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Abstract: Identifying flexible loads, such as a heat pump, has an essential role in a home energy
management system. In this study, an adaptive ensemble filtering framework integrated with long
short-term memory (LSTM) is proposed for identifying flexible loads. The proposed framework,
called AEFLSTM, takes advantage of filtering techniques and the representational power of LSTM for
load disaggregation by filtering noise from the total power and learning the long-term dependencies
of flexible loads. Furthermore, the proposed framework is adaptive and searches ensemble filtering
techniques, including discrete wavelet transform, low-pass filter, and seasonality decomposition, to
find the best filtering method for disaggregating different flexible loads (e.g., heat pumps). Experi-
mental results are presented for estimating the electricity consumption of a heat pump, a refrigerator,
and a dishwasher from the total power of a residential house in British Columbia (a publicly available
use case). The results show that AEFLSTM can reduce the loss error (mean absolute error) by 57.4%,
44%, and 55.5% for estimating the power consumption of the heat pump, refrigerator, and dishwasher,
respectively, compared to the stand-alone LSTM model. The proposed approach is used for another
dataset containing measurements of an electric vehicle to further support the validity of the method.
AEFLSTM is able to improve the result for disaggregating an electric vehicle by 22.5%.

Keywords: load disaggregation; non-intrusive load monitoring; flexible load; signal processing;
deep learning

1. Introduction

The demand for power and energy is increasing due to the growing electrification
of society. This creates severe problems of power and energy shortages. The residential
sector is one of the sectors that has a large share of the end use of energy after industry
and transport. In 2019, energy consumption in the household sector represented 26.3% of
the final consumption in the EU, which is a significant amount [1]. This amount can be
reduced using demand-side management strategies [2].

In a traditional power system, loads cannot be controlled, leading to higher consump-
tion and subsequently higher pressure on the grid. However, it is possible to control the
flexible loads in the residential sector using HEMS [3]. Flexible loads are used to reduce
electricity consumption in peak load periods and shift it to off-peak load periods or times
when the electricity price is low. Heat pumps, water heaters, floor heating cables, and
electric vehicles are some examples of flexible loads in a residential building [4]. A balance
between energy consumption and production can be provided using HEMS technologies
by participating in flexible loads in different DR programs, considering consumer comfort
preferences [5]. Providing feedback to the consumers gives them a better insight into
managing their electricity consumption through a suitable DR program [6].

The first step in controlling flexible loads is to monitor them. The process of identifying
and obtaining the load signatures in a power system is load monitoring [7]. Load signature
is the intrinsic consumption pattern of each individual appliance. Each electrical appliance
has its own unique features when it is in operation.
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Generally, there are two main methods for load monitoring, the first is intrusive load
monitoring and the second is non-intrusive load monitoring. ILM is a traditional method
for load monitoring. In this method, each device has its own measuring sensor to record
the power consumption of the device with a specific time resolution. Even though ILM is a
precise method and the signatures of individual appliances can be obtained using direct
measurements, there are drawbacks to this method, because a sensor needs to be installed
for each appliance in order to acquire the power consumption data of that specific device.
Therefore, it is a cumbersome process, and the large number of home appliances in each
house leads to high maintenance and hardware costs [8]. In order to solve this problem,
Hart proposed a non-intrusive load monitoring concept for the first time in the 1980s [9].
In simple terms, the process of extracting the load signature of individual appliances
from the total power using computational methods is NILM or load disaggregation. In
NILM, only one set of measurement sensors is required at the power entrance to record
the aggregate power data. Based on the data that are used to solve the problem, it can be
categorized into supervised and unsupervised learning methods. In supervised learning,
data have a label and there is information about different appliances to train the network,
while unsupervised learning data are unlabelled [10]. Depending on the requirements,
supervised learning can be defined as a regression or classification problem. Different
load monitoring methods are categorized in Figure 1. In this paper, a supervised learning
method is used for load monitoring.

1.1. Literature Review

There are two main approaches to NILM [11]: state-based and event-based methods.
The event-based approaches use edge detection techniques to identify the events in the
signal. The total power consumption in a home is constantly changing, and new events
(ON/OFF of one or more appliances and changes in the states of the appliances) can be
identified based on the edges. Load signatures of different appliances are extracted based
on the intrinsic features of each device. Different classification methods including kNN [12],
Decision Trees [13], HMM, SVM [14] and Naive Bayes have been employed. The similarities
between appliance signatures and high measurement noise limit the performance of the
event-based method. In order to improve the performance of event-based NILM, a graph
signal processing algorithm was studied by Zhao et al. [15].

