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A B S T R A C T   

Advanced ship predictors can generally be considered as a vital part of the decision-making process of auton-
omous ships in the future, where the information on vessel maneuvering behavior can be used as the source of 
information to estimate current vessel motions and predict future behavior precisely. As a result, the navigation 
safety of autonomous vessels can be improved. In this paper, vessel maneuvering behavior consists of continuous- 
time system states of two kinematic motion models—the Curvilinear Motion Model (CMM) and Constant Turn 
Rate & Acceleration (CTRA) Model. Two state estimation algorithms—the Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) are implemented on these two models with certain modifications so that they can 
be compatible with discrete-time measurements. Four scenarios, created by combining different models and 
algorithms, are implemented using simulated ship maneuvering data from a bridge simulator. These scenarios 
are then verified through the proposed stability and consistency tests. The simulation results show that the EKF 
tends to be unstable combined with the CMM. The estimates from the other three scenarios can generally be 
considered more stable and consistent, unless sudden actions or variations in vessel heading occurred during the 
simulation. The CTRA is also proven to be more robust compared to the CMM. As a result, a suitable combination 
of mathematical models and estimation filters can be considered to support advanced ship predictors in future 
ship navigation.   

1. Introduction 

In recent years, various interdisciplinary research studies involving 
modern technologies (machine learning, artificial intelligence, Internet 
of Things, big data, etc.) have been developed to support the maritime 
industry and promote its development of autonomous shipping (Akbar 
et al., 2020; Im et al., 2018; Perera, 2019; Thombre et al., 2022). Several 
commercial companies and research organizations around the world 
have already been started relevant research and development activities 
on the same topic (Kongsberg, 2020; Meguri2040, 2020; Yara, 2021). 
The establishment of related maritime rules and regulations to deal with 
autonomous ships is also steadily progressing at the present stage under 
various maritime authorities to support the same objective (MSC, 2021; 
UNCTAD, 2021). 

The advantages of autonomous ships are believed to be multi- 
dimensional, while that can also consist of various challenges. Un-
manned ship operations indicate that human accommodation and life 
support facilities can be removed from such vessels, thus more 

innovative ship structures can be constructed (Kretschmann et al., 
2017). The improvements of ship structures can also suggest an increase 
in energy efficiency and reduce greenhouse gas emissions (Munim, 
2019). The shortage of experienced seafarers in shipping can also be 
mitigated by autonomous ships. (Wróbel et al., 2017). However, chal-
lenges posed by autonomous ships will be also there and that can change 
the status quo of the maritime industry probably to a large extent. The 
most immediate challenges in autonomous ships can be considered as 
the safety-related issues in vessel navigation. 

The publications from European Maritime Safety Agency show that 
maritime accidents (collision, contact, and grounding) represent 51.4% 
of cargo ships from 2014 to 2020 in all sea accidents (EMSA, 2021). To 
avoid such accidents, accurate and trustworthy collision risk assessment 
approaches are essential. However, the decision-making process of ship 
collision avoidance for various vessel encounter situations can be 
complicated in a mixed environment, where autonomous, manned, and 
remote-controlled ships coexist, resulting higher collision risk naviga-
tion situations (Perera and Murray, 2019). It should be also pointed out 
that compared with manned ships, where the COLREGs can be used to 
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make the respective collision avoidance decisions, there are still no 
relevant legal frameworks specially designed for autonomous ships (Kim 
et al., 2022). On the other hand, required ship technologies to support 
autonomous ship navigation should also be developed, in parallel to the 
maritime rules and regulations. Therefore, advanced ship predictor type 
technologies should be considered to support decision support systems 
for all kinds of vessels under complex navigation situations (Perera, 
2019). 

1.1. Ship motion prediction 

The prediction methods in ship motions can be different and can also 
influence the respective prediction time horizon. These time horizons 
can be classified under both local and global prediction scales. For vessel 
trajectory predictions in a global scale (e.g., a period more than three or 
more minutes), the AIS data of vessel maneuvering can be utilized to 
make the required trajectory predictions (Perera and Murray, 2019). 
This can also be supported by accurately estimating vessel behaviors 
within a shorter time horizon, which can be viewed as trajectory pre-
dictions on a local scale. The improvements in situation awareness (SA) 
are also vital in the decision-making processes of ship navigation and 
collision avoidance, and that can also be supported by the same pre-
diction methods. According to the definition of SA, the perception of 
information from the respective measured data sets is defined as the 
level one of SA (Endsley, 1995). The failure of SA at level one is reported 
as the main reasons for many industrial accidents, such as aviation 
(Grech et al., 2002), offshore drilling (Sneddon et al., 2006), and colli-
sions between attendant vessels and offshore facilities (Sandhåland 
et al., 2015). From this aspect, a precise estimation of vessel behaviors 
should be guaranteed to enhance SA in future vessels, i.e., autonomous 
ships. 

Regarding ship maneuvering behavior predictions, the required 
mathematical concepts are still to be developed due to complex motions 

of vessels, and some of such challenges are listed in this section. The first 
one is nonlinear maneuvering behaviors of ships, such as the under-
actuated property (Do and Pan, 2009). The induced external forces and 
moments caused by irregular waves or wind can also bring additional 
complexity in nonlinear ship maneuvering behaviors (Janssen et al., 
2017). The second issue lies in the implementation of simplistic math-
ematical models, which are mainly employed in ship behavior predic-
tion (Perera, 2017). These models are assumed to operate under 
constant state and parameter conditions; therefore, their performance 
may be degraded when exposed to varying environmental conditions. It 
should be also noted that many ship maneuvering behavior prediction 
applications from bridge systems are supported by the Automatic Radar 
Plotting Aid (ARPA) and Electronic Chart Display and Information 
Systems (ECDIS), where linear estimations of vessel positions through a 
point representation are executed. Such linear estimations can also be 
problematic in complex navigation environments since not only vessels’ 
positions but also orientations need to be considered in closed encounter 
situations. That information can also be used to estimate the navigation 
risk in ship encounter situations. 

