BLRs (see Sections 2
and 2.6) to compare between in situ and OLCI-derived BLRs (see Section 3.1). A total of 105 water
reflectance measurements were selected from several field campaigns (2012–2015) performed in the
Río de la Plata (RdP) (Argentina), a funnel-shaped estuary located at Eastern-Central South America
(Figure 1), with mean suspended particulate matter concentrations (SPM) in the range 100–200 g/m3,
reaching up to 400 g/m3 (Framiñan and Brown 1996 [24]). The Analytic Spectral Devices (ASD
FieldSpec FR) spectroradiometer works in the spectral range of 350–2500 nm (step 1 nm) and was
used to measure upwelling and downwelling radiances, just above surface (L0+

u and L0+
d , resp.) at

relative azimuth to sun of either 135° or 90° and reciprocal zenithal angles of θ = ±40° (angles in
accordance with Mueller et al., 2003 [25]), and downwelling irradiance (E0+

d ) inferred from measuring
nadir radiance at a calibrated quasi-lambertian plaque and multiplying it by π. These are combined to
compute the above-surface water reflectance, ρ0+

w :

ρ0+
w (λ, W) = π

L0+
u (λ)− ρM(W)L0+

d (λ)

E0+
d (λ)

(1)

where ρM(W) is the surface radiance reflectance factor taken from Mobley 1999 [26], which depends on
the wind speed, W. The measurement protocol is detailed in Knaeps et al., 2012 [10], and follows the
generic “Abovewater method 2” of the NASA 2003 Ocean Optics Protocols (Mueller et al., 2003 [25]).
Hereafter, the superscript “0+” will be dropped from ρ0+

w for brevity. The following statistical quality
control tests were applied to select only good quality spectra:

1. std(ρw(750)) < 0.05
2. max{CV(ρw(400 : 900))} < 20%
3. CV(ρw(1016)) < 20%

where CV stands for coefficient of variation (CV = std/mean, std = standard deviation calculated
over 7 replicates), ρw(750) is the water reflectance at 750 nm derived from in situ measurements and
ρw (400:900) is the in situ water reflectance in the range 400–900 nm.
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Figure 1. Location of the set of above-water reflectance measurements (red dots) taken from several
field campaigns in the Río de la Plata (Argentina) in the period 2012–2015.

2.2. Radiative Transfer Simulations

Simulations were performed to compare the behavior of BLRs computed from above-water
reflectances, BLR(ρw), and BLRs computed from RC reflectances, BLR(ρRC), and also to establish
an equivalent transmittance factor to be applied to BLRs computed from RC reflectances from OLCI
scenes (see Section 2.6). In situ radiometric measurements were used as an input to the CNES-SOS
v5.0 (Centre National d’Études Spatiales-Successive Orders of Scattering) radiative transfer (RT)
code (Lenoble et al., 2007 [27]) to test how water reflectance baseline residuals (defined in Equations
(5)–(6)) relate to Rayleigh-corrected baseline residuals taking account of atmospheric transmittance.
CNES-SOS was developed to solve the vector RT equation for marine and terrestrial environments
using a plane-parallel assumption. In our simulations, the surface reflectance is composed of: (i) a
component that accounts for air-water interface effects, modelled as a function of surface wind speed
(Cox and Munk 1954 [28]), and (ii) a component, which is assumed to be Lambertian, that accounts for
radiation that interacts with the in-water constituents (also called above-water reflectance, ρw, Equation
(1), or water-leaving radiance reflectance).

Combining all the in situ spectra with a set of multiple simulated atmospheric conditions, a
total of 70875 Rayleigh-corrected (RC) reflectance spectra (Table 1) were computed with CNES-SOS
RT code, corresponding to: 3 solar and viewing zenith angles at 0°, 30° and 60° (interpolated
from the Gaussian quadrature angles [27]), 5 sun-relative azimuth angles in the range 0–180° (step
45°) (where 0° represents viewing into sunglint), 3 aerosol granulometries and refractive indices
of type “Continental” (WMO-C), “Maritime” (WMO-M) and “Urban” (WMO-U) (from the World
Meteorological Organization aerosol optical models [29]), 5 aerosol optical depths at 500 nm in the
range 0–0.4 (step 0.1) and 105 in situ water reflectances (Section 2.1). The relative refractive index of
the water-air interface was fixed at 1.334 throughout the spectrum and the wind speed fixed at 3 m/s.
Rayleigh scattering from air molecules was set according to the values of Rayleigh optical thickness
and depolarization factor reported by Bodhaine et al., 1999 [30], see also Mobley et al., 2016 [31]. The
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molecular and aerosol vertical profiles were set to follow exponential decay functions of e-folding
scales of 8 km and 2 km, respectively. The code was set to not exceed 20 orders of scattering and to
include the effects of polarization.

Table 1. Atmospheric, surface, geometric and spectral parameters used as input to the set of CNES-SOS
simulations.

CNES-SOS Parameter Input Values

λ (Wavelength) 615–1040 nm (step 5 nm)
θs (Solar zenith angle) 0°–60° (step 30°)

θv (Viewing zenith angle) 0°–60° (step 30°)
∆φ (Relative azimuth angle) 0°–180° (step 45°)

ρw (Water reflectance) ASD in situ (RdP)
W (Wind speed) 3 m/s

nw (Relative air-water refractive index) 1.334
τray (Rayleigh optical thickness) Bodhaine et al., 1999 [30]

δray (Molecular depolarization factor) Bodhaine et al., 1999 [30]
Hray (Molecular e-folding height) 8 km

τaer (Aerosol optical thickness at 500 nm) 0:0.1:0.4
dVaer/dlnr (Aerosol granulometry) WMO-C, -M, -U [29]

Haer (Aerosol e-folding height) 2 km
nmax (Maximum scattering order) 20

Ipol (Polarization flag) 1 (consider polarization)