Load Monitoring (LM)

Intrusive LM Non-Intrusive LM

Pattern Classification Load Signature

Supervised Learning Unsupervised Learning
ΔP-ΔQ Signature 

Figure 1. Different load monitoring methods.

The state-based method represents each operation of the appliance using a state
machine with distinct state transitions according to the usage pattern of appliances. When
the states of appliances change or appliances turn ON/OFF, they have different edges
and each of them has a different probability distribution that fits a specific appliance. The
HMM and its different extensions are examples of state-based NILM approaches [16–20].
In the state-based method, prior values of appliances through a long period of training
are required, which is a limitation of this method. High computational complexity is
another drawback of the state-based method [21,22]. There is some research that has
tried to solve NILM using mixed integer programming. In recent years, Wittmann et al.
have [23] considered the NILM problem as a mixed integer linear programming problem
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and achieved high accuracy. A two-stage optimization-based method based on mixed
integer nonlinear programming was presented for load disaggregation in [24].

Recently, deep learning methods have received attention in different fields of study
such as image processing [25] and speech recognition [26]. Powerful computers and
datasets in different fields are the main reasons for increasing the usage of deep learning
methods. Due to the extensive installation of smart meters in recent years, energy con-
sumption data in the household sector are now accessible. For this reason, different deep
learning methods such as CNN [27–31] and RNN [1] have been widely used in the energy
disaggregation problem. In [27], three different deep neural network methods were used
for energy disaggregation and seven metrics were used to check the performance of these
algorithms on five different appliances. A casual CNN network for load disaggregation on
low-frequency data was presented in [32], in which it was concluded that using all four
components (current, active power, reactive power, and apparent power) leads to higher
performance. In [33], a sequence-to-point learning CNN architecture was proposed, where
the sliding window was used for input data to manage long-term time series. Athanasiadis
et al. [34] proposed a scalable real-time event-based load disaggregation algorithm us-
ing the CNN network. The proposed algorithm included three parts: an event detection
algorithm, a CNN classifier, and a power estimation model.

The LSTM model has also been used in the application of NILM. In Ref. [35], an energy
disaggregation method based on the LSTM-RNN model was proposed. A bidirectional
LSTM model was used in [36] for energy disaggregation. A U-net architecture for one-
dimensional data for power estimation and multi-task-multi-appliance state detection was
proposed by Faustine et al. [37]. In [38], a subtask-gated network was proposed, in which
the main regression network was combined with an on/off classification subtask network.

Although some research has been undertaken on load disaggregation with different
deep learning methods, few of them have considered the impact of data preprocessing
methods on the proposed models, and most of the proposed methods are considered as a
classification problem that detects only switch on/off events.

1.2. Our Contribution

This paper proposes a new adaptive load disaggregation framework (AEFLSTM),
powered by the strength of signal processing methods and LSTM. The AEFLSTM is an
adaptive framework that can be used for load disaggregation in residential houses by
searching among an ensemble of signal processing techniques to improve the LSTM perfor-
mance for disaggregating that specific load. Signal processing methods are strong tools for
filtering frequencies that might not be useful for flexible load disaggregation. The LSTM is
also a strong technique to learn the temporal dependencies of flexible loads and address
nonlinearities and uncertainties. To the best of the authors’ knowledge, AEFLSTM is the
first attempt at flexible load disaggregation which tries to find the best signal processing
technique for LSTM to improve accuracy. The contributions of this paper are summarized
as follows:

• In terms of methodology:

– An adaptive disaggregation framework powered by the signal processing tech-
nique and LSTM is developed that is applicable to any load disaggregation
problem;

– The proposed AEFLSTM is a holistic algorithm that can easily be generalized to
have more signal-processing techniques.

• From an application point of view, the proposed framework AEFLSTM is used to
disaggregate a heat pump and a refrigerator from the total power of a residential
building in British Columbia. The accuracy of load disaggregation is significantly
improved by using the proposed AEFLSTM framework based on actual data from the
use case.
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The paper is organized as follows: The data that are used in this study are explained
in Section 2. The methodology, including signal processing and deep learning methods, is
presented in Section 3. Section 4 shows the results of the experimental evaluation of the
proposed methods. Finally, the conclusion of the paper is given in Section 5.

