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“Distributed programming is the art of solving the same problem that you can
solve on a single computer using multiple computers. - usually, because the

problem no longer fits on a single computer.”
–Mikito Takada

“Both optimists and pessimists contribute to our society. The optimist invents
the airplane and the pessimist the parachute.”

–Gil Stern

“All models are wrong, but some are useful”
–George E. P. Box





Abstract
Users of software applications expect fast response times and high availability.
This is despite several applications moving from local devices and into the cloud.
A cloud-based application that could function locally will now be unavailable
if a network partition occurs. A fundamental challenge in distributed systems
is maintaining the right tradeoffs between strong consistency, high availability,
and tolerance to network partitions. The impossibility of achieving all three
properties is described in the CAP theorem. To guarantee the highest degree
of responsiveness and availability, applications could be run entirely locally on
a device without directly relying on cloud services.

Software that can be run locally without a direct dependency on cloud ser-
vices are called local-first software. Being local-first means that consistency
guarantees may need to be relaxed. Weaker consistency, such as eventual con-
sistency, can be used instead of strong consistency. Implementing conflict-free
replicated data types (CRDTs) is a provably correct way to achieve eventual
consistency. These data types guarantee that the state of different replicas
will converge towards a common state when a system becomes connected and
quiescent.

The drawback of using CRDTs is that they are unbounded in their growth.
This means they can quickly become too large to handle using less capable
devices like smartphones, tablets, or other edge devices. To mitigate this, partial
replication can be implemented to replicate only the data each device needs.
This comes with the added benefit of limiting the information users obtain,
thus possibly improving security and privacy.

The main contribution of this thesis is a new approach to partial replication.
It is based on an existing asynchronously replicated relational database to
support local-first software and guarantees eventual consistency. The new
approach uses database views to define partial replicas. The database views
are made updatable by drawing inspiration from the large body of research
on updatable views. We differentiate ourselves from earlier work on non-
distributed updatable views by guaranteeing that the views are eventually
consistent.
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The approach is evaluated to ensure it can be used for real scenarios. The
approach has proved to be usable in the scenarios. The replication of database
views has also been experimentally tested to ensure that our approach to partial
replication is viable for less capable devices.
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1
Introduction
There has been a large shift in the software industry toward deploying applica-
tions to the cloud. Client applications that could run locally have been moved
to the cloud. Some have been enhanced with collaborative capabilities, such
as Google Docs[18]. This move does not come without challenges, as users still
expect fast response times and high availability out of the applications that
they use.

Local-first software is an approach to software that prioritizes storing data
on end-user devices without relying solely on cloud-based solutions [16]. This
approach offers many benefits, such as improved privacy, security, faster per-
formance, and greater control over data. It can enable applications to function
even when faced with network partitions. This is where we face a fundamental
challenge in designing distributed systems.

The CAP theorem states that a distributed system can’t provide strong con-
sistency, high availability, and partition tolerance simultaneously [8, 10]. By
choosing local-first software, we should prioritize availability and partition
tolerance. Consequently, to have an always-available system, we must give up
on strong consistency and implement a weaker consistency model. Eventual
consistency is one such weak form of consistency.

One way to achieve eventual consistency is through conflict-free replicated
datatypes (CRDTs). These data structures allow multiple devices to store and
modify data independently. It guarantees that the data structures will converge

1



2 chapter 1 introduction

towards a common state when all devices have received all updates.

A challenge with using CRDTs is that they suffer from unbounded growth
in terms of data size. Unbounded growth can become a problem for less
capable devices. End-user devices may have limited storage, computation, and
communication capabilities. Multiple devices may collaborate on a subset
of data in large systems, not the entire dataset. The aggregate growth of
information in the system may be more than some devices can handle.

Partial replication can be used to mitigate unbounded growth. Devices are
likely only interested in smaller subsets of the entire dataset. Specifying rel-
evant data subsets and replicating subsets to less capable devices might be
valuable in building large-scale local-first systems. It is also important that
the replicated subsets are updatable, keeping in line with the principles of
local-first software.

There has been significant work on building an always-available, eventually
consistent, relational database. Such a database can be used as local stor-
age when building local-first applications. Conflict-free replicated relations
(CRR) is the application of CRDTs to relational databases[29]. This thesis will
focus on extending the work on CRR-augmented databases to allow partial
replication. Partial replication can allow for more scalable local-first software
solutions.

1.1 Overall goal

Previous work on an always-available, eventually consistent relational database
has focused on local-first decentralized applications [26]. Each node in the de-
centralized system sends all its updates to other nodes in the system. This
means that nodes will store all information when the system becomes quies-
cent.

This is probably not an issue for applications where nodes collaborate on
a small working set, such as documents, message boards, or other real-time
collaboration software. If, however, we extend the potential area of applicability
to systems that generate large amounts of data from many nodes, it would be
unreasonable to assume that any single node would be capable of storing the
entire state of the system. The nodes in the system can be heterogeneous in
computation, storage, and communication capabilities.

We focus on enabling users to replicate only an appropriate subset of the entire
dataset. This subset would include all the data each node will be interested in
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analyzing and/or manipulating. The overarching goal of the thesis is described
in the following statement:

The thesis aims to investigate the partial replication of CRR-augmented
databases for large-scale, always-available, and eventually consistent
systems.

We present existing work on always-available, eventually consistent relational
databases. We then explore how we can extend the existing solution to allow
for efficient replication of data subsets. This exploration led us to investigate
updatable views, an active research topic for decades. The requirements for
updatable views and how this can be practically implemented will be detailed.
We discuss the semantic implications ofmanipulating such views and how views
can be put to practical use. We present an experiment showing whether or not
partial replication is suitable for replicating data to less capable devices.

1.2 Scope, assumptions, and limitations

This thesis aims to present an approach that supports partial replication of
data subsets. We do not consider any specific applications or scenarios in which
our approach can be used. However, we try to reflect on the possibilities and
limitations of our approach. This could inspire others to find practical use of
the presented solution.

We do not consider underlying communication mechanisms as it has already
been presented in previous work using SSH [26]. The actual synchronization
protocols are retained, but there is no specific implementation of networked
communication for synchronization.

There is a strong focus on how updates to data subsets are handled and how it
relates to the existing approach for CRR-augmented databases. We perform a
simple experiment that is aimed at demonstrating whether or not our approach
is suitable. More complex experiments are omitted, as the behavior of our
approach could vary widely depending on where it is applied.

1.3 Methodology

[6] identified three significant paradigms for approaches to computer science
research. These paradigms are theory, abstraction, and design.
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The theoretical paradigm comes from the world of mathematics and consists
of four major steps. The first step is to characterize the object of study. This is
done by creating definitions. Next, relationships between objects of study are
hypothesized. This means that a theorem can be put forth. The hypothesized
relationships are then examined to ensure that they do indeed exist. Finally,
the results are interpreted.

The abstraction (modeling) paradigm is derived from the experimental sci-
entific method. The experimental scientific method starts by first defining a
hypothesis for some phenomena. Then a model is constructed, which can be
used to make a prediction. The model is an abstraction of real-world phe-
nomena. Then experiments are conducted, and data is collected. Finally, the
results are analyzed to determine if the predictions made by the model were
correct.

The design paradigm comes from the world of engineering. It is used to
construct a system to solve a given problem. To achieve this, the requirements
for the solution must be stated. These requirements lead to the creation of
specifications.

In all cases, the subject performing work within these paradigms is expected to
iterate the steps within each paradigm. As pointed out in [6],no single approach
is more fundamental to computer science. The intertwined paradigms make it
challenging to point to a singular approach.

Although these paradigms are intertwined, the approach used when working
on this thesis resembles the design paradigm the most. The problem we face
is that we would like to enable the construction of larger-scale, eventually
consistent systems where central infrastructure is highly capable while end-
user devices are not. We present requirements for the approach and use an
iterative process until the requirements are met to a satisfactory degree.

In short, our approach should minimize the required storage, computation,
and communication capabilities for end-user devices. Users should only need
to store data they are interested in, data should be updatable, the updates
should be correctly translated, and the system must be eventually consistent.
We present an approach and implementation that meet these specifications
and an evaluation that indicates how well it solves the problem.

1.4 Contributions

• An implementation of asynchronously replicated databases in Rust.
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• A new approach for updatable database views that allows for asyn-
chronous replication.

• A way to define what data should be partially replicated. Defining data
subsets can be done using simple SQL definitions.

• A paper that has been submitted to ADBIS[2] and is currently under
review. The paper has been put as an appendix at the end of the thesis.

1.5 Outline

The thesis is organized as follows:

Chapter 1 has just concluded. It presented the motivation for exploring partial
replication in the context of local-first systems. It also briefly summarizes the
general scientific approach, this thesis’s scope, and main contributions.

Chapter 2 will present the necessary background knowledge to understand the
approach and implementation. It also clarifies the terminology used to avoid
confusing them with related terms.

Chapter 3 presents the approach to an asynchronously replicated relational
database based on CRR. It then presents the approach for updatable views and
how it is combinedwith the existing approach to CRR-augmenteddatabases.

Chapter 4 covers implementation-specific details of how updates to data sub-
sets are handled and how the synchronization procedure differs from the exist-
ing synchronization procedure for an asynchronously replicateddatabase.

Chapter 5 will investigate the solution’s applicability. This concerns how up-
dates can be understood and whether they suit real scenarios. It will also
present an experiment to evaluate whether partial replication is suitable for
less capable devices.

Chapter 6 presents the work on which our approach to replicating views is
based. It also presents earlier work on updatable views to which our approach
is most similar. Finally, the main differences between our approach and other
work are presented.

Chapter 7 highlights how well the current implementation satisfies the require-
ments. It also suggests future work that would improve upon the implementa-
tion that is to be presented.
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Chapter 8 concludes the thesis with a summary of the motivation, the approach,
experimental results, and our contributions.



2
Technical background
This chapter will present the technical knowledge needed to understand our
approach. We start by providing a further explanation of local-first software.
We explain what consistency means, as consistency has many interpretations
depending on the context where the term is used. We then explain CRDTs and
present several foundational CRDTs used in our approach. An optimization
to state-based CRDTs, called delta-state CRDTs, must also be understood to
understand our approach. We present the necessary knowledge from relational
database theory. Finally, we clarify many terms to avoid confusion with similar
terms.

2.1 Local-first software

Local-first software is a shift in thinking from applications that today use cloud
services and applications for storing data in centralized infrastructure. Cloud
services can create a belief that the correct data is the one that is stored
in the centralized infrastructure. Devices that store copies of the data are
merely intermediates, which are not necessarily proper replicas for the data
they store.

Local-first applications are those in which data can be stored locally on end-user
devices while having the data be true copies, which are no less important than
what is stored in centralized infrastructure. This new way of thinking can bring

7
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benefits such as application responsiveness and availability improvements. As
said in [16], conflict-free replicated data types (CRDTs) are general-purpose
data types suitable for implementing local-first software.

Local-first is relevant within the context of this thesis as it is the primary
motivation for creating an always-available database. The database is built
using CRDTs. Partial replication is hypothesized as a possible solution to
mitigate the performance overhead of ever-growing CRDTs and allow for more
efficient implementations of local-first software.

2.2 Consistency

We explore the concept of consistency concerning replication in distributed
systems. A data item may be present at multiple machines, and consistency can
therefore be described as whether replicas are in the same state. Traditional ap-
proaches ensure replicas are in the same state by utilizing consensus protocols
such as Paxos that require coordination[27, pp. 440-454]. Rather than focus on
consistency as access guarantees for concurrent processes to shared objects or
as consistency in which data must obey defined invariants, we will focus on
whether or not the program outcomes are consistent with user expectations.
This is similar to the definition used in [11].

Weak consistency models, such as eventual consistency [28], can guarantee
that replicas will converge towards a shared state when the system comes to
a quiescent state. Quiescence is achieved when there are no ongoing updates
in the system. The replicas converge when all updates are propagated to all
replicas. Achieving eventual consistency does not require coordination between
nodes.

There is also a stronger form of consistency called strong eventual consistency.
Strong eventual consistency guarantees that if two replicas have received the
same set of updates, then the two replicas are in the same state [22]. The
solution presented in this thesis guarantees strong eventual consistency.

2.3 CRDT

A conflict-free replicated data type is an abstract data type whose implementa-
tion guarantees convergence without coordination. The explanation of CRDTs
is based on the work of [21]. There are two different approaches to building
CRDTs. A CRDT can be either operation-based or state-based. Operation-based
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CRDTs converge by sending update operations between replicas. For replicas
to converge, the transmitted operations must commute. Any operations that
do not commute must be delivered in a guaranteed order using some reliable
communication channel.

State-based CRDTs synchronize by transmitting the state of the data type
instead of operations performed on the type. When two instances of a data
type synchronize, they do so using a merge operation. The state of a CRDT can
be represented as a join-semilattice [9]. The merge operation must guarantee
the least upper bound between the two semilattices to be joined. This implies
that the merge operation is associative, commutative, and idempotent. The
state information captured in the state can only ever increase monotonically.
This is necessary to guarantee that the state converges towards the least upper
bound of recent updates. This is defined in [21] as states being monotonic
semilattices.

A general understanding of CRDTs is necessary to understand the existing
database architecture and the contributions of this thesis. We give examples of
CRDTs that lay the foundation for the existing database solution. We summarize
relevant CRDTs below based on material from [21].

2.3.1 LWW-register

A Last Writer Wins register (LWW-register) is a register that contains a single
value. The value in the register can be mutated at any replica. As the name
suggests, the most recent write will be the current value in the register. To
guarantee this behavior, the register holds the timestamp of the last mutation.
Merging two replicas of the register involves checking for a greater times-
tamp and choosing the register value with the highest timestamp value. All
timestamps must be unique and thus be sortable into a total order. It is also
necessary for timestamps to be generated in strictly monotonically increasing
order at a replica. Timestamps need not be monotonic between replicas, thus
still preserving their coordination-freeness.

2.3.2 Grow-only set

There are many kinds of set CRDTs, and they differ only in their behavior
for adding and removing elements. A grow-only set is a set in which the
only allowed operation is to add an element. Its correctness is quite easy to
prove. A grow-only set is a monotonic semilattice, as its updated state can
only be a superset of its previous state. The merge operation is a regular set-
union operation. A union of sets is associative, commutative, and idempotent
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and will, therefore, also produce the least-upper bound for the monotonic
semilattices.

The grow-only set is presented here as it is used to compose new and more
sophisticated CRDTs. A two-phase set (2P-set) is a CRDT composed of two
grow-only sets. One set tracks insertions, and the second tracks removals. This
means that elements can only be added and/or removed once. The main insight
we can gain from this is that a composition of CRDTs can be used to create
new CRDTs.

2.3.3 CL-set

We briefly describe the work on CL-sets as presented in [30]. The CL-set is a
variation of the many kinds of sets that have been presented in CRDT theory.
It uses causal lengths to determine whether or not an element is in the set.
Each element is associated with a causal length, essentially a number that
determines whether an element should be in the set. The associated element
is in the set if the causal length is odd. On the other hand, an even number
indicates that the element is not in the set. Intuitively, insertions and deletions
can only happen in turn. An element that does not exist cannot be deleted,
and an element cannot be added when it already exists in the set.

Listing 2.1: A simple implementation of CL-set in Python

s = defaultdict(lambda: 0)

def in_set(s, e):
if e in s and is_odd(s[e]):

return true
return false

def insert(s, e):
if not in_set(s, e):

s[e] += 1

def remove(s, e):
if in_set(s, e):

s[e] += 1

def merge(s1, s2):
result = s1
for e, cl in s2:

result[e] = max(1, cl, s1[e])
return result
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Listing 2.1 shows a simple implementation of a CL-set where each element
maps to some causal length. The variable B represents the state, and 4 denotes
an element that can be added/removed from the set. Indexing into the state by
element returns the causal length for that element. The keys of the map are the
elements, and the values are the causal lengths of the element. Any element
not represented in the set will have a causal length of 0 by default.