To obtain the Rayleigh-corrected reflectances of the set, the code was run twice to compute the
Top-of-Atmosphere reflectance (ρSOS

TOA): (i) using the input values specified by Table 1, and (ii) assuming
a black marine environment (ρw = 0), and without aerosol content (ρa = 0). The second set was
subtracted from the first to compute the RC signal, as it would be calculated in the atmospheric
correction step of a satellite data processor:

ρSOS
RC = ρSOS

TOA(Air + Inter f ace + Aerosols + Water)− ρSOS
TOA(Air + Inter f ace) (2)

2.3. Ocean and Land Colour Instrument (OLCI) Imagery

OLCI L1B and L2 imagery were downloaded from the Copernicus Online Data Access (CODA)
system on 1 February 2018 [32]. The L1B and L2 imagery used in this work correspond to the
processing baseline v2.23 [33]. The detailed list of scenes from Río de la Plata (RdP), Bahía Blanca (BBl,
Argentina) and Belgian Coast (BE) used to calibrate and test performance of the algorithm is shown in
Table 2. Before entering the BLR calculations, two preliminary corrections were applied to the L1B
images. Firstly, a “PPE correction” is made to remove occasional pixel artifacts caused by prompt
particle events (PPEs) following the algorithm proposed by Gossn 2018 [34]. PPEs are caused by
magnetospheric particles hitting OLCI’s charge-coupled devices (CCDs) and generating across-track
stripes of anomalous radiance values. PPEs are highly likely to occur over the South Atlantic Anomaly
where Río de la Plata is located (D’Amico et al., 2015 [35]). Secondly, a “Rayleigh correction” is applied,
using SeaDAS v7.5 (Bailey et al., 2010 [36], Stumpf et al., 2003 [2]), to remove the path radiance expected
from a pure Rayleigh atmosphere with black sea. This gives the Rayleigh-corrected (RC) reflectance at
all OLCI bands of interest, the ρS product in SeaDAS.
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Table 2. List of Ocean and Land Colour Instrument (OLCI) scenes from Río de la Plata (L1B, processing
baseline v2.23) used to calibrate and validate the algorithm, described by date of acquisition.

Region Aquisition Date-Time Calibration/Validation
Window (s)

Fix Window
Atmospheric
Correction
(Fix-AC) Window

Cal/Val

yyyy-mm-ddThh:mm:ssZ lines; pixels lines; pixels Cal

RdP 2016-08-17T12:55:02Z 1347–1636; 1258–1528 1750–1764; 1143–1157 Cal

RdP 2016-11-10T12:51:59Z 1057–1446; 521–685 1598–1612; 567–581 Cal

RdP 2016-11-29T12:58:49Z 1643–1796; 1218–1332 2117–2131; 1267–1281 Cal

RdP 2017-01-14T13:06:26Z 2254–2589; 838–1052 2655–2669; 1155–1169 Cal

RdP 2017-03-13T13:02:29Z 1890–2013; 1177–1258
2044–2124; 1130–1256

2140–2154; 1462–1476 Cal

RdP 2017-05-01T13:32:08Z 4301–4525; 1126–1177
4381–4561; 1216–1356

4549–4563; 1271–1285 Cal

RdP 2017-07-02T13:24:47Z 3761–3840; 1220–1254 4133–4147; 1498–1512 Cal

RdP 2017-10-15T13:02:34Z 1586–1927; 1088–1182 2460–2474; 1635–1649 Cal

RdP 2017-11-19T12:54:31Z 1355–1576; 2252–2366
1367–1718; 2108–2247
862–1262; 2025–2108

1895–1909; 2178–2192 Cal

BE 2016-07-19T10:00:32Z 1613–1823; 1525–1649 1497–1511; 1790–1804 Val

BBl 2016-10-09T13:22:33Z 2359–2701; 970–1094 2917–2931; 1077–1091 Val

RdP 2017-10-31T12:47:47Z 724–927; 1398–1452 1104–1118; 1774–1788 Val

RdP 2017-01-21T13:24:42Z Full RdP Not applied Val

RdP 2016-06-08T13:09:51Z Full RdP Not applied Val

RdP 2017-12-12T12:59:01Z Full RdP Not applied Val

The NASA/SeaDAS and ESA standard atmospheric corrections were also applied to OLCI
imagery to compare performances with the present scheme: (i) l2gen script from NASA’s SeaDAS
(Bayley et al., 2010 [36], Stumpf et al., 2003 [2]) was run with aerosol option “−2”, i.e., assuming an
iterative procedure to find the optimum aerosol model using bands 865 nm and 1016 nm (termed
SeaDAS-2 (865, 1016) hereafter), and (ii) ESA’s standard atmospheric correction (as performed for L2
imagery, processing baseline v2.23), that combines the baseline atmospheric correction (BAC, Antoine
and Morel 1999 [37]), which is essentially a NIR-based black water approach, together with the bright
pixel atmospheric correction (BPAC, Moore et al., 1999 [38]), which calculates first the NIR water
reflectance from an iterative approach.

2.4. Algorithm Theoretical Basis

Consider the following expression for the total reflectance at TOA (cf. Gordon and Wang 1994,
Equation (1) [1]):

ρTOA = π
LTOAd2

ETOAcos(θs)
(3)

where LTOA is the total radiance at TOA, d the Sun-Earth distance in Astronomical Units, ETOA is
the solar extraterrestrial irradiance at TOA and θs is the solar zenith angle. A first step common to
all atmospheric correction schemes is to estimate the Rayleigh-corrected reflectance (ρRC), which is
obtained by subtracting the path radiance expected from a pure Rayleigh atmosphere with black sea
(ρR) produced by air molecules from the total signal at TOA, Mobley et al., 2016 [31]:
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ρRC = ρTOA − ρR (4)