1.2. Ship maneuvering models 

State estimation typically begins with creating mathematical models 
of the relevant systems. Traditionally, systems are modeled based on the 
governing laws of nature, also known as physics-based models, which 
regulate how the systems change over time. More recently, data-driven 
models have also been developed as an alternative approach. Advances 
in artificial intelligence and big data technologies make this method 
more feasible in some applications. A data-driven model can be created 
by utilizing real data collected from real-world applications, without 
relying on an underlying physical law. Several recent studies provide a 
succinct comparison between these two methods (Rahman et al., 2018; 
Willard et al., 2020). 

Nomenclature 

Variables 
at ,an the tangential and normal acceleration components with 

respect to the course-speed vector 
au,av the transitional surge and sway acceleration components 
K the Kalman gain 
N the total iterations of a Monte Carlo-based simulation 
P the states covariance 
px,py the northing and easting positions of the ship’s CG in the 

UTM 
Q the covariance matrix of system noise 
R the covariance matrix of measurement noise 
r the yaw rate of ship 
S the innovation covariance 
(t) the continuous-time unit 
[tk] the discrete-time unit 
u,v the surge and sway velocity components 
V the course-speed vector of the ship 
vx,vy the velocity components in northing and easting 
wx the white Gaussian system noise 
wz the white Gaussian measurement noise 
zau, zav the measured surge and sway acceleration from the 

onboard IMU 
zpx, zpy the measured positions 
zr the measured yaw rate 
zψ the measured heading 
α the significance level of hypothesis test 
Δt the sensors sampling period 

δt the time step for temporal discretization 
εz the normalized innovation squared 
λ the initial parameter in the UKF 
ψ the measured heading 
ρ the autocorrelation function 
χ the course of a ship 

Subscripts 
∎i the i-th state in a state vector 
∎ii the i-th diagonal element in a diagonal matrix 
∎|{B} variables described in the vessel body-fixed frame 
∎|j the j-th iteration in Monte Carlo-based simulations 
∎|tk− 1 |tk 

prior estimates of variables in prediction steps 
∎|tk |tk 

posterior estimates of variables in filtering steps 

Superscripts 
∎̂ the variable with estimated value 

Acronyms 
CG Center of Gravity 
CMM Curvilinear Motion Model 
CTRA Constant Turn Rate & Acceleration (Model) 
DoF Degree of Freedom 
EKF Extended Kalman Filter 
IMU Inertial Measurement Unit 
NIS Normalized Innovation Squared 
RMS Root Mean Squared 
UKF Unscented Kalman Filter 
UTM Universal Transverse Mercator  
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Data-driven models have been considered to be an effective method 
in many maritime-related fields (Coraddu et al., 2019; Murray and 
Perera, 2020; Triepels et al., 2018). However, a major restriction of this 
approach is that a large number of high-quality data sets should be 
available, and such data sets can be difficult to obtain or may have low 
data quality due to limitations in some real-world sensor and data 
acquisition systems. Another drawback is that data-driven models may 
have low interpretability or trustworthiness; the contributing factors 
that cause errors and faults can be thus difficult to identify in some 
situations (Chakraborty et al., 2020; Ribeiro et al., 2016; Vellido et al., 
2012). One should also note that modern data-driven techniques will 
continue to emerge, resulting in various analysis results based on big 
data. There are studies that integrate physics-based and data-driven 
modeling applications have also been proposed (Hanachi et al., 2019; 
Wang et al., 2022a), yet the availability of large high quality data sets is 
still mandatory in such applications. 

For physics-based models of ship maneuvering, the Newton’s laws of 
motion can be considered as a fundamental concept. The ship maneu-
vering models can be classified into kinematic and dynamic motion 
models. The term “kinematics” here refers to the studies of ship motions 
regardless of external forces and moments that cause it, whereas “dy-
namic” indicates the influences of external forces and moments into ship 
maneuvering models. General mathematical expressions of dynamic 
motion models for ship maneuvering can be seen in recent studies 
(Fossen, 2010), where most of these expressions are a set of dynamic 
system equations. The maneuvering model group (MMG) is another 
dynamic model approach, where the rudder deflection angle and pro-
peller revolutions are used as the model inputs and proposed by Yasu-
kawa and Yoshimura (2014). For a vessel state estimation process, the 
implementation of dynamic motion models can introduce additional 
challenges as discussed before. This is mainly due to nonlinear hydro-
dynamic forces and moments which can be a part of the dynamic motion 
models but difficult to be measured directly and accurately by on-board 
sensors (Perera and Murray, 2019). Without adequate sensor measure-
ments, certain iterative estimation algorithms may not converge and 
thus fail to capture vessel behaviors. A more common way that de-
termines related hydrodynamics coefficients of external forces and 
moments is to calculate through model scale tests in towing tanks or 
ocean basins, and then to extrapolate the respective results into full scale 
vessels. However, such approach may not be accurate due to 
system-model related erroneous conditions, also not to mention various 
navigation and environmental conditions which can alter hydrodynamic 
coefficients of forces and moments significantly due to their 
time-varying nature. 

By using kinematic motion models, model identification difficulties 
due to external forces and moments can be avoided. The measurements 
obtained from vessel translational and rotational motions can be used 
with the mathematical models, i.e., kinematic motion models, directly in 
such situations, and the variations in accelerations can be considered as 
model uncertainties. As for the applications of trajectory prediction and 
then the utilization of the same for collision detection, the models which 
describe related motions in curved paths under planar motions (Best and 
Norton, 1997; Li and Jilkov, 2003) are more general. From the view of 
vehicle maneuvers, the planar motions models indicate three DoFs (i.e., 
surge, sway, and yaw) and the respective model states represent the 
relevant maneuvering behaviors (Schubert et al., 2008; Stellet et al., 
2015). 

