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Abstract

The amounts of data in the world have increased dramatically in recent years,
and it is quickly becoming infeasible for humans to label all these data. It is
therefore crucial that modern machine learning systems can operate with few
or no labels. The introduction of deep learning and deep neural networks has
led to impressive advancements in several areas of machine learning. These
advancements are largely due to the unprecedented ability of deep neural networks
to learn powerful representations from a wide range of complex input signals.
This ability is especially important when labeled data is limited, as the absence
of a strong supervisory signal forces models to rely more on intrinsic properties
of the data and its representations.

This thesis focuses on two key concepts in deep learning with few or no labels.
First, we aim to improve representation quality in deep clustering – both for single-
view and multi-view data. Current models for deep clustering face challenges
related to properly representing semantic similarities, which is crucial for the
models to discover meaningful clusterings. This is especially challenging with
multi-view data, since the information required for successful clustering might
be scattered across many views. Second, we focus on few-shot learning, and
how geometrical properties of representations influence few-shot classification
performance. We find that a large number of recent methods for few-shot learning
embed representations on the hypersphere. Hence, we seek to understand what
makes the hypersphere a particularly suitable embedding space for few-shot
learning.

Our work on single-view deep clustering addresses the susceptibility of deep
clustering models to find trivial solutions with non-meaningful representations.
To address this issue, we present a new auxiliary objective that – when com-
pared to the popular autoencoder-based approach – better aligns with the main
clustering objective, resulting in improved clustering performance. Similarly, our
work on multi-view clustering focuses on how representations can be learned
from multi-view data, in order to make the representations suitable for the
clustering objective. Where recent methods for deep multi-view clustering have
focused on aligning view-specific representations, we find that this alignment
procedure might actually be detrimental to representation quality. We inves-
tigate the effects of representation alignment, and provide novel insights on
when alignment is beneficial, and when it is not. Based on our findings, we
present several new methods for deep multi-view clustering – both alignment
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and non-alignment-based – that out-perform current state-of-the-art methods.

Our first work on few-shot learning aims to tackle the hubness problem, which
has been shown to have negative effects on few-shot classification performance.
To this end, we present two new methods to embed representations on the
hypersphere for few-shot learning. Further, we provide both theoretical and
experimental evidence indicating that embedding representations as uniformly as
possible on the hypersphere reduces hubness, and improves classification accuracy.
Furthermore, based on our findings on hyperspherical embeddings for few-shot
learning, we seek to improve the understanding of representation norms. In
particular, we ask what type of information the norm carries, and why it is often
beneficial to discard the norm in classification models. We answer this question
by presenting a novel hypothesis on the relationship between representation norm
and the number of a certain class of objects in the image. We then analyze our
hypothesis both theoretically and experimentally, presenting promising results
that corroborate the hypothesis.
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1
Introduction

Deep learning has led to tremendous scientific and technological advancements
in recent years [15]. However, the success of these systems has traditionally
required large, fully labeled datasets and supervised learning procedures. With
the increasing amounts of data produced and required to train large machine
learning models, it is quickly becoming infeasible for humans to generate labels
for all these data. Thus, to continue pushing the limits of what machine learning-
based systems can achieve, the field has gradually shifted towards developing
models capable of learning from raw data with limited labels. This has led to
impressive developments in both computer vision [16–29] and natural language
processing [30–38].

Clustering, which refers to the process of discovering groups in unlabeled data,
lies at the extreme of the limited labels regime, requiring no forms of label
information whatsoever. The recent success of deep learning has inspired the
development of deep neural network (DNN)-based clustering models, resulting in
the deep clustering subfield [39–42]. The flexibility and representational power
of DNNs give these models great potential in developing classification systems
without labels, and to uncover new and unknown groups in large datasets.
Although single-view (unimodal) data has received the most attention in deep
clustering [25, 26, 39–42], several models have also been developed to cluster
multi-view (multi-modal) data [43–46]. Multi-view clustering (MVC) comes
with a unique set of challenges related to properly integrating information
from multiple data sources, in order to exploit potential synergies across data
sources. To this end, the recent success of self-supervised learning (SSL) in
learning general-purpose data representations [16–18, 21–23, 47–49], has inspired
the adoption of SSL-based components for deep MVC [44, 45]. However, this
direction of research is still in its infancy, with much untapped potential for
future advancements.

Few-shot learning (FSL) is another branch of machine learning, which lies next
to clustering at the extreme of the limited labels regime. Where most supervised
classification models require large numbers of labeled examples to discriminate
between a set of classes, FSL aims to develop models capable of discriminating
between new classes, based on very few examples – often requiring as little as 1
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2 Chapter 1. Introduction

or 5 labeled instances in each class [50–75].

The majority of methods for clustering and FSL – as well as methods in other
branches of machine learning – rely on assumptions on geometrical properties of
the data. Usually, these assumptions manifest themselves as choices of distance
functions or inner products between observations – presuming that these functions
represent true notions of dissimilarity or similarity in the data. However, the
data we gather today is diverse, with many formats, sizes, and characteristics
– meaning that most modern data do not meet the assumptions made by the
models. According to the manifold hypothesis [76, 77], high-dimensional data
tend to lie on a lower-dimensional manifold. This manifold is likely to be non-
Euclidean, meaning that the popular Euclidean distance and inner product do
not accurately reflect the structure of the data. It is therefore necessary to
create representations of data that enable proper quantification of similarity
and dissimilarity through mathematics, and in particular, through geometry.
Thus, one can say that a defining characteristic of good representations is that
true notions of similarity and dissimilarity in the data, are quantified through
well-understood geometrical operations, such as distances or inner products.
For example, when classifying images of different objects, having good image
representations would mean that, in the representation space, images from the
same class are located close to each other, while images from different classes
are placed far away from each other.

The success of deep learning can largely be attributed to the ability of DNNs
to learn good representations from raw data [15]. This has severely reduced
the need for domain-specific, hand-crafted representations that can be time-
consuming and expensive to obtain. The ability of DNNs to learn high-quality
representations is especially important when label information is limited, such
as in clustering or FSL. This is because these models must rely on intrinsic,
geometrical properties in the data, in order to compensate for the lack of a
strong supervisory signal. Although deep learning has contributed to significant
advancements in clustering and FSL, there are key challenges that have to be
addressed in order to harness the full potential of DNNs in these settings.

1.1 Challenges

Despite the recent advancements in deep clustering and FSL, both of these fields
face important challenges related to representation quality. The purpose of this
section is thus to identify and outline some of these challenges, focusing on the
ones we believe have the biggest impact on their respective fields.

Representation quality in deep clustering

Deep clustering is a subfield of deep learning where DNNs are trained with
unsupervised loss functions, to discover unknown groups in data. The clustering
losses are minimized without any label information, which can lead to a “cor-
rupted” representation space where the loss is minimized, but the representations
are no longer representative of the input space [41]. This leads to clusters that
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do not reflect true semantic structure in the data. Low-quality representations
and insufficient similarity preservation has inspired the development of auxiliary
objectives for deep clustering, aiming to learn representations that better reflect
the semantic similarities in the data. However, the difference between the clus-
tering task and the auxiliary task makes deep clustering models susceptible to
objective function mismatch (OFM), where optimizing the auxiliary objective has
a negative impact on the clustering objective. Preserving semantic similarities
from inputs to representations, without introducing OFM, thus remains a key
challenge in deep clustering.

Self-supervised learning for deep multi-view clustering

Deep MVC is a generalization of deep clustering to data from multiple views or
modalities. Similar to deep single-view clustering, it is also crucial in deep MVC
to learn good representations that represent semantic information in the data.
To this end, many forms of SSL have been adapted to improve representations
for deep MVC [43–46, 78–88]. However, current works exhibit large variations in
the motivation and development of SSL tasks for deep MVC, resulting in a lack
of direction and consistent improvement in clustering performance.

One SSL task that has shown particularly promising results is aligning repre-
sentations from different views [44, 45, 83]. Alignment encourages the model to
learn equal representations for all views of a given instance. Crucially, alignment
results in good representations only when the information that carries the true
cluster membership is present in all views. When this is not the case, alignment
can have a negative impact on clustering performance, since it discards the
cluster membership information present in a subset of the views. In summary,
we find that the effects of SSL – and in particular, representation alignment –
on deep MVC are not sufficiently understood, inhibiting future advancements in
the field.

Embedding representations for few-shot learning

The objective of FSL is to develop systems capable of classifying new query
samples based on a small number of labeled support examples from each class.
FSL classifiers are trained based on representations provided by a DNN, which
is trained on a similar dataset containing other classes than those encountered
in inference. Although earlier works on FSL have focused on inductive inference
for the queries, transductive classifiers – which leverage both support and query
information when classifying the queries – have become increasingly popular
during the last few years [50, 57, 63, 64, 68, 72–74].

Recent work has found that FSL is susceptible to the hubness problem, where a
few samples appear frequently among the nearest neighbors of other samples,
in the representation space [55, 89] Reducing hubness through an additional
embedding step can thus lead to improved classification performance [55]. How-
ever, means to alleviate the hubness problem are still severely under-explored in
FSL. Current work [55] does not provide theoretical guarantees on the reduction
of hubness, and makes strong assumptions on the mean of the representation



4 Chapter 1. Introduction

distribution. Continued research on hubness in FSL therefore has potential to
advance the understanding and performance of FSL classifiers.

Recently, the hypersphere has emerged as a particularly promising embedding
space for FSL [55, 58, 71, 72, 75]. In fact, even simple L2 normalization
has demonstrated remarkable gains in performance over un-normalized rep-
resentations [71]. Despite its popularity however, we still lack fundamental
understanding on why hyperspherical embeddings are especially suitable for FSL,
and why discarding the norm information often results in improved classification
performance.

1.2 Objectives

The challenges above indicate that there is much untapped potential in improving
and understanding representation learning. The primary objective of this thesis
is thus to identify and address challenges related to representations in high-
dimensional spaces, focusing on deep clustering and FSL. To this end, we have
the following specific objectives for the work presented in this thesis.

1. Develop methodology that improves similarity preservation in deep clus-
tering, with reduced levels of OFM compared to previous approaches.

2. Better understand the effects of SSL and representation alignment in deep
MVC, and thus provide more consistent directions for future advancements
in the field.

3. Address the hubness problem in transductive FSL by developing new
embedding techniques.

4. Improve the understanding of representation norms and hyperspherical
embeddings in FSL.

1.3 Solutions

Within deep single-view clustering, we develop a new auxiliary objective to
improve similarity preservation from inputs to representations (Paper I). The
proposed unsupervised companion objectives (UCOs) are clustering losses at-
tached to intermediate outputs in the model’s DNN, encouraging a consistent
clustering structure throughout the network. We use tensor kernels [90] to quan-
tify similarities between intermediate outputs. Using tensor kernels is beneficial
over vectorization-based kernels, since the former take the tensor’s inherent
structural information into account. The UCOs are clustering-based, meaning
that they have a reduced level of OFM compared to other auxiliary objectives,
such as autoencoders.

In order to address the challenges in deep MVC, we first present 3 specific pitfalls
related to the alignment of representation distributions (Paper II). In this work
we also propose two new models: Simple multi-view clustering (SiMVC) is a
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simple baseline model for deep MVC, which performs remarkably well compared
to other, more complex methods. Contrastive multi-view clustering (CoMVC)
extends SiMVC with an adaptive alignment procedure, improving on the current
state-of-the-art for deep MVC.

With Paper III we seek to further improve the understanding of SSL and
contrastive alignment in deep MVC. In particular, we investigate how these
components influence the clustering model when the number of views becomes
large. In addition, we propose DeepMVC, which is a unified framework for
consistent evaluation and development of new and existing methods in deep
MVC. Crucially, our framework includes a large number of previous approaches
as instances, allowing for fair and accurate comparisons between models. With
the DeepMVC framework and its open source implementation, we make key
discoveries about the effects of SSL and contrastive alignment in deep MVC.
We find that while contrastive alignment works well for few views, it actually
decreases performance when the number of views becomes large. This effect is
demonstrated both experimentally, and theoretically in a simplified setting.

In order to address the hubness problem in FSL, we prove in Paper IV that
hubness is eliminated by embedding representations uniformly on the hypersphere.
We then present two new embedding methods for FSL that embed representations
from the feature extractor, improving the performance of FSL classifiers. The
proposed uniform hyperspherical structure-preserving embeddings (noHub) and
noHub with support labels (noHub-S) embed representations on the hypersphere
according to a tradeoff between uniformity and local similarity preservation.
This reduces hubness in the embeddings, while retaining class structure. We
demonstrate experimentally that embedding representations with noHub and
noHub-S improve FSL performance for a broad range of classifiers, feature
extractors, and datasets.

To continue improving our understanding of hyperspherical embeddings beyond
the hubness problem, we turn our attention to representation norms in Paper V.
In particular, we present the norm-count hypothesis (NCH), conjecturing that
the norm of a representation is a monotonically increasing function of the number
of certain objects in the input image. In the paper, we provide both theoretical
and experimental evidence that corroborates our hypothesis in a controlled
setting.

1.4 Brief summary of papers

This section summarizes the contributions in the included papers, and briefly
explains how these papers tackle challenges related to representation learning
in deep clustering and FSL. Figure 1 presents an overview of how the included
papers are related to the above challenges and objectives.
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Challenges

Objectives

Improving Representation Learning for Deep Clustering and Few-
shot Learning

Representation 
quality in deep 

clustering

Objective 1.

Paper IPapers

SSL for deep 
multi-view 
clustering

Objective 2.

Paper II Paper III

Embedding 
representations 

for FSL

Objective 3. Objective 4.

Paper IV Paper V

Challenges

Objectives

Figure 1: Overview of challenges, objectives, and papers. Papers and objectives are
colored according to the challenge they aim to address.

Paper I

[I] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“Leveraging Tensor Kernels to Reduce Objective Function Mismatch in
Deep Clustering”. Pattern Recognition (2023). Under Review.

This paper addresses the issue of similarity preservation in deep single-view
clustering. We introduce the UCOs, which are novel auxiliary objectives designed
to make the similarities in the representation space more representative of
similarities in the input space. The UCOs use tensor kernels [90] to quantify
similarities for both vectorial and tensorial intermediate representations. In the
paper, we show that training a deep clustering model with the UCOs reduces
OFM and improves performance, compared to analogous autoencoder-based
models.

Paper II

[II] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“Reconsidering Representation Alignment for Multi-view Clustering”. In:
CVPR. 2021.

This paper presents pitfalls of aligning distributions of view-specific represen-
tations in deep MVC. We find that aligning representation distributions can
severely inhibit the model’s ability to prioritize between views, forcing it to
treat all views as equally informative. Distribution alignment can also lead to
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clusters being mis-aligned in the representation space, causing different clusters
to overlap, thereby reducing cluster separability. Based on these insights, we
develop two new models (SiMVC and CoMVC) for deep MVC. These models
circumvent the pitfalls of distribution alignment, resulting in improved clustering
performance on several multi-view datasets.

Paper III

[III] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“On the Effects of Self-supervision and Contrastive Alignment in Deep
Multi-view Clustering”. In: CVPR. Highlight. 2023.

This paper generalizes results from Paper II to other forms of alignment, focusing
on contrastive alignment. In a simplified setting, we prove that alignment
enforces non-decreasing separability between clusters as the number of views
increases. To further understand the effects of SSL and alignment, we develop
the DeepMVC framework along with an open source implementation – enabling
fair and accurate comparisons between methods and components. We propose
several new instances of DeepMVC, advancing the current state-of-the-art in
the field. Lastly, we provide key insights into SSL and contrastive alignment,
showing experimentally that (i) SSL is beneficial in all evaluated models; and
(ii) contrastive alignment has a negative impact on performance when the number
of views becomes large. The latter is in-line with our theoretical analysis in the
simplified setting.

Paper IV

[IV] Daniel J. Trosten, Rwiddhi Chakraborty, Sigurd Løkse, Kristoffer Wick-
strøm, Robert Jenssen, and Michael Kampffmeyer. “Hubs and Hyper-
spheres: Reducing Hubness and Improving Transductive Few-shot Learn-
ing with Hyperspherical Embeddings”. In: CVPR. 2023.

This paper addresses the hubness problem [89] in FSL. We begin by proving
that the hyperspherical uniform distribution has a vanishing density gradient in
all directions tangent to the hypersphere, at all points on the hypersphere. Con-
sequentially, the hyperspherical uniform is hubness-free. Based on these findings,
we present two new methods to embed representations on the hypersphere, which
provably optimize a tradeoff between uniformity and local similarity preservation.
The proposed noHub and noHub-S result in reduced hubness and improved
overall performance for a wide range of classifiers with several feature extractors
and datasets.

Paper V

[V] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“Norm-Count Hypothesis: On the Relationship Between Norm and Object
Count in Visual Representations” (2023). In submission.
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This paper presents new insight on the information carried by norms of repre-
sentations produced by convolutional neural networks (CNNs). We present the
NCH – which hypothesizes that there is a monotonically increasing relationship
between the norm of a representation, and the number of objects present in
the corresponding image, for which the CNN is trained to detect. In the paper,
we prove that the NCH is true under assumptions on the CNN and the input
images. We then conduct several experiments, whose results corroborate the
NCH for both supervised, self-supervised and few-shot learning.

1.5 Other works

The following is a list of other papers and works I have contributed to during
the course of this project. Most of these works also fall under the main objective
of this thesis, namely to improve or to better understand representation learning
in deep clustering and FSL. Thereby providing me with further inspiration while
working on the included papers.

[6] Daniel J. Trosten, Robert Jenssen, and Michael C. Kampffmeyer. “Reduc-
ing Objective Function Mismatch in Deep Clustering with the Unsuper-
vised Companion Objective”. In: NLDL. 2021. doi: 10.7557/18.5709.

[7] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“Reconsidering Representation Alignment for Multi-view Clustering”. In:
National Conference on Image Processing and Machine Learning (NO-
BIM). Extended abstract and oral presentation. 2021.

[8] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“Reconsidering Representation Alignment for Multi-view Clustering”. In:
Visual Intelligence Days. Extended abstract. 2021.

[9] Daniel J. Trosten. “Deep Clustering”. Invited talk at University of Mani-
toba. 2021.

[10] Daniel J. Trosten, Kristoffer K. Wickstrøm, Shujian Yu, Sigurd Løkse,
Robert Jenssen, and Michael Kampffmeyer. “Deep Clustering with the
Cauchy-Schwarz Divergence”. In: AAAI Workshop on Information Theory
for Deep Learning (IT4DL). Extended abstract and oral presentation.
2022.

[11] Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael Kampffmeyer.
“On the Role of Self-supervision in Deep Multi-view Clustering”. In: Visual
Intelligence Days. Poster presentation. 2022.

[12] Daniel J. Trosten. “Questionable Practices in Methodological Deep Learn-
ing Research”. In: NLDL. 2023. doi: 10.7557/18.6804.

[13] Kristoffer K. Wickstrøm, Daniel J. Trosten, Sigurd Løkse, Ahcène Boubekki,
Karl Øyvind Mikalsen, Michael C. Kampffmeyer, and Robert Jenssen.
“RELAX: Representation Learning Explainability”. International Journal
of Computer Vision (2023). doi: 10.1007/s11263-023-01773-2.

https://doi.org/10.7557/18.5709
https://doi.org/10.7557/18.6804
https://doi.org/10.1007/s11263-023-01773-2
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[14] Daniel J. Trosten, Rwiddhi Chakraborty, Sigurd Løkse, Kristoffer Wick-
strøm, Robert Jenssen, and Michael Kampffmeyer. “Hubs and Hyper-
spheres: Reducing Hubness and Improving Transductive Few-shot Learn-
ing with Hyperspherical Embeddings”. In: National Conference on Image
Processing and Machine Learning (NOBIM). Extended abstract. 2023.

1.6 Open source and open science

Research on machine learning and artificial intelligence is currently in the midst
of a reproducibility crisis [91, 92]. A key driving factor behind this crisis is closed
source code, and the resulting lack of detailed information on new models and
developments in the field. Fortunately, it has become increasingly popular for
researchers and labs to make code for models and experiments openly available
– gradually improving the reproducibility of machine learning and artificial
intelligence research. To adhere to these standards, and to continue the push
towards more reproducible and transparent research, we have made the code
for all published papers publicly available online. The links to the respective
repositories are given in Part II.

1.7 Thesis overview

The rest of this thesis is divided into three parts. Part I provides a complete
overview of background material for the included papers. An illustration of how
the chapters in this part are related to the included papers is shown in Figure 2.
The next part, Part II, summarizes the main directions of research for this thesis,
and briefly explains the main contributions of the included papers. Following
this, I present some concluding remarks on our research, and the future of the
field. Finally, Part III provides full versions with supplementary materials of the
included papers.
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Chapter 3
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Chapter 4
Self-supervised 
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Chapter 5
Clustering

Chapter 6
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Paper I

Paper II

Paper III
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Paper V

Figure 2: Connections between chapters in Part I and the included papers. Chapters 2
and 3 are relevant for all papers, whereas Chapters 4, 5 and 6 provides background for
different subsets of the included papers.
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Methodology and context





2
Representations

Most traditional machine learning systems make assumptions on the underlying
data distribution, and on the space in which it resides. These assumptions are
typically related to similarities in the data, and how these can be quantified by
geometrical operations in the data space, such as inner products and distances.
However, raw, real-world data might not meet these assumptions, causing
traditional systems to fail in processing such data types. Because of this, it is
often necessary to transform the data into representations, such that true notions
of similarity are captured by geometrical operations in the representation space.
Thus meeting the assumptions made by the models.

The first step to learning good representations is to quantify exactly what makes
a representation good. Hence, in this chapter we will build upon the above
intuition on representation quality, and formalize what we mean by a good
representation. This will be done both in terms of pairwise similarities, and in
terms of mutual information. Finally, we will discuss the manifold hypothesis [76,
77], and how it influences how we think about representation quality.

2.1 Representation quality

2.1.1 Quantification of pairwise similarities

Suppose there exists a “true” similarity function, sx(·, ·) that correctly encodes
similarities in the input data. In a classification setting for instance, the value
of sx would be low between samples from different classes, and high between
samples from the same class – implicitly encoding class memberships in the
pairwise similarities. Although sx is unknown and difficult to specify for most
real-world data, we can use it to formalize notions of representation quality. For
3 different input samples x1,x2,x3 with representations z1, z2, z3, we say that
for the representations to be good, they have to satisfy

sx(x1,x2) > sx(x1,x3)⇔ sz(z1, z2) > sz(z1, z3) (2.1)

13
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where sz is a known similarity function, such as the inner product or negative
Euclidean distance. Alternatively, we can require that sz is an approximation of
sx

sx(x1,x2) ≃ sz(z1, z2). (2.2)

Both of these formulations say that good representations transform the true,
unknown similarity function, to a function that is known and computable.
Interestingly, according to these conditions, it is not important what the repre-
sentations actually contain, as long as the relationships between them meet the
conditions.

The conditions in Equations (2.1) and (2.2) also illustrate that representation
quality is context-dependent through the true similarity function sx. This means
that a specific set of representations can have varying quality, based on how and
where they are used.

If we assume that sx encodes class memberships and that sz is the negative
Euclidean distance, representations that satisfy Equation (2.1) will be distributed
as compact and well-separated clusters in the representation space. This makes
it much easier for subsequent models to classify or cluster the data.

Within-class compactness and between-class separability naturally leads to a
key property of good representations, namely linear separability. Informally, two
classes are said to be linearly separable in the representation space, if there exists
a hyperplane such that all representations from one class lie on one side of the
hyperplane, and all representations from the other class lie on the other side of
the hyperplane. This allows the search for discriminative models to be restricted
to affine transformations in the representation space – significantly reducing the
size of the search space.

2.1.2 Mutual information

The mutual information between two random variable is a measure on the degree
of dependence between these two variables. For random vectors x1 and x2, the
mutual information is defined as the Kullback-Leibler divergence (KLD) between
the joint distribution of x1 and x2, and the product of marginals [93, Ch. 1]

I(x1,x2) = DKL(p(x1,x2)|| px1
· px2

). (2.3)

Intuitively, the mutual information measures the reduction of uncertainty in x1

after observing x2 [93, Ch. 1]. For instance, if x1 and x2 are independent, the
joint distribution is equal to the product of marginals, causing the KLD, and
thereby the mutual information, to be 0. If the degree of dependence between
x1 and x2 starts to increase, so will the difference between the joint and the
product of marginals, resulting in an increase in KLD and mutual information.

A straightforward way to think about representation quality in terms of mutual
information, is to say that a representation z of an input x is good if it maximizes
the mutual information between them

max
p(z|x)

I(x, z). (2.4)
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This is known as the InfoMax principle [94], and has inspired the development
of e.g . the Deep InfoMax model [95] for representation learning using deep
neural networks (DNNs). However, it is often not beneficial for z to encode all
information about x, especially if x contains noise. Instead, we might say that z
is a good representation if it maximizes the amount of information relevant for
a certain task, while minimizing the irrelevant information contained in x. This
idea is formulated by the information bottleneck (IB) principle [96]

min
p(z|x)

(I(x, z)− βI(z,y)) (2.5)

where β is a tradeoff parameter, and y denotes the target random variable for
the task. Unfortunately, adapting the IB principle to learning representations
requires information about the target (label), y, meaning that it is not directly
applicable in unsupervised settings.

The dependence on label information in the IB principle has inspired an alterna-
tive information-theoretic principle for representations, namely the principle of
relevant information (PRI) [93, Ch. 8]

min
p(z|x)

(H(z) + λD(pz||px)) (2.6)

where H and D denote arbitrary entropy and divergence measures, respectively.
The λ hyperparameter controls the tradeoff between minimizing entropy and di-
vergence. This principle requires z to have minimal entropy, while simultaneously
preserving a certain amount of information about x.

InfoMax, IB, and PRI are all promising principles for learning high-quality
representations. The optimal choice between the three is likely a matter of
application and available data types. The difference between InfoMax, and IB
and PRI is that the latter two both includes notions of compression – discarding
information that is less relevant in the input. This can be beneficial if the input
contains noise or other artifacts irrelevant to the application at hand.

2.1.3 Kernels

We will now shift our focus towards how similarities between representations
can be computed, and how some of the above information-theoretic quantities
can be estimated. The following provides relevant background for the main
methodology in Paper I, as well as the deep divergence-based clustering (DDC)
clustering module used in Papers II and III.

Mercer’s theorem and the kernel trick

The inner product is a natural way to measure the similarity between two vectors.
It is however, limited by its linearity, making it unable to capture non-linear
structures in the data. This is where kernels play a key role in machine learning.
A kernel is a particular type of similarity function that corresponds to an inner
product in some reproducing kernel Hilbert space (RKHS) [97, 98]. According to
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Mercer’s theorem [97], for any symmetric function k : Rd×Rd → R that satisfies
∫

Rd

∫

Rd

g(x1)k(x1,x2)g(x2)dx1dx2 ≥ 0 (2.7)

for any square-integrable function g, there exists a mapping ϕ : Rd → H, such
that

k(x1,x2) = ⟨ϕ(x1), ϕ(x2)⟩H (2.8)

where ⟨·, ·⟩H denotes the inner product in the Hilbert space H.

Mercer’s theorem implies that methods that only depend on the data through
inner products can be performed in H, instead of in Rd, by simply replacing the
ordinary inner product with a suitable kernel. Assuming that the mapping ϕ
associated with the chosen kernel is non-linear, this allows linear methods to
become non-linear, by simply replacing the inner product. This kernel trick has
inspired the non-linearization of many popular machine learning methods [99–
102].

Kernels in information theory

In addition to specifying inner products in some RKHS, kernels can also be used
to estimate unknown probability density functions (PDFs) from data. If a kernel
k can be written as

k(x1,x2) = k̃(x1 − x2) (2.9)

for some function, k̃, satisfying

k̃(x) ≥ 0 ∀x ∈ Rd (2.10)

and ∫

Rd

k̃(x)dx = 1 (2.11)

the kernel density estimate (KDE) of the distribution p is given by

p̂(x) =
1

n

n∑

i=1

k̃(xi − x) (2.12)

where x1, . . . ,xn is an independent and identically distributed (IID) random
sample from p [103].

KDEs allows certain information-theoretic quantities to be estimated from data.
The Caucy-Schwarz divergence (CSD) between densities for instance, takes a
favorable form when computed from KDEs, only requiring the kernel to be
avaluated at pairwise differences between samples [104]. This result has been
used in DDC [42], and in Papers I, II and III to formulate a clustering loss on
DNN-based representations.

Kernels have also been used to develop new formulations of entropies, mutual
information, and divergences [105, 106]. Since these measure do not require
knowledge of the underlying data distribution, they are especially suitable
in real-world applications, where the true distribution often is unknown and
intractable.
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Figure 3: Illustration of distances between two points on a circular arc manifold. The
Euclidean distance is small, indicating that the points are similar, but the manifold
distance (measured along the arc) is large, indicating that the points are dissimilar.

Tensor kernels

The discussion on kernels has thus far assumed that kernels operate on vectors
in Rd. However, this is not always the case. In Paper I, we are interested in
measuring similarities between intermediate representations in DNNs. These
representations can be tensors, and not just vectors, meaning that the additional
structure in the tensors’ dimensions have to be taken into account in the similarity
function. To this end, Paper I leverages the tensor kernel framework [90], which
provides kernels specifically designed for tensors, to improve representation
quality in deep clustering.

2.2 Manifold hypothesis

The manifold hypothesis states that real-world data tend to lie on a low-
dimensional manifold in the high-dimensional ambient space [76, 77]. The
reduction in dimensionality compared to the ambient space often originates from
constraints imposed on the relationships between dimensions. Natural images
for instance, can have a large number of pixels, but requirements on spatial
coherence forces pixels within neighborhoods to be highly correlated, reducing
the intrinsic dimensionality. Similarly, text, which is represented as a sequence
of words, has constraints on how words should be ordered to make the resulting
sequence meaningful.

Presuming that the data lies on a manifold, distances (or similarities) should
be measured along the manifold, instead of in the ambient space. This will
result in a distance function that is more true to the structure of the data,
and incapable of “cheating” by measuring distance as a straight line between
the points, passing through regions outside the manifold. Figure 3 shows an
example where the manifold distance differs from the Euclidean distance. A
method based on Euclidean distance would consider the two red points to be
similar, perhaps belonging to the same class or cluster. A method based on
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the manifold distance however, would treat the red points as dissimilar, placing
them in different classes or clusters.

Manifold-based distances have motivated the development of techniques for
manifold unwrapping [76, 107–109]. The objective of these methods is to learn
representations where the distance function on the manifold is transformed to
the Euclidean distance in the representation space.

If we let sx be a similarity function on the data manifold, the goal of manifold
unwrapping essentially coincides with the conditions for representation quality
(Equations (2.1) and (2.2)). As noted in Section 2.1.1, there might not exist a
single sx that is optimal for all tasks. Instead, we can envision many distance
functions on the manifold, where some functions are better suited for certain
tasks than others.



3
Deep learning

Deep learning – and in particular, deep neural networks (DNNs) – lie at the
heart of many of today’s most impactful advancements in machine learning
and artificial intelligence [15, 110]. Their layered architectures with millions or
billions of parameters, make DNNs extremely flexible and capable of producing
high-quality representations from a wide range of complex input data.

In this chapter, we review some cornerstone DNN architectures relevant for
this thesis. We also discuss how these architectures are optimized, and possible
pitfalls and challenges related to the optimization procedure.

3.1 Multilayer perceptrons

3.1.1 The perceptron algorithm

The perceptron (McCulloch-Pitts neuron) [111, 112] is a simple algorithm for
supervised binary classification. It is often regarded as the algorithm that later
grew to the wide class of models that is DNNs [98]. The perceptron is inspired by
the observation that the relations between nervous activity and neural events can
be represented as propositional logic [111, 112]. Specifically, for a d-dimensional
input observation xi = [xi1, . . . , xid]

⊤, the perceptron computes the response

ri =

d∑

j=1

wjxij + b = w⊤x+ b (3.1)

and the output

yi = 1{ri>0} =

{
1, ri > 0,

0, otherwise
(3.2)

where w = [w1, . . . , wd]
⊤ is a vector of weights and b is a bias parameter. The

perceptron thus computes a binary response that only triggers if the input signals
are strong enough, w.r.t. the weights.

19
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Figure 4: Overview of a general multilayer perceptron with input x and output y ∈ Rd(L)

.
In layer l, the j-th perceptron, P (l)

j , performs the computation in Equation (3.7).

Given a set of labeled training data (x1, ỹ1), . . . , (xn, ỹn), where ỹi = 1 if xi

belongs to the positive class, and ỹi = −1 otherwise, the weights are determined
by minimizing the perceptron loss

LPerceptron =

n∑

i=1

1{sign(ri)=ỹi}ỹiri (3.3)

where sign(·) is the sign function

sign(ri) =

{
1, ri ≥ 0,

−1, otherwise
. (3.4)

Minimizing LPerceptron is done iteratively [98, 112], where at iteration t, the
weights and bias are updated as

wj(t+ 1) = wj(t) + η(ỹi − yi)xij , ∀ j = 1, . . . , d (3.5)
b(t+ 1) = b(t) + η(ỹi − yi) (3.6)

where η is the learning rate, which determines the step size taken in the mini-
mization procedure. The optimization is terminated when all training samples
are classified correctly, or when the loss converges.

3.1.2 Multilayer perceptrons

The perceptron is a linear model, and thus it makes strong assumptions on the
geometry of the data. However, by stacking multiple perceptrons breadth-wise
and depth-wise (see Figure 4), the multilayer perceptron (MLP) is capable of
refining the data representation at each computational step. At an arbitrary
layer l with d(l) perceptrons, the MLP computes the following output

y
(l)
ij = f (l)(w

(l)
j

⊤
y
(l−1)
i + b

(l)
j ), j = 1, . . . , d(l) (3.7)
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where (w
(l)
j , b

(l)
j ) are the weights and biases of perceptron j in layer l, and

y
(l−1)
i = [y

(l−1)
i1 , . . . , y

(l−1)

id(l−1) ]
⊤ is the output vector of the previous layer, with

y
(0)
i = xi.

The activation function f (l) : R→ R is now assumed to be a general, non-linear,
piecewise-differentiable1 function. We require f (l) to be non-linear since its
argument is an affine transformation of the previous representation. Using a
linear activation function would thus result in an affine model, severely limiting
the model’s representational power. Early work on MLPs focused on sigmoid-like
activation functions, such as the hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x
(3.8)

and the logistic sigmoid

sigmoid(x) =
1

1 + e−x
. (3.9)

However, later work on neural network optimization (see Section 3.3) has found
piecewise linear activation functions to work better for models with many layers.
These include the rectified linear unit

ReLU(x) = max{0, x} (3.10)

and the leaky rectified linear unit

LeakyReLU(x) =

{
αx, x < 0

x, x ≥ 0
(3.11)

where α ∈ (0, 1) is a hyperparameter, typically set to 0.01.

From Equation (3.7), it is clear that an MLP with L layers produces L − 1

intermediate representations y
(1)
i , . . . ,y

(L−1)
i for the input observation xi. The

key idea in MLP is then that each representation is somewhat better than the
previous one, meaning that the model gradually refines the representation at
each layer. Whether the model is actually capable of making the representations
better depends on the weight vectors. However, due to the layer-wise stacking
of perceptrons, it is no longer feasible to use the perceptron algorithm from
Section 3.1.1 to determine the optimal weights. Instead, these models are trained
using Backpropagation [113], which will be discussed in Section 3.3.

Several works have proven that MLP with arbitrary width [114, 115], arbitrary
depth [116], and finite width and depth [117] are universal approximators. Infor-
mally, this implies that, for any continuous function, g : [0, 1]d → R, there exists
analytic activation functions, such that an MLP can approximate g arbitrarily
well. This is a truly remarkable result on the representational power of MLPs,
especially considering that they are constructed from a collection of linear units.

1The reason for requiring differentiability will be discussed in Section 3.3.
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(a) Original (b) Blurred (c) Horizontal edges
detected

(d) Vertical edges de-
tected

Figure 5: Examples of three different convolution operators applied to a grayscale
image.

3.2 Convolutional neural networks

Images often have high extrinsic dimensionality, originating from high spatial
resolution and multiple channels. However, due to geometric constraints on the
space of images, the intrinsic dimensionality of the image space is likely to be
much lower than the extrinsic dimensionality of the ambient space. Strong local
correlation between pixels, combined with translation equivariance/invariance
makes it natural to use functions that operate on local regions (patches), and
treats each patch the same way, regardless of its position in the image. Combining
these two properties, in addition to linearity, results in the convolution operator
– the key building block in convolutional neural networks (CNNs) [118].

3.2.1 The convolution operator

The central idea in convolution is that a single filter – typically with size much
smaller than the input – is applied to all patches of the input image. Convolution
thus implements parameter sharing, meaning that the same parameters (filter)
are applied to multiple parts of the input. The two main advantages of parameter
sharing are:

1. The number of parameters is significantly reduced compared to an analogous
operator with distinct parameters for each pixel in the input image. This
makes the operator both more memory efficient, and faster to apply.

2. Regions in the image are processed in the same way, regardless of their
global position. This is especially useful in classification models, where an
image of a certain object should be classified in a certain way, regardless
of the object’s position in the image.

Convolution is defined as follows. First, let IC,H,W denote the set of C-channel
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Table 1: Summation bounds and output sizes with different padding strategies for the
convolution operator.

Padding

Valid Same Full

Lx max{0, x−W + 1} max{0, x−W − ⌊w−1
2
⌋+ 1} max{0, x−W − w + 2}

Ux min{w − 1, x} min{w − 1, x+ ⌈w−1
2
⌉} min{w − 1, x+ w + 1}

Ly max{0, y −H} max{0, y −H − ⌊h−1
2
⌋+ 1} max{0, y −H − h+ 2}

Uy min{h− 1, y} min{h− 1, y + ⌈h−1
2
⌉} min{h− 1, y + h+ 1}

H ′ H − h+ 1 H H + h− 1

W ′ W − w + 1 W W + w − 1

images with height H and width W

IC,H,W = {I : N0
<C × N0

<W × N0
<H → R}. (3.12)

Then, for an image I ∈ IC,H,W and a filter F ∈ IC,h,w
2, the convolution between

F and I is defined as

(F ⋆ I)(x, y) =

C∑

c=1

∑

Lx≤x′≤Ux

∑

Ly≤y′≤Uy

F (c, x′, y′)I(c, x− x′, y − y′) (3.13)

(x, y) ∈ N0
<W ′ × N0

<H′ (3.14)

where the summation bounds (Lx, Ux) and (Ly, Uy), and the output dimensions
H ′,W ′ are defined by the type of zero-padding used in the convolution (see
Table 1).

Figure 5 shows examples of output images obtained by convolving the input
image (Figure 5a) with different filters. The blurring filter is a 23× 23 filter with
all values equal to 23−2. This introduces an averaging effect, where a pixel in the
output image is equal to the average value of all pixels in a 23× 23 neighborhood
surrounding the corresponding pixel in the input image. The edge detectors used
for Figures 5c and 5d are horizontal and vertical Sobel operators [119], defined
as

F Horizontal =




1 2 1
0 0 0
−1 −2 −1


 , and F Vertical =



1 0 −1
2 0 −2
1 0 −1


 . (3.15)

From Equation (3.13), it can be shown that the convolution operator has the
following key properties [120].

• Commutativity: For an image I ∈ IC,H,W and a filter F ∈ IC,h,w

F ⋆ I = I ⋆ F (3.16)
2We assume h ≤ H and w ≤ W for convenience.
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• Linearity: For images I1, I2 ∈ IC,H,W , and constants c1, c2 ∈ R

F ⋆ (c1I1 + c2I2) = c1(F ⋆ I1) + c2(F ⋆ I2). (3.17)

This allows convolution to be implemented as matrix multiplication – an
operation that has been made extremely efficient on modern computing
hardware.

• Translation equivariance: For a translation operator

T(x′,y′)(I)(c, x, y) = I(c, x− x′, y − y′) (3.18)

we have

F ⋆ (T(x′,y′)(I)) = T(x,y)(F ⋆ I). (3.19)

This property is closely related to the parameter sharing property discussed
above.

In the following we will see how the convolution operator can be used to build a
DNN architecture for image data.

3.2.2 Convolutional neural networks

Convolving an image with a filter results in a new, filtered image. This new
image can be seen as a representation of the input image, where certain features
are enhanced or discarded. If we now convolve the filtered image with a new
filter, we can obtain another, more refined representation, further enhancing the
relevant features, and discarding irrelevant features. This is the key idea behind
CNNs: stacking multiple convolutions to gradually refine the representation to
make it better for downstream processing.

In a CNN, each step (application of convolution) is referred to as a layer, and
the ordered collection of layers is referred to as a CNN. In order to make it
possible for the CNN to detect multiple types of features, each layer performs
convolutions with a set of filters. If there are C(l) filters in layer l, the layer
will produce C(l) single-channel images, which can be stacked channel-wise to
produce a single C(l) channel image. Specifically, each layer computes its output
I(l) ∈ IC(l),H(l),W (l) as

I(l)(c, x, y) = f (l)((F (l)
c ⋆ I(l−1))(x, y) + b(l)c ), c ∈ N0

<C(l) (3.20)

where I(l) is the output of the previous layer, and f (l) : R → R is an acti-
vation function applied element-wise. The filters {F (l)

1 , . . . , F
(l)

C(l)} and biases
{b(l)1 , . . . , b

(l)

C(l)} are learnable parameters in layer l. We will discuss how these
parameters are found in Section 3.3.

Activation functions

Similar to the MLP, CNNs are composed of linear operations. Therefore, we
require the activation functions f (l) to be non-linear, so that the resulting
CNN is a non-linear model. Frequently used activation functions include ReLU
(Equation (3.10)), and LeakyReLU (Equation (3.11)).
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Pooling: from translation equivariance to translation invariance

The convolution operator is translation equivariant, meaning that convolving a
filter with a translated input image, is equivalent to convolving with the original
image, and then translating the result. However, many downstream image
processing tasks, such as classification, are inherently translation invariant : the
model should provide the same output, regardless of the global location of the
region of interest.

To make CNNs translation invariant, it is common to insert local pooling layers
between convolutional layers in the network. A local pooling layer aggregates
information from a local neighborhood into a single pixel, both reducing the size
of the output image, and introducing invariance to local translation. The most
common local pooling operation is max pooling

MaxPoolh,w(I)(x, y) = max
wx≤x′≤w(x+1)
hy≤y′≤h(y+1)

{I(x′, y′)}. (3.21)

This operation produces a new image where an output pixel is the maximum
value of the corresponding h×w neighborhood in the input image. Aggregating
pixels from a local neighborhood in this way makes the network invariant to
translations within the neighborhood. Including several max pooling operations
after different layers in the network, makes the intermediate representations
gradually more translation invariant.

In modern CNN design, such as in classification models, it is common to attach
a global average pooling (GAP) operation to the last layer of the network.
For a given channel, GAP computes the average across all spatial dimensions,
collapsing all spatial information into a single value

GAP(I)k =
1

WH

W−1∑

x=0

H−1∑

y=0

I(k, x, y) (3.22)

For an image with C channels, GAP produces the vectorial representation

GAP(I) =



GAP(I)1

...
GAP(I)C


 ∈ RC . (3.23)

Since GAP aggregates information from all spatial positions, the resulting
representation is completely translation invariant. This makes the representation
suited for downstream tasks that benefit from translation invariance – e.g .
classification.

Overview of the CNN architecture

Figure 6 illustrates an example CNN used for classification. The network consists
of L convolutional layers followed by a GAP step. The vector produced by the
GAP step is processed by a perceptron layer, producing the predicted class for
the input image.
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Figure 6: CNN-based classification model consisting of L convolutional layers, global
average pooling, and a perceptron classification layer. The size of I(L) is reduced
compared to I(1) and I(2) due to intermediate pooling layers (not shown in the figure).

3.2.3 Residual connections and ResNets

The power of CNNs, and DNNs in general, comes from their ability to stack
multiple layers to produce semantically meaningful representations from raw
data. The network depth is thus crucial for performance [121, 122]. However,
He et al . [122] observe that, for standard CNNs as defined above, increasing the
depth results in saturation followed by a rapid drop in classification performance
and increase in training loss.

This behavior is counter-intuitive in two ways:

1. Deeper networks should provide better representations since they have
higher representational power, compared to shallower networks. This
should lead to improved performance.

2. If a shallow network is good for the task at hand, the deeper network
should mimic the shallow network with some of its layers, and learn identity
mappings for the remaining layers. The deeper model should thus have
performance equal to, or better than, the shallow model.

He et al . [122] argue that the saturation and drop originates from difficulties in
the optimization procedure: shallower models are “easier” to optimize compared
to deeper models, and deep models are not able to learn the identity mapping
required to mimic shallower models. To alleviate this problem, He et al . [122]
propose to add explicit identity mappings, referred to as residual connections,
bypassing pairs of convolutional layers. Recall that, for layers l and l + 1, the
standard network (without pooling) produces outputs

I(l)(c, x, y) = f (l)((F (l)
c ⋆ I(l−1))(x, y) + b(l)c ), (3.24)

I(l+1)(c, x, y) = f (l+1)((F (l+1)
c ⋆ I(l))(x, y) + b(l+1)

c ). (3.25)

Adding a residual connection between these layers results in

Ĩ(l+1) = f
(l+1)
residual(I

(l+1) + I(l−1)) (3.26)

where f
(l+1)
residual is an activation function (typically ReLU). Subsequent layers of

the network now receive the representation Ĩ(l+1) instead of I(l+1). The explicit
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residual connections make it easier for the network to learn identity mappings,
for tasks where this is beneficial. A network with residual connections is called a
residual network (ResNet). These networks have been shown to perform much
better than standard CNNs, when the network depth becomes large [122].

3.3 Training deep neural networks

Up until this point we have not discussed how the parameters of DNNs are
found based on the given training data. The process of determining a DNN’s
parameters is usually referred to as training or optimizing the network.

Throughout this section, we will assume that gθ : X → Y ⊆ Rd is a DNN with
parameters θ, mapping from inputs in X to outputs Y ⊆ Rd.

3.3.1 Loss functions

A loss function (or objective function), L, is a real-valued function that measures
the performance of a DNN, relative to a given training dataset. Lower values of
the loss function indicate better performing models. Loss functions are said to
be either supervised or unsupervised depending on whether labels are available
when training the network. Examples of supervised loss functions include the
cross-entropy loss for classification

LX-ent(θ,x1, ỹ1, . . . ,xn, ỹn) =

n∑

i=1

c∑

j=1

ỹij log yij (3.27)

and the mean squared error for regression

LMSE(θ,x1, ỹ1, . . . ,xn, ỹn) =
1

n

n∑

i=1

||ỹi − yi||2 (3.28)

where yi = gθ(xi) is the network output for the input xi, and ỹi is the corre-
sponding ground truth.

Examples of unsupervised loss functions for representation learning, cluster-
ing and few-shot learning will be presented in detail in Chapters 4, 5 and 6,
respectively.

3.3.2 Gradient descent

When training a DNN we are interested in finding the parameters, θ∗, which
minimize the chosen loss function, L(θ)3

θ∗ = argmin
θ∈Θ
L(θ) (3.29)

3Note that we have omitted the dependence on the training data to simplify the notation.
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where Θ denotes the space of possible parameters. However, finding the global
minimum of L is not computationally feasible for complex models, such as DNNs.
Instead, we are usually satisfied with a local minimum of L, as such a minimum
is much easier to find.

Gradient descent is a well known method to iteratively find local minima of a
differentiable function. Given an initial parameter vector θ(0), gradient descent
is an iterative approach that, at step t, updates the current parameter vector as

θ(t+ 1) = θ(t)− µ(t)
∂L(θ)
∂θ

∣∣
θ=θ(t)

(3.30)

where µ(t) is the learning rate at step t. The learning rate is a hyperparameter
that determines the size of the steps taken at each training iteration. Unfor-
tunately, there is not a single optimal learning rate. Rather, it depends on
the shape of the loss function w.r.t. the parameters – particularly whether the
minima are “sharp” or “flat”. The difficulties of setting the learning rate has lead
to the development of methods that automatically tune the learning rate based
on the geometry of the loss function. Examples of such methods will be given in
Section 3.3.4.

It can be shown that, under mild constraints on the learning rate and loss
function, the iterative procedure in Equation (3.30) converges to a local minimum
of L(θ) [123].

3.3.3 Backpropagation

Backpropagation [113] is a gradient descent-based algorithm used to train DNNs.
DNNs have non-linear computations with a large number of parameters, making
it computationally infeasible to compute gradients numerically. Therefore, in
backpropagation the gradients are computed analytically – resulting in a much
faster and more accurate optimization procedure. Despite their complexity and
highly non-linear nature, the layer-wise architecture of DNNs means that they
are essentially compositions of functions (layers). Gradients can therefore be
computed using the multivariate chain rule of differentiation. Starting at the
last layer of the network, gradients are propagated backward in order to update
parameters in earlier layers – which is why the algorithm is called backpropagation.