2. Use Case

In this paper, data from a residential building in British Columbia, Canada are used.
The dataset, named AMPDs, is an open-source dataset and is available from [39]. It contains
different measured factors, such as voltage, current, frequency, real power, reactive power,
etc., for different loads in the house such as a the heat pump, refrigerator, dishwasher,
washing machine, and other common loads. The main focus of this paper is to disaggregate
the major loads from the total power to use them as flexible loads in future research.
Therefore, the focus of this study is on the disaggregation of heat pumps, which are the
major electricity consumer in AMPDs data. Hence, in Figure 2, the total power of the
house and heat pump power consumption is plotted. Moreover, their statistical metrics,
including the mean value, standard deviation, and minimum and maximum values of the
total power and heat pump power consumption, are presented in Table 1. The metrics in
Table 1 show that the heat pump has a large share of electricity consumption in the AMPDs
data. Therefore, it will be valuable if controlled as a flexible load.
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Figure 2. Ten days data of (a) total power, (b) heat pump from 1 November 2012 to 11 November 2012.

Table 1. The statistic metrics of total power and heat pump.

Mean (W) STD (W) Min. (W) Max. (W)

Total power 1396.7 1132.4 269.0 10,542.0
Heat pump 407.2 737.7 0.0 3030.0

3. Methodology

In this paper, a deep adaptive ensemble filter based on various signal processing
tools integrated with an LSTM is developed for flexible load disaggregation. The overall
schematic of the proposed framework AEFLSTM is presented in Figure 3. As is shown,
the proposed framework has two main modules, and it should be mentioned that there
is a data preprocessing step before applying the main signal to the first module. The
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first module is an adaptive ensemble filtering block that consists of three famous signal
processing methods. The output of this module is a clean total power signal in which
irrelevant frequencies are filtered (e.g., noise or high frequencies), depending on the main
frequencies of the selected flexible load that need to be disaggregated from the total power.
Then, the filtered signal and calendar variables are applied to the second module, which is
a supervised deep-based load disaggregation block, to enhance the learning ability of the
LSTM for disaggregating the flexible load from the filtered signal. There is feedback from
the output of the second module to the input of the first module in order to find the best
signal processing method which has the best performance for load disaggregation. In other
words, all the available signal processing methods in the first modules are tested by the
algorithm, and the one with the best performance is selected. In the following subsections,
each module as well as the data preprocessing step is explained in detail.

Data Pre- processing

- Missing values

- Data normalization

- Sequence of data 

over time window

Block 1: Adaptive ensemble 

filtering

Block 2: Supervised deep based load 

disaggregation

In
p

u
ts

Hidden layer

Output

ˆ
jP

LPF

DWT

SD

Filtered data

Calendar 

variables

Figure 3. The proposed framework for load disaggregation.

Consider a house with N different household appliances. If P(t) is the total power
that is taken from the smart meter at the power entrance of the house and Pj(t) is the power
consumption of j-th appliance (1 ≤ j ≤ N), then the total power is [13]:

P(t) =
N

∑
j=1

Pj(t) + e(t) (1)

where e(t) is the noise. The main goal of the problem in Equation (1) is to estimate Pj(t)
with a given P(t).

3.1. Data Cleaning

The first step before training any machine learning algorithm is data cleaning, which
can improve data quality and consistency. Data cleaning can include the following steps
such as finding missing values, interpolating or imputing missing values, detecting outlier
data, standardization, or normalization. In this work, fortunately, no missing values
or outliers were found in the AMPDs dataset. Moreover, the data are standardized as
follows [40]:

xnew =
x− x̄

σ
(2)

where xnew, x, and x̄ are the normalized value, real value, and mean of real values, respec-
tively. In addition, σ is the standard deviation of the real data. In this formula, all the new
values are centered around a mean value with unit variance. Generally, there is no specific
rule for selecting the normalization or standardization methods and it is highly dependent
on the problem [41]. In this work, standardization was selected heuristically.