Inserting an element involves checking whether it is already in the set. If it is,
adding once more will have no effect. If it is not in the set, the causal length
is incremented. If the element does not exist in the map, it is created, and its
causal length is incremented from 0 to 1.

Removing an element is done by checking whether the element is already in
the set. If it is not, we do nothing. Note that the element does not need to
be created if it does not already exist in the state. If it is in the set, it means
that the causal length was odd, and incrementing it will remove it from the
set.

Merging two CL-sets is a simple union of the two maps. The causal length of
an element that appears in both sets is assigned the maximum causal length
between the two states.

2.4 Delta-state CRDTs

One of the major critiques of using state-based CRDTs is that they need to trans-
mit their state to some other nodes to synchronize. This can be a costly solution
if the states of a CRDT are large. The ever-growing nature of CRDTs (monotonic
semilattice) means synchronization will become costlier over time.

An optimization that can be employed is only to send state deltas. Delta-state op-
timization is presented in [3]. These delta-states are said to be join-irreducible
states. Any state can be described as a set of join-irreducible states.

To synchronize, replicas only need to send join-irreducible states to other
nodes. It is only necessary to send those join-irreducible states that may not
exist at other replicas. This state can be much smaller than the entire state,
thus reducing communication costs. It does induce an overhead of producing
these delta-states.

Listing 2.2 shows merging a full state with a join-irreducible state. The join-
irreducible states forCL-sets are the individual elements with their causal length.
Merging with a join-irreducible state only takes in an argument C containing
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an element of the set and its causal length. It finds any corresponding element
already present and takes the max causal length. Merging two full states can
be done in terms of merging join-irreducible states. This is shown as a rewritten
merge function in listing 2.2.

Listing 2.2: Relationship between a merge with a join-irreducible state and a merge
with a full state.

def merge_irreducible(s, t):
e, cl = t
s[e] = max(1, cl, s[e])
return s

def merge(s1, s2):
result = s1
for t in s2:

merge_irreducible(t)
return result

2.5 Relational databases

We focus on CRDTs applied to databases using a relational data model. The
relational data model is a popular way of structuring information in databases.
We summarize the main aspects of the relational data model based on the
definitions given in [23, pp. 37-41].

A relational database contains a set of tables that contains a set of rows. Each
table has columns defining the domain for each row’s values. A column is also
called an attribute. The rows within the table are logically related. For example,
think of a table containing all residents in a country, where each resident maps
to a single row. Each row has several attributes, including a person’s address
and social security number. Rows within a table can also reference rows in
other tables, allowing the relational model to express relationships between
data in separate tables.

It is also useful to understand schemas in relational databases. A database
schema describes the design of the database. A relation schema defines at-
tributes and their domains for a given named relation. A database schema
consists of a set of relation schemas. A database instance is used to refer to the
state of the database at a given point in time. A relation instance is used to
describe the state of a relation.
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2.5.1 Integrity constraints

Relational databases allow users to specify integrity constraints on their data
model. These constraints are invariants that the database instance must always
uphold [23, p. 145]. Reference constraints enforce an invariant that a referenced
row must be present [23, p. 149]. Uniqueness enforces the invariant that no two
tuples may contain the same values for a set of attributes [23, p. 147].

2.5.2 Materialized views

We will briefly discuss materialized views at various points throughout the
thesis. A materialized view is a table that contains a precomputed set of results
from a view [23, p. 778]. A view is simply a predefined query that has been
named. Materialized views are used to speed up access to commonly used
views. Materialized views will always contain redundant data extracted from
the tables contributing to the view.

2.5.3 Functional dependencies

Functional dependency modeling is a technique from normalization theory
for database systems. Functional dependencies define constraints between
attributes [23, pp. 320-322]. For example, a social security number can be used
to determine the address of a person. This means an address is functionally
dependent on a social security number, as the number can uniquely identify a
person with an address. We will briefly mention functional dependency as it
was an integral part early in the project.

2.6 Terminology

It is necessary to clarify how different terms are used in this thesis. The first
terms to clarify are the terms data subset and partial replication. A data subset
is used to describe a logical subset of the data domain within a system. It is a
logical partitioning of the data. Partial replication refers to database instances
only replicating a specified data subset. This is in contrast to a regular replica,
which replicates all data in the domain of a system.

The terms relation and table can be used interchangeably throughout the thesis.
Both refer to a set of related records within a database. Rows and tuples may
also be used interchangeably to refer to a record. The terms relation and tuple
will be used when explaining the approach, while table and row are used when
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discussing implementation-specific details.

A CRR-augmented database is a qualification used for databases that have
been modified to enable asynchronous replication and that guarantee eventual
consistency. CRR is an acronym that comes from the work on conflict-free
replicated relations [29].



3
Approach
This chapter presents an existing approach for an asynchronously replicated
database based on conflict-free replicated relations [29]. We present the re-
quirements for partial replication within the existing approach. This will lead
us to investigate partial replication using database views and how database
views can be updated. The required properties for the translation of updates
are studied before defining actual translations. We will present our approach
to updatable views using several examples.

3.1 Asynchronously replicated database

The high-level architecture of a CRR-augmented database is shown in figure
3.1. It shows that it is a two-layered architecture. The top layer is referred to
as the AR layer. The AR layer is the application layer where applications can
query and update data. The AR layer consists of all relations developers define
in the application database schema. It is assumed that the database schema
has been defined upfront.

The bottom layer is coined the CRR layer. The CRR layer is a superset of the
information in the AR layer, as it contains metadata and logically deleted data
that would not surface in the AR layer. Being a CRDT, we can never actually
remove data.

15
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Figure 3.1: Two-layer architecture of CRR-augmented databases

The way the two layers interact is relatively straightforward. Any query in the
AR layer can be satisfied without modifying the CRR layer. An update in the
AR layer must trigger updates downstream in the CRR layer. This is to ensure
that both layers are consistent with each other. An important point that should
be made is that the AR layer is essentially a view of the underlying CRR layer.
The difference is that metadata is stripped away, and logically removed rows
are absent in the AR layer.

The two layers are each locally stored on each node, meaning that propagating
updates from the AR layer to the CRR layer are immediate operations. Two
nodes can synchronize by performing an anti-entropy procedure at the CRR
layer. The synchronization is done by transmitting the state of one database
instance to another and merging the state at the target database instance.
This can be done using the entire database state or a set of join-irreducible
states.

A relation is a set of tuples, as said earlier. We can model the relations in
a relational database as CL-sets. The tuples in a relation are the same as
the elements in a CL-set. Each tuple is therefore associated with a causal
length. This means tuples can be inserted and removed. Synchronization can
be performed according to the merging rules of CL-sets. This fails to consider
key constraints on relation schemas.

Relations in relational databases often have a key. A superkey is a set of
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attributes uniquely identifying a tuple within a relation [23, p. 43]. If two
nodes add a tuple with the same key but different non-key attributes, are these
referring to the same row? We assume that the keys for a relation will always
semantically refer to the same tuple. The causal length is therefore tied to the
key, and merging would now not consider non-key attributes.

Eventual consistency will be violated if merging does not consider non-key
attributes. Each non-key attribute can be defined as a Last-Write Wins register
to guarantee eventual consistency. Each attribute gets an associated timestamp
indicating the time it was last updated. Merging two relation instances with
the same schema is as simple as merging equal tuples by key, taking the highest
causal length between matching tuples, then merging all non-key attributes
using the merge procedure of LWW-registers. If some tuples do not have an
equivalent in the other database instance, they are added to the final merged
result, just like a set union operation.

We are now equipped with the knowledge to explain figure 3.1 in more detail.
Each relation schema '( ,�1, . . . , �=) at the application layer has a CRR-layer
representation '̃( , !,�1, . . . , �=,)1, . . . ,)=). The superkey for the relation is
represented by K. The causal length is represented as ! and, together with K,
is logically a CL-set. �8 represents a non-key attribute, while)8 is its associated
timestamp. The pairing of �8 and )8 makes up an LWW-register.

Now that the general layering has been explained, it is helpful to understand
how a user may interact with the data. Updates can come in the form of
inserting a new tuple or updating or deleting an existing tuple. A tuple may be
inserted if it does not already exist in '. That means the tuple may exist in '̃ but
with an even causal length. Insertion would then increment the causal length.
If it does not already exist in '̃, the tuple is inserted with an initial causal length
of 1. It is essential to note that inserting a tuple with the same primary key K
but different non-key attributes will update the non-key attributes.

A tuple can be deleted if it exists in the AR layer. It gets deleted if its causal
length is odd, meaning the tuple already exists. The key K identifies the deleted
tuple, and deletion is done by incrementing its causal length. An even causal
length means that it should not appear in the AR layer.

A tuple can only be updated when it is already present in the AR layer. That is,
its causal length is odd. Updating non-key attributes is trivial, as it only needs
to update the attribute and its timestamp. Updating any attribute that is also
a key attribute is essentially the same as removing the old tuple and inserting
a tuple with the new key.

The mechanism by which the AR-layer relations are refreshed will be discussed
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in chapter 4.

3.2 Synchronizing using delta-states

The existing approach allows for synchronization using delta-states. The join-
irreducible states are the individual tuples of the relations within the database.
It is only necessary to send all the tuples other nodes might not know. This
is shown in figure 3.1 as the anti-entropy procedure. It involves calculating
a delta at a node, transmitting it to a target node, and merging it. A delta
contains the join-irreducible states to merge at the target node.

Each node has a vector clock[27, pp. 317-322] containing the last update received
from any other node in the system. The vector clock contains other known node
identifiers with the timestamp of the latest update received from that node.
To generate deltas, nodes must keep a history of updates. This is necessary to
ensure all updates from all sites are synchronized correctly. This information is
kept in a history relation �̃ (',  ,) , # ). The history relation tracks an update
in relation ' for every tuple identified by key  with an update time of ) at
node # .

The synchronization procedure is initiated by a node sending its vector clock to
the node fromwhich updates will be pulled. The node receiving the vector clock
will inspect it and extract all tuples from its history relation that have an update
time later than what is in the vector clock for all nodes. Since each update is
associated with a node, it is easy to compare. If a node does not have an entry
in the vector clock, all updates from that node will be transmitted.

After receiving the updates, the node will merge the tuples according to the
anti-entropy procedure. It then updates the vector clock using the update
history received from the other node. The update history for all tuples in the
delta is always transmitted during a synchronization.

3.3 Integrity constraints

The existing approach to CRR-augmented databases can handle violations of
integrity constraints. The integrity constraints that are handled are reference
constraints and unique constraints. These are the most common integrity
constraints in relational databases and should be sufficient for most situations.
Integrity constraint violations can occur when two nodes concurrently make
conflicting changes.
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A reference integrity violation can occur if one node inserts a tuple referencing
a tuple that was concurrently deleted at another node. The situation is resolved
by reinserting the referenced tuple. A unique constraint can be violated when
two sites concurrently insert a tuple with the same value that should be
unique. The violation is resolved only by keeping the insertion that happened
first.

Violations are resolved upon synchronization and are done by adding additional
updates to solve the conflicts. The updates are deterministic in that concurrent
resolution of the same conflict will always apply the same update. This means
that strong eventual consistency is still preserved.

3.4 Requirements for partial-state replication

We now focus on supporting partial replication for CRR-augmented databases.
Our primary focus is to provide valuable data subsets for nodes in a system. We
reason that many nodes are only interested in a small subset of the information.
We assume that the information in the system can grow quite large and that
end-user devices cannot store all the information. It is necessary to use partial
replication only to replicate data subsets that interest end-users.

Any partial-state replication solution should therefore fulfill the following
requirements:

• Data subsets are user-centric. The solution should only replicate data
of interest to nodes that may be less capable. This means that the data
replicated to some set of nodes may differ substantially between the
nodes. It should be easy to define a data subset for each node.

• Clear update semantics. The solution must allow updates, as read-only
replication is considerably less useful. Being able to interact with data
allows us to build useful collaborative applications. It also requires that
updates are well understood with a clear semantic meaning. Changes to
the replicated data should not have unintended side effects that users do
not easily understand.

• Updates have a well-defined translation. Any update should corre-
spond to some update that could have been applied to the source database.
Updates cannot have ambiguous translations.

• Guarantees strong eventual consistency. The solution for replicating
views must still guarantee strong eventual consistency. This requirement



20 chapter 3 approach

means that the new solution must fit into the existing approach, guaran-
teeing strong eventual consistency.

• Minimize storage/computation/communication. This requirement es-
sentially captures the initial motivation for incorporating partial-state
replication. It ensures that the solution for partial-state replication should
work on less-capable devices.

3.5 Database views

Most relational database systems offer the possibility to define views. A
database view is an abstraction over the database schema, and views may
have some semantic meaning that is not easily interpretable just from looking
at the database schema [23, p. 137]. It can also protect data by limiting the
amount of information that users of a view can access.

For example, consider a database schema with tables for students, classes,
and departments. A view can be defined to answer questions such as: "Which
students are taking classes in the computer science department?" and "Who
are the top K-performing students in the biology department?". This can be
run as a single query on the full database schema. Still, it is often helpful to
define views to clarify what is being queried and to make complex queries easy
to construct by querying against a composition of views.

Defining views is a suitable technique for partial replication of databases, for
their ability to convey semantics and limit the amount of information gained.
Views are a mature technique and can be easily defined using a query language
such as SQL (Structured Query Language [23, pp. 65-66]). This means that
one should be able to define user-centric views.

Users of views are likely interested in modifying the information they receive.
Views have traditionally only been applied as read-only abstractions, and having
views be updatable has not been important. Despite this, updatable views
have greatly interested researchers for many decades. Research on updatable
database views ensures that semantics and translations of updates are well
understood. We combine the mature research on updatable views and apply it
in a setting where views are asynchronously replicated.

We expect that required storage, computation, and communication capabilities
are minimized by limiting the amount of replicated information.
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3.6 Translations of view updates

Supporting updatable views comes with many challenges. One particular
challenge is that view updates must be well-defined. Any update applied at
the view must have some translation that can be applied at the source state.
We use the term source to refer to an instance replicating the entire database
schema, while view instances only replicate a view. A translation of updates at
a view to the source state is indicated with )↑. A translation of updates at the
source state to the view is indicated with )↓.

B B ′
)↑(B,DE)

E

+

E ′
+

DE

Figure 3.2: Well-defined translation of update D on view E applied to B. The figure is
adapted from [15].

Figure 3.2 shows the process of extracting a view instance E from database
instance B, and then performing an updateD on the view. The extraction is done
using a view definition + . The translated update, )↑(B,DE), is applied to the
source state. Applying the translation at the source transitions it to a new state,
which induces a new view state. The view state induced by the new source
state should be the same as that resulting from applying the updates directly
at the view. This can be concisely described by the following equivalence:
+ ()↑(B,DE)) = D (E).

Figure 3.3 shows how translations of view updates must behave within the
context of the existing database architecture. The main difference to figure
3.2 is that translations are applied to join-irreducible states, meaning we can
decouple translations from any specific target state.

B0 B1
ΔB ′

B2
)↑(ΔE ′)

B3
ΔB ′′ = IC(B2)

E0

+

E1
ΔE ′

E2
)↓(ΔB ′)

E3

+
)↓(ΔB ′′)

Figure 3.3: Well-defined translations for delta-states

A database instance with schema S has the initial state B0. A view + is then
defined on ( such that a view extracted from state B0 is the view state E0.
Updates are then applied independently at both the source and view states.
The updates at the source are captured in ΔB ′ and make the source transition
to state B1. The updates at the view are captured in ΔE ′ and make the view
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transition to state E1. The view state induced by B1 is not the same as the view
state E1, as they have not synchronized yet.

Applying )↓(ΔB ′) to the view transitions the view into state E2. Applying the
translation)↑(ΔE ′) to the source makes it transition to intermediate state B2. It
is never observed since the update at the view violates an integrity constraint.
The violation is resolved by applying an additional delta �� (B2) in the same
manner as has already been presented in section 3.3. The translated resolution
is then applied at the view upon the next synchronization.