1.3. Vessel state estimation 

The Kalman filter (KF) is a widely used estimation algorithm for 
linear systems, and it has extensions for nonlinear systems, such as the 
extended Kalman filter (EKF) and unscented Kalman filter (UKF) (Daum, 
2005; Wan and Merwe, 2000). To use Kalman filter-based algorithms, it 
is necessary to represent related systems in a state space form. This in-
volves expressing the evolution of state variables through a collection of 

first-order differential equations that represent the system models. 
Measurable states are represented as outputs and used to create mea-
surement models. Because of the digital nature, measurement models 
are frequently applied with the sensor measurements collected in 
discrete-time. In contrast, many system models can be represented in 
continuous-time since many mechanical systems are analog. A combi-
nation of system and measurement models but with different time rep-
resentations is also proposed in the recent research studies (Leander 
et al., 2014; Mbalawata et al., 2012). 

When dealing with nonlinear systems, it can be challenging to obtain 
analytical solutions for nonlinear differential equations in continuous- 
time system models. Therefore, the temporal discretization technique 
is necessary to generate numerical solutions, even though they may 
contain some degree of truncation errors. The order of the truncation 
errors is positively correlated to the magnitude of the time step (δt) used 
in the temporal discretization (Ames, 1977). The most common case is to 
use the δt which is equal to the sampling period of the respective data 
acquisition system that collects the sensor data (Δt). However, this 
method is not always reliable because Δt has limitations such that a 
small value of δt may introduce high level of sensor noise. Additionally, 
using a small value for Δt can introduce unnecessary noise and redun-
dancy, which is not preferable in estimation algorithms either (Miguel 
et al., 2017). On the other hand, choosing a larger value for δt can lead to 
unstable numerical solutions, which may cause estimation algorithms to 
become unstable and diverge (Butcher, 1996). 

In some studies, an appropriate value of δt which is usually a factor of 
Δt is used in the temporal discretization for numerical solutions of 
nonlinear system models (Frogerais et al., 2012; Sarkka, 2007; Takeno 
and Katayama, 2012). The EKF and UKF thus need modifications that 
each prediction step contains nested iterations based on δt. The Run-
ge–Kutta explicit higher order method is further considered to reduce 
the truncation errors with less iterations (Frogerais et al., 2012; Takeno 
and Katayama, 2012). The EKF and UKF with the above-mentioned 
modifications are considered in this study since the proposed kine-
matic motion models for ship maneuvering is also highly nonlinear and 
difficult to find its analytical solutions. 

It should also be noted that ships, particularly those with large 
tonnage, exhibit specific maneuvering behaviors (Molland, 2008). 
Ocean-going vessels are prone to drift due to underactuated conditions, 
which can result in potential near-miss or collision situations during 
navigation (Perera, 2017). Accurate estimation of ships’ states, espe-
cially in the sway direction in order to find the ship’s pivot point, is 
necessary (Seo, 2016). Consequently, the established state-space models 
and algorithms must be capable of providing precise estimates under 
such circumstance. Estimated states in sway direction with a longer 
convergence period (Perera, 2017), or a large delay and bias (Wang 
et al., 2022b), need to be avoided. 

In this study, vessel maneuvering behavior is described by the system 
states of two kinematic motion models, where the Kalman filter-based 
approaches are applied to estimate the same system states. To verify 
the applied models and estimation algorithms, a two-step approach has 
been taken. Firstly, the models and algorithms have been verified in the 
bridge simulator environment, and the lessons learned from this process 
have been documented in this study. Secondly, the verification and 
demonstration on the same models and estimation algorithms will be 
conducted on actual vessel navigation using the UiT autonomous test 
vessel in a future study. Considering that the verification under simu-
lated environments can be crucial prior to conducting future sea trials in 
a real environment, this paper focuses on the first step of this process. 
The paper is organized under the following sections: Section 2 presents 
the literature review of different system modeling methods and the 
Kalman filter-based estimation algorithms; Section 3 gives extensive 
details of the proposed kinematic motion models; Section 4 introduces 
the proposed state estimation algorithms; Section 5 presents the evalu-
ation methods (Monte Carlo-based simulation, algorithm stability and 
consistency tests) to verify the performances of the filters; The 
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simulation results, discussions, and conclusions are shown in the last 
parts of this paper. 

2. Kinematic motion models 

Kinematic motion models are selected to capture ship maneuvering 
behavior in this study. The position, velocity, acceleration, and heading 
states are the important parameters that can reflect the characteristics of 
relevant ship maneuvers and have been selected for model development 
in this study. 

2.1. State vectors 

In a state-space model, the states of a system can be expressed in a 
vector form. In this paper, two different navigation state vectors (1) and 
(2) are used, as they are related to the CMM and CTRA for ship 
maneuvering (see Fig. 1). 

x =
[
px, py, vx, vy,ψ, r, at, an

]T
(in the CMM)# (1)  

x =
[
px, py, u, v,ψ, r, au, av

]T
(in the CTRA)# (2) 

In both models, the values of px and py are based on the Universal 
Transverse Mercator (UTM) coordinate system. The unit in the Cartesian 
grid layout of the UTM is in meters. In the CMM, the course-speed vector 
V decomposes along the inertial reference frame into vx and vy, whereas 
along the vessel body-fixed reference frame into u and v in the CTRA. 
The acceleration at and an are the normal and tangential components 
with regard to V. 

All the states in Fig. 1 are related to the ship’s apparent CG. Due to 
added mass effects, the apparent CG can shift during maneuvers. How-
ever, to simplify the mathematical models, an assumption is made that 
such a shift can be neglected by considering that the ship maneuvers are 
conducted in calm water conditions. As explained in the following sec-
tion, since the IMU collects the simulated data from the apparent CG, 
this is a favorable reference frame for generating the respective math-
ematical models. 

2.2. System models 

The CMM and CTRA mathematical models are based on the curvi-
linear motion equation (3), which can be written as: 

χ̇ = an/V  

V̇ = at  

ṗx = vx = V cos (χ)

ṗy = vy = V sin(χ)# (3) 

This system model has a very flexible generality in that it can reduce 
to several special cases such as constant velocity linear motion (an = 0, 
at = 0), constant acceleration linear motion (an = 0, at ∕= 0), constant 
turn motion (an ∕= 0, at = 0), and more complex cases, where both an and 
at are non-zero (Li and Jilkov, 2003). 