Suppose that the DNN can be decomposed as

gθ = g
(L)

θ(L) ◦ g(L−1)

θ(L−1) ◦ · · · ◦ g(1)θ(1) (3.31)

where θ(l) are the parameters in layer l, and L is the number of layers. Further,
let y(l) = g

(l)

θ(l)(y
(l−1)) be the output of layer l, given the output of the previous

layer. Then, the gradient of the loss w.r.t. the parameters in layer l can be
computed as

∂L
∂θ(l)

=
∂L

∂y(L)

∂g
(L)

θ(L)

∂θ(l)
(3.32)

=
∂L

∂y(L)

∂g
(L)

θ(L)

∂y(L−1)
· · ·

∂g
(l+1)

θ(l+1)

∂y(l)
·
∂g

(l)

θ(l)

∂θ(l)
(3.33)
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input: Randomly initialized DNN, gθ(0), with L layers
input: Training data, x1, . . . ,xn

input: Number of iterations, T
input: Sequence of learning rates, µ(0), . . . , µ(T − 1)

for t = 0, . . . , T − 1 do
yi ← gθ(t)(xi), i = 1, . . . , n ▷ Compute outputs
ℓ(t)← L(θ(t)) ▷ Compute loss
for l = L, . . . , 1 do ▷ Compute gradients

g(t)← ∂ℓ(t)

∂θ(l) |θ(l)=θ(l)(t)

for l = 1, . . . , L do ▷ Update parameters
θ(l)(t+ 1)← θ(l)(t)− µ(t)g(t)

output Trained DNN, gθ(T )

Algorithm 1: Backpropagation algorithm for training a DNN, gθ.

where the necessary Jacobian matrices

∂g
(L)

θ(L)

∂y(L−1)
, . . . ,

∂g
(l+1)

θ(l+1)

∂y(l)
and

∂g
(l)

θ(l)

∂θ(l)
(3.34)

can be computed by differentiating Equation (3.7) if gθ is an MLP, and Equa-
tion (3.20) if gθ is a CNN. The resulting gradient can then be used in the iterative
algorithm in Equation (3.30) to update the parameters of layer l. The complete
backpropagation algorithm is illustrated in Algorithm 1.

3.3.4 Optimization techniques

Numerous methods have been proposed to improve the standard backpropagation
algorithm [124–131]. The goal of these methods is to improve the optimization
procedure, resulting in faster convergence, improved performance, and reduced
hyperparameter sensitivity. In the following, we briefly summarize two of the
most popular optimization techniques.

Stochastic gradient descent

Computing gradients and parameter updates based on the full dataset is not
computationally feasible when the number of samples becomes large. Opti-
mization is therefore typically performed with mini batches, which are random
partitions of the dataset with size much smaller than the number of samples. In
addition, introducing randomness to the optimization procedure has shown to
be beneficial for convergence and performance [98]. Stochastic gradient descent
(SGD) is the simplest backpropagation algorithm that uses randomly sampled
mini batches. In SGD, the update rule is modified as

θB(t+ 1) = θ(t)− µ
∂LB(θ)

∂θ

∣∣
θ=θ(t)

(3.35)

where subscript B means that the parameter update and loss are computed
based on the mini batch B.
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Adaptive moment estimation

Adaptive moment estimation (Adam) extends the SGD algorithm to include an
adaptive momentum term, improving convergence and performance. In Adam,
the parameter update is formulated as

θ(t+ 1) = θ(t)− µ m̂(t)⊘ (
√

v̂(t) + ε) (3.36)

where µ and ε are hyperparameters4. The vectors m̂(t) and v̂(t) are estimates
of the element-wise un-centered first and second moments of the gradient

m̂(t) =
m(t)

1− βt
1

, m(t) = β1m(t− 1) + (1− β1)g(t) (3.37)

v̂(t) =
v(t)

1− βt
2

, v(t) = β2v(t− 1) + (1− β1)g(t)
2 (3.38)

where g(t) is the gradient ∂L(θ)
∂θ

∣∣
θ=θ(t)

. The multiplication with (1− β{1,2})−1

is done to correct the bias in the parameter estimates, originating from zero-
initialization.

3.3.5 Vanishing and exploding gradients

Despite its success in training DNNs, the backpropagation algorithm is not
problem free. Early attempts at training DNNs often encountered problems with
vanishing or exploding gradients.

Vanishing gradients

The gradient is said to vanish when the norm || ∂L
∂θ(l) || becomes so small that the

parameter updates done in Equation (3.30) are negligible. A key contributor to
the vanishing gradient problem is saturating activation functions. For sigmoidal
functions, like tanh(x) and sigmoid(x), the derivative becomes almost 0 when
|x| becomes large, causing the gradients to vanish.

To solve the vanishing gradient problem arising from saturating activation
functions, one can instead use non-saturating activation functions, like ReLU
and LeakyReLU. Such activation functions allows DNN training with fewer
vanishing gradients [132]. Figure 7 shows the activation functions sigmoid(x)
and LeakyReLU(x), and their derivatives. The derivative of sigmoid(x) is almost
zero for |x| > 5, in contrast to d

d x LeakyReLU(x), which is non-zero everywhere.

Finally, residual connections and ResNets [122] can also be used to further
improve the gradient flow in the network.

4Adam is not particularly sensitive to hyperparameters, so the default values of µ = 10−3

and ε = 10−8 work well in most cases.
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Figure 7: Frequently used activation functions in DNNs. d
d x

sigmoid(x) is close to 0
for |x| > 5, making it prone to the vanishing gradient problem. This is not the case for
LeakyReLU(x), which has a non-zero derivative everywhere.

Exploding gradients

The loss landscapes of DNNs often include sharp “cliffs”, originating from repeated
multiplication of large weights [110]. At these points, the magnitude of the
gradient is very large, which results in parameter updates that move the current
parameter estimate far away, and possibly away from a desired local minimum –
effectively undoing much of the optimization efforts done so far. The problem of
exploding gradients can be alleviated with the gradient clipping heuristic. This
essentially enforces a ceiling on the gradient norm, modifying the gradient in
Equation (3.30) as

gclipped = min

{
1,

T

||g||

}
g (3.39)

where T is the maximum allowed norm, and g is the gradient ∂L
∂θ(l) . By restricting

the norm of the gradient, gradient clipping reduces the maximum step size, and
thus avoids “overshooting” local minima close to cliffs in the loss landscape. See
Figure 8 for an illustration of the exploding gradient problem, and the effect of
gradient clipping.
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Figure 8: Behavior of gradient descent near cliffs in the loss landscape, with and
without gradient clipping. When the gradient is clipped, the updated parameters are
much closer to the local minimum.

3.3.6 Batch normalization

Batch normalization (BN) [133] is a technique to improve training of DNNs.
According to Ioffe and Szegedy [133], the objective of BN is to reduce internal
covariate shift. This is defined as a change in the distribution of outputs for
a layer, originating from a change in network parameters. However, since
it is computationally challenging to enforce the entire distribution to remain
unchanged, BN instead fixes the mean and variance of the marginal distributions
of the layer outputs. Let y

(l)
1 , . . . ,y

(l)
n be the outputs of layer l for a batch

consisting of n samples. Then, BN first computes the sample mean and variance
as

m(l) =
1

n

n∑

i=1

y
(l)
i (3.40)

v(l) =
1

n− 1
diag

(
n∑

i=1

(y
(l)
i −m(l))(y

(l)
i −m(l))⊤

)
(3.41)

where diag(X) denotes the vector of diagonal elements in the square matrix X.

The layer output y
(l)
i is then normalized to zero mean and unit variance as

z
(l)
i = (y

(l)
i −m(l))⊘ v(l) (3.42)

which is used to compute the transformed output

y
(l)
i,new = γ(l) ⊙ z

(l)
i + β(l) (3.43)

where γ(l) and β(l) are trainable parameter vectors. These are included so that
the model is able to learn output distributions with fixed mean and variance
different from 0 and 1. The transformed outputs y

(l)
1,new, . . . ,y

(l)
n,new are then

passed to the next layer in the model, instead of the original y(l)
1 , . . . ,y

(l)
n .

Batch normalization in convolutional neural networks

The intermediate representations in CNNs are not vectors, but functions that
can be regarded as three-dimensional arrays. The BN equations above thus have
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to be adapted to such arrays for BN to be applicable to CNNs. This is done by
computing batch statistics for all spatial locations for all images in the batch,
channel-wise.

Let I
(l)
i ∈ IC(l),H(l),W (l) be the output of layer l for sample i in the batch, and

let

y
(l)
i,ab = [I

(l)
i (1, a, b), . . . , I

(l)
i (C(l), a, b)]⊤ ∈ RC(l)

(3.44)

be the vector of channel values at position (a, b) in I
(l)
i . Equations (3.40)

and (3.41) are then modified as

m(l) =
1

nW (l)H(l)

n∑

i=1

W (l)−1∑

a=0

H(l)−1∑

b=0

y
(l)
i,ab (3.45)

v(l) =
1

n− 1
diag




n∑

i=1

W (l)−1∑

a=0

H(l)−1∑

b=0

(y
(l)
i,ab −m(l))(y

(l)
i,ab −m(l))⊤


 (3.46)

resulting in the transformed image with elements

I
(l)
i,new(c, x, y) = γ(l)

c ·
I
(l)
i (c, x, y)−m

(l)
c

v
(l)
c

+ β(l)
c . (3.47)

Inference in deep neural networks with batch normalization

The transformation done by BN makes the layer output for one sample depend
on the layer outputs of other samples, through the estimates of m(l) and v(l).
Although this is acceptable during training, it is an unwanted property when the
DNN is used for inference. In inference, we want a deterministic model, which
produces outputs that are independent of other samples in the inference batch.
Furthermore, in online inference where the batch size is 1, the normalization
step would be undefined due to division by 0 in Equation (3.41).

To get a deterministic mapping independent of other samples, BN keeps running
estimates of m(l) and v(l) during training. The estimates are an exponential
moving average of the batch statistics. When the DNN is used for inference, the
estimates are frozen, and used in place of m(l) and v(l) in Equation (3.42).

Why does batch normalization work?

In the original formulation of BN, Ioffe and Szegedy argue that BN reduces
internal covariate shift, leading to faster convergence and improved accuracy [133].
However, later work by Santurkar et al . [134] found little correspondence between
BN and internal covariate shift. This suggests that (i) BN does not reduce
internal covariate shift; and (ii) there is another reason for BN’s improvements
to performance. Specifically, Santurkar et al . [134] discovered that the actual
benefits of BN likely stems from a smoother loss landscape, resulting from the
normalization. A smoother loss landscape makes gradients vary less in norm
and direction, enabling higher learning rates and faster convergence.
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4
Self-supervised learning

High-quality representations are crucial for machine learning systems, as they
allow proper quantification of similarity and dissimilarity, preserving semantic
information. Self-supervised learning (SSL) is a learning paradigm to learn
representations of unlabeled data by synthesizing “labels” from the data itself,
and training a “supervised” model with these labels. SSL has been widely
successful in learning representations of complex data types, such as images [16–
24, 47–49, 135–147] and text [30–35, 37, 38].

The key to unlocking the potential of SSL is to carefully design the synthesized
labels, such that these accurately reflect the task we want to solve. This
consideration is especially important if SSL is used as a component in a model,
whose objective differs from learning general representations. In this thesis,
we study SSL for single-view and multi-view deep clustering. For SSL to be
successful in such models, the learned representations – and by extension, the
generated labels – must reflect the true underlying group structure in the data.
Furthermore, representations must be robust towards artifacts in the data that
do not influence true cluster memberships. This chapter provides relevant
background material on SSL, focusing on autoencoders and contrastive learning.
Section 4.2 introduces autoencoders, which are frequently used in deep single-
view clustering to preserve the similarity structure from inputs to representations.
Section 4.3 presents contrastive learning and the SimCLR framework. In the
context of deep multi-view clustering, contrastive learning can be used to align
view-specific representations, making it relevant for our work in Papers II and III.

4.1 Pretext and downstream tasks

The task induced by the labels generated from data is called the pretext task.
Predicting random rotations [147], predicting relative positions of patches [139],
and discriminating between augmented images [22, 23, 138], are all examples of
pretext tasks used to train SSL models on images.

A trained SSL model can be used to generate representations, which in turn can
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be used to solve a downstream task. The downstream task refers to the task we
are actually interested in solving, but for which there exist little or no labeled
data. This can be for instance classification, regression, retrieval, etc.

The key to designing good SSL models is to make the pretext task as similar
as possible to the downstream task. This ensures that the representations
obtained by training the model on the pretext task, successfully transfer to the
downstream task. If the two tasks are not sufficiently similar, the pretext task
can end up either preserving information irrelevant to the downstream task,
discarding information relevant to downstream task, or both.

4.2 Autoencoders

Autoencoders (AEs) [148–151] are models that learn to encode input samples,
requiring that the original inputs can be reproduced from the encoded rep-
resentation. The AE’s pretext task is thus reconstruction of inputs based on
learned representations. AEs consist of two DNNs: an encoder network, gθ, and
a decoder network hϕ, where θ and ϕ denote the trainable parameters of g and
h, respectively. The encoder network produces a representation

z = gθ(x) (4.1)

and the decoder network re-creates the input from the representation

x̂ = hϕ(z). (4.2)

The reconstruction task can be trivially solved by setting both gθ and hϕ to
identity mappings, resulting in x = z = x̂. To avoid this, AEs often enforce a
bottleneck constraint, requiring that the dimensionality of z is smaller than the
dimensionality of x. This forces gθ to learn a compressed version of the input,
preserving relevant information and discarding noise.

To perform the pretext task, and reconstruct input samples as good as possible,
AEs are trained using the mean squared error (MSE) loss

LMSE =
1

n

n∑

i=1

||xi − x̂i||2 (4.3)

where x1, . . . ,xn are the training samples in the current batch, and || · || denotes
the Euclidean norm.

4.2.1 Improvements to the standard autoencoder model.

Several modifications to the standard AE model have been proposed in order to
enhance the quality of AE-based representations. Denoising AEs [152, 153] add
a noise corruption step before the encoder. The pretext task is then changed to
denoising, instead of reconstruction – leading to representations that are more
robust to noise in the input. Variational AEs [28, 29, 154–157] are probabilistic
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AE-based models that learn distributions of latent representations of the inputs.
Lastly, masking-based AEs [158–160] are a particular, recent type of denoising
AEs designed for images. Masking AEs remove a large proportion of patches in
the input image, and then require that the input image is reconstructed from
the remaining patches.

4.2.2 Objective function mismatch

Different types of tasks require different types of information to be carried over
from inputs to representations. Reconstructing images, for instance, requires the
representations to contain fine-grained information about color, texture, semantic
content, etc. Classification, on the other hand, only requires information about
whether an image contains a specific object or not. When a model is trained to
perform one task and then evaluated on another, the difference in information
required for these tasks can lead to objective function mismatch (OFM) [161].
OFM refers to a mismatch between objectives, where optimizing for one objective
leads to reduced performance for another objective. This can also occur in models
that simultaneously optimize two competing objectives, if the model learns to
de-emphasize one objective in order to optimize the other objective.

AEs are particularly sensitive to OFM, since reconstruction often differs from
common downstream tasks, such as classification, clustering, semantic segmenta-
tion, etc. In fact, OFM was first observed by Metz et al . [161] when training a
variational AE, while simultaneously measuring few-shot classification accuracy
using representations from the variational AE. In this case, after an initial
increase, the accuracy started to decrease after a certain number of training
iterations. OFM has also been observed in AE-based clustering models [162, 163],
illustrating that mismatch between the reconstruction and clustering objectives
can lead to reduced clustering performance.

4.3 Contrastive learning

Contrastive learning is a form of SSL where the pretext task is to discriminate
between different instances in the training dataset. Most contrastive learning
methods use random augmentations (transformations), in order to get multiple
representations of the same input [17, 19, 21–23, 47, 48]. The objective in
contrastive learning is then to “assign” representations originating from the same
input to each other, while simultaneously repelling representations originating
from different inputs.

This section focuses on the SimCLR framework, since it represents a base model
for self-supervised contrastive learning, to which modifications and improvements
can be made. The contrastive loss used in SimCLR is the basis for the generalized
multi-view contrastive loss developed in Paper II, and further studied in Paper III.
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Figure 9: Overview of the SimCLR architecture.

4.3.1 SimCLR: a simple framework for contrastive learning
of visual representations

SimCLR [23] is a simple contrastive learning model for images. The model
consists of a feature extractor (typically a CNN), gθ, and a projection head
hϕ (2-layer MLP), where θ and ϕ are vectors of parameters. The feature
extractor receives Ĩ2i−1 and Ĩ2i, which are augmented versions of the input
image Ii, and produces representations z2i−1 = gθ(Ĩ2i−1) and z2i = gθ(Ĩ2i). The
projection head then receives the representations, and computes projections
p2i−1 = hϕ(z2i−1) and p2i = hϕ(z2i). Figure 9 shows an overview of the
SimCLR architecture.

SimCLR uses the normalized temperature-scaled cross entropy (NT-Xent) loss
to maximize the similarity between projections originating from the same image,
and simultaneously repel projections from other images

LNT-Xent =
1

2n

n∑

k=1

(ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)) (4.4)

with

ℓ(i, j) = − log
exp(sim(pi,pj)/τ)∑2n

k=1 1{k ̸=i} exp(sim(pi,pk)/τ)
(4.5)

where sim denotes the cosine similarity

sim(pi,pj) =
p⊤
i pj

||pi|| · ||pj ||
. (4.6)

The introduction of the projection head, hϕ, means that the contrastive loss
is applied to projections of the representations, instead of the representations
themselves. Chen et al . [23] conjecture that this is beneficial since downstream
performance might depend on some of the information discarded when learning
augmentation invariance. Including a projection head enables this information
to be retained in z, and subsequently removed by hϕ when computing the
projections.

An interesting property of the NT-Xent loss is that is it based on an L2 normalized
similarity measure. The similarity between two projections is only based on
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angular information, and is invariant to the norm of the projections. We can
therefore interpret the projection space as hyperspherical, instead of Euclidean.

4.3.2 Why does contrastive learning lead to good image
representations?

Contrastive learning has been widely successful for learning image representa-
tions [164]. The key characteristic behind this success is that important semantic
information is often augmentation invariant. Hence, learning representations
that are approximately augmentation invariant, corresponds to retaining the
important information, and discarding the rest. This results in representations
that are informative for downstream tasks that depend on semantic information,
such as classification and segmentation.

The SimCLR loss can also be interpreted in terms of the condition for good
representations in Equation (2.1). Suppose that the similarity function in the
input space is defined as

sI(Ĩi, Ĩj) =

{
1, Ĩi and Ĩj are augmentations of the same image
0, otherwise

(4.7)

and that the similarity function between representations is

sz(z1, z2) = sim(hϕ(zi), hϕ(zj)). (4.8)

Then, optimizing the loss in Equation (4.4) would result in

sI(Ĩ1, Ĩ2) > sI(Ĩ1, Ĩ3)⇔ sz(z1, z2) > sz(z1, z3) (4.9)

for arbitrary augmented images Ĩ1, Ĩ2, Ĩ3. SimCLR therefore produces good
representations w.r.t. these similarity functions.

One interesting observation about the projection similarity function used by
SimCLR is that it is based on a cosine similarity, and thus implicitly maps
projections on the hypersphere when computing similarities. In fact, many
contrastive learning methods embed representations or projections on the hy-
persphere – either implicitly or explicitly. Wang and Isola [146] show that,
when the representations or projections are on the hypersphere, the contrastive
loss optimizes a tradeoff between alignment and uniformity : representations
originating from the same image are aligned (made similar), and representations
are distributed uniformly on the hypersphere. In addition, if classes are compact
clusters on the hypersphere, these will be linearly separable from each other –
possibly leading to improved downstream classification performance.
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5
Clustering

Clustering is a long-standing problem in machine learning. The goal of clustering
is to discover unknown group structure in the input data, without any form
of label supervision. Since the introduction of cornerstone methods, such as
k-means [165] and hierarchical clustering [166], clustering has been immensely
useful in several applications [167–172].

The success of deep learning was initially limited to supervised applications,
such as classification [15, 121, 122, 173]. Following this, translating the success
of deep learning to unsupervised learning, and to clustering in particular, has
become an active area of research. This has led to the development of the deep
clustering subfield, where DNNs are adapted to clustering.

DNNs are particularly suitable for clustering, since they can provide good
representations from a wide range of complex input signals, such as images,
time series, graphs, etc. The unsupervised nature of clustering means that it
can not rely on external information from labels, making it more dependent
on geometrical properties of the data. Successful clustering therefore requires
meaningful similarities to be encoded in the geometry of the representations –
which is a key characteristic of good representations.

Part of the main objective of this thesis is to improve and better understand
representation learning for deep clustering. To this end, this chapter presents key
methods and challenges in deep clustering, focusing on those relevant for our work
in Papers I, II and III. In Section 5.1 we consider deep clustering methods for
data originating from a single view, or modality. This is the standard clustering
setting which has received most attention in recent years. Section 5.2 presents
methods for deep multi-view clustering, where it is assumed that the input data
originates from multiple views or sources. This is a more challenging setting
compared to single-view clustering, with unique considerations and challenges.
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5.1 Deep single-view clustering

Models for deep single-view clustering typically consist of a DNN that com-
putes representations from input data, and a clustering module that predicts
cluster memberships based on the representations. To improve the quality of
representations produced by the DNN, many models for deep clustering rely
on AEs [39–41, 174–182]. However, we find that AEs might not be optimal
in ensuring representation quality in deep clustering, due to OFM between
the clustering and reconstruction objectives. This issue is discussed further in
Section 5.1.4.

Before discussing representation quality and OFM, we review some recent meth-
ods for deep clustering. The first two methods are based on AEs, and illustrate
how AEs are used to improve similarity preservation and representation quality
in deep clustering. The last method, deep divergence-based clustering (DDC), is
used in Paper I to analyze the effects of the proposed unsupervised companion
objectives (UCOs). In addition, the DDC clustering module is adapted to deep
multi-view clustering in Papers II and III.

5.1.1 Deep embedded clustering

Deep embedded clustering (DEC) [39] is one of the first successful applications
of DNNs to clustering. In DEC the DNN used to compute representations is
pre-trained as the encoder in a denoising AE [152, 153]. After training the
AE, DEC discards the decoder, and initializes k prototypes, µ1, . . . ,µk in the
representation space, using k-means [165].

Assuming the DNN produces representations z1, . . . , zn for the inputs in a given
batch, DEC minimizes the loss

LDEC =

n∑

i=1

n∑

j=1

pij log
pij
qij

(5.1)

w.r.t. the prototypes and network parameters. pij and qij specify discrete
distributions on N≤k, defined as

qij =
(1 + ||zi − µj ||2/α)−(α+1)/2

∑k
j′=1(1 + ||zi − µj′ ||2/α)−(α+1)/2

(5.2)

and

pij =
q2ij/fj∑k

j′=1 q
2
ij′/fj′

(5.3)

with fj =
∑n

i=1 qij . α is a hyperparameter set to 1 for all experiments.

LDEC minimizes the Kullback-Leibler divergence (KLD) between the distribu-
tions specified by qij and pij . qij can be seen as the soft assignment of sample i
to cluster j. Since pij is computed from q2ij , minimizing LDEC corresponds to
learning from high-confidence cluster predictions. This means that samples close
to a prototype will have a larger influence on the learning dynamics, compared
to a sample which is further away from the prototypes.



5.1. Deep single-view clustering 43

5.1.2 Improved deep embedded clustering

Guo et al . [41] argue that fine-tuning with DEC’s clustering loss can “corrupt”
the representation space, such that it no longer accurately represents similarities
from the input space. Improved deep embedded clustering (IDEC) addresses
this issue by keeping the decoder and the reconstruction loss during fine-tuning.
The purpose of the reconstruction loss is to regularize fine-tuning, preserving
similarity structure and retaining the quality of representations. The fine-tuning
loss is a weighted combination of clustering and reconstruction

LIDEC =
1

n

n∑

i=1

||xi − x̂i||2 + γLDEC (5.4)

x̂i is the reconstruction of xi, and γ is a hyperparameter set to 0.1 for all
experiments.

Combining the reconstruction and clustering losses makes IDEC prone to OFM
(Section 4.2.2), as demonstrated by Mrabah et al . [162, 163]. This issue is
discussed further in Section 5.1.4.

5.1.3 Deep divergence-based clustering

Deep divergence-based clustering (DDC) [42] is a deep clustering method based
on information theory and divergences between probability density functions.
DDC was originally designed for image clustering, and is therefore composed
of a CNN mapping input images I1, . . . , In to representations z1, . . . , zn, and
a single-layer perceptron transforming representations to cluster membership
vectors α1, . . . ,αn.

In DDC clusters are modelled as probability density functions (PDFs) in the
representation space. Interpreting clusters as PDFs allows clustering to be
performed using divergences, which are dissimilarity measures between densities.
The key idea is to maximize the divergence between clusters (PDFs), which
will encourage clusters to be compact and separable in the representation space.
Since the cluster PDFs are unknown, they have to be estimated from data. This
kan be done using a Gaussian kernel density estimate (KDE)

pj(z) =
1∑n

i=1 αij

n∑

i=1

αijKσ(||z− zi||) (5.5)

where Kσ is the Gaussian kernel with kernel width σ1

Kσ(x) =
exp

(
− x2

2σ2

)

√
2πσ

(5.6)

and αij is a cluster membership indicator

αij =

{
1, zi is assigned to cluster j

0, otherwise
. (5.7)

1σ is treated as a hyperparameter, which is set to 15% of the median of pairwise distances
within a batch.



44 Chapter 5. Clustering

DDC uses the Caucy-Schwarz divergence (CSD) to quantify dissimilarity between
clusters, since this particular divergence has a closed-form solution for KDEs.
The CSD between PDFs, p1, . . . , pk : Rl ⊇ Z → R is defined as [104]

DCS(p1, . . . , pk) = − log



(
k

2

)−1 k−1∑

i=1

k∑

j=i+1

dCS(pi, pj)


 (5.8)

where

dCS(pi, pj) =

∫
Z
pi(z)pj(z)dz√∫

Z
pi(z)2dz

∫
Z
pj(z)2dz

. (5.9)

Assuming p1, . . . pk are Gaussian KDEs (Equation (5.5)), dCS(pi, pj) can be
written as [104]

dCS(pi, pj) =

n∑
a=1

n∑
b=1

αaiαbjκab

√(
n∑

a=1

n∑
b=1

αaiαbiκab

)(
n∑

a=1

n∑
b=1

αajαbjκab

) (5.10)

where

κab = K√
2σ(||za − zb||). (5.11)

This is an important result, since it means that the integrals in Equation (5.9)
are replaced by sums over kernel evaluations at the representations z1, . . . , zn.
Maximizing DCS(p1, . . . , pk) can now be done by minimizing the argument to
the logarithm, resulting in the loss

LDDC,1 =

(
k

2

)−1 k−1∑

i=1

k∑

j=i+1

n∑
a=1

n∑
b=1

αaiαbjκab

√(
n∑

a=1

n∑
b=1

αaiαbiκab

)(
n∑

a=1

n∑
b=1

αajαbjκab

) (5.12)

where the binary constraint on α (Equation (5.7)) is relaxed to allow αai ∈ [0, 1]

with
∑k

i=1 αai = 1 for all a ∈ N≤n. This is done to make LDDC,1 differentiable.

In order to encourage confident cluster assignments, and to prevent the trivial
solution of all samples being assigned to one cluster, DDC includes two additional
loss terms

LDDC,2 =

n∑

a=1

n∑

b=1

α⊤
a αb (5.13)

and

LDDC,3 =

(
k

2

)−1 k−1∑

i=1

k∑

j=i+1

n∑
a=1

n∑
b=1

maimbjκab

√(
n∑

a=1

n∑
b=1

maimbiκab

)(
n∑

a=1

n∑
b=1

majmbjκab

)

(5.14)
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with

mai = exp
(
||αa − ei||2

)
(5.15)

where ei is the i-th standard basis vector of Rk. The loss minimized by DDC is
the sum of the three terms

LDDC = LDDC,1 + LDDC,2 + LDDC,3. (5.16)

In summary, LDDC encourages clusters in the representation space to be sepa-
rated and compact, with confident cluster assignments. The latter is expressed
geometrically as having the cluster assignment vectors α1, . . . ,αn lie close to
the corners of the probability simplex in Rk.

5.1.4 Preserving similarity structure

The representational power of DNNs makes the optimization of deep clustering
models susceptible to trivial solutions. Characteristic for these trivial solutions
is that the clustering loss is minimized, but the representations are no longer
representative of the true similarities in the input space. The representations thus
no longer satisfy the conditions in Equations (2.1) and (2.2), impying that they
are not good representations. This causes the model to output non-informative
clusters, based on an incorrect similarity structure.

As argued by Guo et al . [41], deep clustering models often require additional
objectives to preserve the similarity structure from inputs to representations.
This has commonly been achieved by combining the clustering model with an
AE, where the clustering is performed in the AE’s code space [39–41]. However,
the differences between the clustering and reconstruction objectives makes the
model susceptible to OFM (Section 4.2.2). This happens because the information
required for reconstruction – such as texture, color, background, etc.– differs
from the information required for clustering.

Paper I addresses the similarity preservation issue in deep clustering by introduc-
ing the unsupervised companion objectives (UCOs). These are novel auxiliary
objectives for deep clustering that encourage preservation of similarity structure
through the DNN, with reduced levels of OFM, resulting in improved clustering
performance.

5.2 Deep multi-view clustering

The objective in multi-view clustering (MVC) is to discover groups in data
originating from multiple views, or multiple modalities. Examples of multi-view
data include videos, consisting of a sequence of images and an audio signal, and
captioned images, consisting of an image and a caption. Although additional
views makes the clustering task more challenging, they also give additional
information about the object they represent. This allows for better performance
compared to independently applying a single-view clustering algorithm to each
view.
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View 1 View 2

Information 
required for SSL

View 1 View 2

Information 
required for MVC

Figure 10: Information required for instance discrimination-based SSL vs. information
required for MVC. In SSL it is assumed that the relevant information lies in the
intersection between views. However, in MVC, the relevant information can exist in
either view alone, or in the intersection between them.

Similar to in single-view clustering, the recent success of deep learning has
inspired the development of DNN-based methods for MVC, resulting in the deep
multi-view clustering subfield.

Leveraging information from multiple views is similar to what is done in in-
stance discrimination-based SSL. These models discriminate between augmented
versions (views) of the data, and effectively learn to be augmentation invariant
(Section 4.3.2). Crucially, these SSL models assume that the relevant information
for the downstream task is present in all views (augmentations). Learning
augmentation invariant representations thus corresponds to discarding irrelevant
information, while preserving relevant information. However, this assumption
is not necessarily met by multi-view data. Naïvely removing information not
present in all views can therefore negatively influence the performance of general
multi-view clustering models. The difference in information required for SSL
and MVC is illustrated in Figure 10.

Deep MVC models typically follow a design pattern with view-specific encoders,
representation fusion, and a clustering module. Let x

(v)
i denote the observation

of instance i ∈ N≤n, through view v ∈ N≤V . The view-specific encoder f
θ
(v)
e

then produces the view-specific representation

z
(v)
i = f

θ
(v)
e

(x
(v)
i ). (5.17)

View-specific representations are then fused to a shared representation as

zi = fusion(z
(1)
i , . . . , z

(V )
i ). (5.18)

The clustering module then produces the cluster membership vectors α1, . . . ,αn

from either the view-specific representations or from the fused representations.

Much of the recent effort in deep MVC has been concentrated towards devel-
oping SSL-like tasks to learn better representations for the clustering module.
Representation quality is particularly important in deep MVC since (i) there
is no label supervision to guide the clustering module; and (ii) information
required for the clustering task might be spread across different views. These
considerations highlight both the importance and the challenge of developing
SSL tasks to improve deep MVC models.
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5.2.1 End-to-end adversarial-attention network for multi-
modal clustering

When it was published in 2020, the end-to-end adversarial-attention network
for multi-modal clustering (EAMC) [45] was the new state-of-the-art method
for deep MVC. EAMC learns view-invariant representations by aligning the
distributions of view-specific representations, through an adversarial learning
procedure similar to generative adversarial networks [183]. This adversarial
alignment serves as a pretext task for the view-specific encoders, potentially
leading to better representations for the clustering module.

EAMC’s distribution alignment procedure inspired the work in Paper II, where
we identify pitfalls of distribution alignment in deep MVC. This model therefore
serves as an example of the problems that can occur when SSL is applied to deep
MVC, without properly understanding the impact on representation quality and
cluster separability.

EAMC includes the following loss, aligning all subsequent views to the first view

LEAMC, Adv =
1

n

V∑

v=2

n∑

i=1

(
log h

θ
(v)
d

(z
(1)
i ) + log(1− h

θ
(v)
d

(z
(v)
i ))

)
(5.19)

where h
θ
(v)
d

denotes a view-specific discriminator network. The task of h
θ
(v)
d

is
to predict whether the input comes from view v or from view 1.

To further strengthen the alignment procedure, EAMC includes a kernel align-
ment loss

LEAMC, Ker = ||K(fused) −K(avg)||2F (5.20)

where || · ||2F denotes the squared Frobenius norm, and K(fused) is a kernel matrix
for the fused representations

K
(fused)
ij = exp

(
− 1

2σ2
||zi − zj ||2

)
(5.21)

and K(avg) is the average of view-specific kernel matrices

K(avg) =

V∑

v=1

wvK
(v) (5.22)

where w1, . . . , wV are the fusion weights, and K(v) is the view-specific kernel
matrix with elements

K
(v)
ij = exp

(
− 1

2σ2
||z(v)i − z

(v)
j ||2

)
. (5.23)

The bandwidth parameter σ is set to 15% of median pairwise distances between
the respective representations, following DDC [42].

Fusion in EAMC is implemented as a weighted average of view-specific represen-
tations

zi =

V∑

v=1

wvz
(v)
i . (5.24)
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The fusion weights are computed by an attention network gθf
, allowing the

weights to be adapted by the learning process

(w1, . . . , wV ) = gθf
(z

(1)
1 , . . . , z(1)n , . . . , z

(V )
1 , . . . , z(V )

n ) (5.25)

Learning the fusion weights in this way enables adaptive view-prioritization,
where the model can learn to focus more on informative views, and less on
un-informative views.

Finally, EAMC uses the clustering module from DDC [42], and its loss, LDDC,
to cluster the fused representations. This allows the view-specific encoders to
be trained both to perform the pretext task of distribution alignment, and to
produce compact and separable clusters in the space of fused representations.

Optimizing EAMC is done by alternating between the following steps.

1. Minimize the alignment and clustering losses over the clustering module,
attention network and view-specific encoder parameters

min
θc,θf ,θ

(1)
e ,...,θ

(V )
e

(LDDC + LEAMC, Ker + γLEAMC, Adv) (5.26)

Where θc denotes the parameters of the clustering module, and γ is a
hyperparameter.

2. Maximize the alignment loss over the discriminator parameters

max
θ
(2)
d ,...,θ

(V )
d

LEAMC, Adv (5.27)

5.2.2 Pitfalls of distribution alignment

The success of EAMC shows that aligning view-specific representations can serve
as a useful pretext task to learn better representations in deep MVC. However, in
Paper II we identify several drawbacks related to representation alignment. First,
alignment only preserves the information that is shared across all views. If the
information required to successfully cluster the data is contained in only a subset
of the views, this information will be discarded by the alignment procedure. This
leads to reduced clustering performance. Further, we find that alignment hinders
view-prioritization. Successful alignment results in views which are inseparable
in the space of view-specific representations, making it impossible to discriminate,
and consequently, prioritize between them.

These pitfalls can be seen as consequences of OFM, where the auxiliary alignment
objective has a negative impact on the clustering objective. The exact amount
of mismatch depends on how information relevant to the clustering module is
distributed across views. For instance, in the extreme case where all relevant
information is contained in one view and the other views contain random
noise, the mismatch will cause a severe reduction in cluster separability in
the representation space.

In addition to identifying the above pitfalls, Paper II proposes new methods to
bypass the pitfalls of distribution alignment – using either no alignment, or an
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adaptive alignment procedure. Paper III continues along these lines, generalizing
the analysis to other forms of alignment, and making new discoveries on the
influence of the number of views on alignment and clustering performance.
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6
Few-shot learning

The objective of few-shot learning (FSL) is to classify samples from a set of
novel classes with few labeled instances, based on a labeled dataset containing
samples from other classes [184]. The number of labeled instances in novel
classes is typically very small, e.g . 1 or 5. Similar to fully unsupervised learning,
the limited availability of labels means that FSL is sensitive to representation
quality. Successful classification requires that representations of the few labeled
instances reflect the class from which they originate, without additional noise or
distracting features.

In this thesis, we study FSL for image data – a subfield that has become
increasingly popular in recent years [50–75]. In particular, our objective is
to address the hubness problem in transductive FSL [55, 89], and to better
understand the effects of representation norms and normalization.

This chapter first presents relevant background material on FSL. Since the focus
of our work is on representations and embeddings, we then summarize recent
methods to embed representations for FSL. Finally, Section 6.3 introduces the
hubness problem, and explains why it can have a significant impact on FSL
performance.

6.1 Few-shot learning preliminaries

Classes. The FSL setting includes two datasets. The first dataset consists of
samples from the base classes, which are assumed to contain a large number
of labeled observations. The second dataset consists of samples from the novel
classes. These are the classes we are interested in classifying, where only few
labeled samples exist.

Training. FSL models typically consist of a DNN-based feature extractor that
computes representations for the input samples, and a classifier that classifies
these representations. The DNN feature extractor is usually trained only on the
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base classes, in order to avoid overfitting on the few labeled examples from the
novel classes. The classifier, on the other hand, is usually trained on both base
and novel classes, or on the novel classes when they are presented as episodes
(see below). Further specifics on how these components are trained vary from
model to model.

Evaluation. FSL methods are evaluated in episodes. In each episode, k classes
are sampled from the novel classes. Then ns labeled support samples, and nq

unlabeled query samples, are sampled from each class. The support and query
samples now constitute a k-way ns-shot task, where the objective is to predict
class membership for the query samples, based on the labeled support samples.
FSL models are typically evaluated with ns = 1 and ns = 5. The episodic
evaluation is repeated for a large number of episodes, sampling a new set of novel
classes at each episode. The resulting episode accuracies are used to compute
mean and confidence intervals for the expected performance of the FSL model.

Transductive vs. inductive few-shot learning. FSL models are either
inductive or transductive. In inductive FSL, the model should, based on the
given support samples, produce a general classification rule, which is applied to
the query samples. Conversely, in transductive FSL, the model is only required
to produce predictions for the given query samples, and not for the whole
population of possible query samples. Transductive FSL thus allows the model
to use both support and query samples simultaneously to solve the classification
task. By leveraging the additional information from the unlabeled query samples,
transductive FSL models have largely outperformed inductive models in recent
years [50, 57, 63, 64, 68, 72–74].

Transductive FSL models often train the DNN feature extractor using the
supervised cross-entropy loss on the base dataset. This is in contrast to inductive
models, which tend to use more complicated episodic, meta-learning approaches
to train the feature extractor. Recent work by Laenen and Bertinetto [185] found
that the episodic training of FSL models was unnecessary, and in some cases,
led to inefficient use of training samples from the base dataset. These findings
thus support training the feature extractor without episodic meta-learning, as is
commonly done in recent transductive FSL models.

6.2 Embedding representations for few-shot learn-
ing

Recent works in FSL have found it beneficial to introduce an additional em-
bedding step after the feature extractor [55, 58, 71, 72, 75]. Such embeddings
have been particularly effective in transductive FSL, since these methods can
embed support and query samples simultaneously, using information from both
the labeled support samples, and the unlabeled query samples (see Figure 11).
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Classifier (Inf.)

Classifier (Train)Embedding

Embedding
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(a) Inductive

Embedding
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Figure 11: Embedding and classification for a single episode of inductive vs. transductive
FSL. The transductive approach can exploit information from both support and query
samples when embedding and classifying the samples. Representations are assumed to
come from the DNN feature extractor, trained on the base dataset.

6.2.1 L2 and centered L2 normalization

Among the simplest forms of embeddings are the L2 and centered L2 normaliza-
tions [71]. For a given support or query representation zi with i ∈ N≤k(ns+nq),
L2 normalization produces a hyperspherical embedding

L2(zi) =
zi
||zi||

. (6.1)

Centered L2 normalization first centers the representations, and then embeds
them on the hypersphere

CL2(zi) = L2(zi − c) (6.2)

where

c =
1

k(ns + nq)

k(ns+nq)∑

i=1

zi (6.3)

is the mean of the support and query samples.

Although these embeddings appear simple, they result in significant increases in
FSL performance [71].

6.2.2 Z-score normalization

Z-score normalization (ZN) [55] is an embedding technique designed to alleviate
the hubness problem in FSL (see Section 6.3). ZN transforms each representation
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to have zero mean and unit standard deviation along the feature dimension. For
a support or query representation zi = [zi1, . . . , zil]

⊤ ∈ Rl as

ZN(zi) =
zi − µi1

σi
(6.4)

where 1 is the l-dimensional vector with all elements equal to one, and

µi =
1

l

l∑

j=1

zij , (6.5)

σi =

√√√√ 1

l − 1

l∑

j=1

(zij − µi)2. (6.6)

ZN can be interpreted geometrically as first projecting all representations to
the hyperplane orthogonal to 1, and then normalizing these projections to have
norm

√
l. This results in embeddings on a hypersphere in Rl−1 with radius

√
l.

Interestingly, if it is assumed that the mean of the original representations is
proportional to 1, the mean of embeddings after ZN will be at the origin. The
influence of ZN on hubness is discussed in Section 6.3.3.

6.2.3 Other embedding methods

In addition to the above methods, the following representation embeddings have
been proposed to improve FSL performance.

Parameterless transductive feature re-representation (ReRep)

ReRep [53] aims to address the sample bias, where a small number of supports is
unable to fully represent the given class, negatively influencing FSL performance.
ReRep computes support and query embeddings in two stages. First, queries are
re-represented (embedded) as a linear combination of other queries. The weights
in the linear combination are computed by an attention mechanism, aiming to
embed similar queries closer together. In the second step, each support sample is
embedded as a linear combinations of itself and the query samples, moving the
labeled support samples closer to similar queries. The authors claim that this
reduces the sample bias by propagating information from queries to supports.

Unsupervised discriminant subspace learning (EASE)

EASE [72] linearly transforms the representations to a lower-dimensional space,
and then projects the transformed representations to the hypersphere with L2

normalization. The projection’s weight matrix is determined by an optimiza-
tion problem that maximizes similarity between similar representations, while
preserving the maximal variance in the representations. The similarities be-
tween representations are based on low-rank representations [186], found by a
singular-value decomposition of the matrix of representations. EASE thus learns
a projection that maximizes inter-class distance while minimizing the intra-class
distance, leading to improved class separability and classification performance.
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Task centroid projection removing (TCPR)

The authors of TCPR [75] argue that the sample bias observed in FSL is related
to distance between supports and the task centroid, defined as the mean of
all class centroids in a given episode. Supports closer to the task centroid are
more “ambiguous”, resulting in decision boundaries that are sensitive to small
perturbations in the supports. To alleviate this problem, TCPR removes the
projection along task centroid, by projecting representations onto the hyperplane
orthogonal to the task centroid. The representations are L2 normalized before and
after projection, meaning that the resulting embeddings lie on the hypersphere
within the hyperplane orthogonal to the task centroid. This causes all embeddings
to be equidistant from the task centroid, eliminating possible ambiguity arising
from closeness to the task centroid. In fact, TCPR is similar to ZN, since
both methods project samples into a hypersphere embedded in the hyperplane
orthogonal to the data mean (task centroid). However, while ZN assumes that
this mean is proportional to 1, TCPR estimates this mean using representations
of the base data.

6.2.4 Hyperspherical embeddings

Interestingly, almost all embedding techniques outlined above end up with
embeddings on the hypersphere. Even the straightforward L2 normalization –
which just discards all information about the representation norm – results in
significant improvements in FSL performance. The same trend can be observed
in SSL for instance, where it is common to L2 normalize representations or
projections, prior to computing the loss [17, 19, 22–24, 47, 49]. These observations
thus poses the question: what information is carried in the norm, and why is it so
often beneficial to suppress, or even completely discard this information? Despite
the recent successes of hyperspherical embeddings, answering this question,
and understanding exactly what information is carried in representation norms,
remains severely under-explored. To this end, Paper V presents a novel hypothesis
on the relationship between representation norms, and the number of objects
in the corresponding image. In fact, we show that there is a monotonically
increasing relationship between the norm of a CNN-based representation, and
the number of prototypical object images present in the representation’s input
image.

6.3 The hubness problem

The benefits of hyperspherical representations in FSL can also be partially
understood through the hubness problem [55]. The hubness problem refers to
the tendency of a few points (hubs) to appear among the nearest neighbors
of many other points [89]. This can have a negative impact on distance-based
classification when hubs from one class appear among the nearest neighbors of
many points from another class. In the following we explain the hubness problem
in terms of distances to the data mean, and as a consequence of non-zero density



56 Chapter 6. Few-shot learning

gradients. The effect of hubness on FSL performance is then discussed in more
detail in Sections 6.3.3 and 6.3.4.

6.3.1 Hubness and distances to the data mean

The intuition behind the hubness problem can be explained with distances
between points and the mean of their associated PDF [55, 89, 187–190]. In short,
a PDF p : Rl → R with mean µ = Ez∼p(z), exhibits hubness if there exists
points a and b sampled from p, such that ||a− µ|| ≠ ||b− µ||. This essentially
says that all distributions where all mass is not equidistant from the origin, will
have some degree of hubness. Specifically, for a random point z ∼ p, we have

Ez∼p(||a− z||2) = Ez∼p(||(a− µ)− (z− µ)||2) (6.7)

= ||a− µ||2 + Ez∼p(||z− µ||2)− 2(a− µ)⊤ Ez∼p(z− µ)︸ ︷︷ ︸
=0

(6.8)

= ||a− µ||2 + Ez∼p(||z− µ||2). (6.9)

Similar computations for Ez∼p(||b− z||2) and re-arranging terms gives

Ez∼p(||a− z||2)− Ez∼p(||b− z||2) = ||a− µ||2 − ||b− µ||2. (6.10)

From this we observe that if a is closer to the data mean, µ, than b, that is

||a− µ||2 < ||b− µ||2 (6.11)

we get

Ez∼p(||a− z||2) < Ez∼p(||b− z||2). (6.12)

This means that an arbitrary point, z, from p is more likely to be close to a
than b, since a is closer to the data mean, µ. Points close to the data mean are
therefore more likely to be hubs.

6.3.2 Spatial centrality and density gradients

The motivation above can be extended to include changes in probability density
between regions in the representation space. High probability density results in
local “means”, as these are regions where we expect to find more points, compared
to regions with lower density. This tendency is called spatial centrality (or just
centrality) [191, 192]. Following the motivation in Section 6.3.1, points close to,
or within high-density regions are more likely to be hubs. Spacial centrality is
therefore closely related to the hubness problem. Density gradients provide a
natural means to quantify spatial centrality. The gradient of a PDF indicates
changes in density, meaning that the existence of a density gradient implies the
existence of spacial centrality, and consequently, the existence of hubness.

Having established the connection between density gradients and the hubness
problem, we can define hubness as follows. Suppose p is a PDF defined on a
continuous smooth surface S ⊆ Rl, and let Πz(S) be the tangent plane of S at
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the point z ∈ S. Then p is said to exhibit hubness if there exists a point z ∈ S
and a direction e ∈ Πz(S) such that ∇e p ̸= 0, where ∇e denotes the directional
derivative along e in the ambient space, Rl.

Hence, any distribution with a non-zero density gradient has some degree of
hubness, meaning that (i) hubness is a property of the data distribution, and
not an artifact arising from e.g . a finite number of samples; and (ii) hubness
exists in the majority of distributions, since most distributions have points with
non-zero density gradients.

Interestingly, we can argue that if S = Rl, there does not exist a valid PDF, p,
without any hubness. Since Πz(Rl) is isomorphic to Rl, the only PDF satisfying
the zero-gradient requirement is the un-bounded, constant (uniform) PDF. This
PDF does not exist, since its integral over Rl will always be equal to ∞ or 0,
depending on the value of the constant.

Since no hubness-free PDF exists on Rl, we have to look to other surfaces to
find PDFs without hubness. To this end, we prove in Paper IV that the uniform
distribution on the hypersphere has a vanishing density gradient everywhere,
and thus no hubness.

6.3.3 Hubness in few-shot learning

FSL classifiers are often based on distances in the representation space. This,
combined with the small number of labeled support samples, makes FSL methods
particularly prone to the hubness problem. Specifically, if a support sample is a
hub, many queries will be assigned to it even though they come from different
classes, which is detrimental to classification performance.

Z-score normalization

Despite the FSL methods’ susceptibility to hubness, there exists little research
on mitigating the hubness problem in FSL. In their recent work, Fei et al . [55]
attempt to address the hubness problem in FSL with Z-score normalization
(Section 6.2.2) applied to the representations. Motivated by an “equidistant
from the data mean” argument, similar to the one presented in Section 6.3.1,
Fei et al . [55] argue that ZN embeds points on the hypersphere such that the
data mean coincides with the origin. This causes the embeddings to lie at equal
distance from the data mean, resulting in reduced hubness.

Although hyperspherical, zero-mean data reduces hubness, it is only guaranteed
by ZN when the mean before the embedding is proportional to 1 = [1, . . . , 1]⊤.
This is a key limiting factor of ZN since the mean of an arbitrary distribution of
representations can have a direction that differs from 1. Furthermore, we argue
that hyperspherical, zero-mean representations is an insufficient condition for
zero hubness. This can be seen by the following counterexample. Consider a
mixture of two von Mises–Fisher (vMF) distributions with equal concentrations
and equal prior probabilities, placed at opposite poles on the hypersphere. Since
these distributions are equal, but located at opposite sides of the hypersphere,
the overall mean will be 0. However, the mixture will have increasing density
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towards the poles at which the vMF distributions are located, meaning that it
will also have a density gradient pointing towards one of these poles. Following
the argument in Section 6.3.2, this distribution will have hubness, despite it
being on the hypersphere with 0 mean.