The final states are B3 and E3. Both states were achieved by only transmitting
translations of updates. The state B3 must induce the final view state E3 for
view updates to be well-behaved.

The translations are delta-states, a set of join-irreducible states, and applying
the delta is done using the same merge operation t as is used in the existing
database architecture. Incorporating view translations still guarantee strong
eventual consistency since the merge operation is associative, commutative,
and idempotent. The view extracted from the final state of the source instance
will be the same as the final state at the view after applying all updates, which
is captured in the following equation:

+ (B0 t ΔB ′ t)↑(ΔE ′) t ΔB ′′) = + (B0) t ΔE ′ t)↓(ΔB ′) t)↓(ΔB ′′)

3.7 View updates are ambiguous

To support updatable views, we must ensure that updates have a well-defined
translation and can be sensibly applied to the underlying database. Early re-
search on updatable views has been concerned with the semantics of updatable
views. Since views are abstractions which can be used to answer some query of
interest, how would updates to a view affect the database in a way that makes
sense in the context of the view?

Suppose we are interested in finding all students taking some class. What does
it mean to delete a data item from such a view? Does it remove the student
entirely, akin to expelling them? Or does it simply remove the relationship
between the student and the class, such that the student can no longer be said
to take the class? Or do we remove the class the student is a part of?

Earlier work has focused on the update semantics on views and how those up-
dates are translated into changes on the underlying database. Updating a view
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is inherently ambiguous. This is because there is a many-to-one relationship
between tuples in the contributing relations and the view.

An example of such ambiguity is illustrated in figure 3.4. The figure shows
a view that is a natural join between relation instances A1 and A2. Two
updates are then applied to the view. The updates are −E 〈02, 11, 21〉 and
E 〈01, 11↗ 12, 21〉. There are many possibilities for translating these up-
dates.

For the removal, do we delete from A1, A2, or both? Deleting from A2 will also
remove the tuple 〈03, 11, 21〉 from the view. There is also the problem of
updating the join attribute. The originally referenced tuple may or may not
have been deleted. Do we update the existing tuple or add a new one? What
will happen if we update the existing attribute?

A1 A B
a1 b1
a2 b1
a3 b1

⊲⊳

A2 B C
b1 c1 →

E A B C
a1 b1 c1
a2 b1 c1
a3 b1 c1

A1 A B
? ?
? ?

⊲⊳

A2 B C
? ?
? ?

←
E A B C

a1 b2 c1
a3 b1 c1

Figure 3.4: Update ambiguity on a join view

The update ambiguities lead us to formulate a principle for updates. The
principle is that any update should be translated to a minimal change that
achieves the desired effect. This is to restrict the effects of updates on one
tuple affecting other tuples. Reasoning about such side effects may not be
straightforward. Side effects may include the removal of one tuple leading to
the removal of other tuples. This is likely not the intention of the updating
user.

3.8 Disambiguating view updates

We look to previous work on updatable views to disambiguate the updates
to a view. Previous work has used functional dependencies between relations
to determine the mapping from a view to a source database [4]. The same
approach is taken here. Most SQL relational databases have no way to define
functional dependencies directly. Therefore, we rely on developers having
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specified superkeys for all relations and key relationships between relations.
All relations will therefore have a functional dependency of the form � → �

where A is the set of attributes forming the superkey, and B is the set of non-key
attributes determined by attributes in A.

A tuple in the view may have one or more source relations from which it
originates. A view may join multiple tuples into a single tuple using a natural
join on relation instances. It is helpful to note that tuples in views that only do
selection and projection only have a single source tuple fromwhich it originates.
Knowing what source tuples contribute to a tuple in the view, we can specify
precise update rules that satisfy the translation properties presented in section
3.6.

To ensure that it is known which tuples contribute to a given tuple, views cannot
project away the superkey defined for each source relation. This restriction is
necessary mostly for practical reasons. It means it is always possible to identify
the source tuples that contribute to a tuple in a view. This makes it easy to
define update rules that behave as expected.

It also fits the existing database architecture, which relies on superkeys for
semantically identifying equivalent tuples. The join-irreducible states are indi-
vidual tuples, which are identified by a key. We must know the causal length
to determine whether a tuple exists and allow updates to tuples. The causal
length is associated with the key, meaning no key attributes can be dropped.
Any attribute appearing on the left-hand side of a functional dependency may
not be projected away.

3.9 Translations by example

We now focus on specifying the translations of updates, which will uphold the
previous translation properties and the restrictions laid out in the previous
sections. The examples are borrowed from [4]. The database schema is slightly
different, as we do not directly specify functional dependencies but only define
relationships with keys. Three relations track what albums a store has and
what tracks belong to what album. The database schema is illustrated in figure
3.5.

Figure 3.6 shows an example of a view. The source database contains the
relations: '0 for albums, 'C for tracks, and 'C0 for the relationships between
tracks and albums. The view schema is defined as + , and a view is extracted
using a sequence of queries on the source database instance.



3.9 translations by example 25

Figure 3.5: Database schema used for examples in our approach

Figure 3.6: Example of an updatable view
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A set of updates are then applied to the view and indicated using red in the
figure. An update, D8 , is an update to a single tuple; each update in the figure
is summarized below. +E 〈. . . 〉 indicates an insertion, and −E 〈. . . 〉 indicates a
deletion from view E . The arrow symbolism, X↗ Y, indicates that an attribute
is updated from value X to value Y. The updates for figure 3.6 are shown
below.

D1 = E 〈Lullaby, TRUE↗ FALSE, Show, 3〉

D2 = E 〈Lovesong, TRUE, Paris↗ Disintegration, 4↗ 7〉

D3 = +E 〈Catch, FALSE,Galore, 3〉

D4 = −E 〈Trust, FALSE,Wish, 5〉

Below are the translations of the updates, shown as)↑(D8), that satisfy the prop-
erties in section 3.6. The following sections will explain how these translations
are derived using simple examples.

)↑(D1) = [AC 〈Lullaby, 1989, TRUE↗ FALSE〉],
)↑(D2) = [A0〈Disintegration, 6↗ 7〉,−Ata〈Lovesong, Paris〉, +Ata〈Lovesong,

Disintegration〉],
)↑(D3) = [A0〈Galore, 1↗ 3〉, +AC 〈Catch,NULL, FALSE〉, +Ata〈Catch,Galore〉],
)↑(D4) = [ − Ata〈Trust,Wish〉] .

3.9.1 Translation of selection and projection

Views containing selections and projections are simple and are suitable for
introducing translations of view updates. Views containing only selection and
projection are less complex as each tuple in the view has a one-to-one relation-
ship to its contributing tuples. We will study insertion, update, and deletion
from these views.

Figure 3.7 illustrates how view updates are applied. The left-hand side shows
the application layer, which is the logical view of the database. The right-hand
side shows how the metadata is manipulated according to the previously
presented rules for CRR-augmented databases. The relation AC contains tracks
identified by their name, release date, and whether they are in store. The view
state is E8 , and E ′8 is the view state after an update. A ′C is the state of AC after the
changes from E ′8 have been applied. Timestamp attributes for LWW-registers
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are shown as )G , where G are the first letters of the associated attribute. The !
attribute is the causal length attribute in the CRR layer.

Figure 3.7: +1 = ctrack,yearfyear<1990'C

It is worth pointing out that the CRR layer at the view has an additional LWW-
register named f . The purpose of the attribute is to track the evaluation of
whether or not the tuple should be present in the view. It is dependent upon the
selection criteria for the view. A tuple that fulfills the view predicate will have a
f = TRUE. The attribute is evaluated upon every update. A tuple is in the view
when its causal length is odd, and the tuple fulfills the view predicate. f is an
LWW-register as the evaluation depends on the state of attributes used in the
selection criteria. The maximum timestamp among those attributes indicates
when the selection was last evaluated.

Three updates have occurred at the view in figure 3.7. The updates that
transitions E1 to E ′1 are:

D1 = E1〈Lullaby, 1989↗ 1988〉

D2 = −E1〈Lovesong, 1989〉

D3 = +E1〈Catch, 1989〉

The update D1 is a simple update to an attribute. The updated attribute is not a
key and can therefore be updated directly in the CRR layer. The translation of
D1 is an update of the LWW-register for the attribute. Since the year attribute
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also is part of the selection condition, f is reevaluated.

The second update, D2, deletes a tuple from the view. Because of its one-to-one
relationship to its source, we can increment its causal length (!) to remove the
tuple at the view. It does not lead to an update of f since no selection criteria
were affected. Applying the update to the source state does the same update
to the causal length.

The final update, D3, inserts a tuple at the view. This tuple does not already
exist, and it is therefore initialized with a causal length of 1, and f will be true
as it is in the view. Timestamps are initialized to the current time. The insertion
of a tuple is a bit different from the previous updates. It is possible that an
insertion does not have an equivalent tuple in the source relation. It is therefore
missing a specified value for the in-store attribute, which has been projected
away. Therefore, we require that any attribute projected away in a view has a
default value. This default value can be NULL if no suitable alternative exists.
Assigning a default value to dropped attributes is also done in [4].

3.9.2 Minimal changes to select-project views

Figure 3.8 shows a different set of well-defined translations on a view schema.
The translations are based on the idea of minimal effect. Any update should
produce minimal translations. The idea of minimal updates is presented in
[15].

Figure 3.8: +2 = ctrack,yearfinstore=TRUE'C

The view schema of figure 3.8 differs from the one in figure 3.7 as the attribute
used in the selection is also projected away. This could be for security or
privacy reasons. The actual selection condition cannot be sent to the view
without leaking information. We instead rely on the previously mentioned f
attribute to indicate whether the tuple meets the selection criteria.
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The updates shown in figure 3.8 are:

D4 = −E2〈Lovesong, 1989〉

D5 = E2〈Lullaby↗ Trust, 1989〉

Update D4 removes the tuple from the view. There are several ways in which a
tuple can be removed from a view. A contributing tuple can be removed, the
attributes in the predicate can be set to non-selecting values, or a join condition
can be changed to no longer hold. To preserve minimality, we change an
attribute occurring in the predicate to a non-selecting value. Since the selecting
attribute has been projected away, we only need to change the predicate
evaluation attribute f to false.

For update D5, the key has been changed. Since the key has changed, it is not
semantically the same row, and changing the key in any circumstance results
in removing the old tuple and adding the new tuple. In this case, removing the
tuple can be achieved by simply making the view condition f false.

Although simply changing f to false works at the view side, the update must
still be applied to the source relation. Applying the updates will result in the
in-store attribute being updated to a non-selecting value (false) for the removal.
The insertion affects an existing tuple at the source, and its in-store value must
be true.

In short, removing a tuple translates to an update that ensures it does not
satisfy the predicate. An insertion must satisfy the predicate when the update
is translated back.

We only consider these translations when the predicate has at least one boolean
condition. The first boolean condition will be used for translations. This choice
is arbitrary, as generalizing these translations to other predicate types, such
as range predicates, may involve creating a framework for specifying custom
removal policies.

3.9.3 Translation of updates in join views

The special thing about join views are that each tuple in the view is derived
from multiple source tuples. Removing a tuple from a view can be done by
removing one or more source tuples in a multi-way join.

Keeping in line with minimality, we remove tuples from at most one source
relation contributing to a view. But which tuple to remove is not obvious.
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For joins, a single source tuple may be repeated across multiple view tuples.
Removing a repeated tuple will also remove all view tuples containing the
repeated source tuple. We want a single insertion or deletion to only affect a
single tuple.

The most practical way to enforce this is to restrict views to those in which the
key of a source tuple is a superkey for the tuples within a view. This means that
a graph of the references between source relations must form a rooted tree.
We will refer to such a graph as a view-reference graph. The view-reference
graph is similar to the view-dependency graph presented in [7].

'C0

'C '0

(track,album)

(track) (album)

Figure 3.9: The left-hand tree shows the relationship between relations. The right-
hand tree shows key relationships of the same relations.

The view-reference graph for the database schema in figure 3.5 is illustrated
in figure 3.9. Tuples from the source relation at the tree’s root will contain a
superkey key into the view relation. In this case, the primary key (track, album)
will uniquely identify a tuple within a view.

We also restrict join views to those in which the join condition is a key relation-
ship between the relations. This is for the same reason as above. If this is not
the case, then updating a single view tuple may have unintended side effects,
such as adding or removing additional tuples not subject to an update.

Figure 3.10 shows a simple join between the '0 relation and the 'C0 relation.
There are only two relations where the 'C0 relation contains a key to the '0
relation. The tree’s root is the 'C0 relation.

There is only a single update on the view:

D6 = E3〈Lovesong, Paris↗ Disintegration, 4↗ 7〉

The update affects the key for 'C0 and '0. Since 'C0 is the root relation, an
update to its key is translated into removing the old tuple and inserting the
new tuple. The key for the albums relation has also changed, but since it is
not the root source relation, we only ensure that the newly referenced tuple
is present. No removal is done on '0. Removal in the '0 relation might have
affected other view tuples, which is undesirable.

The change is applied to the CRR-layer relations according to the update rules
stated above, and no special handling is done apart from only deleting from
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Figure 3.10: +3 = )ta Z fquantity>2'0

the root relation and ensuring the presence of tuples within all other relations.
It is worth noting that updating an attribute referencing the key of another
relation will only update the reference and ensure the existence of the newly
referenced tuple. It will never delete previously referenced tuples.





4
Implementation
This chapter will present how the approach to partial replication and updatable
views has been implemented. We briefly touch on our approach to software
development during this project. We explain how the existing approach for
an asynchronously replicated database is implemented. Finally, we present
how updatable views are implemented and integrated with the existing ap-
proach.

4.1 Approach to software development

The previous solution for CRR was implemented in Python but was rewritten
in Rust [20] at the start of this project. Rust was chosen due to its robust
type system, which is helpful for properly modeling a domain. It makes it
easier to catch mistakes when making numerous changes throughout the
codebase. It also focuses on memory safety, preventing the most common
memory management mistakes programmers make.

We use test-driven development to ensure the implementation behaves as ex-
pected. Since the Rust implementation is based on a previous implementation,
it is trivial to implement test cases that cover the required core functionality.
Some existing features have been omitted, such as network communication
and flexible handling of integrity constraints. These features do not affect the
implementation of partial replication.
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Test cases for updatable views are based on the examples presented thus far. The
implementation was first based on relational lenses but has been significantly
simplified through many iterations. This means that both the implementation
and the tests have evolved. The initial starting point for this project is discussed
further in chapter 6.

4.2 CLI-tool

The implementation is based on the one presented in [26]. The implementation
has been written in Rust as a CLI tool that provides several operations on a
relational database. The tool currently only supports SQLite databases. The
reason for choosing SQLite is that it is lightweight and suitable for use on small
local devices[24]. The CLI tool can convert an existing database instance into
one that supports asynchronous replication. This conversion process is called
augmentation, referring to the fact that the conversion is non-destructive and
can be reverted. The augmentation process creates the CRR layer.

The operations that are currently supported in the Rust implementation
are:

• Initialize

• Pull

• Push

• Create view

• Pull view

The vigilant reader will notice the similarities to the commands in the pop-
ular Git version control system [19]. The similarity is no coincidence, as Git
is a decentralized system where update conflicts are manually resolved. CRR-
augmented databases can also be used in decentralized systems, but conflicts
are resolved automatically. The current implementation uses a git-like synchro-
nization model. This is illustrated in figure 4.1. We also borrow terminology
such as a remote referring to a database at another location from the database
instance considered to be local.

The initialize command augments an existing database instance. The augmen-
tation process will create the underlying CRR layer and migrate existing data
into the newly created CRR layer. After initialization, the database instance can
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Figure 4.1: Synchronization example

function as a CRDT. The initialization procedure is idempotent. This means
the database schema can be changed, and initialization can be run once more
to ensure the entire database instance can be used as a CRDT.