The aerosol correction scheme presented here is based on a pixel-by-pixel approach called here
baseline residual (BLR), which is the difference between the signal at a “middle” (M) band (i.e., of
intermediate wavelength in a triplet of bands) and the value of the baseline formed by the signals at
the left (L) and right (R) bands at this middle wavelength, as illustrated in Figure 2. In this work, we
use BLRs computed using Rayleigh-corrected (RC) reflectances, so we define BLR(ρRC) as follows:

BLR(ρRC)(λL, λM, λR) = ρRC(λM)− BL(ρRC)(λM|λL, λR) (5)

where λL, λM and λR stands for the left, middle and right wavelength of the triplet, ρRC(λM) is the
RC reflectance at λM and BL(ρRC)(λM|λL, λR) is the baseline term, given by:

BL(ρRC)(λM|λL, λR) =
ρRC(λL)(λR − λM) + ρRC(λR)(λM − λL)

λR − λL
(6)

Figure 2. (a) RGB Composite of OLCI-A image on the Río de la Plata, OLCI-A 2017-10-31T12:47:23Z,
using Rayleigh-corrected (RC) reflectances at 620 nm (R) 560 nm (G) and 442 nm (B). (b) RC reflectances
of the red, near-infrared, short-wave-infra-red (RNS) bands used for the baseline residual atmospheric
correction (BLR-AC) approach at the sites A, B and C, together with the BLR values.

Other precursor algorithms in the ocean colour field that use BLRs, include the fluorescence
line height (FLH [15]), defined for MODIS as the BLR of the normalized water-leaving radiances at
bands 665 nm, 677 nm and 746 nm, i.e., FLH = BLR(nLw)(665, 677, 746); the floating algal index
(FAI, Hu 2009 [39]), defined also for MODIS as the BLR of Rayleigh-corrected reflectances at 645 nm,
859 nm and 1240 nm, i.e., FAI = BLR(ρRC)(645, 859, 1240), the maximum chlorophyll index for MERIS
(MCI, Gower and King 2008 [40]), which can be expressed as MCI = BLR(LTOA)(681, 709, 754), or
the synthetic chlorophyll index (SCI, Shen et al., 2010 [19]), which is computed using remote-sensing
reflectances as SCI = −BLR(Rrs)(620, 665, 681)− BLR(Rrs)(560, 620, 681) (these bands correspond to
the cases of MERIS and OLCI). In some cases these approaches (FLH, SCI) are implemented after an
aerosol correction, while in other cases (FAI, MCI) no aerosol correction is applied. Nevertheless, all
such approaches are similar in the sense that BLR indexes are essentially unaffected by undesirable
signal such as aerosol and/or moderate sun glint (and hence also to typical errors in the process of
removal of this signal), since these components are generally spectrally smoother than the in-water
signal, especially in the RNS region. Mathematically, if we consider the atmospheric signal “ρatm”
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inside the spectral range determined by the band triplet (λL, λM, λR) to be as “smooth” as possible,
i.e., of linear wavelength dependence, ρatm(λ) = mλ + b, then BLR(ρatm)(λL, λM, λR) = 0.

The atmospheric correction algorithm presented here was designed taking into consideration that
the dependence of BLRs on atmospheric components is best minimized by computing BLRs from RC
reflectances at spectrally-close bands, and for longer wavelengths (λ > 600 nm), to reduce the impact of
uncertainties in Rayleigh correction, including coupled aerosol-Rayleigh scattering (see Section 2.5 for
further reasons). This can be illustrated by considering the following decomposition of RC reflectance,
(cf. Gordon and Wang 1994, Equation (2) [1]):

ρRC(λ) = ρa(λ) + T(λ)ρg + t(λ)ρw(λ) (7)

where each term accounts for photons that arrive at the sensor after: having interacted with aerosols or
with both aerosols and molecules (expressed in a summarized form as ρa); being specularly reflected
by the water surface (sunglint) (T(λ)ρg, where T(λ) is the direct atmospheric transmittance), and
having interacted with the in-water components (t(λ)ρw(λ), where t(λ) is the diffuse atmospheric
transmittance). Based on typical aerosol types and concentrations such as the modes reported by the
World Meteorological Organization (WMO) [29], or by Shettle and Fenn 1979 [41], aerosol reflectances
can, in most cases, be modelled as exponential functions of wavelength if considering a sufficiently
short bandwidth (see Gordon and Wang 1994 [1], Figure 1):

ρa(λi=L,M,R) ≈ ρa(λL)e
−c λi−λL

λL (8)

where c is related to the aerosol type and ρa(λL) is the amplitude at λL. Typically (but not always) c > 0,
describing a monotonically decreasing wavelength dependence. In particular, in a sufficiently short
spectral range, e.g., 250 nm in the RNS, the aerosol reflectance can be approximated as a linear function
of wavelength, at least compared to the stronger spectral variability of turbid water reflectance:

ρa(λL)e
−c λi−λL

λL ≈ ρa(λL)

(
1− c

λi − λL
λL

)
(9)

If Equation (9) holds for the spectral range involved in the calculation of BLR (i.e., from λL to
λR), the aerosol term does not contribute to BLR(ρRC)(λL, λM, λR), i.e.,: BLR(ρa)(λL, λM, λR) ≈ 0
Finally, the sunglint term, at least in a moderate regime, is essentially a white term, especially in short
spectral ranges in the RNS region, where we can consider ∂T(λ)

∂λ ≈ 0, i.e., negligible contribution to
BLR(ρRC). Thus, considering any triplet of spectrally close bands in the RNS implies a near-linear
spectral dependence of the atmospheric-interface terms in the RC reflectance decomposition. Thus the
BLR(ρRC) depends mainly on the in-water term:

BLR(ρRC)(λL, λM, λR) ≈ BLR(tρw)(λL, λM, λR) (10)