Hyperspherical embeddings for few-shot learning

ZN is part of the recent trend in FSL where representations are embedded on
a hypersphere before classification [50, 55, 68, 71, 72]. However, despite their
popularity, it is not yet well understood why hyperspherical embeddings are
beneficial for FSL performance. One possible reason for this is that the uniform
distribution on the hypersphere satisfies the hubness-free condition, ∇e p = 0
for all e tangent to the hypersphere at a given point (we prove this in Paper IV).
Embeddings uniformly placed on the hypersphere are therefore hubness-free.

6.3.4 Tradeoff between hubness and class separability

Embedding representations uniformly on certain surfaces (e.g . hyperspheres) is
a way to eliminate hubness in the embeddings. From a classification perspective
however, the uniform distribution is not optimal. Classification rather benefits
from compact and well separated, distinct classes in the embedding space, making
it simple for a classification algorithm to discriminate between classes. This
implies that there exists a tradeoff between minimizing hubness, and maximizing
class separability in the data. One way to look at this tradeoff is to categorize
hubs in the data as either good hubs or bad hubs [193]. Good hubs only appear
among the nearest neighbors of points with the same class label as themselves,
making it safe for classifiers to rely on such hubs when classifying the data. Bad
hubs however, appear as neighbors for points from different classes, making it
more difficult to classify the data correctly. The tradeoff between hubness and
class separability can thus be reformulated as minimizing bad hubness, while
retaining or increasing good hubness. We address this tradeoff in Paper IV,
which proposes two new methods for embedding points on the hypersphere,
reducing hubness while retaining class separability.
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Paper I

Leveraging Tensor Kernels to Reduce Objective Func-
tion Mismatch in Deep Clustering

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael
Kampffmeyer.

Under review in Pattern Recognition.

▶ Code: https://github.com/DanielTrosten/tk-uco

▶ Open access conference version: https://doi.org/10.7557/18.5709

▶ Talk at NLDL 2021: https://youtu.be/y-jACE0PzcI

The representational power of DNNs, coupled with the lack of a proper supervi-
sion signal, makes deep clustering models prone to trivial solutions, where the
representation similarities are no longer representative of the input similarities.
Traditionally, this issue has been solved with AEs [41]. However, we find that the
difference between the clustering and reconstruction objectives makes AE-based
deep clustering models susceptible to OFM, negatively influencing the clustering
performance.

The objective of this paper is thus to improve representations for single-view
deep clustering, without introducing detrimental amounts of OFM between the
clustering and auxiliary objectives. To this end, we propose the unsupervised
companion objectives (UCOs), which are additional loss functions that encourage
a consistent cluster structure throughout the layers of the model’s DNN. Our
approach is illustrated in Figure 12, which shows an example of how a deep
clustering model can be augmented with the proposed UCOs.

The UCOs are designed to maximize the CSD between clusters at intermediate
layers in the DNN. Since these representations might not be vectorial, the UCOs
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Figure 12: Overview of a deep clustering model augmented with the UCOs. The UCOs
use tensor kernels to encourage the same cluster structure at the output of all network
blocks. Figure from Paper I.

leverage tensor kernels [90] to quantify pairwise similarities between tensorial
intermediate representations of arbitrary rank. The tensor kernels allow the
similarity function to take structural, e.g . spatial or temporal, information into
account. This ability is crucial in for instance CNNs, since the position of certain
pixels relative to each other is often informative of the objects contained in the
image.

Our experiments show that the UCOs lead to reduced OFM, and improves
the overall clustering performance of DDC and DEC, also when compared to
analogous AE-based models.

Contributions by the author

• The idea was conceived by me, and further developed along with all
co-authors.

• I implemented the methods and conducted all experiments.

• I wrote the initial manuscript draft, which was then refined along with all
co-authors.



Paper II

Reconsidering Representation Alignment for Multi-
view Clustering

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael
Kampffmeyer.

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 2021.

▶ Code: https://github.com/DanielTrosten/mvc

▶ Open access version: https://openaccess.thecvf.com/content/CV
PR2021/html/Trosten_Reconsidering_Representation_Alignment_f
or_Multi-View_Clustering_CVPR_2021_paper.html

▶ Talk: https://youtu.be/1WTjoCPyveM

This paper studies the alignment of view-specific representation distributions,
which is a form of SSL used in deep MVC [45]. Here, we identify 3 drawbacks
of aligning representation distributions that can have a negative effect on the
model’s clustering performance.

1. Aligning representations prevents view-prioritization. If all views are
equal in the representation space, it is not possible to emphasize their
representations differently, according to the amount of relevant information
contained in each view.

2. One-to-one alignment of clusters is only attainable when encoders can
separate all clusters in all views. If two clusters are inseparable in the
input space of a given view, alignment will cause the representations of
these clusters to be inseparable for all views. This happens because the
view specific encoders can not learn to separate inseparable clusters, but
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Figure 13: Performance of different methods for deep MVC on a two-view toy dataset.
Figure adapted from Paper II.

they can learn to merge two clusters that originally were separable. This
drawback is formalized in a simplified setting in Proposition 1 in the paper.
It is also elaborated and studied further in the next paper (Paper III).

3. Aligning representation distributions can make it harder to discriminate
between clusters. Simply aligning distributions does not mean that the
same clusters from different views are aligned in the representation space.
Cluster i in view v can be aligned to cluster j in view u, making it more
difficult to discriminate between clusters i and j in the representation
space.

To address these drawbacks we propose two new methods for deep MVC. The
first method, simple multi-view clustering (SiMVC), is a simple baseline model
without any forms of alignment, or any other forms of SSL. We find that it
is important to include such models in the evaluation, in order to have an
accurate estimate of the model’s performance before additional components
are added. The second method, contrastive multi-view clustering (CoMVC),
extends SiMVC with a contrastive learning component. CoMVC aligns angles of
view-specific representations at the sample level, instead of at the distribution
level. Furthermore, it includes an adaptive weighting mechanism that can disable
the alignment procedure if the information content is lower in one of the views.
This makes CoMVC much less sensitive to the above drawbacks of distribution
alignment.

Figure 13 is extracted from the paper, and shows representations obtained from
SiMVC, CoMVC, and EAMC for a two-view toy dataset. The dataset is designed
such that different clusters overlap in the two views, requiring that the models
use information from both views to cluster the data. SiMVC and CoMVC are
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able to prioritize, and use the information available in the two views. EAMC on
the other hand, attempts to align the view-specific representation distributions,
destroying the cluster strucure.

The other experimental results in the paper show that SiMVC performs re-
markably well without any forms of SSL, outperforming several other, more
complex methods. CoMVC performs even better than SiMVC, resulting in a
new state-of-the-art method for deep MVC.

Contributions by the author

• The idea was conceived by me, and further developed along with all
co-authors.

• I implemented the methods and conducted all experiments.

• I wrote the initial manuscript draft, which was then refined along with all
co-authors.
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Paper III

On the Effects of Self-supervision and Contrastive
Alignment in Deep Multi-view Clustering

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael
Kampffmeyer.

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 2023.

▶ Selected as a highlight at CVPR 2023

▶ Code: https://github.com/DanielTrosten/DeepMVC

▶ Preprint: https://arxiv.org/abs/2303.09877

In this paper we continue investigating the effects of SSL and contrastive align-
ment in deep MVC. We find that the field lacks direction and consistent results,
especially when it comes to SSL-based representation learning. This motivates us
to develop DeepMVC (Figure 14), which is a general framework for deep MVC
models, including the majority of recent methods as instances. The DeepMVC
framework, along with its open source implementation, allows us to systemat-
ically reason about and analyze different model components, focusing on SSL
and representation learning. We extend the analysis from Paper II to arbitrary
forms of alignment, proving in a simplified setting that alignment negatively
influences cluster separability when the number of views increases. Next, we
leverage these insights to develop 6 new instances of DeepMVC with varying
SSL-based components.

We conduct extensive experiments with recent methods and our new instances,
and find that contrastive alignment works well when the number of views is
small, but degrades performance for a larger number of views. These results
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Figure 14: Overview of the DeepMVC framework for a two-view dataset. The frame-
work can be extended by adding more view-specific encoders and SSL components. Figure
from Paper III.

on contrastive alignment are in line with the findings in Paper II, and our
theoretical analysis. Conversely, we find that methods based on maximizing
mutual information between view-specific representations work well for many
views, while not performing as good as contrastive alignment on datasets with
few views.

Additional findings from our experiments include:

1. All methods benefit from some form of SSL. However, what type of SSL is
beneficial varies across datasets.

2. The performance of methods relative to each other depends heavily on
dataset characteristics, such as number of views and class imbalance.

3. Our new instances out-perform several recent methods, and one of the new
instances achieves the best overall performance.

We conclude the paper by making recommendations for future work and ad-
vancements in the field of deep MVC.

Contributions by the author

• The idea was conceived by me, and further developed along with all
co-authors.

• I formulated and proved the included propositions.

• I implemented the methods and conducted all experiments.

• I wrote the initial manuscript draft, which was then refined along with all
co-authors.



Paper IV

Hubs and Hyperspheres: Reducing Hubness and Im-
proving Transductive Few-shot Learning with Hyper-
spherical Embeddings

Daniel J. Trosten, Rwiddhi Chakraborty, Sigurd Løkse, Kristoffer Wick-
strøm, Robert Jenssen, and Michael Kampffmeyer.

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 2023.

▶ Code: https://github.com/uitml/noHub

▶ Preprint: https://arxiv.org/abs/2303.09352

This paper addresses the hubness problem in transductive FSL. As shown in
Figure 15, we observe a correspondence between reduced hubness, and improved
FSL performance.

We begin by proving that the hyperspherical uniform as zero directional derivative
along all directions tangent to the hypersphere, at all points. This means that
the hyperspherical uniform is essentially hubness-free. Motivated by these
findings, we seek to embed representations for FSL uniformly on the hypersphere,
as this will alleviate the hubness problem, possibly increasing classification
performance. However, the uniform distribution is not suitable for classification.
We therefore develop two new embedding methods – uniform hyperspherical
structure-preserving embeddings (noHub) and noHub with support labels (noHub-
S) – which provably optimize a tradeoff between local similarity preservation
and uniformity. The noHub embedding is illustrated in Figure 16. The key idea
behind noHub and noHub-S is to preserve class structure, while simultaneously
distributing the representations as uniformly as possible, reducing hubness.
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Figure 16: Illustration of noHub, which
embeds representations on the hyper-
sphere, optimizing a tradeoff between
uniformity and local similarity preser-
vation. Figure from Paper IV.

Our experiments show that the embeddings increase performance, and reduce
hubness for a wide range of FSL classifiers, with several feature extractors, on
several datasets.

Contributions by the author

• The idea was conceived and developed in joint collaboration with all
authors.

• I formulated and proved propositions 1, 2, and 5.

• Implementation and evaluation of baselines and proposed methods was
done by me and RC.

• The initial manuscript draft was written by me and RC, and then refined
along with all co-authors.



Paper V

Norm-count Hypothesis: On the Relationship Between
Norm and Object Count in Visual Representations

Daniel J. Trosten, Sigurd Løkse, Robert Jenssen, and Michael
Kampffmeyer.

In submission.

▶ Code will be made publicly available upon publication of the paper.

With this paper we aim to enhance the understanding of norms of representations
produced by CNNs. The paper presents the norm-count hypothesis (NCH), in
which we hypothesize that there is a monotonically increasing relationship
between the norm of a representation, and the number of object images present
in the input image. These object images are “prototypical” images that – when
processed by a CNN – provide delta-like responses in the output feature maps.
Aggregating these delta-responses using a global pooling operator then results
in a representation, whose norm is proportional to the number of object images.

We prove that the NCH holds under certain assumptions on the model and input
images – with the representation norm being upper-bounded by a monotonically
increasing function of the object counts. For linear CNNs with GAP, the upper
bound reduces to an equality, showing that there is an exact proportionality
between norm and count in this case.

We conduct a controlled experimental evaluation where we have prior knowledge
of object counts. The results of these experiments corroborate the NCH, showing
an increasing relationship between norm and count (see Figure 17). We also
investigate the effects of L2 normalization on supervised, self-supervised, and few-
shot classification performance. We find that L2 normalized representations give
better classification performance for datasets with varying counts – indicating
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Figure 17: Boxplots illustrating the relationship between norm and count in CNN-
based representations. The dataset consists of images from STL-10 [194], where a
random number of images are placed at random positions in a 4× 4 grid. The norms
are computed from ResNet-50 [122] representations, trained using either a supervised
cross-entropy loss, or with the SimCLR framework. Figure adapted from Paper V.

that the norm acts as additional noise when classifying these datasets.

Contributions by the author

• The idea and hypothesis was conceived by me, and developed further with
all co-authors.

• I formulated and proved all propositions, theorems, and corollaries.

• I implemented and conducted all experiments.

• I wrote the initial manuscript draft, which was then refined along with all
co-authors.



7
Conclusion

In this thesis, we have addressed key challenges with representation learning
for deep clustering and FSL. Along with our main objective of improving and
understanding representation learning in these fields, we had the following specific
objectives:

1. Improve similarity preservation in deep single-view clustering.

2. Understand and improve SSL for representation learning in deep MVC.

3. Address the hubness problem in transductive FSL.

4. Improve the understanding of representation norms in FSL.

In the following, we summarize our solutions to these objectives, and briefly
discuss possible directions for future research. We also reflect on the future of
learning with limited labels – a field in which deep clustering and FSL are key
elements, now and in the future.

Deep clustering

In Paper I, we propose an alternative to the autoencoder-based approach to
improve similarity preservation for deep clustering. The proposed UCOs improve
similarity preservation and clustering performance, while simultaneously limiting
the amount of OFM introduced by the auxiliary losses.

Papers II and III shed new light on SSL-based representation learning for
deep MVC. In particular, we investigate the effects of aligning view-specific
representations, and find that these alignment procedures sometimes have severe
drawbacks. Naïvely aligning representations can result in reduced separability
between clusters in the representation space, negatively influencing the clustering
performance. We provide both theoretical and experimental evidence indicating
that this effect becomes worse when the number of views increases. To enhance
the understanding of different SSL-based components in deep MVC, we also
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propose the DeepMVC framework, along with an open-source implementation.
The framework allows for fair and accurate comparisons between models and
components, providing a deeper understanding of the effects of, and interactions
between, different model components.

One interesting direction for future work is to use the DeepMVC framework to
generalize the UCOs from Paper I to deep MVC. The UCOs can be used on
each individual encoder, or they can be shared across encoders, depending on
whether it is beneficial to enhance view-specific or shared cluster structure.

The DeepMVC framework, and other initiatives like it, are especially important
in contemporary deep learning research. This is because – as I write in [12] –
the deep learning community faces challenges related to questionable research
practices in the evaluation of new and existing methodology. Although the
questionable practices are visible in several areas of deep learning research, they
are particularly important to address in settings with limited labels. This is
because we no longer can rely on the ground truth information provided by the
labels, to make sure that the model does what it is supposed to do.

Clustering will likely continue to be an important task in machine learning, as
it has been for decades already. To continue pushing the state-of-the-art, it
is vital to continue the efforts on learning high-quality representations within
the clustering models. We have already seen massive advancements in generic
representation learning frameworks for different modalities [17, 21, 35, 195], and
there is much potential in adapting such frameworks to current and new clustering
models. Multi-modality also plays an important role in future advancements, as
multiple views or modalities provide additional information about observations.
Exploiting the synergies across views without discarding view-specific information
will thus be key to future advancements in the field.

Few-shot learning

With Paper IV, we tackle the hubness problem in transductive FSL. We prove
that the uniform distribution on the hypersphere is hubness-free, motivating us
to embed representations as uniformly as possible on the hypersphere. However,
in order to also preserve class-structure in the embeddings, we develop two
new methods that provably optimize a tradeoff between uniformity and local
similarity preservation. Thus, our methods both reduce hubness and preserve
class structure. With extensive experiments with several datasets, feature
extractors and FSL classifiers, we show that the proposed embeddings result in
better classification performance, and reduced hubness, compared to previous
state-of-the-art embedding methods.

The NCH presented in Paper V provides further insight on representation norms,
and hyperspherical embeddings through L2 normalization. To the best of our
knowledge, ours is the first work that rigorously relates norm and count in
CNN-based representations.

The research on representation norms, hyperspherical embeddings, and hubness
in FSL is still in its early stages. Hence, with our initial work in Papers IV
and V we hope to inspire further interest in understanding these concepts in
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FSL, and in other areas. In fact, there are already several works outside FSL
generalizing deep learning to non-Euclidean embedding spaces. DNNs on graphs
and other non-Euclidean data structures is a research subject that has seen
growing interest in recent years [196–205]. We have also seen developments in
non-Euclidean embedding spaces for classification and regression [206, 207], as
well as hyperspherical regularization for DNNs [208]. Thus, we believe that our
thoughts on hubness and distributions of representation in non-Euclidean spaces
can be generalized to other subfields in machine learning and deep learning.

Future work on learning with limited labels

Learning with few labels has become increasingly important in recent years – a
trend that will likely continue in the near future. This is because it is simply not
possible for human annotators to keep up with the rapidly increasing amounts
of new data that is gathered every day. The same goes for the creation of hand-
crafted features for downstream applications, where it is becoming impossible for
human experts to cope with the extreme amounts of data with ever-increasing
diversity and complexity. Deep learning has become a key solution to these
issues, and to leverage massive amounts of raw data. With the initial success of
deep learning in supervised settings now being translated to applications with
few or no labels, we are seeing impressive advancements in the development of
intelligent systems – far beyond what we thought was possible only a few years
ago [24, 27, 35, 209]. At the time of writing this thesis for instance, OpenAI’s
ChatGPT, powered by generative pre-trained transformer (GPT)-4 [35], has
taken the world by storm, baffling the machine learning community, and society
in general.

Although representation learning lies at the very core of these systems, we
still have little understanding of how high-dimensional representations behave.
Research along these directions is still in its early stages [146, 210, 211], meaning
that there is much untapped potential in further understanding DNN-based
representations, their quality, and how they can be learned from large amounts
of unlabeled data.

Tangent to how representations can be improved, we also need to develop methods
to explain what information a representation actually carries. Understanding
exactly how a representation relates to its input is crucial if the representations are
used in any application with non-zero risk. Fortunately, the field of explainable
artificial intelligence (XAI) has grown alongside the development of better models.
Not so fortunately however, methods for explaining model outputs have largely
been focusing on explaining scalar predictions, and not vectorial representations.
To address this severe gap in the field of XAI, our work on representation learning
explainability (RELAX) [13] proposes a new method to explain neural-network
representations, without relying on any predictions or label information. To the
best of our knowledge, RELAX is the first method capable of explaining arbitrary
representations. With the increasing popularity of unsupervised learning, SSL
and FSL, we expect that methods for explaining representations will increase in
number and performance – improving the transparency and trustworthiness of
models for representation learning.
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The recent leaps in performance of machine learning systems, and particularly in
large language models, have massively accelerated initiatives to better regulate
the development and use of machine learning models1. We are currently at
a point where generative language and vision models could create enormous
amounts of disinformation that is indistinguishable from human-generated images
or text. Regulating the use of such models – and any other models capable
of harmful behavior – is therefore a critical step towards responsible further
development of intelligent systems.

In summary, we see that the potential of machine learning, deep learning, and
learning with few labels is greater now than ever before. To harness this potential,
and to make sure that it is used for good, we need to not only make the models
perform better, but also to better understand, interpret, and regulate them.

1See for instance the EU Artificial Intelligence Act [212]
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Abstract

We investigate the impact of objective function mismatch in deep clustering. We

find that the popular autoencoder-based approach to deep clustering can lead

to both reduced clustering performance, and a significant amount of mismatch

between the reconstruction and clustering objectives. To reduce the mismatch,

while maintaining the structure-preserving property of an auxiliary objective,

we propose a set of new auxiliary objectives for deep clustering, referred to as

the Unsupervised Companion Objectives (UCOs). The UCOs rely on a kernel

function to formulate a clustering objective on intermediate representations in the

network. Generally, intermediate representations can include other dimensions,

for instance spatial or temporal, in addition to the feature dimension. We

therefore argue that the naïve approach of vectorizing and applying a vector

kernel is suboptimal for such representations, as it ignores the information

contained in the other dimensions. To address this drawback, we equip the

UCOs with structure-exploiting tensor kernels, designed for tensors of arbitrary

rank. The UCOs can thus be adapted to a broad class of network architectures.
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Our experiments show that the mismatch between the UCOs and the main

clustering objective is lower, compared to a similar autoencoder-based model.

Further, we illustrate that the UCOs improve the clustering performance of

the model, in contrast to the autoencoder-based approach. The code for our

experiments is available at https://github.com/danieltrosten/tk-uco.

Keywords: tensor kernels, unsupervised companion objectives, objective

function mismatch, deep clustering

1. Introduction

Clustering is a long-standing problem in machine learning research. The

recent success of deep learning [1] has given rise to deep clustering – a subfield

of deep learning where deep neural networks are trained with unsupervised loss

functions designed for clustering.

Many of the loss functions created for deep clustering attempt to discover

and strengthen clusters in the representations produced by the neural network.

However, the minimization of these objectives can often result in trivial solutions,

where the network maps all inputs to a constant representation, forcing all points

to be assigned to the same cluster. This behavior is an extreme case of a more

general problem in deep clustering, where minimizing the clustering loss results

in an embedding which does not respect the local similarity structure of the

input space [2].

To address the similarity preservation problem, several recent deep clustering

models employ deep neural networks that have been pre-trained as autoen-

coders [3, 2, 4]. In the majority of these models, clustering is performed in the

autoencoder’s latent space. The model is fine-tuned by minimizing either the

clustering loss alone, or both the clustering loss, and the autoencoder’s recon-

struction loss. Guo et al . [2] argue that fine-tuning with both the reconstruction

loss and clustering loss leads to improved preservation of local similarities in

autoencoder-based deep clustering models. They retain the reconstruction loss

during fine-tuning, and illustrate that it leads to improved clustering performance
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for the well known Deep Embedded Clustering (DEC) model [3].

However, clustering and reconstruction are fundamentally different tasks,

and thus they require the representations produced by the network to encode

different types of information. When analyzing images for instance, successful

reconstruction requires the representation to encode the position, color, and

fine-grained details of objects in the images. Successful clustering on the other

hand, often only depends on higher level information from the image, such as

the presence of certain objects or features.

Based on these observations, we hypothesize that deep clustering models

trained to simultaneously cluster and reconstruct, are prone to suffer from

Objective Function Mismatch (OFM) [5, 6]. OFM occurs when the optimization

of an auxiliary objective (e.g . reconstruction) has a negative impact on the

optimization of the main objective (e.g . clustering).

In this work we study OFM in deep clustering, and show that models trained

to reconstruct and cluster simultaneously, can indeed exhibit a significant amount

of OFM. Further, we develop a set of new auxiliary objectives for deep clustering.

Our Unsupervised Companion Objectives (UCOs) are specifically designed for

clustering, in order to reduce the OFM between them and the main clustering

objective. In addition, UCOs help preserve the local similarity structure by

encouraging a consistent cluster structure throughout the network.

The UCOs rely on a kernel function to measure the similarity between

intermediate representations in the network. In general, these intermediate

representations may have several dimensions, such as spatial or temporal, in

addition to the feature dimension – meaning that they are naturally represented

as tensors, rather than vectors. Here, we argue that naïve kernels based on

vectorization of tensors do not take this structural (e.g . spatial or temporal)

information into account. To address these drawbacks, we utilize tensor kernels [7]

to measure similarities in the proposed UCOs. The tensor kernels are structure-

exploiting, meaning that they are able to exploit both structural information and

feature information.

We use convolutional neural networks (CNNs) and image data, as well as
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multi-layer perceptrons (MLPs) and vector data in this work. However we

emphasize that the tensor kernels make the UCOs compatible with a wide

range of network architectures and data types, as long as they produce tensorial

intermediate representations. Furthermore, the UCOs only depend on the

intermediate representations through the kernel function – allowing them to

be adapted to all architectures for which a kernel can be specified for the

intermediate representations.

In our experiments, we demonstrate that adding the UCOs to different deep

clustering models both improves the overall clustering performance, and leads to

lower OFM when compared to an analogous autoencoder-based model.

A preliminary version of this paper was published in [8]. Here, we extend

several aspects of our previous work:

1. We argue that the vectorization-based kernel used in [8] does not take

the structural information of intermediate representations into account.

To address this issue, we propose an improved version of the UCOs that

incorporate structural information by using tensor kernels [7]. This

allows us to formulate a structure-exploiting kernel on the intermediate

representations of a wide range of deep neural networks, without resolving

to suboptimal heuristics, such as vectorization.

2. We conduct an extensive evaluation of the proposed methodology, with

several additional experiments. In contrast to [8], which only included

image datasets, we include two extra vector-based datasets – illustrating

that the UCOs improve clustering performance on these datasets as well. In

addition, we analyze the performance of the UCOs across different kernels

and weighting strategies, and provide a thorough experimental analysis of

the OFM observed for the different models. Finally, we attach the UCOs

to additional base models, illustrating that the UCOs work well with these

models as well.

3. We provide new insight into the observed increase in OFM during training

with the UCOs.
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4. We include an extensive overview of related work, placing our work in the

current context of deep clustering.

The rest of the paper is structures as follows: Section 2 gives an overview

of related work on deep clustering with and without autoencoders, as well as

previous work on OFM in different areas of deep learning. In Section 3 we

present the proposed UCOs, and in Section 4 we motivate and introduce the

tensor kernels, and show how they are adapted to the UCOs. Section 5 gives

a mathematical definition of OFM, which allows us to measure OFM when

training deep clustering models. Section 6 provides the details and results of our

experimental evaluation, before some concluding remarks are given in Section 7.

2. Related work

2.1. Objective function mismatch (OFM) in autoencoder-based models

Metz et al . [5] demonstrate the presence of OFM in the context of unsuper-

vised representation learning. They measure few-shot classification accuracy on

representations obtained with a variational autoencoder, trained on the CIFAR-

10 dataset. After an initial increase, they observe that the few-shot classification

accuracy decreases in later stages of training the variational autoencoder. A

more extensive study by Stuhr and Brauer [9] finds that OFM is present in

several autoencoder-based models used for downstream image classification.

Objective function mismatch has also previously been observed in deep

clustering models. Mrabah et al . [6] shows that the autoencoder-based Improved

Deep Embedded Clustering (IDEC) [10] suffers from Feature Drift [6], which is

defined as the cosine of the angle between the gradient of the clustering loss, and

the gradient of the auxiliary loss. Feature Drift is thus closely related to OFM.

2.2. Deep clustering with autoencoders

Autoencoders are widely used building blocks in deep clustering models.

A straightforward approach to integrating autoencoders in a deep clustering

model is to use the autoencoder to pre-train the network, and then fine-tune it
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using only the clustering loss [3, 11, 12]. Alternatively, there are methods that

retain the reconstruction loss during fine-tuning – either by minimizing it jointly

with the clustering loss [2, 13, 14, 4], or by alternating between minimizing the

reconstruction loss and clustering loss [15]. Autoencoders have also been used to

encode self-expressiveness in subspace-based methods [16, 17]. Lastly, there are

probabilistic methods to deep clustering that employ variational autoencoders

in various manners [18, 19].

Deep Embedded Clustering (DEC) [3]. DEC is one of the first methods

for clustering with deep neural networks, and a cornerstone method in deep

clustering. It uses a multilayer perceptron (MLP), pre-trained as a stacked

denoising autoencoder, and a clustering module based on soft-assignments to a

set of centroids. DEC’s loss function is constructed to force the distribution of

soft cluster assignments closer to a target distribution, by means of the Kullback-

Leibler (KL) divergence. The target distribution is constructed from the soft

assignments, and designed to strengthen predictions and put more emphasis on

high-confidence assignments. In Section 6.5, we investigate the performance of

two variants of DEC, with and without the proposed UCOs.

2.3. Deep clustering without autoencoders

Several methods that do not use autoencoders in their architectures have

also been developed in recent years. These include methods based on hierar-

chical clustering [20], subspace clustering [21, 22, 23], generative adversarial

networks [24], and adversarial learning [25]. The recent success of self-supervised

representation learning for images has also given rise to numerous methods for

image clustering [26, 27]. However, these methods depend heavily on image

augmentations and are thus not directly applicable to other data types. Fi-

nally, there are approaches to deep clustering that do not rely on any auxiliary

model components or losses [28, 29]. In these models, the networks are trained

end-to-end from random initializations by minimizing their respective clustering

losses.
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Figure 1: Deep clustering model augmented with the proposed unsupervised companion

objectives (UCOs). This model uses tensor kernels to estimate the CS-divergence between

clusters at the block outputs. The estimate is then used in the computation of the UCOs.

3. Unsupervised Companion Objectives

In deep clustering, the input observation Xi, i = 1, . . . , n is transformed

by an encoder network f , producing a hidden representation zi. The cluster

membership vector is then determined by a clustering module, g, as αi = g(zi).

Since f is a neural network, we assume that it can be decomposed into

consecutive computational blocks: f = fB ◦ fB−1 ◦ · · · ◦ f1, where f b denotes

block b. A block can be, for instance, a single layer, or a collection of adjacent

layers. We let Yb
i = f b(Y

(b−1)
i ) be the output of block b for observation i,

where Y0
i = Xi. When we augment a deep clustering model with the UCOs, we

attach companion objectives to the outputs of the blocks in the network, and

minimize them alongside the main clustering objective. Figure 1 illustrates a

deep clustering model with the UCOs attached to the neural network.

When minimized, the UCOs should enforce clusters to be separable and
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compact at the output of their respective blocks. Inspired by Deep Divergence-

based Clustering (DDC) [28], we do this by maximizing an estimate of the

Cauchy-Schwarz (CS) divergence between clusters [30]. For a set of k clusters

characterized by k probability density functions p1, . . . , pk, the CS divergence

between them at block b is given by:

Db
cs = − log



(
k

2

)−1 k∑

i=1
j>i

∫
pi(Y

b)pj(Y
b)dY b

√∫
pi(Y

b)2dY b
∫
pj(Y

b)2dY b


 (1)

where Y b is the output of block b. Following common practice in deep clustering,

we assume that the number of clusters, k, is known [2, 3, 28]2.

Db
cs can be maximized by minimizing the argument of the logarithm. Using

a Gaussian kernel density estimate gives the following UCO for block b in the

network:

ℓb =
k∑

i=1
j>i

(
k
2

)−1 n∑
l,m=1

αliαmjk
UCO
σ (Y b

l ,Y
b
m)

√
n∑

l,m=1

αliαmikUCO
σ (Y b

l ,Y
b
m)

n∑
l,m=1

αljαmjkUCO
σ (Y b

l ,Y
b
m)

(2)

where αli denotes element i of the cluster membership vector αl, and kUCO
σ (Y b

l ,Y
b
m)

is a Gaussian kernel evaluated at (Y b
l ,Y

b
m). σ denotes the kernel width. Col-

lecting the UCOs for all blocks in the network gives the loss:

LUCO =
B∑

b=1

wbℓb = λ
B∑

b=1

ω(b)ℓb (3)

where wb is the weight of the UCO attached to block b, and B is the number

of blocks. To avoid having to specify the weight for each block individually, we

compute wb as wb = λ ·ω(b). Here λ is a hyperparameter that specifies the overall

weight for the UCOs, and ω : {1, . . . , B} → [0, 1] is a function that computes the

relative weight of the UCO attached to block b.

2The case when k is unknown, as in [27], is an interesting direction in deep clustering.

However, it is beyond the scope of this paper.
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The final loss used to train the model is then:

Ltotal = Lcluster + LUCO. (4)

Connection to Deep Divergence-based Clustering [28]. The UCOs are

related to DDC [28] as they both minimize the CS divergence between clusters.

In DDC however, the CS divergence is estimated with hidden representations that

are computed within the clustering module. These hidden representations, hi are

obtained by transforming the encoder outputs, YB
i with a fully-connected layer.

A second fully-connected layer is then applied to the hidden representations,

producing the cluster membership vectors αi.

DDC’s clustering loss consists of three terms:

LDDC
cluster = LDDC,1 + LDDC,2 + LDDC,3. (5)

The first term is similar to the UCOs, and minimizes the CS divergence between

clusters in the space of hidden representations:

LDDC,1 =
k∑

i=1
j>i

(
k
2

)−1 n∑
l,m=1

αliαmjkσ(hl,hm)

√
n∑

l,m=1

αliαmikσ(hl,hm)
n∑

l,m=1

αljαmjkσ(hl,hm)

(6)

where k is the number of clusters, αij is the soft cluster assignment for observation

i to cluster j, hi is the hidden representation for the i-th observation, and kσ is

a Gaussian kernel with kernel width σ. As with the UCOs, minimizing this loss

term results in clusters that are separable and compact in the hidden space.

The second term encourages the cluster membership vectors (αi) for different

observations to be orthogonal:

LDDC,2 =

n−1∑

i=1

n∑

j=i+1

α⊤
i αj . (7)

The last term is also based on the CS divergence and pushes the cluster mem-
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bership vectors closer to the corners of the standard simplex in Rk:

LDDC,3 =
k∑

i=1
j>i

(
k
2

)−1 n∑
l,m=1

ηliηmjkσ(hl,hm)

√
n∑

l,m=1

ηliηmikσ(hl,hm)
n∑

l,m=1

ηljηmjkσ(hl,hm)

(8)

where ηij = exp(−||αi−ej ||2), and ej is a k-dimensional one-hot vector pointing

to the j-th corner of the simplex.

4. Tensor Kernels

The UCOs in Eq. (2) depend on a kernel function (kUCO
σ ), which computes the

similarity between block-outputs for different inputs. However, these outputs are

not necessarily vectors. In CNNs for instance, the intermediate representations

have two spatial dimensions, in addition to the feature dimension. The Gaussian

kernel with Euclidean distance between vectors is thus not directly applicable

to the block-outputs (without vectorizing them first). To address this issue,

we consider the feature maps produced by a network block as rank-3 tensors.

Building on Grassmannian learning [31] and tensor kernels [7], then allows us to

specify a tensor kernel for the proposed UCOs.

4.1. The naïve kernel

For vectors we have the Gaussian kernel:

kσ(x,y) = exp

(
−||x− y||2

2σ2

)
=

D1∏

i=1

exp

(
− (xi − yi)

2

2σ2

)
(9)

where xi (yi) refers to element i in the vector x (y). Generalizing this kernel to

tensors X and Y of rank r gives the naïve kernel [7]:

knaïve
σ (X,Y) =

D1∏

i1=1

· · ·
Dr∏

ir=1

exp

(
− (Xi1···ir − Yi1···ir )

2

2σ2

)
(10)

where Xi1···ir (Yi1···ir ) denotes the element of X (Y) with indices i1, . . . , ir, and

D1, . . . , Dr denote the number of elements along each dimension.
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Figure 2: Matricization of a rank-3 tensor X.

This kernel is equivalent to first vectorizing the representations, and then

applying a Gaussian kernel using the Euclidean distance between the vectorized

representations. However, the intermediate representations often lie on a low-

dimensional manifolds where the Euclidean distance fails to be a good measure

of dissimilarity. A potential reason for this is that the naïve kernel ignores

the structure of the input tensors [7] – such as the spatial structure of the

intermediate representations in CNNs. This means that the kernel is invariant

to a fixed permutation rule P :

knaïve
σ (X,Y) = knaïve

σ (P (X), P (Y)). (11)

This effect can be especially destructive for images, for instance, since images

can be transformed beyond recognition by permuting the spatial indices.

4.2. Structure-exploiting tensor kernels

The shortcomings of the naïve kernel outlined above calls for a kernel that

takes the tensors’ structure into account. The kernels are therefore formulated

using the matricizations of input tensors. The matricization of a tensor X

along dimension m is obtained by vectorizing along all dimensions of X, except

dimension m. This results in a matrix with shape (Dm, D−m) where D−m =

1
Dm

∏r
l=1 Dl (see Figure 2).

The matricizations along the tensor dimensions can then be used to form the
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dG(Dm,D−m
)(X

<m> ,Y
<m> )

G(Dm
, D−m

)

(V<m>
X )⊤

(V<m>
Y )⊤

Figure 3: The distance dG(Dm,D−m)(X
<m>,Y<m>) between two matricizations X<m> and

Y<m> on the Grassmann manifold G(Dm, D−m). Since the Grassmann manifold consists of

linear subspaces, the matricizations are represented by the respective orthonormal representa-

tions (V<m>
X )⊤ and (V<m>

Y )⊤.

tensor kernel:

ktensor
σ (X,Y) =

r∏

m=1

kmσ (X<m>,Y<m>) (12)

=
r∏

m=1

exp

(
−dG(Dm,D−m)(X

<m>,Y<m>)2

2σ2

)
(13)

where X<m> (Y<m>) is the matricization of X (Y) along dimension m. In order

to specify a suitable distance function between the matricizations, we consider

the span of their rows as points on the Grassmann manifold, G(Dm, D−m), which

consists of all Dm dimensional linear subspaces of RD−m . This is a central concept

in Grassmannian learning [32] – a field which has shown promising results, but

is still in its early stages. Specifically, we exploit the one-to-one correspondence

between linear subspaces and their orthogonal projection operators to define

our distance function on the Grassmannian manifold [7]. Figure 3 illustrates

the distance function on the Grassmann manifold. The orthogonal projection

operator is given by

Π<m>
X = V<m>

X (V<m>
X )⊤ (14)

where V<m>
X is obtained through the singular value decomposition (SVD):

X<m> = U<m>
X Σ<m>

X (V<m>
X )⊤. (15)
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Figure 4: Illustration of OFM for different loss gradients. The OFM is determined by the

angles between the gradients of the clustering loss and the auxiliary loss wrt. the encoder

parameters θ ∈ Θ.

Considering the Frobenius norm between projection operators then gives the

distance function:

dproj
G(Dm,D−m)(X

<m>,Y<m>)

= ||Π<m>
X −Π<m>

Y ||F (16)

=
√

2(Dm − Tr((V<m>
Y )⊤V<m>

X (V<m>
X )⊤V<m>

Y )). (17)

where || · ||F denotes the Frobenius norm. Inserting dproj
G(Dm,D−m)(X

<m>,Y<m>)

into (13) allows us to compute a structure-exploiting tensor kernel ktensor
σ (X,Y),

which can then be included in the proposed UCOs by setting kUCO
σ = ktensor

σ

in (2).

We note that the projection distance gives rise to a positive semi-definite

kernel. This allows the UCOs to be interpreted as a cosine distance between the

mean of intermediate representations from different clusters, in the Reproducing

Kernel Hilbert Space induced by the tensor kernel in Eq. (13). However, a

thorough analysis of this property is left to future work.

5. Objective Function Mismatch

Intuitively, the objective function mismatch (OFM) should be high if the

clustering loss and auxiliary loss disagree on how the encoder network should

13



be optimized. Correspondingly, it should be low if the losses agree on the

optimization. Thus, it is natural to consider the gradient of the losses wrt.

the encoder’s parameters, as these guide the direction of optimization in the

parameter space. Let θ denote the network parameters at a particular step in

the optimization procedure. The OFM between the clustering loss Lcluster and

an auxiliary loss (e.g . reconstruction or UCOs) is then be measured by:

OFM(Lcluster,Laux)(θ) =
1− cos(∇θLcluster,∇θLaux)

2
(18)

=
1

2
− (∇θLcluster)

⊤∇θLaux

2||∇θLcluster|| · ||∇θLaux||
. (19)

Here, the cosine measures the agreement between directions of the gradients,

and the affine transformation transforms the measure to lie in [0, 1], and such

that higher values indicate larger mismatch. The measure of OFM is illustrated

graphically in Figure 4. We note that this measure is related to the Feature

Drift [6], but includes an affine transformation which makes the measure more

intuitive, and directly indicative of a mismatch between the losses.

6. Experiments

In this section we report the effects of augmenting two different deep clustering

models with the proposed UCOs – both in terms of clustering performance, and

the OFM between the main clustering objective and the auxiliary objective.

Further, we investigate the effect of varying the weighting hyperparameters, ω

and λ, in the UCOs.

6.1. Setup

Models. Our experiments are based on DDC [28], as it is an excellent general-

purpose deep clustering method, which has demonstrated state-of-the-art cluster-

ing performance on images [28], time series [33], and several types of multi-view

data [34]. In Section 6.5 we also show some results with DEC-based models.

We augment DDC with UCOs based on tensor kernels, and refer to the

resulting model as DDC-UCOT . To evaluate the effects of the structure-exploiting

14



Table 1: Details of the benchmark datasets.

Name Type Dimension Samples Classes

MNIST [35] Images 28× 28× 1 60000 10

Fashion-MNIST [36] Images 28× 28× 1 60000 10

COIL-100 [37] Images 128× 128× 3 7200 100

USPS Images 16× 16× 1 9298 10

Reuters [38] Vectors 2000 216000 4

10×73k[39] Vectors 720 73233 8

tensor kernels, we also include a model with UCOs based on vectorization and

naïve kernels, referred to as DDC-UCON .

Finally, we train DDC with a decoder and a reconstruction loss (we refer to

this model as DDC-AE). This allows us to accurately compare DDC-UCON/T

to an analogous autoencoder-based model.

We train the models with randomly initialized parameters, using their respec-

tive loss functions. The batch size is set to 120, and we use the Adam optimizer

with default parameters. Following [28], we let the σ hyperparameter be 15%

of the median distance between observations in a batch. This rule of thumb is

used for both the UCOs and the clustering module.

Due to the difficulty of hyperparameter validation in unsupervised learning,

we compute the UCO weights with ω(b) = 1 (constant) and λ = 0.01 for all

datasets. This choice is further studied in Section 6.4.

Datasets. We test the models on 6 different benchmark datasets:

1. MNIST [35]: Grayscale images of handwritten digits.

2. Fashion-MNIST [36]: Grayscale images of clothing items.

3. COIL-100 [37]: RGB Images of 100 common objects depicted from 72

different angles.

4. USPS: Grayscale images of handwritten digits.
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5. Reuters [38]: TF-IDF features from news stories3.

6. 10×73k[39]: Feature vectors for RNA-transcripts from different cell types.

More details on the datasets can be found in Table 1

Evaluation. We train each model 20 times per dataset, and report the

performance of the run which resulted in the lowest value of the total loss

function (Eq. (4)). This is the same evaluation procedure as in DDC [28].

To measure the clustering performance of the different algorithms, we use the

unsupervised clustering accuracy (ACC) and the normalized mutual information

(NMI). Both ACC and NMI are bounded in [0, 1], and higher values indicate

better clusterings, with respect to the ground-truth labels.

6.2. Clustering results

The clustering results in Table 2 show that adding the UCOs to DDC improves

the overall performance of the model. Furthermore, DDC-UCOT consistently out-

performs DDC-UCON , indicating that the structure-exploiting tensor kernels are

suitable for quantifying the similarities between the intermediate representations

of the network.

Interestingly, we also observe that adding a decoder and reconstruction loss

to DDC only improves ACC and NMI on COIL-100, as well as the NMI on

USPS. On MNIST and F-MNIST, the performance of DDC-AE is significantly

worse than the original DDC, indicating that the addition of an autoencoder

can be harmful to the performance of DDC.

Figure 5 shows intermediate MNIST representations after the first block,

projected to 2 dimensions with t-SNE [40]. From these plots we make the

following observations:

• The clusters of 4 , 5 and 7 are all more compact for the representations

produced by DDC-UCOT , compared to the others.

3As in [28], we select 54000 samples from each class to balance the dataset.
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Table 2: Clustering results for DDC-based models on the benchmark datasets. Standard

deviations obtained by bootstrapping are shown in parentheses. The best result for each base

model is highlighted in bold, and results that are within one standard deviation of the best

are underlined.

MNIST F-MNIST

ACC NMI ACC NMI

DDC 88.2 (2.1) 87.7 (2.3) 48.6 (8.1) 44.3 (6.0)

DDC-AE 87.9 (1.3) 86.2 (0.7) 60.3 (4.7) 55.1 (3.8)

DDC-UCON 85.5 (4.7) 82.4 (3.3) 65.5 (5.0) 59.1 (3.6)

DDC-UCOT 96.0 (6.4) 91.7 (5.2) 65.3 (4.1) 59.2 (3.4)

COIL-100 USPS

ACC NMI ACC NMI

DDC 58.0 (1.1) 82.6 (0.2) 67.9 (2.8) 70.1 (1.6)

DDC-AE 61.2 (1.3) 84.4 (0.2) 72.1 (5.4) 71.0 (4.9)

DDC-UCON 58.5 (1.4) 80.8 (0.3) 75.5 (4.8) 76.6 (3.3)

DDC-UCOT 62.9 (1.1) 83.8 (0.5) 75.6 (3.1) 77.4 (2.5)

Reuters 10×73k

ACC NMI ACC NMI

DDC 50.9 (3.6) 24.2 (5.8) 62.3 (1.0) 55.2 (2.3)

DDC-AE 37.2 (5.3) 12.1 (6.1) 78.6 (3.7) 74.4 (3.1)

DDC-UCON 55.5 (4.8) 30.4 (4.2) 73.1 (3.2) 70.2 (1.9)

DDC-UCOT 61.2 (5.3) 35.6 (4.8) 81.1 (1.4) 76.3 (0.9)
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(a) DDC (b) DDC-AE

(c) DDC-UCON (d) DDC-UCOT

Figure 5: t-SNE [40] plot of intermediate MNIST representations from the first network block

(Y1
1 , . . . ,Y

1
n).
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Figure 6: Objective function mismatch during training of DDC-AE, DDC-UCON , and DDC-

UCOT . The OFM is is significantly lower for DDC-UCON and DDC-UCOT , compared to

DDC-AE on both datasets.

• Similar looking digits, such as 4 and 9, as well as 3, 5, and 8, are better

separated in the DDC-UCOT representations, compared to the other

models.

These observations illustrate that the UCOs indeed encourage compact and

separable clusters in the space of intermediate representations. This results in

better separability for the challenging cases where different digits look similar to

each other.

6.3. Objective function mismatch

Figure 6 shows the OFM during training of DDC-AE, DDC-UCON , and

DDC-UCOT on MNIST and COIL-100. These plots show that the OFM is

significantly lower for both DDC-UCON and DDC-UCOT during training, when

compared to DDC-AE. The UCOs thus “agree” more with the clustering objective,

resulting in both a lower OFM, and improved clustering performance (as can be

seen in Table 2).

When comparing DDC-UCON and DDC-UCOT , we either see that the OFM

19



0 50 100 150 200
Training epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
FM

`1 vs. LDDC,1

`1 vs. LDDC,2

`1 vs. LDDC,3

(a) UCO at block 1.

0 50 100 150 200
Training epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
FM

`2 vs. LDDC,1

`2 vs. LDDC,2

`2 vs. LDDC,3

(b) UCO at block 2.

Figure 7: OFM between the UCOs and the three terms in DDC’s clustering loss, during

training on MNIST.

is similar for the two models (COIL-100), or that the OFM for DDC-UCOT is

lower than for DDC-UCON (MNIST).

Lastly, we observe a slightly increasing trend in the OFM for DDC-UCON

and DDC-UCOT on MNIST. This increase in OFM during training is caused

by a mismatch between the UCOs and the CS divergence-based loss terms in

DDC. This can be observed in Figure 7, which shows that the OFM between

the UCOs (ℓ1 and ℓ2), and DDC’s CS divergence terms (LDDC,1 and LDDC,3)

increases during training. Both the UCOs and DDC’s losses encourage separable

and compact clusters for the intermediate and hidden representations.

However, we hypothesize that the gradients contributing to separability and

compactness differ for different representations, due to the non-linearity of the

network blocks. In the early stages of training, the model focuses on simpler

lower-level groupings in the data. The UCOs and DDC’s loss terms thus tend to

agree more on what constitutes separable and compact representations, resulting

in a relatively low OFM. However, as the training progresses, and the network

begins to refine the clusters to make them as separable and compact as possible,

the non-linearities cause the gradients to become increasingly different, resulting

in an increased OFM. We further hypothesize that this effect is stronger for the
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Table 3: Clustering results (ACC) for DDC-UCON/T with different UCO weighting methods.

DDC-UCON DDC-UCOT

Dataset ω(·) ↓ λ→ 0.001 0.010 0.100 0.001 0.010 0.100

MNIST

Constant 85.2 85.5 87.4 86.6 96.0 87.2

Exponential 88.2 87.1 87.1 87.3 85.7 87.7

Linear 76.0 81.3 82.3 87.8 87.6 88.6

COIL-100

Constant 60.5 58.5 63.1 59.6 62.9 61.7

Exponential 59.0 60.4 60.8 65.9 63.0 62.7

Linear 61.9 63.7 60.5 60.1 61.4 58.5

F-MNIST

Constant 61.8 65.5 49.9 59.5 65.3 51.0

Exponential 52.8 51.7 60.0 59.1 59.1 60.1

Linear 55.4 59.1 46.1 59.8 60.3 50.0

USPS

Constant 65.4 75.5 66.8 69.6 75.6 72.9

Exponential 69.4 58.3 66.3 72.6 66.8 73.3

Linear 66.5 69.3 76.1 74.4 73.5 69.6

Reuters

Constant 45.8 54.4 66.3 58.4 55.1 62.8

Exponential 60.2 66.8 75.6 50.0 57.2 62.7

Linear 48.1 63.1 50.6 60.3 71.7 58.3

10×73k

Constant 82.4 73.1 87.9 78.4 81.1 86.9

Exponential 81.2 84.6 89.2 78.8 70.4 86.2

Linear 82.6 78.8 78.0 81.7 82.1 85.1

separability between clusters, as it is a more global property, and is thus affected

more by the non-linear blocks, compared to compactness.