The model derivation starts with a reference frame transformation, 
where vx and vy in the local inertial reference frame are represented by u 
and v in the vessel body-fixed reference frame: 

vx = u cos(ψ) − v sin(ψ)# (4)  

vy = u sin(ψ) + v cos(ψ)# (5) 

The acceleration components in the local inertial reference frame (ax 

and ay) can be thus written as: 

ax = v̇x =
du
dt

⃒
⃒
⃒
⃒
{B}

cos(ψ) − u
dψ
dt

sin(ψ) − dv
dt

⃒
⃒
⃒
⃒
{B}

sin(ψ) − v
dψ
dt

cos(ψ)

= au cos(ψ) − u r sin(ψ) − av sin(ψ) − v r cos(ψ) # (6)  

ay = v̇y =
du
dt

⃒
⃒
⃒
⃒
{B}

sin(ψ)+ u
dψ
dt

cos(ψ)+ dv
dt

⃒
⃒
⃒
⃒
{B}

cos(ψ) − v
dψ
dt

sin(ψ)

= au sin(ψ) + u r cos(ψ) + av cos(ψ) − v r sin(ψ) # (7)  

With the combination of (4)-(7), the expressions of au and av can be 
further written as: 

au =
(
ax + r vy

)
cos(ψ) +

(
ay − r vx

)
sin(ψ)# (8)  

av =
(
ay − r vx

)
cos(ψ) −

(
ax + r vy

)
sin(ψ)# (9) 

It should be noted that au and av are translational accelerations that 
represent the rate of change of u and v in the vessel body-fixed frame of 
reference. The measurements of the accelerations in both surge and 
sway directions also contain a rotational accelerations component, 
which will be derived in the following subsection. A summary of the 
CMM and CTRA models is shown in Table 1. The system nonlinearity is 
modeled as a Gaussian-distributed noise with a zero-mean. The deter-
mination of the covariance matrix of the Gaussian—Q can be complex 

Fig. 1. Two different navigation state vectors in the UTM coordinate system. 
It is assumed that the apparent CG of ship does not shift greatly. 
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and sometimes needs experimental data or practical intuition. A general 
processing method is used with a diagonal matrix to represent Q. 

2.3. Measurement models 

The measurements are from the respective sensors measured by a 
data acquisition system in discrete-time. Hence, the state variables in the 
measurement model are discrete. Regarding the measurements, it is 
considered that the relevant position, heading, yaw rate, and accelera-
tion values of a selected vessel are obtained from the on-board sensors. 
These sensors can be categorized as GNSS systems, gyroscopes, IMUs, 
and yaw rate indicators. The multiple measurements can also be written 
as a vector: 

z =
[
zpx, zpy, zψ , zr, zau, zav

]T
# (10) 

The measured positions zpx and zpy in Eq. (10) are projected from the 
raw latitude/longitude data into the northing/easting in the UTM co-
ordinate system. One should note that zpx and zpy indicate the position of 
the ship’s GNSS antenna receivers which may not be the ship’s apparent 
CG. Certain calibration should be done to correct zpx and zpy to the ship’s 
apparent CG. The elements—zψ and zr are the measured heading (with 
reference to the axis of northing) and the measured yaw rate (see Fig. 1). 
These states are available from the fiber optic gyroscope with high 
precision information. The respective accelerations can be measured by 
the accelerometers embedded in the IMUs. The mathematical expres-
sions of measured accelerations that are used with respect to a selected 
vessel with 6 DoFs can be referred in Hover and Michael S (2010). In this 
study, two assumptions on the IMU are made: its body frame is well 
aligned with the vessel body-fixed reference frame and it is located close 
to the vessel’s apparent CG. One should note that if these assumption 
cannot be held in realistic ocean-going vessels, additional mathematical 
transformations should be introduced to transfer actual measurements 
into the required model measurements. Furthermore, the acceleration 
components caused by gravity are also removed from the final outputs of 
the IMU since heave, pitch, and roll motions are not considered in the 
motion models. The mathematical expressions of measured accelera-
tions zau and zav can be hence expressed as (11) and (12) when only 3 
DoFs are considered. 

zau = au − v r# (11)  

zav = av + u r# (12) 

One should note that the measurement models that have shown in 

Table 2 share the same measurement vector with a discrete-time step of 
Δt. The measurement uncertainty is also modeled as the Gaussian noise 
with a zero mean. Because sensors measure the respective parameters 
independently, it is reasonable to assume that the covariance matrix of 
the measurement noise—R is also diagonal. The diagonal elements in R 
can be determined in advance, e.g., through sensor operation manuals or 
independent experiments by observing sensor noise conditions. 

3. Estimation algorithms 

The EKF and UKF are applied for state estimation under the 
respective system and measurement models. The parameter estimation 
process of these two algorithms is usually conceptualized in two steps 
which execute iteratively: prediction and filtering step. The parameter 
initialization phase should be included before the parameter estimation 
process. Since the system and measurement models are described in 
different time steps, the EKF and UKF algorithms need certain modifi-
cations to coordinate the respective iterative steps. 

3.1. Time step modification 

Since the kinematic-based system models are nonlinear and difficult 
to obtain analytical solutions, the temporal discretization must be 
considered. Fig. 2 shows the relationship of various time steps that are 
considered in this study. In each prediction step, the numerical solutions 
of prior estimation are calculated through the temporal discretization 
with δt. The measurements have a sampling period of Δt, so that the 
measurement innovation, the Kalman gain, and the posterior estimates 
are calculated every Δt. One should note that the time steps have the 
units of seconds. An overview of the EKF and UKF with the modifications 
is illustrated in Figs. 3 and 4. The second-order Runge–Kutta explicit 
method is used in this study, and further the details can be referred to 
Frogerais et al. (2012); Takeno and Katayama(2012); Wang et al. 
(2022b). 

Table 1 
System models of ship maneuvering.  