The pull command is used to get updates from a remote database instance. The
local database instance requests updates from some remote database instance.
The remote node will then generate a delta state that is transmitted back to
the local node. The local database instance merges this delta state into its
state.

The push command is implemented by sending a delta of updates to a remote
node. This impromptu sending of updates relies on previous knowledge of what
updates the remote node knows of to calculate a delta state. An alternative
implementation is a reverse pull, where the local node requests the remote to
pull from itself.

Creating a view is done by contacting a remote node and registering a view
that has been defined using SQL. This differs from database schemas, where
we expect all tables to be defined upfront. The idea is to make views more
dynamic. The only issue is that multiple nodes may register views with the
same name. Views of the same name are currently required to have equivalent
definitions.

The pull view command does almost exactly what the pull command does, but
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it only pulls updates for a view. This means that source database instances
synchronize using the pull command. Instances that are partial replicas (view
instances) synchronize using the pull view command.

4.3 Database schema

Figure 4.2: CRR-augmented database schema

The CRR layer contains several tables that store necessary metadata. The
database schema for an augmented database instance is shown in figure 4.2.
After augmentation, each table '8 will have a CRR-layer table '̃8 . The CRR
layer table '̃8 will be a superset of the AR layer, as it will contain the causal
length and timestamps of all rows that have been present in the table.

The CRR layer needs to associate timestamps with each LWW-register. Times-
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tamps are generated using time functionality built into the database man-
agement system. Generating timestamps is done through queries against a
view. The clock view guarantees that the generated timestamps are unique and
increase monotonically.

The history table tracks all updates done at what database instances. The
updates are changes to individual tuples. Therefore, each table '̃ has a surrogate
key  ̃ that the history table uses to reference the tuples. Not having such a
primary key would involve having separate history tables for all application-
layer tables, which would likely be computationally inefficient. There may be
multiple surrogate keys for a single row. This happens when a row identified
by the same primary key is concurrently inserted at different sites. However,
a single surrogate key may never exist for multiple distinct rows. The history
table is used during delta generation.

We need to know what updates are already known at other sites to generate
deltas. We, therefore, track the state of all other database instances using
a table. The state table is a vector clock transmitted between instances to
generate correct deltas. The table is used with the nodes table that tracks all
other known database instances.

A view is created as a regular SQL view in a database instance. A view contri-
bution table is used to track what rows have ever been replicated in a given
view. It ensures that nodes replicating views synchronize correctly. It will be
explained further when discussing the synchronization of views.

For database instances using regular replication, the entire database schema is
replicated. There are also separate tables for AR layer tables. When replicating
a view, only the CRR tables are replicated. The view is therefore calculated
upon access using the replicated CRR tables. The replicated CRR tables are
only the ones that contribute to a view, and only the contributing rows are
replicated. This does mean that merging is considerably faster, but it might
affect query performance.

4.4 Timestamps

Timestamps have been mentioned at various points throughout the thesis, but
little attention has been paid to how timestamps are handled. Several aspects
must be considered when dealing with timestamps. The first thing to realize
is that it is impossible to have a globally synchronized clock in a distributed
system [27, p. 3]. It is impossible to derive exact causal relationships between
events. Computer clocks are also susceptible to clock drift which means they
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drift further away from the actual true time value.

It might seem that physical timestamps are unsuitable as they cannot guarantee
ordering. We do not need to ensure exact physical times, only that timestamps
for individual attributes have a total order. Recall that for LWW-registers, the
timestamp component of the register must ensure a total order among all
timestamps. Suppose an LWW-register is to be merged, where two concurrent
updates receive the same timestamp. Which update is the last one is ambiguous
and cannot be determined. The current system must have total ordering for
timestamps since it relies on LWW-registers.

The second requirement for timestamps comes from delta generation. Delta
generation works by transmitting all changes that might not be known between
pairs of nodes. There is one problem: computers can do time travel. If a node
performs a clock synchronization, its clock can be set back to an earlier time
if the clock has drifted forward in time. If a node suddenly issues timestamps
from an earlier time, the delta generation procedure would fall apart as we
could not know all updates after some point has been received. The result is
that timestamps generated at a node must be strictly monotonic.

The implementation solves both these requirements by combining two tech-
niques. Strictly monotonic timestamp generation is implemented using some-
thing akin to a hybrid-logical clock [17]. A physical timestamp is generated
and compared against a previously generated timestamp. A second logical
component is updated if the new timestamp value is less than or equal to the
previous value. The logical component can only increase. Clocks are compared
lexicographically by first comparing the physical portion and then using the
logical portion.

Total ordering is done by introducing randomness. Incrementing the previ-
ously mentioned logical component is done by using a random offset. This is
used to emulate nanosecond scale timestamps. The entropy of the randomly
generated number must be sufficiently high to ensure there won’t practically
be collisions.

An alternative would be to add a component to timestamps that references the
node where it was generated. This could enable us to order timestamps based
on the node doing the update. This could be more efficient if node IDs were
small.

The current implementation does not consider clock skew as it is not essential
to ensure the correctness of the system. We assume clock synchronization is
handled by some other mechanism, such as using the NTP protocol [1].



4.5 handling local updates with triggers 39

4.5 Handling local updates with triggers

Any update to the AR layer must be translated into updates on the underlying
CRR layer. The current implementation uses database triggers to propagate
the updates. Database triggers are callbacks that invoke actions to be exe-
cuted when an event is triggered [23, p. 206]. The actions are defined as SQL
statements. Updates on tables trigger events that execute SQL statements as a
side-effect of the update.

Every update to the AR table triggers an update to the underlying CRR table,
which then triggers an update to the history table. The defined SQL state-
ments extract and propagate the updated information to the CRR layer. The
updates happen in a single local transaction such that update operations are
atomic.

The triggers are created as a part of the augmentation process, and each AR
table gets its own insertion, deletion, and update triggers for handling all
possible update operations. Recall that the AR tables are only views on top
of the underlying CRR tables. The AR tables are materialized views of the
corresponding CRR layer table for fully-replicated database instances. This
materialized view means that queries may be executed faster, but it uses a lot
of storage capacity.

The current implementation of the replication of views uses a different ap-
proach. The application layer view is never materialized, and as a consequence,
all updates only apply updates to the CRR table as well as the history ta-
ble.

Updating views is also done using triggers that operate on the updated tuples
in a view. How triggers are used when updating views differs from how
triggers handle updates in regular replicas. The following subsections will
therefore highlight the differences in how updates are handled between regular
replication and view replication.

4.5.1 Insertion trigger

Inserting new rows into a normal table is relatively straightforward. The
insertion is first applied to the AR layer table. If the tuple already existed,
this would trigger an SQLite error. The insertion will trigger an update on the
corresponding CRR table. The trigger will check whether a row with the same
primary key exists in the CRR table. If it does, it increments its causal length
and updates all updated non-key attributes. If not, a new row is inserted, and
its causal length is set to 1.
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The insertion triggers for views are quite similar, with a notable difference.
View instances only replicate the source relations that contribute to the view.
The view definition is therefore used to join tables and discard any removed
tuples and tuples that no longer fulfill the predicate. Since the view is an
actual SQL view, updates can be handled using "INSTEAD OF"-triggers [25]
that operate on individual tuples in a view.

Each table contributing to a view needs triggers for handling updates. The
insertion triggers inspect the added row and determine if the row contains
a primary key for the contributing CRR tables associated with the trigger.
The actual trigger logic is the same as for insertions on normal tables. Three
insertion triggers will be created if a view has three contributing tables.

Figure 4.3: Insertion trigger

Figure 4.3 shows an example where the tuple 〈01, 11, 21, 31〉 is inserted against
a view+ that is defined as a join of '1, '2, and '3. The insertion of the original
tuple will trigger insertions on all contributing tables. If a tuple already exists,
the insertion is ignored.

4.5.2 Deletion trigger

Deletion of a row from a regular table is done by deleting it from the AR layer
table. This triggers the deletion trigger, which finds the row in the CRR layer
table and ensures its causal length is even.
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Deleting a row from a view is quite different. Recall that there are multiple ways
of removing a tuple from a view. The current implementation is opinionated
because it only allows deletions from a single table. This means there will only
ever be one deletion trigger for each view, which only deletes from a single
contributing table. This contrasts insertions on a view, where each source table
has an insertion trigger.

The relationships between the tables determine the relation to delete from.
This relationship is captured in the previously mentioned view-reference graph.
Kahn’s algorithm[14] is used to topologically sort a graph where sets of keys
are the nodes and edges are the reference relationships between the keys. The
first element in the topological sort will be a table to which no other table has
a reference (in-degree of 0). This is the root relation of the view-reference
graph.

Figure 4.4: Delete trigger

Figure 4.4 shows the same view as in figure 4.3. The deletion of the tuple
〈01, 12, 21, 31〉 leads to the removal of 〈01, 12〉 from '1. This is because '1 is
the root of the reference graph, as shown in figure 4.5.

4.5.3 Update trigger

Updates on regular AR tables trigger updates in the update trigger associated
with the table. As previously mentioned, an update to non-key attributes applies
the updates to the respective LWW-registers of the CRR layer table. If there is
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'1(�, �)

'2(�,�)

'3(�, �)

Figure 4.5: View-reference graph for figures 4.3, 4.4, 4.6, and 4.7

a change to the key attributes for a table, this is regarded as an insertion and
a deletion. Recall that this is because different key attributes refer to different
rows.

Figure 4.6: Update on the key of root table

Updates on views are handled similarly, but there is one important difference.
Changing the key of a contributing relation is handled differently depending
on whether the table is the root table in the view-reference graph. Updates
to the key of the root relation are the same as a deletion and a subsequent
insertion, the same as for the normal case. This is shown in figure 4.6, where
the A attribute is updated.

However, if the updated attributes are part of a key used in a join condition, the
referencing table will update its reference. The referenced table must therefore
ensure that the newly referenced row exists by triggering an insertion, which
does nothing if the row already exists. If an update were to delete and insert
rows in a referenced table, this could remove additional tuples in the view. This
is shown in figure 4.7, where the B attribute is updated.
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Figure 4.7: Update on the key of non-root table

In summary, insertion will only insert one row into the view. Deletion of a row
will only delete a single row. Updates not filtered by predicates will not have
the side effect of adding or removing rows. Updates to non-key attributes may
update multiple rows.

4.6 Synchronization

Instances using regular replication and instances only using view replication
must be able to synchronize without issues. The approach to synchronization
is fundamentally the same for both types of replication. There are some subtle
differences in how synchronization is solved, however.

Synchronization is done in several steps. A node sends its vector clock to another
node. The remote node then uses the vector clock to calculate a delta, which
contains precisely the updates not present at the node when the vector clock
was transmitted. The delta is a small SQLite database containing the updates
identified when calculating a delta. The instance is shipped back to the local
node, where all the updates are merged into the local state according to the
merge procedure. The synchronization procedure is shown in figure 4.8, and
the high-level process is the same for both regular and view replication.

There are subtle differences between the two approaches to replication. The
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Figure 4.8: Synchronization procedure

first significant difference is how calculating delta-states is done. This is because
delta generation should ideally only produce deltas with updates that affect
the view in question. The other significant difference is how views deal with
projections concerning security and privacy.

4.6.1 Calculating deltas

A pull-synchronization request will contain the vector clock of the initiating
node, which tells the source node of the updates it already knows about. The
delta state can then be generated by joining the CRR layer table against the
history table and only selecting rows unknown to the other node based on
the received vector clock. This is done for all AR layer tables in the database
instance.

Calculating deltas for nodes only replicating a view is a bit different. In that
case, we only want to send a delta containing all the rows in the view. A delta
can then be calculated by doing the same query as regular replication and
checking whether the row is currently a part of the view. There is one problem
with this approach. After being replicated to a view, a row may be removed at
a regular replica. Subsequent delta calculations will fail to send updates for
the removed row. This will happen for all updates that remove rows from a
view.

We must track which rows are or have ever been part of the view to fix it. This
is where the view-contribution table comes into play. It tracks the rows that are,
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or have ever been, part of a view. The view contribution table can be merged
between sites to ensure that removals can be propagated from any node to
another. This method transmits the minimal information needed for proper
synchronization.

A different approach to calculating deltas would be sending all the updated rows
regardless. The view site can discard the information that it does not already
store. This means we would need to transmit more information, but it is likely
still efficient due to the already existing delta implementation. Recall that we
only generate deltas for tables that are sources for the views regardless.

4.6.2 Push-based synchronization

We have only considered pull-based synchronization so far. This is because the
implementation of push is not significantly different. An efficient push-based
synchronization scheme could be supported by keeping the received vector
clock from the other side and using it for subsequent pushes. This means that
pushes could contain more rows than needed. Signaling another node to do
a pull would be easier and might be more efficient. The vector clock at the
pulling node should be more up-to-date. It will involve sending an additional
message which increases latency. Which approach is better is likely dependent
on usage.

4.6.3 Effect of projection on view definitions

A fundamental difference between regular and view replication is that at-
tributes can be projected away. This can both reduce the storage required, but
it may have the additional purpose of limiting what users of a view can learn.
This may be for security and/or privacy reasons. We have already discussed
that most translations on a view take place at the node replicating the view
using triggers, but there are some exceptions. The exceptions are precisely
those where we must deal with projections.

The most obvious difference is when there are insertions of new rows into a
view instance that does not already exist at a source node. This means that a
sensible value must be chosen for all the attributes that were projected away.
This is done using a specified default value that must be defined on all tables
contributing to a view. Assigning the default value is done when updates are
sent to a source node and not at the view instance, as in most other cases.
We also give the default value a timestamp of 0 (zero) to ensure that any
direct update to the attribute takes precedence. Dropped attributes are always
LWW-registers.
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Another problem occurs when attributes that are projected away are also part
of the predicate for the view. This means that selection information is discarded
at the view instance. This is handled by introducing the f attribute, which
determines whether a row satisfies the predicate. Since attributes are projected
away, the view definition used at the view instance must be changed. The
predicate in the view definition must be replaced by a standardized predicate,
which excludes information about the selection criteria. For example, it would
not be fitting if a view instance knew that all rows in the view were of people
from a particular region if it could infer this from seeing the predicate in the
view definition.

Since we must transform views with selection criteria on attributes that are
projected away, we must apply a transformation to the deltas generated for
views. We must also apply the inverse transformation when deltas are received
from views. All such transformations take place at source database instances
and not at view instances.

4.7 Integrity constraints

Concurrent updates on relational databases do pose a particular challenge. A
database schema may define several integrity constraints that constrain the
set of possible states in which the database could be. By allowing concurrent
updates, we can be in a situation where integrity constraints are violated.

Violations are detected upon synchronization by capturing errors from the
SQLite databasemanagement system. The errors are inspected, and appropriate
deltas are applied. A node may add a row referencing a row concurrently
removed by someone else. This results in a foreign key violation. The row
which is referenced is then brought back. The reasoning is that the referenced
row must have existed at some point and that deleting it is more harmful than
reinserting the referenced row. Deciding whether to delete or reinsert could
be done based on the time ordering of the updates.

There are also unique constraints that concurrent insertions may violate. The
way it is resolved is that the row which was inserted first will be kept while
the other is removed. Otherwise, any later write would effectively overwrite
any previous row, which might surprise whoever did the insertion first.

Regular replication enforces and handles violations of defined integrity con-
straints. Replication of views does not fully enforce the defined integrity con-
straints. There are a couple of reasons why this is the case. A view is an
incomplete window into the entire database state. This means that it is not
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possible to enforce all integrity constraints.

'1

'2

'3

'4

'2

'3

Figure 4.9: Left-hand side shows the database-reference graph. The right-hand side
shows the view-reference graph.

Consider a database schema with four tables: '1, '2, '3, and '4. Figure 4.9
shows the database- and view-reference graphs. Suppose we define a view +
where '2 and '3 are contributing tables. We then delete a row from '2. There
could be a reference from a row in '1 to the deleted row in '2, but this violation
cannot be handled in a view instance because there is no way to know whether
a reference exists. This means that resolution must occur at a node that knows
about the state of table '1.