6.4. UCO weighting strategy

To validate our chosen UCO weighting strategy (choice of ω and λ), we train

DDC-UCON/T with λ ∈ {0.001, 0.01, 0.1}, and the following three ω functions:

(i) ω(b) = 1 (Constant); (ii) ω(b) = 10B−b (Exponential); and (iii) ω(b) = b/B

(Linear).

The resulting clustering accuracies for the different configurations are listed
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in Table 3. These results show that DDC-UCON/T are not sensitive to the choice

of ω and λ. This is an important property as labeled validation data is generally

not available in unsupervised learning.

We note that, for some configurations on F-MNIST and Reuters, the per-

formance degrades significantly when λ = 0.1 or λ0.001, indicating that the

influence of the UCOs is too strong or too weak in these cases.

6.5. Experiments with other base models

In order to evaluate the effect of the UCOs on other deep clustering models,

we implement two variants of the well-known DEC model [3]. The first is the

original DEC model with an MLP encoder. The second model, DEC-Conv, uses

the same clustering module as DEC, but has a CNN encoder instead. We also

train these variants with a decoder and reconstruction loss during fine-tuning

(as is done in Improved DEC [2] and Deep Convolutional Embedded Clustering

(DCEC) [10], respectively). Finally, we create two new models by augmenting

the two variants with our UCOs. Since CNNs are designed for images and

MLPs are designed for vectors, we evaluate DEC-Conv on the image datasets

(MNIST, F-MNIST, COIL-100, USPS), and DEC on the vector datasets (Reuters,

10×73k).

The results in Table 4 show that the DEC-based models also benefit from

the UCOs. This indicates that the UCOs work well with different clustering

modules – not only DDC. However, the improvement in clustering performance

is not as large for DEC and DEC-Conv, as for DDC. This discrepancy is likely

due to the difference between DEC’s clustering objective, and the UCOs. In

DDC, the clustering objective is partially based on the CS divergence between

clusters. This is the same divergence measure that we use in the UCOs. DEC’s

clustering objective however, is based on a Kullback-Leibler divergence between

densities of cluster assignments. It is therefore more dissimilar to the UCOs,

compared to the clustering objective in DDC.
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Table 4: Clustering results with the models based on DEC-Conv (image datasets) and DEC

(vector datasets). Standard deviations obtained by bootstrapping are shown in parentheses.

The best result for each base model is highlighted in bold, and results that are within one

standard deviation of the best are underlined.

MNIST F-MNIST

ACC NMI ACC NMI

DEC-Conv 78.3 (5.3) 73.6 (2.8) 54.7 (1.4) 60.1 (0.9)

DCEC 77.8 (1.3) 72.6 (1.2) 54.3 (2.7) 60.0 (0.8)

DEC-Conv-UCON 80.0 (1.1) 77.0 (0.5) 57.0 (2.9) 60.8 (1.0)

DEC-Conv-UCOT 81.2 (0.8) 79.1 (0.6) 59.8 (3.5) 62.0 (1.3)

COIL-100 USPS

ACC NMI ACC NMI

DEC-Conv 50.3 (3.7) 74.5 (2.2) 73.6 (0.3) 73.1 (0.2)

DCEC 47.6 (2.7) 71.7 (2.0) 75.3 (0.5) 75.5 (0.6)

DEC-Conv-UCON 42.9 (2.5) 70.0 (1.8) 76.9 (0.7) 78.1 (1.1)

DEC-Conv-UCOT 38.9 (0.7) 68.0 (1.0) 78.0 (0.6) 80.7 (0.9)

Reuters 10×73k

ACC NMI ACC NMI

DEC 68.6 (1.1) 41.7 (1.7) 74.9 (0.7) 74.6 (0.8)

IDEC 66.1 (1.1) 35.9 (2.5) 73.0 (0.6) 73.2 (0.7)

DEC-UCON 64.1 (2.9) 35.4 (3.5) 71.4 (0.4) 69.5 (0.6)

DEC-UCOT 69.3 (0.8) 40.0 (1.1) 75.8 (0.7) 76.2 (1.1)
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7. Conclusion

This paper sheds new light on the problem of objective function mismatch

in deep clustering. The results of our experiments show that coupling a deep

clustering model with an autoencoder can cause a significant amount of mismatch

between the clustering objective and the reconstruction objective – possibly

leading to reduced clustering performance.

To address the issue of OFM in deep clustering, we introduced the unsu-

pervised companion objectives (UCOs). These are auxiliary objectives that –

when compared to a decoder and reconstruction loss – lead to a lower OFM with

the main clustering objective. The UCOs employ structure-exploiting tensor

kernels, addressing the drawbacks of the naïve vectorization-based kernel for

tensorial intermediate representations, such as those produced by convolutional

neural networks. Our experiments with DDC and DEC show that adding the

tensor kernel-based UCOs improves the clustering performance of the models,

outperforming the analogous autoencoder-based approach.
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Reconsidering Representation Alignment for Multi-view Clustering

Daniel J. Trosten Sigurd Løkse Robert Jenssen Michael Kampffmeyer
Department of Physics and Technology, UiT The Arctic University of Norway*

Abstract

Aligning distributions of view representations is a core
component of today’s state of the art models for deep
multi-view clustering. However, we identify several draw-
backs with naı̈vely aligning representation distributions. We
demonstrate that these drawbacks both lead to less separable
clusters in the representation space, and inhibit the model’s
ability to prioritize views. Based on these observations, we
develop a simple baseline model for deep multi-view clus-
tering. Our baseline model avoids representation alignment
altogether, while performing similar to, or better than, the
current state of the art. We also expand our baseline model
by adding a contrastive learning component. This introduces
a selective alignment procedure that preserves the model’s
ability to prioritize views. Our experiments show that the
contrastive learning component enhances the baseline model,
improving on the current state of the art by a large margin
on several datasets1.

1. Introduction
Several kinds of real world data are gathered from dif-

ferent points of view, or by using a collection of different
sensors. Videos, for instance, contain both visual and audi-
ble components, while captioned images include both the
raw image data and a descriptive text. In both of these exam-
ples, the low-level content of the views are vastly different,
but they can still carry the same high-level cluster structure.
The objective of multi-view clustering is to discover this
common clustering structure, by learning from all available
views simultaneously.

Learning from multiple sources at once is not a trivial
task [6]. However, the introduction of deep learning [33],
has led to the development of several promising deep multi-
view clustering models [1, 36, 48, 61, 64]. These models
efficiently learn from multiple views by transforming each
view with a view-specific encoder network. The resulting
representations are fused to obtain a common representation

*UiT Machine Learning Group, machine-learning.uit.no
1The source code for the experiments performed in this paper is available

at https://github.com/DanielTrosten/mvc

for all views, which can then be clustered by a subsequent
clustering module.

The current state of the art methods for deep multi-view
clustering use adversarial training to align the representation
distributions from different views [36, 64].

Aligning distributions leads to view invariant represen-
tations, which can be beneficial for the subsequent fusion
of views, and the clustering module [64]. View invariant
representations preserve the information present in all views,
while discarding information that only exists in a subset of
views. If the view-specific information is irrelevant to the
clustering objective, it will be advantageous for the cluster-
ing module that the encoders learn to remove it. Moreover,
aligning representation distributions introduces an auxiliary
task, which regularizes the encoders, and helps preserve the
local geometric structure of the input space. This has been
shown to improve single-view deep clustering models [21].

Despite these advantages however, we identify three im-
portant drawbacks of distribution alignment for multi-view
clustering:

Aligning representations prevents view-prioritization in
the representation space. Views are not necessarily equally
important to the clustering objective. The model should
therefore be able to adaptively prioritize views, based on the
information contained in the view representations. However,
aligning representation distributions makes it harder for the
model to prioritize views in the representation space, by
making these distributions as similar as possible.

One-to-one alignment of clusters is only attainable when
encoders can separate all clusters in all views. When the
clustering structure is only partially present in the individual
views, alignment causes clusters to merge together in the
representation space. This makes the clustering task more
difficult for the subsequent clustering module.

Aligning representation distributions can make it harder
to discriminate between clusters. Since adversarial align-
ment only considers the representation distributions, a given
cluster from one view might be aligned with a different
cluster from another view. This misalignment of label dis-
tributions has been shown to have a negative impact on
discriminative models in the representation space [62].

The End-to-end Adversarial-attention network for Multi-

1255



modal Clustering (EAMC) [64] represents the current state
of the art for deep multi-view clustering. EAMC aligns the
view representations by optimizing an adversarial objective
on the encoder networks. The resulting representations are
fused with a weighted average, with weights produced by
passing the representations through an attention network.
Following our reasoning above, we hypothesize that the
alignment done by the adversarial module may defeat the
purpose of the attention mechanism. Thus inhibiting view
prioritization, and leading to less separable clusters after
fusion. Our hypothesis is supported by the empirical results
of EAMC [64], where the fusion weights are close to uni-
form for all datasets. Equal fusion weights cause all views
to contribute equally to the fused representation, regardless
of their contents. Moreover, the fusion weights produced by
the attention network depend on all the samples within the
current batch. Out-of-sample inference is therefore impossi-
ble with EAMC, without making additional modifications to
the attention mechanism.

In this work, we seek to alleviate the problems that can
arise when aligning distributions of representations in deep
multi-view clustering. To this end, we make the following
key contributions:

• We highlight pitfalls of aligning representation distribu-
tions in deep multi-view clustering, and show that these
pitfalls limit previous state of the art models.

• We present Simple Multi-View Clustering (SiMVC) –
a new and simple baseline model for deep multi-view
clustering, without any form of alignment. Despite its
simplicity compared to existing methods, our experi-
ments show that this baseline model performs similar
to – and in some cases, even better than – current state
of the art methods. SiMVC combines representations
of views using a learned linear combination – a simple
but effective mechanism for view-prioritization. We
empirically demonstrate that this mechanism allows the
model to suppress uninformative views and emphasize
views that are important for the clustering objective.

• In order to leverage the advantages of alignment – i.e.
preservation of local geometric structure, and view in-
variance – while simultaneously avoiding the pitfalls,
we attach a selective contrastive alignment module to
SiMVC. The contrastive module aligns angles between
representations at the sample level, circumventing the
problem of misaligned label distributions. Furthermore,
in the case that one-to-one alignment is not possible,
we make the model capable of ignoring the contrastive
objective, preserving the model’s ability to prioritize
views. We refer to this model as Contrastive Multi-View
Clustering (CoMVC).

2. Pitfalls of distribution alignment in multi-
view clustering

Here, we consider an idealized version of the multi-view
clustering problem. This allows us to investigate and for-
malize our observations on alignment of representation dis-
tributions in multi-view clustering. By assuming that, for
each view, all samples within a cluster are located at the
same point in the input space, we develop the following
proposition2:

Proposition 1. Suppose our dataset consists of V views and
k ground truth clusters, and we wish to cluster the data
according to this ground truth clustering. Furthermore, we
make the following assumptions:

1. For each view, all observations that belong to the same
ground truth cluster, are located at the same point in
the input space.

2. For a given view v, v ∈ {1, . . . , V }, the number of
unique points (i.e. distinct/separable clusters) in the
input space is kv .

3. The views are mapped to representations using view-
specific encoders, and subsequently fused according to
a linear combination with unique weights.

Then, the maximum number of unique clusters after fusion
is

κfused
aligned = min

{
k,

(
min

v=1,...,V
{kv}

)V
}

(1)

if the distributions of representations from different views
are perfectly aligned, and

κfused
not aligned = min

{
k,

V∏

v=1

kv

}
(2)

if no alignment is performed.

Implications of Proposition 1. κfused
· in Proposition 1 con-

trols how well the clustering module is able to cluster the
fused representations. If κfused

· < k, it means that some of
the clusters are located at the same point after fusion, mak-
ing it impossible for the clustering module to discriminate
between these clusters. In the extreme case that one of the
views groups all the clusters together (i.e. kv = 1), it fol-
lows that κfused

aligned = 1. This happens because all other views
are aligned to the uninformative view (for which kv = 1),
collapsing the cluster structure in the representation space.
Alignment thus prevents the suppression of this view, and
makes it harder to discriminate between clusters in the repre-
sentation space.

2We provide a proof sketch for Proposition 1 in the supplementary.
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(a) SiMVC +Adv. ACC = 0.80 (b) SiMVC. ACC = 0.99. (c) CoMVC. ACC = 0.99. (d) EAMC. ACC = 0.368.

Figure 1: Representations for SiMVC with and without adversarial alignment, CoMVC, and EAMC on our toy dataset.

Figure 2: Toy dataset. View 1: Classes (1-3) and (4,5)
overlap. View 2: Class 1 is isolated, and classes (2,4) and
(3,5) overlap.

However, if we are able to discriminate between all clus-
ters in all views, we have kv = k for all views, resulting in
κfused

aligned = κfused
not aligned = k. In this case it is possible for both

alignment-based models and non-alignment-based models to
perfectly cluster the data, provided that the clustering mod-
ule is sufficiently capable. Alignment-based models can thus
benefit from the advantages of alignment, while still being
able to separate clusters after fusion.

Experiments on toy data. Proposition 1 makes the sim-
plification that all samples within a cluster are located at
the same point, for each view. In order to demonstrate the
potential negative impact of aligning representation distribu-
tions in a less idealistic setting, and to further motivate the
problem, we create a simple two-view dataset. The dataset
is shown in Figure 2, and contains five elliptical clusters in

two two-dimensional views3.
We fit SiMVC and SiMVC with adversarial alignment

(SiMVC +Adv.) to this dataset, in order to demonstrate the
effects of aligning distributions, in a controlled setting. Ad-
ditionally, we fit our CoMVC and the current state of the art,
EAMC, to evaluate more advanced alignment procedures.
Note that, for all of these models, the fusion is implemented
as a weighted average of view representations, as in Proposi-
tion 1. The remaining details on SiMVC and CoMVC are
provided in the next section.

Figures 1a and 1b show that attempting to align distri-
butions with adversarial alignment prevents SiMVC from
separating between clusters 1 and 4. By adding the adversar-
ial alignment to SiMVC, the number of visible clusters after
fusion is reduced from 5 to 4. This is in line with Proposi-
tion 1, since we have κfused

aligned = 4 and κfused
not aligned = 5 for this

dataset. Figure 1c shows that CoMVC, which relies on the
cosine similarity, aligns the angles between the majority of
observations. This alignment does not cause classes to over-
lap in the fused representation. EAMC attempts to align the
distributions of view representations (Figure 1d), resulting in
a fused representation where the classes are hard to separate.
Interestingly, the resulting fused representation exhibits a
single group of points, which is significantly worse than the
upper bound κfused

aligned = 4 in the analogous idealistic setting.
We hypothesize that this is due to EAMC’s fusion weights,
which we observed to be almost equal for this experiment –
thus breaking assumption 3 in Proposition 1.

3We repeat this experiment for a 3-cluster dataset in the supplementary.
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3. Methods
3.1. Simple Multi-View Clustering (SiMVC)

Suppose our dataset consists of n objects observed from
V views. Let x

(v)
i be the observation of object i from view

v. The objective of our models is then to assign the set of
views for each object, {x

(1)
i , . . . , x

(V )
i }, to one of k clusters.

To achieve this, we first transform each x
(v)
i to its repre-

sentation z
(v)
i according to

z
(v)
i = f (v)(x

(v)
i ) (3)

where f (v) denotes the encoder network for view v. We then
compute the fused representation as a weighted average

zi =
V∑

v=1

wvz
(v)
i (4)

where w1, . . . , wv are the fusion weights, satisfying wv > 0
for v = 1, . . . , V and

∑V
v=1 wv = 1. We enforce these

constraints by keeping a set of unnormalized weights, from
which we obtain w1, . . . , wV using the softmax function.
We let the unnormalized weights be trainable parameters – a
design choice which has the following advantages: (i) Dur-
ing training, the model has a simple and interpretable way to
prioritize views according to its clustering objective. By not
relying on an auxiliary attention network, we also make the
model more efficient – both in terms of memory consump-
tion and training time4. (ii) In inference, the weights act
as any other model parameters, meaning that out-of sample
inference can be done with arbitrary batch sizes, without any
modifications to the trained model. Fixed fusion weights also
result in deterministic predictions, which are independent of
any other samples within the batch.

To obtain the final cluster assignments, we pass the fused
representation through a fully connected layer, producing
the hidden representation hi. This is processed by another
fully connected layer with a softmax activation, to obtain the
k-dimensional vector of soft cluster assignments, αi.
Loss function. We adopt the Deep Divergence-based Clus-
tering (DDC) [30] loss, which has shown state of the art
performance in single-view image clustering [30]. This is
also the clustering loss used by EAMC [64] – the current
state of the art method for multi-view clustering.

The clustering loss consists of three terms, enforcing
cluster separability and compactness, orthogonal cluster as-
signments, and closeness of cluster assignments to simplex
corners, respectively. The first loss term is derived from
the multiple-density generalization of the Cauchy-Schwarz
divergence [28], and requires clusters to be separable and

4Average training times for SiMVC, CoMVC, and EAMC are given in
the supplementary.

compact in the space of hidden representations:

L1 =
k−1∑

i=1

k∑

j=i+1

(
k
2

)−1 n∑
a=1

n∑
b=1

αaiκabαbj

√
n∑

a=1

n∑
b=1

αaiκabαbi

n∑
a=1

n∑
b=1

αajκabαbj

(5)

where k denotes the number of clusters, κij = exp(−||hi −
hj ||2/(2σ2)), and σ is a hyperparameter.

The second term encourages the cluster assignment vec-
tors for different objects to be orthogonal:

L2 =

(
n

2

)−1 n−1∑

i=1

n∑

j=i+1

αT
i αj . (6)

Finally, the third term pushes the cluster assignment vectors
close to the standard simplex in Rk:

L3 =

k−1∑

i=1

k∑

j=i+1

(
k
2

)−1 n∑
a=1

n∑
b=1

maiκabmbj

√
n∑

a=1

n∑
b=1

maiκabmbi

n∑
a=1

n∑
b=1

majκabmbj

(7)

where mij = exp(−||αi − ej ||2), and ej is corner j of the
standard simplex in Rk.

The final clustering loss which we minimize during train-
ing of SiMVC is the sum of these three terms:

Lcluster = L1 + L2 + L3. (8)

3.2. Contrastive Multi-View Clustering (CoMVC)

Contrastive learning offers a way to align representations
from different views at the sample level, forcing the la-
bel distributions to be aligned as well. Our hypothesis is
therefore that a selective contrastive alignment will allow
the model to learn common representations that are well
suited for clustering – while simultaneously avoiding the
previously discussed pitfalls of distribution alignment. Self-
supervised contrastive models have shown great potential
for a large variety of downstream computer vision tasks
[5, 12, 13, 20, 22, 40, 49]. These models learn image rep-
resentations by requiring that representations from positive
pairs are mapped close together, while representations from
negative pairs are mapped sufficiently far apart. In multi-
view learning, each object has a set of observations from
different views associated with it. This admits a natural def-
inition of pairs: Let views of the same object be positive
pairs, and views of different objects be negative pairs.
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Figure 3: Overview of our proposed models for a two-view
dataset. In both SiMVC and CoMVC, the views are first
encoded by the view-specific encoder networks f (1) and
f (2). The resulting representations are fused with a weighted
mean, and then clustered by the clustering module. CoMVC
includes an additional contrastive module.

Following [12], we compute the similarity of two repre-
sentations z

(v)
i and z

(u)
j as the cosine similarity:

s
(vu)
ij =

z
(v)
i

T z
(u)
j

||z(v)
i || · ||z(u)

j ||
. (9)

Note that in [12], they show that the addition of a projection
head between the representations and the similarity, results
in better representations – in terms of linear classification
accuracy on the learned representations. We found that this
was not the case for our model, so we chose to compute the
similarity on the representations directly. Experiments com-
paring versions of our model with and without the projection
head can be found in the supplementary.

In order to define a contrastive loss for an arbitrary num-
ber of views, we introduce the following generalized version
of the NT-Xent loss [12]:

Lcontrastive =
1

nV (V − 1)

n∑

i=1

V∑

v=1

V∑

u=1

1{u 6=v}ℓ
(uv)
i (10)

where 1{u 6=v} evaluates to 1 when u 6= v and 0 otherwise,
and

ℓ
(uv)
i = − log

es
(uv)
ii /τ

∑
s′∈Neg(z

(v)
i ,z

(u)
i )

es′/τ
. (11)

Here, τ is a hyperparameter5, and Neg(z
(v)
i , z

(u)
i ) denotes

the set of similarities for negative pairs corresponding to the
positive pair (z

(v)
i , z

(u)
i ).

5We set τ = 0.1 for all experiments, following [12].

A straightforward way to construct Neg(z
(v)
i , z

(u)
i ) would

be to include the similarity between all views of object i,
and all views of all the other objects within the current
batch. However, minimizing Eq. (11) will result in neg-
ative samples having a low similarity score. This is indeed
the objective of ordinary contrastive learning, but it might
be counteractive to the clustering objective, where we want
objects from the same cluster to be grouped together in the
representation space, and thus be similar to each other. To
prevent the contrastive loss from breaking this group struc-
ture, we construct Neg(z

(v)
i , z

(u)
i ) in the following manner:

First, we define the set

Ni = {s
(uv)
ij : j = 1, . . . , n, j 6= i, u, v = 1, . . . , V,

arg max αi 6= arg max αj}, (12)

which consists of all similarities between all views of ob-
ject i, and all views of all other objects that were assigned
to a different cluster than object i. We then construct
Neg(z

(v)
i , z

(u)
i ) by sampling a fixed number of similarities

from Ni. This procedure ensures that we only repel repre-
sentations of objects that were assigned to different clusters
by the clustering module.

CoMVC is the result of adding this contrastive learning
framework to SiMVC. Figure 3 shows a schematic overview
of the model for a dataset containing two views.

The loss we use to train CoMVC is

L = Lcluster + δ · min{w1, . . . , wV }Lcontrastive (13)

where Lcluster is the clustering loss defined in Eq. (8), and
δ is a hyperparameter which influences the strength of the
contrastive loss. w1, . . . wV are the fusion weights from
SiMVC6.

Minimizing the contrastive loss results in representations
that have high cosine similarities. The contrastive alignment
is therefore (i) approximate, since only the angles between
representations, and not the representations themselves, are
considered; and (ii) at the sample level, preventing mis-
aligned label distributions. Furthermore, multiplying the
contrastive loss with the smallest fusion weight automati-
cally adjusts the strength of the contrastive loss, according
to the weight of the least informative view. The alignment is
therefore selective: If the model learns to discard a view by
setting its fusion weight to 0, it will simultaneously disable
the alignment procedure. By adapting the alignment weight
and not relying on adversarial training, CoMVC can bene-
fit from the advantages of aligning representations, while
circumventing both the drawbacks of adversarial alignment,
and possible difficulties with min-max optimization [4, 19].

6Note that we do not propagate gradients through the min operation, in
order to avoid the trivial solution of setting the smallest fusion weight to 0.
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4. Related work

In this section we will give a brief summary of the exist-
ing work on multi-view clustering, as well as related work
discussing modality alignment in multi-modal learning. Ex-
isting methods for multi-view clustering can be divided into
two categories: Traditional (non-deep learning based) meth-
ods and deep learning based methods.

Traditional methods. Two-stage methods first learn a
common representation from all the views, before cluster-
ing them using a single-view clustering algorithm [7, 11].
However, recent work shows that letting the learned rep-
resentation adapt to the clustering algorithm leads to bet-
ter clusterings [56]. In order to avoid this drawback of
two-stage approaches, non-negative matrix factorization
[8, 15, 24, 57, 63] has been used to compute the cluster
assignment matrix directly from the data matrices. Simi-
larly, subspace methods assume that observations can be
represented by one or more self-representation matrices
[5, 10, 37, 41, 55, 58, 59, 61] and use the self-representation
matrices to identify linear subspaces of the vector space
spanned by all the observations, that represent distinct clus-
ters. Alternative popular approaches include methods based
on graphs [44, 48, 50, 51, 60, 65] and kernels [16, 18, 35, 39],
which both assume that the data can be represented with one
or more kernel (or affinity) matrices such that respective
clusterings can be found based on these matrices.

Deep learning based methods. Deep learning based two-
stage methods [2, 43, 52] work similarly to the two-stage
methods described above, but instead use deep neural net-
works to learn the common representation. However, the
two-stage methods are regularly outperformed by deep end-
to-end methods that adapt their representation learning net-
works to the subsequent clustering module. Deep graph-
based methods [14, 25, 26, 34] for instance, use affinity
matrices together with graph neural networks to directly
cluster the data. Similarly, deep subspace methods [1, 3]
make the same subspace assumption as above, but compute
the self-representation matrix from an intermediate repre-
sentation in their deep neural network. Lastly, adversarial
methods [36, 64] use generators and discriminators to align
distributions of hidden representations from different views.
These adversarial methods have outperformed the previous
approaches to multi-view clustering, yielding state of the art
clustering performance on several multi-view datasets.

Distribution alignment. Outside the field of multi-view
clustering, the problem of naı̈vely aligning distributions has
recently found increasing attention [62, 53], and led to more
efficient fusion techniques [23, 9, 46]. However, this ef-
fort has largely been restricted to supervised multi-modal
learning frameworks and domain adaptation approaches.

5. Experiments
5.1. Setup

Implementation. Our models are implemented in the Py-
Torch [45] framework. We train the models for 100 epochs
on mini-batches of size 100, using the Adam optimization
technique [31] with default parameters. We observe that 100
epochs is sufficient for the training to converge. Training
is repeated 20 times, and we report the results from the run
resulting in the lowest value of L1 in the clustering loss. The
σ hyperparameter was set to 15% of the median pairwise
distance between hidden representations within a mini-batch,
following [30]. For the contrastive model, we set the number
of negative pairs per positive pair to 25 for all experiments.
We set δ = 0.1 for the two-view datasets, and δ = 20 for the
three-view datasets. We observe that the three-view datasets
benefit from stronger contrastive alignment. Our implemen-
tation and a complete overview of the architecture details
can be found in the supplementary.
Datasets. We evaluate our models using six well-known
multi-view datasets [36, 64], containing both raw image
data, and vector data. These are: (i) PASCAL VOC 2007
(VOC) [17]. We use the version provided by [27], which
contains GIST features and word frequency counts for man-
ually tagged natural images. (ii) Columbia Consumer Video
(CCV) [29], which consists of SIFT, STIP and MFCC fea-
tures from internet videos. (iii) Edge-MNIST (E-MNIST)
[38], which is a version of the ordinary MNIST dataset where
the views contain the original digit, and an edge-detected
version, respectively. (iv) Edge-FashionMNIST (E-FMNIST)
[54], which consists of grayscale images of clothing items.
We synthesize a second view by running the same edge-de-
tector as the one used to create E-MNIST. (v) COIL-20 [42],
which contains grayscale images of 20 items, depicted from
different angles. We create a three-view dataset by ran-
domly grouping the images for an item into groups of three.
(vi) SentencesNYU v2 (RGB-D) [32], which consists of im-
ages of indoor scenes along with descriptions of each image.
Following [64], we use image features from a ResNet-50
without the classification head, pre-trained on the ImageNet
dataset, as the first view. Embeddings of the image descrip-
tions using a pre-trained doc2vec model on the Wikipedia
dataset constitute the second view7.

Note that, for the datasets with multiple labels, we select
the objects with exactly one label. See Table 1 for more
information on the evaluation datasets.
Baseline models. We compare our models to an extensive
set of baseline methods, which represent the current state
of the art for multi-view clustering: (i) Spectral Cluster-
ing (SC) [47] on each view, and the concatenation of all
views SC(con); (ii) Robust Multi-view K-means Cluster-
ing (RMKMC) [8]; (iii) tensor-based Representation Learn-

7We provide the details of these pre-trained models in the supplementary.
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Dataset Objs. Cats. Views Dims.

VOC 5649 20 2 512, 399
CCV 6773 20 3 5000, 5000, 4000
E-MNIST 60000 10 2 28 × 28
E-FMNIST 60000 10 2 28 × 28
COIL-20 480 20 3 128 × 128
RGB-D 1449 13 2 2048, 300

Table 1: Summary of the datasets used for evaluation. Objs.
and Cats. denote the number of objects and categories
present in the dataset, respectively. Views and Dims. de-
note the number of views, and the dimensionality of each
view, respectively. Note that for E-MNIST, E-FMNIST, and
COIL-20, the input dimensionality is the same for all views.

ing Multi-view clustering tRLMvc [15]; (iv) Consistent and
Specific Multi-view Subspace Clustering (CSMSC) [41];
(v) Weighted Multi-view Spectral Clustering (WMSC) [65];
(vi) Multi-view Consensus Graph Clustering (MCGC) [60];
(vii) Deep Canonical Correlation Analysis (DCCA) [2];
(viii) Deep Multimodal Subspace Clustering (DMSC) [1];
(ix) Deep Adversarial Multi-view Clustering (DAMC) [36];
and (x) End-to-end Adversarial attention network for Multi–
modal Clustering (EAMC) [64].
Evaluation protocol. To ensure a fair comparison, we
report the baseline results over multiple runs, following [64]8.
To assess the models’ clustering performance, we use the
unsupervised clustering accuracy (ACC) and normalized
mutual information (NMI). For both these metrics, higher
values correspond to better clusterings.

5.2. Results

Quantitive results on VOC, CCV and E-MNIST are shown
in Table 2. The results illustrate that not aligning represen-
tations can have a significant improvement (relative gain in
ACC larger than 29% on E-MNIST) compared to adversar-
ial alignment, while selective alignment always improves
performance. Note that entries for E-MNIST in Table 2
are missing as the number of samples makes the traditional
approaches computationally infeasible.

Table 3 compares SiMVC and CoMVC to the previous
state of the art, EAMC on E-FMNIST, COIL-20 and RGB-D.
Again, we observe that naı̈vely aligning feature represen-
tations tends to worsen performance. This highlights the
importance of being considerate when aligning representa-
tions in multi-view clustering.
Ablation study. We perform an ablation study in order
to evaluate the effects of the different components in the
contrastive loss9. Specifically, we train CoMVC with and
without the proposed negative pair sampling and the adap-
tive weight factor (min{w1, . . . , wV }), on E-MNIST and

8The details of the evaluation protocol are given in the supplementary.
9We include an ablation study with the DDC loss in the supplementary.

Dataset VOC CCV E-MNIST
Metric ACC NMI ACC NMI ACC NMI
SC(1) 38.4 39.2 10.2 0.5
SC(2) 40.2 41.1 18.8 17.3
SC(3) 11.3 0.8
SC(con) 37.2 38.7 9.3 7.4
RMKMC 45.8 46.9 17.6 16.5
tRLMvc 53.4 54.7 21.2 22.6
CSMSC 48.8 49.6 19.4 18.6
WMSC 47.1 46.2 20.5 19.6
MCGC 52.7 54.6 22.4 21.6
DCCA 39.7 42.5 17.3 18.2 47.6 44.3
DMSC 54.1 53.8 18.3 19.4 65.3 61.4
DAMC 56.0 55.2 24.3 23.1 64.6 59.4
EAMC 60.7 61.5 26.1 26.6 66.8 62.8

SiMVC 55.1
(-5.6)

61.5
(+0.0)

14.4
(-11.7)

11.2
(-15.4)

86.2
(+19.4)

82.6
(+19.8)

CoMVC 61.9
(+1.2)

67.5
(+6.0)

29.5
(+3.4)

28.7
(+2.1)

95.5
(+28.7)

90.7
(+27.9)

Table 2: Clustering metrics [%] on VOC, CCV, and E-
MNIST. The best and second best are highlighted in bold.
The differences between our models and the best baseline
model are shown in parentheses. Green differences indicate
improvements. Baseline results are taken from [64].

Dataset E-FMNIST COIL-20 RGB-D
Metric ACC NMI ACC NMI ACC NMI
EAMC 55.2 62.5 69.0 75.3 32.3 20.7

SiMVC 56.8
(+1.6)

50.7
(-11.8)

77.5
(+8.5)

91.8
(+16.5)

39.6
(+7.3)

35.6
(+14.9)

CoMVC 59.5
(+4.3)

52.3
(-10.2)

89.4
(+20.4)

95.7
(+20.4)

41.3
(+9.0)

40.5
(+19.8)

Table 3: Clustering metrics [%] on E-FMNIST, COIL-20
and RGB-D. Same formatting as in Table 2.

Neg. samp. Ad. weight ACC [%] NMI [%]

E
-M

N
IS

T – – 87.4 86.8
– ✓ 94.7 89.5
✓ – 87.5 86.6
✓ ✓ 95.5 90.7

V
O

C

– – 54.7 61.3
– ✓ 55.3 60.7
✓ – 58.5 67.4
✓ ✓ 61.9 67.5

Table 4: Ablation study results for CoMVC on E-MNIST
and VOC.

VOC. When we remove the negative sampling, we con-
struct Neg(z

(v)
i , z

(u)
i ) by including the similarities between

all views of object i, and all views of all the other objects
within the current batch.
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EAMC SiMVC CoMVC

View 1 2 3 1 2 3 1 2 3

VOC 48 52 47 53 64 36
CCV 26 38 36 32 35 33 1 75 24
E-MNIST 48 52 95 05 67 33
E-FMNIST 53 47 78 22 99 1
COIL-20 32 32 36 33 35 32 34 32 34
RGB-D 53 47 59 41 59 41

Table 5: Fusion weights [%] for EAMC, SiMVC, and
CoMVC. For EAMC, we split the entire dataset into batches
of size 100 and report the average weight over these batches.
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Figure 4: Fusion weights and clustering accuracy (ACC) on
E-MNIST, with increasing levels of Gaussian noise added to
the second view.

Results of the ablation study (Table 4) show that dropping
the adaptive weighting and the negative sampling strategy
both have a negative impact on CoMVC’s performance. This
justifies their inclusion in the final contrastive loss.
View prioritization. Table 5 shows the weight parameters
that are obtained for EAMC, SiMVC and CoMVC for all
datasets. EAMC always produces close to uniform weight
distributions, while SiMVC and CoMVC are able to suppress
uninformative views. Note, for datasets, such as COIL-20,
where views are assumed equally important10, we do also
observe close to uniform weight distributions for SiMVC
and CoMVC.

To further assess our models’ capabilities to prioritize
views, we corrupt the edge-view (view 2) in E-MNIST with
additive Gaussian noise, and record the models’ performance
as the standard deviation of the noise increases. We also re-
peat the experiment for the EAMC model, as it represents the
current state of the art. Figure 4 shows the resulting fusion
weights for the noisy view and the clustering accuracies, for
different noise levels. For SiMVC and CoMVC, we observe
that the weight of the noisy view decreases as the noise in-
creases. The mechanism for prioritizing views thus works
as expected. SiMVC and CoMVC can therefore produce ac-
curate clusterings, regardless of the noise level. Conversely,

10Since views in COIL-20 refer to objects depicted from random angles.
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Figure 5: Learned representations before and after fusion
for regular (top) and noisy (σ = 1) E-MNIST (bottom).
Projected to 2-D using T-SNE.

we observe that the attention mechanism in EAMC is unable
to produce fusion weights that suppress the noisy view. This
results in a significant drop in clustering accuracy, as the
noise increases.
Selective alignment in CoMVC. Figure 5 demonstrates
the selective alignment in CoMVC, for the noise-free and
noisy variants of the E-MNIST dataset. In the noise-free
case, CoMVC aligns the representations, resulting in clusters
that are well separated. When the second view has been
corrupted by noise however, it is discarded by the view
prioritization mechanism, by setting its fusion weight to
0. This simultaneously disables the alignment procedure,
preventing the fused representation from being corrupted by
the noisy view, thus preserving the cluster structure.

6. Conclusion
Our work highlights the importance of considering repre-

sentation alignment when performing multi-view clustering.
Comparing the results of our SiMVC to previous results
illustrates that naı̈vely aligning distributions using adver-
sarial learning can prevent the model from learning good
clusterings, while CoMVC illustrates the benefit of selective
alignment, leveraging the best of both worlds.
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Supplementary material:

Reconsidering Representation Alignment for Multi-view Clustering

Daniel J. Trosten Sigurd Løkse Robert Jenssen Michael Kampffmeyer
Department of Physics and Technology, UiT The Arctic University of Norway*

1. Pitfalls of distribution alignment in multi-
view clustering

1.1. Proof sketch for Proposition 1

Proof sketch. Suppose that, for view v, the kv clusters in
the input space, are mapped to cv unique points in the rep-
resentation space. This is possible under assumptions 1 and
2. The number of unique clusters after fusion is then upper
bounded by the number of unique linear combinations on
the form:

V∑

v=1

wvc
(v)
? (1)

where c(v)? is one of the cv points obtained by mapping the
kv unique points (clusters) for view v, to the representation
space. Note that the encoders might not be injective, mean-
ing that we can have cv < kv. Under assumption 3, the
maximum number of unique such linear combinations is
equal to c1 · c2 · · · cV =

∏V
v=1 cv. Since we only have k

clusters in the entire dataset, the number of unique clusters
after fusion will also be upper bounded by k. This gives:

κfused
· = min

{
k,

V∏

v=1

cv

}
. (2)

Perfectly aligned representations. Clusters that are sepa-
rated in the input space can be mapped to the same centroid
in the representation space, but not vice versa. I.e. it is not
possible for the encoding network to separate two clusters
that lie at the same point in the input space. The perfect
alignment constraint therefore forces the number of unique
points to be equal to the smallest kv for each cluster. That is:

cv = min
w=1,...,V

{kw}, v = 1, . . . , V. (3)

*UiT Machine Learning Group, machine-learning.uit.no

We then get

κfused
aligned = min

{
k,

V∏

v=1

min
w=1,...,V

{kw}
}

(4)

= min

{
k,

(
min

v=1,...,V
{kv}

)V
}

(5)

Unaligned representations. Here the encoder for view v
has the ability to map the kv separable clusters to kv unique
representations, which do not coincide with the represen-
tations from any other views. We therefore get cv = kv,
and

κfused
not aligned = min

{
k,

V∏

v=1

cv

}
(6)

= min

{
k,

V∏

v=1

kv

}
. (7)

1.2. Experiments with toy data

Figure 1 shows the results of our toy experiment with
3 clusters instead of 5. The dataset is shown in Figure
2. Similarly to the experiment with 5 clusters, we ob-
serve that SiMVC + Adv. partially aligns the distributions.
Due to the reduced number of clusters however, it is still
possible to separate the clusters after fusion. This out-
come is consistent with Proposition 1, from which we get
κfused

aligned = min{3, 22} = 3.
For CoMVC, we see that the angles between represen-

tations have been aligned, which also results in separable
clusters.

EAMC attempts to align the distributions, which results
in all clusters being mixed together after fusion – similar to
what we observed for the experiment with 5 clusters. For this
experiment, we also observe that EAMC produces approxi-
mately equal fusion weights. This violates assumption 3 in
Proposition 1, and can further reduce the cluster separability
in the space of fused representations.



(a) SiMVC +Adv. ACC = 0.99 (b) SiMVC. ACC = 1.0. (c) CoMVC. ACC = 1.0. (d) EAMC. ACC = 0.44 .

Figure 1: Representations for SiMVC with and without adversarial alignment, CoMVC, and EAMC on a version of our toy
dataset with 3 clusters.

Figure 2: Toy dataset with 3 clusters. View 1: Class 1
is isolated, and classes (2,3) overlap. View 2: Class (1,2)
overlap, and class 3 is isolated.

2. Methods

2.1. CoMVC with projection head

Table 1 shows the results of an extension of the ablation
study for CoMVC, where we also include a projection head
between the view representations and the cosine similar-
ity. Following [1], we let the projection head be two fully
connected layers, separated by a ReLU-nonlinearity. Batch
normalization is applied after both layers. The results show
that some configurations benefit marginally from the addi-
tion of a projection head. However, adding the projection
head does not improve the overall performance of CoMVC.
We therefore chose to not include it in the final model.

Dataset
Projection

head
Negative
sampling

Adaptive
weight

ACC
[%]

NMI
[%]

E
-M

N
IS

T

– – – 87.4 86.8
– 3 – 87.5 86.6
– – 3 94.7 89.5
– 3 3 95.5 90.7

3 – – 87.5 86.9
3 3 – 88.2 86.3
3 – 3 87.4 87.2
3 3 3 77.1 77.5

V
O

C

– – – 54.7 61.3
– 3 – 58.5 67.4
– – 3 55.3 60.7
– 3 3 61.9 67.5

3 – – 53.4 58.2
3 3 – 57.0 63.2
3 – 3 62.4 65.3
3 3 3 55.2 59.6

Table 1: CoMVC ablation study with and without a projec-
tion head.

2.2. Ablation study: clustering loss

Here, we perform an ablation study on the E-MNIST
dataset, in order to show the effects of the individual terms
in the DDC [2] clustering loss. Note that, since not all config-



Model L1 L2 L3 ACC [%] NMI [%]

SiMVC

3 – – 19.2 19.6
– 3 – 38.1 31.4
– – 3 75.2 73.9
3 3 – 78.2 78.6
3 – 3 76.6 77.5
– 3 3 77.4 76.9
3 3 3 86.2 82.6

CoMVC

3 – – 19.3 20.6
– 3 – 36.5 25.2
– – 3 72.8 71.7
3 3 – 71.3 73.2
3 – 3 78.0 78.2
– 3 3 74.8 73.5
3 3 3 95.5 90.7

Table 2: Results of an ablation study where we systematically
drop terms from the clustering loss. The checkmarks indicate
which terms that are included in each configuration.

urations include the L1 term, we select models based on the
sum of the included terms instead. The resulting accuracies
for SiMVC and CoMVC when we systematically drop terms
from the clustering loss, are listed in Table 2. These results
are in line with previous ablation studies conducted on the
DDC clustering loss [2, 5]: The models perform best when
all terms are included – dropping terms from the clustering
loss reduces the performance of both SiMVC and CoMVC.

3. Experiments
3.1. Source code

The source code for our experiments is publicly available
at https://github.com/DanielTrosten/mvc.

3.2. Details of pre-trained models

For RGB-D, we use the following pre-trained models to
extract features for the respective views:

• View 1: ResNet-50 pre-trained on the ImageNet dataset.
We use the version available in PyTorch1, and remove
the last (classification) layer.

• View 2: Doc2Vec pre-trained on the Wikipedia dataset.
We use the pre-trained model available at https://
github.com/jhlau/doc2vec.

Note that the same types of architectures are used in [5] to
extract features for RGB-D. However, the authors do not
supply the model and training details required to exactly
reproduce their features.

1Documentation for the model can be found at https://pytorch.
org/docs/stable/torchvision/models.html

Layer type Neurons Activation Batch-norm

FC 512 ReLU 5
FC 512 ReLU 5
FC 256 ReLU 5

(a) Fully connected encoder. FC: fully connected layer.

Layer
type

Filter
size Filters Activation

Batch-
norm

Conv 5× 5 32 ReLU 5
Conv 5× 5 32 ReLU 3

MaxPool 2× 2 – – 5
Conv 3× 3 32 ReLU 5
Conv 3× 3 32 ReLU 3

MaxPool 2× 2 – – 5

(b) Convolutional neural network encoder. Conv: convolutional
layer. MaxPool: max-pooling layer. Note that Batch normaliza-
tion is applied before the activation function.

Layer type Neurons Activation Batch-norm

FC 100 ReLU 3
FC k softmax 5

(c) Clustering module. k denotes the number of clusters.

Table 3: Network architectures.

3.3. Model architectures and hyperparameters

SiMVC and CoMVC trained on VOC, CCV, and RGB-D
use fully connected encoders (Table 3a) for all views. On
E-MNIST, E-FMNIST and COIL our models use convolu-
tional neural network encoders for all views (Table 3b). The
clustering module (Table 3c) is the same for all experiments
with SiMVC and CoMVC.

Table 4 lists the other hyperparameters that are not part
of the model architectures. We use gradient clipping, and
clip gradients with norms greater than ”Max gradient norm”.
For some datasets, we found that decaying the learning rate
helped the models converge. On these datasets, we reduce
the learning rate once, at epoch ”Decay step”, with a factor
of ”Decay factor”.

3.4. Evaluation protocol

For VOC, CCV, and E-MNIST, we use the baseline results
obtained by [5]. For all baseline models, except EAMC, they
run the model 10 times and report the average ACC and
NMI. For EAMC, they train the model 20 times, and report
the results from the run which resulted in the lowest value of
the loss function. We follow the same evaluation procedure
for EAMC, when we evaluate it on E-FMNIST, COIL-20,



Dataset Model
Batch
size Epochs τ δ

Negative
samples

Max
gradient

norm

Initial
learning

rate

Decay
step

Decay
factor

VOC SiMVC 100 100 0.1 0.1 – 5 0.001 50 0.1
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

CCV SiMVC 100 100 0.1 20 – 5 0.001 – –
CoMVC 100 100 0.1 20 25 5 0.001 50 0.1

E-MNIST SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

E-FMNIST SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 – –

COIL-20 SiMVC 100 100 0.1 20 – 5 0.001 – –
CoMVC 100 100 0.1 20 25 5 0.001 – –

RGB-D SiMVC 100 100 0.1 0.1 – 5 0.001 – –
CoMVC 100 100 0.1 0.1 25 5 0.001 50 0.5

Table 4: Hyperparameters used to train SiMVC and CoMVC.

SwMPC [4] RSwMPC [3] SiMVC CoMVC

ACC 0.1679 0.2778 0.2717 0.2892
NMI 0.0899 0.1810 0.1767 0.2052

Table 5: Comparison with [4, 3] on NUS-WIDE-Animal [3].

EAMC SiMVC CoMVC

sec/epoch 33.48 12.18 14.28

Table 6: Time spent per training epoch for EAMC, SiMVC
and CoMVC on E-FMNIST.

and RGB-D.

3.5. Experiments on NUS-WIDE-Animal

Table 5 shows the performance of our models on NUS-
WIDE-Animal [3] (a subset of NUS-WIDE containing the
animal classes only) compared to two additional models
[4, 3] (as reported in [3]). SiMVC performs comparable,
while CoMVC outperforms the competitors.

3.6. Training times

Table 6 shows the average time spent per training
epoch for EAMC, SiMVC, and CoMVC. Both SiMVC and
CoMVC are more than twice as fast to train per epoch, when
compared to EAMC. We believe that this is due to the extra
components (attention network, discriminator) included in
EAMC. SiMVC is a bit faster to train than CoMVC, due to
the extra computations introduced by the contrastive loss.
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Abstract

Self-supervised learning is a central component in re-
cent approaches to deep multi-view clustering (MVC). How-
ever, we find large variations in the development of self-
supervision-based methods for deep MVC, potentially slow-
ing the progress of the field. To address this, we present Deep-
MVC, a unified framework for deep MVC that includes many
recent methods as instances. We leverage our framework to
make key observations about the effect of self-supervision,
and in particular, drawbacks of aligning representations
with contrastive learning. Further, we prove that contrastive
alignment can negatively influence cluster separability, and
that this effect becomes worse when the number of views in-
creases. Motivated by our findings, we develop several new
DeepMVC instances with new forms of self-supervision. We
conduct extensive experiments and find that (i) in line with
our theoretical findings, contrastive alignments decreases
performance on datasets with many views; (ii) all methods
benefit from some form of self-supervision; and (iii) our new
instances outperform previous methods on several datasets.
Based on our results, we suggest several promising direc-
tions for future research. To enhance the openness of the
field, we provide an open-source implementation of Deep-
MVC, including recent models and our new instances. Our
implementation includes a consistent evaluation protocol,
facilitating fair and accurate evaluation of methods and
components1.

1. Introduction
Multi-view clustering (MVC) generalizes the cluster-

ing task to data where the instances to be clustered are
observed through multiple views, or by multiple modali-

*UiT Machine Learning group (machine-learning.uit.no) and
Visual Intelligence Centre (visual-intelligence.no).

†Norwegian Computing Center (nr.no).
‡Department of Computer Science, University of Copenhagen.
§Pioneer Centre for AI (aicentre.dk).
1Code: https://github.com/DanielTrosten/DeepMVC
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Figure 1. Overview of the DeepMVC framework for a two-view
dataset. Different colors denote different components. The frame-
work is generalizable to an arbitrary number of views by adding
more view specific encoders (f ) and SV-SSL blocks.

ties. In recent years, deep learning architectures have seen
widespread adoption in MVC, resulting in the deep MVC
subfield. Methods developed within this subfield have shown
state-of-the-art clustering performance on several multi-view
datasets [14, 19–21, 29, 33], largely outperforming tradi-
tional, non-deep-learning-based methods [33].