3.2. Adaptive Ensemble Filtering

After performing pre-processing on the data, the normalized data is applied to the
adaptive ensemble filtering block. This block consists of three signal-processing methods.
Each time series can be broken into two main components: systematic and non-systematic.
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Systematic parts can be described and modeled due to their recurrence and consistency.
Non-systematic parts of the time series that are known as noise cannot be modeled because
they are random variations in the time series. Therefore, the model accuracy can be
increased by removing the non-systematic components of the time series. In this paper,
low pass filtering, discrete wavelet transform, and seasonal decomposition are applied to
remove the non-systematic part of the time series. Here, each of them is briefly described.

3.2.1. Low-Pass Filter

A low-pass filter passes a signal with a frequency lower than a certain cut-off frequency.
In the other words, the main aim of low-pass filtering is to remove the components above
the cut-off frequency. A fast Fourier transform can be used to determine the value of
the cut-off frequency because the FFT can find the frequencies, amplitudes, and noise
components of the signal. The cut-off frequency value can be set manually as well. A low
pass filtering in the frequency domain is shown in Figure 4. The filter passes the signal
in the passband and attenuates the signal in the stopband. The cut-off frequency is in the
transition band.

Passband

Stopband

Frequency 

Transition

band

Cutoff 

frequency

Figure 4. A low pass filter in the frequency domain [42].

3.2.2. Discrete Wavelet Transform

The second method that is used for denoising the time series is the discrete wavelet
transform [43]. In practice, DWT is used as a filter bank that can deconstruct a signal
into the low pass (approximation) and high pass (detail) coefficients, which is called
signal decomposition. If the signal is reconstructed again using detail and approximation
coefficients, the output will be the original signal. However, if the detail coefficients that
are representative of the high-frequency part of the signal are left out in the reconstructing
process, then the output signal is the original signal that is filtered out. The DWT of a time
series signal x[n] is as follows:

Wx(a, b) = ∑
n

1√
a

x[n]ψ∗(
n− b

a
) (3)

where the parameter a sets the scale or dilation of the wavelet; it decides how squashed
or stretched a wavelet is. Increasing the value of a will stretch the wavelet and decreasing
its value will squash the wavelet. The location of the wavelet is defined by parameter b.
Increasing the value of b moves the wavelet to the right and decreasing its value shifts the
wavelet to the left. ψ∗ is the complex conjugate of the mother wavelet, ψ. To define DWT,
the following assumptions are considered:{

a = 2j

b = k2j , j = 0, 1, 2, . . . (4)

where k is an integer. The wavelet function is stretched in the time domain and squashed
in the frequency domain by a factor of two if the index j increases by one.
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By substituting (4) into (3), the new equation for the DWT is as follows:

Wx(j, k) = ∑
n

1√
2j

x[n]ψ∗(2−jn− k). (5)

The structure of the DWT decomposition model is depicted in Figure 5.

LPF
[ ]x n

HPF

2↓ 

2↓ 
D1

A1

LPF

HPF

2↓ 

2↓ 

A2

D2

Figure 5. The structure of DWT decomposition model [44].

3.2.3. Seasonal-Trend Decomposition Method

The last method that has been used for denoising the signal is the additive decom-
position method. Earlier in this section, it was explained that each time series has two
components: a systematic part and a non-systematic part. The systematic component in-
cludes trend and seasonality. The trend component shows the long-term change (increasing
or decreasing) in the time series, and the seasonality component indicates periodic cycles in
the data. Therefore, a time series is a function of trend, seasonality, and noise. The equation
can be written as follows [45]:

Yt = f (Tt, St, et) (6)

where Yt is a time series, Tt is the trend, St is the seasonality, and et is the noise. In an
additive decomposition model, it is assumed that the time series is a combination of all
components. The equation of the additive decomposition model is as follows:

Yt = Tt + St + et. (7)

3.3. Supervised Deep-Based Load Disaggregation

The output of the first module and calendar variables are applied to the second module,
which is a supervised deep-based load disaggregation block. In this module, the LSTM
network, which is a deep learning method, is used for load disaggregation. An LSTM
model is composed of different cells that are responsible for remembering information.
Each cell includes three parts: the forget gate, the input gate, and the output gate. The
information that is less important or is no longer needed for the LSTM is removed through
the forget gate. It optimizes the performance of the network. The forget gate has two inputs,
xt is the input at time t and ht − 1 is the hidden state from the previous cell. ft is the output
of the forget gate. It is a vector with values 0 and 1; a 0 output for a specific value implies
forgetting the information related to that value, whereas 1 implies that the information is
remembered. The input gate adds new information to the cell. It creates a vector containing
all possible values that can be added to the cell. The vector is filtered and scaled in the
range of −1 to 1 by the tanh function to keep only important information. The output gate
chooses useful information from the current cell. It sends them out as the hidden state for
the next cell and as an output for the current cell. The structure of the LSTM cell is shown
in Figure 6.
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σ σ σ tanh 

tanh 

Figure 6. The structure of the LSTM cell.