2.5. Band Choice

In this study, we have chosen to use the RC reflectances computed from the OLCI bands
at 620, 709, 779, 865 and 1016 nm. These 5 bands span a R5 space, from which we obtained
three successive linearly-independent BLRs: BLR(ρRC)(620, 709, 779), BLR(ρRC)(709, 779, 865) and
BLR(ρRC)(779, 865, 1016). These bands have been chosen in order to i) maximize the impact of the
(turbid) water signal on BLR(ρRC), and simultaneously ii) minimize the impact of the atmospheric
components. Other OLCI bands inside this spectral region were not considered, e.g., those in the
range 760–770 nm and the band centered at 940 nm, as they are strongly affected by absorption of
atmospheric components such as O2 (oxygen) and H2Ov (water vapour). OLCI bands in the range
660–690 nm are also avoided because the water reflectances there can be affected by chlorophyll
absorption and fluorescence.
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2.6. Transmittance Factor Treatment

The diffuse transmittance factor in Equation (10), accounts for the fact that photons may interact
with atmospheric constituents on the path from sun to water and/or from water to sensor. Since it is a
second order correction factor, we will assume an equivalent spectrally white diffuse transmittance
inside each band triplet, whose expression might depend on geometric conditions and aerosol
properties, i.e., as an approximation of Equation (10):

BLR(tρw)(λL, λM, λR) ≈ tBLR(θs, θv, ∆φ, AER)BLR(ρw)(λL, λM, λR) (11)

where θs and θv account for the solar and sensor zenith angles, resp.; ∆φ is the sun-sensor azimuth
angle difference, and AER stands for the dependence on aerosol type and concentration. Generally,
we expect tBLR to be less than (but close to) unity.

To show how the atmosphere affects BLRs computed from the selected bands, Figure 3 shows the
relation between BLR(ρw) computed from in situ measurements, (applying OLCI spectral response
functions [42] and Equation (5)) and the corresponding BLR(ρRC), calculated from simulations made
with the CNES-SOS radiative transfer code (see Section 2.2, Table 1). In Figure 3b–d, for each BLR(ρw)

computed from the associated input water reflectance, a vertical line (inter-percentile range between
percentiles 5 and 95, IPR(5,95)) is shown together with the extreme values (represented by “∗”),
corresponding to the set of computed RC reflectances for the combination of all possible atmospheric
conditions described in Table 1. As a general rule, BLR(ρRC) tend to present lower absolute values
than BLR(ρw), as suggested by the slopes of the linear regressions (i.e., m < 1). In terms of spectral
shape, lower absolute BLRs are associated with spectrally smoother signals, which is consistent with
an equivalent transmittance factor smaller than 1 (see Equations (10) and (11)). All scenarios associated
to the min/max values, represented by “∗”, correspond to cases where the sensor is positioned at
reciprocal angles from the sun (i.e., direct sun glint). Apart from these exceptional cases, the low
offsets computed for the linear regressions (b), are consistent with the assumptions taken to reach
Equation (10), i.e., BLR(ρa + Tρg) ≈ 0.
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Figure 3. (a) Hyperspectral reflectances obtained from in situ radiometric measurements (Section 2.1),
used as input to CNES-SOS radiative transfer code (Section 2.2). Relation between BLR(ρw) (from
in situ measurements) vs. BLR(ρRC) (from in situ measurements and simulations) for triplets
(620, 709, 779) (b), (709, 779, 865) (c) and (779, 865, 1016) (d).

It was observed, from the whole set of simulations, that the dependence of tBLR on the geometric
conditions could be reduced to a single variable, the air mass factor, µ = 1

cos(θs)
+ 1

cos(θv)
, since, except

for the cases of direct sun glint, the relative azimuth was observed to have a very small effect on tBLR.
This fact is well illustrated in Figure 4, where tBLR and a bias are plotted vs. the air mass factor µ

considering the following expression:

BLR(ρRC) = tBLR(µ)BLR(ρw) + bias(µ) (12)

In Figure 4, each point represents the result of tBLR (upper insets) and bias (lower insets) of a linear
regression of the form of Equation (12) done over subsets defined by a specific set of values for θs, θv

and ∆φ, i.e., for specific geometric conditions. It can be observed that: (i) biases are usually smaller
than 0.001, and will be neglected in the overall correction for transmittance, and (ii) the dependence of
tBLR on µ can be considered linear in the range µ ∈ [2; 4]. Similar results are observed for increasing
aerosol optical thicknesses.
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Figure 4. Equivalent transmittance (tBLR, Equations (11) and (12)) and bias vs. air mass factor,
µ = 1

cos(θs)
+ 1

cos(θv)
, for each of the BLRs used in this work. Turquoise (violet) dots represent subsets of

simulations corresponding to different sun-view geometries with (without) direct sunglint. Dashed
lines represent linear regressions.

On the basis of these results, the BLRs computed over RC OLCI scenes used to estimate the water
signal are divided by the corresponding equivalent transmittance factors for each pixel (Figure 4), to
estimate the BLRs from OLCI that will be associated to the water signal in OLCI scenes, i.e.,:

BLR(ρw,OLCI) :=
BLR(ρRC,OLCI)

tBLR(µ)
(13)

2.7. Relation between Baseline Residuals and Water Reflectances

The previous sections described how BLR(ρw)(620, 709, 779), BLR(ρw)(709, 779, 865) and
BLR(ρw)(779, 865, 1016) (Equations (5), (10) and (11)) represent a convenient set of quantities to
estimate water reflectance at any of the considered bands. In this study, we focused on establishing a
relation between the BLRs and water reflectances of at least two bands: 865 nm and 1016 nm; since this
is the minimum required to eventually extrapolate the atmospheric signal to shorter wavelengths. We
decided to use a subset of OLCI imagery to achieve a plausible calibration dataset, in order to avoid
systematic errors induced by calibrating the algorithm with data coming from other sources (such as
in situ measurements or radiative transfer simulations). To build this dataset, a total of 13 sub-regions
from 9 cloud-, sunglint- and haze-free scenes were selected from Río de la Plata (see Table 2, magenta
boxes at Figure 5). Over these subregions a non-operational atmospheric correction was applied to
infer water reflectance at bands 865 nm and 1016 nm, based on estimating the atmospheric component
from manually selected fixed clear water windows, close to the windows of interest, of 15× 15 pixels,
referred to herein as “Fix-AC” (see Table 2, white boxes at Figure 5), and assuming horizontally
homogeneous aerosols.
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Figure 5. Example of a scene which forms part of the dataset used to calibrate the BLR(ρw) vs. ρw

relation. The magenta box surrounds the selected subset of the image added to the calibration dataset,
while the aerosol signal was subtracted using the Fix Clear Window Atmospheric Correction Scheme
(Fix-AC, Equation (14)) from clear water pixels (15× 15 pixels window), indicated by the white boxes.