Despite these promising developments, we identify sig-
nificant drawbacks with the current state of the field. Self-
supervised learning (SSL) is a crucial component in many
recent methods for deep MVC [14, 19–21, 29, 33]. However,
the large number of methods, all with unique components
and arguments about how they work, makes it challenging
to identify clear directions and trends in the development
of new components and methods. Methodological research
in deep MVC thus lacks foundation and consistent direc-
tions for future advancements. This effect is amplified by
large variations in implementation and evaluation of new
methods. Architectures, data preprocessing and data splits,
hyperparameter search strategies, evaluation metrics, and
model selection strategies all vary greatly across publica-
tions, making it difficult to properly compare methods from
different papers. To address these challenges, we present a
unified framework for deep MVC, coupled with a rigorous
and consistent evaluation protocol, and an open-source im-
plementation. Our main contributions are summarized as
follows:
(1) DeepMVC framework. Despite the variations in the
development of new methods, we recognize that the major-
ity of recent methods for deep MVC can be decomposed



into the following fixed set of components: (i) view-specific
encoders; (ii) single-view SSL; (iii) multi-view SSL; (iv) fu-
sion; and (v) clustering module. The DeepMVC framework
(Figure 1) is obtained by organizing these components into a
unified deep MVC model. Methods from previous work can
thus be regarded as instances of DeepMVC.
(2) Theoretical insight on alignment and number of
views. Contrastive alignment of view-specific represen-
tations is an MV-SSL component that has demonstrated
state-of-the-art performance in deep MVC [19]. We study a
simplified case of deep MVC, and find that contrastive align-
ment can only decrease the number of separable clusters in
the representation space. Furthermore, we show that this
potential negative effect of contrastive alignment becomes
worse when the number of views in the dataset increases.
(3) New instances of DeepMVC. Inspired by initial find-
ings from the DeepMVC framework, and our theoretical find-
ings on contrastive alignment, we develop 6 new instances of
DeepMVC, which outperform current state-of-the-art meth-
ods on several multi-view datasets. The new instances in-
clude both novel and well-known types of self-supervision,
fusion and clustering modules.
(4) Open-source implementation of DeepMVC and evalu-
ation protocol. We provide an open-source implementation
of DeepMVC, including several recent methods and our new
instances. The implementation includes a shared evalua-
tion protocol for all methods, and all datasets used in the
experimental evaluation. By making the datasets and our
implementation openly available, we aim to facilitate sim-
pler development of new methods, as well as rigorous and
accurate comparisons between methods and components.
(5) Evaluation of methods and components. We use
the implementation of DeepMVC to evaluate and compare
several recent state-of-the-art methods and SSL components
– both against each other, and against our new instances. In
our experiments, we both provide a consistent evaluation of
methods in deep MVC, and systematically analyze several
SSL-based components – revealing how they behave under
different experimental settings.
The main findings from our work are:
• We show that aligning view-specific representations can

have a negative impact on cluster separability, especially
when the number of views becomes large. In our experi-
ments, we find that contrastive alignment of view-specific
representations works well for datasets with few views,
but significantly degrades performance when the number
of views increases. Conversely, we find that maximization
of mutual information performs well with many views,
while not being as strong with fewer views.

• All methods included in our experiments benefit from at
least one form of SSL. In addition to contrastive alignment
for few views and mutual information maximization for
many views, we find that autoencoder-style reconstruction
improves overall performance of methods.

• Properties of the datasets, such as class (im)balance and
the number of views, heavily impact the performance of
current MVC approaches. There is thus not a single “state-
of-the-art” – it instead depends on the datasets considered.

• Results reported by the original authors differ significantly
from the performance of our re-implementation for some
baseline methods, illustrating the necessity of a unified
framework with a consistent evaluation protocol.

2. DeepMVC framework
In this section we present the DeepMVC framework, its

components and their purpose, and how they fit together.
This allows us to, in the next section, summarize recent
work on deep MVC, and illustrate that the majority of recent
methods can be regarded as instances of DeepMVC.

Suppose we have a multi-view dataset consisting of n
instances and V views, and let x

(v)
i be the observation

of instance i through view v. The task of the DeepMVC
framework is then to cluster the instances into k clusters,
and produce cluster membership indicators αic ∈ [0, 1],
c = 1, . . . , k. The framework is illustrated in Figure 1. It
consists of the following components.
View-specific encoders. The framework is equipped with V
deep neural network encoders f (1), . . . , f (V ), one for each
view. Their task is to produce the view-specific representa-
tions z(v)

i = f (v)(x
(v)
i ) from the input data.

Single-view self-supervised learning (SV-SSL). The SV-
SSL component consists of a set of pretext tasks (auxiliary
objectives) that are designed to aid the optimization of the
view-specific encoders. Specifically, the tasks should be
designed to help the encoders learn representations that sim-
plify the clustering task. Each pretext task is specific to its
designated view, and is isolated from all other views.
Multi-view self-supervised learning (MV-SSL). MV-SSL
is similar to SV-SSL – they are both self-supervised modules
whose goals are to help the encoders learn representations
that are suitable for clustering. However, MV-SSL leverages
all views simultaneously in the pretext tasks, allowing the
model to exploit information from all views simultaneously
to learn better features.
Fusion. This component combines view-specific represen-
tations into a shared representation for all views. Fusion is
typically done using a (weighted) average [11, 19], or by
concatenation [5, 26, 29]. More complex fusion modules
using e.g. attention mechanisms [33], are also possible.
Clustering module (CM). The CM is responsible for de-
termining cluster memberships based on view-specific or
fused representations. The CM can consist of a traditional
clustering method, such as k-means [13] or Spectral Cluster-
ing [16]. Such CMs are applied to the fused representations
after other components have been trained, resulting in a two-
stage method that first learns fused representations, and then
applies a clustering algorithm to these representations.



Alternatively, the CM can be integrated into the
model [19, 33], allowing it to be trained alongside other
components, resulting in fused representations that are better
suited for clustering.
Loss functions and training. The loss functions for the
models are specified by the SV-SSL, MV-SSL, and CM
components. To train the model, the terms arising from
the different components can be minimized simultaneously
or they can be minimized in an alternating fashion. It is
also possible with pre-training/fine-tuning setups where the
model is pre-trained with one subset of the losses and fine-
tuned with another subset of the losses.

We note that DeepMVC is a conceptual framework, and
that a model is not necessarily completely described by a
list of its DeepMVC components. Consequently, it is pos-
sible for two models with similar DeepMVC components
to have slightly different implementations. This illustrates
the importance of our open-source implementation of Deep-
MVC, which allows the implementation of a model to be
completely transparent.

3. Previous methods as instances of DeepMVC
Table 1 shows selected recent methods for deep MVC

(the full table can be found in the supplementary), catego-
rized by its DeepMVC components, allowing for systematic
comparisons between models2.
View-specific encoders. As can be seen in Table 1, all
models use view-specific encoders to encode views into
view-specific embeddings. Multi-layer perceptrons (MLPs)
are usually used for vector data, while convolutional neural
networks (CNNs) are used for image data.
SV-SSL and MV-SSL. Alongside the encoder network,
many methods use decoders to reconstruct the original views
from either the view-specific representations or the fused
representation. The reconstruction task is the most com-
mon self-supervised pretext task, both for SV-SSL and for
MV-SSL. In SV-SSL, the views are reconstructed from their
respective view-specific representations, without any influ-
ence from the other views [1, 17, 18, 22, 28, 31, 32, 35].
In MV-SSL, it is common to either do (i) cross view re-
construction, where all views are reconstructed from all
view-specific representations [34]; or (ii) fused view recon-
struction, where all views are reconstructed from the fused
representation [11, 20, 30, 34].

Aligning distributions of view-specific representations is
another MV-SSL pretext task that has been shown to produce
representations suitable for clustering [33]. However, [19]
demonstrate that the alignment of representation distribu-
tions can be detrimental to the clustering performance – espe-

2Note, here we limit our discussion to MVC approaches without missing
data. While most of the theoretical and empirical results also generalize to
the emerging incomplete MVC setting [12, 23, 27], we consider it out of
scope of this work.

cially in the presence of noisy or non-informative views. To
avoid these drawbacks, they propose Simple MVC (SiMVC)
and Contrastive MVC (CoMVC). In the former, the align-
ment is dropped altogether, whereas the latter includes a
contrastive learning module that aligns the view-specific
representations at the instance level, rather than at the distri-
bution level.
Clustering modules. Many deep MVC methods use
subspace-based clustering modules [1, 17, 21, 34]. These
methods assume that representations, either view-specific
or fused, can be decomposed into linear combinations of
each other. Once determined, the self-representation matrix
containing the coefficients for these linear combinations is
used to compute an affinity matrix, which in turn is used
as input to spectral clustering. This requires the full n× n
self-representation matrix available in memory, which is
computationally prohibitive for datasets with a large number
of instances.

Other clustering modules have also been adapted to deep
MVC. The clustering module from Deep Embedded Clus-
tering (DEC) [25], for instance, is used in several mod-
els [2, 11, 20, 26, 28]. Recently, the Deep Divergence-Based
Clustering (DDC) [7] clustering module has been used in
several state-of-the-art deep MVC models [19, 33]. In ad-
dition, some methods treat either the encoder output or the
fused representation as cluster membership vectors [14, 31].

Lastly, some methods adopt a two-stage approach, where
they first use the SSL components to learn representations,
and then apply a traditional clustering method, such as k-
means [4, 5, 29, 32, 35], a Gaussian mixture model [30], or
spectral clustering [22], on the trained representations.

4. Contrastive alignment in deep MVC
As can be seen in Table 1, SSL components are crucial in

recent state-of-the-art methods for deep MVC. Recent works
have focused on aligning view-specific representations [19,
33], and in particular, contrastive alignment [19]. We study a
simplified setting where, for each view, all observations in a
cluster are located at the same point. This allows us to prove
that aligning view-specific representations has a negative
impact on the cluster separability after fusion. This is the
same starting point as in [19], but we extend the analysis to
investigate contrastive alignment when the number of views
increases.

Proposition 1 (Adapted from [19]). Suppose the dataset
consists of n instances, V views, and k ground-truth clusters,
and that view-specific representations are computed with
view-specific encoders as z(v)

i = f (v)(x
(v)
i ). Furthermore,

assume that:

• For all v ∈ {1, . . . V } and j ∈ {1, . . . , k},
∀i ∈ Cj ,x(v)

i = c(v) ∈ {c(v)1 , . . . , c
(v)
kv
} (1)



Model Pub. Enc. SV-SSL MV-SSL Fusion CM
DCCAE [22] ICML’15 MLP Reconstruction CCA 1st view SC

DMSC [1] J. STSP’18 CNN Reconstruction – Affinity
fusion SR, SC

MvSCN [5] IJCAI’19 MLP Sp. Emb. MSE Al. Concat. k-means
DAMC [11] IJCAI’19 MLP – Reconstruction Average DEC
SGLR-MVC [30] AAAI’20 MLP Variational Reconstruction Variational Reconstruction Weighted sum GMM

EAMC [33] CVPR’20 MLP – Distribution Al.,
Kernel Al. Attention DDC

SiMVC [19] CVPR’21 MLP/CNN – – Weighted sum DDC
CoMVC [19] CVPR’21 MLP/CNN – Contrastive Al. Weighted sum DDC

Multi-VAE [29] ICCV’21 CNN – Variational Reconstruction Concat. Gumbel,
k-means

DMIM [14] IJCAI’21 MLP Min. superflous
information

Max. shared
information ? Encoder

output

Model Category Enc. SV-SSL MV-SSL Fusion CM
AE–KM Simple MLP/CNN Reconstruction – Concat. k-means
AE–DDC Simple MLP/CNN Reconstruction – Weighted sum DDC
AECoKM Contrastive Al. MLP/CNN Reconstruction Contrastive Al. Concat. k-means
AECoDDC Contrastive Al. MLP/CNN Reconstruction Contrastive Al. Weighted sum DDC
InfoDDC Mutual info. MLP/CNN – Max. mutual info. Weighted sum DDC
MV-IIC Mutual info. MLP/CNN – IIC Overclustering – IIC, k-means

Table 1. Overview of selected methods from previous work (top) and proposed new instances (bottom), and their DeepMVC components.
The complete table of previous methods is included in the supplementary. Abbreviations: “–” = Not included, “?” = Not specified,
Al. = Alignment, Concat. = Concatenate, CCA = Canonical correlation analysis, DDC = Deep divergence-based clustering, DEC = Deep
embedded clustering, SC = Spectral clustering, Sp. Emb. = Spectral Embedding, SR = Self-representation

where Cj is the set of indices for instances in cluster
j, and kv ∈ {1, . . . , k} is the number of separable
clusters in view v.

• Representations are fused as zi =
∑V

v=1 wvz
(v)
i where

w1, . . . , wV are all unique.

• For all j ∈ {1, . . . , k},
∀i ∈ Cj , zi = z⋆ ∈ {z⋆

1, . . . ,z
⋆
κ} (2)

Then if z(1)
i = · · · = z

(V )
i (perfectly aligned view-specific

representations),
κ = min{k, ( min

v=1,...,V
{kv})V } (3)

Proof. See [19].

According to Proposition 1, when the view-specific rep-
resentations are perfectly aligned, the number of separable
clusters after fusion, κ, depends on the number of separable
clusters in the least informative view – the view with the
lowest kv. The following propositions show what happens
to min{kv} when the number of views increases3.

Proposition 2. Suppose kv, v ∈ N are random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

P{ min
v=1,...,V+1

{kv} ≤ min
v=1,...,V

{kv}
∣∣∣ k1, . . . , kV } = 1

(4)

3The proofs of Propositions 2 and 3 are given in the supplementary

Proposition 3. Suppose kv, v ∈ N are iid. random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

E( min
v=1,...,V+1

{kv}) ≤ E( min
v=1,...,V

{kv}) (5)

Assuming the view-specific representations are perfectly
aligned, Propositions 2 and 3 show that: (i) Given a number
of views, adding another view will, with probability 1, not
increase min{kv}. (ii) Among two datasets with the same
distribution for the kv , the dataset with the smallest number
of views will have the highest expected value of min{kv}.

In summary, we have shown that contrastive alignment-
based models perform worse when the number of views in
a dataset increases. These findings are supported by the
experimental results in Figure 2 and Table 2 which show
that, when the number of views increases, the contrastive
alignment-based model is outperformed by the model with-
out any alignment.

Alignment as a pretext task. In contrast to our theoretical
findings in the simplified case, Figure 2 and Table 2 show
that contrastive alignment can sometimes be beneficial for
the performance, particularly when the number of views is
small. This is because alignment might be a good pretext task
that helps the encoders learn informative representations, by
learning to represent the information that is shared across
views. However, we emphasize that this is only true when
the number of views is small (≤ 4 in Figure 2), meaning that
alignment should be used with caution when the number of
views increases beyond this point.
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Figure 2. Clustering ac-
curacy for an increas-
ing number of views on
Caltech7.

Dataset w/o align w/ align

Edge-
MNIST

(2 views)
0.89 0.97

Caltech7
(6 views)

0.41 0.38

Patched-
MNIST

(12 views)
0.84 0.73

Table 2. Clustering accuracies on
datasets with varying number of
views.

5. New instances of DeepMVC

With our new instances of DeepMVC, we aim to further
analyze and address the many-views-issue with contrastive
alignment highlighted above, as well as to investigate the
effect of other SSL components. In addition to alignment
of view-specific representations [2, 19, 33], we identify re-
construction [1, 11, 22] and mutual information maximiza-
tion [6, 21] to be promising directions for the new instances.
Maximizing mutual information is particularly interesting,
as it enables the view-specific encoders to represent the in-
formation which is shared across views, without explicitly
forcing the view-specific representations to be aligned. Fur-
thermore, we recognize that simple baselines with few or
no SSL components – exemplified by SiMVC [19] – might
perform similarly to more complicated methods, while being
significantly easier to implement and faster to train. It is
therefore crucial to include such methods in an experimental
evaluation, in order to properly determine whether additional
SSL-based components are beneficial for the models’ per-
formance. Finally, our overview of recent work shows that
both traditional clustering modules (e.g. k-means) and deep
learning-based clustering modules (e.g. DDC) are commonly
used in deep MVC.

In total, we develop 6 new DeepMVC instances in 3
categories. The new instances are summarized in Table 1.
Evaluating these instances and several methods from recent
work, allows us to accurately evaluate methods and com-
ponents, and investigate how they behave for datasets with
varying characteristics.
Simple baselines: AE–KM has view-specific autoencoders
(AEs) with a mean-squared-error (MSE) loss

LSV
Reconstruction =

1

nV

n∑

i=1

V∑

v=1

||x(v)
i − x̂

(v)
i ||2 (6)

as its SV-SSL task. The views are fused by concatenation
and the concatenated representations are clustered using k-
means after the view-specific autoencoders have been trained.
AE–DDC uses view-specific autoencoders with an MSE loss

(Eq. (6)) as its SV-SSL task. The views are fused using a
weighted sum and the fused representations are clustered
using the DDC clustering module [7].

Contrastive alignment-based: AECoKM extends AE–
KM with a contrastive loss on the view-specific representa-
tions. We use the multi-view generalization of the NT-Xent
(contrastive) loss by Trosten et al. [19], without the “other
clusters” negative sampling

LMV
Contrastive =

1

nV (V − 1)

n∑

i=1

V∑

v=1

V∑

u=1

1{u̸=v} ℓ
(uv)
i , (7)

ℓ
(uv)
i = − log

exp(s
(uv)
ii )∑

s′∈Neg(z(u)
i ,z

(v)
i )

exp(s′)
(8)

and s
(uv)
ij = 1

τ

zu
i ·z

(v)
j

||zu
i ||·||z

(v)
j ||

denotes the cosine similarity be-

tween zu
i and zv

j . The set Neg(z(u)
i , z

(v)
i ) is the set of sim-

ilarities of negative pairs for the positive pair (z(u)
i , z

(v)
i ),

which consists of s(uv)ij , s(uu)ij , and s
(vv)
ij , for all j ̸= i. τ is

a hyperparameter, which we set to 0.1 for all experiments.
AECoDDC extends AE–DDC using the same generalized
NT-Xent contrastive loss on the view-specific representa-
tions.

Mutual information-based: InfoDDC maximizes the mu-
tual information (MI) between the view-specific represen-
tations, using the MI loss from Invariant Information Clus-
tering (IIC) [6]4. The MI maximization is regularized by
also maximizing the entropy of view-specific representa-
tions. The view-specific representations are fused using a
weighted sum, and the fused representations are clustered
using DDC [7]. MV-IIC is a multi-view generalization of
IIC [6], where cluster assignments are computed for each of
the view-specific representations. The MI between pairs of
these view-specific cluster assignments is then maximized
using the information maximization loss from IIC. In or-
der to get a final shared cluster assignment for all views,
the view-specific cluster assignments are concatenated and
clustered using k-means. As in IIC, this model includes 5
over-clustering heads as its MV-SSL task. In both InfoDDC
and MV-IIC, we generalize the loss from IIC to an arbitrary
number of views:

LMV
MI =

2

V (V − 1)

V−1∑

u=1

V∑

v=u+1

−
(
I(Z(u),Z(v))︸ ︷︷ ︸
mutual information

+ (λ− 1) (H(Z(u)) +H(Z(v)))︸ ︷︷ ︸
entropy regularization

)
(9)

4The supplementary includes a brief overview of the connection between
InfoDDC and contrastive alignment.



where the summands are computed as
I(Z(u),Z(v)) + (λ− 1)(H(Z(u)) +H(Z(v)))

= −
D∑

a=1

D∑

b=1

P
(uv)
ab log

P
(uv)
ab

(P (u)
a P

(v)
b )λ

, (10)

where D denotes the dimensionality of the view-specific rep-
resentations. λ is a hyperparameter that controls the strength
of the entropy regularization. We set λ = 10 for InfoDDC,
and λ = 1.5 for MV-IIC. The joint distribution P (uv) is

estimated by first computing P̃
(uv)

= 1
n

∑n
i=1 z

(u)
i (z

(v)
i )⊤,

and then symmetrizing it P (uv) = 1
2 (P̃

(uv)
+ (P̃

(uv)
)⊤).

We assume that each view-specific representation is nor-
malized such that its elements sum to one, and are all non-
negative. The marginals P (u) and P (v) are obtained by
summing over the rows and columns of P (uv), respectively.

6. Experiments
In this section we provide a rigorous evaluation of meth-

ods and their DeepMVC components. Inspired by the initial
findings in Section 4 and our overview of recent methods
in Section 3, we focus mainly on the SSL and CM compo-
nents in our evaluation. We found these components to be
most influential on the methods’ performance. For complete-
ness, we include experiments with different fusion and CM
components in the supplementary.

6.1. Setup
Baselines. In addition to the new instances presented in
Section 5, we include 6 baseline models from previous work
in our experiments. The following baseline models were
selected to include a diverse set of framework components
in the evaluation: (i) Deep Multimodal Subspace Clustering
(DMSC) [1]; (ii) Multi-view Spectral Clustering Network
(MvSCN) [5]; (iii) End-to-end Adversarial-attention Mul-
timodal Clustering (EAMC) [33]; (iv) Simple Multi-View
Clustering (SiMVC) [19]; (v) Contrastive Multi-View Clus-
tering (CoMVC) [19]; (vi) Multi-view Variational Autoen-
coder (Multi-VAE) [29].

As can be seen in Table 1, this collection of models
includes both reconstruction-based and alignment-based
SSL, as well as traditional (k-means and spectral) and deep
learning-based CMs. They also include several fusion strate-
gies and encoder networks. Section 6.3 includes an ablation
study that examines the influence of SSL components in
these models.
Datasets. We evaluate the baselines and new instances on 8
widely used benchmark datasets for deep MVC. We priori-
tize datasets that were also used in the original publications
for the selected baselines. Not only does this result in a
diverse collection of datasets common in deep MVC – it
also allows us to compare the performance of our implemen-
tations to what was reported by the original authors. The

results of this comparison are given in the supplementary.
The following datasets are used for evaluation:

(i) NoisyMNIST / NoisyFashion: A version of
MNIST [9] / FashionMNIST [24] where the first view
contains the original image, and the second view con-
tains an image sampled from the same class as the
first image, with added Gaussian noise (σ = 0.2).
(ii) EdgeMNIST / EdgeFashion: Another version of
MNIST / FashionMNIST where the first view contains
the original image, and the second view contains an
edge-detected version of the same image. (iii) COIL-20:
The original COIL-20 [15] dataset, where we randomly
group the images of each object into groups of size 3,
resulting in a 3-view dataset. (iv) Caltech7 / Caltech20: A
subset of the Caltech101 [3] dataset including 7 / 20 classes.
We use the 6 different features extracted by Li et al. [10],
resulting in a 6-view dataset5. (v) PatchedMNIST: A
subset of MNIST containing the first three digits, where
views are extracted as 7 × 7 non-overlapping patches of
the original image. The corner patches are dropped as they
often contain little information about the digit, resulting in a
dataset with 12 views. Each patch is resized to 28× 28.

All views are individually normalized so that the values
lie in [0, 1]. Following recent work on deep MVC, we train
and evaluate on the full datasets [14, 19, 29, 33]. More
dataset details are provided in the supplementary.
Hyperparameters. The baselines use the hyperparameters
reported by the original authors, because (i) it is not feasible
for us to tune hyperparameters individually for each model
on each dataset; and (ii) it is difficult to tune hyperparameters
in a realistic clustering setting due to the lack of labeled
validation data. For each method, the same hyperparameter
configuration is used for all datasets.

New instances use the same hyperparameters as for the
baselines wherever possible6. Otherwise, we set hyperparam-
eters such that loss terms have the same order of magnitude,
and such that the training converges. We refrain from any hy-
perparameter tuning that includes the dataset labels to keep
the evaluation fair and unsupervised. We include a hyperpa-
rameter sweep in the supplementary, in order to assess the
new instances’ sensitivity to changes in their hyperparameter.
However, we emphasize that the results of this sweep were
not used to select hyperparameters for the new instances. All
models use the same encoder architectures and are trained
for 100 epochs with the Adam optimizer [8].
Evaluation protocol. We train each model from 5 different
initializations. Then we select the run that resulted in the
lowest value of the loss and report the performance metrics
from that run, following [7, 19]. This evaluation protocol is
both fully unsupervised, and is not as impacted by poorly
performing runs, as for instance the mean performance of all

5The list of classes and feature types is included in the supplementary.
6Hyperparameters for all models are listed in the supplementary.



(a) All datasets (b) Random pairings (c) Many views (d) Balanced vs. imbalanced
Model BL Z̄ Model CA Z̄ Model MI CA Z̄ Model DDC Z̄bal Z̄imb

MvSCN ✘ −2.23 MvSCN ✘ −2.49 MvSCN ✘ ✘ −1.78 MvSCN ✘ −2.41 −1.78
AECoKM ✘ −0.32 DMSC ✘ −0.54 AECoKM ✘ ✓ −0.83 DMSC ✘ −0.39 0.45
EAMC ✘ −0.22 InfoDDC ✘ −0.41 EAMC ✘ ✘ −0.75 InfoDDC ✓ −0.13 1.18
DMSC ✘ −0.11 EAMC ✘ −0.17 AE–DDC ✘ ✘ −0.36 EAMC ✓ 0.00 −0.75
AE–KM ✓ 0.16 MV-IIC ✘ 0.05 CoMVC ✘ ✓ −0.33 MV-IIC ✘ 0.01 1.06
InfoDDC ✘ 0.20 AE–KM ✘ 0.11 SiMVC ✘ ✘ −0.12 AE–KM ✘ 0.03 0.56
AE–DDC ✓ 0.26 Multi-VAE ✘ 0.32 AE–KM ✘ ✘ 0.23 AECoKM ✘ 0.08 −1.54
SiMVC ✓ 0.27 SiMVC ✘ 0.35 AECoDDC ✘ ✓ 0.28 CoMVC ✓ 0.30 0.25
MV-IIC ✘ 0.27 AE–DDC ✘ 0.56 Multi-VAE ✘ ✘ 0.38 SiMVC ✓ 0.31 0.16
CoMVC ✘ 0.29 AECoKM ✓ 0.59 DMSC ✘ ✘ 0.45 AE–DDC ✓ 0.33 0.06
Multi-VAE ✘ 0.43 CoMVC ✓ 0.63 MV-IIC ✓ ✘ 0.98 Multi-VAE ✘ 0.42 0.47
AECoDDC ✘ 0.65 AECoDDC ✓ 0.82 InfoDDC ✓ ✘ 1.15 AECoDDC ✓ 0.92 −0.13

Table 3. Aggregated evaluation results for the dataset groups. Models are sorted from lowest to highest by
average Z-score for each group. Higher Z-scores indicate better clusterings. Our new instances are underlined.
Abbreviations: BL = Simple baseline, CA = Contrastive alignment, DDC = Deep divergence-based clustering
MI = Mutual information, Z̄ = Average Z-score for group.
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Figure 3. Accuracies
on Caltech7 with in-
creasing number of
views.

runs. The uncertainty of the performance metric under this
model selection protocol is estimated using bootstrapping7.
We measure clustering performance with the accuracy (ACC)
and normalized mutual information (NMI). Both metrics are
bounded in [0, 1], and higher values correspond to better
performing models, with respect to the ground truth labels.

6.2. Evaluation results

To emphasize the findings from our experiments, we com-
pute the average Z-score for each model, for 4 groups of
datasets8. Z-scores are calculated by subtracting the mean
and dividing by the standard deviation of results, per dataset
and per metric. Table 3 shows Z-scores for the groups:
(i) All datasets. (ii) Random pairings: Datasets gener-
ated by randomly pairing within-class instances to synthe-
size multiple views (NoisyMNIST, NoisyFashion, COIL-20).
(iii) Many views: Datasets with many views (Caltech7, Cal-
tech20, PatchedMNIST). (iv) Balanced vs. imbalanced:
Datasets with balanced classes (NoisyMNIST, NoisyFash-
ion, EdgeMNIST, EdgeFashion, COIL-20, PatchedMNIST)
vs. datasets with imbalanced classes (Caltech7, Caltech20).
Our main experimental findings are:

Dataset properties significantly impact the perfor-
mance of methods. We observe that the ranking of methods
varies significantly based on dataset properties, such as the
number of views (Table 3c) and class (im)balance (Table 3d).
Hence, there is not a single “state-of-the-art” for all datasets.

Our new instances outperform previous methods. In
Table 3a we see that the simple baselines perform remarkably
well, when compared to the other, more complex methods.
This highlights the importance of including simple baselines
like these in the evaluation. Table 3a shows that AECoDDC
overall outperforms the other methods, and on datasets with
many views (Table 3c) we find that InfoDDC and MV-IIC
outperform the others by a large margin.

7Details on uncertainty computations are included in the supplementary.
8Results for all methods/datasets are included in the supplementary.

Maximization of mutual information outperforms con-
trastive alignment on datasets with many views. Con-
trastive alignment-based methods show good overall perfor-
mance, but they struggle when the number of views becomes
large (Table 3c). This holds for both baseline methods (as ob-
served in Section 4), and the new instances. As in Section 4,
we hypothesize that this is due to issues with representation
alignment, where the presence of less informative views
is more likely when the number of views becomes large.
Contrastive alignment attempts to align view-specific repre-
sentations to this less informative view, resulting in clusters
that are harder to separate in the representation space. This
is further verified in Figures 2 and 3, illustrating a decrease
in performance on Caltech7 for contrastive alignment-based
models with 5 or 6 views. Models based on maximization
of mutual information do not have the same problem. We
hypothesize that this is because maximizing mutual infor-
mation still allows the view-specific representations to be
different, avoiding the above issues with alignment. The
MI-based models also include regularization terms that maxi-
mize the entropy of view-specific representations, preventing
the representations from collapsing to a single value.

Contrastive alignment works particularly well on
datasets consisting of random pairings (Table 3b). In
these datasets, the class label is the only thing the views have
in common. Contrastive alignment, i.e. learning a shared
representation for all pairs within a class, thus asymptotically
amounts to learning a unique representation for each class,
making it easier for the CM to separate between classes.

The DDC CM performs better than the other CMs
on balanced datasets. With the DDC CM, the models are
end-to-end trainable – jointly optimizing all components in
the model. The view-specific representations can thus be
adapted to suit the CM, potentially improving the clustering
result. DDC also has an inherent bias towards balanced
clusters [7], which helps produce better clusterings when the
ground truth classes are balanced.



NoisyMNIST Caltech7
Model w/o

SV-SSL
w/

SV-SSL
w/o

SV-SSL
w/

SV-SSL

DMSC 0.54 0.66 (+0.12) 0.35 0.50 (+0.15)
AE–DDC 1.00 1.00 (0.00) 0.41 0.40 (0.00)
AE–KM 0.67 0.74 (+0.07) 0.39 0.44 (+0.05)
AECoDDC 1.00 1.00 (0.00) 0.38 0.36 (−0.02)
AECoKM 0.56 1.00 (+0.44) 0.22 0.20 (−0.02)

Model w/o
MV-SSL

w/
MV-SSL

w/o
MV-SSL

w/
MV-SSL

EAMC 1.00 0.83 (−0.17) 0.36 0.44 (+0.08)
Multi-VAE 0.52 0.98 (+0.46) 0.31 0.47 (+0.15)
CoMVC 1.00 1.00 (0.00) 0.41 0.38 (−0.02)
AECoDDC 1.00 1.00 (0.00) 0.40 0.36 (−0.04)
AECoKM 0.74 1.00 (+0.26) 0.44 0.20 (−0.24)
InfoDDC 1.00 0.90 (−0.10) 0.41 0.51 (+0.10)
MV-IIC 0.52 0.52 (0.00) 0.53 0.53 (0.00)

Table 4. Accuracies from ablation studies with SSL components.

Reproducibility of original results. During our experi-
ments we encountered issues with reproducibility with sev-
eral of the methods from previous work. In the supplemen-
tary we include a comparison between our results and those
reported by the original authors of the methods from previ-
ous work. We find that most methods use different network
architectures and evaluation protocols in the original publica-
tions, making it difficult to accurately compare performance
between methods and their implementations. This illustrates
the difficulty of reproducing and comparing results in deep
MVC, highlighting the need for a unified framework with
a consistent evaluation protocol and an open-source imple-
mentation.

6.3. Effect of SSL components

Table 4 shows the results of ablation studies with the
SV-SSL and MV-SSL components. These results show
that having at least one form of SSL is beneficial for the
performance of all models, with the exception being AE–
DDC/AECoDDC, which on Caltech7 performs best without
any self-supervision. We suspect that this particular result
is due to the issues with many views and class imbalance
discussed in Section 6.2. Further, we observe that having
both forms of SSL is not always necessary. For instance is
there no difference with and without SV-SSL for AECoDDC
and AECoKM, both of which include contrastive alignment-
based MV-SSL. Lastly, we note that contrastive alignment-
based MV-SSL decreases performance on Caltech7 for most
models. This is consistent with our theoretical findings in
Section 4, as well as the results in Section 6.2 and in Fig-
ures 2 and 3 – illustrating that contrastive alignment is not
suitable for datasets with a large number of views.

7. Conclusion
We investigate the role of self-supervised learning (SSL)

in deep MVC. Due to its recent success, we focus partic-
ularly on contrastive alignment, and prove that it can be
detrimental to the clustering performance, especially when

the number of views becomes large. To properly evaluate
models and components, we develop DeepMVC – a new
unified framework for deep MVC, including the majority of
recent methods as instances. By leveraging the new insight
from our framework and theoretical findings, we develop 6
new DeepMVC instances with several promising forms of
SSL, which perform remarkably well compared to previous
methods. We conduct a thorough experimental evaluation of
our new instances, previous methods, and their DeepMVC
components – and find that SSL is a crucial component in
state-of-the-art methods for deep MVC. In line with our
theoretical analysis, we observe that contrastive alignment
worsens performance when the number of views becomes
large. Further, we find that performance of methods de-
pends heavily on dataset characteristics, such as number of
views, and class imbalance. Developing methods that are
robust towards changes in these properties can thus result in
methods that perform well over a wide range of multi-view
clustering problems. To this end, we make the following
recommendations for future work in deep MVC:

Improving contrastive alignment or maximization of
mutual information to handle both few and many views.
Addressing pitfalls of alignment to improve contrastive
alignment-based methods on many views, is a promising
direction for future research. Similarly, we believe that im-
proving the methods based on maximization of mutual infor-
mation on few views, will result in better models.

Developing end-to-end trainable clustering modules
that are not biased towards balanced clusters. The per-
formance of the DDC clustering module illustrates the po-
tential of end-to-end trainable clustering modules, which
are capable of adapting the representations to produce better
clusterings. Mitigating the bias towards balanced clusters
thus has the potential to produce models that perform well,
both on balanced and imbalanced datasets.

Proper evaluation and open-source implementations.
Finally, we emphasize the importance of evaluating new
methods on a representative collection of datasets, e.g. many
views and few views, paired, imbalanced, etc. Also, in the re-
producibility study (see supplementary), we find that original
results can be difficult to reproduce. We therefore encourage
others to use the open-source implementation of DeepMVC,
as open code and datasets, and consistent evaluation proto-
cols, are crucial to properly evaluate models and facilitate
further development of new methods and components.
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1. Introduction

Here, we provide the proofs for Propositions 2 and 3; ad-
ditional details on the proposed new instances of DeepMVC;
the datasets used for evaluation; the hyperparameters used
by baselines and new instances; and the computation of met-
rics and uncertainties used in our evaluation protocol. We
also include the full list of recent methods and their Deep-
MVC components, the complete table of results from the
experimental evaluation. In addition, we include additional
experiments and analyses of reproducibility, hyperparame-
ters, and the Fusion and CM components. Finally, we reflect
on possible negative societal impacts of our work.

Our implementation of the DeepMVC framework, as
well as the datasets and the evaluation protocol used in
our experiments, is available at https://github.com/

DanielTrosten/DeepMVC. See README.md in the reposi-
tory for more details about the implementation, and how to
reproduce our results.

2. Previous methods as instances of DeepMVC

The full list of recent methods and their DeepMVC com-
ponents is given in Table 1. We observe that all but one
model includes at least one form of SSL, but the type of
SSL, and also fusion and CM, vary significantly for the dif-
ferent models. This illustrates the importance of the SSL
components in deep MVC, as well as the need for a unified
framework with a consistent evaluation protocol, in order to
properly compare and evaluate methods.

3. Contrastive alignment in deep MVC
Proof of propositions

*UiT Machine Learning group (machine-learning.uit.no) and
Visual Intelligence Centre (visual-intelligence.no).

†Norwegian Computing Center (nr.no).
‡Department of Computer Science, University of Copenhagen.
§Pioneer Centre for AI (aicentre.dk).

Proposition 2. Suppose kv, v ∈ N are random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

P{ min
v=1,...,V+1

{kv} ≤ min
v=1,...,V

{kv}
∣∣∣ k1, . . . , kV } = 1

(1)

Proof. Let MV = min
v=1,...,V

{kv}, then we need to prove that

P(MV+1 ≤MV | k1, . . . , kV ) = 1. (2)

Due to the properties of the minimum operator, we have
{
MV+1 = MV , if kV+1 ≥MV

MV+1 < MV , otherwise
. (3)

Hence, MV+1 ≤ MV regardless of the value of kV+1,
which gives

P(MV+1 ≤MV | k1, . . . , kV ) = 1. (4)

Proposition 3. Suppose kv, v ∈ N are iid. random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

E( min
v=1,...,V+1

{kv}) ≤ E( min
v=1,...,V

{kv}) (5)

Proof. Let MV = min
v=1,...,V

{kv}, then

FMV
(x) := P(MV ≤ x) = 1− P(MV > x) (6)

= 1− P(k1 > x ∩ · · · ∩ kV > x) (7)

= 1− (1− Fkv
(x))V (8)

where Fkv
(x) = P(kv ≤ x).

Since MV is a non-negative random variable, we have

E(MV ) =

∞∑

x=0

(1− FMV
(x)) =

∞∑

x=0

(1− Fkv (x))
V . (9)

1



Model Pub. Enc. SV-SSL MV-SSL Fusion CM
DCCAE [17] ICML’15 MLP Reconstruction CCA 1st view SC

DMSC [1] J. STSP’18 CNN Reconstruction –
Affinity
fusion

SR, SC

DMVSSC [13] ICNCC’18 CNN Reconstruction – –
Sparse SR,
SC

MvSN [4] T. CSS’19 MLP Sp. Emb. – Weighted sum k-means
MvSCN [5] IJCAI’19 MLP Sp. Emb. MSE Al. Concat. k-means

MvDSCN [26] arXiv’19 CNN – Reconstruction
Shared
network

SR, SC

DAMC [9] IJCAI’19 MLP – Reconstruction Average DEC
S2DMVSC [12] ACML’19 MLP Reconstruction – MLP SR, SC
DCMR [24] PAKDD’20 MLP Variational Reconstruction Variational Reconstruction MLP k-means

DMMC [23] ICME’20 MLP Reconstruction – MLP
Fusion
output

DCUMC [27] ICIKM’20 MLP Reconstruction
Commonness
uniqueness

MLP k-means

SGLR-MVC [22] AAAI’20 MLP – Variational Reconstruction Weighted sum GMM

EAMC [25] CVPR’20 MLP –
Distribution Al.,
Kernel Al.

Attention DDC

MVC-MAE [2] DSE’21 MLP
Reconstruction,
Ngh. preserv.

Contrastive Al. – DEC

SDC-MVC [19] IJCNN’21 MLP – CCA Concat. DEC
DEMVC [20] Inf. Sci.’21 CNN Reconstruction – – DEC

SiMVC [14] CVPR’21
MLP/
CNN

– – Weighted sum DDC

CoMVC [14] CVPR’21
MLP/
CNN

– Contrastive Al. Weighted sum DDC

Multi-VAE [21] ICCV’21 CNN – Variational Reconstruction Concat.
Gumbel,
k-means

DMIM [10] IJCAI’21 MLP
Min. superflous
information

Max. shared
information

?
Encoder
output

AMvC [15] TNNLS’22 MLP – Reconstruction Weighted sum DEC

SIB-MSC [16] arXiv’22 CNN –
Reconstruction,
Inf. Bottleneck

Affinity
fusion

SR, SC

Abbreviations: “–” = Not included, “?” = Not specified, Al. = Alignment, Concat. = Concatenate, CCA = Canonical correlation analysis,
DDC = Deep divergence-based clustering, DEC = Deep embedded clustering, Inf. Bottleneck = Information bottleneck, Ngh. preserv. =
Neighborhood preservation, SC = Spectral clustering, Sp. Emb. = Spectral Embedding, SR = Self-representation, Sparse SR = Sparse
self-representation,

Table 1. Full overview of methods from previous work and their DeepMVC components.

Hence

E(MV )− E(MV+1)

=
∞∑

x=0

(1− Fkv
(x))V −

∞∑

x=0

(1− Fkv
(x))V+1 (10)

=

∞∑

x=0

(1− Fkv (x))
V (1− (1− Fkv (x))) (11)

=
∞∑

x=0

(1− Fkv
(x))V︸ ︷︷ ︸

≥0

Fkv
(x)︸ ︷︷ ︸

≥0

≥ 0 (12)

which is a sum of non-negative terms, since Fkv
(x) ∈ [0, 1]

is a probability. This gives

E(MV+1) ≤ E(MV ) (13)

4. New instances of DeepMVC
In this section we provide additional details on loss func-

tions, particularly the weighted sum fusion, and the DDC [7]
clustering module. The loss functions used to train the new
instances are on the form

LTotal = wSVLSV + wMVLMV + wCMLCM (14)



where LSV, LMV, and LCM denote the losses from the SV-
SSL, MV-SSL, and CM components, respectively. Note
that the losses LSV and LMV correspond to the losses in
Section 5 of the main paper. (wSV, wMV, wCM) are optional
weights for the respective losses, which are all set to 1 unless
specified otherwise.
Connection between InfoDDC and contrastive self-
supervised learning For two views u ̸= v ∈ 1, . . . , V ,
contrastive SSL can be regarded as variational maximization
of the mutual information

I(z(v), z(u)) (15)

where z(v) and z(u) have multi-variate, continuous distribu-
tions in Rd.

In InfoDDC, we instead maximize mutual information
between pairs of uni-variate, discrete random variables

I(c(v), c(u)) (16)

where we assume that the distributions of c(v) and c(u) are
given by the view-specific representations

P(c(w) = i) = z
(w)
[i] , i = 1, . . . , d, w ∈ {u, v} (17)

where z
(w)
[i] denotes component i of the view-specific rep-

resentation z(w) = f (w)(x(w)). Hence, although InfoDDC
might appear similar to CA-based methods, the maximiza-
tion of mutual information is done for different pairs of
random variables.
Weighted sum fusion. As [14], we implement the weighted
sum fusion as

zi =
V∑

v=1

w(v)z
(v)
i , (18)

where the weights w(1), . . . , w(V ) are non-negative and
sum to 1. These constraints are implemented by keeping
a vector of trainable, un-normalized weights, from which
w(1), . . . , w(V ) can be computed by applying the softmax
function.
DDC clustering module. The DDC [7] clustering mod-
ule consists of two fully-connected layers. The first layer
calculates the hidden representation hi ∈ RDDDC from the
fused representation zi. The dimensionality of the hidden
representation, DDDC is a hyperparameter set to 100 for all
models. The second layer computes the cluster membership
vector αi ∈ Rk from the hidden representation.

DDC’s loss function consists of three terms

LCM
DDC = LDDC, 1 + LDDC, 2 + LDDC, 3. (19)

The three terms encourage (i) separable and compact clusters
in the hidden space; (ii) orthogonal cluster membership vec-
tors; and (iii) cluster membership vectors close to simplex
corners, respectively.

The first term maximizes the pairwise Cauchy-Schwarz
divergence [6] between clusters (represented as probability
densities) in the space of hidden representations

LDDC, 1 = (20)

(
k

2

)−1 k−1∑

a=1

k∑

b=a

n∑
i=1

n∑
j=1

αiaκijαjb

√
n∑

i=1

n∑
j=1

αiaκijαja

n∑
i=1

n∑
j=1

αibκijαjb

(21)

where κij = exp
(
− ||hi−hj ||2

2σ2

)
and σ is a hyperparameter.

Following [7], we set σ to 15% of the median pairwise
difference between the hidden representations.

The second term minimizes the pairwise inner product
between cluster membership vectors

LDDC, 2 =
2

n(n− 1)

n−1∑

i=1

n∑

j=i+1

αiα
⊤
j . (22)

The third term encourages cluster membership vectors to
be close to the corners of the probability simplex in Rk

LDDC, 3 = (23)

(
k

2

)−1 k−1∑

a=1

k∑

b=a

n∑
i=1

n∑
j=1

miaκijmjb

√
n∑

i=1

n∑
j=1

miaκijmja

n∑
i=1

n∑
j=1

mibκijmjb

(24)

where mia = exp(−||αi−ea||2), and ea is the a-th simplex
corner.

5. Experiments
5.1. Datasets

Dataset details are listed in Table 2. The code repository
includes pre-processed Caltech7 and Caltech20 datasets. The
other datasets can be generated by following the instructions
in README.md (these could not be included in the archive
due to limitations on space).
Caltech details. We use the same features and subsets of
the Caltech101 [3] dataset as [5].

• Features: Gabor, Wavelet Moments, CENsus TRans-
form hISTogram (CENTRIST), Histogram of Oriented
Gradients (HOG), GIST, and Local Binary Patterns
(LBP).

• Caltech7 classes: Face, Motorbikes, Dolla-Bill,
Garfield, Snoopy, Stop-Sign, Windsor-Chair.



Dataset n v k nsmall nbig Dim. Licence

NoisyMNIST [8] 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
NoisyFashion [18] 70000 2 10 7000 7000 (28× 28)2 MIT
EdgeMNIST [8] 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
EdgeFashion [18] 70000 2 10 7000 7000 (28× 28)2 MIT
COIL-20 [11] 480 3 20 24 24 (64× 64)3 None
Caltech7 [3] 1474 6 7 34 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
Caltech20 [3] 2386 6 20 33 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
PatchedMNIST [8] 21770 12 3 6903 7877 (28× 28)12 CC BY-SA 3.0

Table 2. Dataset details. n = number of instances, v = number of views, k = number of classes/clusters, nsmall = number of instances in
smallest class, nbig = number of instances in largest class, Dim. = view dimensions.

• Caltech20 classes: Face, Leopards, Motorbikes,
Binocular, Brain, Camera,Car-Side, Dolla-Bill, Ferry,
Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler,
Stop-Sign, Water-Lilly, WindsorChair, Wrench, Yin-
yang.

5.2. Hyperparameters

Network architectures. The encoder and decoder archi-
tectures are listed in Table 3. MLP encoders/decoders are
used for Caltech7 and Caltech20 as these contain vector data.
The other datasets contain images, so CNN encoders and
decoders are used for them.
Other hyperparameters. Table 4 lists other hyperparame-
ters used for the baselines and new instances.

5.3. Computational resources

We run our experiments on a Kubernetes cluster, where
jobs are allocated to nodes with Intel(R) Xeon(R) E5-2623
v4 or Intel(R) Xeon(R) Silver 4210 CPUs (2 cores allo-
cated per job); and Nvidia GeForce GTX 1080 Ti or Nvidia
GeForce RTX 2080 Ti GPUs. Each job has 16 GB RAM
available.

With this setup, 5 training runs on NoisyMNIST, Noisy-
Fashion, EdgeMNIST, and EdgeFashion take approximately
24 hours. Training times for the other datasets are approxi-
mately between 1 and 3 hours.

The Dockerfile used to build our docker image can be
found in the code repository.

5.4. Evaluation protocol

Metrics. We measure performance using the accuracy

ACC = max
m∈M

∑n
i=1 δ(m(ŷi)− yi)

n
(25)

where δ(·) is the Kronecker-delta, ŷi is the predicted cluster
of instance i, and yi is the ground truth label of instance i.
The maximum runs overM, which is the set of all bijective
mappings from {1, . . . , k} to itself.

We also compute the normalized mutual information

NMI =
MI(ŷ,y)

1
2 (H(ŷ) +H(y))

(26)

where ŷ = [ŷ1, . . . , ŷn], y = [y1, . . . , yn], MI(·, ·) and
H(·) denotes the mutual information and entropy, respec-
tively.
Uncertainty estimation. The uncertainty of our perfor-
mance statistic can be estimated using bootstrapping. Sup-
pose the R training runs result in the R tuples

(L1,M1), . . . , (LR,MR) (27)

where Li is the final loss of run i, and Mi is resulting perfor-
mance metric for run i. We then sample B bootstrap samples
uniformly from the original results

(Lb
j ,M

b
j ) ∼ Uniform{(L1,M1), . . . , (LR,MR)}, (28)

j = 1, . . . , R, b = 1, . . . B.

The performance statistic for bootstrap sample b is then given
by

M b
⋆ = M b

jb⋆
, jb⋆ = arg min

j=1,...,R
{Lb

j}. (29)

We then estimate the uncertainty of the performance statis-
tic by computing the standard deviation of the bootstrap
statistics M1

⋆ , . . .M
B
⋆

σ̂M⋆ =

√∑B
b=1(M

b
⋆ − M̄⋆)2

B − 1
, where M̄⋆ =

∑B
b=1 M

⋆
b

B
.

(30)

5.5. Results
Evaluation results. The complete evaluation results are
given in Table 5.
Ablation study – Fusion and Clustering module. Table 6
shows the results of ablation studies with the fusion and clus-
tering module (CM) components. Since these components
can not be completely removed, we instead replace more



CNN encoder CNN decoder MLP encoder MLP decoder

Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(256)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(64× 3× 3) Dense(1024) Dense(1024)
ReLU BatchNorm BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU ReLU
Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(1024)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(1× 3× 3) Dense(1024) Dense(1024)
ReLU Sigmoid BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU

Dense(256) Dense(input dim)
Sigmoid

Table 3. Network architectures.

Model Batch size Learning rate wSV wMV wCM Pre-train Gradient clip

DMSC 100 10−3 1.0 – – ✓ 10
MvSCN 512 10−4 0.999 0.001 – ✘ 10
EAMC 100 † – 1.0 1.0 ✘ 10
SiMVC 100 10−3 – – 1.0 ✘ 10
CoMVC 100 10−3 – 0.1 1.0 ✘ 10
Multi-VAE 64 5 · 10−4 – 1.0 – ✓ 10
AE–DDC 100 10−3 1.0 – 1.0 ✓ 10
AECoDDC 100 10−3 1.0 0.1 1.0 ✓ 10
AE–KM 100 10−3 1.0 – – ✘ 10
AECoKM 100 10−3 1.0 0.1 – ✘ 10
InfoDDC 256 10−3 – 0.1 1.0 ✘ 10
MV-IIC 256 10−3 – 0.01 1.0 ✘ 10

Table 4. Hyperparameters used to train the models. † = EAMC [25] has different learning rates for the different components, namely 10−5

for the encoders and clustering module, and 10−4 for the attention module and discriminator.

complicated components, with the simplest possible compo-
nent. Thus, we replace weighted sum with concatenate for
the fusion component, and DDC with k-means for the CM
component.