4. Experimental Results

To evaluate the proposed AEFLSTM model for load disaggregation, the AMPDs
dataset was used. The resolution of the data is one minute, which is low frequency;
therefore, it has less computational complexity than high-frequency data. The details of the
dataset are explained in Section 2. The experiments were implemented in “Google Colab”
using Numpy, Pandas, Keras, and sklearn libraries.

In this study, the adaptive ensemble filtering module (Block 1, shown in Figure 3)
searches between different denoising methods in the block and at the end compares the
result and chooses the best one for load disaggregation. The results were evaluated based on
the mean absolute error (MAE) and root mean square error (RMSE), which are commonly
used to evaluate the energy disaggregation problem. The formulas of the metrics are
as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (8)

RMSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (9)

The household load consumption is highly dependent on time. Hence, it is essential
to discover the correlation between power consumption and calendar variables including
hours, weekdays, and months. At this stage, some analyses have been performed to show
these dependencies. In Figure 7, the correlation heat map between total power and power
consumption of the heat pump with calendar variables including hour, day of week, day of
month, and month is shown. To calculate the pairwise correlation of columns, the corr()
function in the pandas library was used, in which the Pearson method (standard correlation
coefficient) was selected for the correlation function. The heat map was plotted using the
seaborn library in python. As it can be seen in Figure 7, the heat pump power consumption
has the highest correlation with the total power and among the calendar variables, it has
the highest correlation with hour.

Before implementing AEFLSTM for load disaggregation, a stand-alone LSTM model
was compared with the state-of-the-art models, including linear regression and decision
tree regression, in order to determine which of them are more suitable for the application of
load disaggregation. The total power consumption, history of the appliance, and calendar
variables including hour, day of week, and day of month were used to train the LSTM
network. The parameters of the LSTM model, including the number of training epochs,
batch size, and the number of nodes to use in the hidden layer, were chosen using a grid
search. The final LSTM network configuration is shown in Table 2.

The period from 1 November 2012 to 30 November 2012 of the aggregated power
consumption data of the AMPDs dataset was selected for training, validation, and testing
of the LSTM model. A total of 30% of the data was considered for validation and one day
of the data was used for testing the model.
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The input layer of the LSTM network receives the data in a three-dimensional format
with a moving time window. Here, a time step of 360 min is considered, which means data
are segmented into different time windows with a duration of 360.
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Figure 7. The correlation between total power and heat pump power consumption with calendar
variables.

Table 2. The LSTM network configuration.

LSTM Parameters

First layer Second layer

Nodes 100 50
Dropout rate 0.2 0.2

Return sequence True False
Activation function relu relu

Optimizer loss epotchs batch_size validation_split

Adam MSE 15 30 0.3

After network configuration, LR, DTR, and LSTM were used to disaggregate the heat
pump power consumption from the aggregated total power. A numerical comparison of all
the methods is presented in Table 3. As presented in Table 3, the LSTM model outperforms
the other models, as the MAE error was significantly reduced from 319.35 (W) and 97.01
(W) to 90.2 (W). Although the LR and DTR models could detect the switch on/off events of
the heat pump, they could not correctly identify the peak of the load. Another problem of
these two models is that they cannot correctly distinguish the load cycle (heat pump time
period) and show the device as on while it is off in reality based on measured data. For
the sake of a better understanding, the DR, DTR, and LSTM performances are presented in
Figure 8.

Table 3. HPE with different methods.

HPE MAE (W) RMSE (W)

LR 319.35 500.9
DTR 97.01 268.6

LSTM 90.2 208.68

The details of different filtering methods used in the adaptive ensemble filtering block
in Figure 3 are presented separately in the following subsections.
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Figure 8. Comparison of the estimated power consumption of the heat pump with ground truth
using (a) LR, (b) DTR, and (c) LSTM.