These “clear windows” were chosen to be as close as possible to the subregion of interest and
totally free from water signal in the RNS (determined by visual inspection of the ρRC rasters). This
simple aerosol removal assumes a spatially uniform atmospheric signal which is subtracted from the
whole subregion of interest as follows:

ρw =
ρRC − ρClearWin

a
t(λ, µ)

(14)

where a simple expression is used for the two-way transmittance factor, t(λ, µ), (as applied by NASA
OBPG in the absence of aerosol information and molecular absorption, Mobley et al., 2016 [31])
which depends on the air mass factor, µ, (see Section 2.6) and the Rayleigh optical thickness, τRay(λ)

(Bodhaine et al., 1999 [30]):

t(λ, µ) = e−
0.5τRay(λ)

cos(θs) e−
0.5τRay(λ)

cos(θv) = e−0.5τRay(λ)µ (15)

Once this process is performed, the calibration dataset formed by the mentioned subregions is used
to fit a calibration surface in BLR 3-dimensional sub-space, which is spanned by BLR(620, 709, 779),
BLR(709, 779, 865) and BLR(779, 865, 1016) (see Figures 5 and 6). The calibration surface is generated
by binning on a 2-dimensional mesh-grid of “X” (BLR(620, 709, 779)) in the range (−0.0100; 0.0350)
(step 0.0005) and “Y” (BLR(709, 779, 865)) in the range (−0.0300; 0.0150) (step 0.0005). The “Z”
(BLR(779, 865, 1016)) values at each point of the grid are taken as the median of the Z values taken
by the calibration dataset in the corresponding (X, Y) pair. This can be done in this way since the
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BLR surface does not present ambiguity in Z, i.e., the BLR surface can be considered as a function of
(X, Y): Z = f (X, Y). The calibration point is discarded if less than 10 data fall inside the associated
(X, Y) range.

Figure 6. BLR(ρw) 3D sub-space, formed by the three linearly independent BLRs defined by the
three consecutive triplets of the five OLCI bands 620, 709, 779, 865 and 1016 nm. Small dots: OLCI-A
calibration dataset. Big colour-mapped dots: Calibration surface obtained from the OLCI-A calibration
dataset, whose colour indicates water reflectance at 865 nm. Magenta dots are in situ data. The origin
is indicated with an “X” and corresponds to “clear waters”.

The BLRs(ρw) triplet computed at each input pixel is associated to the closest (in the Euclidean
sense) BLRs(ρw) triplet that corresponds to the calibration curve, and the corresponding water
reflectance at 865 nm and 1016 nm is assigned to the given pixel.

2.8. Estimation of Aerosol Reflectance at Bands 865 nm and 1016 nm

The aerosol reflectance, ρa, at 865 and 1016 nm is computed to test the spatial correlation with the
estimated marine signal -which is expected to be low- using the following simplified expression:

ρa(λ) = ρRC(λ)− t(λ, µ)ρw,j(λ) (16)

where ρw,j is the water reflectance value assigned to the nearest Euclidean neighbour from the
calibrations surface at the BLR space. The transmittance factor is calculated in the same way as
in Equation (15). This same expression was applied to intercompare with the aerosol reflectances
yielded by other preexistent schemes (BAC/BPAC and SeaDAS-2 (865, 1016)). A last correction is
performed on ρa(865) to restrain the derived εa(865, 1016) = ρa(865)

ρa(1016) inside the range of (0.85; 1.25).
These bounds were determined as the extreme values taken over a set of 82 different selected windows
of size 15px× 15px from OLCI-A scenes of clear water regions close to Río de la Plata, Bahía Blanca,
North Sea, Yellow Sea, Amazonas and North Australia. Also these bounds are consistent with what
was obtained over the CNES-SOS simulations. This correction is performed by imposing the following
condition on a pixel-by-pixel basis:

0.85ρa(1016) ≤ ρa,new(865) ≤ 1.25ρa(1016) (17)
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and then, consequently correcting the retrieved ρw(865) values. This constraint is further discussed in
Section 4.

2.9. Atmospheric Correction Scheme: Summary

The following list (shown in Figure 7) summarizes the atmospheric correction algorithm
developed in this study:

1. The PPE correction (Gossn 2018 [34]) is applied on L1B imagery (TOA radiances).
2. Rayleigh (and gaseous absorption) correction is applied using SeaDAS v7.5 software.
3. BLR(ρRC)(620, 709, 779), BLR(ρRC)(709, 779, 865) and BLR(ρRC)(779, 865, 1016) are computed

from the corresponding Rayleigh-corrected reflectances (see Sections 2.4 and 2.5, Equation (5)) .
4. A transmittance factor correction is applied to relate BLR(ρRC) with BLR(ρw) (see Section 2.6,

Equation (13)).
5. For each pixel, the computed BLRs are matched to the BLRs from the calibration surface that

minimize the Euclidean distance in BLR space. The corresponding water reflectance at 865 nm
and 1016 nm is assigned to the pixel (see Section 2.7).

6. The atmospheric residual at these bands is obtained by subtracting the assigned water signal to
the RC reflectance (see Section 2.8, Equation (16)).