For the fusion component, we see that the weighted sum
tends to improve over the concatenation. For the CM, we
observe that the performance is better with DDC than with
k-means on NoisyMNIST, but the improvement more varied
on Caltech7. This is consistent with what we observed in the
evaluation results in the main paper.
Reproducibility of original results. Table 7 compares the
results of our re-implementation of the baselines, to the re-
sults reported by the original authors. The comparison shows
large differences in performance for several methods, and the
differences are particularly large for MvSCN and Multi-VAE.
For MvSCN, we do not use the same autoencoder prepro-
cessing of the data. We also had difficulties getting the
Cholesky decomposition to converge during training. For
MultiVAE, we note that NoisyMNIST and NoisyFashion

are generated without noise in the original paper, possibly
resulting in datasets that are simpler to cluster. We were
however not able to determine the reason for the difference
in performance on COIL-20.

Additionally, all methods use different network architec-
tures and evaluation protocols in the original publications,
making it difficult to accurately compare performance be-
tween methods and their implementations. This illustrates
the difficulty of reproducing and comparing results in deep
MVC, highlighting the need for a unified framework with
a consistent evaluation protocol and an open-source imple-
mentation.
Sensitivity to hyperparameters Table 8 shows the results
of hyperparameter sweeps for the following hyperparame-
ters:

• Weight of reconstruction loss (wSV).

• Weight of contrastive loss (wMV).



NoisyMNIST NoisyFashion EdgeMNIST EdgeFashion
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC 0.66 (0.02) 0.67 (0.01) 0.49 (0.05) 0.48 (0.03) 0.51 (0.02) 0.47 (0.02) 0.52 (0.01) 0.47 (0.00)

MvSCN 0.15 (0.00) 0.02 (0.00) 0.14 (0.00) 0.01 (0.00) 0.14 (0.00) 0.01 (0.01) 0.12 (0.00) 0.03 (0.00)

EAMC 0.83 (0.04) 0.90 (0.02) 0.61 (0.02) 0.71 (0.02) 0.76 (0.05) 0.79 (0.03) 0.51 (0.03) 0.47 (0.01)

SiMVC 1.00 (0.02) 1.00 (0.02) 0.52 (0.02) 0.51 (0.02) 0.89 (0.06) 0.90 (0.04) 0.61 (0.01) 0.56 (0.02)

CoMVC 1.00 (0.00) 1.00 (0.00) 0.67 (0.03) 0.68 (0.03) 0.97 (0.08) 0.94 (0.07) 0.56 (0.03) 0.52 (0.01)

Multi-VAE 0.98 (0.05) 0.96 (0.02) 0.62 (0.02) 0.60 (0.01) 0.85 (0.01) 0.76 (0.01) 0.58 (0.01) 0.64 (0.00)

AE–KM 0.74 (0.03) 0.71 (0.00) 0.58 (0.02) 0.59 (0.01) 0.60 (0.00) 0.57 (0.00) 0.54 (0.00) 0.58 (0.00)

AE–DDC 1.00 (0.04) 1.00 (0.03) 0.69 (0.06) 0.65 (0.05) 0.88 (0.11) 0.88 (0.09) 0.60 (0.01) 0.58 (0.01)

AECoKM 1.00 (0.00) 0.99 (0.00) 0.63 (0.07) 0.73 (0.03) 0.38 (0.03) 0.31 (0.02) 0.39 (0.04) 0.34 (0.02)

AECoDDC 1.00 (0.00) 0.99 (0.00) 0.80 (0.02) 0.77 (0.01) 0.89 (0.10) 0.90 (0.09) 0.67 (0.09) 0.62 (0.06)

InfoDDC 0.90 (0.05) 0.92 (0.04) 0.54 (0.03) 0.52 (0.04) 0.62 (0.04) 0.52 (0.06) 0.43 (0.01) 0.43 (0.03)

MV-IIC 0.52 (0.04) 0.79 (0.02) 0.52 (0.07) 0.74 (0.02) 0.31 (0.04) 0.21 (0.05) 0.52 (0.04) 0.59 (0.04)

COIL-20 Caltech7 Caltech20 PatchedMNIST
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC −† (−) −† (−) 0.50 (0.03) 0.50 (0.02) 0.35 (0.01) 0.55 (0.00) −† (−) −† (−)

MvSCN 0.21 (0.00) 0.23 (0.01) 0.29 (0.02) 0.02 (0.00) 0.13 (0.01) 0.09 (0.01) −† (−) −† (−)

EAMC 0.39 (0.15) 0.52 (0.22) 0.44 (0.02) 0.23 (0.03) 0.22 (0.04) 0.23 (0.02) −‡ (−) −‡ (−)

SiMVC 0.90 (0.04) 0.96 (0.02) 0.41 (0.02) 0.51 (0.09) 0.34 (0.02) 0.52 (0.01) 0.84 (0.04) 0.64 (0.11)

CoMVC 0.87 (0.03) 0.96 (0.02) 0.38 (0.01) 0.55 (0.02) 0.34 (0.01) 0.59 (0.02) 0.73 (0.12) 0.57 (0.19)

Multi-VAE 0.74 (0.02) 0.84 (0.01) 0.47 (0.02) 0.47 (0.01) 0.40 (0.01) 0.57 (0.01) 0.94 (0.00) 0.77 (0.00)

AE–KM 0.88 (0.04) 0.92 (0.01) 0.44 (0.03) 0.52 (0.01) 0.45 (0.02) 0.57 (0.01) 0.87 (0.00) 0.68 (0.01)

AE–DDC 0.80 (0.04) 0.93 (0.02) 0.40 (0.01) 0.54 (0.07) 0.34 (0.01) 0.44 (0.03) 0.77 (0.10) 0.59 (0.17)

AECoKM 0.84 (0.04) 0.94 (0.02) 0.20 (0.01) 0.05 (0.00) 0.22 (0.02) 0.27 (0.02) 0.96 (0.00) 0.85 (0.00)

AECoDDC 0.87 (0.01) 0.96 (0.00) 0.36 (0.01) 0.43 (0.03) 0.31 (0.02) 0.51 (0.02) 0.99 (0.00) 0.97 (0.00)

InfoDDC 0.25 (0.04) 0.54 (0.03) 0.51 (0.01) 0.60 (0.04) 0.58 (0.07) 0.63 (0.03) 0.99 (0.00) 0.96 (0.00)

MV-IIC 0.83 (0.05) 0.94 (0.02) 0.53 (0.00) 0.63 (0.04) 0.49 (0.01) 0.61 (0.01) 0.97 (0.00) 0.90 (0.01)

Table 5. Clustering results. Standard deviations (obtained by bootstrapping) are shown in parentheses. † = training ran out of memory, ‡ =
training resulted in NaN loss.

• Temperature in contrastive loss (τ ).

• Weight of entropy regularization (λ).

We emphasize that these results were not used to tune hyper-
parameters for the new instances. Rather, they are included
to investigate how robust these methods are towards changes
in the hyperparameter configuration. The results show that
the new instances are mostly insensitive to changes in their
hyperparameters. We however observe two cases where the
hyperparameter configurations can have significant impact
on the model performance. First, AECoDDC shows a drop
in performance when the weight of the contrastive loss is
set to high on Caltech7 (Table 8b). This is consistent with
our observations regarding contrastive alignment on datasets
with many views. Second, InfoDDC and MV-IIC performs
worse when the entropy regularization weight is set too low,
indicating that sufficient regularization is required for these
models to perform well.

6. Potential negative societal impacts

As is the case with most methodological research, our
work can be applied to downstream applications with neg-
ative societal impact – for instance by reflecting biases in
the dataset the model was trained on. We note that in unsu-
pervised learning, it is particularly important to check what
a model has learned, due to the lack of label supervision.
This is crucial if the models are used to make high-stakes
decisions.
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(a) Fusion

NoisyMNIST Caltech7
Model Concat. Weighted Concat. Weighted

SiMVC 1.00 1.00 (0.00) 0.36 0.41 (+0.04)

CoMVC 1.00 1.00 (0.00) 0.42 0.38 (−0.04)

AE–DDC 1.00 1.00 (0.00) 0.36 0.40 (+0.04)

AECoDDC 1.00 1.00 (0.00) 0.39 0.36 (−0.03)

InfoDDC 0.93 0.90 (−0.03) 0.36 0.51 (+0.15)

(b) CM

NoisyMNIST Caltech7
Model k-means DDC k-means DDC

SiMVC 0.67 1.00 (+0.33) 0.39 0.41 (+0.01)

CoMVC 0.56 1.00 (+0.44) 0.22 0.38 (+0.16)

AE–DDC 0.74 1.00 (+0.26) 0.44 0.40 (−0.04)

AECoDDC 1.00 1.00 (0.00) 0.20 0.36 (+0.16)

InfoDDC 0.14 0.90 (+0.76) 0.59 0.51 (−0.08)

Table 6. Accuracies from ablation studies with the Fusion and CM
components.

Model Dataset Orig. Ours

N-MNIST 0.99 0.15 (−0.84)
MvSCN

Caltech20 0.59 0.13 (−0.46)

EAMC E-MNIST 0.67 0.76 (+0.09)

E-MNIST 0.86 0.89 (+0.03)

E-Fashion 0.57 0.61 (+0.04)SiMVC
COIL-20 0.78 0.90 (+0.12)

E-MNIST 0.96 0.97 (+0.01)

E-Fashion 0.60 0.56 (−0.04)CoMVC
COIL-20 0.89 0.87 (−0.02)

N-MNIST† 1.00 0.98 (−0.02)

N-Fashion† 0.91 0.62 (−0.29)Multi-VAE
COIL-20 0.98 0.74 (−0.24)

Table 7. Accuracies from our experiment vs. accuracies reported
by the original authors. † = method is originally evaluated on a
slightly different dataset.
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(a) Weight of reconstruction loss (wSV).

NoisyMNIST Caltech7
Rec. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AE–DDC 1.00 (0.03) 0.94 (0.03) 1.00 (0.03) 0.94 (0.01) 0.41 (0.01) 0.41 (0.03) 0.44 (0.02) 0.45 (0.02)

AECoDDC 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.40 (0.05) 0.33 (0.02) 0.34 (0.03) 0.49 (0.04)

AECoKM 0.74 (0.02) 0.70 (0.04) 0.74 (0.03) 0.93 (0.02) 0.07 (0.01) 0.05 (0.00) 0.04 (0.01) 0.04 (0.02)

(b) Weight of contrastive loss (wMV).

NoisyMNIST Caltech7
Con. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AECoDDC 1.00 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.46 (0.02) 0.40 (0.05) 0.19 (0.03) 0.09 (0.01)

AECoKM 0.89 (0.01) 0.73 (0.03) 0.77 (0.01) 0.67 (0.02) 0.04 (0.02) 0.04 (0.01) 0.06 (0.01) 0.05 (0.00)

(c) Temperature in the contrastive loss (τ ).

NoisyMNIST Caltech7
τ 0.01 0.07 0.1 1.0 0.01 0.07 0.1 1.0

AECoDDC 0.99 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.31 (0.03) 0.39 (0.01) 0.35 (0.02) 0.48 (0.01)

AECoKM 0.99 (0.00) 0.91 (0.02) 0.74 (0.02) 0.78 (0.05) 0.34 (0.01) 0.05 (0.01) 0.06 (0.01) 0.46 (0.01)

(d) Weight of the entropy regularization (λ).

NoisyMNIST Caltech7
λ 0.5 1.5 5.0 10.0 0.5 1.5 5.0 10.0

MV-IIC 0.03 (0.01) 0.81 (0.01) 0.82 (0.00) 0.82 (0.00) 0.04 (0.01) 0.64 (0.04) 0.60 (0.01) 0.52 (0.01)

InfoDDC 0.21 (0.02) 0.37 (0.02) 0.84 (0.04) 0.94 (0.07) 0.60 (0.06) 0.60 (0.02) 0.57 (0.01) 0.51 (0.01)

Table 8. Results (NMI) of hyperparameter sweeps for the new instances.

[27] Linlin Zong, Faqiang Miao, Xianchao Zhang, and Bo Xu.
Multimodal Clustering via Deep Commonness and Unique-
ness Mining. In ICIKM, 2020. 2
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Abstract

Distance-based classification is frequently used in trans-
ductive few-shot learning (FSL). However, due to the high-
dimensionality of image representations, FSL classifiers are
prone to suffer from the hubness problem, where a few points
(hubs) occur frequently in multiple nearest neighbour lists
of other points. Hubness negatively impacts distance-based
classification when hubs from one class appear often among
the nearest neighbors of points from another class, degrading
the classifier’s performance. To address the hubness prob-
lem in FSL, we first prove that hubness can be eliminated by
distributing representations uniformly on the hypersphere.
We then propose two new approaches to embed representa-
tions on the hypersphere, which we prove optimize a tradeoff
between uniformity and local similarity preservation – reduc-
ing hubness while retaining class structure. Our experiments
show that the proposed methods reduce hubness, and signifi-
cantly improves transductive FSL accuracy for a wide range
of classifiers1.

1. Introduction
While supervised deep learning has made a significant

impact in areas where large amounts of labeled data are
available [6, 11], few-shot learning (FSL) has emerged as
a promising alternative when labeled data is limited [3, 12,
14, 16, 21, 26, 28, 31, 33, 39, 40]. FSL aims to design
classifiers that can discriminate between novel classes based
on a few labeled instances, significantly reducing the cost of
the labeling procedure.

In transductive FSL, one assumes access to the entire

*Equal contributions.
†UiT Machine Learning group (machine-learning.uit.no) and

Visual Intelligence Centre (visual-intelligence.no).
‡Norwegian Computing Center.
§Department of Computer Science, University of Copenhagen.
¶Pioneer Centre for AI (aicentre.dk).
1Code available at https://github.com/uitml/noHub.
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Figure 1. Few-shot accuracy increases when hubness decreases.
The figure shows the 1-shot accuracy when classifying different
embeddings with SimpleShot [33] on mini-ImageNet [29].

query set during evaluation. This allows transductive FSL
classifiers to learn representations from a larger number of
samples, resulting in better performing classifiers. However,
many of these methods base their predictions on distances
to prototypes for the novel classes [3, 16, 21, 28, 39, 40].
This makes these methods susceptible to the hubness prob-
lem [10, 22, 24, 25], where certain exemplar points (hubs)
appear among the nearest neighbours of many other points.
If a support sample is a hub, many query samples will be
assigned to it regardless of their true label, resulting in low
accuracy. If more training data is available, this effect can
be reduced by increasing the number of labeled samples in
the classification rule – but this is impossible in FSL.

Several approaches have recently been proposed to embed
samples in a space where the FSL classifier’s performance
is improved [4, 5, 7, 17, 33, 35, 39]. However, only one of
these directly addresses the hubness problem. Fei et al. [7]
show that embedding representations on a hypersphere with
zero mean reduces hubness. They advocate the use of Z-
score normalization (ZN) along the feature axis of each
representation, and show empirically that ZN can reduce
hubness in FSL. However, ZN does not guarantee a data
mean of zero, meaning that hubness can still occur after ZN.



In this paper we propose a principled approach to em-
bed representations in FSL, which both reduces hubness
and improves classification performance. First, we prove
that hubness can be eliminated by embedding representa-
tions uniformly on the hypersphere. However, distributing
representations uniformly on the hypersphere without any
additional constraints will likely break the class structure
which is present in the representation space – hurting the
performance of the downstream classifier. Thus, in order
to both reduce hubness and preserve the class structure in
the representation space, we propose two new embedding
methods for FSL. Our methods, Uniform Hyperspherical
Structure-preserving Embeddings (noHub) and noHub with
Support labels (noHub-S), leverage a decomposition of the
Kullback-Leibler divergence between representation and em-
bedding similarities, to optimize a tradeoff between Local
Similarity Preservation (LSP) and uniformity on the hyper-
sphere. The latter method, noHub-S, also leverages label
information from the support samples to further increase the
class separability in the embedding space.

Figure 1 illustrates the correspondence between hubness
and accuracy in FSL. Our methods have both the least hub-
ness and highest accuracy among several recent embedding
techniques for FSL.

Our contributions are summarized as follows.

• We prove that the uniform distribution on the hyper-
sphere has zero hubness and that embedding points uni-
formly on the hypersphere thus alleviates the hubness
problem in distance-based classification for transduc-
tive FSL.

• We propose noHub and noHub-S to embed representa-
tions on the hypersphere, and prove that these methods
optimize a tradeoff between LSP and uniformity. The
resulting embeddings are therefore approximately uni-
form, while simultaneously preserving the class struc-
ture in the embedding space.

• Extensive experimental results demonstrate that noHub
and noHub-S outperform current state-of-the-art em-
bedding approaches, boosting the performance of a
wide range of transductive FSL classifiers, for multiple
datasets and feature extractors.

2. Related Work

The hubness problem. The hubness problem refers to
the emergence of hubs in collections of points in high-
dimensional vector spaces [22]. Hubs are points that appear
among the nearest neighbors of many other points, and are
therefore likely to have a significant influence on e.g. near-
est neighbor-based classification. Radovanovic et al. [22]
showed that points closer to the expected data mean are more

likely be among the nearest neighbors of other points, indi-
cating that these points are more likely to be hubs. Hubness
can also be seen as a result of large density gradients [9], as
points in high-density areas are more likely to be hubs. The
hubness problem is thus an intrinsic property of data distribu-
tions in high-dimensional vector spaces, and not an artifact
occurring in particular datasets. It is therefore important to
take the hubness into account when designing classification
systems in high-dimensional vector spaces.
Hubness in FSL. Many recent methods in FSL rely on
distance-based classification in high-dimensional representa-
tion spaces [1, 3, 19, 33, 36, 38, 40], making them vulnerable
to the hubness problem. Fei et al. [7] show that hyperspher-
ical representations with zero mean reduce hubness. Moti-
vated by this insight, they suggest that representations should
have zero mean and unit standard deviation (ZN) along the
feature dimension. This effectively projects samples onto
the hyperplane orthogonal to the vector with all elements
= 1, and pushes them to the hypersphere with radius

√
d,

where d is the dimensionality of the representation space.
Although ZN is empirically shown to reduce hubness, it
does not guarantee that the data mean is zero. The normal-
ized representations can therefore still suffer from hubness,
potentially decreasing FSL performance.
Embeddings in FSL. FSL classifiers often operate on em-
beddings of representations instead of the representations
themselves, to improve the classifier’s ability to generalize
to novel classes [5, 33, 35, 39]. Earlier works use the L2
normalization and Centered L2 normalization to embed rep-
resentations on the hypersphere [33]. Among more recent
embedding techniques, ReRep [5] performs a two-step fus-
ing operation on both the support and query features with an
attention mechanism. EASE [39] combines both support and
query samples into a single sample set, and jointly learns
a similarity and dissimilarity matrix, encouraging similar
features to be embedded closer, and dissimilar features to be
embedded far away. TCPR [35] computes the top-k neigh-
bours of each test sample from the base data, computes the
centroid, and removes the feature components in the direc-
tion of the centroid. Although these methods generally lead
to a reduction in hubness and an increase in performance
(see Figure 1), they are not explicitly designed to address
the hubness problem resulting in suboptimal hubness reduc-
tion and performance. In contrast, our proposed noHub and
noHub-S directly leverage our theoretic insights to target the
root of the hubness problem.
Hyperspherical uniformity. Benefits of uniform hyper-
spherical representations have previously been studied for
contrastive self-supervised learning (SSL) [32]. Our work
differs from [32] on several key points. First, we study a
non-parametric embedding of support and query samples
for FSL, which is a fundamentally different task from con-
trastive SSL. Second, the contrastive loss studied in [32] is a



combination of different cross-entropies, making it different
from our KL-loss. Finally, we introduce a tradeoff-parameter
between uniformity and LSP, and connect our theoretical
results to hubness and Laplacian Eigenmaps.

3. Hyperspherical Uniform Eliminates Hubness
We will now show that hubness can be eliminated com-

pletely by embedding representations uniformly on the hy-
persphere2.

Definition 1 (Uniform PDF on the hypersphere.). The uni-
form probability density function (PDF) on the unit hyper-
sphere Sd = {x ∈ Rd | ||x|| = 1} ⊂ Rd is

uSd(x) = A−1
d δ(||x|| − 1) (1)

where Ad = 2πd/2

Γ(d/2) is the surface area of Sd, and δ(·) is the
Dirac delta distribution.

We then have the following propositions3 for random
vectors with this PDF.

Proposition 1. Suppose X has PDF uSd(x). Then

E(X) = 0 (2)

Proposition 2. Let Πp be the tangent plane of Sd at an
arbitrary point p ∈ Sd. Then, for any direction θ∗ in Πp the
directional derivative of uSd along θ∗ is

∇θ∗uSd = 0 (3)

These two propositions show that the hyperspherical uni-
form has (i) zero mean; and (ii) zero density gradient along
all directions tangent to the hypersphere’s surface, at all
points on the hypersphere. The hyperspherical uniform thus
provably eliminates hubness, both in the sense of having a
zero data mean, and having zero density gradient everywhere.
We note that the latter property is un-attainable in Euclidean
space, as it is impossible to define a uniform distribution over
the whole space. It is therefore necessary to embed points on
a non-Euclidean sub-manifold in order to eliminate hubness.

4. Method
In the preceding section, we proved that uniform em-

beddings on the hypersphere eliminate hubness. However,
naïvely placing points uniformly on the hypersphere does
not incorporate the inherent class structure in the data, lead-
ing to poor FSL performance. Thus, there exists a tradeoff
between uniformity on the hypersphere and the preservation
of local similarities. To address this tradeoff, we introduce

2Our results assume hyperspheres with unit radius, but can easily be
extended to hyperspheres with arbitrary radii.

3The proofs for all propositions are included in the supplementary.
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Rk

Figure 2. Illustration of the noHub embedding. Given represen-
tations ∈ Rk, LLSP preserves local similarities. LUnif simulta-
neously encourages uniformity in the embedding space Sd. This
feature embedding framework helps reduce hubness while improv-
ing classification performance.

two novel embedding approaches for FSL, namely noHub
and noHub-S. noHub (Sec. 4.1) incorporates a novel loss
function for embeddings on the hypersphere, while noHub-
S (Sec. 4.2), guides noHub with additional label informa-
tion, which should act as a supervisory signal for a class-
aware embedding that leads to improved classification per-
formance. Figure 2 provides an overview of the proposed
noHub method. We also note that, since our approach gener-
ates embeddings, they are compatible with most transductive
FSL classifier.
Few-shot Preliminaries. Assume we have a large la-
beled base dataset XBase = {(xi, yi) | yi ∈ CBase; i =
1, . . . , nBase}, where xi and yi denotes the raw features and
labels, respectively. Let CBase denote the set of classes for the
base dataset. In the few–shot scenario, we assume that we
are given another labeled dataset XNovel = {(xi, yi) | yi ∈
CNovel; i = 1, . . . , nNovel} from novel, previously unseen
classes CNovel, satisfying CBase ∩ CNovel = ∅. In addition, we
have a test set T , T ∩ XNovel = ∅, also from CNovel.

In a K–way NS–shot FSL problem, we create randomly
sampled tasks (or episodes), with data from K randomly
chosen novel classes. Each task consists of a support set
S ⊂ XNovel and a query setQ ⊂ T . The support set contains
|S | = NS ·K random examples (NS random examples from
each of the K classes). The query set contains |Q| = NQ ·K
random examples, sampled from the same K classes. The
goal of FSL is then to predict the class of samples x ∈ Q by
exploiting the labeled support set S , using a model trained on
the base classes CBase. We assume a fixed feature extractor,
trained on the base classes, which maps the raw input data
to the representations xi.

4.1. noHub: Uniform Hyperspherical Structure-
preserving Embeddings

We design an embedding method that encourages uni-
formity on the hypersphere, and simultaneously preserves
local similarity structure. Given the support and query rep-



resentations x1, . . . ,xn ∈ Rk, n = K(NS + NQ) , we
wish to find suitable embeddings z1, . . . ,zn ∈ Sd, where
local similarities are preserved. For both representations and
embeddings, we quantify similarities using a softmax over
pairwise cosine similarities

pij =
pi|j + pj|i

2
, pi|j =

exp(κi
x⊤

i xj

||xi||·||xj || )∑
l,m

exp(κi
x⊤

l xm

||xl||·||xm|| )
(4)

and

qij =
exp(κz⊤

i zj)∑
l,m

exp(κz⊤
l zm)

, (5)

where κi is chosen such that the effective number of neigh-
bours of xi equals a pre-defined perplexity4. As in [27, 30],
local similarity preservation can now be achieved by mini-
mizing the Kullback-Leibler (KL) divergence between the
pij and the qij

KL(P ||Q) =
∑

i,j

pij log
pij
qij

. (6)

However, instead of directly minimizing KL(P ||Q), we find
that the minimization problem is equivalent to minimizing
the sum of two loss functions5

argmin
z1,...,zn∈Sd

KL(P ||Q) = argmin
z1,...,zn∈Sd

LLSP + LUnif (7)

where

LLSP = −κ
∑

i,j

pijz
⊤
i zj , (8)

LUnif = log
∑

l,m

exp(κz⊤
l zm). (9)

In Sec. 5 we provide a thorough theoretical analysis of
these losses, and how they relate to LSP and uniformity on
the hypersphere. Essentially, LLSP is responsible for the
local similarity preservation by ensuring that the embedding
similarities (z⊤

i zj) are high whenever the representation
similarities (pij) are high. LUnif on the other hand, can be
interpreted as a negative entropy on Sd, and is thus mini-
mized when the embeddings are uniformly distributed on Sd.
This is discussed in more detail in Sec. 5.

Based on the decomposition of the KL divergence, and
the subsequent interpretation of the two terms, we formulate
the loss in noHub as the following tradeoff between LSP and
uniformity

LnoHub = αLLSP + (1− α)LUnif (10)
4Details on the computation of the κi are provided in the supplementary.
5Intermediate steps are provided in the supplementary.

Input: Features ∈ Rk, {x1, . . . ,xn}; perplexity, P ;
number of iterations, T ; learning rate, η.

Output: Embeddings ∈ Sd, {z1, . . . ,zn}
Compute pij from Eq (4)
Initialize solution Z0 = {z1, . . . , zn} with PCA
for i← 1 to T do

Compute qij from Eq. (5)
Compute gradients dLnoHub

dZ
, using loss from Eq. (10)

Update Zt using the ADAM optimizer with learning
rate η [15]

Re-normalize elements of Zt using L2 normalization
end
return ZT

Algorithm 1: noHub algorithm for embeddings on
the hypersphere

where α is a weight parameter quantifying the tradeoff.
LnoHub can then be optimized directly with gradient descent.
The entire procedure is outlined in Algorithm 1.

4.2. noHub-S: noHub with Support labels

In order to strengthen the class structure in the embed-
ding space, we modify LLSP and LUnif by exploiting the
additional information provided by the support labels. For
LLSP, we change the similarity function in pij such that

pi|j =
exp(κisx(xi,xj))∑

l,m

exp(κisx(xl,xm))
(11)

where

sx(xi,xj) =





1 if xi,xj ∈ S , and yi = yj

−1 if xi,xj ∈ S , and yi ̸= yj

x⊤
i xj otherwise

. (12)

With this, we encourage embeddings for support samples in
the same class to be maximally similar, and support samples
in different classes to be maximally dissimilar. Similarly, for
LUnif

LUnif = log
∑

l,m

exp(κsz(zi, zj)) (13)

where

sz(zi, zj) =





−∞, if zi, zj ∈ S , and yi = yj

ε z⊤
i zj , if zi, zj ∈ S , and yi ̸= yj

z⊤
i , zj otherwise

(14)

where ε is a hyperparameter. This puts more emphasis on
between-class uniformity by weighting the similarity higher



for embeddings belonging to different classes (ε > 1), and
ignoring the similarity between embeddings belonging to
the same class6. The final loss function is the same as
Eq. (10), but with the additional label-informed similarities
in Eqs. (11)–(14).

5. Theoretical Results
In this section we provide a theoretical analysis of LLSP

and LUnif . Based on our analysis, we interpret these losses
with regards to the Laplacian Eigenmaps algorithm and
Rényi entropy, respectively.

Proposition 3. Let Wij =
1
2κpij , where

∑
i,j

pij = 1, and let

z1, . . . ,zn ∈ Sd. Then we have

LLSP =
∑

i,j

∥zi − zj∥2Wij − κ. (15)

Proposition 4 (Minimizing LUnif maximizes entropy). Let
H2(·) be the 2-order Rényi entropy, estimated with a kernel
density estimator using a Gaussian kernel. Then

argmin
z1,...,zn∈Sd

LUnif = argmax
z1,...,zn∈Sd

H2(z1, . . . ,zn). (16)

Definition 2 (Normalized counting measure). The normal-
ized counting measure associated with a set B on A is

νB(A) =
|B ∩A|
|B| (17)

Definition 3 (Normalized surface area measure on Sd). The
normalized surface area measure on the hyperspehere Sd ⊂
Rd, of a subset S′ ⊂ Sd is

σd(S
′) =

∫
S′ dS∫
Sd dS

= A−1
d

∫

S′
dS (18)

where Ad is defined as in Eq. (1), and
∫
dS denotes the

surface integral on Sd.

Definition 4 (Weak∗ convergence of measures [32]). A
sequence of Borel measures {µn}∞n=1 in Rd converges
weak∗ to a Borel measure µ, if for all continuous functions
f : Rd → R,

lim
n→∞

∫
f(x)dµn(x) =

∫
f(x)dµ(x) (19)

Proposition 5 (Minimizer of LUnif ). For each n > 0, the n
point minimizer of LUnif is

z⋆
1, . . . ,z

⋆
n = argmin

z1,...,zn∈Sd
LUnif . (20)

Then ν{z⋆
1 ,...,z

⋆
n} converge weak∗ to σd as n→∞.

6Although any constant value would achieve the same result, we set the
similarity to −∞ in this case to remove the contribution to the final loss.

Interpretation of Proposition 3–5. Proposition 3 states
an alternative formulation of LLSP, under the hyperspheri-
cal assumption. We recognize this formulation as the loss
function in Laplacian Eigenmaps [2], which is known to
produce local similarity-preserving embeddings from graph
data. When unconstrained, this loss has a trivial solution
where the embeddings for all representations are equal. This
is avoided in our case since LnoHub (Eq. (10)) can be inter-
preted as the Lagrangian of minimizing LLSP subject to a
specified level of entropy, by Proposition 4.

Finally, Proposition 5 states that the normalized counting
measure associated with the set of points that minimize
LUnif , converges to the normalized surface area measure
on the sphere. Since uSd is the density function associated
with this measure, the points that minimize LUnif will tend
to be uniform on the sphere. Consequently, minimizing
LLSP also minimizes hubness, by Propositions 1 and 2.

6. Experiments
6.1. Setup
Implementation details. Our implementation is in Py-
Torch [20]. We optimize noHub and noHub-S for T = 150
iterations, using the Adam optimizer [15] with learning rate
η = 0.1. The other hyperparameters were chosen based
on validation performance on the respective datasets7. We
analyze the effect of α in Sec. 6.2. Analyses of the κ and ε
hyperparameters are provided in the supplementary.
Initialization. Since noHub and noHub-S reduce the em-
bedding dimensionality (d = 400), we initialize embeddings
with Principal Component Analysis (PCA) [13], instead of a
naïve, random initialization. The PCA initialization is com-
putationally efficient, and approximately preserves global
structure. It also resulted in faster convergence and better
performance, compared to random initialization.
Base feature extractors. We use the standard networks
ResNet-18 [11] and Wide-Res28-10 [37] as the base fea-
ture extractors with pretrained weights from [28] and [18],
respectively.
Datasets. Following common practice, we evaluate FSL per-
formance on the mini-ImageNet (mini) [29], tiered-ImageNet
(tiered) [23], and CUB-200 (CUB) [34] datasets.
Classifiers. We evaluate the baseline embeddings and
our proposed methods using both established and recent
FSL classifiers: SimpleShot [33], LaplacianShot [40],
α−TIM [28], Oblique Manifold (OM) [21], iLPC [16], and
SIAMESE [39].
Baseline Embeddings. We compare our proposed method
with a wide range of techniques for embedding the base fea-
tures: None (No embedding of base features), L2 [33], Cen-
tered L2 [33], ZN [7], ReRep [5], EASE [39], and TCPR [35].

7Hyperparameter configurations for all experiments are included in the
supplementary.



mini tiered CUB
Embedding Feature Extractor 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑

None ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

L2 (ARXIV’19 [33]) ResNet-18 73.77 (0.24) 83.14 (0.14) 80.46 (0.26) 87.04 (0.16) 83.1 (0.23) 89.48 (0.12)
CL2 (ARXIV’19 [33]) ResNet-18 75.56 (0.26) 84.04 (0.15) 82.1 (0.26) 87.9 (0.16) 84.35 (0.24) 90.14 (0.12)

ZN (ICCV’21 [7]) ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

ReRep (ICML’21 [5]) ResNet-18 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

EASE (CVPR’22 [39]) ResNet-18 76.05 (0.27) 84.61 (0.15) 82.57 (0.27) 88.33 (0.16) 85.24 (0.24) 90.42 (0.12)
TCPR (NEURIPS’22 [35]) ResNet-18 75.99 (0.26) 84.39 (0.15) 82.65 (0.26) 88.26 (0.16) 85.34 (0.23) 90.5 (0.11)

noHub (OURS) ResNet-18 76.65 (0.28) 84.05 (0.16) 82.94 (0.27) 87.87 (0.17) 85.88 (0.24) 90.34 (0.12)
noHub-S (OURS) ResNet-18 76.68 (0.28) 84.67 (0.15) 83.09 (0.27) 88.43 (0.16) 85.81 (0.24) 90.52 (0.12)

None WideRes28-10 45.69 (0.31) 58.82 (0.31) 75.29 (0.28) 82.56 (0.22) 61.36 (0.55) 82.22 (0.37)
L2 (ARXIV’19 [33]) WideRes28-10 80.2 (0.23) 87.11 (0.13) 80.89 (0.26) 87.34 (0.15) 91.98 (0.18) 94.15 (0.1)

CL2 (ARXIV’19 [33]) WideRes28-10 75.23 (0.27) 83.99 (0.16) 79.59 (0.27) 86.71 (0.16) 92.17 (0.18) 94.48 (0.09)
ZN (ICCV’21 [7]) WideRes28-10 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗ 20.0 (0.0)∗

ReRep (ICML’21 [5]) WideRes28-10 36.69 (0.28) 36.41 (0.3) 67.41 (0.29) 76.49 (0.24) 57.62 (0.56) 60.36 (0.6)
EASE (CVPR’22 [39]) WideRes28-10 81.19 (0.25) 87.82 (0.13) 82.04 (0.26) 88.06 (0.16) 91.99 (0.19) 94.36 (0.09)

TCPR (NEURIPS’22 [35]) WideRes28-10 81.27 (0.24) 87.8 (0.13) 81.89 (0.26) 87.95 (0.16) 91.91 (0.18) 94.25 (0.1)
noHub (OURS) WideRes28-10 81.97 (0.25) 87.78 (0.14) 82.8 (0.27) 87.99 (0.17) 92.53 (0.18) 94.56 (0.09)

noHub-S (OURS) WideRes28-10 82.0 (0.26) 88.03 (0.13) 82.85 (0.27) 88.31 (0.16) 92.63 (0.18) 94.69 (0.09)

Table 1. Accuracies (Confidence interval) with the SIAMESE [39] classifier for different embedding approaches. Best and second best
performance are denoted in bold and underlined, respectively. ∗The SIAMESE classifier is sensitive to the norm of the embedding, thus
leading to detrimental performance for some of the embedding approaches.

Evaluation protocol. We follow the standard evaluation
protocol in FSL and calculate the accuracy for 1-shot and
5-shot classification with 15 images per class in the query
set. We evaluate on 10000 episodes, as is standard prac-
tice in FSL. Additionally, we evaluate the hubness of the
representations after embedding using two common hub-
ness metrics, namely the skewness (Sk) of the k-occurrence
distribution [22] and the hub occurrence (HO) [8], which
measures the percentage of hubs in the nearest neighbour
lists of all points.

6.2. Results

Comparison to the state-of-the-art. To illustrate the effec-
tiveness of noHub and noHub-S as an embedding approach
for FSL, we consider the current state-of-the-art FSL method,
which leverages the EASE embedding and obtains query
predictions with SIAMESE [39]. We replace EASE with
our proposed embedding approaches noHub and noHub-S,
as well as other baseline embeddings, and evaluate perfor-
mance on all datasets in the 1 and 5-shot setting. As shown
in Table 1, noHub and noHub-S outperform all baseline
approaches in both settings across all datasets, illustrating
noHub’s and noHub-S’ ability to provide useful FSL em-
beddings, and updating the state-of-the-art in transductive
FSL.
Aggregated FSL performance. To further evaluate the
general applicability of noHub and noHub-S as embedding
approaches, we perform extensive experiments for all classi-
fiers and all baseline embeddings on all datasets. Tables 2a
and 2b provide the results averaged over classifiers8. To

8The detailed results for all classifiers are provided in the supplementary.

clearly present the results, we aggregate the accuracy and a
ranking score for each embedding method across all classi-
fiers. The ranking score is calculated by performing a paired
Student’s t-test between all pairwise embedding methods for
each classifier. We then average the ranking scores across all
classifiers. A high ranking score then indicates that a method
often significantly outperforms the competing embedding
methods. We set the significance level to 5%. noHub and
noHub-S consistently outperform previous embedding ap-
proaches – sometimes by a large margin. Overall, we further
observe that noHub-S outperforms noHub in most settings
and is particular beneficial in the 1-shot setting, which is
more challenging, given that fewer samples are likely to
generate noisy embeddings.

Hubness metrics. To further validate noHub’s and noHub-
S’ ability to reduce hubness, we follow the same procedure
of aggregating results for the hubness metrics and average
over classifiers. Compared to the current state-of-the-art
embedding approaches, Table 3 illustrates that noHub and
noHub-S consistently result in embeddings with lower hub-
ness.

Visualization of similarity matrices. As discussed in
Sec. 4, completely eliminating hubness by distributing points
uniformly on the hypersphere is not sufficient to obtain good
FSL performance. Instead, representations need to also cap-
ture the inherent class structure of the data. To further eval-
uate the embedding approaches, we therefore compute the
pairwise inner products for the embeddings of a random
5-shot episode on tiered-ImageNet with ResNet-18 features
in Figure 3. It can be observed that the block structure is
considerably more distinct for noHub and noHub-S, with



mini tiered CUB
Embedding Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

R
es

N
et

18

None 55.74 0.17 62.61 0.0 63.78 0.17
L2 (ARXIV’19 [33]) 68.22 2.33 75.94 2.17 78.09 2.33

CL2 (ARXIV’19 [33]) 69.56 2.83 76.97 3.0 78.26 2.83
ZN (ICCV’21 [7]) 60.0 2.33 66.21 2.5 67.43 2.67

ReRep (ICML’21 [5]) 60.76 4.0 67.07 3.67 69.6 4.17
EASE (CVPR’22 [39]) 69.63 3.67 77.05 4.0 78.84 3.67

TCPR (NEURIPS’22 [35]) 69.97 4.0 77.18 3.33 78.83 4.0
noHub (OURS) 72.58 6.83 79.77 6.83 81.91 6.83

noHub-S (OURS) 73.64 7.67 80.6 7.67 83.1 7.67

W
id

eR
es

28
-1

0

None 63.59 1.0 71.29 0.83 79.23 1.17
L2 (ARXIV’19 [33]) 74.3 3.0 76.19 2.67 88.61 3.5

CL2 (ARXIV’19 [33]) 71.32 1.33 75.17 2.0 88.52 3.33
ZN (ICCV’21 [7]) 64.27 2.5 65.64 2.5 76.0 1.5

ReRep (ICML’21 [5]) 65.51 3.0 71.83 3.17 83.1 3.5
EASE (CVPR’22 [39]) 74.95 4.33 76.59 3.67 88.51 3.5

TCPR (NEURIPS’22 [35]) 75.64 4.83 76.51 4.0 88.22 2.5
noHub (OURS) 78.22 7.0 79.76 7.0 90.25 5.67

noHub-S (OURS) 79.24 7.67 80.46 7.67 90.82 7.67

(a) 1-shot

mini tiered CUB
Acc↑ Score↑ Acc↑ Score↑ Acc↑ Score↑

R
es

N
et

18

None 69.83 0.83 74.38 0.67 76.01 1.17
L2 (ARXIV’19 [33]) 81.58 2.33 86.05 1.83 88.43 2.83

CL2 (ARXIV’19 [33]) 81.95 2.67 86.43 3.0 88.49 2.5
ZN (ICCV’21 [7]) 71.49 4.0 75.32 3.83 76.92 3.5

ReRep (ICML’21 [5]) 70.25 2.5 74.52 1.83 76.43 2.5
EASE (CVPR’22 [39]) 81.84 3.5 86.4 3.17 88.57 3.5

TCPR (NEURIPS’22 [35]) 82.1 4.0 86.54 3.83 88.79 4.33
noHub (OURS) 82.58 5.5 86.9 4.5 89.13 6.0

noHub-S (OURS) 82.61 6.5 87.13 6.67 88.93 5.33

W
id

eR
es

28
-1

0

None 78.77 1.5 84.1 1.67 89.49 1.67
L2 (ARXIV’19 [33]) 85.65 4.0 86.29 3.83 93.47 3.67

CL2 (ARXIV’19 [33]) 83.14 1.33 85.47 1.5 93.49 4.0
ZN (ICCV’21 [7]) 74.61 4.33 75.34 5.0 81.02 3.17

ReRep (ICML’21 [5]) 73.86 1.83 81.51 1.67 87.2 2.0
EASE (CVPR’22 [39]) 85.51 3.5 86.29 3.33 93.34 3.5

TCPR (NEURIPS’22 [35]) 86.03 6.0 86.37 4.0 93.3 3.0
noHub (OURS) 86.44 5.67 87.07 5.5 93.65 4.17

noHub-S (OURS) 85.95 5.5 87.05 5.83 93.76 5.0

(b) 5-shot

Table 2. Aggregated FSL performance for all embedding ap-
proaches on the mini-ImageNet, tiered-ImageNet, and CUB-200
datasets. Results are averaged over FSL classifiers. Best and second
best performance are denoted in bold and underlined, respectively.

noHub-S slightly improving upon noHub. These results
indicate that (i) samples are more uniform, indicating the
reduced hubness; and (ii) classes are better separated, due to
the local similarity preservation.

Tradeoff between uniformity and similarity preserva-
tion. We analyze the effect of α on the tradeoff between
LSP and Uniformity in the loss function in Eq. (10), on
tiered-ImageNet with ResNet-18 features in the 5-shot set-
ting and with the SIAMESE [39] classifier. The results are
visualized in Figure 4. We notice a sharp increase in perfor-
mance when we have a high emphasis on uniformity. This

mini tiered CUB
Sk↓ HO↓ Sk↓ HO↓ Sk↓ HO↓

R
es

N
et

18

None 1.349 0.407 1.211 0.408 0.887 0.341
L2 (ARXIV’19 [33]) 0.937 0.301 0.812 0.265 0.691 0.236

CL2 (ARXIV’19 [33]) 0.667 0.233 0.679 0.249 0.549 0.201
ZN (ICCV’21 [7]) 0.68 0.231 0.698 0.264 0.564 0.216

ReRep (ICML’21 [5]) 3.655 0.548 3.604 0.549 3.565 0.513
EASE (CVPR’22 [39]) 0.521 0.16 0.479 0.158 0.466 0.153

TCPR (NEURIPS’22 [35]) 0.651 0.228 0.65 0.25 0.532 0.204
noHub (OURS) 0.315 0.095 0.303 0.102 0.32 0.112

noHub-S (OURS) 0.276 0.13 0.283 0.127 0.296 0.162

W
id

eR
es

28
-1

0

None 1.6 0.459 1.81 0.494 1.073 0.369
L2 (ARXIV’19 [33]) 0.781 0.296 0.737 0.275 0.475 0.228

CL2 (ARXIV’19 [33]) 0.981 0.288 0.817 0.307 0.52 0.267
ZN (ICCV’21 [7]) 0.73 0.287 0.769 0.302 0.517 0.263

ReRep (ICML’21 [5]) 3.56 0.704 3.55 0.777 3.026 0.47
EASE (CVPR’22 [39]) 0.47 0.177 0.477 0.175 0.437 0.213

TCPR (NEURIPS’22 [35]) 0.589 0.236 0.685 0.264 0.477 0.231
noHub (OURS) 0.29 0.111 0.301 0.111 0.188 0.108

noHub-S (OURS) 0.258 0.148 0.274 0.135 0.162 0.13

(a) 1-shot

mini tiered CUB
Sk↓ HO↓ Sk↓ HO↓ Sk↓ HO↓

R
es

N
et

18

None 1.436 0.422 1.339 0.432 0.987 0.364
L2 (ARXIV’19 [33]) 1.04 0.318 0.914 0.287 0.812 0.263

CL2 (ARXIV’19 [33]) 0.786 0.264 0.821 0.28 0.698 0.236
ZN (ICCV’21 [7]) 0.806 0.264 0.839 0.296 0.716 0.25

ReRep (ICML’21 [5]) 1.631 0.863 1.721 0.872 1.432 0.869
EASE (CVPR’22 [39]) 0.624 0.186 0.598 0.183 0.607 0.186

TCPR (NEURIPS’22 [35]) 0.78 0.259 0.796 0.283 0.687 0.235
noHub (OURS) 0.286 0.096 0.289 0.104 0.329 0.12

noHub-S (OURS) 0.25 0.074 0.213 0.078 0.433 0.097

W
id

eR
es

28
-1

0

None 1.709 0.473 1.937 0.51 1.16 0.395
L2 (ARXIV’19 [33]) 0.887 0.322 0.86 0.305 0.632 0.266

CL2 (ARXIV’19 [33]) 1.12 0.318 0.956 0.337 0.701 0.31
ZN (ICCV’21 [7]) 0.858 0.32 0.912 0.335 0.699 0.305

ReRep (ICML’21 [5]) 1.597 0.819 1.617 0.846 1.299 0.549
EASE (CVPR’22 [39]) 0.579 0.199 0.585 0.193 0.572 0.241

TCPR (NEURIPS’22 [35]) 0.717 0.27 0.815 0.294 0.634 0.264
noHub (OURS) 0.294 0.115 0.298 0.115 0.195 0.1

noHub-S (OURS) 0.494 0.103 0.407 0.12 0.421 0.127

(b) 5-shot

Table 3. Aggregated hubness metrics for all embedding approaches
on the Mini-ImageNet, Tiered-ImageNet and CUB-200 dataset.
Results are averaged over FSL classifiers. Best and second best
performance are denoted in bold and underlined, respectively.

demonstrates the impact of hubness on accuracy in FSL
performance. As we keep increasing the emphasis on LSP,
however, after a certain point we notice a sharp drop off
in performance. This is due to the fact that the classifier
does not take into account the uniformity constraint on the
features, resulting in a large number of misclassifications.
In general, we observe that noHub-S is slightly more robust
compared to noHub.

Increasing number of classes. We analyze the behavior
of noHub and noHub-S for an increasing number of classes
(ways) on the tiered-ImageNet dataset with SIAMESE [39]
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Figure 3. Inner product matrices between features for a random episode for all embedding approaches.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

noHub
noHub-S

Figure 4. Accuracies for different values of the weighting parame-
ter, α, which quantifies the tradeoff between LLSP and LUnif .
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Figure 5. Accuracies for an increasing number of classes (ways)
for noHub and noHub-S.

as classifier. While classification accuracy generally de-
creases with an increasing number of classes, which is ex-
pected, we observe from Figure 5 that noHub-S has a slower
decay and is able to leverage the label guidance to obtain
better performance for a larger number of classes.
Effect of label information in LLSP and LUnif . To vali-
date the effectiveness of using label guidance in noHub-S,
we study the result of including label information in LLSP

and LUnif (Eqs. (11)–(14)). We note that the default set-
ting of noHub is that none of the two losses include la-
bel information. Ablation experiments are performed on
tiered-ImageNet with the ResNet-18 feature extractor and
the SimpleShot and SIAMESE classifier [39]. In Table 4,
we generally see improvements of noHub-S when both the
loss terms are label-informed, indicating the usefulness of
label guidance.

We further observe that incorporating label information
in LUnif tends to have a larger contribution than doing the
same forLLSP. This aligns with our observations in Figure 4,

Label-informed SimpleShot [33] SIAMESE [39]
LLSP LUnif 1-shot↑ 5-shot↑ 1-shot↑ 5-shot↑

noHub – – 76.72 (0.23) 86.31 (0.16) 82.94 (0.27) 87.87 (0.17)
noHub-S ✓ – 78.25 (0.24) 85.46 (0.16) 82.56 (0.28) 88.07 (0.17)
noHub-S – ✓ 78.33 (0.23) 86.15 (0.15) 82.81 (0.27) 88.43 (0.16)
noHub-S ✓ ✓ 78.35 (0.23) 86.22 (0.15) 83.09 (0.27) 88.43 (0.16)

Table 4. Ablation study with the label-informed losses in noHub-S.
Check marks (✓) indicate that the loss uses information from the
support labels.

where a small α yielded the best performance.