There is a similar issuewith references from'3 to'4. The state of'4 is unknown
at the view instance. It is impossible to know whether any rows in '3 reference
an existing row in '4. Taking a step back, we realize there is likely little reason
to have leaf tables in the view-reference graph that contain outgoing references.
Such views should either include the referenced table or the reference should
be projected away and given a suitable default value.

4.8 Additional considerations

There are additional considerations that must be considered when implement-
ing updatable views. First, the view must respect the functional dependencies
expressed through the key relationships. Recall certain contributing rows may
be repeated in a view. An update to a non-key attribute of such a row must
change all the repeated instances of that attribute. Changing a row currently
affects only the contributing rows, making it easy to ensure this requirement
is upheld. It does mean that certain updates to non-key attributes can affect
multiple rows with a single update. This is desirable but perhaps confusing for
application developers.





5
Evaluation
This chapter will present an evaluation of our approach and implementation.
We present scenarios to assess the usability of updatable database views. It
considers user-centric views and how update operations are applied to view
definitions and the semantics of particular views. We then move on to an
experiment that aims to demonstrate the effects of partial replication on storage,
computation, and communication.

5.1 Applicability

The scenarios are borrowed from [7] as these are good practical examples.
We discuss how our approach to updatable views can fulfill the requirements
for each scenario. Figure 5.1 shows the application database schema for the
scenarios.

5.1.1 Personnel management

The first use case is one in which personnel information is needed, and up-
dates are used to manage personnel information. The identifier, age, address,
designation, and skills of each employee information required for personnel
management. In addition, the following updates must be allowed:

49
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Figure 5.1: Application database schema used for evaluation

• Hire an employee

• Fire an employee

• Alter personal information about an employee

• Add a skill for an employee

On the first try, one might be tempted to create a view that captures all the
information required to be in the view. This can be done using the SQL definition
in listing 5.1.

Listing 5.1: First attempt at a personnel view

CREATE VIEW personnel AS
SELECT name, id, age, address, designation, skill
FROM employees
JOIN work
JOIN capabilities

This results in the view-reference graph shown in figure 5.2. It would be
impossible to hire or fire an employee using the current definition of a view. This
is because we cannot remove from the employee table using our approach to
updating views. Even though the view is a rooted tree, deletions will only affect
an employee’s capabilities. This means we could add a new skill and change
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personal information, but we cannot hire or fire employees. The employee
information will also be repeated for every skill, which is undesirable.

capabilities

employees

work

Figure 5.2: View-reference graph for the personnel view

The paper from which these examples are from requires that a single view must
be able to fulfill these requirements. We take a more pragmatic approach. The
views that extract required information must not necessarily also be updatable.
Splitting a view into several views is possible,with each view exhibiting different
update semantics. We can split the view into two views as shown in listing
5.2.

Listing 5.2: Personnel management using two views
CREATE VIEW personnel AS
SELECT name, id, age, address, designation
FROM employees
JOIN work

CREATE VIEW capabilities AS
SELECT id, skill
FROM capabilities
JOIN employees

employees

work

capabilities

employees

Figure 5.3: The reference graphs for the personnel and capabilities views

Figure 5.3 shows the new view-reference graphs. The query and updates that
fulfill the requirements for personnel management using view replication are
shown in listing 5.3. Recall that salary must be given a default value as it
has been projected away. Creating two separate views is also not a problem,
as it will use the same underlying CRR tables and will not waste storage
capacity.

Listing 5.3: Updates to the views for personnel management

-- Hire an employee
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INSERT INTO personnel(id, name, age, address, designation) VALUES (..., ...);

-- Fire an employee
DELETE FROM personnel WHERE id = ...;

-- Update information about an employee
UPDATE personnel SET address = "...", name = "..." WHERE id = "...";

-- Add a new skill to an employee
INSERT INTO capabilities(id, skill) VALUES (..., ...);

-- Combine the views to extract all necessary information
SELECT id, name, skill FROM personnel JOIN capabilities

5.1.2 Financial management

The second scenario involves a finance manager at a company who is interested
in seeing the salary of all employees. There is only one requirement related
to updates on the view: the finance manager should be able to update an
employee’s salary. The view definition and the update that fulfills the update
requirement are shown in listing 5.4.

Listing 5.4: View for financial management

CREATE VIEW financial AS
SELECT id, name, salary
FROM employees
NATURAL JOIN work

UPDATE financial SET salary = ... WHERE id = ...;

The view definition does highlight a flaw with the current design. There is no
way to restrict the update capabilities using views. The manager can hire and
fire new employees by issuing insertions and deletions on the view.

5.1.3 Project management

The last scenario is one where a particular project manager is interested in
querying information about the skills of the employees assigned to projects
that the project manager is in charge of. Note that this is an example of a
user-centric view since the view is for a particular user, a project leader.

The view should allow the following two updates to be performed:
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• The project leader should be able to assign employees to a project,
provided the project leader is responsible for it.

• Remove an employee from a project for which the project leader is
responsible.

This problem is hard to solve with a single view, just as in the first case. It
is hard to solve because it is challenging to reassign employees and provide
information about every employee’s skills on a project. If a view is created
to retrieve all the required information, the view-reference graph would no
longer be a rooted tree. It is not a rooted tree as neither the capabilities
nor the assignment table has any inbound references, and both reference the
employee relation. Updates would therefore be undefined according to our
current approach.

The solution is, just as before, to split the view into two separate views where
updates are well-defined. The new view definitions and the required update
capabilities are shown in listing 5.5. The assignment view can be used to
reassign employees using insertion, deletion, and updates,while the capabilities
view is used to get the skills of every employee. This does not use more
storage than necessary, as their common contributing tables will use the same
underlying CRR tables. The views do give the project manager more update
capabilities than needed. No authorization framework is implemented that can
enforce that only certain users can access and update a view.

Listing 5.5: Project management views, as well as required updates

-- view of assignments
CREATE VIEW assignments AS
SELECT person_id, project_id
FROM assignments
JOIN employees
JOIN projects
WHERE leader_id = ...;

-- non-updatable view for information extraction
CREATE VIEW capabilities AS
SELECT person_id, skill
FROM capabilities
JOIN assignments
JOIN employees
JOIN projects
WHERE leader_id = ...;

-- Assign an employee using his id to a project
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INSERT INTO assignments(person_id, project_id) VALUES (..., ...);

-- Remove assignment using a person_id
DELETE FROM assignments WHERE person_id = ...;

5.2 Experiments

An experiment has been conducted to evaluate the viability of partial replication
using views. The experiment is designed to compare partial-state replication
against full-state replication. The three aspects of interest are storage, compu-
tation, and communication. The experiment is similar to the one in [12]. There
are two relations defined for the experiment. These are '1( 1, �, �,  2) and
'2( 2,�, �).  1 and  2 are the primary keys for '1 and '2 respectively. There
is a foreign key constraint on '1 referencing '2 with the key  2.  1, �,  2 are
all integers, whereas A and C are 200-byte randomly generated strings. Before
each run, '1 is initialized with # values, while '2 is initialized with # /10
rows.

 1 is sequentially assigned each row within the range [1..# ].  2 is a value in
the range [1..# /10] and is sequentially assigned in '2. The  2 reference in '1
is evenly distributed such that ten total references from '1 to every row in '2.
� is a value within the range [1..100].

A view + ( 1, �, �,  2, �) is defined as E = (f�=3A1) ⊲⊳ (c 2,�,A2). The key  2
will be the superkey for the view when considering the view-dependency graph.
Since B is in the [1..100] range, selecting a single B value will mean the view
will contain # /100 rows. In every run of the experiment, the � attribute of 10
rows is changed, meaning there is a constant number of updates regardless of
the value chosen for # . We run the experiment multiple times with # in the
range between [20000..120000] rows.

The following hardware was used for the experiment:

CPU: Intel I7-8700K

RAM: 32 Gb of capacity with a clock speed of 2666 mHz

Storage: HDD with a capacity of 8 Tb and a rated speed of 6 Gb/s
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5.2.1 Computation overhead

We measure the time to perform operations at a replica and compare regular
replication to view replication. The most interesting operations are the delta-
generation and merging procedures. We set up both a regular replica and
a view replica that have been initialized to contain data as described in the
previous section. We then apply ten updates to both the regular and view
replicas. We then measure the time it takes to generate and merge incoming
deltas.

Figure 5.4: Time for delta-generation and merging at a source instance.

Figure 5.4 shows the time to generate deltas at a regular replica for another
regular replica (delta-s) and a view (delta-v). The time taken to generate
a delta for a source replica is slightly higher than for another view. This is
because, in addition to identifying changed tuples, it must also ensure that the
tuple is actually in the view instance. Checking if a row is present in a view is
a constant cost that increases linearly with database size.

Merging incoming deltas at a source replica is also an operation that increases
linearly with database size, and it is more expensive than delta-generation. This
is shown with merge-s and merge-v. The higher growth rate is likely because
the merging procedure is done in a high-level programming language. The
delta generation is done entirely with SQL statements and can therefore be
optimized by SQLite.

Figure 5.5 shows the time it takes to generate deltas and to merge at a view
replica. The delta-generation and merging procedures are close to constant
cost. The reason is that views are so small that the data size does not impact
the time taken. The time would likely increase linearly when the view size
increases, but this has not been verified.

What is not shown in the figures is that many changes in a source replica
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Figure 5.5: Time for delta-generation and merging at a view instance.

will not necessarily be replicated to views. Suppose there are 100 changes at
a source replica, but only ten changes should be replicated to the view. The
delta-generation and merge performance between source replicas would likely
be much higher.

5.2.2 Storage overhead

We measured overhead for CRR-augmented databases for both regular and
view replicas. The storage space overhead was close to three times the size of
the data in the AR layer. The size of the view replica was about 1/100 of the
size of the regular replica. Recall that the view replicates # /100 the size of
the view. The view is comparatively smaller as it does not store AR tables, and
an additional attribute is projected away.

The amount of data within rows determines the exact storage space overhead.
There is a constant amount of metadata per row in a table for CRR-augmented
databases. This means that if the rows store more data, the storage overhead
of CRR augmentation decreases. If the 200-byte strings were removed from
the schemas in the experiment, the storage overhead would likely be more
significant.

5.2.3 Communication overhead

The current implementation only runs experiments on a single machine. All
experiments have been done locally, so it has been impossible to measure the
communication overhead directly. It is possible to approximate the commu-
nication overhead by basing it on the amount of information that must be
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transmitted during synchronization. The information to transmit is a vector
clock and a generated delta state. The transmission time of a particular mes-
sage can then be calculated as C = <

1
, where C is the transmission time,< is the

message size, and 1 is the network bandwidth. For simplicity, we assume that
the network bandwidth is fixed and there is no congestion. The network over-
head will therefore grow linearly with message size, which will grow linearly
with the size of a delta.

Another point to consider is the communication overhead in decentralized
scenarios. Nodes can freely synchronize with their neighbors. This means that
view replicas may synchronize with other view instances or regular replicas. By
limiting the amount of information that a replica has, through view replication,
we inhibit the ability to communicate information that may be of interest
to other nodes. Consider a network partitioning scenario where nodes have
a small set of neighbors. Nodes may need to communicate with more than
one node if they replicate different but overlapping subsets of data. This may
introduce higher overall communication costs in the system.

5.2.4 Time to consistency

Limited transitive information sharing will likely impact the time for any given
node to reach a consistent state. If a node with information of interest is
unavailable, there is less chance that other peers will have information of
interest, as they may replicate views of different domains. This means that the
node must wait until it comes into contact with another node that contains
the information of interest. Limiting the amount of information a node has
is excellent for security and privacy, but the impact on the dissemination of
information may significantly reduce the usability of the approach.

5.2.5 Unfair comparison

It is essential to state that the view does not replicate the AR layer tables. This
means that views do not need to ensure that the AR layer is synchronized
with the CRR layer when merging. This general cost reduction may mean that
comparisons between regular replication and view replication are unfair.

A few microbenchmarks that measure the insertion, update, and deletion per-
formance on regular replicas compared to view replicas have been conducted.
The time taken at view replicas is significantly lower than regular replicas since
the AR layer does not need to be synchronized. The query performance is
likely lower, but this has not been verified. The time to update the AR layer is
a constant cost per row, and it is unlikely to affect the conclusions drawn from
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the experiment.



6
Related work
This chapter will present related work that is closely tied to what is presented
in this thesis. We will first explain the work that inspired our approach. We
have strayed far from the initial starting point, and we therefore also present
the work we ended up being closest to. Finally, we present how we differentiate
our work from other related work.

6.1 The starting point

Database views were quickly identified as a mechanism that could support par-
tial replication. An approach for updatable views based on relational lenses was
presented in [4]. It formed the basis for the work presented in this thesis.

Their approach involved bidirectional lenses performing regular relational
query operations in the get-direction, while the put-direction would apply an
updated view state back onto a source state. The lenses are composable so
that many views can be expressed. The lenses include selection, projection,
and join lenses. Their focus was on well-behaved lenses. Well-behaved lenses
ensure all updates are applied to a source that induces the same updated view
state. They provide algorithms for the different lenses and typing rules that
restrict what views could be expressed.

Our initial idea was to take their work on relational lenses and apply it in the
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context of CRR-augmented databases. Views would be expressed as SQL, and
they would be parsed into relational lenses. Figure 6.1 shows the relational
operations used to create a view. This would be interpreted as three instances
of a selection lens, two instances of a join lens, and a single instance of a
projection lens. The bottom-up evaluation would be the get-direction for the
lenses. Traversing in a top-down fashion and propagating updates downward
is equivalent to the put direction of the lenses.

c0;1D<,CA02:,@D0=C8C~,A0C8=6

⊲⊳

fA0C8=6>2(CA02:B) ⊲⊳

f (CA02:B_8=_0;1D<) f (0;1D<B)

Figure 6.1: An expression tree of relational operations for a view

Figure 6.2 shows their proposed algorithm for a selection lens. The get operation
on relation " is simply a selection with a predicate % . The put operation
involves doing a relational merge using the functional dependencies in the
set � to determine the ordering of updates on attributes. They require that
functional dependency form a tree. The tree of functional dependencies inspired
our definition of the view-reference graph. Updates are propagated from the
root of the functional dependency graph and down to the leaves. The relational
merge may include updates that violate the rule that a lens should be well-
behaved. The violating updates are captured in ## and removed from the
merged result.

64C (") = f% (")
?DC (", # ) = "0 − ##

where "0 =<4A64� (f¬% , # )
## = f% ("0) − #

Figure 6.2: Algorithm for a select lens

Applying this in the context of a CRR-augmented database meant making some
adjustments. Each view tuple could only be produced from its contributing
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tuples. This was to ensure that metadata was preserved correctly at view in-
stances. This would ensure that it could be locally updated while guaranteeing
eventual consistency. In addition, the relational merge would have to be re-
placed by the CRDT merge operation to guarantee eventual consistency. The
merge operation on two CRDT relations is a bijective function. Any tuple in a
relation instance maps precisely to a row in another relation instance with the
same schema. This means that "0 would contain all rows of the view # , and
consequently, ## is always empty.

The change to the merging function also changes how the join-lens works.
Figure 6.3 shows an algorithm for a join-lens. The join lens works by remov-
ing tuples from the left relation. It also removes violating updates using the
temporary relation !. But since the CRDT merge is bijective, ! will always be
empty.

64C (") = " ⊲⊳ #

?DC (", # ) = (" ′, # ′)
where "0 =<4A64� (", c* ($))

# ′ =<4A64� (#, c+ ($))
! = ("0 ⊲⊳ #

′) −$
" ′ = "0 − c* (!)

Figure 6.3: Algorithm for a join lens

The projection lens is shown in figure 6.4. It inserts the default value for the
dropped attribute before doing a relational merge that overwrites the value if
another attribute already determines it through a functional dependency. This
is handled differently for CRRs, as we can set a timestamp of 0 to default values.
A deliberate update to an attribute will always overwrite the default.