7. A final constraint is applied to ρa(865) to limit εa(865, 1016) inside the reasonable range of
(0.85; 1.25) (see Section 2.8, Equation (17)).

Figure 7. BLR atmospheric correction scheme, as listed in the summary.

This approach may be extended to the whole range of bands of interest by subtracting the water
signal retrieved and applying the clear pixel assumption to extrapolate the aerosol signal to shorter
wavelengths (Gordon and Wang 1994 [1], Stumpf et al., 2003 [2]).

3. Results

3.1. Baseline Residuals in Clear and Turbid Waters

The fact that BLRs of the considered triplets approach near-zero values in clear waters is expressed
through Equation (10), assuming that very clear waters appear as black in the RNS. This property
is clearly seen from OLCI RC reflectances, and is evident from Figure 8 (as well as Figures 2 and 5),
where BLR distributions are intercompared from OLCI scenes from (i) windows selected to perform
the BLR-AC calibration (which contain mainly turbid waters, calibration windows in Table 2), and (ii)
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windows selected to perform the Fix-AC scheme (which contain very clear waters, Fix-AC windows in
Table 2). It is clearly seen from Figure 8 that BLR mean values and interquartile ranges (IQR) over the
Fix-AC windows are close to 0 (always smaller than 10−3) and the Fix-AC window IQR are at least 9
times smaller than the computed IQRs for the calibration windows. This is in accordance with what
has been predicted and shows that for this approach the black water condition is translated to the
condition BLR(ρw) = 0 (also evident by observing the clear water regions at Figure 5). This means
that, given a pixel where simultaneously BLR(ρw) = 0 for the three considered triplets, the algorithm
yields ρw(865) = ρw(1016) = 0, i.e., the algorithm returns naturally to the standard AC approach for
clear waters.

Figure 8. Histograms of BLR(ρw) at triplets (620, 709, 779) (a), (709, 779, 865) (b) and (779, 865, 1016) (c)
for the entire set of calibration windows (red, calibration windows in Table 2) and clear water windows
(blue, Fix-AC windows in Table 2), showing that BLRs are close to 0 in clear waters.

This is also evident from Figure 9, where three different sources of the BLR vs. ρw relation
are intercompared to show how the baseline residuals at each of the three considered triplets of
wavelengths vary according to water reflectances at 865 nm and 1016 nm. Blue dots show data from
the calibration windows (Table 2); in magenta, BLRs computed from in situ data collected from Río
de la Plata (Section 2.1), and a family of colour-mapped curves show the BLR vs. ρw relation using
a quasi-single scattering approximation (qSSA) reflectance model, described in Appendix A, where
all specific IOPs, except specific particle absorption at a fixed wavelength (443 nm), were fixed in
ranges consistent with previous publications (cf. Luo et al., 2018, Table 1 [7]) and where SPM varied
logarithmically between 0.001 g/m3 and 10,000 g/m3.
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Figure 9. BLR(ρw) at triplets (620, 709, 779), (709, 779, 865) and (779, 865, 1016) used in the AC scheme
vs. ρw at bands 865 nm (a–c) and 1016 nm (d–f). OLCI data taken from subsets of different images are
plotted in blue. Magenta dots correspond to in situ radiometric measurements. Colour-mapped line
corresponds to a quasi-Single Scattering Approximation semianalytic model of highly turbid water
reflectance (see Appendix A).

Although there is an evident high resemblance between the three sources, it must be noticed
that the qSSA curves depart from (remotely and in situ) measured water reflectances mainly because
the underlying analytical reflectance model is less reliable at high reflectance (see Appendix A). The
variations over the BLR vs. ρw relation observed between the different qSSA curves indicate that BLRs
might be very sensitive to particle absorption; which means that they might be used as indicative of
different specific optical properties of particles in highly turbid waters. Nonetheless, this hypothesis
must be ascertained with simultaneous reflectance and particle absorption field data, to test and
validate optical closure, in the same way as expressed in Luo et al., 2018 [7].

In the three triplets considered, modelled BLR(ρw) behave similarly with increasing reflectance.
At ρw = 0, they all approach values towards 0, recovering the black water condition BLR(ρw = 0) = 0
seen in Figure 8. As reflectances increase, BLRs take negative values, which can be understood if we

consider ρw ∝
b∗b,p
aw

for very low turbidities (low sediment content) (cf. Ruddick et al., 2006, Equation
(14) [5]). Given the simple qSSA reflectance model described in Appendix A, with specific IOPs
taken from reported values in Babin et al., 2003 (a and b) [43,44], this magnitude is convex for the
considered OLCI bands, i.e., negative BLRs (Figure 10a). On the contrary, for very high turbidities,
water reflectances tend to achieve a constant value (saturation) that depends on the specific IOPs of the

particulate content of the water: ρw ∝
b∗b,p

a∗p+b∗b,p
(cf. Dogliotti et al., 2015, Equation (A2) [16]). In this case,

this magnitude is concave for the considered OLCI bands in the qSSA relfectance model, i.e., positive
BLRs (Figure 10b).
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Figure 10. Theoretical water reflectances at BLR bands yielded by the quasi-single scattering
approximation (qSSA) at: (a) very low and (b) very high particulate concentration.

3.2. Atmospheric Correction Performance

Given the lack of match-ups between in situ measurements and OLCI data for the studied regions
(or any other extremely turbid waters), the Fix-AC approach (considered to be of high performance
for the chosen scenes but not appropriate for a global automated processor) was used as a reference
to validate the performance of the automated BLR-AC scheme (Figure 11). Pixels inside the marked
coloured boxes, corresponding to the most turbid parts of the validation images listed in Table 2
were selected. The three regions were selected as representative of extremely turbid (Figure 11b) and
moderately turbid (Figure 11a,c) waters. Water reflectances derived from both approaches show very
similar patterns and very small root mean square difference (RMSD) values in both cases. In the case
of the 620 nm band, ρBLR−AC

w values were obtained by using a simple linear aerosol extrapolation from
the correction bands at 865 and 1016 nm.