4.1. Case 1: LPF

In this section, the specification of the LPF, which is one of the filtering methods in
the adaptive ensemble filtering block, is explained. A signal processing toolbox called
“scipy.signal” was used. The value of the desired cut-off frequency of the filter is an
important factor to design a proper LPF. Improper selection of this parameter may change
the nature of the original signal. For this reason, the signal was first transferred to the
frequency domain using a fast Fourier transform. The frequencies and amplitudes of the
signal vs. the noise components can be identified based on the signal response in the
frequency domain. A range of frequencies outside the principle frequency was selected and,
based on trial and error, the number 0.35 was considered as the desired cut-off frequency.
The LPF frequency response and the aggregate power consumption signal and its LPF
smoothed version are depicted in Figure 9.
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Figure 9. LPF smoothing.



Sensors 2023, 23, 1992 11 of 16

4.2. Case 2: DWT

In this section, the DWT specification used in the adaptive ensemble filtering block is
explained. DWT was used to remove the noise in which the signal is deconstructed into
the detail and approximation coefficients. Here “PyWavelets” (an open-source wavelet
transform software for python) was applied for signal decomposition. In the simulation,
one family of wavelets, called “Daubechies”, was considered. The detail coefficients were
filtered out using “pywt.threshold”, which removes coefficients above a certain threshold.
The aggregate power consumption signal and its DWT smoothed version are shown in
Figure 10.
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Figure 10. Ten-day-data of aggregate power consumption signal and filtered data using DWT
smoothing.

4.3. Case 3: SD

The last method used for filtering the signal was the seasonal decompose method.
In order to implement the SD model, a times series analysis toolbox named “statsmod-
els.tsa” was utilized. The total power consumption signal was decomposed into differ-
ent components including trend, seasonality, and residual components using the “sea-
sonal_decompose” function in the “tatsmodels.tsa” toolbox. The main signal and its
components are plotted in Figure 11. As it can be seen from Figure 11, the signal does
not show seasonality; therefore, the trend is considered as the extracted feature and the
residual is filtered out.
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In the following, AEFLSTM is implemented using the configuration and parameters
mentioned in Sections 4.1–4.3 and Table 2 for the first and second modules, respectively,
to disaggregate the heat pump power consumption from the total power. The AEFLSTM
algorithm searches among all the available signal processing methods in the first module
and the one with the best performance is selected. The AEFLSTM model shows, DWT-
LSTM outperforms the others while disaggregating the heat pump power consumption.
The output of the AEFLSTM model, which is the estimated power consumption of the heat
pump, is compared with the ground truth in Figure 12. Finally, the performances of all
the filtering methods are compared based on the MAE and RMSE metrics in Table 4. As
can be seen from the comparison, all the methods have improved the model, and their
performances are better than a stand-alone LSTM network. Among them all, DWT-LSTM
outperforms with a slight difference from SD-LSTM; therefore, it was chosen as the output
of the AEFLSTM model.

Table 4. HPE with different methods.

HPE MAE (W) RMSE (W)

LSTM 90.2 208.68
DWT-LSTM 38.4 148.75
LPF-LSTM 51.5 157.1
SD-LSTM 39.7 153.2

0 250 500 750 1000 1250 1500 1750
Time
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1000

2000
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E

HPE Test

Measured power
Predicted Power

Figure 12. A comparison of the estimated power consumption of the heat pump with ground truth
using AEFLSTM.

The main focus of this paper is to disaggregate the sizeable and major loads to use them
as flexible loads in future work. However, in this part, the proposed AEFLSTM method
is implemented to estimate the signatures of the refrigerator and the dishwasher of the
AMPDs dataset, to show the performance of the proposed methodology on other appliances
as well. First, a stand-alone LSTM model, a DTR model, and an LR model were used to
disaggregate the power consumption of the appliances from the total power consumption.
Again, the LSTM model outperforms the two other methods for both appliances. For the
refrigerator, LR failed to identify on/off events. DTR could detect a few events but was not
able to identify the peak of the load. However, for the dishwasher, both methods (LR and
DTR) failed to identify on/off events. A numerical comparison of these different methods
is presented in Table 5.