64C (") = c*−� (")
?DC (", # ) = A4E8B4-→� (" ′, ")
where " ′ = # ⊲⊳ {{� = 0}}

Figure 6.4: Algorithm for a project lens

After making the necessary changes, relational lenses were found to be un-
necessary. The lenses became obsolete because of the significant difference
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between the merge operations since a direct CRDT merge of join-irreducible
states could produce the expected results.

We decided to only delete a single tuple in the case of multi-way joins, which
is different from the join-lens. We also restrict the views that can be updated,
which are presented as typing rules in [4]. We have not included the typing
rules from their work. This is because we take a more straightforward approach
to what views are updatable.

6.2 Most similar work

Ourfinal implementation is closer to thework of [15] than thework on relational
lenses. They present several computational algorithms that translate updates
unambiguously and apply them to a source database instance.

They propose algorithms for translating insertions, deletions, and replacements
on views composed of selection, projection, and joins. We arrived at almost
identical algorithms by starting with relational lenses and modifying the ap-
proach to suit our needs. The only difference is that our translations affect the
CRR layer and must modify the underlying CRDT structures. The translations
are the same when only considering the AR layer.

They also presented similar restrictions on the kinds of views that are updatable.
The references between relations should form a rooted tree, and that key-
attributes cannot be projected away. These are the exact requirements that
were found to be suitable for our approach.

Most of the work in this thesis was done while being unaware of this early
work. It is interesting how one arrives at an approach similar to one presented
decades earlier.

Their work did inspire some changes to our existing approach. They present the
idea of minimal updates. Updates should apply minimal changes to a source
database to achieve the desired effect. For example, they argued that deletions
from select views change the predicate to a non-selecting value if possible. This
led to a change in our approach regarding deletions. We further restrict the
idea of minimal deletion to selections where the predicate involves at least one
boolean attribute.
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6.3 Related work on updatable views

There has been a wide range of research on updatable views. This research has
focused on translating updates back to one specific source instance. Our work
guarantees that translations are applied in the same manner, independent
of the state of the source instance. Our approach can therefore guarantee
strong eventual consistency, which earlier approaches to updatable views could
not.

Earlier approaches relied on applying translations to a specific source instance.
Recall that our approach defines the translation of updates in terms of the
join-irreducible states and is, therefore, independent of the target state where
the delta is merged.

There has been a lot of research on incremental view maintenance. This pri-
marily focuses on how tuples are derived and when tuples should be added
and removed from the view. Maintaining materialized views is irrelevant, as we
only use the concept of views. Views are recomputed upon access. The authors
of [12] present an approach to incremental updates of views using relational
lenses. Their work involves tracking changes and applying them to a source
database instance. Our work relies on synchronization using join-irreducible
states of a CRDT. It is an efficient approach for disseminating updates and there-
fore does not rely on earlier work on incremental maintenance on updatable
views.





7
Discussion
This chapter will discuss whether or not the presented approach satisfies the
requirement for replicating data subsets. The possibilities and limitations of
our approach are also highlighted. Several aspects of the current approach can
be improved or investigated further. These aspects include security concerns,
understandability, and the viability of the implementation.

7.1 Requirements

The requirements for partial replication were first presented in section 3.4.
How well these requirements have been met is discussed in the following
sections.

7.1.1 User-centric

The first requirement is that the replication of data subsets should be user-
centric. In essence, this means that views need not be globally defined but rather
customized for individual nodes or individual users. The current approach lets
users define views of data using view definitions written using SQL. Users can
thus express precisely what data is of interest.

This does mean that the database schema must be globally known and shared
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between all the nodes in the system. This is a small but necessary limitation.
A solution would be to implement a way to handle schema changes dynami-
cally.

7.1.2 Clear update semantics

As seen in the previous sections, view definitions affect the kinds of updates
that can be applied. Different views provide different update capabilities. It is
vital that it is easy to reason about what effects updates have when considering
a view definition.

This is not currently as clear as one would hope. The current implementation
allows users to change attributes constrained by a predicate to a non-selecting
value. Doing such an update will remove the tuple from the view. It might
even remove multiple tuples from the view at once. The usual semantics for an
update is that it will neither add nor remove the updated tuple.

Another update that might not be easily understood is when deletions lead
to the inversion of a boolean attribute used in a selection condition. Indeed,
inverting the boolean will remove the tuple, but it differs from deletions from
views that do not have such a predicate. This differing behavior means updates
might not be well-understood.

Although the traditional updates on relational databases are insertion, deletion,
and update of tuples, we must perhaps create more specialized operations that
apply to views. An update that removes a tuple is a removal triggered by
changing the attribute. We could create operations that convey the intention
of the update while parameterizing how the operation is applied.

As an example, a deletion can either be done by deleting the tuple containing
the superkey for the view, or it can be done by changing an attribute to a
non-selecting value. Both cases intend to delete the tuple, but the parameters
determine whether it should remove a tuple or update attributes to achieve
removal.

Conversely, this means that an update will only ever update tuples in place, and
removal is not a possible outcome. Deletion will always remove a tuple, while
updates will never remove a row. If these invariants cannot be guaranteed, the
operations should produce errors.

Insertion is a bit different. The current implementation is idempotent, ensuring
all the tuples are present for the join condition to be true. It could fail if the
insertion did not insert any new tuple. For example, it should not be possible
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to insert rows that would not appear within the view due to the inserted tuple
not satisfying the selection predicate. The insertion should therefore produce
an error if no insertion took place.

7.1.3 Well-defined translations

One of the requirements was that updates should have well-defined translations.
By placing restrictions on what views are updatable,we have been able to define
computational algorithms that unambiguously translate updates on views into
updates that can be applied to source database instances. Our approach is
pragmatic in the sense that we choose reasonable update algorithms. This
does not mean the update policies are the only ones that can unambiguously
translate view updates.

A drawback of the current implementation is that it does not enforce all the
restrictions that have been described. It does not ensure that key attributes
are present or that the view-dependency graph forms a rooted tree. These
invariants should be evaluated upon creating the views and reevaluated if
there are any changes to the database schema. It would be similar to enforcing
the typing rules presented in [4].

Default values for attributes that are projected away should also satisfy any
selection predicate defined on it. Otherwise, insertions on views will not be
well-behaved since a view will have inserted a tuple that should never have
been present. It will eventually be removed when the default value is applied,
and the inserting node recomputes the view at a node that has applied the
default value.

Another limitation of default values is that they are currently only defined in
the global database schema. It would likely be helpful to let the definition
of the view dictate what default values to set. This could allow an update to
be correctly tagged with the user ID for the updating user in a user-centric
view.

7.1.4 Guarantees strong eventual consistency

The current implementation does guarantee strong eventual consistency by
utilizing CRDTs. Even though eventual consistency is guaranteed, it does not
guarantee that data dissemination happens at any particular rate. This is
determined by the views the nodes replicate and which peers they synchronize
with. How replication of views affects the synchronization behavior concerning
consistency should be investigated further.
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It is important to stress that the current approach does not claim to be a general
approach that can solve most problems for distributed systems. It is only meant
for applications where only strong eventual consistency can be applied. The
CALM theorem [11] describes what class of problems can be solved without
coordination. Problems that do not require coordination are precisely those
problems in which one can leverage eventual consistency.

The class of problems that are solvable without coordination are the problems
that are logically monotonic. In essence, this means that the conclusions that
can be made from an arbitrary state cannot be disproven by any updates
that change the state. The design of CRDTs ensures that they are logically
monotonic, which is a prerequisite for eventual consistency. Thus, developers
are responsible for using replicated views to ensure that the problem being
solved is logically monotonic.

7.1.5 Minimize required computer resources

The preliminary results shown in the experimental section show that repli-
cation of data subsets leads to a reduction in required hardware capabilities.
Some additional aspects of replication can affect the performance of a system
replicating data subsets.

Storage has been the primary focus when implementing the replication of data
subsets. The reason is that limiting the amount of information will, in turn,
limit the processing required for querying, updating, and transmitting updates.
It does not mean limiting required storage is optimal; it depends on how the
views are accessed.

A view is replicated by replicating subsets of all the tables contributing to
the view. This means that the view is not a traditional materialized view.
Materialized views speed up frequently used queries by precomputing the
result. Our approach requires the view to be recomputed using the view
definition upon each access. It likely has a higher computational cost than
actually materializing the view. View replicas that replicate large views and
do lots of queries will probably not be optimal in the current solution. If query
performance is inadequate, techniques can be employed for materializing and
maintaining views locally. They will not affect the implementation of the CRR
layer as long as triggers propagate updates correctly and the materialized view
is appropriately maintained.

It is assumed that views are small, so recomputing views should not be a huge
issue. All joins within a view are on key attributes and, as such, will only
contain as many rows as is in the root relation of the view-reference graph.
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Since all joins are on keys, indexing ensures the joins are more efficient than a
linear scan.

CRDTs are unbounded in their data size growth. Thus, any change to the
replica’s state can only add information to the system. Even though views
replicate subsets of data, this only slows down data growth at each node
replicating the view. Some view definitions can maintain constant data, but
tuples are being added and removed at the same rate. Think of time-based
views in which information from the last week is kept. These views should, in
theory, limit the amount of data, but the constant growth may be infeasible
over a larger period. In addition, the size of the deltas sent to views increases
since all rows that have ever been in the view are sent to guarantee strong
eventual consistency.

Even though there are a lot of impossibilities in distributed systems, reasonable
assumptions can often lead to designs that are fit for use in practice. Removal
of data could violate the guarantees for strong eventual consistency. It depends
on how the system will be used. An approach to partially replicating CRDTs
has already been presented in [5]. It presents two different system models, one
pure peer-to-peer system and one in which there are authorities. Authorities
are nodes that replicate the full state of a CRDT. They show that it is possible to
grow and shrink the replicated subset of a state-based CRDT when the state of
the partial replicas can be updated from or offloaded to authoritative replicas.
This is similar to how version control systems are used. There is often a single
authoritative copy for a project, and developers merge their local changes into
the authoritative copy. In a pure peer-to-peer system, it is not possible to do
such offloading.

7.2 Future work

Much work can be done to make the current approach more viable. Many
practical issues should be resolved for the approach to be viable in production
systems. The first is to build a better interface that makes it easy to use arbitrary
communication protocols. Security concerns have also been omitted, although
limiting information in the name of security and privacy has been a core
motivation. The current supporting database technology has limitations that
may warrant the creation of a custom database implementation.
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7.2.1 Synchronization over the network

Previous implementations of CRR included network communication between
nodes. One of the implementations used SSH to send commands and trans-
mit delta-states between nodes. Another implementation used TCP/IP as the
transport protocol while implementing a custom application-level protocol for
synchronization between multiple nodes.

The current implementation does not include any implementation for synchro-
nization over the network. The focus has instead been on how views can be
implemented. Network synchronization is, therefore, out of scope. The CLI tool
could instead be modified to allow the generation of deltas for view replicas
and regular replicas. It can also allow the merging of incoming deltas. It would
then be the application’s responsibility to ensure that deltas are transmitted
between nodes.

Therefore, future work could involve the creation of a better interface for
different communication protocols to be used so that the actual CRDT imple-
mentation is not bound to any particular communication protocol. The only
requirement for implementing a communication protocol is to use node identi-
fiers generated by the augmented database and that the deltas are transmitted
reliably.

7.2.2 Security concerns

The replication of views can be used to limit the amount of information that is
replicated to nodes. This can improve security and privacy, as mentioned earlier.
Several security concerns must be addressed before achieving a satisfactory
degree of security. There is no limitation on who can create views and what
can be created. This means that views can extract whatever information a user
wants. There is no concept of identity for users. There is no authentication
mechanism to prove the identity of users.

In addition to limiting access to information, there is the issue of limiting the
updates a user can execute. This was shown as an issue when presenting use
cases in section 5.1. Fine-grained control over what updates can be done on
particular views should be investigated. Creating a view for a user should only
allow that user to access the view. Restricting updates per user may also be
necessary.

A complicating factor for incorporating authentication and authorization into
the system is that existing frameworks are often centralized solutions. It should
be possible for peers to verify that the data has been updated by a user autho-
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rized to update it. It must also be possible for nodes to receive synchronization
requests to verify that the requesting node can receive the requested infor-
mation. Having a centralized security solution will hurt system availability. It
may also be helpful for users to restrict access to information they create and
then delegate access. An approach to security in a decentralized system using
CRDTs is presented in [13].

7.2.3 Beyond SQLite

The current implementation uses SQLite as a supporting database technology.
Many issues have been identified during the development process. The primary
drawback of using SQLite is that it is currently impossible to express complex
integrity constraints. It is impossible to define constraints in SQLite that ignore
tuples with even causal lengths. As said earlier, the AR layer is a view on top of
the CRR layer where rows with odd causal lengths are present. It is currently
required to have a materialized AR relation for SQLite to enforce integrity
constraints autonomously. If the integrity constraints in SQLite could be made
to ignore tuples of even causal length, the AR layer materialized view would
become obsolete.

The primary benefit of the materialization of AR tables is that it is easier to
define and enforce integrity constraints. Insertion of a tuple that already exists
into an AR layer table will trigger an SQLite error. Using an actual view on top
of the CRR layer makes the same error functionality harder to implement. The
integrity constraints should only be enforced on those rows in the AR layer
with an odd causal length. This kind of integrity constraint is not currently
possible to express in SQLite.

Many tables contain metadata needed for synchronization, which is not hidden
from the database users. The tables that are created during augmentation
should be hidden from users. Metadata tables are only identified using a
naming convention,which can break down if users name their tables interfering
with the convention.

One possibility would be to implement a custom database solution where
the internal tables for augmentation are hidden, and procedures for handling
synchronization are built in. This would allow for the implementation of custom
integrity constraints and additional CRDTs as custom attribute types (not only
LWW-register), type-checking of view definitions, and enable the specification
access control to views and tables for users.





8
Conclusion
The main contribution of this thesis is an approach to asynchronously repli-
cated views that are updatable, and that guarantees eventual consistency. It
combines classical research on updatable views with conflict-free replicated
datatypes (CRDT) research. Our approach can apply updates to database in-
stances independent of the state where updates are applied. Existing research
on updatable views cannot independently apply updates at other database in-
stances and guarantee that updates are resolved similarly at different instances.
It also differentiates itself from existing research on CRDTs as the views can be
defined using a query language, allowing for easily defining specialized partial
replicas.

An implementation of conflict-free replicated relations (CRR) has been written
in Rust. The implementation of CRR has been extended to allow the replication
of views that can be defined using SQL syntax. The views can be updated,
activating specific database triggers for each view. The triggers propagate
updates from the view to the tables contributing to the view.

The development process involved creating test cases to ensure that view
updates were well-defined. The implementation was first based on recent
research on relational lenses. After implementing relational lenses, it was com-
bined with the implementation of CRR-augmented databases. The properties
of CRR-augmented databases lead to the simplification of the implementation.
This meant relational lenses were no longer needed. The final solution is most
similar to the work on updatable views in [15].
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The implementation has also been evaluated to ensure it meets the require-
ments for partial replication. The requirements are summarized below.

• User-centric

• Clear update semantics

• Updates have well-defined translations

• Guarantees strong eventual consistency

• Minimizes the required storage, computation, and communication capa-
bilities

The implementation has been evaluated to ensure that it fulfills the require-
ments. The evaluation included assessing the usability of the implementation
of updatable views against several use cases. The assessment found that there
were view definitions that would fulfill the requirements for all the use cases.
The use cases were built upon what specific users may want from a system. It
also included a use case tailored for individual users. The current implementa-
tion allows the definition of user-centric views.

The use cases also show that the views have clear enough update semantics.
It is necessary to know the view definition to understand an update’s effects
on a particular view. Careful thought must be put into creating views to allow
the required update capabilities. Naming a view is particularly important to
convey what update capabilities the view has. The implementation also ensures
well-defined translations of updates. All updates have an equivalent translation
that can be applied to a regular replica storing the full state. This has been
validated through rigorous testing using test cases.