Model CMM CTRA 

state vector x(t) =

[px, py, vx, vy,ψ, r, at , an ]
T 

x(t) =

[px, py, u, v,ψ, r, au, av]
T 

system models 
with continuous- 
time 
step t 
wx ∼ N (0,
diag(Q) ∈ R8×8)

ẋ(t) = fCMM(x(t))+ wx 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

υx

υy

atfυx − anfυy

atfυy + anfυx

r

0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ wx 

(

fvx =
vx
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

x +v2
y

√ , fvy =

vy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2

x +v2
y

√

⎞

⎟
⎠

ẋ(t) = fCTRA(x(t))+ wx 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u cos(ψ) − υ sin (ψ)

υ cos(ψ)+u sin (ψ)
au

aυ

r

0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

wx  

Table 2 
Measurement models.  

measurement vector 
(used by both models) 

z = [zpx, zpy, zψ , zr, zau, zav]
T 

Model CMM CTRA 

measurement models 
with discrete-time 
step tk = k • Δt (k =

1, 2,…)

wz ∼ N (0,
diag(R) ∈ R6×6)

z[tk] = hCMM(x[tk])+ wz ⎡

⎢
⎢
⎢
⎢
⎢
⎣

px

py

ψ

r
hu1 cos(ψ)+hu2 sin(ψ) − υ r

hυ1 cos(ψ) − hυ2 sin(ψ)+u r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

wz 

(hu1 = at fvx − anfvy + r vy)

(hv1 = at fvy + anfvx − r vx)

(hu2 = at fvy + anfvx − r vx)

(hv2 = at fvx − anfvy + r vy)

Where fvx & fvy are shown in  
Table 1 

z[tk] =
hCTRA(x[tk]) + wz ⎡

⎢
⎢
⎢
⎢
⎢
⎣

px

py

ψ

r
au − υ r

aυ +u r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ wz  

Fig. 2. Time step δt in temporal discretization and measurements sampling 
period Δt. 
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3.2. State vector initialization 

Since the EKF and UKF are suboptimal estimation algorithms, they 
can diverge in some situations resulted with erroneous estimated pa-
rameters (Barrau, 2015). To secure the parameter estimation accuracy, 
the initial states should be approximately close to the true values as 
possible. If the initial states are purely guessed and far away from the 
actual values, the estimation results can diverge. From a practical point 
of view, some states can be measured directly from sensors. Therefore, 
the measurements of those states can be used to approximate the initial 
values of both measurable and non-measurable states. Additionally, it 
will be explained later that a Monte Carlo-based simulation approach 

will be used, which allows for multiple iterations with different initial-
ized values within a given parameter range to evaluate the algorithm’s 
performance. 

In this study, the initial state vector in each Monte Carlo-based run is 
randomly generated from a Gaussian distribution (13). This is feasible 
for initializing the position, heading, and yaw rate values (14)–(15). The 
velocities in the CMM can be estimated roughly through two historical 
position values in the beginning (16)–(17). These initialized values can 
further be used to approximate the respective velocities in the CTRA 
(18)–(19). All accelerations are initialized as with zero values, since 
vessel speeds vary relatively slow in general. Therefore, the respective 
acceleration values should have relatively smaller values. 

Fig. 3. Chart flow of the EKF.  
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For P0|0, the covariance matrix elements related to the measured 
states can share the same values as they are in R. A two-point differ-
encing method is applied for the correlation between positions and ve-
locities (Bar-Shalom et al., 2002). It should be noted that the initially 
estimated P0|0 is not strictly correct for x[t0] in the CTRA. The correla-
tions between vessel position and surge/sway velocities can have com-
plex relationships (Svensson, 2019). However, during a normal cruising 
stage where the sway velocity is not significant compared to the surge 
velocity, the format of P0|0 can be approximately accepted. 

x̂0|0 ∼ N
(
x[t0],P0|0

)
# (13)  

x[t0] =
[
zpx, zpy, vx, vy, zψ , zr, 0, 0

]T
(for CMM)# (14)  

x[t0] =
[
zpx, zpy, u, v, zψ , zr, 0, 0

]T
(for CTRA)# (15)  

vx[t0] =
zpx[t0] − zpx[t− 1]

Δt
# (16)  

vy[t0] =
zpy[t0] − zpy[t− 1]

Δt
# (17)  

u[t0] = vx[t0]cos(zψ [t0]) + vy[t0]sin(zψ [t0])# (18) 

Fig. 4. Chart flow of the UKF.  
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v[t0] = − vx[t0]sin(zψ [t0]) + vy[t0]cos(zψ [t0])# (19)  

P0|0 =

[
P14×4 04×4

04×4 P24×4

]

# (20)  

P14×4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R11 0
R11

Δt
R22

Δt
0 R22 0 0

R11

Δt
0

2R11

Δt2 0

R22

Δt
0 0

2R22

Δt2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

# (21)  

P24×4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

R33 0 0 0

0 R44 0 0

0 0 R55 0

0 0 0 R66

⎤

⎥
⎥
⎥
⎥
⎥
⎦

# (22)  

4. Filter verification 

The filter verification is implemented to examine the stability and 
consistency of the estimation algorithms. The necessary data sets used in 
this study are obtained from simulated ship maneuvers performed in the 
UiT bridge simulator (see Fig. 5). Ship maneuvers in the bridge simu-
lator are generated from certain dynamic motion models. These models 
are developed by the respective bridge manufacturer, and these models 
are unknown for this study. It is assumed that these ship maneuvers are 
similar to real navigation situations, where the dynamics properties of 
real ship motions can be difficult to capture precisely. 

4.1. Monte Carlo-based simulation 

After several ship maneuvering exercises in the bridge simulator, 
several data sets are collected. That data set consists of vessel states as 
well as simulated measurements of the respective vessel states. There are 
four scenarios which are made by different combinations of the models 
and algorithms are utilized on the same data sets. These scenarios share 
the same global parameters. Each scenario is executed N times with 
different initial values and measurements. Such an approach is thus 
equivalent to offline multiple running, i.e., Monte Carlo-based simula-
tions. Fig. 6 shows how the Monte Carlo-based simulations are per-
formed with the respective scenarios. 