7. Conclusion
In this paper we have addressed the hubness problem

in FSL. We have shown that hubness is eliminated by em-
bedding representations uniformly on the hypersphere. The
hyperspherical uniform distribution has zero mean and zero
density gradient at all points along all directions tangent to
the hypersphere – both of which are identified as causes of
hubness in previous work [9, 22]. Based on our theoreti-
cal findings about hubness and hyperspheres, we proposed
two new methods to embed representations on the hyper-
sphere for FSL. The proposed noHub and noHub-S leverage
a decomposition of the KL divergence between similarity
distributions, and optimize a tradeoff between LSP and uni-
formity on the hypersphere – thus reducing hubness while
maintaining the class structure in the representation space.
We have provided theoretical analyses and interpretations
of the LSP and uniformity losses, proving that they opti-
mize LSP and uniformity, respectively. We comprehensively
evaluate the proposed methods on several datasets, features
extractors, and classifiers, and compare to a number of recent
state-of-the-art baselines. Our results illustrate the effective-
ness of our proposed methods and show that we achieve
state-of-the-art performance in transductive FSL.
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1. Introduction
Here we provide proofs for our theoretical results on the

hyperspherical uniform and hubness; the decomposition of
the KL divergence; and the minima of our methods’ loss
functions. We also give additional details on the implemen-
tation and hyperparameters for noHub and noHub-S– and
include the complete tables of 1-shot and 5-shot results for
all classifiers, datasets and feature extractors. Finally, we
briefly reflect on potential negative societal impacts of our
work.

2. Hyperspherical Uniform Eliminates Hubness
Definition 1 (Uniform PDF on the hypersphere.). The uni-
form probability density function (PDF) on the unit hyper-
sphere Sd = {x ∈ Rd | ||x|| = 1} ⊂ Rd is

uSd(x) = A−1
d δ(||x|| − 1) (1)

where Ad = 2πd/2

Γ(d/2) is the surface area of Sd, and δ(·) is the
Dirac delta distribution.

Lemma 1 (Trisection of hypersphere). The trisection of the
hypersphere along coordinate i is given by the three-tuple of
disjoint sets (Si,+d ,Si,−d ,Si,0d ) where

Si,+d = {x = [x1, . . . , xd]⊤ ∈ Sd | xi > 0} (2)

Si,−d = {x = [x1, . . . , xd]⊤ ∈ Sd | xi < 0} (3)

Si,0d = {x = [x1, . . . , xd]⊤ ∈ Sd | xi = 0} (4)

and

Si,+d ∪ Si,−d ∪ Si,0d = Sd (5)

*Equal contributions.
†UiT Machine Learning group (machine-learning.uit.no) and

Visual Intelligence Centre (visual-intelligence.no).
‡Norwegian Computing Center.
§Department of Computer Science, University of Copenhagen.
¶Pioneer Centre for AI (aicentre.dk).

Then we have

Si,+d = −Si,−d = {−x | x ∈ Si,−d } (6)

Proof. Let x ∈ Si,+d , then

||(−x)|| = ||x|| = 1, (7)

and

−(xi) < 0. (8)

Hence x ∈ −Si,−d , and Si,+d ⊆ −Si,−d .
Similarly, let −x ∈ −Si,−d , then

|| − (−x)|| = ||x|| = 1, (9)

and

−(−xi) = xi > 0. (10)

Hence x ∈ Si,+d , and −Si,−d ⊆ Si,+d .
It then follows that Si,+d = −Si,−d .

Proposition 1. Suppose X has PDF uSd(x). Then

E(X) = 0 (11)

Proof. The expectation E(X) is given by

E(X) =

∫

Rd

xuSd(x)dx (12)

Since uSd is non-zero only on the hypersphere Sd, the inte-
gral can be rewritten as a surface integral over Sd

E(X) =

∫

Sd
xA−1

d dS. (13)

1



Decomposing the integral over the trisection of Sd along
coordinate i gives

∫

Sd
xA−1

d dS = (14)

A−1
d

(∫

Si,+d

xdS +

∫

Si,−d

xdS +

∫

Si,0d

xdS

)
. (15)

By Lemma 1 we have

Si,+d = −Si,−d ⇒
∫

Si,+d

xdS = −
∫

Si,−d

xdS. (16)

Furthermore, since the set Si,0d has zero width along coordi-
nate i,

∫
Si,0d

xdS = 0. Hence

E(X) = (17)

A−1
d

(∫

Si,+d

xdS −
∫

Si,+d

xdS +

∫

Si,0d

xdS

)
= 0 (18)

Proposition 2. Let Πp be the tangent plane of Sd at an
arbitrary point p ∈ Sd. Then, for any direction θ∗ in Πp the
directional derivative of uSd along θ∗ is

∇θ∗uSd = 0 (19)

Proof. uSd(x) can be written in polar coordinates as

uSd(x(r,θ)) = uPolar
Sd (r,θ) = A−1

d δ(r − 1) (20)

The gradient of uPolar
Sd (r,θ) is then

∇(r,θ)u
Polar
Sd (r,θ) =




∂
∂ru

Polar
Sd (r,θ)

0
...
0




(21)

For an arbitrary point p ∈ Sd, an arbitrary unit vector
(direction), θ∗, in the tangent plane Πp is given by

θ∗ =




0
θ∗1
...

θ∗d−1


 (22)

The directional derivative of uSd(x) along θ∗ is then

∇θ∗uSd(x) =




∂
∂ru

Polar
Sd (r,θ)

0
...
0




⊤

·




0
θ∗1
...

θ∗d−1


 = 0 (23)

3. Method
Computing κi. Following [5], we compute κi using a
binary search such that

| log2(P )−H(Pi)| ≤ 0.1 · log2(P ) (24)

where P is a hyperparameter, and H(Pi) is the Shannon
entropy of similarities for representation i

H(Pi) =
n∑

j=1

pi|j log2(pi|j). (25)

Decomposition of KL(P ||Q). Recall that

pij =
pi|j + pj|i

2
, pi|j =

exp(κix
⊤
i xj)∑

l,m

exp(κix⊤
l xm)

(26)

and

qij =
exp(κz⊤

i zj)∑
l,m

exp(κz⊤
l zm)

. (27)

Since pij is constant w.r.t. qij , we have

argmin
z1,...,zn∈Sd

KL(P ||Q) = argmin
z1,...,zn∈Sd

∑

i,j

pij log
pij
qij

(28)

= argmin
z1,...,zn∈Sd

∑

i,j

pij log pij

︸ ︷︷ ︸
constant

−
∑

i,j

pij log qij (29)

= argmin
z1,...,zn∈Sd

−
∑

i,j

pij log qij

︸ ︷︷ ︸
=:L̃

(30)

Minimizing KL(P ||Q) over z1, . . . ,zn ∈ Sd is therefore
equivalent to minimizing L̃.

Decomposing L̃ gives

L̃ = −
∑

i,j

pijκz
⊤
i zj+ (31)

∑

i,j


pij log

∑

l,m

exp(κz⊤
l zm)


 (32)

= −
∑

i,j

pijκz
⊤
i zj (33)

+


log

∑

l,m

exp(κz⊤
l zm)


 ·


∑

i,j

pij




︸ ︷︷ ︸
=1

(34)

= −
∑

i,j

pijκz
⊤
i zj

︸ ︷︷ ︸
=: LLSP

+ log
∑

l,m

exp(κz⊤
l zm)

︸ ︷︷ ︸
=: LUnif

(35)



Thus, we have shown that

argmin
z1,...,zn∈Sd

KL(P ||Q) = argmin
z1,...,zn∈Sd

LLSP + LUnif . (36)

4. Theoretical Results

Proposition 3. Let Wij =
1
2κpij , where

∑
i,j

pij = 1, and let

z1, . . . ,zn ∈ Sd. Then we have

LLSP =
∑

i,j

∥zi − zj∥2Wij − κ. (37)

Proof. We have

LLSP = −κ
∑

i,j

pijz
⊤
i zj (38)

= −2
∑

i,j

1

2
κpijz

⊤
i zj +

∑

i,j

2
1

2
κpij − κ (39)

(
∑

i,j

pij = 1)

= −2
∑

i,j

z⊤
i zjWij +

∑

i,j

(∥zi∥+ ∥zj∥)Wij − κ

(40)

(∥zi∥ = ∥zj∥ = 1)

=
∑

i,j

(∥zi∥ − 2z⊤
i zj + ∥zj∥)Wij − κ (41)

=
∑

i,j

|zi − zj∥2Wij − κ. (42)

Proposition 4 (Minimizing LUnif maximizes entropy). Let
H2(·) be the 2-order Rényi entropy, estimated with a kernel
density estimator using a Gaussian kernel. Then

argmin
z1,...,zn∈Sd

LUnif = argmax
z1,...,zn∈Sd

H2(z1, . . . ,zn). (43)

Proof. Using a Gaussian kernel, the 2-order Rényi entropy
can be estimated as [4, Eq. (2.13)]

H2(z1, . . . ,zn) = − log


 1

n2

∑

l,m

exp(−1

2
κ∥zl − zm∥2)




(44)

Thus, we have

argmax
z1,...,zn∈Sd

H2(z1, . . . ,zn) (45)

= argmax
z1,...,zn∈Sd

− log

(
1

n2

∑

l,m

exp(−1

2
κ∥zl − zm∥2)

)

(46)

= argmin
z1,...,zn∈Sd

log

(∑

l,m

exp(−1

2
κ∥zl − zm∥2)

)

(47)

= argmin
z1,...,zn∈Sd

log

(∑

l,m

exp(−1

2
κ(∥zl∥2 (48)

− 2z⊤
l zm + ∥zm∥2)

)
(49)

= argmin
z1,...,zn∈Sd

log

(∑

l,m

exp(−κ(1− z⊤
l zm))

)
(50)

(∥zl∥ = ∥zm∥ = 1)

= argmin
z1,...,zn∈Sd

log

(
exp(−κ)

∑

l,m

exp(κz⊤
l zm)

)

(51)

= argmin
z1,...,zn∈Sd

log
∑

l,m

exp(κz⊤
l zm) (52)

= argmin
z1,...,zn∈Sd

LUnif . (53)

Definition 2 (Normalized counting measure). The normal-
ized counting measure associated with a set B on A is

νB(A) =
|B ∩A|
|B| (54)

Definition 3 (Normalized surface area measure on Sd). The
normalized surface area measure on the hyperspehere Sd ⊂
Rd, of a subset S′ ⊂ Sd is

σd(S
′) =

∫
S′ dS∫
Sd dS

= A−1
d

∫

S′
dS (55)

where Ad is defined as in Eq. (1), and
∫
dS denotes the

surface integral on Sd.

Definition 4 (Weak∗ convergence of measures [8]). A se-
quence of Borel measures {µn}∞n=1 in Rd converges weak∗

to a Borel measure µ, if for all continuous functions f :
Rd → R,

lim
n→∞

∫
f(x)dµn(x) =

∫
f(x)dµ(x) (56)



Proposition 5 (Minimizer of LUnif ). For each n > 0, the n
point minimizer of LUnif is

z⋆
1, . . . ,z

⋆
n = argmin

z1,...,zn∈Sd
LUnif . (57)

Then ν{z⋆
1 ,...,z

⋆
n} converge weak∗ to σd as n→∞.

Proof. We have

argmin
z1,...,zn∈Sd

LUnif (58)

= argmin
z1,...,zn∈Sd

log
∑

l,m

exp(κz⊤
l zm) (59)

= argmin
z1,...,zn∈Sd

∑

l,m

exp(κz⊤
l zm) (60)

(monotonicity of logarithm)

= argmin
z1,...,zn∈Sd

∑

1≤l<m≤n

exp(κz⊤
l zm) (61)

(symmetry of inner product)

= argmin
z1,...,zn∈Sd

∑

1≤l<m≤n

exp(−κ||zl − zm||22)︸ ︷︷ ︸
=: G(zl,zm)

(62)

(multiplication by positive constant)

= argmin
z1,...,zn∈Sd

∑

1≤l<m≤n

G(zl, zm) (63)

The result then follows directly from [8, Proposition 2].

5. Experiments
5.1. Implementation details

This section covers the additional implementation details
not provided in the main paper. These include the initial-
ization of the embeddings in Algorithm 1, hyperparameters,
additional transformations wherever required, the architec-
tures used, and a note on accessing the code, datasets, and
dataset splits.
Initialization and normalization. Instead of a random
initialization of our embeddings Z0, we follow a PCA based
initialization, as in [5]. The weights are computed using
the cached features from the base classes, the support and
query features are then transformed using these weights.
This procedure is also fast as we do not need to compute the
PCA weights on every episode. To ensure that the resulting
features lie on the hypersphere after each gradient update in
noHub and noHub-S, we re-normalize the embeddings using
L2 normalization.
Hyperparameters. noHub and noHub-S have the following
hyperparameters.

• P – perplexity for computing the κi.
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Figure 1. Accuracy for different values for κ and ε. Neither noHub
nor noHub-S are particularly sensitive the the choice of these pa-
rameters.

• T – number of iterations.

• α – tradeoff parameter in the loss (LnoHub = αLLSP +
(1− α)LUnif ).

• η – learning rate for the Adam optimizer.

• κ – concentration parameter for the embeddings.

• ε – exaggeration of similarities between supports from
different classes.

• d – dimensionality of embeddings.

All hyperparameter values used in in noHub and noHub-S
are given in Table 1
Code. The code for our experiments is available at: https:
//github.com/uitml/noHub
Data splits. Details to access the datasets used with the
requisite splits (both are consistent with [6]) are available in
the code repository.
Base feature extractors.

• Resnet-18: As in [1, 6], we use the weights from [6].
The model is trained using a cross-entropy loss on the
base classes.

• WideRes28-10: Following [3, 9], we use the weights
from [3]. The model is pre-trained using a combination
of cross-entropy and rotation prediction [2], and then
fine-tuned with Manifold Mixup [7].



mini tiered CUB
Arch. Param. Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet18

P
noHub 45 45 45 45 45 45

noHub-S 45 45 40 45 45 45

T
noHub 50 50 50 50 50 50

noHub-S 150 150 150 150 150 150

α
noHub 0.2 0.2 0.2 0.2 0.2 0.2

noHub-S 0.3 0.2 0.2 0.2 0.3 0.2

η
noHub 0.1 0.1 0.1 0.1 0.1 0.1

noHub-S 0.1 0.1 0.1 0.1 0.1 0.1

κ
noHub 0.5 0.5 0.5 0.5 0.5 0.5

noHub-S 0.5 0.5 0.5 0.5 0.5 0.5

ε
noHub – – – – – –

noHub-S 8 8 5 8 8 8

d
noHub 400 400 400 400 400 400

noHub-S 400 400 400 400 400 400

WideRes28-10

P
noHub 45 45 45 45 45 45

noHub-S 45 45 40 35 45 30

T
noHub 50 50 50 50 50 50

noHub-S 150 150 150 150 150 150

α
noHub 0.2 0.2 0.2 0.2 0.2 0.2

noHub-S 0.3 0.2 0.2 0.1 0.3 0.1

η
noHub 0.1 0.1 0.1 0.1 0.1 0.1

noHub-S 0.1 0.1 0.1 0.1 0.1 0.1

κ
noHub 0.5 0.5 0.5 0.5 0.5 0.5

noHub-S 0.5 0.5 0.5 0.2 0.5 0.2

ε
noHub – – – – – –

noHub-S 8 8 5 12 8 8

d
noHub 400 400 400 400 400 400

noHub-S 400 400 400 400 400 400

Table 1. Hyperparameter values used in our experiments.

5.2. Results

FSL performance. The complete lists of accuracies and
hubness metrics for all embeddings, classifiers, and feature
extractors, are given in Tables 2, 3, 4, and 5. The exhaustive
results in these tables form the basis of Table 1, Table 2
and Table 3 in the main text. The two proposed approaches
consistently outperform prior embeddings across several
classifiers, feature extractors and datasets.

Effect of the κ and ε hyperparameters. The plots in
Figure 1 show accuracy on tiered 5-shot with SIAMESE for
increasing κ and ε. Neither method is particularly sensitive
to the choice of κ and ε, and noHub-S is less sensitive to
variations in κ, than noHub. Choosing κ ∈ [0.5, 1] and
ε ∈ [3, 20] will result in high classification accuracy

6. Potential Negative Societal Impacts
As is the case with most methodological research in ma-

chine learning, the methods developed in this work could be
used in downstream applications with potential negative so-
cietal impacts. Real world machine learning-based systems
that interact with humans, or the environment in general,
should therefore be properly tested and equipped with ade-
quate safety measures.

Since our work relies on a large number of labeled ex-
amples from the base classes, un-discovered biases from
the base dataset could be transferred to the trained models.
Furthermore, the small number of examples in the inference
stage could make the query predictions biased towards the
included support examples, and not accurately reflect the
diversity of the novel classes.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.
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None 64.07 (0.28) 1.411 (0.01) 0.408 (0.001) 75.5 (0.28) 1.213 (0.009) 0.41 (0.001) 76.06 (0.27) 0.886 (0.006) 0.34 (0.001)
L2 69.28 (0.27) 0.966 (0.007) 0.298 (0.001) 77.84 (0.28) 0.811 (0.007) 0.267 (0.001) 79.91 (0.26) 0.688 (0.006) 0.236 (0.001)
CL2 71.48 (0.27) 0.661 (0.005) 0.229 (0.001) 79.8 (0.27) 0.679 (0.006) 0.249 (0.001) 80.97 (0.26) 0.553 (0.005) 0.203 (0.001)
ZN 71.48 (0.27) 0.677 (0.006) 0.227 (0.001) 79.95 (0.27) 0.694 (0.006) 0.263 (0.001) 81.49 (0.25) 0.57 (0.005) 0.217 (0.001)
ReRep 65.49 (0.28) 3.688 (0.007) 0.559 (0.001) 76.75 (0.28) 3.61 (0.01) 0.55 (0.001) 77.73 (0.26) 3.563 (0.007) 0.512 (0.001)
EASE 71.79 (0.28) 0.515 (0.005) 0.157 (0.001) 80.2 (0.27) 0.48 (0.005) 0.158 (0.001) 81.88 (0.25) 0.463 (0.004) 0.153 (0.001)
TCPR 71.77 (0.28) 0.647 (0.005) 0.223 (0.001) 80.01 (0.28) 0.652 (0.006) 0.249 (0.001) 81.75 (0.25) 0.534 (0.004) 0.203 (0.001)
noHub 73.18 (0.28) 0.308 (0.005) 0.094 (0.001) 80.76 (0.28) 0.296 (0.004) 0.101 (0.001) 82.74 (0.26) 0.32 (0.004) 0.112 (0.001)
noHub-S 74.02 (0.28) 0.276 (0.004) 0.13 (0.001) 81.34 (0.27) 0.281 (0.004) 0.127 (0.001) 83.92 (0.25) 0.296 (0.003) 0.163 (0.001)
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None 68.92 (0.23) 1.341 (0.009) 0.408 (0.001) 76.43 (0.25) 1.214 (0.009) 0.41 (0.001) 79.17 (0.23) 0.887 (0.006) 0.34 (0.001)
L2 69.3 (0.23) 0.945 (0.007) 0.302 (0.001) 77.2 (0.25) 0.808 (0.007) 0.265 (0.001) 79.65 (0.23) 0.682 (0.006) 0.236 (0.001)
CL2 70.68 (0.23) 0.661 (0.005) 0.231 (0.001) 77.98 (0.24) 0.689 (0.006) 0.248 (0.001) 79.99 (0.22) 0.547 (0.005) 0.201 (0.001)
ZN 70.51 (0.23) 0.688 (0.006) 0.233 (0.001) 77.51 (0.24) 0.697 (0.006) 0.264 (0.001) 79.86 (0.22) 0.564 (0.005) 0.217 (0.001)
ReRep 72.75 (0.24) 3.653 (0.007) 0.548 (0.001) 78.95 (0.25) 3.605 (0.011) 0.549 (0.001) 82.38 (0.22) 3.565 (0.007) 0.512 (0.001)
EASE 72.19 (0.23) 0.526 (0.005) 0.161 (0.001) 79.34 (0.24) 0.481 (0.005) 0.158 (0.001) 81.5 (0.22) 0.459 (0.004) 0.152 (0.001)
TCPR 71.79 (0.23) 0.654 (0.005) 0.228 (0.001) 78.41 (0.24) 0.651 (0.005) 0.249 (0.001) 80.86 (0.22) 0.537 (0.004) 0.203 (0.001)
noHub 73.63 (0.25) 0.305 (0.005) 0.094 (0.001) 80.84 (0.25) 0.3 (0.005) 0.101 (0.001) 83.23 (0.22) 0.318 (0.004) 0.112 (0.001)
noHub-S 73.79 (0.25) 0.276 (0.004) 0.13 (0.001) 80.83 (0.25) 0.275 (0.004) 0.125 (0.001) 83.47 (0.22) 0.299 (0.003) 0.164 (0.001)

O
bl

iq
ue

M
an

if
ol

d

None 68.89 (0.23) 1.412 (0.01) 0.407 (0.001) 77.07 (0.25) 1.21 (0.009) 0.409 (0.001) 79.4 (0.22) 0.887 (0.006) 0.341 (0.001)
L2 68.92 (0.23) 0.964 (0.007) 0.299 (0.001) 77.17 (0.25) 0.806 (0.007) 0.266 (0.001) 79.32 (0.22) 0.691 (0.006) 0.237 (0.001)
CL2 70.86 (0.24) 0.66 (0.005) 0.228 (0.001) 78.92 (0.25) 0.68 (0.006) 0.249 (0.001) 80.29 (0.23) 0.547 (0.005) 0.202 (0.001)
ZN 71.25 (0.24) 0.679 (0.006) 0.227 (0.001) 79.54 (0.25) 0.697 (0.006) 0.263 (0.001) 81.38 (0.23) 0.562 (0.005) 0.216 (0.001)
ReRep 73.3 (0.25) 3.682 (0.007) 0.559 (0.001) 80.26 (0.26) 3.608 (0.01) 0.551 (0.001) 83.84 (0.23) 3.559 (0.008) 0.513 (0.001)
EASE 68.4 (0.24) 0.516 (0.005) 0.156 (0.001) 77.33 (0.25) 0.477 (0.004) 0.158 (0.001) 79.03 (0.24) 0.461 (0.004) 0.152 (0.001)
TCPR 70.74 (0.24) 0.646 (0.005) 0.223 (0.001) 78.92 (0.25) 0.649 (0.005) 0.249 (0.001) 80.18 (0.23) 0.537 (0.004) 0.204 (0.001)
noHub 72.55 (0.26) 0.309 (0.005) 0.095 (0.001) 79.97 (0.26) 0.302 (0.005) 0.102 (0.001) 82.21 (0.24) 0.319 (0.004) 0.112 (0.001)
noHub-S 74.24 (0.26) 0.274 (0.004) 0.13 (0.001) 80.84 (0.26) 0.282 (0.004) 0.127 (0.001) 83.67 (0.23) 0.294 (0.003) 0.162 (0.001)
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None 20.0 (0.0) 1.345 (0.009) 0.407 (0.001) 20.0 (0.0) 1.222 (0.009) 0.41 (0.001) 20.0 (0.0) 0.885 (0.006) 0.339 (0.001)
L2 73.77 (0.24) 0.949 (0.007) 0.301 (0.001) 80.46 (0.26) 0.811 (0.007) 0.265 (0.001) 83.1 (0.23) 0.691 (0.006) 0.237 (0.001)
CL2 75.56 (0.26) 0.666 (0.005) 0.232 (0.001) 82.1 (0.26) 0.68 (0.006) 0.248 (0.001) 84.35 (0.24) 0.549 (0.005) 0.201 (0.001)
ZN 20.0 (0.0) 0.686 (0.006) 0.232 (0.001) 20.0 (0.0) 0.69 (0.006) 0.262 (0.001) 20.0 (0.0) 0.565 (0.005) 0.217 (0.001)
ReRep 20.0 (0.0) 3.653 (0.007) 0.549 (0.001) 20.0 (0.0) 3.616 (0.01) 0.549 (0.001) 20.0 (0.0) 3.559 (0.007) 0.512 (0.001)
EASE 76.05 (0.27) 0.529 (0.005) 0.162 (0.001) 82.57 (0.27) 0.485 (0.005) 0.159 (0.001) 85.24 (0.24) 0.464 (0.004) 0.153 (0.001)
TCPR 75.99 (0.26) 0.655 (0.005) 0.227 (0.001) 82.65 (0.26) 0.651 (0.005) 0.249 (0.001) 85.34 (0.23) 0.535 (0.004) 0.203 (0.001)
noHub 76.65 (0.28) 0.308 (0.005) 0.095 (0.001) 82.94 (0.27) 0.303 (0.004) 0.101 (0.001) 85.88 (0.24) 0.322 (0.004) 0.112 (0.001)
noHub-S 76.68 (0.28) 0.275 (0.004) 0.13 (0.001) 83.09 (0.27) 0.281 (0.004) 0.128 (0.001) 85.81 (0.24) 0.295 (0.003) 0.161 (0.001)
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None 56.14 (0.2) 1.349 (0.009) 0.407 (0.001) 63.34 (0.23) 1.211 (0.009) 0.408 (0.001) 64.02 (0.21) 0.887 (0.006) 0.341 (0.001)
L2 60.15 (0.2) 0.937 (0.007) 0.301 (0.001) 68.02 (0.23) 0.812 (0.007) 0.265 (0.001) 69.05 (0.21) 0.691 (0.006) 0.236 (0.001)
CL2 63.1 (0.2) 0.667 (0.005) 0.233 (0.001) 69.76 (0.22) 0.679 (0.006) 0.249 (0.001) 70.16 (0.2) 0.549 (0.005) 0.201 (0.001)
ZN 63.39 (0.2) 0.68 (0.005) 0.231 (0.001) 70.04 (0.22) 0.698 (0.006) 0.264 (0.001) 71.03 (0.2) 0.564 (0.005) 0.216 (0.001)
ReRep 66.66 (0.22) 3.655 (0.007) 0.548 (0.001) 73.23 (0.23) 3.604 (0.01) 0.549 (0.001) 76.8 (0.21) 3.565 (0.007) 0.513 (0.001)
EASE 64.0 (0.2) 0.521 (0.005) 0.16 (0.001) 71.0 (0.21) 0.479 (0.005) 0.158 (0.001) 72.38 (0.2) 0.466 (0.004) 0.153 (0.001)
TCPR 63.33 (0.2) 0.651 (0.005) 0.228 (0.001) 69.82 (0.22) 0.65 (0.005) 0.25 (0.001) 70.75 (0.2) 0.532 (0.004) 0.204 (0.001)
noHub 69.38 (0.22) 0.315 (0.005) 0.095 (0.001) 76.72 (0.23) 0.303 (0.004) 0.102 (0.001) 78.21 (0.21) 0.32 (0.004) 0.112 (0.001)
noHub-S 71.1 (0.22) 0.276 (0.004) 0.13 (0.001) 78.35 (0.23) 0.283 (0.004) 0.127 (0.001) 80.31 (0.21) 0.296 (0.003) 0.162 (0.001)

α
-T

IM

None 56.39 (0.2) 1.342 (0.009) 0.406 (0.001) 63.32 (0.23) 1.216 (0.009) 0.411 (0.001) 64.02 (0.22) 0.886 (0.006) 0.341 (0.001)
L2 67.91 (0.23) 0.942 (0.007) 0.301 (0.001) 74.94 (0.24) 0.814 (0.007) 0.266 (0.001) 77.49 (0.23) 0.694 (0.006) 0.236 (0.001)
CL2 65.68 (0.21) 0.665 (0.005) 0.232 (0.001) 73.23 (0.23) 0.681 (0.006) 0.248 (0.001) 73.79 (0.21) 0.552 (0.005) 0.202 (0.001)
ZN 63.36 (0.2) 0.682 (0.005) 0.232 (0.001) 70.19 (0.22) 0.693 (0.006) 0.263 (0.001) 70.85 (0.21) 0.566 (0.005) 0.215 (0.001)
ReRep 66.37 (0.22) 3.656 (0.007) 0.55 (0.001) 73.24 (0.24) 3.605 (0.011) 0.55 (0.001) 76.86 (0.21) 3.555 (0.007) 0.514 (0.001)
EASE 65.32 (0.2) 0.526 (0.005) 0.163 (0.001) 71.88 (0.22) 0.477 (0.005) 0.158 (0.001) 73.03 (0.21) 0.459 (0.004) 0.151 (0.001)
TCPR 66.19 (0.21) 0.65 (0.005) 0.227 (0.001) 73.24 (0.23) 0.649 (0.005) 0.25 (0.001) 74.07 (0.21) 0.532 (0.004) 0.203 (0.001)
noHub 70.08 (0.23) 0.312 (0.005) 0.094 (0.001) 77.39 (0.24) 0.304 (0.004) 0.101 (0.001) 79.19 (0.22) 0.319 (0.004) 0.112 (0.001)
noHub-S 72.04 (0.23) 0.273 (0.004) 0.13 (0.001) 79.13 (0.24) 0.282 (0.004) 0.126 (0.001) 81.42 (0.22) 0.296 (0.003) 0.161 (0.001)

Table 2. Resnet-18: 1-shot.
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Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.
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None 71.27 (0.28) 1.595 (0.01) 0.46 (0.001) 75.01 (0.28) 1.807 (0.01) 0.494 (0.001) 89.75 (0.19) 1.072 (0.009) 0.367 (0.001)
L2 76.41 (0.26) 0.773 (0.006) 0.295 (0.001) 78.25 (0.27) 0.731 (0.006) 0.274 (0.001) 90.27 (0.2) 0.473 (0.004) 0.228 (0.001)
CL2 74.13 (0.27) 0.993 (0.009) 0.29 (0.001) 78.2 (0.27) 0.815 (0.006) 0.306 (0.001) 90.34 (0.2) 0.524 (0.004) 0.267 (0.001)
ZN 77.76 (0.26) 0.728 (0.005) 0.287 (0.001) 79.42 (0.27) 0.776 (0.006) 0.302 (0.001) 90.21 (0.2) 0.516 (0.004) 0.263 (0.001)
ReRep 62.51 (0.34) 3.56 (0.002) 0.704 (0.001) 60.66 (0.37) 3.55 (0.002) 0.776 (0.001) 87.44 (0.25) 3.033 (0.008) 0.472 (0.001)
EASE 78.01 (0.26) 0.47 (0.004) 0.176 (0.001) 79.64 (0.27) 0.479 (0.004) 0.175 (0.001) 90.76 (0.19) 0.437 (0.003) 0.212 (0.001)
TCPR 78.37 (0.26) 0.584 (0.005) 0.237 (0.001) 79.55 (0.28) 0.683 (0.006) 0.265 (0.001) 90.77 (0.19) 0.476 (0.004) 0.23 (0.001)
noHub 78.84 (0.27) 0.293 (0.004) 0.112 (0.001) 80.75 (0.28) 0.3 (0.004) 0.112 (0.001) 90.91 (0.2) 0.189 (0.004) 0.109 (0.001)
noHub-S 79.77 (0.26) 0.262 (0.004) 0.148 (0.001) 81.24 (0.27) 0.278 (0.004) 0.135 (0.001) 91.28 (0.19) 0.16 (0.004) 0.13 (0.001)
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None 72.56 (0.23) 1.599 (0.01) 0.459 (0.001) 75.58 (0.25) 1.795 (0.01) 0.495 (0.001) 88.71 (0.19) 1.071 (0.009) 0.369 (0.001)
L2 75.18 (0.23) 0.777 (0.006) 0.296 (0.001) 77.03 (0.24) 0.732 (0.006) 0.274 (0.001) 89.73 (0.17) 0.474 (0.004) 0.229 (0.001)
CL2 71.29 (0.24) 0.987 (0.009) 0.29 (0.001) 75.42 (0.25) 0.819 (0.006) 0.309 (0.001) 89.61 (0.18) 0.52 (0.004) 0.268 (0.001)
ZN 75.18 (0.22) 0.724 (0.005) 0.286 (0.001) 77.0 (0.24) 0.768 (0.006) 0.301 (0.001) 89.22 (0.18) 0.517 (0.004) 0.263 (0.001)
ReRep 75.25 (0.22) 3.562 (0.002) 0.704 (0.001) 77.12 (0.24) 3.548 (0.002) 0.776 (0.001) 88.98 (0.18) 3.024 (0.008) 0.47 (0.001)
EASE 77.29 (0.22) 0.473 (0.004) 0.177 (0.001) 78.97 (0.24) 0.475 (0.004) 0.175 (0.001) 90.06 (0.17) 0.435 (0.003) 0.213 (0.001)
TCPR 76.77 (0.22) 0.593 (0.005) 0.236 (0.001) 77.49 (0.24) 0.686 (0.006) 0.264 (0.001) 89.42 (0.17) 0.475 (0.004) 0.231 (0.001)
noHub 79.13 (0.23) 0.29 (0.004) 0.111 (0.001) 80.5 (0.25) 0.302 (0.004) 0.112 (0.001) 90.73 (0.18) 0.19 (0.004) 0.109 (0.001)
noHub-S 79.13 (0.23) 0.259 (0.004) 0.147 (0.001) 80.59 (0.24) 0.277 (0.004) 0.135 (0.001) 90.61 (0.17) 0.164 (0.004) 0.13 (0.001)
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None 76.02 (0.22) 1.599 (0.01) 0.46 (0.001) 77.75 (0.25) 1.801 (0.01) 0.494 (0.001) 90.82 (0.18) 1.07 (0.009) 0.368 (0.001)
L2 76.11 (0.22) 0.779 (0.006) 0.295 (0.001) 77.74 (0.25) 0.731 (0.006) 0.274 (0.001) 90.89 (0.18) 0.475 (0.004) 0.228 (0.001)
CL2 74.43 (0.24) 0.985 (0.009) 0.289 (0.001) 77.98 (0.25) 0.816 (0.007) 0.307 (0.001) 90.6 (0.18) 0.523 (0.004) 0.267 (0.001)
ZN 77.69 (0.23) 0.724 (0.005) 0.286 (0.001) 79.32 (0.24) 0.767 (0.006) 0.301 (0.001) 90.73 (0.18) 0.519 (0.004) 0.263 (0.001)
ReRep 78.08 (0.23) 3.56 (0.002) 0.703 (0.001) 79.46 (0.25) 3.549 (0.002) 0.777 (0.001) 91.16 (0.18) 3.032 (0.008) 0.471 (0.001)
EASE 74.77 (0.23) 0.472 (0.004) 0.178 (0.001) 77.07 (0.25) 0.473 (0.004) 0.174 (0.001) 89.2 (0.18) 0.439 (0.003) 0.212 (0.001)
TCPR 77.39 (0.23) 0.587 (0.005) 0.236 (0.001) 78.75 (0.24) 0.687 (0.006) 0.265 (0.001) 89.93 (0.19) 0.474 (0.004) 0.23 (0.001)
noHub 78.44 (0.24) 0.292 (0.004) 0.112 (0.001) 79.99 (0.26) 0.302 (0.004) 0.113 (0.001) 90.59 (0.19) 0.185 (0.004) 0.108 (0.001)
noHub-S 79.89 (0.24) 0.259 (0.004) 0.148 (0.001) 80.67 (0.26) 0.279 (0.004) 0.137 (0.001) 91.37 (0.18) 0.162 (0.004) 0.13 (0.001)
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None 45.69 (0.31) 1.594 (0.009) 0.459 (0.001) 75.29 (0.28) 1.801 (0.01) 0.495 (0.001) 61.36 (0.55) 1.074 (0.009) 0.37 (0.001)
L2 80.2 (0.23) 0.776 (0.006) 0.296 (0.001) 80.89 (0.26) 0.735 (0.006) 0.275 (0.001) 91.98 (0.18) 0.476 (0.004) 0.23 (0.001)
CL2 75.23 (0.27) 0.988 (0.009) 0.289 (0.001) 79.59 (0.27) 0.82 (0.006) 0.307 (0.001) 92.17 (0.18) 0.518 (0.004) 0.266 (0.001)
ZN 20.0 (0.0) 0.726 (0.005) 0.286 (0.001) 20.0 (0.0) 0.775 (0.006) 0.302 (0.001) 20.0 (0.0) 0.517 (0.004) 0.264 (0.001)
ReRep 36.69 (0.28) 3.561 (0.002) 0.705 (0.001) 67.41 (0.29) 3.55 (0.002) 0.776 (0.001) 57.62 (0.56) 3.027 (0.008) 0.472 (0.001)
EASE 81.19 (0.25) 0.474 (0.004) 0.178 (0.001) 82.04 (0.26) 0.476 (0.004) 0.176 (0.001) 91.99 (0.19) 0.436 (0.003) 0.213 (0.001)
TCPR 81.27 (0.24) 0.582 (0.005) 0.236 (0.001) 81.89 (0.26) 0.681 (0.006) 0.264 (0.001) 91.91 (0.18) 0.477 (0.004) 0.232 (0.001)
noHub 81.97 (0.25) 0.291 (0.004) 0.111 (0.001) 82.8 (0.27) 0.298 (0.004) 0.112 (0.001) 92.53 (0.18) 0.189 (0.004) 0.109 (0.001)
noHub-S 82.0 (0.26) 0.258 (0.004) 0.148 (0.001) 82.85 (0.27) 0.278 (0.004) 0.137 (0.001) 92.63 (0.18) 0.159 (0.004) 0.13 (0.001)

Si
m
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None 55.66 (0.21) 1.6 (0.01) 0.459 (0.001) 54.71 (0.22) 1.81 (0.01) 0.494 (0.001) 70.92 (0.23) 1.073 (0.009) 0.369 (0.001)
L2 65.78 (0.2) 0.781 (0.006) 0.296 (0.001) 68.75 (0.22) 0.737 (0.006) 0.275 (0.001) 82.85 (0.19) 0.475 (0.004) 0.228 (0.001)
CL2 64.33 (0.2) 0.981 (0.009) 0.288 (0.001) 67.66 (0.22) 0.817 (0.006) 0.307 (0.001) 82.8 (0.19) 0.52 (0.004) 0.267 (0.001)
ZN 67.31 (0.2) 0.73 (0.005) 0.287 (0.001) 69.14 (0.22) 0.769 (0.006) 0.302 (0.001) 82.79 (0.19) 0.517 (0.004) 0.263 (0.001)
ReRep 67.38 (0.2) 3.56 (0.002) 0.704 (0.001) 70.17 (0.22) 3.55 (0.002) 0.777 (0.001) 84.86 (0.19) 3.026 (0.008) 0.47 (0.001)
EASE 68.62 (0.2) 0.47 (0.004) 0.177 (0.001) 70.26 (0.21) 0.477 (0.004) 0.175 (0.001) 84.14 (0.18) 0.437 (0.003) 0.213 (0.001)
TCPR 68.45 (0.2) 0.589 (0.005) 0.236 (0.001) 68.68 (0.22) 0.685 (0.006) 0.264 (0.001) 82.28 (0.19) 0.477 (0.004) 0.231 (0.001)
noHub 75.06 (0.21) 0.29 (0.004) 0.111 (0.001) 76.7 (0.23) 0.301 (0.004) 0.111 (0.001) 88.06 (0.18) 0.188 (0.004) 0.108 (0.001)
noHub-S 76.86 (0.21) 0.258 (0.004) 0.148 (0.001) 78.4 (0.23) 0.274 (0.004) 0.135 (0.001) 89.25 (0.18) 0.162 (0.004) 0.13 (0.001)

α
-T
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None 60.31 (0.2) 1.603 (0.01) 0.458 (0.001) 69.42 (0.25) 1.811 (0.01) 0.494 (0.001) 73.83 (0.21) 1.072 (0.009) 0.369 (0.001)
L2 72.11 (0.22) 0.778 (0.006) 0.295 (0.001) 74.45 (0.23) 0.73 (0.006) 0.275 (0.001) 85.96 (0.19) 0.476 (0.004) 0.229 (0.001)
CL2 68.5 (0.21) 0.988 (0.009) 0.29 (0.001) 72.17 (0.23) 0.811 (0.006) 0.306 (0.001) 85.6 (0.18) 0.522 (0.004) 0.267 (0.001)
ZN 67.69 (0.2) 0.73 (0.005) 0.287 (0.001) 68.94 (0.22) 0.769 (0.006) 0.302 (0.001) 83.03 (0.19) 0.518 (0.004) 0.263 (0.001)
ReRep 73.15 (0.23) 3.56 (0.002) 0.704 (0.001) 76.19 (0.25) 3.551 (0.002) 0.778 (0.001) 88.55 (0.18) 3.027 (0.008) 0.472 (0.001)
EASE 69.83 (0.2) 0.468 (0.004) 0.176 (0.001) 71.54 (0.22) 0.481 (0.004) 0.175 (0.001) 84.9 (0.19) 0.436 (0.003) 0.213 (0.001)
TCPR 71.6 (0.21) 0.586 (0.005) 0.237 (0.001) 72.71 (0.22) 0.689 (0.006) 0.264 (0.001) 84.99 (0.19) 0.479 (0.004) 0.231 (0.001)
noHub 75.87 (0.22) 0.29 (0.004) 0.111 (0.001) 77.83 (0.23) 0.302 (0.004) 0.112 (0.001) 88.7 (0.17) 0.189 (0.004) 0.108 (0.001)
noHub-S 77.76 (0.22) 0.259 (0.004) 0.147 (0.001) 79.04 (0.24) 0.276 (0.004) 0.136 (0.001) 89.77 (0.17) 0.163 (0.003) 0.13 (0.001)

Table 3. WideRes28-10: 1-shot.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.

Arch. Clf. Emb.
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None 76.46 (0.18) 1.503 (0.01) 0.421 (0.001) 84.46 (0.18) 1.334 (0.008) 0.433 (0.001) 85.86 (0.14) 0.981 (0.005) 0.364 (0.001)
L2 80.9 (0.16) 1.051 (0.007) 0.314 (0.001) 86.23 (0.17) 0.912 (0.006) 0.289 (0.001) 88.03 (0.13) 0.808 (0.005) 0.264 (0.001)
CL2 81.64 (0.16) 0.778 (0.005) 0.262 (0.001) 86.88 (0.17) 0.823 (0.006) 0.281 (0.001) 88.44 (0.13) 0.695 (0.005) 0.235 (0.001)
ZN 81.61 (0.16) 0.793 (0.005) 0.258 (0.001) 86.9 (0.17) 0.841 (0.006) 0.297 (0.001) 88.44 (0.12) 0.717 (0.004) 0.25 (0.001)
ReRep 74.83 (0.19) 1.623 (0.003) 0.871 (0.001) 83.96 (0.19) 1.722 (0.004) 0.873 (0.001) 84.54 (0.15) 1.432 (0.003) 0.869 (0.001)
EASE 81.75 (0.16) 0.618 (0.005) 0.182 (0.001) 86.84 (0.17) 0.593 (0.004) 0.181 (0.001) 88.85 (0.12) 0.606 (0.004) 0.186 (0.001)
TCPR 81.76 (0.16) 0.766 (0.005) 0.254 (0.001) 86.78 (0.17) 0.801 (0.005) 0.284 (0.001) 88.69 (0.13) 0.683 (0.004) 0.237 (0.001)
noHub 82.09 (0.16) 0.295 (0.004) 0.097 (0.001) 86.81 (0.17) 0.289 (0.004) 0.102 (0.001) 88.85 (0.13) 0.333 (0.004) 0.12 (0.001)
noHub-S 82.33 (0.16) 0.488 (0.006) 0.086 (0.001) 87.05 (0.17) 0.475 (0.006) 0.091 (0.001) 89.12 (0.13) 0.438 (0.006) 0.097 (0.001)

L
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None 81.97 (0.15) 1.442 (0.009) 0.422 (0.001) 86.17 (0.16) 1.336 (0.008) 0.432 (0.001) 88.58 (0.12) 0.985 (0.005) 0.365 (0.001)
L2 81.89 (0.14) 1.035 (0.007) 0.319 (0.001) 86.19 (0.16) 0.913 (0.006) 0.289 (0.001) 88.52 (0.11) 0.811 (0.005) 0.264 (0.001)
CL2 81.93 (0.14) 0.786 (0.005) 0.265 (0.001) 86.16 (0.16) 0.82 (0.006) 0.282 (0.001) 88.46 (0.12) 0.7 (0.005) 0.235 (0.001)
ZN 82.57 (0.14) 0.803 (0.005) 0.263 (0.001) 86.67 (0.16) 0.838 (0.006) 0.296 (0.001) 88.88 (0.11) 0.714 (0.004) 0.25 (0.001)
ReRep 82.32 (0.14) 1.633 (0.003) 0.863 (0.001) 86.09 (0.16) 1.721 (0.004) 0.873 (0.001) 88.74 (0.12) 1.431 (0.002) 0.869 (0.001)
EASE 82.57 (0.14) 0.627 (0.005) 0.186 (0.001) 86.82 (0.15) 0.596 (0.004) 0.182 (0.001) 88.94 (0.11) 0.608 (0.004) 0.185 (0.001)
TCPR 82.24 (0.14) 0.781 (0.005) 0.259 (0.001) 86.27 (0.16) 0.797 (0.005) 0.284 (0.001) 88.63 (0.11) 0.687 (0.004) 0.236 (0.001)
noHub 82.55 (0.15) 0.285 (0.004) 0.096 (0.001) 86.75 (0.16) 0.29 (0.004) 0.103 (0.001) 89.08 (0.11) 0.329 (0.004) 0.12 (0.001)
noHub-S 82.81 (0.14) 0.25 (0.005) 0.073 (0.001) 87.12 (0.16) 0.214 (0.005) 0.077 (0.001) 88.99 (0.11) 0.438 (0.006) 0.096 (0.001)
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None 83.53 (0.15) 1.497 (0.01) 0.421 (0.001) 87.85 (0.15) 1.334 (0.009) 0.433 (0.001) 90.28 (0.11) 0.987 (0.005) 0.364 (0.001)
L2 83.66 (0.15) 1.051 (0.007) 0.314 (0.001) 87.83 (0.15) 0.922 (0.006) 0.289 (0.001) 90.21 (0.11) 0.81 (0.005) 0.263 (0.001)
CL2 83.62 (0.15) 0.775 (0.005) 0.261 (0.001) 88.1 (0.15) 0.823 (0.006) 0.281 (0.001) 90.09 (0.11) 0.701 (0.005) 0.236 (0.001)
ZN 83.86 (0.15) 0.795 (0.005) 0.258 (0.001) 88.47 (0.15) 0.835 (0.006) 0.296 (0.001) 90.47 (0.11) 0.716 (0.004) 0.251 (0.001)
ReRep 82.44 (0.15) 1.62 (0.003) 0.871 (0.001) 86.85 (0.16) 1.725 (0.004) 0.872 (0.001) 89.83 (0.11) 1.431 (0.003) 0.869 (0.001)
EASE 82.83 (0.15) 0.628 (0.005) 0.185 (0.001) 87.63 (0.16) 0.597 (0.005) 0.182 (0.001) 89.74 (0.12) 0.609 (0.004) 0.186 (0.001)
TCPR 83.51 (0.15) 0.766 (0.005) 0.255 (0.001) 88.09 (0.15) 0.795 (0.005) 0.283 (0.001) 90.28 (0.11) 0.687 (0.004) 0.236 (0.001)
noHub 83.28 (0.15) 0.287 (0.004) 0.096 (0.001) 87.58 (0.16) 0.288 (0.004) 0.102 (0.001) 89.89 (0.12) 0.334 (0.004) 0.121 (0.001)
noHub-S 83.25 (0.16) 0.487 (0.006) 0.086 (0.001) 87.82 (0.16) 0.469 (0.006) 0.091 (0.001) 89.38 (0.17) nan (nan) 0.097 (0.001)

SI
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None 20.0 (0.0) 1.441 (0.009) 0.421 (0.001) 20.0 (0.0) 1.339 (0.009) 0.433 (0.001) 20.0 (0.0) 0.984 (0.005) 0.364 (0.001)
L2 83.14 (0.14) 1.035 (0.007) 0.319 (0.001) 87.04 (0.16) 0.912 (0.006) 0.288 (0.001) 89.48 (0.12) 0.808 (0.005) 0.264 (0.001)
CL2 84.04 (0.15) 0.788 (0.005) 0.264 (0.001) 87.9 (0.16) 0.816 (0.006) 0.28 (0.001) 90.14 (0.12) 0.698 (0.005) 0.235 (0.001)
ZN 20.0 (0.0) 0.8 (0.005) 0.263 (0.001) 20.0 (0.0) 0.84 (0.006) 0.296 (0.001) 20.0 (0.0) 0.713 (0.004) 0.251 (0.001)
ReRep 20.0 (0.0) 1.633 (0.003) 0.863 (0.001) 20.0 (0.0) 1.724 (0.004) 0.872 (0.001) 20.0 (0.0) 1.428 (0.002) 0.869 (0.001)
EASE 84.61 (0.15) 0.63 (0.005) 0.187 (0.001) 88.33 (0.16) 0.594 (0.004) 0.182 (0.001) 90.42 (0.12) 0.607 (0.004) 0.185 (0.001)
TCPR 84.39 (0.15) 0.772 (0.005) 0.259 (0.001) 88.26 (0.16) 0.791 (0.005) 0.283 (0.001) 90.5 (0.11) 0.686 (0.004) 0.235 (0.001)
noHub 84.05 (0.16) 0.292 (0.004) 0.096 (0.001) 87.87 (0.17) 0.291 (0.004) 0.103 (0.001) 90.34 (0.12) 0.334 (0.004) 0.12 (0.001)
noHub-S 84.67 (0.15) 0.247 (0.005) 0.074 (0.001) 88.43 (0.16) 0.473 (0.006) 0.092 (0.001) 90.52 (0.12) 0.443 (0.006) 0.097 (0.001)
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None 78.5 (0.14) 1.436 (0.009) 0.422 (0.001) 83.95 (0.16) 1.339 (0.008) 0.432 (0.001) 85.65 (0.12) 0.987 (0.005) 0.364 (0.001)
L2 79.89 (0.14) 1.04 (0.007) 0.318 (0.001) 84.5 (0.16) 0.914 (0.006) 0.287 (0.001) 86.46 (0.12) 0.812 (0.005) 0.263 (0.001)
CL2 80.0 (0.14) 0.786 (0.005) 0.264 (0.001) 84.66 (0.16) 0.821 (0.006) 0.28 (0.001) 86.3 (0.12) 0.698 (0.005) 0.236 (0.001)
ZN 80.57 (0.14) 0.806 (0.005) 0.264 (0.001) 84.97 (0.16) 0.839 (0.006) 0.296 (0.001) 86.76 (0.12) 0.716 (0.005) 0.25 (0.001)
ReRep 80.86 (0.14) 1.631 (0.003) 0.863 (0.001) 85.05 (0.16) 1.721 (0.004) 0.872 (0.001) 87.83 (0.12) 1.432 (0.002) 0.869 (0.001)
EASE 80.13 (0.14) 0.624 (0.005) 0.186 (0.001) 84.74 (0.16) 0.598 (0.004) 0.183 (0.001) 86.76 (0.12) 0.607 (0.004) 0.186 (0.001)
TCPR 80.15 (0.14) 0.78 (0.005) 0.259 (0.001) 84.86 (0.15) 0.796 (0.005) 0.283 (0.001) 86.8 (0.12) 0.687 (0.004) 0.235 (0.001)
noHub 82.13 (0.14) 0.286 (0.004) 0.096 (0.001) 86.31 (0.16) 0.289 (0.004) 0.104 (0.001) 88.46 (0.11) 0.329 (0.004) 0.12 (0.001)
noHub-S 81.22 (0.14) 0.25 (0.005) 0.074 (0.001) 86.22 (0.15) 0.213 (0.005) 0.078 (0.001) 87.6 (0.12) 0.433 (0.006) 0.097 (0.001)

α
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None 78.51 (0.15) 1.45 (0.009) 0.42 (0.001) 83.86 (0.16) 1.341 (0.009) 0.433 (0.001) 85.7 (0.12) 0.981 (0.005) 0.363 (0.001)
L2 80.02 (0.16) 1.036 (0.007) 0.318 (0.001) 84.49 (0.18) 0.92 (0.006) 0.288 (0.001) 87.88 (0.13) 0.812 (0.005) 0.264 (0.001)
CL2 80.46 (0.16) 0.784 (0.005) 0.264 (0.001) 84.86 (0.17) 0.82 (0.006) 0.281 (0.001) 87.53 (0.13) 0.701 (0.005) 0.235 (0.001)
ZN 80.32 (0.14) 0.802 (0.005) 0.263 (0.001) 84.93 (0.16) 0.834 (0.006) 0.295 (0.001) 86.95 (0.12) 0.715 (0.004) 0.25 (0.001)
ReRep 81.05 (0.14) 1.63 (0.003) 0.863 (0.001) 85.18 (0.16) 1.718 (0.004) 0.872 (0.001) 87.63 (0.12) 1.43 (0.002) 0.87 (0.001)
EASE 79.13 (0.15) 0.632 (0.005) 0.188 (0.001) 84.04 (0.17) 0.596 (0.004) 0.181 (0.001) 86.7 (0.13) 0.607 (0.004) 0.186 (0.001)
TCPR 80.52 (0.16) 0.776 (0.005) 0.259 (0.001) 85.01 (0.17) 0.796 (0.005) 0.283 (0.001) 87.81 (0.13) 0.681 (0.004) 0.234 (0.001)
noHub 81.39 (0.15) 0.29 (0.004) 0.096 (0.001) 86.09 (0.16) 0.292 (0.004) 0.103 (0.001) 88.16 (0.12) 0.336 (0.004) 0.121 (0.001)
noHub-S 81.37 (0.15) 0.253 (0.005) 0.074 (0.001) 86.14 (0.16) 0.219 (0.005) 0.078 (0.001) 87.97 (0.12) 0.437 (0.006) 0.096 (0.001)

Table 4. Resnet-18: 5-shot.



mini tiered CUB
Acc Skew Hub. Occ. Acc Skew Hub. Occ. Acc Skew Hub. Occ.