The implementation guarantees strong eventual consistency, as it is built on the
strong theoretical foundation of CRDTs. It uses the same join-irreducible states
as a CRR-augmented database. It also uses mostly the same delta-generation
andmerge procedures. A fewmodifications have beenmade to delta-generation
and merging. Delta generation is changed to only transmit tuples that are part
of the view or have ever been a part of the view. Delta-generation and merging
have also been modified to incorporate translations of projections and selection
conditions. The design is largely the same, and our modifications will still
guarantee strong eventual consistency.

An experiment was conducted to investigate whether or not introducing the
replication of views reduced required storage, computation, and communication
capabilities. The required storage was greatly reduced, as would be expected.
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The synchronization procedures for delta generation andmerging were efficient
when using views. Views also are faster for updates as it only replicates data
in the CRR layer, but they might be slower for queries on large views.

There is quite a bit of future work that can be done to improve the implemen-
tation. The implementation can be improved by allowing it to be used with
multiple network communication protocols. Improved security and privacy
were part of the motivation for implementing views. Still, much more work is
needed to build a secure framework with proper authentication of users and
authorization for access control. It might also be beneficial to move away from
using SQLite as a supporting database technology in favor of a more custom
solution allowing for a more flexible implementation.

In conclusion, this thesis describes a new approach to view-update problems in
the context of local-first software. It shows that it can be implemented efficiently
and that view updates have well-defined translations with clear semantics, and
that the solution also guarantees strong eventual consistency.
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Abstract. Distributed systems have to live with weak consistency, such as even-
tual consistency, if high availability is the primary goal and network partitioning
is unexceptional. Local-first applications are examples of such systems. There is
currently work on local-first databases where the data are asynchronously repli-
cated on multiple devices and the replicas can be locally updated even when the
devices are offline. Sometimes, a user may want to maintain locally a copy of
a view instead of the entire database. For the view to be fully useful, the user
should be able to both query and update the local copy of the view. We present an
approach to maintaining updatable views where both the source database and the
views are asynchronously replicated. The approach is based on CRDTs (Conflict-
free Replicated Data Types) and guarantees eventual consistency. We also present
our preliminary implementation and performance results.

Keywords: Data replication, eventual consistency, updatable views, lenses, CRDT

1 Introduction

Local-first software suggests a set of principles for software that enables both collabo-
ration and ownership for users. Local-first ideals include the ability to both work offline
and collaborate across multiple devices [13].

There has been effort in supporting local-first database systems [18]. These systems
replicate data at different sites and allow the sites to make immediate updates on local
data. According to the CAP theorem [6,8], it is impossible to simultaneously ensure all
three desirable properties, namely (C) consistency equivalent to a single up-to-date copy
of data, (A) availability of the data for update and (P) tolerance to network partitioning.
We have to live with weak, or eventual, consistency [16], if we want immediate update
on data that are offline.

CRDT [15], or Conflict-free Replicated Data Type, has been a popular approach to
constructing eventually-consistent systems. With CRDT, a site updates its local replica
without coordination with other sites. The states of replicas converge when they have
applied the same set of updates. CRR [18], or Conflict-free Replicated Relation, is an
application of CRDT to relational databases.

A user may want to maintain copies of views in her local devices, instead of the
entire database. This may reduce both the amount of data stored on the device and the
overhead of data communication and local data processing. This may also simplify user



interaction as the user can focus on the data of interest. Furthermore, this may enhance
the protection of data by preventing a user from accessing the data outside a view.

For a view to be fully useful, the user should be able to both query and update the
local copies of the views. The updates must then be translated and applied back to the
original source database.

Supporting updatable views has been an active research topic for decades [2,2–4,10,
12]. There is at present no existing work on supporting updatable views in a distributed
setting where both the source database and the views are asynchronously replicated and
local data can be updated even when the replicas are offline.

Our main contribution is an approach to supporting updatable views where both the
source database and the views can be asynchronously replicated. The approach is an
extension to CRR. It guarantees eventual consistency. That is, when the databases (or
the views) have applied the same set of updates, their states converge. Furthermore, the
approach preserves integrity constraints defined in the source database.

The paper is organized as the following. In Section 2, we first describe updatable
views with an example. Then, we present the consistency issue when the database and
the views can be asynchronously replicated. In Section 3, we briefly review the neces-
sary background of CRDT and CRR. In Section 4, we give a high-level overview of our
approach. In Section 5, we use examples to explain how we translate view updates to the
source database. In Section 6, we present some early implementation and experiment
results. In Section 7, we discuss related work. Finally, in Section 8, we conclude.

2 Updatable views and and eventual consistency

In this paper, a database query operation, ranging over q, can be a select σ , project π or
join ⋊⋉. A database updating operation, ranging over u, can be a tuple insertion, deletion
or update. We abuse the term database and relation for either their schema (ranging
over S for source databases of views, R for base relations in a source and V for views)
or instance (ranging over s, r and v), when it does not cause confusion.

A view V is defined with a sequence of query operations Qv = [q1,q2, . . . ] over a
source database s, i.e. v =Qv(s). After an update uv on view v, the new state of the view
becomes v′ = uv(v). A translation T↑ of uv to source database s results in a sequence
of updates in base relations T↑(s,uv) = [u1,u2, . . . ]. According to [4], T↑(s,uv) exactly
performs uv(v) iff Qv(T↑(s,uv)(s)) = uv(Qv(s)). T↑(s,uv) exactly translates uv(v) iff
it exactly performs uv(v) and preserves integrity constraints defined in S. Traditional
research on updatable views (e.g. [2, 4, 9, 12]) and later work (e.g. [3, 10]) focused on
functional-dependency constraints. In this paper, we handle also integrity constraint that
can be defined by the application, such as referential and uniqueness constraints.

Fig. 1 shows an example of an updatable view, adapted from [3, 10]. The source
database S = {Ra,Rt ,Rta}. That is, there are three base relations in S, Ra for musical
albums, Rt for musical tracks and Rta for tracks in albums. The view is defined with



album quantity
Disintegration 6

Show 3
Galore 1
Paris 4
Wish 5

album quantity
Disintegration 7

Show 3
Galore 3
Paris 4
Wish 5

track year instore
Lullaby 1989 TRUE

Lovesong 1989 TRUE
Trust 1992 FALSE

track year instore
Lullaby 1989 FALSE

Lovesong 1989 TRUE
Catch NULL FALSE
Trust 1992 FALSE

track album
Lullaby Galore
Lullaby Show

Lovesong Galore
Lovesong Paris

Trust Wish

track album
Lullaby Galore
Lullaby Show

Lovesong Galore
Lovesong Paris
Lovesong Disintegration

Catch Galore
Trust Wish

track instore album quantity
Lullaby TRUE Show 3

Lovesong TRUE Paris 4
Trust FALSE Wish 5

Qv

track instore album quantity
Lullaby FALSE Show 3

Lovesong TRUE Disintegration 7
Catch FALSE Galore 3
Trust FALSE Wish 5

T↑

Ra(album,quantity)

Rt(track,year, instore)

Rta(track,album)

V def
= πtrack,instoreRt ⋊⋉ Rta ⋊⋉ σquantity>2Ra

Fig. 1. Example of an updatable view, adapted from [3]

V def
= πtrack,instoreRt ⋊⋉ Rta ⋊⋉ σquantity>2Ra. There are four updates in view v:

u1(v) =v⟨Lullaby,TRUE ↗ FALSE,Show,3⟩,
u2(v) =v⟨Lovesong,TRUE,Paris ↗ Disintegration,4 ↗ 7⟩,
u3(v) =+ v⟨Catch,FALSE,Galore,3⟩,
u4(v) =− v⟨Trust,FALSE,Wish,5⟩.

Here, +v⟨. . .⟩ and −v⟨. . .⟩ are an insertion and a deletion of a tuple in v, and
v⟨. . . ,a ↗ a′⟩ is an update of an attribute of a tuple in v from value a to value a′.

Below is a possible translation of the view updates in s:

T↑(s,u1) = [rt⟨Lullaby,1989,TRUE ↗ FALSE⟩],
T↑(s,u2) = [ra⟨Disintegration,6 ↗ 7⟩,−rta⟨Lovesong,Paris⟩,+rta⟨Lovesong,

Disintegration⟩],
T↑(s,u3) = [ra⟨Galore,1 ↗ 3⟩,+rt⟨Catch,NULL,FALSE⟩,+rta⟨Catch,Galore⟩],
T↑(s,u4) = [− rta⟨Trust,Wish⟩].

Notice that a translation of u3 is only possible if the year-attribute of Rt either is
given a default value or may be left unspecified with NULL.



Now, consider the situation where both the source database and the view are asyn-
chronously replicated at different sites. In the existing work (e.g. [2–4, 9, 10, 12]), a
translation is made on the current state of the source database. If one replica reaches
state s1 by deleting tuple ra⟨Lullaby,1989,TRUE⟩, while another replica reaches state
s2 by updating the instore-attribute of the same tuple to FALSE. The translations of
view update u1 in states s1 and s2 are T↑(s1,u1) = T↑(s2,u1) = [ ]. Depending on the or-
der in which the updates on the source database and the translations of the view update
are applied, the instore-attribute of the tuple may end up with value TRUE or FALSE,
or the tuple itself may be deleted.

Our work is based on delta-state CRDT [1,5] (Section 3.1), applied to replication of
relational databases [18] (Section 3.2). The states of the source database and the views
form a join-semilattice [7,15]. The updates in the database and the views are represented
as join-irreducible states in the join-semilattice. A view update is translated into a set of
join-irreducible states in the source database and the translation is independent of the
state of the database. When the database (and equally view) replicas have applied the
same set of updates (i.e. join-irreducible states), their states converge.

3 Technical background

In this section, we briefly review necessary technical background on CRDT and CRR.

3.1 CRDT

A CRDT [15] is a data abstraction specifically designed for data replicated at different
sites. A site queries and updates its local replica without coordination with other sites.
The data are always available for update, but the data states at different sites may di-
verge. From time to time, the sites send their updates asynchronously to other sites with
an anti-entropy protocol. The sites also merge the received updates with their local data.
A CRDT guarantees strong eventual consistency [15]: a site merges incoming remote
updates without coordination with other sites; when all sites have applied the same set
of updates, their states converge.

There are two families of CRDT approaches, namely operation-based and state-
based [15]. In the primary state-based CRDT approach, a message for updates consists
of the data state of a replica in its entirety. A site applies the received updates by merging
its local state with the state in the received message. The possible states of a state-based
CRDT must form a join-semilattice [7], which implies convergence. Briefly, the states
form a join-semilattice if they are partially ordered with ⊑ and a join ⊔1 of any two
states (that gives the least upper bound of the two states) always exists. State updates
must be inflationary. That is, the new state supersedes the old one in ⊑. The merge of
two states s1 and s2 is the result of s1 ⊔ s2.

Fig. 2 (left) shows GSet, a state-based CRDT for grow-only sets [15], where E is a
set of possible elements, ⊑def

=⊆, ⊔ def
= ∪, insert is a mutator (update operation) and in?

1 To avoid being confused with the join ⋊⋉ of relations, in the rest of the paper, we use the term
merge for ⊔.



GSet(E) def
= P(E)

insert(s,e) def
= {e}∪ s

insertδ (s,e) def
=

{
{e} if e ̸∈ s
{} otherwise

s⊔ s′ def
= s∪ s′

in?(s,e) def
= e ∈ s

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

{}
Fig. 2. GSet CRDT and Hasse diagram of states

is a query. Obviously, an update through insert(s,e) is inflationary, since s ⊆ {e}∪ s.
Fig. 2 (right) shows the Hasse diagram of the states in a GSet. A Hasse diagram shows
only the “direct links” between states.

Using state-based CRDTs, as originally presented [15], is costly in practice, be-
cause states in their entirety are sent as messages. Delta-state CRDTs address this is-
sue by only sending join-irreducible states [1, 5]. Basically, join-irreducible states are
elementary states: every state in the join-semilattice can be represented as a join of
some join-irreducible state(s). In Fig. 2, insertδ is a delta-mutator that returns join-
irreducible states which are singleton sets (boxed in the Hasse diagram). We adopt
delta-state CRDTs in our work.

Since a relation instance is a set of tuples, the basic building block of CRR is a
general-purpose delta-state set CRDT (“general-purpose” in the sense that it allows
both insertion and deletion of elements). We use CLSet (causal-length set, [18, 19]),
a general-purpose set CRDT, where each element is associated with a causal length.
Intuitively, insertion and deletion are inverse operations of one another. They always
occur in turn. When an element is first inserted into a set, its causal length is 1. When
the element is deleted, its causal length becomes 2. Thereby the causal length of an
element increments on each update that reverses the effect of a previous one.

As shown in Fig. 3, the states of a CLSet are a partial function s : E ↪→ N, meaning
that when e is not in the domain of s, s(e) = 0. Using partial function conveniently
simplifies the specification of insert, ⊔ and in?. Without explicit initialization, the causal
length of any unknown element is 0. insertδ and deleteδ in Fig. 3 are delta-mutators.

CLSet(E) def
= E ↪→ N

insertδ (s,e) def
=

{
{e 7→ s(e)+1} if ¬in?

(
s(e)

)

{} otherwise

deleteδ (s,e) def
=

{
{e 7→ s(e)+1} if in?

(
s(e)

)

{} otherwise

(s⊔ s′)(e) def
= max

(
s(e),s′(e)

)

in?(s,e) def
= odd?

(
s(e)

)

Fig. 3. CLSet CRDT [18]



An element e is regarded as being in the set when its causal length is an odd num-
ber. A local insertion has effect only when the element is not in the set. Similarly, a
local deletion has effect only when the element is actually in the set. A local effective
insertion or deletion simply increments the causal length of the element by one. For
every element e in s and/or s′, the new causal length of e, after merging s and s′, is the
maximum of the causal lengths of e in s and s′.

3.2 CRR

The relational database supporting CRR consists of two layers: an Application Relation
(AR) layer and a Conflict-free Replicated Relation (CRR) layer (Fig. 4). The AR layer
presents the same database schema and API as a conventional relational database. Ap-
plication programs interact with the database at the AR layer. The CRR layer supports
conflict-free replication of relations.

r̃A

rAq(rA)
query

u(rA) refreshupdate

ũ(r̃A)

r̃B
anti-entropy

merge

rB
u′(rB)

ũ′(r̃B)

Site A Site B

AR
layer

CRR
layer

Fig. 4. A two-layer relational database system [18]

An AR-layer relation schema R has an augmented CRR-layer schema R̃. In Fig. 4,
site A maintains both an instance rA of R and an instance r̃A of R̃. A query q is per-
formed on rA without any involvement of r̃A. An update operation u on rA triggers an
additional operation ũ on r̃A. The operation ũ is later propagated to remote sites through
an anti-entropy protocol. Merge with an incoming remote operation ũ′(r̃B) results in an
operation ũ′ on r̃A as well as an operation u′ on rA.

CRR has the property that when both sites A and B have applied the same set of
operations, the relation instances at the two sites are equivalent, i.e. rA = rB and r̃A = r̃B.

We adopt several CRDTs for CRRs. Since a relation instance is a set of tuples, we
use the CLSet CRDT (Fig. 3) for relation instances. We use the LWW (last-write wins)
register CRDT [11, 14] for individual attributes in tuples.

The join-irreducible states in a CRR relation r̃ are simply the tuples as the result of
the insertions, deletions and updates. In the rest of the paper, we use the term delta for
the tuple as the join-irreducible state of an operation. As we apply delta-state CRDTs,
the tuples of the latest changes are sent to remote sites in the anti-entropy protocol.