The values of the global parameters that are used for the Monte 
Carlo-based simulation are listed in Table 3. Since there are 50 

independent measurements that can be collected, the Monte Carlo-based 
simulation is run 50 iterations. The sampling period of measurements is 
0.1 s. The time step for the temporal discretization is set to 0.005 s, 
resulting in 20 internal iterations for the numerical calculations in each 
prediction step. One should note that as the time step for the temporal 
discretization increases, the numerical solutions from the explicit 
methods (such as the Runge-Kutta explicit method in this study) can 
become unstable (Butcher, 1996). Hence, the value of 0.005 s used in 
this study to satisfy the required stability requirement. The definition of 
parameter λ in the UKF should be referred to Wan and Merwe (2000). 

4.2. Estimation algorithm stability 

The Kalman gain K is vital for precise estimation of the vessel states. 
Since the calculations of K contain the inverse matrix operation of 
innovation covariance S, this matrix should be well-conditioned such 
that the inverse operation should not be sensitive to the respective 
perturbations. In this study, the reciprocal condition number (Rcond) is 
used as a criterion to examine the condition of S (Cline et al., 1979). It 
can be defined as: 

Rcond(S) =
1

⃦
⃦S− 1⃦⃦

1 • ‖S‖1
# (23)  

where, ‖S‖1 = max
1≤j≤dim(S)

∑dim(S)

i=1

⃒
⃒aij

⃒
⃒# (24) 

If S is well-conditioned, Rcond (S) is near 1, otherwise an ill- 
conditioned S will have the Rcond close to 0. One should note that the 
threshold that determines whether a matrix is well-conditioned depends 
on the specific problem and the desired level of the parameter estima-
tion accuracy. In this study, the threshold value is set to 1 × 10− 10 which 
is an iteratively observed value. With this threshold value, the small 
estimated errors can have a major impact on the inverse of S. The exe-
cutions of both algorithms are designed to be interrupted if an ill- 
conditioned S is detected, where the parameter estimation process can 
be classified as divergence. If an interruption occurs during the execu-
tion of an estimation algorithm, the related algorithm can be thus 
considered as diverged. It is important to note that an algorithm may not 
exhibit divergence in a single trial, which is why multiple runs are 
necessary. This is also why the Monte Carlo-based simulation are 
implemented in this study. 

4.3. Estimation algorithm consistency 

The consistency test for estimation algorithms is necessary to verify 
whether the estimated states converge to the actual states. The calcu-
lated innovations ez can be used to evaluate the consistency of the 
estimation algorithms. The consistency test should be performed based 
on simulated data before applying parameter estimation algorithms to 
real-world data, as actual states may not always be available in real- 
world applications. The respective criteria for the consistency of an al-
gorithm can be categorized as:  

(1) Innovations should be accepted as the zero mean and own 
magnitude commensurate with the innovation covariance 
matrix;  

(2) Innovations should be accepted as the white Gaussian noise. The 
normalized innovation squared (NIS) is used to verify the first 
criteria in general, and it is defined as: 

εz[tk] = eT
z [tk]S− 1

tk |tk− 1
ez[tk]# (25) 

For the Monte Carlo-based simulations which provide the (N-run) 
average NIS εz, a chi-square test for hypothesis testing can be imple-
mented (Chew, 1966): Fig. 5. UiT bridge simulator.  
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H0 criterion (1) is established;  
H1 criterion (1) is NOT established or inconclusive; 

Test statistic: 

χ2 = εz with the DoFs N⋅dim(z)

Critical value: 
(two-sided test with a significant level α = 0.05) 

[
χ2

N•dim(z)(0.025), χ2
N•dim(z)(0.975)

]

The (N-run) average autocorrelation ρ can be used as the test sta-
tistics for the criterion (2), and the Z-test as a hypothesis test can be 
applied (Bar-Shalom et al., 2002):  

H0 criterion (2) is established;  
H1 criterion (2) is NOT established or inconclusive; Test statistic: 

Z = ρ(k, k + 1) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dim(z)

√
num1

den1 den2
# (26)  

where : num1 =
∑N

j=1
eT

z [tk]ez[tk+1]
⃒
⃒

j  

den1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

(
eT

z [tk]ez[tk]
)
|j

√

den2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

(
eT

z [tk+1]ez[tk+1]
)
|j

√

Critical value: 
(two-sided test with a significant level α = 0.05) 

[
− 1.96

/ ̅̅̅̅
N

√
, 1.96

/ ̅̅̅̅
N

√ ]

One should also note that the EKF and UKF are suboptimal estima-
tion filters. The estimated states may not be optimal in the sense of 
minimizing the mean squared errors with respect to the true states, 
where the estimation algorithm can be diverged in some situations. The 
non-zero estimated errors may be achieved so that the complete con-
sistency is not possible. Therefore, the estimation algorithm consistency 
test also needs to examine the behavior of the estimation errors. The root 
mean squared (RMS) errors are used in this study, and the RMS error of a 
single state xi in step tk from the Monte Carlo-based simulations with N- 
run can be defined as: 

RMS(xi[tk]) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

j=1
(x̂i[tk] − xi[tk]) |j

√

# (27)  

where: xi[tk] is the actual value in step tk. 

5. Simulation results and discussion 

A selected vessel used in the bridge simulator is illustrated in Fig. 7. It 
is a general cargo ship equipped with a single controllable pitch pro-
peller and a single rudder. The position of the apparent CG is located 
midships, and it is assumed that the apparent CG does not shift largely 
during ship maneuvers. 

5.1. Simulated ship maneuvers 

Several ship maneuvers are conducted in the UiT bridge simulator 
(see Fig. 8). The trajectory made from these maneuvers is similar to the 
Williamson turn (Ian, 2004). Calm weather conditions are implemented 
in the bridge simulator, which means that impacts from wind and waves 
are insignificant. In addition, the speed of the surrounding ocean cur-
rents is also set to be 0 so that the SOG is identical to the STW. Based on 
the maneuvers, six voyage segments can be divided. These segments 
include: 

S1 (wp1 → wp2) steady-state cruising (11.43 knots with the pro-
peller pitch 0.78);  

S2 (wp2 → wp3) place the rudder to starboard with a deflection 
angle of 35◦;  

S3 (wp3 → wp4) place the rudder to port with 35◦ when the heading 
reaches 90◦;  

S4 (wp4 → wp5) reduce the rudder to 10 degrees of port when the 
heading reaches 300◦;  

S5 (wp5 → wp6) place the rudder amidships when the heading 
reaches 230◦;  

S6 (wp6 → end) decrease the propeller pitch to 0.33 when the 
heading reaches 210◦. 