In the following, AEFLSTM was implemented using the configuration mentioned in
Sections 4.1–4.3 and Table 2 for both modules. This time, as in the previous case for the
heat pump, the AEFLSTM chose the DWT-LSTM method as the best result for estimating
the power consumption of the refrigerator and it chose LPF-LSTM for disaggregating the
signature of the dishwasher (slightly better than DWT-LSTM) from the total power. A
comparison of the estimated power consumption using AEFLSTM with ground truth data
for the refrigerator and the dishwasher is shown in Figures 13 and 14, respectively. The
zoomed-in versions of both figures show how accurately the estimated power consumption
tracks the measured data. The numerical results of both case studies are presented in
Table 5.
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Figure 13. A comparison of the estimated power consumption of the refrigerator with ground truth
using AEFLSTM.
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Figure 14. A comparison of the estimated power consumption of the dishwasher with ground truth
using AEFLSTM.

Table 5. Performance metrics (MAE and RMSE) of the difference between real and estimated data for
different appliances.

FGE DWE EV

MAE (W) RMSE (W) MAE (W) RMSE (W) MAE (W) RMSE (W)

LR 59.48 75.84 29.32 106.66 715.76 975.67
DTR 50.94 71.39 48.64 151.65 363.36 782.62

LSTM 25.74 58.82 10.99 36.59 300.04 735.07
AEFLSTM 14.4 50.6 4.89 28.33 232.37 668.01

Here, the validation phase is expanded by including another dataset to further sup-
port the validity of the proposed approach. For this reason, a dataset from a residential
building in the arctic region of northern Norway is considered. The dataset contains the
measurements of the electricity consumption of the main circuit and different appliances,
where electric vehicles are one the major loads, consuming a large part of the total power.
Therefore, the AEFLSTM approach was used to estimate the power consumption of the
electric vehicle from the total power. However, before implementing the AEFLSTM, other
methods, including LR, DTR, and stand-alone LSTM, were used to estimate the power
consumption of electric vehicles from the total power, in which LSTM performed better.
The performance metrics of the difference between real and estimated data for electric
vehicles are presented in Table 5. A comparison of the proposed method with ground truth
for electric vehicles is depicted in Figure 15.
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Figure 15. A comparison of the estimated power consumption of the elctric vehicle with ground
truth using AEFLSTM.
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5. Conclusions

This paper presented a new deep adaptive ensemble filter for non-intrusive residen-
tial load monitoring. This method is used for non-intrusive residential load monitoring.
The proposed AEFLSTM framework searches among ensemble filtering methods in the
first module to find the best method for load disaggregation application. Experimental
results are presented for disaggregating a heat pump, refrigerator, and dishwasher from
the AMPDs dataset. The performance of the stand-alone LSTM is compared with DTR and
LR models to determine which is more suitable for the load disaggregation problem. The
results show that the LSTM model outperforms in disaggregating the heat pump, refrig-
erator, and dishwasher. AEFLSTM is implemented to estimate the power consumption
of the appliances. AEFLSTM selects DWT-LSTM as the more accurate method for disag-
gregating the heat pump and refrigerator signatures from the total power and LPF-LSTM
for disaggregating the signature of the dishwasher. The results show that AEFLSTM can
reduce the loss error (mean absolute error) for the heat pump, refrigerator, and dishwasher
by 57.4%, 44%, and 55.5%, respectively, compared to the stand-alone LSTM model. Finally,
another dataset containing data on electric vehicle power consumption is considered to
further support the validity of the proposed approach. AEFLSTM is able to improve the
result of estimating the electricity consumption of the electric vehicle by 22.5%.

Research on NILM has led to a detailed understanding of the energy consumption
of home appliances. Appliances used for heating, cooling, ventilation, washing, and
drying can be considered as flexible loads where their utilization may be reduced or
changed during peak load periods, considering user comfort. Future work will investigate
the possibility of deploying a home energy management system for appliance flexibility
using NILM.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network
DR Demand response
DTR Decision tree regression
DWT Discrete wavelet transform
FFT Fast Fourier transform
HEMS Home energy management system
HMM Hidden Markov model
ILM Intrusive load monitoring
KNN k-nearest neighbors
LR Linear regression
LSTM Long short-term memory
LPF Low pass filter
MAE Mean absolute error
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NILM Non-intrusive load monitoring
RMSE Root mean square error
RNN Recurrent neural network
SD Seasonal decomposition
SVM Support vector method
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