For an AR-layer relation R(K,A1,A2, . . .), where K is the primary key, there is a
CRR-layer relation R̃(K̃,K,L,T1,T2, . . . ,A1,A2, . . .). K̃ is the primary key of R̃ and its
values are globally unique. L is the causal-lengths (Fig. 3) of the tuples in R̃. Ti is the
timestamp of the last update on attribute Ai. In other words, the (K̃,L) part represents



the CLSet CRDT of tuples and the (Ai,Ti) parts represent the LWW register CRDT of
the attributes.

When inserting a new tuple t into r, we insert a new tuple t̃ into r̃, with the initial
t̃(L) = 1. When deleting t from r, we increment t̃(L) with 1. Tuple t is in r, t ∈ r, if t̃(L)
is an odd number. That is,

in ar?(t̃) def
= odd?(t̃(L))

When updating t(Ai) in r, we update t̃(Ai) and t̃(Ti) in r̃.
An update delta on an relation instance r̃′ at a remote site is actually a tuple t̃ ′. If a

tuple t̃ in the local instance r̃ exists such that t̃(K̃) = t̃ ′(K̃), we update t̃ with t̃⊔ t̃ ′ where
the merge ⊔ is the join operation of the join-semilattice (Section 3.1). Otherwise, we
insert t̃ ′ into r̃. The merge t̃ ⊔ t̃ ′ is defined as:

t̃ ⊔ t̃ ′ def
= t̃ ′′, where t̃ ′′(L) =max(t̃(L), t̃ ′(L)), and

t̃ ′′(Ai), t̃ ′′(Ti) =

{
t̃ ′(Ai), t̃ ′(Ti) if t̃ ′(Ti)> t̃(Ti)

t̃(Ai), t̃(Ti) otherwise

After the update of r̃, we update r as the following. If in ar?(t̃) evaluates to false, we
delete t (where t(K) = t̃(K)) from r. Otherwise, we insert or update r with πK,A1,A2,...(t̃).

4 Approach Overview

We consider distributed database systems where data are replicated at multiple sites.
For the purpose of, say, high availability, the sites may update the data without coordi-
nation with other sites. The system is said to be eventually consistent, or convergent, if,
when all sites have applied the same set of updates, the sites have the same state. The
system is said to be strongly eventually consistent [15], if the sites unilaterally resolve
any possible conflict, i.e., without coordination with other sites. We focus on strongly
eventually-consistent relational database systems.

We restrict on which views can be updated, similar to [3, 10, 12]. More specifically,
a view can only project away non-primary-key attributes that are given default values
or can remain unspecified with NULL when inserted without given values. Moreover,
when joining two relations, the join attribute(s) must contain one of the primary keys.

For a source database S, we define a view V with V = Qv(S). Suppose when the
database state is initially s0, the view state is v0 = Qv(s0) (Fig. 5). Concurrently, the
view applies updates with delta state ∆v′ and the source database applies updates with
delta state ∆s′. The new states in the view and the database become v1 = v0 ⊔∆v′ and
s1 = s0 ⊔ ∆s′ respectively. When the database receives ∆v′, it applies the translated
delta T↑(∆v′) to s1 and the new state becomes s2 = s1 ⊔T↑(∆v′). Similarly, when the
view receives ∆s′, it applies the translated delta T↓(∆s′) to v1 and the new state become
v2 = v1 ⊔T↓(∆s′). One important property of the translations T↓ and T↑ is that they are
independent of the target state in which the translation results are going to be applied.

Unlike traditional work on updatable views, we do not restrict to side-effect-free
view updates. However, we do respect integrity constraints, including the ones defined
by application programs, for instance, functional dependencies enforced with triggers.
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Fig. 5. Delta-states in source database and view

In Fig. 5, if the state s2 violates an integrity constraint, s2 is never visible to the
application. Instead, the view immediately applies some additional delta (as side effect
of T↑(∆v′)), ∆s′′ = IC(s2) for integrity-constraint preservation, and the new state s3 does
not violate any integrity constraint. Finally, the view applies the translation of ∆s′′. Our
approach guarantees that the updates in Fig. 5 commute. That is,

Qv(s0 ⊔∆s′⊔T↑(∆v′)⊔∆s′′) = Qv(s0)⊔∆v′⊔T↓(∆s′)⊔T↓(∆s′′)

Since the merge operation ⊔ is commutative, when the different replicas of the
source database (or the view) have applied the same set of delta states, their final states
converge.

5 Translation of view-update delta states

The translation from source database to views, T↓, is traditionally know as incremental
maintenance of materialized views. In this section, we focus on T↑, the translation of
view-update delta states to the source database. We describe the translation through
examples.

We start with select and project views. In Fig. 6, the base relation Rt (top left) is first
augmented to a CRR-layer relation R̃t (top right). R̃t has an attribute L for the causal
lengths of the tuples. In addition, every non-primary-key attribute is associated with a
timestamp attribute, indicating the last time at which the attribute value was set.

A project view has the same causal-length and timestamp attributes as the base
relation, unless the attribute is projected away. A select view has two more attributes σ
and Tσ that tell the last time the select predicate was evaluated. Initially, all σ values are
TRUE and the timestamp value Tσ of a tuple is the maximum of the timestamp values of
the attributes that occur in the select predicate. For tuples in CRR-layer ṽ1 in Fig. 6(a),
the Tσ values are set to the Ty values r̃t . If later the year-attribute of a tuple is set to a
value greater than or equal to 1990, the σ value becomes FALSE and the corresponding
tuple disappears from the AR-layer view.

The delta state of an update is simply a tuple in a CRR-layer relation or view. For up-
date v1⟨Lullaby,1989 ↗ 1988⟩ in Fig. 6(a), the delta state is ṽ′1⟨Lullaby,1988,5.1,1,
TRUE,5.1⟩. Here, Ty = 5.1 is the timestamp at which the new year-value is set. Since
the year-attribute is used in the select predicate, Tσ is also set to 5.1.

For deletion −v1⟨Lovesong,1989⟩, the L attribute of the delta state is incremented
with 1. As it is an even number, the tuple is regarded as being deleted in the AR layer.

For insertion +v1⟨Catch,1989⟩, the initial L value is 1 and all timestamps are set
according to the current time. For all insertions in select views, the Tσ value must be
TRUE.
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Fig. 6. Updating select and project views

Recall that a project view is updatable only if it keeps the primary key of the base
relation. Moreover, CRR-layer base and view relations keep all tuples regardless of
whether they have been deleted or not. Therefore, for every tuple in a CRR-layer select-
and-project view, there is exactly one tuple in the CRR-layer base relation.

Delta states of a view can be translated almost directly to the base relation. The only
exception is for the attributes that are projected away. The instore-attribute of the Catch-
tuple, which is missing in view V1, is set to its default value (suppose it is FALSE). Its
timestamp value Ti is set to 0.0, the smallest possible timestamp value. This means that
a default value (or NULL) cannot override any value that is explicitly given.

Fig. 6(b) shows two additional cases. The first case shows that a deletion in some
views can be handled differently. Here, we have an opportunity to achieve a least-effect
translation of deletions in a view, when the select predicate includes a boolean attribute,
such as the instore-attribute in σinstore=TRUE. Now, for the deletion −v2⟨Lovesong,1989⟩,
instead of deleting the Lovesong-tuple in the base relation (i.e. by incrementing the L
value), we set the σ value to FALSE. When translating to the base relation, we set the
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′
3

r′a, r̃
′
a

r′ta, r̃ta

V3 = Tta ⋊⋉ σquantity>2Ra

Fig. 7. Updating a join view

boolean value of the attribute as the negation in the select predicate. That is,
T↓(ṽ2⟨Lovesong,1989,3.0,1,FALSE,5.2⟩) = [r̃t⟨Lovesong,1989,3.0,FALSE,5.2⟩].

In this particular example, setting the Lovesong-track to be not-in-store is less de-
structive than deleting the track. When a select predicate uses multiple boolean at-
tributes, we choose to update the truth value of the leftmost one in the view definition.

The next case that Fig. 6(b) shows actually applies generally to updates in both view
and base relations. An update of (part of) a primary-key value is regarded as a deletion
and an insertion. In the figure, the update v2⟨Lullaby ↗ Trust,1989⟩ is interpreted as
[−v2⟨Lullaby,1989⟩,+v2⟨Trust,1989⟩].

For a view of two-way join R1 ⋊⋉ R2 to be updatable, we require, as in [12], that the
join attributes contain a primary key of R1 or R2. We can make a graph from a view
of a multi-way join. The nodes are the base relations. If the join attributes of Ri ⋊⋉ R j
contains the primary key of R j, there is a link from Ri to R j in the graph. Currently, we
require, also as [12], that the view graph is a tree. The primary key of the view is the
primary key of the root relation of the tree. Since the primary keys of the base relations
are not projected away, for a tuple tv in the view, we can find the tuples in the base
relations that contribute to tv via their primary-key values.

For view V = R1 ⋊⋉ R2, the set attributes of the CRR layer Ṽ is the union of the
sets of attributes of the CRR-layer R̃1 and R̃2. For tuple t̃v in CRR-layer ṽ, tuple tv is in
AR-layer v, if the L values of both r̃1 and r̃2 are odd and the σ values of both r̃1 and r̃2



are TRUE, i.e.,

in ar?(t̃v)
def
= odd?(t̃v(Lr1))∧odd?(t̃v(Lr2))∧ t̃v(σr1)∧ t̃v(σr2)

In Fig. 7, there is only one update in the view, v3⟨Lovesong,Paris ↗ Disintegration,
4 ↗ 7⟩. Since the album-attribute is part of the primary key of the view, the update is
interpreted as a deletion −v3⟨Lovesong,Paris,4⟩ and an insertion +v3⟨Lovesong,
Disintegration,7⟩.

For the deletion, we delete the corresponding tuple in the root base relation. Hence
the tuple ⟨Lovesong,Paris⟩ is deleted from rta.

For the insertion, we first insert ⟨Lovesong,Disintegration⟩ into the root relation rta.
Then, since there is already a Disintegration-tuple in ra, we set the quantity-attribute to
the new value 7.

6 Implementation and experiments

We have implemented CRR and updatable views in SQLite. The structure of a replica,
whether it is a source database or a view, is the same as shown in Fig. 4. In addition to
the augmented CRR-layer relations, there are other relations including a history of up-
dates, state vectors for synchronization etc. Local CRR-layer updates (as ũ in Fig. 4) are
implemented as triggers that are created when a database instance is CRR-augmented.
This allows a database application to continue working without any modification or re-
compilation. The merge part is implemented in a high-level programming language. We
have at present implementations in both Python and Rust.

Since only the AR-layer source database has full knowledge about integrity con-
straints, a temporarily violation of an integrity constraint can only detected when a
replica merges a remote update and refreshes to the AR layer (Fig. 4). Both concur-
rent updates on source database and views could cause such a violation, due to lack of
global knowledge of the source database when the updates were locally applied. Upon
the detection of a violation, the replica undoes one of the offending updates [17,18].The
approach guarantees that all replicas unilaterally undo the same update.

Due to space limit, we do not present here further implementation details, such
as the handling of auto-increment integers as primary keys, and we only report the
following experiment.

In the experiment, there are two relations R1(K1,A,B,K2) and R2(K2,C,D), where
K1 and K2 are primary keys of R1 and R2, and K2 in R1 is a foreign key referencing R2.
Attributes K1, B, K2 and D are integers, while attributes A and C are 200-byte character
strings. For a run with N tuples in R1, there are N/10 tuples in R2. K1 ranges over [1..N]
and K2 ranges over [1..N/10].

The view V (K1,A,B,K2,D) is defined as v = (σB=3r1)⋊⋉ (πK2,Dr2). K2 is hence the
primary key. With B ranging over [1..100], there are N/100 tuples in the view. In every
run, we update the D value of 10 different tuples. We ran experiments with the Rust
implementation in Windows 10, with Intel-8700k CPU, 32GB RAM and 6 Gb/s 8TB
HDD with 400GB m.2 SSD as cache. We range N, the number of tuples in R1, from
20,000 to 120,000.
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Fig. 8. Time spent for delta generation and merge

We first measured that the CRR-augmented database introduces a space overhead
that is close to three times the size of the original AR-layer database. This applies to
both the source database and the view. Furthermore, the size of the view is about 1/100
the size of the source database.

We then measured the time used for generating the deltas of the updates to be sent
and for merging the incoming deltas. We replicated both the source database and the
view. At the source databases, we measured the time spent for generating deltas for the
remote source (delta-s) and the remote views (delta-v), and the time for merging deltas
from the remote source (merge-s) and a remote view (merge-v). At the views, we also
measured the time for generating outgoing deltas (delta-s and delta-v) and for merging
incoming deltas (merge-s and merge-v). As shown in Fig. 8, although the number of
updates is constantly 10 in each run, the time spent increases linearly with the size of
the source data. Since the size of the view is much smaller than the source, the data size
has little impact on the time used for generating and merging deltas.

Depending on the view definition, the space overhead in the view can be signifi-
cantly smaller than in the source database. For the updates that change both the source
and view states, the time overhead in the view is still smaller than in the source, al-
though the difference is less dramatic. What we have not shown in this experiment is
that most updates in the source might not affect the view state and would not be sent
to the view. All these justify the need for replicating updatable views in devices with
limited storage, computing and communication capacity.

7 Related work

[2] and [9] study the consistency of updatable views via mapping of states between
source databases and views, where a source database is modeled as the product of the
view and a complementary. When a chosen complementary is kept constant (side-effect
free) [2] or “shrinking” (under a partial order) [9], there is an unambiguous translation
of a view update to the source database. [2] did not aim for computational algorithms
that translate view updates to source databases.

To translate the updates from a view to a source database, [12] directly associates tu-
ples and attributes in view relations with base relations in the source database. [4] makes
the translation based on the tractability and functional dependency of attributes via view



dependency graphs. [9] translates view programs (sequence of updates equipped with
if-then-else statements) to base programs. [3] and [10] make bi-directional translation
of every query operation (known as a lens) that defines the views. In most of the work
on updatable views, translation of view updates is based on the attribute values. For
example, since the view dependency graphs in [4] are defined on attributes, deletions
are defined with predicates on attributes, for instance, “delete from V where A = 7”.
The source tuples can then be identified with queries on attributes with similar predi-
cates. This may work well in a non-distributed system. In a distributed system where
the source database and the view can be replicated, different replicas in different states
may make different translations (as discussed in Section 2).

Our work is different from the previous work in that we use delta states (i.e. join-
irreducible states in a join semilattice) to represent state updates. The translation is
independent of the state to which the update is to be applied.

Regarding the restrictions on views that are updatable, [12] is the closest to our
work, which are probably the most restrictive. There are at least two reasons for these
restrictions. The first one is practical. Most related work assumes that all information
about integrity constraints is available when a view is created, which is practically not
true. In particular, the only functional dependencies that can be expressed in SQL is
primary-key constraints. The second reason is that we are currently not able to express
aggregate results (such as COUNT and MAX) as join-irreducible states.

In their seminal work [4], Dayal and Bernstein pointed out that a view update can
be correctly (exactly) translated to the source relations if and only if there is a clean
source of the update. It is possible to verify if a source is clean with the use of view
dependency graphs. With the restrictions of the view that can be updated (Section 4),
we guarantee that every update in a view has a clean source.

Unlike previous work, we allow translations of view updates to have side effects
(Fig. 5). Avoiding side effect is probably more important in earlier work, which expects
virtual (i.e. non-materialized) views. In fact, avoiding side effect is impossible without
knowing all integrity constraints, such as the functional dependencies embedded in the
view dependency graphs [4]. Notice that concurrent updates at different replicas may
temporarily violate integrity constraints (like uniqueness and referential constraints)
anyway [18]. We detect violations and repair constraints at the time of merge.

8 Conclusion

We presented an approach to asynchronously replicating both source databases and
views. The local replicas of the database and the view can be updated even when they
are offline. The approach guarantees eventual consistency. That is, the view updates
are correctly translated to the source database, and when the replicas have applied the
same set of updates, their states converge. Our experimental results justify the need for
replicating updatable views at devices with limited resources.
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