Since typical ship maneuvers, such as cruising, turning, and slow-up 
are all included, the analyses are divided by different time intervals to 
examine each voyage segment. 

5.2. Estimation algorithm stability 

The estimation algorithms follow the procedure stated in Section 4.1. 
The simulation results show that Scenario 1 (the CMM with EKF) is the 
only unstable combination. The diverged instances in Scenario 1 during 
the Monte Carlo based simulation with 50 runs are labeled in Fig. 9a. 
The distribution of the diverged instances illustrates that they mostly 
occur after the vessel executes a new rudder or propeller order. For a 
diverged instance, the errors of estimated states (vx, vy, ψ, and r) are 
depicted in Fig. 9b. It can be observed that the errors of v̂x and v̂y have 
significant increases in the middle of the execution period. In the last 
moments before the interruption, the errors of v̂x and v̂y demonstrate a 

Fig. 6. Monte Carlo-based simulation.  

Table 3 
Global parameters assignment.  

Global parameters 

N 50 
Δt 0.1 [s] 
δt 0.005 [s] 
Q diag(10− 1 ,10− 1,10− 3,10− 3,10− 5,10− 5,10− 1π /180,10− 5π /180)
R diag(12 ,12, (0.5π/180)2

, (10− 3π/180)2
,0.012,0.012)

λ 1.72 (only used in the UKF)  
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trend of unstable oscillations. Meanwhile, the errors of ψ̂ and r̂ are 
showing approximately exponential growth. Since these estimated states 
contribute to the components of Jacobian F and H in the EKF, F and H 
can thus diverge and cause the ill condition of S consequently. 

The truncation errors from a first order Taylor series expansion in the 

EKF as well as the nonlinearity in both the system and measurement 
models of the CMM can be considered as the reasons to introduce such 
an instability of Scenario 1. Because both estimated prior and posterior 
error covariances require the F and H, the truncation errors thus will 
remain in the solutions after each iteration. Upon closer examination of 

Fig. 7. The vessel used in the simulator.  

Fig. 8. The simulated maneuver in the UiT bridge simulator. The actual latitude/longitude data sets are transferred into the UTM coordinate system. The vessel icons 
are shown every 50 s. 

Fig. 9. The stability test results of Scenario 1 (CMM + EKF).  
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Fig. 9b, it becomes apparent that the estimated errors begin to accu-
mulate to a larger value, which means that the EKF fails to compensate 
for the estimation errors. The execution of new control orders acceler-
ates the error accumulation processes. In comparison with the UKF in 
Scenario 2, where the Taylor series expansion is not applied, the 
respective truncation errors do not impact the solution of the error 
covariance matrix. Therefore, the unscented transformation in the UKF 
is clearly more robust for the nonlinearity in the CMM. 

It should also be emphasized that the nonlinearity of both the system 
and measurement models of the CTRA is relatively smooth, compared 
with the nonlinearities in the CMM. The smoothness can be understood 
as that the functions in both the system and measurement models of the 
CTRA are continuously differentiable, and there are no discontinuous or 
sudden changes of the derivatives. As a result, these functions are well- 
behaved and mathematically tractable. The EKF can hence converge 
with the CTRA, as observed in the results. By contrast, the terms fvx and 
fvy in the CMM indicate that the respective derivatives can exhibit sud-
den changes as either vx or vy approaches 0. 

5.3. Estimation algorithm consistency 

The (N-run) average NIS and autocorrelation (one step apart) of 
Scenario 2, 3, and 4 are presented in Fig. 10. As can be seen, there are 
three unbounded periods that the average NIS is greater than the upper 
bound in S2 and S3 for all scenarios (over the logarithmic scale). The 
average NIS only slightly exceeds the upper bound in the first and second 
periods, whereas a great exceedance can be observed in the last period 
when the heading switches. For the autocorrelation, there is only one 
unbounded period which happens in S3. 

The percentage of the bounded test statistics are shown in Table 4 
and Table 5. Except for S2 and S3, approximately 70%–80% of the 
average NIS and over 90% of the autocorrelation function are within the 
critical values. In each voyage segment, it can also be confirmed that 
there are situations where the average NIS are less than the lower bound 
(roughly 20%), and these average NIS are evenly distributed and the 
values do not significantly exceed the lower bound. 

When comparing Scenario 2 and 3 (or Scenario 2 and 4), it is 

perceptible that the average NIS in the first and second unbounded 
period in Scenario 2 is slightly higher. In the last unbounded period, it 
takes a longer time for the average NIS converges to the critical value 
range again in Scenario 2. The autocorrelation shares a similar behavior 
in that the re-converge time in Scenario 2 is longer. The test results also 
show that the test statistics of Scenario 3 and 4 are fairly close to each 
other. 

The three unbounded periods overlap within three events: the first 
and second unbounded periods correspond to the rudder order in S2 and 
S3; the last unbounded period is due to switching of the vessel heading 
between 0 to 360◦. The first and second events are thought to cause the 
modeling errors in the CMM and CTRA. Because the mean values of 
accelerations and yaw rate are assumed to be 0 in both models (see 
Table 1), and sudden actions (such as rudder to starboard/port with 35◦) 
can produce significant changes of the respective translational and 
rotational accelerations or yaw rate, there exists thus a discrepancy 
between the models and the real maneuvering behaviors after these 
actions. A shorter re-convergence periods can manifest that the CTRA is 
more robust, whereas the CMM can be sensitive towards sudden actions. 
The switching of the vessel heading is thought to cause numerical errors 
in the estimation algorithms. Once the vessel heading is aligned with the 
true north, the heading measurements of heading can switch between 

Fig. 10. Filter consistency test based on average NIS and autocorrelation. Areas above and below the black lines are on 
a logarithmic scale. The related critical values of test statistics are shown in red lines. 