Figure 11. Intercomparison between BLR-AC and Fix-AC schemes. RGBs of scenes at Bahía Blanca
(ARG), Río de la Plata and Belgian Coast from which the datasets are acquired (turquoise, violet
and ocher yellow boxes at insets (a–c), resp.). ρBLR−AC

w is plotted against ρFix−AC
w for the selected

boxes at bands 620 nm (d), 865 nm (e) and 1016 nm (f). ρBLR−AC
w (620) was estimated by simple linear

extrapolation of the aerosol reflectance from 865 nm and 1016 nm.
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Another way of evaluating the performance of an atmospheric correction is through the analysis
of the spatial (de)correlation between the retrieved water and aerosol reflectances. Figures 12–14
show water and aerosol reflectances at 1016 nm retrieved by BLR-AC from OLCI scenes over Río
de la Plata (2017-01-21T13:24:42Z, 2016-06-08T13:09:51Z, 2017-12-12T12:59:01Z, Table 2), together
with standard atmospheric corrections: ESA’s BAC/BPAC and NASA’s SeaDAS-2 (865, 1016) (see
Section 2.3). The most challenging region for atmospheric correction over RdP is the turbidity front
adjacent to Buenos Aires Province Coast (Argentina) at around 35°5 S; 57°0 W (marked as 0.8°×
0.8° black boxes), where SPM, turbidity and water reflectances at the RNS are maximum [8,24].
It is evident from the higher slopes and R2 values retrieved by linear regressions in Figure 12b,c
how standard atmospheric corrections yield higher (unphysical) correlation between the water and
aerosol signals. This is also evident by visually comparing the water and aerosol rasters in the
BLR-AC case, compared to BAC/BPAC and SeaDAS-2 (865, 1016). In general terms, BAC/BPAC and
SeaDAS-2 (865, 1016) underestimate water signal or simply do not converge to a numeric solution
(i.e., NaNs, seen as magenta in Figures 12e,f,h,i, 13e,f,h,i and 14e,f,h,i). The image shown in Figure 12
is partially contaminated with moderate sunglint (toward the East edge), which is clearly removed
as non-water signal for the BLR-AC and BAC/BPAC schemes. The image shown in Figure 14 is
partially contaminated with thin clouds. BLR-AC is clearly capable of separating thin cloud from
turbid water signal.

Figure 12. Comparison between atmospheric correction schemes BLR-AC, BAC/BPAC and SeaDAS-2
(865,1016) performed over OLCI-A image acquired on 2017-01-21T13:24:42Z over Río de la Plata.
(a): RGB Composite. (b,c): Water vs. aerosol reflectances at 865/1016 nm over the turbid front
subregion (marked with boxes of different colours corresponding to each scheme). (d,g): Water and
aerosol reflectance at 865 nm, retrieved by: BLR scheme (d,g), OLCI’s baseline atmospheric correction
(BAC/BPAC) (e,h) and SeaDAS iterative procedure using bands 865 and 1016 nm (SeaDAS-2 (865,
1016)) (f,i). NaN pixels are coloured in magenta.
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Figure 13. Same as Figure 12, but for 2016-06-08T13:09:51Z.

Figure 14. Same as Figure 12, but for 2017-12-12T12:59:01Z.
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4. Discussion

The new atmospheric correction approach presented here has the advantage that it is designed on
the basis of clear physical principles and thus highlights (e.g., Figure 6) how factors such as natural
variability of specific inherent optical properties of water, TOA satellite data calibration and the choice
of spectral bands may impact algorithm performance. BLRs computed from in situ measurements and
OLCI data behave in a similar way and in accordance with a quasi-single scattering approximation
(qSSA) reflectance model, although the qSSA model departs from measured reflectances at extreme
turbidities, because of the underlying qSSA approximations (Figure 9).

While the new algorithm already gives a good performance for retrieval of Red/NIR/SWIR
water reflectance, particularly in extremely turbid waters, and can thus be used directly for estimation
of turbidity, SPM and chlorophyll-a concentration (in turbid waters using Red/NIR algorithms),
further improvements may be necessary for retrieval of water reflectance at shorter wavelengths in
turbid waters, if the latter is actually needed for subsequent water constituent retrieval algorithms. In
extremely turbid waters the Red/NIR Rayleigh-corrected reflectance is dominated by water reflectance
and retrieved aerosol reflectances and, in particular, the retrieved aerosol type (through εa(865, 1016))
can be highly impacted by small errors in the water reflectance estimates—in fact, in this situation
it is precisely the water reflectance that can be better estimated in relative terms than the aerosol
reflectance. If more reliable εa(865, 1016) are required in extremely turbid waters for extrapolation
to shorter wavelengths then the current approach could be improved in the future by integration
of extra information. For example, extra constraints could be applied to εa(865, 1016) by the use
of ultraviolet/violet bands (He et al., 2012 [45]) or by spatial smoothing of εa(865, 1016) assuming
that the horizontal length scale for variation of aerosol type is larger than the pixel size (Ruddick et
al., 2000 [46]). In the present study no such horizontal smoothing has been applied, enabling us to
better understand the capabilities and limitations of an automated pixel-by-pixel approach and hence
identify, for example, the intrinsic value of the various spectral bands in separating aerosol and water
reflectance in the RNS and the potential sources of uncertainty in this decomposition. In a future
version of the algorithm, the constraint on εa(865, 1016) applied at the last step (Section 2.9, step 7) of
the processing might be replaced by either or both of these spectral/spatial constraints, and might
address BLR optimization with a more refined method.

While the new algorithm relies on a BLR calibration surface (Section 2.9, step 5) constructed
with Río de la Plata OLCI imagery, the AC scheme has been also tested in many other sites with
sediment-dominated waters, like the Amazonas Plume, Bohai Sea, Belgian Coast, Bahía Blanca, (see
Figure 11), using this calibration surface, so we currently consider that it will not be necessary to apply
different calibrations to different regions.