Arch. Clf. Emb.

W
id

eR
es

28
-1

0

IL
PC

None 81.93 (0.16) 1.717 (0.01) 0.473 (0.001) 84.34 (0.17) 1.927 (0.011) 0.509 (0.001) 93.18 (0.11) 1.164 (0.008) 0.396 (0.001)
L2 85.74 (0.14) 0.888 (0.005) 0.322 (0.001) 86.26 (0.17) 0.859 (0.005) 0.306 (0.001) 93.77 (0.1) 0.636 (0.004) 0.266 (0.001)
CL2 83.33 (0.16) 1.12 (0.009) 0.318 (0.001) 85.99 (0.17) 0.957 (0.006) 0.338 (0.001) 93.79 (0.1) 0.703 (0.004) 0.309 (0.001)
ZN 85.96 (0.14) 0.858 (0.005) 0.32 (0.001) 86.77 (0.16) 0.909 (0.006) 0.335 (0.001) 93.73 (0.1) 0.696 (0.004) 0.305 (0.001)
ReRep 72.11 (0.27) 1.601 (0.003) 0.819 (0.001) 71.68 (0.3) 1.616 (0.004) 0.845 (0.001) 91.52 (0.13) 1.301 (0.005) 0.548 (0.002)
EASE 85.89 (0.14) 0.577 (0.004) 0.198 (0.001) 86.83 (0.17) 0.583 (0.004) 0.193 (0.001) 93.87 (0.1) 0.576 (0.004) 0.242 (0.001)
TCPR 86.29 (0.14) 0.715 (0.004) 0.27 (0.001) 86.96 (0.17) 0.819 (0.005) 0.295 (0.001) 93.82 (0.1) 0.634 (0.004) 0.265 (0.001)
noHub 86.07 (0.15) 0.295 (0.004) 0.115 (0.001) 86.75 (0.17) 0.299 (0.004) 0.115 (0.001) 93.72 (0.1) 0.2 (0.004) 0.101 (0.001)
noHub-S 86.41 (0.14) 0.499 (0.006) 0.104 (0.001) 87.31 (0.17) 0.406 (0.005) 0.121 (0.001) 93.79 (0.1) 0.416 (0.005) 0.126 (0.001)
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None 85.23 (0.13) 1.711 (0.01) 0.474 (0.001) 86.14 (0.15) 1.921 (0.011) 0.509 (0.001) 92.61 (0.1) 1.164 (0.008) 0.395 (0.001)
L2 85.9 (0.13) 0.892 (0.006) 0.321 (0.001) 86.47 (0.15) 0.867 (0.006) 0.304 (0.001) 93.17 (0.09) 0.635 (0.004) 0.267 (0.001)
CL2 82.08 (0.15) 1.112 (0.009) 0.318 (0.001) 84.62 (0.16) 0.954 (0.006) 0.34 (0.001) 93.01 (0.1) 0.702 (0.004) 0.309 (0.001)
ZN 85.97 (0.13) 0.86 (0.005) 0.319 (0.001) 86.67 (0.15) 0.912 (0.006) 0.335 (0.001) 93.3 (0.1) 0.698 (0.004) 0.305 (0.001)
ReRep 84.34 (0.14) 1.599 (0.003) 0.819 (0.001) 85.61 (0.16) 1.615 (0.004) 0.845 (0.001) 92.2 (0.1) 1.304 (0.005) 0.549 (0.002)
EASE 86.24 (0.13) 0.573 (0.004) 0.198 (0.001) 86.74 (0.15) 0.582 (0.004) 0.194 (0.001) 93.31 (0.09) 0.578 (0.004) 0.243 (0.001)
TCPR 86.16 (0.13) 0.712 (0.004) 0.269 (0.001) 85.72 (0.16) 0.813 (0.005) 0.293 (0.001) 92.99 (0.1) 0.638 (0.004) 0.264 (0.001)
noHub 86.25 (0.13) 0.292 (0.004) 0.115 (0.001) 86.78 (0.16) 0.299 (0.004) 0.115 (0.001) 93.38 (0.09) 0.197 (0.004) 0.1 (0.001)
noHub-S 85.79 (0.13) 0.494 (0.006) 0.103 (0.001) 86.44 (0.16) 0.397 (0.005) 0.12 (0.001) 93.36 (0.1) 0.42 (0.005) 0.126 (0.001)
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None 87.46 (0.13) 1.712 (0.01) 0.472 (0.001) 88.16 (0.15) 1.913 (0.01) 0.509 (0.001) 94.75 (0.09) 1.161 (0.008) 0.395 (0.001)
L2 87.61 (0.13) 0.889 (0.005) 0.321 (0.001) 88.14 (0.15) 0.862 (0.006) 0.306 (0.001) 94.8 (0.09) 0.642 (0.004) 0.268 (0.001)
CL2 86.03 (0.14) 1.112 (0.009) 0.317 (0.001) 87.64 (0.16) 0.949 (0.006) 0.338 (0.001) 94.67 (0.09) 0.703 (0.004) 0.31 (0.001)
ZN 87.88 (0.13) 0.852 (0.005) 0.32 (0.001) 88.43 (0.15) 0.908 (0.006) 0.335 (0.001) 94.77 (0.08) 0.697 (0.004) 0.306 (0.001)
ReRep 87.62 (0.12) 1.599 (0.003) 0.819 (0.001) 88.15 (0.15) 1.616 (0.004) 0.845 (0.001) 94.48 (0.09) 1.302 (0.005) 0.547 (0.002)
EASE 86.75 (0.13) 0.573 (0.004) 0.198 (0.001) 87.78 (0.15) 0.583 (0.004) 0.193 (0.001) 94.16 (0.09) 0.57 (0.004) 0.24 (0.001)
TCPR 87.94 (0.12) 0.718 (0.004) 0.271 (0.001) 88.15 (0.15) 0.816 (0.005) 0.294 (0.001) 94.47 (0.09) 0.635 (0.004) 0.265 (0.001)
noHub 87.23 (0.13) 0.297 (0.004) 0.115 (0.001) 87.95 (0.16) 0.296 (0.004) 0.114 (0.001) 94.13 (0.09) 0.197 (0.004) 0.1 (0.001)
noHub-S 87.13 (0.14) 0.495 (0.006) 0.103 (0.001) 87.84 (0.16) 0.399 (0.005) 0.12 (0.001) 94.06 (0.09) 0.421 (0.005) 0.126 (0.001)
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None 58.82 (0.31) 1.722 (0.01) 0.473 (0.001) 82.56 (0.22) 1.93 (0.01) 0.511 (0.001) 82.22 (0.37) 1.154 (0.008) 0.396 (0.001)
L2 87.11 (0.13) 0.894 (0.006) 0.321 (0.001) 87.34 (0.15) 0.861 (0.005) 0.305 (0.001) 94.15 (0.1) 0.638 (0.004) 0.266 (0.001)
CL2 83.99 (0.16) 1.107 (0.009) 0.318 (0.001) 86.71 (0.16) 0.953 (0.006) 0.339 (0.001) 94.48 (0.09) 0.704 (0.004) 0.31 (0.001)
ZN 20.0 (0.0) 0.856 (0.005) 0.319 (0.001) 20.0 (0.0) 0.913 (0.006) 0.334 (0.001) 20.0 (0.0) 0.702 (0.004) 0.305 (0.001)
ReRep 36.41 (0.3) 1.597 (0.003) 0.818 (0.001) 76.49 (0.24) 1.613 (0.004) 0.846 (0.001) 60.36 (0.6) 1.299 (0.005) 0.547 (0.002)
EASE 87.82 (0.13) 0.579 (0.004) 0.199 (0.001) 88.06 (0.16) 0.586 (0.004) 0.192 (0.001) 94.36 (0.09) 0.571 (0.004) 0.241 (0.001)
TCPR 87.8 (0.13) 0.717 (0.004) 0.27 (0.001) 87.95 (0.16) 0.822 (0.005) 0.295 (0.001) 94.25 (0.1) 0.637 (0.004) 0.266 (0.001)
noHub 87.78 (0.14) 0.29 (0.004) 0.114 (0.001) 87.99 (0.17) 0.297 (0.004) 0.115 (0.001) 94.56 (0.09) 0.196 (0.004) 0.1 (0.001)
noHub-S 88.03 (0.13) 0.492 (0.006) 0.103 (0.001) 88.31 (0.16) 0.398 (0.005) 0.12 (0.001) 94.69 (0.09) 0.416 (0.005) 0.127 (0.001)

Si
m

pl
eS

ho
t

None 78.56 (0.14) 1.709 (0.01) 0.473 (0.001) 80.32 (0.16) 1.937 (0.01) 0.51 (0.001) 89.27 (0.11) 1.16 (0.008) 0.395 (0.001)
L2 83.81 (0.13) 0.887 (0.005) 0.322 (0.001) 84.82 (0.15) 0.86 (0.006) 0.305 (0.001) 92.06 (0.1) 0.632 (0.004) 0.266 (0.001)
CL2 81.05 (0.14) 1.12 (0.009) 0.318 (0.001) 83.82 (0.16) 0.956 (0.006) 0.337 (0.001) 92.19 (0.1) 0.701 (0.004) 0.31 (0.001)
ZN 83.92 (0.13) 0.858 (0.005) 0.32 (0.001) 85.1 (0.15) 0.912 (0.006) 0.335 (0.001) 92.17 (0.1) 0.699 (0.004) 0.305 (0.001)
ReRep 79.26 (0.16) 1.597 (0.003) 0.819 (0.001) 82.7 (0.16) 1.617 (0.004) 0.846 (0.001) 91.48 (0.11) 1.299 (0.005) 0.549 (0.002)
EASE 83.65 (0.13) 0.579 (0.004) 0.199 (0.001) 84.47 (0.15) 0.585 (0.004) 0.193 (0.001) 92.01 (0.1) 0.572 (0.004) 0.241 (0.001)
TCPR 83.77 (0.13) 0.717 (0.004) 0.27 (0.001) 84.81 (0.15) 0.815 (0.005) 0.294 (0.001) 91.84 (0.1) 0.634 (0.004) 0.264 (0.001)
noHub 85.73 (0.13) 0.294 (0.004) 0.115 (0.001) 86.58 (0.15) 0.298 (0.004) 0.115 (0.001) 93.21 (0.09) 0.195 (0.004) 0.1 (0.001)
noHub-S 84.39 (0.13) 0.494 (0.006) 0.103 (0.001) 86.38 (0.15) 0.407 (0.005) 0.12 (0.001) 93.39 (0.09) 0.421 (0.005) 0.127 (0.001)

α
-T

IM

None 80.61 (0.15) 1.711 (0.01) 0.473 (0.001) 83.05 (0.18) 1.928 (0.01) 0.51 (0.001) 84.89 (0.29) 1.153 (0.008) 0.396 (0.001)
L2 83.71 (0.16) 0.892 (0.005) 0.323 (0.001) 84.69 (0.18) 0.863 (0.005) 0.304 (0.001) 92.88 (0.1) 0.633 (0.004) 0.266 (0.001)
CL2 82.35 (0.16) 1.111 (0.009) 0.318 (0.001) 84.06 (0.18) 0.949 (0.006) 0.339 (0.001) 92.81 (0.1) 0.7 (0.004) 0.31 (0.001)
ZN 83.93 (0.13) 0.857 (0.005) 0.321 (0.001) 85.07 (0.15) 0.912 (0.006) 0.336 (0.001) 92.15 (0.1) 0.698 (0.004) 0.306 (0.001)
ReRep 83.4 (0.14) 1.596 (0.003) 0.82 (0.001) 84.4 (0.16) 1.615 (0.004) 0.845 (0.001) 93.19 (0.09) 1.302 (0.005) 0.547 (0.002)
EASE 82.72 (0.14) 0.576 (0.004) 0.2 (0.001) 83.86 (0.16) 0.583 (0.004) 0.193 (0.001) 92.31 (0.1) 0.572 (0.004) 0.242 (0.001)
TCPR 84.21 (0.15) 0.718 (0.004) 0.27 (0.001) 84.63 (0.18) 0.814 (0.005) 0.293 (0.001) 92.44 (0.1) 0.635 (0.004) 0.265 (0.001)
noHub 85.56 (0.13) 0.293 (0.004) 0.115 (0.001) 86.37 (0.16) 0.3 (0.004) 0.115 (0.001) 92.89 (0.1) 0.193 (0.004) 0.099 (0.001)
noHub-S 83.96 (0.15) 0.496 (0.006) 0.102 (0.001) 86.01 (0.16) 0.395 (0.005) 0.12 (0.001) 93.24 (0.1) 0.422 (0.005) 0.126 (0.001)

Table 5. WideRes28-10: 5-shot.
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Abstract

We present a novel hypothesis on norms of representations produced by convolutional neural
networks (CNNs). In particular, we propose the norm-count hypothesis (NCH), which states
that there is a monotonically increasing relationship between the number of certain objects
in the image, and the norm of the corresponding representation. We formalize and prove our
hypothesis in a controlled setting, showing that the NCH is true for linear CNNs followed
by global average pooling, when they are applied to a certain class of images. We present
experimental evidence that corroborates our hypothesis for CNN-based representations. Our
experiments are conducted on several image datasets, in both supervised, self-supervised,
and few-shot learning – providing new insight on the relationship between object counts and
representation norms.

1 Introduction

The ability to learn high-quality representations from a wide range of complex data types lies at the heart of
the success of deep learning. Recently, several works have studied how deep learning-based representations
can be embedded in non-Euclidean spaces, to further improve representation quality (Bronstein et al., 2017).
In particular, embedding representations on the hypersphere using L2 normalization has proven to be par-
ticularly promising direction for several downstream applications, such classification and regression (Mettes
et al., 2019; Scott et al., 2021; Tan et al., 2022), self-supervised learning (SSL) (Chen et al., 2020; Caron
et al., 2021), and few-shot learning (FSL) (Wang et al., 2019; Fei et al., 2021; Trosten et al., 2023).

However, despite the widespread use of L2 normalization in several aspects of deep learning, little work exists
on understanding exactly what type of information the norm contains, and why discarding this information
improves representation quality. Hence, we still lack critical understanding of the role of norms and normal-
ization in deep learning. In this work, we aim to improve the understanding of norms of convolutional neural
network (CNN)-based representations, and thus to better understand the benefits of L2 normalization. Our
work is built on a novel hypothesis for image representations obtained with a CNN:

Informal Definition 1 (Norm-count hypothesis). There is a monotonically increasing relationship between
the norm of a representation produced by a CNN, and the number of objects in the image for which the
CNN is trained to recognize.

The norm-count hypothesis (NCH) proposes a theory on the relationship between norm, and the number
of detections produced by the CNN. Moreover, an implicit consequence of the NCH is that angles encode
information about the types of objects detected by the CNN in the given image. In this work, we assess the
validity of the NCH for CNNs used in supervised, self-supervised and few-shot learning.
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The main contributions of our work are:

1. We propose the NCH – stating that there is a monotonically increasing relationship between the
norm of a representation, and the number of objects in the given image.

2. We prove that the NCH is true in a controlled setting, assuming that input images are composed
of several object images, for which the feature extractor provides a delta-like response in a single
channel.

3. We conduct an extensive experimental evaluation with images from MNIST, STL-10, and Pascal
VOC, in supervised, self-supervised and few-shot learning. Our results show monotonically increas-
ing relationships between norm and count, for several models and datasets – corroborating the NCH.
We also find that discarding norm with L2 normalization improves classification performance in the
majority of experimental configurations.

The rest of the paper is structured as follows: Section 2 gives an overview of work related to ours. In
Section 3, we theoretically analyze the NCH, and prove that it holds under certain assumptions. Section 4
includes the results of our experiments. We finish the paper with Section 5, presenting some concluding
remarks and directions for future work.

2 Related work

In this section, we summarize other work related to this paper. We emphasize that our work is complementary
to these, as none of the works below provide an accurate and rigorous understanding of the information
contained in norms of CNN-based representations.

2.1 Embedding representations on the hypersphere

Embedding representations on the hypersphere instead of in Euclidean space has shown to be beneficial for
both supervised classification and regression (Mettes et al., 2019; Scott et al., 2021; Tan et al., 2022). Mettes
et al. (2019) develop classification and regression losses on the hypersphere, illustrating that L2 normalized
representations and prototypes are beneficial for both classification and regression. The more recent work
by Tan et al. (2022) shows that a supervised classification model can be regularized with a self-supervised
contrastive loss on the unit hypersphere.

L2 normalization is also common in models for self-supervised learning of image representations (Chen et al.,
2020; He et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021; Goyal et al., 2022; Li et al., 2023). The
benefit of L2 normalization appears to stem from similarity measures and contrastive losses being more
well-behaved after discarding the norm – resulting in compact and well-separated classes (Wang & Isola,
2020). However, little work exists on this topic.

Recent methods for transductive FSL have also found L2 normalized representations to be beneficial for
classification performance (Wang et al., 2019; Veilleux et al., 2021; Zhu & Koniusz, 2022; Xu et al., 2022;
Trosten et al., 2023). Trosten et al. (2023) argue that L2 normalization helps reduce the hubness prob-
lem (Radovanovic et al., 2010; Fei et al., 2021) in FSL, and show that embedding points uniformly on the
hypersphere completely eliminates hubness. To the best of our knowledge, the work by Trosten et al. (2023)
is one of the first works that attempt to understand why L2 normalization is beneficial in FSL. Nevertheless,
it is limited to the hubness problem, and does not make any advances in understanding the information
contained in the representation norm.

2.2 Hyperspherical regularization

Hyperspherical embeddings have also shown to be beneficial to regularize training of deep neural networks
(DNNs) (Salimans & Kingma, 2016; Liu et al., 2017; 2018; 2021). These methods constrain the weight
vectors in DNNs to lie on the unit hypersphere. Liu et al. (2017) show that hyperspherical weights improve
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the conditioning of the optimization problem, helping the optimizer converge faster to potentially better
solutions. However, our work is orthogonal to this, since we aim to understand norms of representations,
and not norms of weights.

3 Norm-count hypothesis

The purpose of this section is to formalize the NCH, and to analyze it in a rigorous theoretical setting. To
do so, we assume certain properties of the feature extractor (e.g. CNN). We then argue that these models
admit a certain class of images, referred to as object images. These images can be seen as “prototypes” of
the objects the feature extractor is trained to detect. In Section 4 we demonstrate that, for a supervised
model, object images coincide with the classes the model is trained to recognize.

Having established properties of the feature extractor and corresponding object images, we prove that the
norm of the representation produced by the feature extractor is proportional to the number of object images
present in the given image. Thereby corroborating the NCH. Note that all proofs are given in Appendix A.

We start by providing exact definitions of images, image translation, detectors, and global pooling operators.

Definition 1 (Images). The set of images with C channels and size W × H is defined as

IC,W,H = {I : N0
<C × Z × Z → R | I(c, x, y) = 0 if (x, y) /∈ N0

<W × N0
<H} (1)

where N0
<a = {0, 1, . . . , a − 1}.

Definition 2 (Translation operator). A translation operator Trx′,y′ : IC,W,H → IC,W,H shifts the given
image by x′, y′ pixels

Trx′,y′(I)(c, x, y) = I(c, x − x′, y − y′) (2)

Definition 3 (Translation equivariance). A mapping f : IC,W,H → IC′,W ′,H′ is translation equivariant iff
for a translation operator Trx′,y′ , we have

f ◦ Trx′,y′ = Trx′,y′ ◦f (3)

where ◦ denotes the composition of functions.

Definition 4 (Strict and relaxed detectors). A detector is a translation equivariant mapping f : IC,W,H →
IC′,W ′,H′ , which also satisfies at least one of the conditions

f(I1 + I2) = f(I1) + f(I2) (4)
|f(I1 + I2)| ≼ |f(I1) + f(I2)| (5)

where addition and absolute value are defined element-wise, and I1 ≼ I2 implies that I1(k, x, y) ≤ I2(k, x, y)
for all k, x, y.
If f satisfies condition (4) (and thereby also condition (5)), then f is said to be a strict detector. If f only
satisfies condition (5), it is called a relaxed detector.

The following propositions show properties of detectors that are relevant for CNNs.

Proposition 1 (Composition of detectors). For detectors f and g, the following holds:

1. If f and g are strict detectors, then g ◦ f is a strict detector.

2. If f is a strict detector and g is a relaxed detector, then g ◦ f is a relaxed detector.

3



Proposition 2 (Convolutions are strict detectors.). Let ConvK : IC,W,H → I1,W +w−1,H+h−1 be the convo-
lution operator convolving the given image, I ∈ IC,W,H , with a filter, K ∈ IC,h,w

ConvK(I)(0, x, y) =
C−1∑

c=0

∞∑

x′=−∞

∞∑

y′=−∞
K(c, x′, y′)I(c, x − x′, y − y′). (6)

Then ConvK is a strict detector with (C ′, H ′, W ′) = (1, W + w − 1, H + h − 1).

Proposition 3 (LeakyReLU is a relaxed detector.). Let LeakyReLUα : IC,W,H → IC,W,H be defined
element-wise as

LeakyReLUα(I(k, x, y)) =
{

I(k, x, y), if I(k, x, y) > 0
α · I(k, x, y), otherwise

(7)

for all k, x, y, and α ∈ [0, 1). Then LeakyReLUα is a relaxed detector with (C ′, W ′, H ′) = (C, W, H).
This also holds for the standard ReLU(x) = max{0, x} activation, since ReLU = LeakyReLU0.

From Propositions 1 and 2, we see that linear CNNs – i.e. networks consisting only of compositions of
convolutions – are strict detectors. Furthermore, combining Propositions 1, 2 and 3 shows that a CNN
consisting of convolutions and LeakyReLU (or ReLU) activations are compositions of relaxed detectors.
These propositions thus cover the most important building blocks of CNNs, along with the most common
activation functions.

CNNs for classification and representation learning are often followed by a global pooling operator that
aggregates information over the spatial dimensions. The following definition considers a general pooling
operation, which we use in our theoretical analysis. We then prove that global average pooling (GAP) – one
of the most frequently used pooling operations – is a special case of the general pooling operation.

Definition 5 (Global pooling operator). Let I ∈ IC,W,H be an image. The mapping Pool : IC,W,H → RC

is called a global pooling operator if there exists non-negative real numbers γ0, . . . , γC−1 independent of I,
such that

| Pool(I)k| ≤ γk

∣∣∣∣
W −1∑

x=0

H−1∑

y=0
I(k, x, y)

∣∣∣∣, k ∈ N0
<C . (8)

Proposition 4 (GAP is a global pooling operator). For an image I ∈ IC,W,H , let GAP be defined as

GAP(I)k = 1
WH

W −1∑

x=0

H−1∑

y=0
I(k, x, y), k ∈ N0

<C . (9)

Then GAP is a global pooling operator with γk = 1
W H , ∀k ∈ N0

<C .

Our objective is now to understand norms of representations computed by a detector followed by a global
pooling operator. Hence, we define object images as “prototypical” images that give a delta-like response
when processed by the given detector.
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Definition 6 (Object images). An image Oj ∈ IC,h,w is said to be an object image of type j w.r.t. the
detector f , iff

f(Oj) = δj,0,0 (10)

where δj,x′,y′ is the Kronecker delta function

δj,x′,y′(k, x, y) =
{

1, (k, x, y) = (j, x′, y′)
0, otherwise

. (11)

The set of all object images of type j is denoted Ωj = {O | f(O) = δj,0,0}.

In a supervised classification setting, the object image types will tend to coincide with the classes the model
is trained to detect. This is because supervised models are trained to output a one-hot prediction vector,
resembling the delta-response assumed in Definition 6, after global pooling.

Object images can also be interpreted as “parts of a whole”, where it is assumed that image motifs consist of
a collection of object images. An image of a car, for instance, will be composed of object images with type
“wheel”, “car body”, etc.

We will now define multiple objects images (MO-images) as images composed of one or more object images.
This definition gives rise to a natural notion of object “count” in the image, which is necessary to formalize
the NCH.

Definition 7 (Multiple objects image). An MO-image, I ∈ IC,W,H , constructed from object images in
Ω0, . . . , ΩC′−1 is defined as

I =
C′−1∑

j=0

∑

(O,x′,y′)∈Pj

T(x′,y′)(O). (12)

where C ′ is the number of object types. Pj is a set of 3-tuples, where the first element is an object image
from Ωj , and the second third elements are the positions of that object image in I.

We now have the following theorem stating that the NCH is true for detectors and global pooling operators
applied to MO-images.

Theorem 1 (Norm-count hypothesis – simplified setting). Let f : IC,W,H → IC′,W ′,H′ be a relaxed detector
with object images Ω0, . . . , ΩC′−1, and let I ∈ IC,W,H be a MO-image constructed from the same object
images. Then, if z = [z0, . . . , zC′−1]⊤ ∈ RC′ is the output of a global pooling operator applied to the feature
maps f(I), we have

|zk| = | Pool(I)k| ≤ γk|Pk|, k ∈ N0
<C′ (13)

for non-negative numbers γ0, . . . , γC−1 independent of I.

Corollary 1.1 (Lp norm of z). For p > 0, the Lp norm of z from Theorem 1 is

||z||p ≤




C′−1∑

k=0
(γk|Pk|)p




1
p

(14)

Corollary 1.1 shows that the Lp norm of representations is upper bounded by a monotonically increasing
function of the count, corroborating the NCH.
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Corollary 1.2 (Strict detector and GAP). If f is a strict detector, and GAP is used in place of Pool,
Theorem 1 simplifies to

zk = GAP(I)k = |Pk|
W ′H ′ (15)

Corollary 1.2 shows that for strict detectors followed by GAP, there is an exact proportionality between each
component of z, and the number of objects of the corresponding type present in the image. Since linear
CNNs are strict detectors, this corollary proves that each dimension, in a representation produced by linear
CNNs, is proportional to the number of object images in the given MO-image.

Furthermore, Theorem 1 states that the norm of z is directly related to the absolute (total) count of objects
in the image, regardless of the type of the object images. This is expected, since the perfect detector produces
a set of delta-responses, and the global pooling operator aggregates these over the spatial dimensions.

In contrast to the norm, the angle of z depends on the count of one object type relative to the count of
another object type. This is demonstrated by the following result.

Result 1 (Semantic information in angles). Suppose I1, I2 ∈ IC,W,H are MO-images processed by a perfect
detectors f followed by GAP. Furthermore, assume that I1 only consists of objects of type j, and that I2 only
consists of objects of type k. This gives

z1 = GAP(f(I1)) =
|P (1)

j |
W ′H ′ ej and z2 = GAP(f(I2)) = |P (2)

k |
W ′H ′ ek (16)

where ej (ek) denotes the vector where element j (k) is 1, and all other elements are 0.
Then, if (||z||, θ(z)) denotes the transformation of z to hyperspherical coordinates, we can consider the
following two cases:

1. Different class, same count: j ̸= k and |P (1)
j | = |P (2)

k |, which gives

||z1|| = ||z2|| and θ(z1) ̸= θ(z2) (17)

2. Same class, different count: j = k and |P (1)
j | ≠ |P (2)

k |, which gives

||z1|| ≠ ||z2|| and θ(z1) = θ(z2) (18)

In both cases in Result 1, the angles θ(z1) and θ(z2) are most informative of the image classes (object types).
When the images belong to different classes (case 1), the discriminative power lies in the angles and not
in the norms. Conversely, when I1 and I2 belong to the same class (case 2), the within class distance is 0
for the angles, but non-zero for the norms. The angle thus encodes information about which classes (object
types) that were detected in the image – i.e. the semantic information.

4 Experiments

The purpose of these experiments is to experimentally investigate the NCH in a controlled setting. We
design the experiments to have fine-grained control of the “count” in each image. This allows us to properly
examine the relationship between norm and count – both quantitatively and qualitatively. Our experiments
are conducted with both supervised, self-supervised and few-shot learning models.

Although our theoretical results hold for arbitrary Lp norms, we focus on L2 norms in the experimental
evaluation. This is because the L2 norm is the one most frequently encountered in other works (see Section 2),
and has known benefits related to optimization (Liu et al., 2021), as well as alignment, uniformity, and class
separability (Wang & Isola, 2020).

6



4.1 Setup

Models and architectures. Our evaluation is performed with models using the following two CNN
architectures:

• Simple-6: A simple 6-layer CNN followed by GAP. The model has ReLU activations, and max
pooling after every second convolutional layer. No batch-normalization or other forms of normal-
ization is applied anywhere in the architecture. The models based on this architecture are trained
by us, using either a supervised cross-entropy loss, or the self-supervised loss from SimCLR (Chen
et al., 2020).

• ResNet-50: The standard 50-layer residual network architecture by He et al. (2016). We use the
supervised model available in Torchvision1, which is trained on the ImageNet dataset. For the self-
supervised version of this architecture, we use the model available in Lightning Bolts2, also trained
on ImageNet.

Datasets. In order to mimic the properties of MO-images in evaluation, we start with datasets consisting
of natural images (MNIST (Lecun et al., 1998) and STL-10 (Coates et al., 2011)). Then, to generate a single
evaluation image, we sample a random number of images, and place them at random positions in a 4 × 4
grid. This gives us an image that resembles an MO-image, where we know the true count – i.e. the number
of object images.

These grid-based datasets are generated either with all images in the grid from the same class (single label),
or with random class affiliations (mixed) for the small images.

For MNIST, we fill the empty grid positions with 0-values, as indicated by Definition 7. For STL-10, we
generate datasets with 3 different approaches to filling the empty grid slots:

• Zeros: empty grid positions are filled with 0-values.

• Random: empty grid positions are filled with random Gaussian noise with the same mean and
standard deviation as the object images.

• Blur : the background for the whole grid is a random blurred image, and the object images are placed
on top of this image.

We experiment with different fill modes to ensure that the results are not skewed by changes in global image
statistics, such as mean and variance.

In addition to the grid datasets, we use the Pascal VOC 2007–2013 object detection datasets (Everingham
et al., 2010) to evaluate the relationship between norm and count in real images. The object count in an
image is computed as the total number of ground-truth bounding boxes in the image. We then select images
with 2 ≤ count ≤ 9.

We note that the VOC dataset can contain objects that are not labeled, meaning that they do not have a
bounding box, and are thus not included in the count. This makes the VOC dataset more challenging, but
also more realistic, compared to the grid datasets.

Quantitative evaluation of monotonic increase. We use a weighted quadratic regression model to
quantitatively assess whether there is an increasing relationship between feature norm and count

||zi|| = β0 + β1c(xi) + β2c(xi)2 + ϵi (19)

where the residual, ϵi, is assumed to be Gaussian with zero mean and standard deviation σc(xi). We allow
the standard deviation to be count-dependent to account for heteroskedasticity in the data. The parameter

1https://pytorch.org/vision/stable/models/resnet.html
2https://lightning-bolts.readthedocs.io/en/0.3.4/self_supervised_models.html.

7



estimates (β̂0, β̂1, β̂2) are computed using weighted least squares. Based on these estimates, we can test for
monotonic increase by checking whether the derivative

d ||z||
d c(x) = β̂1 + 2 β̂2 c(x) (20)

is positive.

We report the value of the slope sq = β̂1 + 2 β̂2 cq, and the p-value resulting from testing

H0 : β̂1 + 2 β̂2 cq ≤ 0 vs. H1 : β̂1 + 2 β̂2 cq > 0. (21)

The p-value is denoted by pq.

The slopes and p-values are computed at equally spaced points, c0.25, c0.5, and c0.75, where

cq = cmin + q · (cmax − cmin) (22)

and cmin and cmax are the minimum and maximum counts in the dataset, respectively.

Few-shot learning experiments. In our few-shot experiments, we use the ResNet-50 models described
above, and evaluate on STL-10 and VOC, where we know the ground-truth counts. We report both 1 and
5-shot classification accuracy, using the Simpleshot classifier (Wang et al., 2019). The evaluation includes
10000 episodes, sampling 5 random classes and 15 queries from each class, in each episode.

Implementation. The experiments are implemented in Python with the PyTorch framework (Paszke
et al., 2019). Our implementation will be made publicly available upon publication of the paper.

4.2 Results: supervised and self-supervised learning

Relationship between norm and count. Table 1 lists the results of the regression analyses for norm
vs. count for the different configurations. The slopes and p-values show that the majority of configurations
result in a statistically significant, monotonically increasing relationship between norm and count. The same
trend can be observed in the box-plots in Figure 1.

For the supervised model on STL-10 and VOC, we observe that the increasing trend is not as clear as for
the other models. This is likely because the supervised ResNet-50 is trained on the ImageNet dataset. This
dataset contains natural images with a varying number of objects. Since the model is trained to output the
same prediction, regardless of the number of objects, the model learns to be approximately count invariant,
resulting in a weaker relationship between norm and count.

Finally, we observe no increasing trend between norm and count for the SimCLR model on VOC with
mixed labels. This is the most challenging configuration, since the images depict complex scenes with
multiple objects of different type, and the model is trained without supervision. We hypothesize that the
non-increasing relationship between norm and count is a result of SimCLR detecting objects that do not
necessarily coincide with the labels. The object images for this model do therefore not correspond to the
ground-truth objects, resulting in a norm that is no longer representative of the count.

L2 normalization and classification performance. Table 2 shows the change in classification accuracy
after L2 normalizing the representations. The accuracies are computed both based on a prototypical classifier
(classifying samples according to the closest class mean), and a linear classifier trained with stochastic
gradient descent (SGD). These results show that L2 normalization – i.e. discarding the norm – is beneficial
for classification performance, resulting in increased accuracy. The increased accuracy after normalization
illustrates that the norm contains little relevant class information, and acts as additional noise in the classifier.
These findings are in line with the theory in Result 1, stating that angles carry most of the semantic
information.
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Table 1: Estimated slopes (sq) and p-values (pq) for the quadratic regression model for norm vs. count. A
positive slope with a low p-value indicates a statistically significant, monotonically increasing relationship
between norm and count.

Dataset Model Fill Labels s0.25 s0.5 s0.75 p0.25 p0.5 p0.75

MNIST

SimCLR
(Simple-6)

Zeros Mixed 0.147 0.206 0.264 0.000 0.000 0.000
Single 0.131 0.190 0.249 0.000 0.000 0.000

Supervised
(Simple-6)

Zeros Mixed -0.075 0.142 0.359 1.000 0.000 0.000
Single 0.027 0.152 0.277 0.000 0.000 0.000

STL-10

SimCLR
(ResNet-50)

Blur Mixed 0.288 0.203 0.117 0.000 0.000 0.000
Single 0.295 0.202 0.109 0.000 0.000 0.000

Random Mixed 0.253 0.194 0.136 0.000 0.000 0.000
Single 0.260 0.196 0.132 0.000 0.000 0.000

Zeros Mixed 0.231 0.207 0.183 0.000 0.000 0.000
Single 0.237 0.210 0.183 0.000 0.000 0.000

Supervised
(ResNet-50)

Blur Mixed 0.196 0.132 0.069 0.000 0.000 0.000
Single 0.143 0.073 0.003 0.000 0.000 0.404

Random Mixed 0.292 0.152 0.012 0.000 0.000 0.052
Single 0.250 0.105 -0.039 0.000 0.000 1.000

Zeros Mixed 0.305 0.184 0.062 0.000 0.000 0.000
Single 0.283 0.144 0.004 0.000 0.000 0.317

VOC

SimCLR
(ResNet-50)

– Mixed -0.017 -0.017 -0.016 1.000 1.000 0.996
Single 0.001 0.016 0.030 0.391 0.051 0.019

Supervised
(ResNet-50)

– Mixed 0.081 0.059 0.037 0.000 0.000 0.000
Single 0.065 0.047 0.030 0.000 0.000 0.024

Table 2: Differences in classification accuracy [%] after L2 normalizing the representations, for the prototyp-
ical and SGD classifiers. Positive values indicate an that L2 normalization improves classification accuracy.

Dataset Model Fill ∆ (Proto) ∆ (SGD)

MNIST
SimCLR
(Simple-6)

Zeros 2.92 0.0

Supervised
(Simple-6)

Zeros 3.78 -1.01

STL-10

SimCLR
(ResNet-50)

Blur 13.4 0.2
Random 10.8 -0.7
Zeros 11.4 0.4

Supervised
(ResNet-50)

Blur 1.9 0.6
Random 1.2 0.2
Zeros 5.8 1.1

VOC
SimCLR
(ResNet-50)

– 2.55 1.4

Supervised
(ResNet-50)

– -0.49 1.44
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Figure 1: Boxplots illustrating the relationship between norm and count for the experimental configurations.

10



Table 3: 1 and 5-shot few-shot learning results on STL-10 and VOC, with the Simpleshot classifier (Wang
et al., 2019). The results are averaged across 10000 episodes, with 95 % confidence intervals shown in
parentheses. The correlation between norm and count, ρnorm,count, could only be computed for evaluations
without L2 normalization, since the norm has zero variance after L2 normalization.

1-shot 5-shot
Dataset Model Fill Norm Accuracy ρnorm,count Accuracy ρnorm,count

STL-10

SimCLR
(ResNet-50)

Blur None 0.431 (0.006) 0.95 (0.001) 0.56 (0.006) 0.952 (0.001)

L2 0.522 (0.007) – (–) 0.655 (0.006) – (–)

Random None 0.432 (0.005) 0.95 (0.001) 0.558 (0.006) 0.952 (0.001)

L2 0.514 (0.007) – (–) 0.654 (0.006) – (–)

Zeros None 0.437 (0.006) 0.95 (0.001) 0.56 (0.006) 0.952 (0.001)

L2 0.518 (0.006) – (–) 0.654 (0.006) – (–)

Supervised
(ResNet-50)

Blur None 0.774 (0.006) 0.323 (0.008) 0.882 (0.005) 0.155 (0.012)

L2 0.801 (0.006) – (–) 0.925 (0.003) – (–)

Random None 0.754 (0.006) 0.491 (0.007) 0.894 (0.003) 0.504 (0.007)

L2 0.772 (0.007) – (–) 0.919 (0.003) – (–)

Zeros None 0.717 (0.006) 0.674 (0.005) 0.872 (0.003) 0.676 (0.005)

L2 0.786 (0.007) – (–) 0.914 (0.003) – (–)

VOC

SimCLR
(ResNet-50)

– None 0.511 (0.007) -0.109 (0.008) 0.721 (0.006) -0.116 (0.006)

L2 0.651 (0.006) – (–) 0.765 (0.006) – (–)

Supervised
(ResNet-50)

– None 0.688 (0.007) 0.044 (0.007) 0.826 (0.005) 0.086 (0.006)

L2 0.742 (0.006) – (–) 0.827 (0.006) – (–)
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4.3 Results: few-shot learning

Table 3 shows 1 and 5-shot classification results on the STL-10 and VOC datasets. We observe that L2 nor-
malization results in a statistically significant improvement in performance for all configurations – illustrating
that discarding the norm information is beneficial for few-shot classification performance.

We also compute the average correlation between norm and count (ρnorm,count ) across episodes. The corre-
lation values show that also for few samples, there is a clear correlation between norm and count. This holds
for all configurations, except for VOC with the SimCLR model. Similar to in Section 4.2, we hypothesize
that this is because SimCLR detects another set of object images, whose counts are not well-represented by
the ground-truth object count.

5 Conclusion and future work

We have presented the NCH – providing novel insight in the norms of representations produced by CNNs.
Under certain assumptions on the model and input images, we proved the NCH, showing that each component
in a given representation is upper-bounded by the number of object images present in the input image.
Moreover, from our theoretical analysis, it follows that representation norms carry information related to
count, whereas angles represent semantic information. This is a key result that helps explain why L2
normalization is beneficial for downstream classification tasks.

In addition, we conduct a controlled experimental evaluation, showing that the NCH holds for supervised
and self-supervised models. Our experiments also show that discarding the representation norm – which is
strongly correlated with the count – using L2 normalization, improves classification performance, both for
standard and few-shot classifiers.

We believe that understanding representation norms through object counts is a promising direction of re-
search. The popularity of hyperspherical embeddings in FSL, along with our results on the benefits of L2
normalization, indicate that there is extra potential to improve FSL models if we better understand the
effects of representation norms. Furthermore, although we focus on CNNs in this work, it is entirely possible
that our results will generalize to other architectures. This can be verified by either showing that certain
architectures meet the detector conditions, or by relaxing these conditions and extending the theoretical
analysis.
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A Proofs

A.1 Proposition 1

Proof.

1. Invoking condition (4) of strict detectors gives

(g ◦ f)(I1 + I2) = g(f(I1 + I2) = g(f(I1) + f(I2)) (23)
= g(f(I1)) + g(f(I2))) = (g ◦ f)(I1) + (g ◦ f)(I2) (24)

2. By conditions (4) and (5), we have

|(g ◦ f)(I1 + I2)| = |g(f(I1 + I2) = g(f(I1) + f(I2))| (25)
≤ |g(f(I1)) + g(f(I2)))| = |(g ◦ f)(I1) + (g ◦ f)(I2)| (26)

A.2 Proposition 2

Proof. The proposition follows directly from convolutions being linear and translation equivariant. See
e.g. (Jähne, 2002, Ch. 4).

A.3 Proposition 3

Proof. Let a1 = I1(k, x, y) and a2 = I2(k, x, y). Since addition is commutative, we can assume a1 ≥ a2
without loss of generality.

Observe that, if a1 and a2 is positive (negative), then a1 + a2 will be positive (negative). This means that
LeakyReLUα(a1 + a2) = LeakyReLUα(a1) + LeakyReLUα(a2) in this case.

On the other hand, if a2 < 0 < a1, we have | LeakyReLUα(a1) + LeakyReLUα(a2)| = |a1 + αa2|, and

| LeakyReLUα(a1 + a2)| =
{

|a1 + a2|, |a1| > |a2|
α|a1 + a2|, otherwise

. (27)

Since α ∈ [0, 1), we have

| LeakyReLUα(a1 + a2)| ≤ |a1 + a2| ≤ |a1 + αa2| = | LeakyReLUα(a1) + LeakyReLUα(a2)| (28)

A.4 Proposition 4

Proof. Setting 1
W H = γk gives

GAP (I)k = γk

W −1∑

x=0

H−1∑

y=0
I(k, x, y), k ∈ N0

<C (29)

from which it follows that

|GAP (I)k| ≤ γk

∣∣∣∣
W −1∑

x=0

H−1∑

y=0
I(k, x, y)

∣∣∣∣, k ∈ N0
<C (30)
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A.5 Theorem 1

Proof. Since f is a relaxed detector, we have

|f(I)| =
∣∣∣∣f




C′−1∑

j=0

∑

(O,x′,y′)∈Pj

T(x′,y′)(O)




∣∣∣∣ ≼
∣∣∣∣

C′−1∑

j=0

∑

(O,x′,y′)∈Pj

f(T(x′,y′)(O))
∣∣∣∣ (31)

Then, since f is translation equivariant, and provides delta detections

|f(I)| ≼
∣∣∣∣

C′−1∑

j=0

∑

(O,x′,y′)∈Pj

f(T(x′,y′)(O))
∣∣∣∣ =

∣∣∣∣
C′−1∑

j=0

∑

(i,x′,y′)∈Pj

δ(j,x′,y′)

∣∣∣∣. (32)

Applying a global pooling operator to f(I) then gives

|zk| = | Pool(f(I))k| ≤ γk

∣∣∣∣
W ′−1∑

x=0

H′−1∑

y=0
f(I)(k, x, y)

∣∣∣∣ (33)

≤ γk

∣∣∣∣
W ′−1∑

x=0

H′−1∑

y=0




C′−1∑

j=0

∑

(i,x′,y′)∈Pj

δ(j,x′,y′)(k, x, y)




∣∣∣∣ (34)

≤ γk

∣∣∣∣
W ′−1∑

x=0

H′−1∑

y=0

∑

(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x, y)
∣∣∣∣ (35)

≤ γk

∣∣∣∣
∑

(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x′, y′)
∣∣∣∣ (36)

≤ γk|Pk| (37)

A.6 Corollary 1.1

Proof. The Lp norm of z is defined as

||z||p =




C′−1∑

k=0
|zk|p




1
p

(38)

for p > 0. Since each |zk| is positive and upper bounded by γk|Pk| (by Theorem 1), we have

C′−1∑

k=0
γk|Pk|p ≥

C′−1∑

k=0
|zk|p (39)

which gives




C′−1∑

k=0
γk|Pk|p




1
p

≥




C′−1∑

k=0
|zk|p




1
p

= ||z||p (40)
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A.7 Corollary 1.2

Proof. This proof follows the same steps as the proof of Theorem 1, but without absolute values, and with
equality instead of inequality.

Since f is a strict detector, we have

f(I) = f




C′−1∑

j=0

∑

(O,x′,y′)∈Pj

T(x′,y′)(O)


 =

C′−1∑

j=0

∑

(O,x′,y′)∈Pj

f(T(x′,y′)(O)) (41)

Then, since f is translation equivariant, and provides delta detections

f(I) =
C′−1∑

j=0

∑

(O,x′,y′)∈Pj

f(T(x′,y′)(O)) =
C′−1∑

j=0

∑

(i,x′,y′)∈Pj

δ(j,x′,y′). (42)

Applying a global pooling operator to f(I) then gives

zk = GAP(f(I))k = 1
W ′H ′

W ′−1∑

x=0

H′−1∑

y=0
f(I)(k, x, y) (43)

= 1
W ′H ′

W ′−1∑

x=0

H′−1∑

y=0




C′−1∑

j=0

∑

(i,x′,y′)∈Pj

δ(j,x′,y′)(k, x, y)


 (44)

= 1
W ′H ′

W ′−1∑

x=0

H′−1∑

y=0

∑

(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x, y) (45)

= 1
W ′H ′

∑

(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x′, y′) (46)

= 1
W ′H ′ |Pk| (47)
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