Table 4 
Percentage of the bounded average NIS.  

Stages S1 S2 S3 S4 S5 S6 

Scenario 2 (CMM + UKF) 77% 77% 67% 80% 77% 72% 
Scenario 3 (CTRA + EKF) 73% 80% 74% 77% 77% 74% 
Scenario 4 (CTRA + UKF) 73% 80% 74% 77% 77% 74%  

Table 5 
Percentage of the bounded autocorrelation.  

Stages S1 S2 S3 S4 S5 S6 

Scenario 2 (CMM + UKF) 94% 95% 81% 93% 93% 95% 
Scenario 3 (CTRA + EKF) 92% 94% 92% 96% 96% 95% 
Scenario 4 (CTRA + UKF) 93% 94% 93% 95% 93% 95%  
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0 and 360◦, which leads to great numerical errors in the innovation 
calculations. 

Since the upper unbounded values of the NIS indicate that the esti-
mated error can be underestimated, ship maneuvering behavior pre-
dictions in a local scale based underestimated errors can be thus too 
optimistic so that potential collision risks can be overlooked. In contrast, 
the lower unbounded NIS represents the overestimation of errors, which 
causes an inefficiency in the estimation algorithm. Since the consistency 
tests show that the lower unbounded NIS (roughly 20%) is evenly 
distributed and not significantly exceeded, the impact on the prediction 
error is considered negligible. 

5.4. Root mean square errors 

The RMS errors from the Monte Carlo-based simulations of Scenario 
2, 3 and 4 are illustrated (see Figs. 11–13). The suboptimal property of 
proposed nonlinear filters can be used to explain the non-zero RMS er-
rors. One can observe that a modest increase of the RMS errors during 
the first and second unbounded periods due to the sudden actions. The 
most significant increases in the RMS errors happen after the switching 
of the vessel heading. Although both the EKF and UKF can converge the 
estimation algorithm again, the re-convergence time can be longer for 
some states, and this is more obvious in Scenario 2. Therefore, it can be 
inferred that the frequent switching of the vessel heading, such as 
continuous northward navigation or zigzag maneuvers, can cause large 
estimation errors and cause estimation algorithms to diverge. 

It is also obvious in Figs. 11–13 that the estimation accuracy of ve-
locities and accelerations is guaranteed in the proposed state-space 
models. The state-space models used in this study validate the specu-
lations that ship motions in the sway direction can have a greater in-
fluence on the state estimation process, causing the large drifts and 
biases in the estimated velocities and accelerations (Wang et al., 2022b). 
When comparing Scenario 3 and Scenario 4, it can be observed that the 
performances of the EKF and UKF are almost the same. Since the 
computational cost of the UKF is usually higher, the EKF can be a better 
choice for real-time applications with limited computational resources. 

Based on the above discussion, it can be considered that Scenarios 2, 
3, and 4 are consistent, except for sudden rudder orders or vessel 
heading variations. To mitigate the estimation algorithm errors due to 
such sudden actions, an increase in the model uncertainty can be 
introduced, and such a method requires an adaptive tuning mechanism 
of the system noise matrix. For vessel heading variations (i.e., between 
0 and 360◦), a special wrapping treatment towards the vessel heading 
inside the estimation algorithms should be developed in the future. 

6. Conclusion 

Two kinematic motion models—the CMM and CTRA are used as the 
system models in continuous-time for vessel state estimation. Combining 
with the measurement models in discrete-time, the EKF and UKF with 
corresponding modifications are applied. Based on the simulated 
maneuvering data sets from the UiT bridge simulator, the Monte Carlo- 
based simulations are performed on four scenarios, and the simulation 
results are further used for the estimation algorithm stability and con-
sistency tests. The results of the stability test show that the combination 
of the CMM and EKF (Scenario 1) is an unstable scenario. For the other 
three scenarios, except for periods when sudden maneuvering actions or 
vessel heading variations occur, the estimation algorithm can be 
considered as consistent, even though small scale estimation errors exist. 

It is apparent that Scenario 1 should be avoided in actual vessel 
maneuvering situations. For other scenarios, the estimated parameters 
with a relevant consistent test can be used to evaluate the estimation 
accuracy of ship maneuvering behavior in a local scale. However, it 
should be noted that sudden maneuvers of ocean-going vessels can often 
lead to high-risk ship encounter situations. Due to changes in trans-
lational and rotational accelerations or yaw rate caused by sudden 
maneuvering actions, the vessel state predictions based on the CMM and 
CTRA may not be sufficient so that potential collision risks may be 
higher. To increase the prediction accuracy, it may require a large 
amount of vessel state measurements for a longer period, but this may 
result in a shorter reaction time for the decision-making process during a 
ship close encounter situation. Switching of the vessel’s heading can 
cause larger estimation errors compared to sudden maneuvers. It is ex-
pected that degraded vessel state predictions may occur after such sit-
uations. Therefore, certain methods that can reduce the heading-related 
errors need to be considered (Wang et al., 2023). Regarding the simu-
lation results, it is worth mentioning that multiple simulations involving 
different types of vessels are conducted, and they yielded similar results. 
However, for the sake of representativeness, this paper presents only the 
results for a general cargo ship. 

The bridge simulator-based experiment can be viewed as the foun-
dation for verifying the models and algorithms in the second step. Future 
work will involve verifying these models and algorithms using real 
navigation data obtained from sea-trial experiments. It is expected that 
certain errors may arise during sea trails, especially under rough 
weather or sea conditions. Furthermore, real vessels equipped with 
complex control and power systems may exhibit unexpected maneu-
vering behaviors, which can introduce additional uncertainties. There-
fore, further work will be also planned to find solutions for these factors. 

Fig. 11. The RMS errors of estimated states (50 runs) in Scenario 2 (CMM + UKF).  
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