5. Conclusions

A new atmospheric correction algorithm for highly turbid waters is presented for S3/OLCI.
The key assumption is that the spectral convexity of Rayleigh-corrected reflectance in the RNS is
determined by water reflectance and is essentially unaffected by aerosols. This spectral convexity is
quantified here through baseline residuals (BLRs, Equation (5)) of the three consecutive triplets of the
OLCI bands centered at 620, 709, 779, 865 and 1016 nm. An “equivalent transmittance” applicable
to BLRs that depends on the air mass factor was derived from in situ measurements and radiative
transfer simulations. The algorithm that relates BLRs to water reflectances at 865 and 1016 nm was
calibrated by using OLCI data from selected subregions of images from Río de la Plata (Argentina),
which were atmospherically-corrected by a simple fix window atmospheric correction (Fix-AC) that
assumes spatial homogeneity of the atmosphere (given very clear sky conditions and small horizontal
distances) and computes the atmospheric reflectance from fixed windows corresponding to clear water
regions. The performance of the BLR-AC algorithm compares favourably with existing atmospheric
correction algorithms (the standard ESA/OLCI processor and the SeaDAS processor implemented
with the OLCI 865 nm and 1016 nm bands), particularly in extremely turbid waters, where existing
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algorithms either fail or show unphysical correlation between aerosol and water reflectance images
(Figures 12–14). The performance improvement is achieved due to use of multiple red/NIR/SWIR
bands, including the new OLCI 1016 nm band, which facilitates separation of water and aerosol
reflectances even for extremely turbid waters. Although the BLR approach is designed here for OLCI
imagery, it might be easily expandable to other sensors that have spectrally-close triplets of bands
in the Red/NIR/SWIR, such as the Argentine-Brazilian joint mission SABIA-Mar, or hyperspectral
sensors such as HICO or CHRIS/PROBA.
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The following abbreviations are used in this manuscript:
BL Baseline term
BLR Baseline Residual
BLR-AC Baseline Residual Atmospheric Correction Scheme
CCD Charged-Coupled Devices
CNES-SOS Centre National d’Études Spatiales-Successive Orders of Scattering
CODA Copernicus Online Data Access
ESA European Space Agency
FAI Floating Algal Index
Fix-AC Fix Clear Window Atmospheric Correction Scheme
FLH Fluorescence Line Height
HICO Hyperspectral Imager for the Coastal Ocean
IOP Inherent Optical Property
MCI Maximum Chlorophyll Index
MERIS MEdium Resolution Imaging Spectrometer
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NIR Near Infra-Red
OBPG Ocean Biology Processing Group
OLCI Ocean and Land Colour Instrument
PPE Prompt Particle Event
CHRIS/PROBA Compact High Resolution Imaging Spectrometer/Project for On-Board Autonomy
qSSA quasi-Single Scattering Approximation
RC Rayleigh-corrected
RNS Red-NIR-SWIR
SABIA-Mar Satélite Argentino-Brasileño para la Información del Mar
SPM Suspended Particulate Matter
SWIR Short-Wave-Infra-Red
TOA Top of atmosphere
WMO World Meteorological Organization
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Appendix A. Quasi-Single Scattering Approximation Reflectance Model

A simple reflectance model was used to establish a semi-analytic relation between BLR(ρw) and
ρw in order to compare it to the behaviour observed over OLCI data and in situ measurements (cf.
Figure 9). This simple reflectance model assumes the quasi single scattering approximation (qSSA):

ρw(λ) = γ
bbp(λ)

bbp(λ) + ap(λ) + aw(λ)
(A1)

where γ = π< f ′/Q ≈ 0.216, considering the factor < = 0.529 from Loisel and Morel 2001 [47], and the
factor f ′/Q = 0.13 from Morel and Gentili 1996 [48]; aw(λ) and ap(λ) are the absorption coefficients
for water and particulate matter, and bbp(λ) is the backscattering coefficient for particulate matter.
Notice that no term for phytoplankton or CDOM content is introduced in Equation (A1) since for
highly turbid waters their contribution is either negligible or too small in the RNS (excluding the
range 660–680 nm where chlorophyll a has significant absorption). Also water backscattering can be
considered negligible in this spectral region. We assume that the backscattering and absorption of
particles are proportional to their concentration, SPM:

bbp(λ) = SPMb∗bp(λ) ap(λ) = SPMa∗p(λ) (A2)

where the quantities with “*” represent mass-specific IOPs. The spectral shapes of these specific
IOPs were taken from Babin et al., 2003a [43], and 2003b [44], based on the mean values of
representative coastal areas around Europe. For specific absorption an exponential decay-law is used:
ap(λ(nm)) = ap(443)exp{−Sap(λ− 443)}, where ap(443) = 0.0410 m2/g and Sap = 0.01230 nm−1.
To reproduce the colour-mapped curves shown in Figure 9, the absorption properties were varied
to match the measured values as close as possible: specific particle absorption at 443 was varied
from 0.0250 m2/g to 0.0615 m2/g, while the absorption spectral slope is set to Sap = 0.01845 nm−1.
Particulate backscattering is derived assuming it is 2% of the total scattering (Mobley 1994 [49]),
bbp = 0.02bp, and a power-law for the attenuation coefficient (recall bp = cp − ap): cp(λ(nm)) =

(ap(555) + bp(555))( λ
555 )

−γc , where bp(555 nm) = 0.51 m2/g and γc = 0.3749. This reflectance model
is used to generate values of BLR(ρw) for OLCI bands by convoluting the modelled water reflectances
with OLCI’s Spectral Response Functions (SRF) [42], and applying Equation (5). The lines in Figure 9
are generated for SPM varying logarithmically in the range (0.001–10,000) g/m3.
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